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1 Introduction

The scientific literature on chaos and bifurcation has grown enormously since the publication
of Lorenz’s 1963 paper [1] showing chaotic motion in a simple, nonlinear, third order model
that could be used for weather prediction. Advances in the understanding of bifurcation and
chaos has come from the use of techniques of mathematical analysis, computer simulation,
and laboratory experiments. Excellent and comprehensive accounts of the field are now
available. The technical level of these accounts range from the mathematically difficult [2] to
the widely accessible [3]. Treatments at intermediate levels of mathematical sophistication
include [4, 5, 6, 7, 8, 9].

We do not provide another comprehensive view. Rather, we survey the published lit-
erature dealing with bifurcation and chaos in electric power systems. We also include a brief
discussion of relevant mathematical concepts and results in order to make the presentation
reasonably self-contained and accessible to power engineers. The objective of the survey is
to determine the extent and significance of power systems behavior that can be understood
by dynamic models exhibiting bifurcation and chaotic motion. Such a determination is,
however, complicated by two factors.

The first factor applies in any attempt to describe a real phenomenon using the
concepts of bifurcation and chaos. It has to do with the obvious point that these concepts
refer to well-defined properties of a mathematical model (almost always a differential or
difference equation); they do not refer in any direct way to the properties of the observed
behavior of a real system. Therefore, assertions such as, “Voltage collapse is due to a
saddle-node bifurcation,” or “Turbulence in fluid flow is chaotic,” mean first that there is
a mathematical model (of power systems or fluid flow) whose behavior has the relevant
mathematical property and, second, that there are scientific grounds for claiming that this
is indeed a good model of the real system. This brings us to the second factor.

Clearly there is a strong basis for accepting the model if its behavior fits the ob-
served data. Let us call such data ‘direct’ evidence. We should remind ourselves, however,
of the intrinsic limitations of direct evidence since all measured data have finite granularity
and extend over a finite time interval. But bifurcation and chaos refer to asymptotic prop-
erties of behavior - in the sense that the properties involve arbitrarily small differences in
state and arbitrarily long intervals of time. Thus an unstable limit cycle and a fractal like
the Cantor set are mathematical notions which can never be directly observed, and subjec-
tive judgement is involved whenever these properties are attributed to real systems. This
judgment is of course conditioned by the extent, numerical accuracy, predictability, and
reproducibility of the observations. The judgement will be more confident if, as in the case
of fluid turbulence, data is based on controlled laboratory experiments; and the judgement
will be more speculative if, as in the case of weather prediction, data is incomplete, sparse,
infrequent, and the opportunity for experimentation is limited.

The case of power systems is a mixture of the examples of turbulence and weather
prediction. At one end, we have controlled experiments with single generators so that we can
be confident about models that predict certain electro-mechanical oscillations in generators.



At the other end, there are only anecdotal reports and spotty data on the few instances of
power system failures that can be attributed to ‘voltage collapse’ and so at this stage one
must be much less confident in an explanation of voltage collapse as, say, the result of a
saddle-node bifurcation. The virtual absence of relevant direct evidence in power systems
means that researchers have relied on what we call ‘indirect’ or second order evidence. This
has forced researchers to analyze bifurcation and chaos in models that have been validated
for quite different kinds of behavior. For example, we know that the swing equation model
of a system of interconnected generators is useful in predicting the transient behavior of
the system for a very short period (the so-called first swing period). Suppose now that
the same swing equation model exhibits chaotic behavior which is an asymptotic property.
How much confidence can we have in asserting that real power systems can exhibit chaotic
motion?

We summarize these points. Power system models have been validated by observa-
tions over a certain range (direct evidence). But several of the predictions of bifurcation
and chaos are based on model behavior over significantly different ranges. Our confidence
can be increased only by further research — an issue which we address in a later report.

Our study is presented in three parts dealing with local bifurcations, Hopf bifurca-
tions, and chaos. Local bifurcations arise when the number of equilibria changes. A Hopf
bifurcation occurs when a periodic solution emerges from an equilibrium. Both these are
‘local’ phenomena since they are determined by the behavior of the model in a small neigh-
borhood of an equilibrium. By contrast, chaos emerges from a global bifurcation, that is, a
qualitative change in the phase portrait nor restricted to a small neighborhood of an equilib-
rium. Typical examples of global bifurcations are homoclinic and heteroclinic bifurcations.
As we shall see, both are encountered in power system models. Global bifurcation theory
is incomplete and an active area of research in mathematics is concerned with developing
techniques for global analysis.

Power systems are planned, designed and operated at a stable equilibrium point.
Under normal conditions their behavior will not exhibit local or global bifurcation. Regions
of the state space where these bifurcations occur, and the associated instabilities in behavior,
are reached only under disturbances or unanticipated loading conditions. Nevertheless, the
region of stable operating conditions is determined by the location of bifurcation. This
makes the study of bifurcations important even for normal conditions.

Keeping in mind the reservations and qualifications mentioned above, we summarize
our findings as follows.

1. The simplest differential equation models of power systems are so complex that they
exhibit both local and global bifurcations. Local bifurcations can ultimately be traced
to the fact that the power low equations have multiple solutions.

2. In models that incorporates real power flow relations only (all load buses are PV
buses), it seems that the capacity of transmission systems is so large relative to the
flows that the local bifurcations although potentially present will not have practical
significance.



3. However, power systems models in which voltages are determined by reactive power
flows, these bifurcations can dramatically shrink the region of stability. Analytical
and numerical studies of small scale systems indicate that the voltages can drop pre-
cipitously along unstable trajectories. This supports the claim that ‘voltage collapse’
is due to bifurcations. However, the phenomenon of voltage collapse is poorly docu-
mented in the published literature, and competing explanations cannot be ruled out
in the current state of knowledge.

4. The electrical subsystem (exciter, transmission system) can interact with machine
dynamics (swing equation) to produce oscillatory instabilities via a Hopf bifurcation.
In practice this is likely to be a subcritical bifurcation and it reduces the region of
stability.

5. The occurrence of global bifurcations leading to chaos has been demonstrated in mod-
els with unrealistic parameter values. These values have been chosen to simplify the
analysis. Nevertheless, these studies do establish the presumption that chaotic behav-
jor will exist in most power system models. It is not clear, however, if chaos occurs
in regions of the state space sufficiently near operating regimes to affect the stability
region to a significant extent.
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Figure 1: Three phase portraits
2 Local bifurcation

In this section we introduce the basic concepts of bifurcation. These concepts are illustrated
by the important example of a swing equation model of a single generator connected to an
infinite bus. We then survey power system models that show local bifurcation.

2.1 Basic concepts

Consider the differential equation system

(1) = f(2(2),7) (1)

where the state z € R® and v € RP is a fixed parameter. The behavior of the system can
be summarized by its phase portrait which is the set of all its orbits.! Different values of v
correspond to different systems and phase portraits. Our aim is to compare systems with
different 4.

Two systems are said to be topologically orbital equivalent or TOE if their phase
portraits can be continuously deformed into each other. This concept is meant to capture
the intuitive idea that the behaviors of two systems can be qualitatively similar even though

they are quantitatively different. Thus in Figure 1 the first and second phase portraits are
TOE but the third is not.?

We return to (1). We will also say that two parameter values are TOE if the
corresponding systems are TOE. A particular value 7o is said to be a bifurcation point of

! An orbit is the locus of all points {z(f)| — 0o <t < 0o} where ¢ — z(2) is any trajectory of (1).
20ther definitions of topological equivalence have been proposed, see [8].
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Figure 2: Bifurcation diagram for (2)

(1) if there exist parameter values arbitrarily close to ¢ that are not TOE. The set of all
bifurcation points is called the bifurcation set. We illustrate these concepts in an important
example.

2.2 One generator model

The discussion below is based on (10, 11]. The swing equation model of a single generator
connected to an infinite bus is given by

M@ + D6 =P — Bsind

where @ is the angle of the generator voltage relative to the bus voltage, P is the mechanical
input power and Bsiné is the electric power output; M, D are constants relating to the
generator inertia and damping, B is related to the reactance of the lossless line connecting
the generator and the infinite bus.

In state space form the equation becomes
f = w
Mo+ Dw = P- Bsind (2)

Two different state spaces will be used: either (w,0) € R? or (w,0) € £ = R x S where
S = [0,2x] is the unit circle and @ is measured modulo 27.

Fix B > 0, and let « = D/M, 8 = P/M. We compare the behavior of (2) for
different values of ¥ = (e, ). The bifurcation diagram is given in Figure 2.

The parameter space is divided into three regions marked F, EO and O. Within
each region the parameters are TOE. The regions are separated by the bifurcation set

10



Figure 3: Phase portrait in £

consisting of the curve marked ao(8) and the vertical line at So. Note that the bifurcation
set separates the TOE regions.

Suppose (a,B) is in E. There are two equilibria in ¥, namely, (w = 0,60) and
(w=0,¢) where
in—1 M_ﬂ,

B

In the state space R? there is an infinite number of equilibria displaced by multiples of 2.
The first equilibrium is a node and the second is a saddle.® Every trajectory converges to
one of these equilibria.# The phase portrait for ¥ € E is shown in Figure 3. The state space
is taken to be R2. If it were taken to be &, then the equilibrium at 6 4+ 27 would coincide
with @ and the equilibrium at ¢ — 27 would coincide with ¢. The curves labeled W, and
W, are the stable and unstable manifolds of the saddle.> The regions bounded by W, is the
stability region or attractor of the stable equilibrium. Therefore, W, is sometimes called
the separatrix.

0=s ¢p=7-20

Decrease the damping « until @ = ao(f) so v is on the boundary of E. The phase
portrait now changes to that of Figure 4. Since the phase portraits of Figures 3 and 4 are
not TOE, points on ag are bifurcation points. One important feature should be noted. The

3 An equilibrium is a node if the linearized differential equation has all its eigenvalues with strictly negative
real part, it is a saddle if it has at least one eigenvalue with strictly negative real part and at least one with
strictly positive real part.

4This is sometimes called complete stability.

5The stable manifold consists of all initial states from which trajectories converge to the saddle as ¢t — +oo;
the unstable manifold consists of all initial states from which trajectories converge to the saddle as t — —o0.

11
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Figure 4: Phase portrait on ag, saddle connection

stable manifolds at the saddle at ¢ coincides with the unstable manifold of the saddle at
¢ — 2, and there is an orbit which connects these two saddles. Hence this bifurcation is
called a saddle connection and the orbit is called a heteroclinic orbit. If we had taken T as
the state space, ¢ and ¢ — 27 would be the same saddle, the orbit would connect the saddle
to itself and it would be called a homoclinic orbit. We will see in §4 that this orbit can give
rise to chaotic motion.

