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Abstract

A synthesis technique for asynchronous sequential control circuits from a high level specification, the Signal Transition
Graph (STG) is described. The synthesis technique is guaranteed to generate hazard-free circuits with the unbounded gate-
delay model and the bounded wire-delay model, if the STG is live, safe and has the unique state coding property. A proof
that STG persistency is not necessary for hazard-free implementation is given.

1 Introduction

Asynchronous sequential circuit design has always been a controversial topic. In the early years of electronic circuit design,
when the size of the circuits was such that a human designer could keep track of the complex timing issues involved, it was
a popular design style (see (Ung69] for a thorough review). Then synchronous logic dominated the VLSI era, when the ease
of design of clocked circuits overwhelmed the advantages of the asynchronous style. Asynchronous design, still, has always
been around, at least in the restricted domain of interfaces to the external world, asynchronous by definition. However it was
usually limited to finding a good and reliable way to synchronize signals with the internal clock.

Recently there has been a revival of interest in asynchronous self-timed circuits ([Sei81]) due to their desirable properties:

1. the clock-skew problem, getting worse and worse in synchronous sub-micron designs, disappears completely.

2. system-level latency is no longer dictated by the worst-case delay, but by the average delay. For example, a self-timed
adder can signal when the result on its outputs is valid and stable, rather than always wait for the worst delay of the
carry chain.

These properties are counterbalanced by a more constrained design procedure and, often, by an increase in area, power
consumption and worst-case delay.

The clock period of synchronous circuits must be long enough for the combinational logic outputs to settle. Asynchronous
circuits, on the other hand, are by definition sensitive to all signal changes, whether they are intentional (i.e. part of the
specification) or not. An example of such unintentional changes, also called kazards, are the multiple oscillations of a signal
that is supposed to have a single transition.

In this paper we will give a procedure transforming a formal, technology-independent specification, called Signal Tran-
sition Graph (introduced by [Chu87]), into a circuit implementation made out of “basic gates” such as nands, nors and S-R
flip-flops. We want to prove that the output of our procedure does not have hazards. In order to do so, we must define what
delay model we are going to use for our circuit implementation.

o The unbounded gate-delay model ([Ung69]) assumes that wires interconnecting gates have zero delay, and that all paths

inside each gate (including flip-flops) have exactly the same delay. It also assumes that no bounds are known on the
delay of each gate.

*This work was partially supported by the National Science Foundation under Grant UCB-BS16421 and by AT&T Bell Laboratories
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Fgure 1: Delay models.

o The unbounded wire-delay model assumes that each connection between a gate output and another gate input can have
an unbounded delay (see figure 1).

o The bounded wire-delay model assumes that each connection between a gate output and another gate input can have a
delay. In this model the amount of delay from each input to each output of a complex gate is a function of the load on
the gate output. The function depends both on the input that we consider and on the actual circuit used to implement
the gate. This delay is called nominal delay. Because of statistical fluctuations in the manufacturing process and of
modeling errors, for example the delay on the wires themselves, a lower and an upper bound on the nominal delay are
considered when verifying the circuit with timing analysis. This delay model was introduced by [Huf54] (together with
the assumption, that we shall not make, that input changes are applied only when the circuit is known to be stable).

In this paper we introduce a new synthesis procedure, that can be proved to generate hazard-free circuits from an STG
specification, both with the unbounded gate-delay and the bounded wire-delay models. The synthesis procedure resembles
the one presented in [Chu87] and [Men88). However our procedure is more general, since it deals with a more realistic delay
model, and it can potentially give better results, since it can guarantee that the circuit is hazard-free without requiring the STG
to be persistent in the case of both unbounded gate-delay and bounded wire-delay. In order to do this we will:

o give a synthesis procedure deriving from an STG a circuit implementation C with two-level combinational functions
and flip-flops, together with sufficient conditions on the STG guaranteeing that such an implementation exists,

e characterize all hazards in circuit C,

o show that constrained multi-level logic synthesis can be used without altering hazard properties of C,
¢ prove that C does not have hazards if we use the unbounded gate-delay model,

o give a procedure to remove all hazards from C if we use the bounded gate delay model,

o show that persistency is not a necessary condition for hazard-free implementation.

The paper is organized as follows. Section 2 recalls some definitions from the literature. Section 3 describes briefly
the synthesis procedure introduced by {Chu87] and improved by [Men88] and [Van90]. Section 4 gives a procedure to
synthesize a hazard-free circuit under the bounded wire-delay model. Section 5 describes the algorithm implementation
and gives experimental results. Section 6 draws some conclusions and outlines some opportunities for future development.
Appendix A describes a very simple example, applying the ideas presented in the paper.

2 Definitions

This section gives some basic definitions and previous results useful throughout the paper. Most of the definitions and results,
unless otherwise stated, are from [Chu87].
2.1 Logic functions

A completely specified single-output logic function g of n input variables is a mapping g : {0,1}* — {0,1}. Each input
variable z; corresponds to a coordinate of the domain of g. Each element of {0, 1}" is called a vertex.