Decrease the damping still further so v is in region EO. We get the qualitatively
different phase portrait of Figure 5. The heteroclinic orbit has disappeared, and there
appears a new asymptotic behavior marked by the curve C. In the state space &, C would
correspond to a stable limit cycle.® Physically, the generator is no longer in synchronism
with the infinite bus.

Now increase 8 to 8o = B/M. There is another qualitative change as the number
of equilibria changes since # = ¢. The saddle and node fuse together and this is known as
a saddle-node bifurcation. The phase portrait is given in Figure 6. Physically, this is the
limit of steady-state stability and the point of maximum power transfer, P = B.

When 8 > fo, there is no equilibrium.? All solutions converge to the orbit C, as in
Figure 7.

This lengthy discussion of the one generator case will suggest results for multi-
generator systems where detailed calculations are not possible. We summarize a few con-
clusions which will be useful later on.

8The period of the limit cycle increases as « is decreased and the saddle connection could be thought of
as a limit cycle with ‘infinite’ period.
"One says that the saddle and node have annihilated each other.

12
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Figure 6: Phase portrait at 8o, saddle-node bifurcation
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Figure 7: Phase portrait in O

First, the bifurcation set is a ‘thin’ region (measure 0) which separates the parameter
space into ‘fat’ TOE regions (open sets). Sometimes, systems within each TOE region are
said to be structurally stable.

Second, the saddle-node bifurcation is a special case of the more general bifurcation
which occurs when there is a change in the number of equilibrium points. For the general
model

() = f(=(2),7)

we assume that the number of equilibria is finite. Then ¢ is a bifurcation point if the
number of equilibria changes as ¥ — 70.2 This kind of bifurcation is very easy to check
since a necessary condition is that for some equilibrium point z¢

det g(:}o, 70) =0 (3)

i.e. the Jacobian at an equilibrium must become singular.® Because this is a local condition,
not requiring knowledge of the phase portrait, we say that vo is a local bifurcation point.
We study local bifurcations extensively in the remainder of this section.

Third, by contrast, the saddle-connection bifurcation is not caused by a change in
the number of equilibria, and requires an analysis of the phase portrait. It is therefore called
a global bifurcation. We will study these in connection with chaotic behavior.

8To see that v is indeed a bifurcation point, note that if two systems are TOE, then they must have the
same number of equilibrium points.
9The necessity of (3) follows from the Implicit Function Theorem.

14



2.3 Bifurcation of real power flow equations

The single generator model (2) generalizes to a model for a n generator system,

b; = wi
Mo+ Diw; = Pi—f(0), i=1,..,n (4)
where
n+1
fi(8) = Y Bijsin(; — 6;) (5)
j=1

Here 0,41 = 0 is the reference angle of the voltage at the infinite bus; the parameters
B;j = Bj; > 0if ¢« # j and B;; = 0 are determined by the reactances of the lossless
transmission lines connecting the generators.!®

The state of the system is
(w,8) = (w1, ey Wny 01,y ..., 0,) € R" X R™ or R X Z"

If 6 € =" = [0,27]", then §; is measured modulo 27. (w,#) is an equilibrium if and only if
w = 0and
fil®)=P;, i=1,.,n (6)

and it will be convenient to call § an equilibrium if (6) holds. Equation (6) is called the real
power flow. Let v denotes the parameter vector of interest; it will consist of some of the P;
and some of the B;;. A local bifurcation occurs at 7o if there is a change in the number of
solutions of (6) at yo. A necessary condition is that there is g such that

£(80,70) = P, det F(f,70) := det 2 (d0,70) = 0 )

The Jacobian F(fp,7o) is symmetric, so all its eigenvalues are real. For future
reference, recall the following fact.

Fact 2.1 [12] 8, is a stable equilibrium if and only if F(8o, 7o) is positive definite. If F'(6o, v0)
has [ > 0 negative eigenvalues, then (w = 0,0p) is a saddle and its unstable manifold has
dimension I.

Take v = P, the vector of net power injections, and let N(P) be the number of
equilibria of (4) or the number of solutions of (6). N(P) takes values 0,1,... and so P is a
local bifurcation point if N is discontinuous at P. Alternatively, the set of local bifurcation
points is the union of the boundaries of all sets of the form

Ri={P|N(P)=k}, k=0,1,...

We want to know what this set looks like. This turns out to be a rather difficult problem,
and only some partial results are known. We review these.

10The simplifying assumptions underlying (4) are discussed later.
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Figure 8: Local bifurcations for n = 2

2.3.1 Casen=2

The case of n = 2 with symmetric interconnections, i.e. B;; = 1, was first analyzed in [13];
more detailed work is reported in [14, 15, 16, 17]. The power flow equation becomes

P, = siné +sin(6; — 6;)
P, = siné; +sin(f; - 61)

The (local) bifurcation diagram is given in Figure 8a. Figure 8b describes how the equilib-
rium points move as P moves along the diagonal dashed line in Figure 8a.

When P is in the open region labeled Rg, Rz, R4 or Rg there are 0,2, 4, or 6 equilibria
respectively. The boundaries of these regions comprise the bifurcation set and it consists of
the oval and the star in Figure 8a.

When P is in the hexagon shaped region Rg near P = 0 there are six equilibria.
The six solutions for P = 0 are shown circled in Figure 8b where we have taken 8; € [—7, 7]
instead of [0,27]. Of the six equilibria, one is stable, the remaining five are saddles. As
P moves from Rg towards R4 two of the saddles approach each other, they coincide when
P enters the boundary of R4 at F, and then they disappear (annihilate each other) when
P enters R4. For reasons explained later this is sometimes called the fold catastrophe or
bifurcation, hence the label F. Similarly, when P leaves the star shaped region R4, via
any path except the corners labeled C, we have another fold bifurcation, two more saddles
annihilate each other, so that in Ry we have two equilibria, one of which is stable (node) and
the other is a saddle. In case that P leaves R4 via one of the corners labeled C, three of the
saddles come together, and two of these get annihilated. This is called a cusp catastrophe
or bifurcation. Finally, when P leaves R, there is a saddle-node bifurcation and there is no
equilibrium in Rg.

16



A better understanding of how the various equilibria come together can be obtained
from Figure 8b which plots the locus of equilibria (the dashed lines) as P moves along the
diagonal dashed line in Figure 8a. Note how three equilibria come together when P is at a
cusp C.

Thus for the symmetric case, there are six equilibria for small values of |P|, and
the number of equilibria decrease eventually to 0 as |P| increases. Generally, the number
decreases two at a time in a fold bifurcation. It is easy to see that the bifurcation diagram
of Figure 8 is similar even in the non-symmetric case as long as the B;; are not too different
from each other; in particular the number of equilibria for | P| small is six. It is surprising
that as the B;; become sufficiently different from each other, the number of equilibria for
small | P| suddenly changes to four (this is a bifurcation where the parameters are the B;;),
see [16].

One result for arbitrary B;; is that if the load flow equation has a solution then it
has a unique stable solution.!! This is surprising since there is an example with n» = 4 with
two stable solutions [18], and an example with n = 5 where all solutions are unstable [14].

Finally we note an example in [15] showing a global bifurcation involving an orbit
joining two saddles (heteroclinic orbit), similar to the case n = 1.

In summary, when we compare the case n = 2 with n = 1, we note new kinds of
bifurcations (the cusp), a much more complex bifurcation set, and we find already that the
complete bifurcation diagram is not known. It will not be surprising that our knowledge
for the general case is very sketchy.

2.3.2 Bifurcation in the general case

Aside from some special examples mentioned above, the only general results are in [19]
which we discuss next. The load flow equation

n+1
Z Bijsin(0; - 0;) = P;, i=1,..,n (8)

=1
can also be expressed as the system of polynomial equations

Bipny1zi + Z Bij(ziy; —zjy5) = P, i=1,..,n (9)
J#i
2 2 y —
ity = 1, i=1,...,n (10)

by using z; = sin#;, y; = cos#;. Observe that for P = 0, there are at least 2™ solutions
given by z; = 0, y; = %1, corresponding to §; = 0 or 7.

Suppose we regard the z;,y; as complez variables.

Fact 2.2 [19] The number of complex solutions to (9), (10) is ( 2: )

1The uniqueness of the stable equilibrium is established in [15] and in [16].

17



Since only real solutions of (9), (10) correspond to solutions of (8), we have the
following bounds for the number N, of load flow solutions,

2"<N,,<(2n)
n

It is conjectured in [19] that the upper bound is tight. The following table gives some values.

n 2 3 4 5 6 7
lower bound |4 9 16 25 36 49
upper bound |6 20 70 252 924 3432

Practical power systems have tens of generators and so the real load flow solutions
number in the thousands (!!). Therefore the local and global bifurcations in practical power
systems are extremely complex. We address the significance of this fact later on.

2.3.3 Connection with catastrophe theory

The real power flow equation can also be expressed as
v
—(8,7)=0

where the ‘potential’ V' is given by

n+1
V(,y)= - Z B;jcos(8; — 6;) — Z P;6; (11)
i<j i=1

(Recall that 6,47 = 0 and the parameter vector 7 consists of some of the P; and By;.) Thus
the load flow solutions are critical points of V.12 From Fact 2.1 we note that the critical
points which are local minima of V are stable solutions; the rest are saddles. A critical

point @ is degenerate if

v
det W(G, 7) =0

Finally, the catastrophe set of V is the set of all parameters ¥ which have a degenerate
critical point. Comparing this with (7), we see that the catastrophe set is the same as the
local bifurcation set.13

This identification permits the use of catastrophe theory [20]. To appreciate the
theory first recall a theorem of Morse [21]. Suppose 8 is a non-degenerate critical point for
~o and suppose the Hessian matrix

v
a—%;'(eo, Yo) (12)

12Critical points are points where the gradient of V vanishes.
13This is not strictly correct since (7) is only a necessary condition for bifurcation.
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has n, positive and n_ negative eigenvalues, n4 + n_ = n. Then there exists a smooth
coordinate change § — z and v — a from a neighborhood of (6o, Y0) onto a neighborhood
of (0,0) such that in the new coordinates V' has the form

ns n-
V(8,7)~ V(8o,70) ~ D a? = Y 2% 4
i=1 =1
Thus V is a definite quadratic form near a non-degenerate critical point and is completely
determined by the number of positive and negative eigenvalues. When the critical point is
degenerate the situation is much more complex. We present the most useful result.

Suppose ¥ € RP, p £ 5. Let §y be a degenerate critical point and suppose the
Hessian (12) has ny positive, n_ negative, and ng zero eigenvalues. Suppose ng is 1 or 2.
Then there exists a smooth coordinate change # — z and v — a from a neighborhood of
(8o, 70) onto a neighborhood of (0,0) such that in the new coordinates V' has the form

ny n_
V(8,7) = V(60,70) ~ Cat(no, p) + D T2 i = D Toginy+i (13)
i=1 pa}

Here Cat(no, p) is one of 11 polynomials in 21, ..., Z ny, p of whose coefficients are the param-
eters a,...,ar. These polynomials are called the elementary catastrophe functions. They
were first described by Thom [22]. (The discussion here is adapted from [20].)

The most important conclusion to be drawn from (13) is that the catastrophe set is
determined entirely by the Cat functions since the other two terms are strictly quadratic.
As a result, in a neighborhood of (6o, ¥o) the critical points and the catastrophe set depend
only on (Z1,...,%n,) and a. This can be a tremendous simplification since the dimension
of , n, can number in the tens while ng can be very small. We illustrate this with two
examples.

In the first example, ng=p=1,
1
Cat(1,1) = a1z1 + 5—::::1’

so the degenerate critical points are given by

dCat(1,1)

d?Cat(1,1)
———— 2
d:l?l

dle
The catastrophe set consists of a single point {a; = 0}. As can be seen in Figure 9, when

a1 < 0 there are two critical points which come together as a; — 0, and disappear for
a; > 0. This is the fold catastrophe.

a;+ 2 =0and z;=0

In the second example, ng =1, p = 2,
1 1
Cat(1,2) = a1z1 + -2-0,22:% + Zz‘l‘

The catastrophe set is given by

dCat(1,2)
da:l

d?Cat(1,2)

— 2 _
d2:L‘1 = ay + 33:1 =0

= a; + a2z, + =3 = 0 and
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Figure 9: The fold catastrophe

which gives
3a2+a3=0

Figure 10 shows the cusp catastrophe. There are three critical points when @ is inside the
‘cusp’ and one critical point outside. It is interesting to note how the cusp catastrophe is
‘built up’ from two folds.

We have already encountered these two catastrophes in §2.3.1. In practice, the result
on elementary catastrophes can be easily used in a qualitative way since it only requires
knowing the dimension of the null space of the Hessian (12). It is, however, very difficult to
use quantitatively since it requires calculation of the nonlinear transformation of coordinates
(8,7) — (z,a). This transformation depends on derivatives of V' of order > 3.

This difficulty is illustrated in the series of papers [23, 24, 25, 26, 27, 28, 29]. The
basic idea is the same in all of these. For example in (23], the potential (11) is derived for
a single generator so there is a single variable, 8;; the v parameter vector include power
demand, transmission line admittance, generator reactance, etc. Thom’s theorem is invoked
to assert that the potential can be transformed into the fourth order polynomial Cat(1,2)
above, so that one obtains the cusp catastrophe. However, this is not very interesting
since the relation between the transformed parameters (a;, a2) and the original parameters
is not established, so one can not obtain any physically meaningful interpretation of the
catastrophe result. The other papers extend the discussion to the multi-generator cases.
These papers contain two errors which may be worth pointing out.

The first error has to do with the fact that their models permit resistive (rather
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Figure 10: The cusp catastrophe
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than lossless) transmission lines in which case the real power flow equation becomes

n+1 n+1 ’
Z Bijsin(6; — 6;) + Z Ci; cos(¢; —0;)— P;=0, i=1,..,n (14)
Jj=1 J=1

instead of (8). (Here C;; = Cji, Ci; = 0.) But this system of equations can not be put into
the form oV

581 =0
as can be seen by noting that the Jacobian of (14) is not symmetric.14

Therefore catastrophe theory results can not be used.

The second error has to do with their attempt to relate the potential to transient
stability. Since this discussion is not directly connected with the main objective of this
survey we present it as a separate subsection and the reader may omit it entirely with no
loss in continuity.

2.3.4 Relation with transient stability

To understand the relation, use (11) to rewrite (4) as

b = wi
. v .
M,-w, + D,w, = _-37,', 1= 1,...,n (15)
Define the ‘energy’ function W(w, 6) by
W(w,0) = -;-2 M +V(6) (16)

It is customary to call the first term on the right the ‘kinetic’ energy and the second term
the ‘potential’ energy. The interpretation is reinforced by calculating the rate of change of
energy along any trajectory of (15),

AW O, W, .,
T = L gt g b=~ 2 D

For future reference note that if there is no damping (D; = 0), then W = constant along
every trajectory, so W is a first integral of (15). If damping is present, then W decreases
along every trajectory and so it can serve as a Lyapunov function.

The argument about transient stability proceeds as follows. Suppose the system
undergoes a fault, and let (w,#) be the initial state when the fault clears. Let (wo = 0,6p)

!4The question of existence of a Lyapunov function for lossy transmission lines is not yet fully resolved.
[30] shows that such a function cannot be obtained by a smooth transformation of a Lyapunov function for
lossless lines; however [31] provides a local energy-like Lyapunov function for lossy lines. Lastly, [32] shows
that there cannot always exist an energy function for lossy lines, and exhibits, for the case of small losses, a
local energy function which can be incorporated into direct stability analysis.
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be a stable post-fault equilibrium. We want to determine whether (w, #) is in the (transient)
stability region of (wo,fo), i.e. whether the post-fault trajectory starting at (w,d) will
converge to (wo, 6o).

Note that since wg = 0,
W(wo, 00) = V(OQ)

and, as we observed earlier, g is a strict local minimum of V. Let Viner be the value of
V at a local maximum ‘near’ 6.} Then it is asserted that (w,f) is in the stability region
provided that

W(w,8) < Vinaz

Unfortunately this is not correct. The precise relation is more delicate and is fully
discussed in [33].

2.3.5 Limitations of the model

The preceding argument leads to the conclusion that the swing equation model (4), (5)
must lead to numerous bifurcations. We now address the question whether this conclusion
will stand when the simplifying assumptions are removed.

The most general models also have the form

6, = w;
Mw;+ Dw; = P;—Pf, i=1,..,n 17

where P; is the mechanical power input and Pf is the electric power output at the ith gen-
erator. The differences between the models have to do with how Pf and P; are determined.
We list some of the major differences. Since

Pf = ReViI?

where V;, I; are the terminal voltage and current, these differences have to do with how
these are determined.

e In the model considered above the V; = constant, and the I; are determined by a
lossless reduced admittance matrix.1® This results in the expression (5). The model is
a good predictor of transient behavior over a very short time interval - the so-called
‘first swing’ period, which is on the order of a few seconds.

o A slightly more general model allows a lossy reduced admittance matrix and P¢ is now
given by (14). This permits loads to be modeled as impedances. As we have seen, one

15The precise meaning of ‘near’ depends on the author. Since a local maximum is at a critical point of V,
it is at an unstable equilibrium point (uep), and authors have variously selected ‘closest uep’, ‘relevant uep’,
ete.

16The reduced admittance matrix is a characterization of the transmission network and the loads as seen
from the n generator terminals, see [34].
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can no longer write P¢ as the gradient of a potential. Catastrophe theory can not be
used. But the more general Lyapunov-Schmidt procedure [35] is applicable as shown
in [14]. Although the details have not been worked out, it is clear that the kinds of
bifurcations described above will persist. Moreover, as shown in [36}, a new kind of
bifurcation — the Hopf bifurcation is now possible.

The one-axis generator model assumes constant terminal voltage, distinguishes it from
the internal generator voltage, and incorporates flux decay effects [37]. The dimension
of the state for a single generator is now increased by one. As shown in [38], how-
ever, the resulting dynamics can still be expressed using a more complicated potential
energy function. Again, although the details are not worked out, it is clear that the
bifurcations will persist.

The loads in [39] are viewed as PV buses, as PQ buses in [38], while [40] allows more
general loads with constant real power demand and voltage-dependent reactive power
demand. These are considered more accurate than constant impedance loads. In all
these cases there exists a potential energy function, bifurcations persist, and analysis
using catastrophe theory is possible..

In order to predict transient behavior over a longer time interval, it is necessary to
include the dynamics of the voltage regulator which determines the generator terminal
voltage. The dimension of the state space increases by two or three depending on the
regulator model [37]. Nevertheless the core swing equations remain and so should the
bifurcations. New kinds of bifurcation also appear [36].

Over even longer time intervals, the mechanical input power vector, P, can not be
considered constant, since the action of the governor and AGC come into play. The
nature of the bifurcations in these models has not been worked out.

Finally, none of these models includes the effect of protection systems. The resulting
models would include discrete changes in network topology. These are no longer dif-
ferential equation models and it is likely that only numerical analysis can be carried
out.

In summary, one can be very confident that the bifurcations predicted on the basis of the
‘classical’ swing equation model (4), (5) will be present in more realistic models and the
additional complexity will only introduce additional bifurcations. The question remains
whether the bifurcations are important in practice. That question is addressed next.

2.3.6 Practical implications

The preceding discussion has established the occurrence of bifurcations that in the final
analysis derive from the multiplicity of solutions to the real power flow equation which we
write as

ov
W(oa 7) =0
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However these bifurcations may not be important in practice if they occur in regions where
the power system never operates. To make this precise define the bifurcation manifold by

ov o "o Dp
BM = {(6,7)] 55(6,7) =0 det =(6,7)=0} CR"x R
and define the operating region
OR = {(6,7)] %—‘;(0, 7) =0, (8,7)is a possible stable operating point}

If OR and BM are disjoint and sufficiently far apart, then the potential bifurcations will not
be observed in practice. Since OR depends on operating procedures, judgment is involved
in making a determination.

Consider first the one generator case of §2.2. Suppose M, D, B are fixed, and the
input power, P, is the parameter. Then OR. consists of the pairs (§, P) where § = sin~! P/B.
From Figure 2 we see that if P/B is sufficiently smaller than 1, then the saddle node
bifurcation will be avoided. In practice P/B << 1, equivalently § << 7/2, and so we may
say that this bifurcation will not be observed. (This is equivalent to saying that steady-
state instability will not be observed.) However, since damping is usually very small, the
parameter is in the region FO. Therefore, a transient, caused for instance by a fault,
can lead to the loss of synchronism due to the saddle-connection bifurcation. The loss of
synchronism is a transient instability — a phenomenon observed in practice.

For the general case of (4), (5) the following result is relevant. The first part is
proved in [13, 14]. The second assertion is proved in [39, 14].

Fact 2.3 Let @ be an equilibrium such that
|6; — 6;] < w/2 whenever B;; > 0 (18)
Then 6 is a stable operating point. Moreover , the function f(@) is one-to-one in this region.

In practice, real power transmission capacity is so large compared to the flow that
angle differences at operating points do satisfy (18), so we can conclude that local bifur-
cations are unlikely to be observed. However, oscillatory instabilities arising from saddle-
connection bifurcations can indeed occur during a transient as in the single generator case.
But we must keep in mind that the possibility of these bifurcations has not been established
for n > 2 and only one example for the case n = 2 is known. This remains a significant
unanswered question.