An incompletely specified single-output logic function f of n input variables (called logic function in the following) is a
mapping f : {0,1}" — {0, 1, x}.

The set of vertices where f evaluates to 1 is called the on-set of f, the set of vertices where f evaluates to 0 is called its
off-set, the set of vertices where f evaluates to * is called its dc-set. Each vertex of the on-set of f is called a minterm.

A literal is either a variable or its complement. A cube c is a set of literals, such that if a € ¢ then @ & c and vice-versa.
It is interpreted as the Boolean product of its elements. The cubes with n literals are in one-to-one correspondence with the
vertices of {0,1}". _ _ _ _

A cube c; covers another cube ¢, denoted ¢, C ¢ if ¢; C ¢z, for example {a, b} C {a, b,c}, so abc € ab. The covering
is strict, denoted c; C ¢1,if c2 # 1. ’ .

The intersection of two cubes ¢; and c; is the empty cube if there exists z; such that z; € ¢; and Z; € c3, otherwise itis
¢3 = ¢ U ca. It s called “intersection” because it covers exactly the intersection of the sets of vertices covered by ¢ and c».
For example the intersection of {a, 5} and {a. c} is {a. b,c}.

A cube is called an implicant of a logic function f if it covers some minterm of f and it does not cover any off-set vertex
of f. Animplicant of f is called a prime if it is not covered by any other (single) implicant of f.

An on-set cover F of alogic function f is a set of cubes such that:

1. each cube of F is an implicant of f,

2. each minterm of f is covered by at least one cube of F'.

By analogy we can define an off-set cover R of a logic function f as a set of cubes such that:
1. each cube of R covers only off-set vertices of f.

2. each off-set vertex of f is covered by at least one cube of R.

It should be obvious that, if F is an on-set cover of f and R is an off-set cover of f, then foreach ¢; € F, c2 € R the
intersection of ¢ and c; is empty.

A cube c; in an on-set cover F of a logic function f can be expanded against an off-set cover R of f by removing literals
from it while its intersection with each ¢, € R remains empty. The result of the expansion is not unique (it depends on the
removal order), but it is always a prime implicant of f.

In the following we shall use “cover” to denote on-set covers. Each cover F corresponds to a unique completely specified
logic function, denoted by B(F). On the other hand a logic function can have in general many covers. A cover is interpreted
as the Boolean sum of its elements, 5o it can also be seen as a two-level sum-of-products implementation of the completely
specified function B( F).

A cover F is called a prime cover of a function f if all its cubes are prime implicants of f. A cover F is called an
irredundant cover of a function f if deleting any cube from F causes it to be no longer a cover of f (i.e. if some minterm is
no longer covered by any cube of F’).

The cofactor of a cube ¢ with respect to a literal z;, denoted by c:,, is:

o the empty cube (a cube that does not cover any element of {0, 1}")if I7 € c.
o ¢ — {z;} otherwise.

The cofactor of a cover F with respect to a literal z;, denoted by Fr,, is the set of cubes of F' cofactored against z;. The
empty cube can always be deleted from a cover, since it does not cover any vertex.

The cofactor has the following property (Shannon decomposition), foreach 1 < i < n: B(F) = z;AB(F:,)VGAB(Fz7).

A function f is monotone increasing in a variable z; if
f(F,8) = 1= f(z;,8) = 1forall 3 € {0,1}"~,
that is if “increasing” the value of z; from 0 to 1 never “decreases” the value of f from 1 to 0.

A function f is monotone decreasing in a variable z; if
flzi,8) = 0= f(z7,8) = 0forall 3 € {0, 1},
that is if “decreasing” the value of z; from 1 to 0 never “increases” the value of f from Oto 1.

A function f is unate in a variable z; if it is either monotone increasing or monotone decreasing in ;. Otherwise f is
binatein z;.

A cover F is unate in a variable z; if variable z; appears in only one phase (Le. either z; or Z7) in its cubes. A function
that is unate can have non-unate covers, but prime covers of unate functions must be unate. Moreover if F is a cover of f
and F is unate then f must be unate.



2.2 Hazards

Synchronous circuits do not have hazard problems: the clock cycle is chosen long enough to insure that every latch input is
stable when the clock is pulsed. In the asynchronous case, we must make sure that no signal transition ever happens except
when it is specified by the designer, becanse every transition can be recorded by some other part of the system, and cause it
to behave incorrectly. .

A static hazard is a 0 — 1 — 0 transition (static 0-hazard) or 1 — 0 — 1 transition (static 1-hazard) in any condition
where no transition for that signal should be enabled according to the specification.

A dynamichazardisa0 — 1 — 0 — 1(or1 — 0 — 1 — 0) transition in any condition where a single positive (or.
negative) transition for that signal is enabled according to the specification.

Hazards must be absolutely avoided, because they can cause the circuit to malfunction in an unpredictable way (for
example in response to a change in operating temperature).

The following Theorem was proved in [Ung69]:

Theorem 2.1 Let T be a two-level representation of a logic function f. Let M be a multi-level representation of f such that
it can be obtained from T using only the associative, distributive and De Morgan laws. Then the circuits corresponding to
M and T have precisely the same static hazards.