In summary we can draw the following conclusions.

o Local bifurcations of the real power flow equation are not significant if power systems
are operated well within steady-state stability limits (formally defined by (18). There
is an important exception: as we will see in the next section, the reactive power balance
constraint can reduce the real power flow transmission capacity significantly to lead
to steady-state instability.

o Saddle-connections bifurcations, which we suspect are always present, can create os-
cillatory instabilities that are observed in a transient. In fact, as we will see in §4,
these can even lead to chaotic behavior.
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Figure 11: One generator supplying a PQ load

2.4 Bifurcation with reactive power flow

We continue the study of local bifurcation, extending the model to include reactive power
balance. The analysis is similar to that carried out above, although the details are more
complex. Several researchers have claimed that these local bifurcations explain ‘voltage
collapse’. This claim is evaluated. We start with the case of a single generator.

2.4.1 One generator model

Consider a single generator supplying a PQ load over a lossless transmission line as in Figure
11. The generator voltage is V3 = 1e#, the load bus voltage V, = V0 is taken as reference.
The line admittance is —jB and the load complex power demand is P+ jQ (P > 0,Q > 0).

The complex power injected into the network at the generator bus is
BVsin8 + jB(1 - V cos )
The complex power injected into the network at the load bus is
—BVsind — jB(Vcosd — V%) = —P - jQ
which gives the power flow equations

= P - BVsinf (19)
0 = Q-BVcosb+ BV? (20)

Let P,, be the mechanical power input. Generator dynamics are given by the swing equation
M + D = P,, — BV sin@ (21)
Equations (19)-(21) is our initial model.

We first analyze the power flow equations (19), (20). Figure 12 gives a sketch of
the two equations. There are two solutions (6, V) marked s, v where both equations are
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Figure 12: The power flow equations

satisfied. Note that as P increases the U-shaped curve moves up, and as @ increases the
closed curve shrinks. Therefore, as P or Q increases, the solutions s and » approach each
other, coincide and, beyond that, there is no solution. We will see later in the general case
that this phenomenon can be seen as a fold catastrophe or a saddle-node bifurcation.

The initial model (19)-(21) is over-determined since (19), (20) by themselves alone
admit at most two solutions and there is no ‘room’ for the differential equation to evolve.
The model must be relaxed. We present one option now, and another option in the general
case.

In the first option, the real power flow relation, (19), is only required to hold in
equilibrium while (20) is required to hold at all times.1? So we must have P,, = P and the
model

MG+ D6 = P-BVsind (22)
0 = Q-BVcosf+ BV?=:f(4,V) (23)

The analysis of this constrained differential equation needs some care. The state
space is taken to be (w,8,V) € R x T where T is the set of all (8, V') satisfying (23). From
Figure 12 we see that ¥ is the 1-dimensional manifold given by the closed curve. When
(8,V) € T and 8f/8V(0,V) # 0, which requires 8 min < 8 < 0yqz, We can solve (23) to ob-
tain V' as a function of 8, substitute it into (22), and obtain an ordinary differential equation
in 8. Thus, starting at any initial state (w,6,V) € R X I, we get a well-defined trajectory

17For instance, this approach is used in the example in [41].
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so long as 8 € (O pminy Omaz). Once the boundary is reached, however, the trajectory can no
longer be extended.!®

(w=0,6,V) is an equilibrium if (19, 20) hold. We will also call (4, V) an equilibrium.
If the two curves in Figure 12 intersect as shown there are two equilibria, namely s and
u. It is easy to check that s is stable (node) and u is a saddle. As P or Q increase, the
two equilibria will coincide in a saddle-node bifurcation, and then they disappear. Many
researchers have pointed to this as an explanation of voltage collapse. We examine this a
bit further to point out some misunderstandings in the literature.

Observe that an increase in P as well as an increase in @ will cause the bifurcation.
Bifurcation due to increases in P are said to be due to the inability of the system to supply
more real power, and bifurcations due to increases in Q can be said to be due to its inability
to supply reactive power. As we have seen, these are not alternative explanations; each is
only a partial description of what is happening.

The occurrence of bifurcation is signaled by the vanishing of the determinant of the
Jacobian of the power flow equation.!® Taking the differential of (19), (20) gives
BV cos @ BVsinf dd | _ | dP (24)
—BVsinf Bcosd - 2BV av | 7 | dQ

At the bifurcation the determinant vanishes and one can not always solve for (df, dV')
in terms of changes in the demand (dP,dQ).?°

The diagonal terms in (24) are non-zero at the bifurcation. So one can solve for dV
from the second equation in (24) and substitute in the first equation to get

(Bcos@ — 2BV )dP — BV cos 8dQ
A

where A is the determinant. Since A = 0, [41], following [44], refers to this as “infinite sen-
sitivity” of the “angle variables” and associates this with the “loss of steady-state stability.”
On the other hand, we can also solve for df from the first equation in (24) and substitute
in the second equation to get

do =

BV sin@dP + BV cos 8dQ
A

dVv =

Since A = 0, [41] states that “this bifurcation is associated with infinite sensitivity of
the load voltage magnitudes ... This property is the essential feature of so-called voltage
collapse.” However, as we have seen, that the characterizations of ‘infinite sensitivity of
angle variables’ and ‘infinite sensitivity of voltage magnitudes’ are not mutually exclusive.
In fact, both are likely to occur simultaneously and so such characterizations are either
partial or misleading. We can assert only that the bifurcation is preceded by a coalescence

18The trajectory can be extended via singular perturbations, [42].

191t is worth repeating that the vanishing of the determinant is necessary but not sufficient for bifurcation.

20The vanishing of the determinant as signaling a loss of steady-state stability was noted in [43], while
[44, 45] point to it as a cause of voltage instability.
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of two power flow solutions, and that it leads to a loss of (transient) stability. From Figure
12 we can infer that if B is increased, the-U-shaped curve moves down and the closed curve
expands. Hence a greater value of B (which means smaller inductance or smaller length)
will reduce the chances of bifurcation.

We now make a preliminary evaluation of the claim that this bifurcation is a cause
of ‘voltage instability’. The claim is succinctly stated for example in [46]: “The voltage
stability problem ... is associated with the increased loading of long distance transmission
lines and the insufficient local reactive power supply.” The lack of sufficient transmission
capacity is noted in [47]: “Transmission facilities [in the New York Power Pool] have in-
creased by 21 percent from 1975 to 1988 but are only expected to increase by 2 percent by
the year 2000. ... I believe the situation in New York is typical of many systems through-
out the country. ... It means that in the foreseeable future, the transmission network will
become more heavily loaded. Transfers of power over greater distances will be required
...” The author goes on to quote a recent NERC report according to which these heavy
transfers ‘will load the transmission network above surge-impedance levels more often so
that at times transmission lines will act as reactive loads rather than sources of reactive
power.’

Several papers relate voltage collapse to the vanishing of the determinant of the
Jacobian of the power flow equations or, equivalently, to the vanishing of one of its eigen-
values; indices and algorithms have been proposed for use in on-line security analyses to
signal the onset of voltage collapse, e.g. [43, 44, 48, 49, 50]. Others have gone further to
claim that the voltage collapse is related to the occurrence of two power flow solutions that
are very close to each other, e.g. [51, 46].2!

The single generator study above, together with the multi-machine case discussed
in the next subsection, lend support to the claim that a local bifurcation leads to voltage
collapse. However, as we saw in §2.2, instabilities can be caused by global bifurcations as
well. We examine this possibility next.

From Figure 12 we see that if 8, < 8 < Opmaz, We can solve (23) for V' uniquely
in terms of §.22 Denote this solution as V = V(8); note that V(8) = V(-8) and V(9)
decreases as |0| increases. Substituting for V" in (22) gives
§ = w
M&e+ Dw = P-BVsind (25)
This model is valid for
(wv 0) € Rx (omx'm 0mam)
There are two equilibria, 8, and 8, corresponding to s and u in Figure 12. 6, is stable and
#, is a saddle. Note that

P—-BVsinfd>0&0>60,0rf <8,
From this we obtain the phase portrait of (25) sketched in Figure 13.

21 We should point out that competing explanations for voltage instability include those due to the behavior
of transformer tap-changers, see [52, 53].
22This is the upper part of the closed curve in Figure 12.
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Figure 13: Phase portrait of (25)

We can compare Figure 13 with Figure 5 (where the stable node and saddle are
denoted @ and ¢, respectively). In both cases the transient stability is bounded by the
stable manifold W, of the saddle. In Figure 5, trajectories outside the stability region
escape towards the oscillation labeled C. But in Figure 13, trajectories outside the stability
region exit the state space at Omin OF Omas Where the voltage V' is at a minimum. Thus, any
loss of stability occurs along a trajectory where the voltage will drop suddenly. We emphasize
that this possibility of ‘voltage collapse’ is not related to a local bifurcation. 23

Another significant contrast is that 8, and 8, in Figure 13 are much closer than 4
and ¢ in Figure 5. In fact

0<0,<0u<§<¢

Because of this we expect the stability region in Figure 13 to be smaller. Moreover, as
Q increases |0, — ;] becomes smaller and the region shrinks further. This effect is nicely
demonstrated in the example presented in [54]. At the bifurcation, 8, = 6,, and the phase
portrait is as in Figure 14, while beyond the bifurcation, the phase portrait is as in Figure
15. In both instances trajectories exit the state space and there is a ‘voltage collapse’.

The usual explanation of voltage collapse is in terms of Figure 12. One says that
when s and u coincide the system has reached its ‘steady state stability limit’. The impli-
cation is that the system tracks the stable equilibrium point, s, as the load changes slowly,
until s = u beyond which there is no nearby stable equilibrium. However, as we we have
just seen, the attractor of s also shrinks as s approaches u, and a small disturbance can

BOf course, min and Oma: are singularities of (23).
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then lead to a loss of (transient) stability in a way which causes ‘voltage collapse’. Thus loss
of steady state stability and transient instability are complementary rather than competing
explanations.

We summarize our discussion of the single generator case.

o The presence of reactive power demand modeled as a PQ bus shrinks the state space
since 8,4, decreases as @@ increases.

e The stability region shrinks (|6, — 85| decreases) as either P or Q increases. At the
saddle-node bifurcation the stability region vanishes and the system has reached its
steady state stability limit.

e Disturbances which move the initial state outside the stability region lead to trajecto-
ries along which there is a precipitous drop in voltage. This occurs before bifurcation.

e The onset of bifurcation can be monitored by indices based on the Jacobian of the
power flow equation.

2.4.2 The multi-generator case

The power network consists of n + m + 1 buses connected by lossless transmission lines
and represented by its node admittance matrix Y = [Y;] = j[Bi;]. For ¢ # j, Bj; is the
susceptance of the line connecting buses i and j. The first n buses are the internal generator
buses. Bus n + 1 is an infinite bus. These buses are indexed by ¢ or j = 1,...,n + 1. The
m buses indexed !l or k = n 4+ 2,...,n + m + 1 are load buses. The voltages of the first
n + 1 are V;e#%; for the infinite bus Vpyq = 1, 8,41 = 0. The load bus voltages are Vie/%*.
The generator buses are PV; the load buses are PQ with demand denoted P4 4+ jQ9. The
mechanical power input is denoted P™, the electric output power is denoted Pe€.

The generator dynamics are modeled by the swing equation

é;:w;

Mw;+ Djw; = P —Pf
The real and reactive power flow equations at the generator buses ¢ = 1,...,n are

Pf = fi8,,V)

n+1 n+m+1
= Z B;;ViV;sin(f; — 6;) + Z B ViV sin(8; — )
i k=nt2

0 = gi(oa ¢a V)

n+1 n+m+1
= -BiV? - BiViVjcos(6; —0;)~ Y BixViVicos(di — ¢r)
i k=t 2
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At the load buses k = n+ 2,...,n + m + 1 these equations are

PI? = fk(0’¢,v)

n+l n+m+1l
= Z B Vi V; Sin(t,ﬁk - 0_1') + E B Vi.Visin(¢x — ¢l)
i=1 Ik

Q‘li = gk(0> ¢1V)

n+1 n+m+1
= —BuVZ - BuiViVicos(dr — ;) — Y. BruViVicos(dr — ¢1)
i=1 1£k

The model is given by

f = w (26)
Mo+ Dw = P™-— f(8,4,V) (27)
0 = gi0,¢,V), i=1,..,n (28)
0 = PA-fi(6,6,V), k=n+2,.,n+m+1 (29)
0 = Q%-gu(8,6,V), k=n+2,..,n+m+1 (30)

The state space consists of all (w,8,¢,V) € R™ x " where I" is the n-dimensional manifold
of (8, ¢, V) satisfying (28)-(30). As in the single generator case, solutions of this constrained
differential equation must be considered with care since they are defined only so long as the
state stays within R™ X Z". The trajectory can be extended beyond this time by singular
perturbations as in [42] or by relaxing the constraints as in [39, 54]. The model is a simplified
version of that analyzed in [41].

Let v; = logV; and define the ‘potential’

V(oa 45’ v Pda Qd) = _(Pm’g) - (Pd’ ¢) - (Qd’ ’U)
n
- > %B;gez”‘ — " Bije"itvi cos(8; — 6;)
i=1 i<j
n n$+m+l
- Z Z Bire%t cos(8; — .
i=1 k=n+2
n+m+1 n4+m<41 1
— ) Bue"tcos(gr—¢1)— Y, =Bue’™
k<! k=n+2 2

Then (26)-(30) can respectively be reexpressed as

b = w
. av
M;w+ Dyw; = -—a—oi-, i1=1,..,n
av .
0 = —'a—v;, 1= 1, ey
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ov

0 = ——, k=n+2,.,n4+m+1
¢

0 = ——ﬂ, k=n+2,.,0a+m+1
dvg

The state (w = 0,6, ¢,v) is an equilibrium if the gradient of V' vanishes at (8,9,v).
Define the energy function of the state,

W(w,0, ¢,v) := %Z Miw? +V(6,9, v)

The energy function?4 serves as a Lyapunov function since along trajectories

aw
W = - ZD{W?

Thus equilibrium points coincide with the critical points of the potential function
and local bifurcations of the equilibrium will coincide with catastrophes of the potential
function. The typical bifurcation is a fold catastrophe. It can be shown that a stable
equilibrium point is likely to bifurcate as a saddle-node bifurcation [55, 33, 56, 57].

In contrast to the single generator case where a fairly complete analysis was possible,
there are no quantitative results for the general case. Claims that the bifurcation leads to
‘voltage collapse’ are all based on simple examples [41, 56, 58]. One interesting result of
[38], similar to that of Fact 2.3, provides some insight.

Fact 2.4 Suppose the network has no direct load to load connection, i.e. By = 0 for k # [.
An equilibrium (6, ¢, V) is stable if

1. |6; — 65| < v/2 whenever B;; > 0

2. cos(0; — ¢r) > V;/2V; whenever By > 0

Observe that condition 1 is the same as (18) and seems likely to hold at operating
points. On the other hand condition 2 becomes increasingly restrictive as the load bus
voltage drops (Vi decreases) which is likely to occur as reactive power demand increases.
Thus we conjecture that in general increases in reactive power demand reduce the stability
region. Assuming the conjecture is true, we still need to know whether unstable trajectories
exhibit precipitous voltage decline. We summarize one final result along these lines.

Suppose the instability occurs at a saddle-node bifurcation. This is a critical point
of the potential V', and so the Hessian of V' has one zero eigenvalue. Then the resulting
trajectory is likely to be close to the so-called ‘center manifold’ at the equilibrium, see [2].
The tangent to the center manifold at the equilibrium is the eigenvector associated with

24This particular treatment is adapted from [38]. W is one of a family of ‘structure-preserving’ energy
functions, see also [39, 40].
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the zero eigenvalue of the Hessian at V. One can then numerically integrate the trajectory
in the direction of the eigenvector to see if there is a voltage collapse along it. Simple
examples suggest that this is the case [56].25 Reference [56] provides a complete account
of the argument that voltage collapse results from a saddle-node bifurcation. The account
also subsumes several other explanations based on ‘static’ sensitivity indices.

Lastly, we must note that as in §2.3.2, there are in all likelihood global bifurcations
which create oscillatory instabilities. However, there are no results along these directions.

2.4.8 Practical implications

As the EPRI Proceedings on voltage stability and security from which an earlier paper
[47] was quoted suggest, voltage instability is a serious problem. Its causes are yet unclear
although there is some evidence and greater agreement that it is caused by the inability to
meet reactive power demand. The analytical studies summarized above shed some light on
this problem.

o The study of the single generator system shows that increases in reactive power de-
mand must increase the chances of instability and unstable trajectories must exhibit
voltage collapse. This can occur well before bifurcation. Strengthening the transmis-
sion capacity (reducing B) increases stability.

o In the general case, useful analytical results are scarce and are at best only suggestive
of the strong conclusions based on the single generator case. It is likely that additional
modes of instability due to global bifurcations are present, although this is conjectural.
More serious analytical and numerical studies must be undertaken before one can be
confident about these conclusions.

25Tn the example studied in [56), it is noted that the voltage component of the eigenvector has a negative
sign and it is concluded from this that “the voltage will decrease at the bifurcation, at least initially.”
However, this conclusion is incorrect since the negative of the eigenvector (which would have a positive
voltage component) is also an eigenvector.
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3 Hopf bifurcation

Until now we were mostly concerned with bifurcations of

&(t) = f(z(2),7)

arising from a change in the number of equilibria. This is a local bifurcation since it is
signaled by the local condition

7]
f(x()a 70) = 0, det %(zo, ")’0) =0

The Hopf bifurcation is also a local bifurcation of an equilibrium in that its occur-
rence is determined by the local behavior of f. However, it requires an analysis of higher
order derivates of f at (zo,70). We first explain the Hopf bifurcation and then examine its
occurrence in power systems.

3.1 The Hopf bifurcation theorem

The following discussion is adapted from [2, 59, 60, 61, 62]. Consider the two-dimensional
linear system

T = YT — W2
T = wr+ 22

When v < 0 all trajectories spiral into the equilibrium at 0; when v = 0 all trajectories
are periodic; and when v > 0 all trajectories spiral out from 0. Since the resulting phase
portraits are not topologically orbital equivalent (see §2.1) there is a bifurcation at v = 0.
The phase portrait at 0 consisting of a whole family of periodic orbits is rather special and
unlikely to persist if the differential equation is perturbed by a nonlinearity. It turns out,
however, that there will be a periodic orbit in the more general case.

Any parameterized two-dimensional system with an equilibrium at 0 can be cast by
a smooth change of coordinates into the polar form

# = (dy+ar?)r
6 = wHey+br?

The origin is an equilibrium. If d # 0, there is a bifurcation at 4 = 0 since the origin is
stable for dy¥ < 0 and unstable for dy > 0. Since the first equation does not depend on 8,
we see immediately that there are periodic orbits, r = constant. If @ # 0 and d # 0 these
solutions lie along the parabola dvy + ar? = 0. The Hopf bifurcation theorem says that this
situation holds in general.

The theorem describes the emergence of a periodic solution from an equilibrium
zo(7) of the equation

¢ = f(z,7) (31)
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where z € R™ and v € R is a real parameter. Existence of a family of bifurcating periodic
solutions is assured (under some additional technical conditions) if the linearization of (31)
possesses a pair of complex conjugate eigenvalues which cross the imaginary axis as v passes
through a critical value v9. The theorem also gives information on the range of parameter
values for which the periodic solutions arise, their amplitude, frequency and stability. The
following hypotheses are in force throughout.

1. System (31) has an isolated equilibrium at zo(7).
2. f(z,y)isCT (r 2 4).

3. The Jacobian 8 f(zo(7),7)/0z possesses a pair of complex conjugate, simple eigenval-
ues

A() = a(y) + jw(7), A7) = a(y) - jw(v)
4, At the critical value
a(70) =0, wo:=w(7) >0, and a'(y) >0

Besides +jwg, the other eigenvalues of the critical Jacobian 8f(z(7o),7Y0)/0z have
strictly negative real part.

For definiteness, we have required a/(yo) > 0, although /(7o) # 0 is sufficient. This
so-called Hopf condition means that the eigenvalues A(7), A(7) cross the imaginary axis into
the right half plane transversally at 7.28 Bifurcation to periodic solutions will also occur
if some of the eigenvalues of the critical Jacobian have positive real part, but the resulting
oscillations will be unstable.

Linearized analysis of (31) suggests the presence of small-amplitude oscillations for
4 near vo. The theorem below (adapted from [61]) asserts this is indeed the case.

Theorem (The Hopf bifurcation theorem)
Ezistence. There is e > 0 and a C™! function

7(€) = Y0 + 72€6* + O(%)

and for each 0 < € < ey there is a nonconstant periodic solution z.(t) of (31) near the
equilibrium () for the parameter value v = v(¢). The period of z, is a C™~! function

T(e) = 2rwy [l + T2€®] + O(€?)

and its amplitude grows as O(e).

Uniqueness. If v, # 0 then there is ¢g > 0 such that for each 0 < € < €y, z, is the only
periodic orbit for ¥ = y(e€) near zo(v(¢)).