That is for each pair of input vectors such that the output of M had a hazard for some assignment of wire delays, there exists
some wire delay assignment in T such that the same hazard happens at its output, and vice-versa. On the other hand if some
hazard could not happen in M under any wire delay assignment, then it could not happen also in S, and vice-versa.

The relevance of this Theorem is that, if we have a two-level implementation T of a logic function f that does not
exhibit hazards for some class of input changes, then we can use multi-level synthesis techniques, constrained to use only the
transformations listed above, to obtain a multi-level implementation of f that has the same hazard properties.

2.3 Signal Transition Graph

The Signal Transition Graph was introduced by [Chu86] as a specification formalism for asynchronous sequential circuits.
Itis a natural way to specify asynchronous interface circuits, because the causal relations among the signal transitions can be
easily described, and it the concurrency is captured explicitly.

A Petri Netisatriple V =< P,T, F >, where P is aset of places, T is a set of transitionsand F C (P x T)U(T x P),
such that dom( F)Urange(F) = P U T, is the flow relation. A place p € P is a predecessor of a transitiont € T',and tis a
successor of p, if (p,t) € F. Conversely, a transition¢ € T is a predecessor of a place p € P, and p is a successor of ¢, if
(t,p)EF.

A free-choice net (FC net) is a Petri net where if a place p has more than one transition ¢; . . .t,, as its successors, then p
must be the only predecessor of ¢y . ..t,. Such a p is called a free-choice place. A marked graph (MG) is a Petri net where
each place p has exactly one predecessor and one successor transition.

An STG is an interpreted free-choice Petri net: transitions of the FC net are interpreted as value changes on input/output
signals of the specified circuit. Positive transitions (labeled with a “+) represent 0 — 1 changes, negative transitions (labeled
with a “-”) represent 1 — 0 changes. From now on ¢t* will denote a transition of signal ¢ (i.e. either ¢+ or¢~) and 1~ will
denote its complementary transition (i.e. eithert= ort¥). Input transitions are those that occur on input signals of the circuit,
output transitions are those that occur on its output signals.

The conventional graphical representation of an STG (slightly different from the Petri net convention) is a directed graph,
where nodes correspond to transitions (denoted by single circles) and places (denoted by double circles), while directed edges
represent elements of the flow relation. Directed edges fanning out to a transition represent sequencing constraints either on
the circuit to be synthesized (if their fanout is an output transition) or on the environment (if their fanout is an input transition).
They specify what set of transitions causes each transition.

Figure 2.a contains an example of an STG without FC places (from [Men88]), where z and y are inputs, - is an output.
The edge 2+ — y* means that the environment guarantees that the rising edge of y always follows the rising edge of z. The
edges z~ — =~ and y* — =~ mean that the circuit to be synthesized must guarantee that the falling edge of = always follows
the falling edge of = and the rising edge of y.

Figure 2.b contains an example of an STG with two FC places, where /, a, ¢ and e are inputs, d and f are outputs.
Informally, it describes a circuit where a is allowed to change its value only when [ is at 1, and depending on the value of a,
one of two full handshake cycles takes place. So the function performed by this circuit depends on an extemal condition a.
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Figure 2: Examples of STG’s.

A set T of transitions is called a complementary set if it does not contain ail the transitions of the STGand t* € T = e
T. A complementary pair of transitions is a pair of positive and negative transitions for the same signal (i.e. a complementary
set with two elements)..

External signals are those whose behavior is specified by the STG. Internal signals are those who are generated by the
synthesis procedure to interconnect the logic gates.

23.1 Marking and firing

A token marking of a Petri net is a non-negative integer labeling of its places. A transition is enabled (i.e. the corresponding
event can happen in the circuit) whenever all its fanin places! are marked with at least one token. Transitions =+ and y* are
enabled in Figure 2.a (black dots represent the marking).

An enabled transition must eventually fire. This means that the corresponding signal changes value in the circuit. When
it fires, a token is removed from every fanin place, and a token is added to every fanout place.

If a place has more than one fanout edge, then exactly one of its fanout transitions is non-deterministically enabled. This
means, in practice, that the behavior of the circuit depends on an external condition. So we constrain all fanout transitions of
an FC place to be input transitions.

Two transitions are said to be concurrent if there exists some marking where both are enabled. In this case they can fire
in any order. Otherwise they are said to be ordered.

A set of transitions is said to be feasible if it can fire witbout firing any other transition not belonging to it. For example in
Figure 2.a the set {z*+, z+,y*} is feasible, while the set {y*, y~} is not, since they cannot both fire without, at least, either
zt or =~ firing also.

232 Live and safe net

AnFC net is live if every transition can be enabled through some (possibly empty) sequence of firings from the initial marking.
Animmediate consequence of this is that every transition can fire infinitely often. So there is no “dead” part of the net.

An FC net is safe if no place can ever be assigned more than one token after any sequence of firings from the initial
marking. This means that once a transition has fired, it can fire again only after some other transition has fired (a signal in a
circuit cannot rise twice without falling. . .).