Stability. Exactly one of the characteristic exponents of z(t) approaches 0 as ¢ — 0, and it
is given by the real C™"! function

Ble) = Bae® + O(€°)

28If a'(70) = 0, the degenerate Hopf bifurcation results, see §3.3.
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Figure 16: The Hopf bifurcation
The relationship
ﬂz = —-2a'(‘yo)€2 (32)

holds. Moreover the periodic solution z(t) is orbitally asymptotically stable with asymp-
totic phase if G(¢e) < 0 but is unstable if 8(¢) > 0.27

For a linear system satisfying the hypotheses above, a little reflection shows that the
predicted family of periodic solutions occurs only for ¥ = <, so that y(€) = vo. Hence 72, T2
and $2 must all vanish in the linear case. If vy, # 0, then the periodic solutions z(t) occur
either for v > 4o or for ¥ < 4o. The bifurcation is said to be supercritical in the former case
and subcritical in the latter. If 43, B2 are both nonzero, then the direction of bifurcation,
i.e. ¥ > 70 or ¥ < 90, and the stability of oscillations are determined by the coefficients v,
and [ respectively. In light of (32), the oscillations are stable, respectively unstable, if they
are supercritical, respectively subcritical. For this reason, (32) is called Hopf’s ezchange of
stability formula. Figure 16 shows the two possibilities for a two-dimensional system with
an equilibrium at the origin. Note that the amplitude of the oscillation grows as |y — v o[*/2.

If the four hypotheses hold, which is easy to check, it is certain that there is a Hopf
bifurcation to periodic solutions at vo. Determining the stability of the bifurcation requires
evaluating 8, and that takes more effort. In [61] explicit ‘bifurcation formulas’ are obtained
for €3, T3 and B;. There are two cases.

Case 1. Suppose n = 2 and that (31) has been transformed into ‘standard canonical form.’

2?For definitions of characteristic exponent and orbital stability see [63].
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This means zo(7y) = 0 and

0f [ a(r) w(v)
0= [—w(fr) a(*/)]

Recall that (o) = 0 and wp = w(7¥o) > 0. Then B, is given by the formula

86 = :—0{f111(f121 — b)) + fB(fh = )+ (Faffs — fl2f22)}
+ (fin+ flze + flia + f322)

Here o fi o fi
— (fl f£2 S L
f - (f ’f )9 Pq - axpamq(()? 70)7 pgr axpaxqazr (07 70)

Case 2. In the general case, one uses the center manifold theorem to reduce the n-
dimensional system (31) satisfying the hypotheses to a two-dimensional ‘essential model’ of
Case 1 for the study of the bifurcated periodic solutions.

The algorithm in [61] for computing v2, T; and 3, for general n-dimensional systems
has been programmed by B. Hassard.2® That program, BIFOR2, has been used in several
studies to evaluate Hopf bifurcation in power systems. We review these next.

3.2 Hopf bifurcation due to excitation control

We summarize the investigations of Hopf bifurcation in power systems due to the effect of
excitation control. The effect of excitation system parameters on power system stability has
been studied for a long time [64, 65]. In [66] it was observed that the stability of a power
system was sensitive to changes in the amplifier gain K 4 of the exciter. Oscillations were
observed to take place, but no rigorous analysis was given. The phenomenon was correctly
examined in [62, 67] within the framework of Hopf bifurcation theory.

Consider a synchronous machine connected to an infinite bus with fixed voltage
Eei®, If the transmission line has impedance R; + jX|, and amortisseur effects, armature
resistance, armature ¢ terms and saturation are neglected, one gets the model [37]

Vi = vity
v = Pg= —Xgiq
vg = Ya+ g+ (Xy— Xg)ia
P, = Eg ,
iq = x(Eq— Ecosf)—rEsind
ig = 1(Eq— Ecosf)+zEsiné

B} = Epp-— E}—(Xa- X})ia
2H0+ D8 = wo(Pm—P.)

28 A detailed discussion along with the program listing can be found in [61].
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Figure 17: IEEE Type 1 excitation system

where
Xi+ X, R

T ORI+ (Xt X)) RP+(Xi+ Xo)

The notation used here is standard [37] and will not be elaborated further; wq is the fre-
quency of the voltage at the infinite bus, d and ¢ refer to the direct and quadrature axes.
This model describes machine behavior provided it is not equipped with an excitation con-
trol system, i.e. if the field voltage E Fp is constant. Suppose there is a continuously acting
excitation system. Then Eprp will be governed by the excitation system dynamics. The
IEEE Type 1 excitation system has the machine terminal voltage V; as input and its output
is Epp, see Figure 17. If the limiter is neglected, it can be modeled by the equations

tgEpp = —KgErp+ Ve— ErpSe(ErD)
. K
Vs = -Va+ T—;(-KEEFD + Vr— ErpSe(EFD))
TAVR = -Vr+ Ka(Vrer - Vi - V3)

The saturation function is approximated as
Se(Erp) = Apxezp(Bex Erp)
where the coefficients Agx and Bgx are computed from saturation data.

The occurrence of oscillations was investigated for the following model parameter
values.

Machine Exciter Transmission line
H=2237s Kg=-005 Ry=0.02
D=1pu Kp =0.02 XP =040
Xq=1.7 T = 0.50s R = /\R?

X, =1.64 T4 = 0.10s X=X}

wo =377 rad/s Agx = 0.09

Tho = 5.95 Bgx =0.50
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The bifurcation parameter is v = K L/ ? to ensure that K4 > 0. The program
BIFOR2 searches for a critical value 7o and an equilibrium point of the model for which the
hypotheses of the Theorem are satisfied. Several cases are studied numerically to permit
some general conclusions to be drawn. Each case is determined by specifying an initial
guess for an equilibrium (required by the program) and a parameter A which has the effect
of changing the length of the transmission line

Ri+ 35X = AR] + X7

where R{, X are nominal parameters. Four sets of results are given in [62, 67] to show
the qualitatively distinct possibilities that may arise. The first two cases correspond to
generator action (P, > 0), the others to motor action (P, < 0). Examples with G > 0
and B2 < 0 are given in each case. Only the generator case is reproduced below. An
equilibrium point of the sixth order model above is denoted by

zo = (6°,0°, E'S, E'gp, VS, VR)

Example 1. (P, > 0,8, > 0) Here P, = 0.937, VrgFr = 1.13, A = 2. The equilibrium is
o = (1.351,0,1.105,2.316,0,0.548)
BIFOR2 computes the values
wo = 7.569, v2 = —4.71, T, = 0.164, (2 = 0.359
v0 = 13.919 (K 4 = 193.7), a’(70) = 0.038

using the notation of the Theorem. By the Theorem, a bifurcation to periodic orbits occurs
at the critical value K4 = 193.7, and there is a locally unique unstable periodic solution
in the vicinity of z¢ for K4 < 193.7 and (193.7 — K 4) sufficiently small. Thus this is the
subcritical case.

Example 2. (P, > 0,52 < 0) Now P, = 2.272, Vrgr = 1.244, A = 0.8. The equilibrium
is
zo = (1.363,0,1.42,4.53,0, 3.69)

BIFOR2 computes the values
wo = 11.47, v, = 2.61, To = 0.129, §; = —0.206
Yo = 18.975 (I 4 = 360.1), o’(yo) = 0.039

By the Theorem, there is a bifurcation to a stable periodic solution for sufficiently small
K 4 > 360.1. This is the supercritical case.

Two general conclusions may be offered from these examples.
e The angle difference 6y between the generator terminal and infinite bus voltages at
bifurcation is quite large (~ 60deg). This corresponds to large real power flow. A

similar behavior was reported in [66], where it was noted that the oscillatory instability
disappeared when the input power (and hence 6y) was reduced.
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¢ It would seem that the subcritical case, Example 1, is more likely to be seen in practice.
This conclusion is confirmed by a recent study involving two generators supplying a
PQ load, and the real power demand is taken as the bifurcation parameter, [68]. In
the subcritical case the equilibrium is stable but is surrounded by an unstable limit
cycle. Hence the stability region is reduced.

Simulations of a reduced third order model are also reported in [67].2° The sim-
ulations confirm estimates provided by the Theorem: the period of oscillation is close to
that given by the critical imaginary eigenvalue, T ~ (27)wg 1. and the amplitude of the
oscillation grows as K 4 moves away from its critical value. The generator terminal voltage
swings by as much as 10% p.u. so that the instability is severe.

Also reported in [67] is an interesting attempt at constructing the global dynamics
of the reduced order model in the subcritical case. It is shown that the stability region of
the equilibrium is bounded by the unstable periodic orbit (see Figure 16). The amplitude
of the orbit, and hence the the stabilty region, grows as K 4 moves away from its critical
value, until the orbit hits the saddle point (see the saddle ¢ in Figure 4). At this point a
global bifurcation occurs, the periodic orbit disappears, and the stability region resembles
that in Figure 5.

In the studies reviewed so far the Hopf condition a’(vo) > 0 holds so the pair
of complex eigenvalues a(7) % jw(7) cross the imaginary axis into the right half plane
transversally at ¥ = vo. The Hopf bifurcation theorem then applies and the occurrence of
oscillatory instability follows immediately.

It is possible that this pair of complex eigenvalues recrosses the imaginary axis into
the left half plane at another value v = v; where |yo— 71| is small. In this case the practical
conclusions based on the Theorem concerning the nature of the instability and the size of
the periodic orbits only hold in a very small region of parameter values near 7. Together
with the fact the model is only an approximation, this leads to the realization that those
conclusions are not robust. In such a case it is essential to understand what happens in the
degenerate case, a'(yg) = 0.

The study of the degenerate case is much more delicate for two reasons. First, there
can be many qualitatively different types of bifurcating behavior [70], in contrast with the
two types of supercritical and subcritical bifurcations in the non-degenerate case. Second,
the analytical and numerical studies needed to determine which type of bifurcation occurs
are much more difficult.

Such a study is conducted in [71] for essentially the same model as that considered
above, but involving two generators and an infinite bus connected by lossy transmission
lines. The analysis involves the use of the Lyapunov-Schmidt procedure used in [14, 41],
except that it is now infinite-dimensional [72]. When the procedure can be carried out, it
yields a reduced order model which exhibits the essential bifurcation behavior. In that case
explicit formulas, similar but involving higher order derivatives than those presented under

29The reduced order model is justified by a time-scale separation based on singular perturbation theory.
A general treatment of singularly perturbed Hopf bifurcation appears in [69)].
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Case 1 in §3.1, are available [70]. For the ninth-order model considered in [71] this approach
is not feasible, and a numerical study was carried out to determine the type of bifurcation.
The numerical study yields a (local) bifurcation diagram which is then compared with the
‘universal unfolding normal forms’ of [70] and classified accordingly. The details are too
complex to be presented here. However, the study suggests one conclusion.

o Complicated degenerate Hopf bifurcations can certainly occur. Although these can-
not be studied by analytical techniques alone because of the high dimension of the
systems involved, analysis combined with very careful numerical study can lead to an
understanding of the bifurcation behavior.

3.3 Other Hopf bifurcations

The only other study seems to be [62] which reports three additional examples of Hopf
bifurcation. Two of these consider more accurate versions of the swing equation for a single
machine connected to an infinite bus,

Mb+ Db =P — Bsin + G cosf
In the first example, the damping is taken to be a function of the state,
D(8) = [asin® 8 + bcos? 8] — r[c(1 — tan? 8) + d(1 — sin 26)]

This model is from [73], see also [74]. This second order model is be transformed into the
standard canonical form of Case 1 in §3.1. It is then shown that for some parameter values
the negative damping leads to a Hopf bifurcation.

The second example refines the model to take into account the fact that the delivered
electrical power,
P, = Bsinf + G(1 — cos¥8)

is related to the electrical torque by

where wp is the synchronous frequency and @ is the instantaneous frequency deviation.
Again this is a second order model and can be studied by analytical means. It is shown
that Hopf bifurcation can arise as P is varied.

The third example involves interaction between the swing equation and the electrical
transmission lines. Two generators connected by a lossy transmission are considered,

01 + Dlg.l = wo[P1 - B sin(01 - 02) + G(COS(ol - 02)]
02 + Dafy = wo[P2 + Bsin(6; — 82) + G(cos(8; — 02))]

This fourth order system is reduced to a third order system which is studied numerically. It
is shown that a subcritical Hopf bifurcation can occur using G as the bifurcation parameter.

From all these studies it is clear that when the swing equation is combined with other
dynamics that can compensate for its (nominal) negative damping, a Hopf bifurcation can
occur.
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3.4 Practical implications

There are very few studies of Hopf bifurcation, perhaps because this possibility was noted
relatively recently, and perhaps because such studies require a judicious combination of
analysis and careful numerical study. Even those few studies, however, support the following
conclusions.

o Hopf bifurcations can occur due to the interaction of the swing equations with other
parts of the electrical system (exciter system, transmission lines).

o The typical case is that of a subcritical bifurcation in which the operating point is
stable, but its region of (transient) stability is reduced by the surrounding unstable
periodic orbit. As the loading is reduced, the unstable orbit grows, the region of
stability increases. The orbit probably disappears in a global bifurcation as it ‘hits’ a
saddle equilibrium. This is conjectural.

e The bifurcation can be degenerate and qualitatively new types of behavior can appear.
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4 Chaos

We begin with a brief review of the essential concepts of chaos theory. We then review the
literature on chaos in power systems.

4.1 Basic concepts
4.1.1 Poincaré map

The material here is largely adapted from [5, 9]. Consider the system

¢ = f(z) + v9(z,1) 4 (33)

where z € R™, v € R is a small parameter, and g(z,t) is periodic in ¢ with period T'. We
will think about (33) as the time-invariant system

& = f(z)

forced by a (state-dependent) periodic input. We can convert (33) into the time-invariant
system

= f(z)+ 79(=,9)
b = 1 (34)

The state (z,6) € R™ x £ where & = [0,T] and §é is measured modulo T. The dimension of
this system is increased to n + 1.30

Let (z(2),8(2)) = ®(t;20,80) € R™ X T be the trajectory of (34) at time ¢ starting
in the initial state (zo, do) at time 0. Let z, = z(nT), 6, = 6(nT), n = 0,£1,+2,... be the
samples of this trajectory spaced T apart. Then

(Tnt1,0n41) = (T 20, 6n) (35)
Moreover, since §,, = §g, (35) defines a discrete time system in z, alone,
Tntl = F(xn;’Yv 60) (36)

Thus we have reduced the state space dimension by 1. In (36) the dependence of F on v
and & is explicitly noted; however, since §g will remain fixed throughout, we will drop that
argument.

Note that if £(¢) denotes the trajectory of (33) starting in state z ¢ at time 6o, then
for all n

Tn = :i'(nT + 60)

so (36) is just the sampled version of (33). The map F is called the Poincaré map, see
Figure 18.

30(34) is called the suspended system.
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4.1.2 The homoclinic tangle

Suppose n = 2, and consider the unforced system (v = 0),

& = f(z) (37)
Suppose (37) has a saddle point equilibrium p such that one branch of its stable manifold
coincides with one branch of its unstable manifold as shown in Figure 19 b. More generally,
we may have two saddles, p and g, and a cycle of orbits as in Figure 19 a. If p # ¢, these are
heteroclinic orbits; if p = q these are homoclinic orbits. We only discuss the homoclinic case
since it arises in power system models. However, the argument for the heteroclinic case is
similar.
Now consider the Poincaré map of (37),
Znt1 = F(zn;y=0) (38)
p will again be a saddle point of F. The unstable and stable manifolds of p will also be the
same as before, where
Wi(p) = {zo| F"(z0) — pasn — o}
Wu(p) = {zo| F™"(z0) - pas n— oo}
See Figure 20. Of course the closed curve in Figure 20 is no longer a single orbit of (38) (as
it was in the case of (37)), since orbits of (38) consists of a sequence of points

zn, = F*(zg), n=0,%£1,£2,...
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Figure 19: Heteroclinic and homoclinic saddle connections

Figure 20: Orbits of (38)



Parts of two orbits orbits {...M _3, M_y, Mo, My, ...} and {...H_y, Ho, Hy, ...} are shown in
Figure 20. :

We now introduce the periodic forcing term, 4 # 0, 4 small. If we want to study
the behavior of (33) directly we must display the phase portrait of the three dimensional
system (34). This is rather difficult. But we can gain a lot of information from the orbit
structure of the two dimensional discrete time system (36), namely

We will study this orbit structure.

First, note that F(p,0) = p, since p is an equilibrium of the unforced system. If
4 # 0 is small enough, by the Implicit Function Theorem there will be a saddle p for the
forced system (39),

F(p.,, 7) =Dy

(In the continuous time system (33) there is a periodic orbit through p, of period T, see [2]
or [9], which collapses to an equilibrium of the sampled system (39).)

Second, and more important, the stable and unstable manifolds of p., W,(p,) and
W.(py), may no longer coincide.3!

The breakup of the homoclinic orbit results in one of two cases. Either the two
manifolds will no longer intersect as in Figure 21 a; or they will intersect transversally at
the point ¢ as in Figure 21 b.32 In the figure we have dropped the subscript vy from p. The
point ¢ is called a homoclinic point, or ¢ is said to be homoclinic to p. Suppose henceforth
that the introduction of the forcing term leads to a transversal intersection as in Figure 21
b. This is a structurally stable situation since, by the Implicit Function Theorem again,
small changes in v will preserve the intersection although the point ¢ will move as v changes.
But we will see now that the intersection implies a radical alteration in the orbit structure
from that of Figure 21 b. We attempt to arrive at a true depiction of this structure in a
sequence of corrections to Figure 21 b. The discussion below follows [4].

Correction 1. Since g € W, its positive iterates
@ = F(g;7), 02 = FX(¢;7), -
converge to p along W,. Its negative iterates
g-1 = F g 7),9-2= F (g 7), -

converge to p along W,,. But the negative iterates of ¢, g2, ... must converge to p also, and
so they belong to W, as well; and the positive iterates of ¢_1, g-2, ... must converge to p, and
so they belong to W, as well. Thus W, and W,, must intersect not only at q but also at g+,
g+2,.... Thus we obtain an infinite sequence of homoclinic points and our first correction as
in Figure 22.

3L The coincidence of these manifolds in Figure 20 is an exceptional, or structurally unstable, occurrence.
This is easy to see: since both manifolds are one dimensional, a small appropriate change in F will cause
them to move apart.

32Transversal intersection means that the tangents to the two manifolds at ¢ span the state space.
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Figure 21: Breakup of homoclinic orbit

Figure 22: First correction



Figure 23: First correction

Correction 2. Now consider a point z on W, near ¢ as shown in Figure 22. Since z € W,
its positive iterates will remain on W,. On the other hand since z is close to g, its positive
iterates 21, 22, ... will remain close to ¢1, g2, ..., respectively, until they approach p. But z,
cannot converge to p since z ¢ W,; rather, as z, comes near p it will swing away in the
direction of the unstable manifold W,. Thus W, must be modified as in Figure 23.

Correction 3. The same correction must be applied to W, since it is the unstable manifold
of the system in reverse time. Thus we arrive at the homoclinic tangle of Figure 24.

We summarize some of the properties of the homoclinic tangle. Let A be the set of
points homoclinic to p. A is invariant under F, i.e. if z is in A then the orbit of z is also in
A. The proof of the following theorem can be found in [9].

Theorem The dynamics of F(-;) on A is chaotic.

The term chaos is associated with the following properties.

1. Sensitivity to initial conditions. For any ¢ € A and € > 0, there exists z € A, with
|z — g| < €, such that
|F*(2;7) = F*(g;7)| > Kn?

for some o > 0. Thus trajectories starting at arbitrarily close initial points will even-
tually diverge, making prediction impossible. To see this consider a small rectangular
region of initial states around ¢ with sides parallel to W, and W, as in Figure 24. As
we iterate this set of states forward in time, the sides parallel to W, get stretched, the
sides parallel to W, shrink, and the rectangle folds upon itself as the iterates approach
the equilibrium p. The stretching action accounts for the insensitivity to initial condi-
tions. The stretching and folding actions make F' topologically equivalent to Smale’s
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Figure 24: Homoclinic tangle

horseshoe map, [5, 9]. The remaining properties are then deduced from the horseshoe
map.

2. Periodic orbits. A contains periodic orbits of all periods. It also contains infinitely
many non-periodic orbits.

3. Dense orbit. There is an orbit which is dense in A.

4, Cantor set. A is a Cantor set.

The last property also implies that A is a fractal, i.e. a subset of the state space
(R? in our case) of fractional dimension.33

Having understood the orbit structure of F on A we can get a glimpse of the orbit
structure of the suspended system (34). The thing to remember is that trajectories of (39)
are samples of those of (34) spaced T apart. This is done in Figure 25. The figure is
simplified since the orbit structure of F is taken to be like that of Figure 22 rather than the
more accurate Figure 24. Figure 25 displays two trajectories, one starts at g, the second
starts at p. The samples of the trajectory through gg are g, gz, .... In the suspended system
there is a continuous trajectory g(t) as shown with g(éo) = go, 9(60 + T) = g2, .... The two
planes at ¢t = §p and at ¢t = §p + T are identified so ¢; in the two planes is the same point.
The trajectory p(t) through p is periodic, p(6o) = p(do + T') = p.

330ne definition of dimension of A C R? is this: For each € > 0 cover A by squares of side € as few in
number as possible. Suppose this number is N(¢). Then the dimension of A is d if N(¢) ~ Ke™% as e — 0.
Check that if A is a line segment its dimension is 1, if it is a square its dimension is 2. For the Cantor set
A, 1 < dimension (A) < 2.
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t= § +T

Figure 25: Trajectories of (34)
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4.1.3 The Melnikov integral

We saw above that if the periodic forcing term breaks up a homoclinic orbit in such a way
as to lead to a transversal intersection, then there is a global bifurcation into chaos. In this
section we review a technique for determining if a transversal intersection does occur. The
material below is adapted from (2, 75].