In [Hac72] was proved that a live and safe FC net can be decomposed into

1. FSM components that cover the net (each component is sequential and exhibits non-deterministic choice),
2. MG components that cover the net (each component has concurrency and does not exhibit non-deterministic choice).

“Covering” means that each transition and place of the net has a correspondent in at least one FSM component and a corre-
spondent in at least one MG component.

The marking simply appears on the edges themselves whenever a single fanin/single fanout place is omitted from the graphical representation.
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Figure 3: An MG decomposition of the STG in Figure 2.b

FSM components can be thought as ranning concurrently, synchronizing on the transitions belonging to the intersection
of two (or more) components.

MG components can be thought as running one at a time, and whenever a place corresponding to an FC place in the
original FC net becomes marked, then the next running componeat is non-deterministically chosen.

If there are no FC places, i.e. if the net is an MG, then the FSM components are just the simple cycles of the net. For
example in Figure 2.a there are two FSM components, namely zt — :* — 2= — :~ — y~ — zt and 2+ — y+ —
:= — y~ — z+. On the other hand, Figure 3 contains a possible decomposition of the STG in Figure 2.b in MG’s.

This decomposition mechanism is very useful to analyze the properties of the FC net in terms of its components, since
those have an easy characterization of behavior properties (liveness, safeness, . . .) in terms of syntactic properties.

The following Theorems about marked graph components of an FC net are proved in [CHEP71]:

Theorem 2.2 Arn MG marking is live if and only if the token count in every simple cycle is positive.
Theorem 2.3 An MG marking is safe if and only if every edge belongs to at least one simple cycle with exactly one token.
Theorem 2.4 An MG has at least one live and safe marking if and only if it is strongly connected.

Theorem 2.5 A live marking M of a strongly connected MG can produce a marking M, (which is also live) if and only if
they have the same number of tokens for each simple cycle.

So all live and safe markings of an MG are partitioned into equivalence classes, where all mutually reachable markings
belong to the same class.
The following Theorem is proved in [Chu87]:

Theorem 2.6 Let N be an FC net such that each FSM component has exactly one token in the initial marking. Then every
live and safe marking of N is a live and safe marking of some MG component.

This Theorem states formally that MG components are “running one at a time”.

Liveness is obviously a desirable property of a circuit (a signal that can never change its value is redundant), and safety
is required by the synthesis procedure outlined below, so from now on we will restrict ourselves to strongly connected STG’s
with a live and safe initial marking.

233 LiveSTG
An STG is livé? if:
1. itis strongly connected. This ensures that the underying net is live and safe.
2. for each signal ¢ there is at least one FSM component, initially marked with one token, such that:

2Note the distinction between live net and live STG.
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Figure 4: A state graph with state codes

(a) it contains all transitions ¢*’s of ¢,
(b) each path from a transition ¢* to another transition ¢~ (i.e. both rising or falling) contains also the complementary
transition &=,
This ensures that each signal in the circuit has always a well-defined value in all maﬂ:ings reachable from the initial

one, because a rising and falling transition for the same signal can never be concurrently enabled and each signal must
have alternate rising and falling transitions.

This definition is broader than the one given in [Chu87], since

o he required that only two transitions per signal appear in the STG, and that those transitions are ordered (i.e. belong to
a simple cycle) in every FSM component of the net.

e we do not restrict the number of transitions per signal, and we require that at least one FSM ensures the alternating
order for each signal.

2.4 State Graph

The State Graph (SG) is another possible specification level for an asynchronous circuit, where the concurrency has been
been explicitly resolved into a strictly sequential behavior. It can be derived from a live STG using a deterministic procedure
([Chu87]).

The SG is a directed graph, where each node (henceforth called sate) is in one-to-one correspondence with a live and safe
marking of the signal transition graph. An edge joins state s; with state s; if the corresponding marking > can be reached
from M, (corresponding to s) through the firing of a single transition. This transitionlabels the edge.

Figure 4.a contains the SG derived from the STG in Figure 2.a (the initial marking corresponds to the dotted state).

2.5 Unique state coding
The synthesis procedure described in [Chu87] uses the output signals of the circuit directly as state variables, so the circuit
must be able to tell its global state given only the values of the input and output signals.

This means that:

o we must assign to each state s; of the SG a unique vector v; of signal values and



o this vector of values must be consistent with the SG edge labeling, in other words for each edge s; — s3:

1. ifitis labeled ¢+ then signal ¢ must be 0 in v; and 1 in v,.
2. if itis labeled ¢~ then signal ¢ must be 1in v, and 0 in v,.
3. otherwise signal ¢ must have the same value in both v; and vs.

An example of such a labeling appears in Figure 4.b.

If this can be done, then we say that the STG from which the SG was derived has the Unique State Coding property (USC,
[Van90]). .
The following Theorem was proved in [Chu87]:

Theorem 2.7 An STG S has the USC property if and only if S is live and no complementary set of transitions is feasible in
S.

Informally, if a set of transitions is feasible, then they can all fire without any other signal changing in the circuit. If they
are also a complementary set, then the initial and final values are the same for all signals, and not all signals of the STG are
involved, so we have two distinct states with the same code.

The first formal procedure to enforce the USC property was given by [Van90]. It adds to the STG edges (this reduces
the amount of concurrency allowed in the initial specification, so it is not always desirable) and/or new internal signals (i.e.
signals used only as state variables and not interesting for the outside world).

3 Logic function derivation from Signal Transition Graph

In the next Sections we will derive an implementation of a live STG with the USC property in two different ways. The
first one, taken from the literature, uses the SG as an intermediate step, and it is useful to show that the implementation is
valid if the circuit does not have delay. The latter one, which is new, is useful to characterize the hazard properties of the
implementation in presence of delays. Both implementation techniques are shown to generate the same result, so either of
them can be used to obtain the implementation, but both are useful in order to prove properties of this implementation.

3.1 State Graph derivation from Signal Transition Graph

The SG can be derived from the STG by exhaustive simulation as follows (see also [Chu87] for an equivalent procedure based
on graph decomposition):

Procedure 3.1

1, for each live and safe marking M:

(a) if M, has not been recorded yet, then:
i. create a new state sy associated with M, .
ii. for each transitiont™ enabled in M,:
A. firet", obtaining a marking M.
B. call recursively step 1a using M, as current marking (this call will either create or retrieve the corre-
sponding state s3).
C. create an edge from s, to s, labeled witht".

3.2 Next-state function derivation from State Graph

Let S be a live STG with the USC property and let n be the number of signals in S. Let f be the next-state/output function
to be implemented for signal ¢3, and let v; be an element of the domain of f, v; € {0.1}".

Every state has a unique, consistent encoding in terms of the STG signals, so each SG state 5; can be associated with a
vertex v; of the domain of f.

The following procedure ([Chu87]) derives f:

3Each output signal is used as state variable, so the output function is identically equal to the next-state function.
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Figure 5: An ideal circuit implementing signal ¢
Procedure 3.2

1. for each SG state s,:

(a) let vy be the corresponding vertex.

(b) if there is no fanout edge sy — s labeled t™ then
let f(vy) be the value of t in vy.

(c) else let f(vy) be the complement of the value of t in v;.

Notice that in step 1b there can be only one fanout edge with label ¢*, because no two transitions for ¢ can be concurrently
enabled.

Moreover f(v) is don’t care for all vertices v of the domain of f that do not have a corresponding SG state.

Figure 4.c contains the SG corresponding to the STG of Figure 2.a. Each state s; is labeled with the corresponding input
vertex m; (state code, upper label) and the next-state/output value for z, y, = (lower label).

It should be obvious that a hypothetical implementation of f (see Figure 5) with:

1. zero-delay combinational logic,
2. a feedback loop with almost zero delay and
3. an unbounded delay (greater than the feedback delay) on the output,

would satisfy the STG specification, since a transition on ¢ can happen exactly when it is enabled in the STG (and correspond-
ingly in the SG).

4 Hazard-free logic implementation

4.1 Static hazard analysis of a two-level logic circuit

We want to analyze when static hazards can occur in a two-level circuit implementation C; of a logic function f;, with
the unbounded wire-delay model, given an STG specification restricting the way in which input and output signals of C;
(corresponding to the input variables and the value of f;) are allowed to change value.

As shown in Section 3.2, we can synthesize an asynchronous sequential circuit specified by an STG as a set of combina-
tional sub-circuits C;, one for each output signal of the STG ¢;, each having as inputs the set of signals specified by the STG.
Each C;, in general, has its output signal ¢; appearing also as one of its inputs. In this analysis, though, we will treat them as
separate entities, and we will make sure that the output signal does not have hazards if none of the inputs has hazards.

An input vector is an assignment of binary values to all input signals of C;. A sequence of input vectors (also called a
transition sequence) is consistent with the STG if it is a valid firing sequence of the STG. This is equivalent to say that there
exists a path on the SG such that each vector appears in it as a state label (in the same order as in the sequence). A static
hazard occurs in the circuit if applying a consistent sequence of input vectors, with any delay among them, to Cj, its output
changes value when the STG does not allow a transition on it.



Exhaustive simulation of all input vector sequences for all possible delay assignments is clearly not feasible. So we will
use three-valued logic analysis, where each variable can assume a value of 0, 1 or “-” (for undetermined), as described in
[Ung69}, by collapsing a whole family of input vector sequences and delay assignments into a single three-valued simulation.

A controlling value for an input of a sub-circuit is defined as a value of that input which uniquely determines the value
of the output of the sub-circuit, independently of the value of the other inputs of the sub-circuit. This value of the output is
the controlled value of the sub-circuit. A non-controlling value is any value that is not a controlling value. For example 1 is
a controlling value, and 1 is the corresponding controlled value, for any input of an or gate, because ifit is 1 then the output
is 1, while there is no controlling value for any input of an ex-or gate.

An input cube is a set of assignments of three-valued values to all the input signals of C;. The value “-” is defined as
non-controlling for all logic gates.