Consider the perturbed system

¢ = f(z) + 79(2,1)

Figure 26 displays the orbit structure of the Poincaré map (39). It is drawn as if the result
of the breakup of the homoclinic orbit is as in Figure 21 a. The homoclinic orbit itself is
depicted by the dashed curve. Fix a point zo on this orbit and let z(t), t € R, be the
trajectory of the unperturbed system through zo. Fix §p and focus attention on the point
z(8o). Note that as §o ranges over (—00,0), z(6g) ranges over the entire homoclinic orbit.

Draw the straight line through z(6o) perpendicular to the homoclinic orbit. This
line is perpendicular to f(z(do)) and parallel to

fH(2(80)) := (= f2(z(b0)), f1(2(b0)))

Let z2(60) and z7(8o) be the points where the stable and unstable manifolds of p7(do)
intersect this line. We can see that

_ f(=(80)) A (23(60) — x7(b0))
4(80) := [F(2(éo)]
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is a measure of the separation between W (6p) and W (o) at z(6o). In particular, we note
that if d(6o) changes sign for some 6o € R, then the two manifolds must intersect. Here for
vectors y and =z,

YAzZ:=y122 — Y221
Define the Melnikov integral
o0
M(6) = / F(a(t = 60)) A g(2(t — bo),)dt (40)
-0

Then the following estimate is valid

M (6o)

4%0) = [F(a(éo)]

+0(7%)

from which the following result follows.

Theorem If M(§,) has simple zeros, then, for v > 0 sufficiently small, the manifolds
W(60) and W7(8o) intersect transversally. If M (6o) # 0 for all 6o then the two manifolds
are disjoint.

This provides a test to determine transversal intersection, hence the occurrence of
chaos. We will see how this is used to predict chaos in power systems. Note that calcula-
tion of the integral (40) will require an explicit (or computable) form for the unperturbed
homoclinic orbit z(t) as well as the periodic forcing function g(z(t — b0), ).

4.2 Chaos in power systems

All of the papers dealing with chaos in power systems fall into a pattern. A system of two
or more generators is considered. The coupling coefficients (transmission line susceptances)
are indexed by a single parameter 4. When vy = 0, the generators are decoupled. In
this decoupled configuration, all except one generator exhibits periodic orbits, while the
exceptional generator exhibits a homoclinic orbit. When 7 # 0, v small, the periodic orbits
exert a periodic force on the exceptional machine thereby breaking up its homoclinic orbit.
The results of §4.1.2 and §4.1.3 are used to show a transversal intersection.

4.2.1 Chaos in a single machine I

We begin with a review of the first paper demonstrating chaos in power systems [76]. The
swing equation of a single generator connected to an infinite bus and without damping is

f = w
Mo = P - Bsiné (41)
Assume P < B. Then, as noted in §2.2, there are two equilibria at § and ¢ = 7 — @ where
6 = sin™! £

B
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Figure 27: Phase portrait of (41)

¢ is a saddle. Since there is no damping, 6 is no longer a stable node; it is a center. The
phase portrait of (41) is shown in Figure 27. It consists of limit cycles surrounding the
center (w = 0,0) and filling out the region inside the homoclinic orbit through the saddle.

The trick now is to perturb (41) by a small periodic forcing term. Suppose that our
generator is also connected by a small capacity transmission line to another generator. The
dynamics of the first generator are then changed from (41) to

§ = w

Mo = P - Bsinf —vf(8,t) (42)

where
f(6,1) = sin(6 — ¥(2))

and () is the voltage angle of the second or ‘forcing’ generator.

We want to make 1(t) periodic. Suppose this second generator, which also has
no damping, has a very large inertia (compared to M). Then the fact that it is coupled
to the first generator will not change its phase portrait significantly. And so its phase
portrait will be similar to that of Figure 27. In particular, if the initial conditions of this
second generator are properly chosen, it will oscillate in a periodic orbit around its center
equilibrium i.e. () will be a periodic function. We can now evaluate the Melnikov integral
(40) to determine whether the homoclinic orbit is broken up by the periodic forcing term
into a transversal intersection. That program is carried out in [76] and it is indeed shown
that a transversal intersection can occur. If follows from the Theorem in §4.1.2 that the
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first generator exhibits chaotic behavior. The computation of the Melnikov integral involves
some complex calculations which will not be reproduced here.

We note, however, that in order to facilitate the analysis some unrealistic parameter
choices were made in [76] such as the assumption that the second generator is ‘infinitely’
larger than the first. But it appears that systems involving more realistic parameter values
could be analyzed numerically.

4.2.2 A numerical study

A partial attempt along these lines is reported in [77] which considers basically the same
system, but there is damping in both generators. The dynamics of the first generator is
now given by

f = w

Mo+ Dw = P—Bsinf —ye * f(6,t) (43)

In (43) f(,t) is periodic and the damped exponential term reflects the damping of the
second generator. One can no longer expect transversal intersection of the stable and un-
stable manifolds for two reasons. First, the unperturbed system does not have a homoclinic
orbit because of the damping term as can be seen in the phase portraits of §2.2. Second,
the presence of the damped exponential means that the forcing term is not periodic. One
expects at most that the boundary of the stable equilibrium will have a ‘tangled’ shape.
Somewhat crude numerical calculations are carried out to show that this is indeed the case.

4.2.3 Chaos in a single machine, II

An interesting demonstration of chaotic behavior is given in [78]. The study deals with two
generators whose dynamics are given by (4) for n = 2, so we have

91 = W

M]_LJ] + D1w1 = P1 - 313 sin 91 - sin(91 - 92) (44)
2 = we

My + Doy = P — Byssinfy — v sin(92 - 01) (45)

Bus 3 is the infinite bus. The parameter v is small; it represents the transmission capacity
connecting generator 1 and 2.

Consider the unperturbed system, ¥ = 0. The two generators are now uncoupled.
We want to arrange initial conditions and the choice of the P; so that the first generator has
a homoclinic orbit (or a heteroclinic cycle) and the second generator has a periodic solution.
We can do this readily using the analysis of §2.2. Refer to the bifurcation diagram of Figure
2. In terms of the notation developed there, choose P; so that the first generator is on the
curve ag of Figure 2. The phase portrait is given in Figure 4 and shows a homoclinic orbit
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(the saddle connection).3* Choose P; for the second generator so that it is in the region EO

of Figure 2. The corresponding phase portrait is given by Figure 5. It shows the presence
of an orbit marked C which is a stable limit cycle, hence a periodic orbit.

Thus when v = 0, the two machines are decoupled, the first machine possesses a
homoclinic orbit, and the second possesses a periodic orbit.3® When v # 0, the second
machine will cause a breakup of the homoclinic orbit. For 4 small, the Melnikov integral
provides a technique for determining transversal intersection. However, since explicit forms
for the periodic and homoclinic orbits are not available, this approach is not pursued.
Instead, numerical data is presented to show that for different values of damping constants
and power inputs both transversal intersections and non-intersections of the stable and
unstable manifolds can occur.

Two comments on this study deserve mention. First, although [76] and [78] follow
the general pattern mentioned above of discovering bifurcation to chaos, the actual mecha-
nisms are different. Second, the periodic forcing function used in [78], namely the periodic
limit cycle C of Figure 5, appears to be unrealistic. This becomes clear upon noting that
in following the cycle C, the second generator is no longer in synchronism with the infinite
bus - a situation which protection mechanisms would not allow to persist in practice.

4.2.4 Arnold diffusion

In [79] the study of [76] is extended to a system of n generators, see also [80, 81]. Thus the
model is that of (4), except that there is no damping (D; = 0, all ). There is no infinite
bus, so the sum in (5) only extends up to n. Taking wr as a nominal reference frequency,
these equations can be expressed as,

6; = w;—wg
n
Mw;, = P;,- E Bijsin(6; — 8;), i =1,..,n (46)
=1

This system possesses the Hamiltonian or energy function
1 n n
W = 3 z M,-(w,- - wR)2 - ZP,‘H,' - Z B;; cos(8; — 0_,')
=1 =1 i<y

The energy remains constant along every trajectory of (46).

The B;; are chosen so that machines ¢ and j are coupled weakly unless j = n, i.e.

Bij =165, 1<4,j<n-1

When v = 0, all machines are coupled only to machine n. In this condition the phase

portrait is given by the n-fold ‘product’ of Figure 27. In particular, the first » — 1 machines

34In Figure 4 we identify ¢ and 27 — ¢.

3% Note that the homoclinic and periodic orbits in this case are both different from those considered in
(76).
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can have a limit cycle, and the nth machine is on its hyperbolic orbit. This is an approximate
picture: actually, since the machines are coupled,

6 € " :=[0,27]"
(with 0 and 27 identified), the phase portrait is in R™ x I".

The n — 1 machines provide a forcing input to the nth machine, resulting in a
breakup of the hyperbolic orbit. The situation cannot be analyzed as in [76] since the
Melnikov integral (40) only works for planar systems. A vector version of the Melnikov
integral is used [82, 83]. The analysis is rather complicated and will not be reproduced.
It is shown that chaos can indeed occur for appropriate choice of parameters. In this high
dimensional system, the structure of chaotic behavior is quite complex. Recall that the state
space is partitioned into constant energy surfaces (W = constant), and a trajectory cannot
cross these surfaces. However, whereas in two dimensional systems each constant energy
surface ‘confines’ a trajectory into a small region of state space (see Figure 27, where each
closed orbit is a constant energy surface), this no longer happens in higher order systems,

and a trajectory can ‘wander’ across the state space. The resulting chaotic process is called
Arnold diffusion [84).

Since the Melnikov method is only valid for small values of v, this study suffers from
the same defect as [76] in that only unrealistic parameter values seem amenable to analytic
treatment.

4.3 An appraisal of chaos in power systems

In §2.4.2 we reviewed a fairly general multi-machine model with PQ load buses. Such
a model admits a Lyapunov function W. If the generators have positive damping, then
W is strictly decreasing along any trajectory that is not at an equilibrium. This result
implies that it is impossible to have a limit cycle in a state space where the voltage angles
are measured over (—oo0,00) instead of modulo 2. The chaos results of [76, 80] imply
precisely such a limit cycle, so those kinds of chaotic behavior cannot occur in the presence
of damping. Nevertheless, if the damping is sufficiently small, the boundary of the stability
will display some features of the ‘homoclinic tangle’, as the numerical study of [77] suggests.
We have very little knowledge as to how much this tangled boundary reduces the stability
region.

On the other hand, the presence of damping does not preclude the chaotic behavior
discovered in [78]. But as we mentioned in discussing that study, the particular limit cycle
used there will most likely not be observed in practice.

The Melnikov integral technique used in several studies reveals chaos in systems
with unreasonable parameter values, so it is difficult to draw any implications for practice.
It does suggest, however, that further progress will require careful numerical studies.
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