The three-valued output of a combinational circuit C; for an input cube c is:

1. the two-valued result if no inputs in ¢ have the value “-”.
2. “.” if all inputs to C; have non-controlling values in ¢ and some inputs in ¢ have the value “-”.
3. the controlled value otherwise.

For example the three-valued output of a two-input or gate with inputs 1 and “-” (input cube 1-) is 1, while with inputs 0 and
“.” (input cube 0-) it is “-",

An input with a value of 1 or 0 corresponds to a signal whose value is known to be constant from the STG specification
during the transition sequence that we are simulating. An input with a value of “-” corresponds to a signal allowed by the
STG to have 1 or more transitions during the transition sequence that we are simulating.

With this procedure we can simulate the transition sequence where all the signals with a value of “-” change value in any
order at any point in time, under all possible wire delay assignments.

We define an input vector pair (v, v) to be valid with respect to the logic function f; of signal ¢; if

1. fi(v1) = fi(v2) (since we are analyzing static hazards) and

2. state s, (corresponding to v7) is reachable from state s; (corresponding to v;) on the SG without traversing any edge
labeled with a transition of ¢;.

We forbid valid pairs to include a transition ¢} because any sub-circuit that implements a transition ¢} that is enabled by
t; must wait for ¢7 to fire. So in order to be sure that t; will be perceived by C; as distinct from the transitions described by
the current vector pair, we must assume that C; plus its feedback loop is ready to accept the next input transition whenever a
transition on ¢; occurs. We shall see later that this assumption can be reasonably satisfied, implementing the feedback loop
with an S-R flip-flop.

Each valid vector pair has associated a transition cube, where all signals that change value from v to v, are undetermined,
while the other signals have the value they have in v; (and also in v,, of course).

It was proved in [Ung69] that a hazard condition exists for a gate-level implementation, with the unbounded wire-delay
model, if and only if the three-valued simulation of the extended transition cube corresponding to a valid vector pair gives an
undetermined output value.

The following procedure performs the three-valued simulation of a two-level circuit, directly implementing an on-set
cover F of a logic function f ¢, for all valid input vector pairs. Let v’ be the value of input signal ¢; in the input vector v, for
example if v = 100 then v! = 1,v2 = 0,v% = 0.

Procedure 4.1

1. for each valid pair of input vectors (vy, v2):

(a) for each input signalt;:
i. ifany SG path from v, to v, includes an edge labeled with a transition for t ;, then let ¢’ = —
ii. elseletc’ = v}

(b) i. ifc does not intersect any cube c; € F, then the output of each cube c;, and of the circuit, is 0.

4That is a circuit with two levels of gates, a level of and gates, one for each cube, possibly with inverters at their inputs, fanning out to an or gate.
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ii. if c covers some cube c; € F, then the output of that particular c;, and of the circuit, is 1.
ifi. otherwise (c intersects some c; without covering any), the output of those c;’s, and of the circuit, is —. Then
a hazard condition exists for vector pair (vy, v2).

For example, any sub-circuit synthesized from the STG in Figure 2.a (the corresponding SG appears in Figure 4.b) to
implement output signal = must consider the vector pair (010, 110) as valid, with corresponding transition cube ¢ = — — 0
(notice that signal y has two transitions between v; and v;), while the vector pair (101, 010) is not valid, because it requires
to traverse the edge labeled =~.

4.2 Next-state function derivation from Signal Transition Graph

One of the main problems in asynchronous circuit synthesis is tomake sure that the circuit behavior is correct for each possible
ordering of concurrent transitions. In the example of Figure 2.a, since nothing is said about the ordering of =+ and y*, then
every output signal must not have static hazards regardless of their firing order. So we must make sure, remembering the
analysis in Section 4.1, that the on-set and off-set covers F and R that we synthesize for the next-state function of output ¢
have the following property:

Property 4.1 Let S be a live STG, let F be an on-set cover and let R be an off-set cover of the next-stateloutput function of
signalt, synthesized from S. Then for each live and safe marking m of S and for each set T of concurrent transitions in S
such thatt must remain constant during any sequence of firings inT':

1. ift must be 1, then there exists at least one cube c; € F such that:

e c; evaluates to 1 in the vertex corresponding to marking m and
o no signal whose transitionis in T appears inc;.

2. otherwise, if t must be 0, then there exists at least one cube ¢; € R such that:

e c; evaluates to 1 in the vertex corresponding to m and

e no signal whose transitionis in T appears in c;.

We require S to be live in order to be able to associate each marking m of S with a vertex in the domain of the next-
state/output function of each signal ¢ in S. We will see later that F and R can have Property 4.1 if and only if S has the USC
property.

Case 1 guarantees that the output of F', if so required, remains at 1 independent of the firing orderin 7'. Case 2 guarantees
that the output of F, if so required, remains at 0 independent of the firing order in T, even though it is stated in terms of the
off-set cover R. This is because the intersection of ¢; € R with any cube ¢; € F is empty. So we can be sure thateach ¢; € F
will evaluate to 0 in the vertex corresponding to m, and no signal whose transition is in T" appears init.

For example, the set of concurrently enabled transitions in the marking shown in Figure 2.a, corresponding to vertex 100
in Figure 4.b, is S = {z*, y*}. If one of the cubes in the on-set cover of the next-state/output function for =, which must
be a constant 1 independent of the firing order in S, is exactly z, then signal = will remain consistently at 1 regardless of the
firing order.

The following procedure derives an on-set cover F and an off-set cover R for the next-state function f of signal ¢;,
receiving as input a live STG, S, having the USC property, with initial marking m. Let v be a vector of values for the n
signals that appearin S, v € {0,1}", and let v; denote the value of signal ¢; in v.

Procedure 4.2

1. Initialization:
(a) for each signalt; in the STG, do (determine its initial value):

i. let M; be an FSM component of S that contains all transitions for t ;, and let m; be its initial marking (a
subset of m).

ii. find on M; the first transition t} that can be reached from m;.
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iii. ift} ist;-", then let v; = 0, otherwise letv; = 1.
(b) leeF=¢,R=¢.

2. Recursive step:

(a) ift] is enabled in m then let v; = 1.
(b) elseift; is enabled in m then let v; = 0.
(c) for each maximal subset T of transitions enabled in marking m such that t} is not enabled in the marking m'
obtained from m firing all transitions in T do: '
i. letc={vjs.t.t; ¢T}.
ii. ifv; = 1thenlet F = F Uc, otherwiselet R= RUc.

(d) for each transitiont} enabled in m such that marking m', obtained from m firing t;, has not been reached yet,
do:
i letv' =v.
ii. ift; ist}, then let v} = 1, otherwise let v}, = 0.
iii. recursively call step 2 with v' and m’.

The initial values determined by step 1a are well defined if the STG is live (Section 2.3.3), because:

e at least one A{; containing all transitions of signal ¢ ; must exist.

o the first transition of ¢/ that can fire on the FSM component M; starting from a marking m; must be independent of the
path on M;, or else there would be a firing sequence where two transitions ¢} (both rising or falling) are not separated
byat.

o if there are two (or more) FSM components containing all transitions of ¢, say M and M, then the first transition of
t; reachable from a marking m restricted to M/ or M/ must be the same, since the intersection of the two machines
- obviously contains all such ¢*'s, and the FSM’s are synchronized in their mutual intersections.

F and R are constructed by the above procedure exactly to have Property 4.1. This guarantees that the next-state function
remains constant whenever the STG specifies so, independent of the firing order of a set of concurrently enabled transitions.

Moreover the vector of values v generated at each step is consistent with the firing, so it coincides with the unique code
of the state s corresponding to marking m, as described in Section 2.5.

We still want to prove that F and R are on-set and off-set covers of the next-state function f, as obtained in Section 3.

Theorem 4.1 Let f be the incompletely specified next-stateloutput function of signal t;, obtained from a live STG S with the
USC property using Procedures 3.1 and 32. Let F and R be the covers obtained from S using Procedure 42.

Then every on-set vertex and no off-set vertex of f is covered by a cube of F, and every off-set vertex and no on-set vertex
of f is covered by a cube of R (that is F and R are valid on-set and off-set covers of f).

Proof: we have the following cases:

1. Some transitions can fire from the current marking m reaching a marking ' where no transition of ¢; is enabled.

Then we generate a set of cubes such that the vertex v corresponding to m is covered. Moreover all the cubes belong

to either the on-set or to the off-set according to whether v; is 1 or 0, and the decision about v; is made exactly as in
Section 3.2.

All covered vertices cormrespond to markings where no transition of ¢; can be enabled, so if the STG has the USC

property (i.e. different markings correspond to different vertices) then no vertex where f must have a different value
can be covered.

2. Every transition firing from m will reach a marking m’ where a transition of ¢; is enabled.
We will show that in this case no transition of {; can be enabled in m.
Suppose that ¢; is enabled in m and let m’ be the marking reached from m firing ¢;. Then

12



Figure 6: Nlustration of Theorem 4.1 case 1

(a) t; could not be enabled again in m’, since the STG is live (otherwise two rising or falling transitions of ¢; could
fire in sequence).

M) ?;- could not be enabled in m’, since the STG has the USC property (otherwise the complementary set {t;, ¢}
would be feasible).

So there would exist some transition (namely ¢;) that can reach a marking m’ where no transition of ¢; is enabled, and
we have a contradiction.

We know also, since the STG is live, that there exists some marking m”’ from which m can be obtained by firing some
transition ¢;. Then whenever the procedure reaches ", it generates a cube covering also the vertex corresponding to
m, because m is obtained from m’’ by firing a transition that does not enable ¢;.

m]

Figure 6 contains an STG fragment (a) and the corresponding SG fragment (b) to illustrate case 1. Let o be the signal for

which we are generating cover cubes in marking m (black dots in the STG fragment). Black dots in the SG represent on-set
vertices of f, white dots represent off-set vertices.

1. The sets of transitions that can fire without enabling o~ are: $; = {a*,b*}, S2 = {a*,c~} and S5 = {b*,c"}.
2. The vector corresponding to marking mis:a = 0,b=0,c=1l.d=1l,e=1l,0=1.

3. The generated cubes are: ¢; = cdeo, ¢z = bdeo and ¢c3 = Gdeo.
4

. Each cube covers vertex Gbcdeo, corresponding to m, and belongs to the on-set cover. So minterm @bcdeo of f is
covered without problems.

5. Every cube covers only vertices where o~ is not enabled, so no off-set vertex (such as abcdeo) is improperly covered.

Figure 7 contains an STG fragment (a) and the corresponding SG fragment (b) to illustrate case 2. Let o be the signal for
which we are generating cover cubes in marking m (black dots in the STG fragment). The double circles represent an FC
place. Black dots in the SG represent on-set vertices of f, white dots represent off-set vertices.

1. The only two transitions that can fire in m are either a* or ¢~ (not both, since this is an FC place, so it enables only
one fanout transition). Both enable o~

2. One example of a marking m" predecessor of m is represented as white dots on the STG (replacing the token on
bt — o).

3. One of the cubes generated in m” is ¢; = dco, so minterm Gbco corresponding to m is covered without problems.
4. If one of the enabled transitions in m had been either o* or o~ , instead of a* or ¢~ then it is clear that

o either the STG would not have had the USC property (o™ followed by o~, Figure 7.c),
o orit would not have been live (o~ followed by o~ Figure 7.d).
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Figure 7: Illustration of Theorem 4.1 case 2

43 Circuitimplementation of the next-state function

Once we have the on-set and off-set covers of the next-state/output function f for each output signal, we can choose how
to implement the feedback loop (sequential part), and apply known logic synthesis techniques in order to obtain 2 minimal
implementation of the combinational part.

43.1 Feedback loop implementation with S-M flip-flop

The feedback loop can always be implemented using a simple flip-flop, due to the following theorem, first proved in [M0090]
in the restricted case when the STG is persistent.

Theorem 4.2 Let S be a live STG with the USC property. Let F and R be a pair of on-set and off-set covers of the next-
stateloutput function f of signal t derived from S according to Procedure 4.2. Let F' be a cover derived from F expanding
each cube c € F against R to a prime implicant of f and removing duplicate cubes.

Then F' is positive unate int.

An intuitive reason for this is that if f is binate in ¢, then there is a set of input values for which ¢ oscillates. And, if f is
unate, every prime cover of f must be unate.

Proof: let us assume, for the sake of contradiction, that F’ is binate or negative unate int.

Then there exists at least one vertex v; = 13, where 3 € {0, 1}"~1, belonging to the on-set of f, whose corresponding
vertex v = t3 belongs to the off-set of f (otherwise we could always cover both v, and v, with a prime implicant not
depending on t).

The value of f in vertex v; is the complement of the value of ¢ in vy, s0 tT is enabled in the marking m, corresponding
to v;. The marking obtained firing t* corresponds exactly to v, since v, differs from v, only in the value of ¢.

Similarly the value of f in vertex v, is the complement of the value of ¢ in v, so ¢~ is enabled in the marking m;
corresponding to v;.
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m, is obtained by m; through the firing of ¢ *, s0 a firing of ¢+ would immediately enable ¢~. But this would mean that
the complementary set {t+,¢~} is feasible, contradicting the assumption that the STG has the USC property. m]

Corollary 4.1 Let S be a live STG with the USC property. Let f be the next-state/output function of signal t derived from S
as described in Section 3.2. Then f is positive unate in t.

Proof: Theorem 4.1 proved that F and R, as derived in Section 4.2, are valid on-set and off-set covers of f, as derived in
Section 3.2. Moreover if we expand each cube in an on-set cover to a prime it still remains an on-set cover. And a function
with a prime unate cover is unate. |

If f is positive unate in ¢, then there exist two logic functions s and m that do not depend on ¢, such that f = s + tm.
So we can partition the sub-circuit into two purely combinational parts, s and m, and an S-M flip-flop, that is a fiip-flop with
logic equation Q = S + QM ([BC88]). _

The more usual S-R flip-flop has logic equation Q = S + QR. We shall see in Section 4.3.2 that the assumption to use
S-M flip-flops can be removed without changing the hazard properties of the sub-circuit.

Dynamic hazards are practically unavoidable in any circuit implementation of a combinational function (see [Ung69)).

Thus we assume that the S-M flip-flop implementation, or any flip-flop type that we will use, is relatively immune to
dynamic hazards, i.e. that a dynamic hazard on S or M can cause only one of the following events:

1. Q makes the correct transition in response to the first edge of the hazard.
2. Q goes into a meta-stable state after the first edge, then it makes the correct transition after the second edge’.
3. @Q makes the correct transition after the second edge.

In all cases the comect behavior is guaranteed, only the timing changes.

Moreover we assume that the flip-flop is ready to accept a new transition on its inputs (i.e. that the internal feedback
loop is in a stable state) whenever the output Q makes a transition. This means that the internal feedback loop delay must
be smaller than the delay on any path from the flip-flop output to one of its inputs. This requirement can always be trivially
satisfied by adding buffers after the flip-flop output, with a delay greater than the internal feedback loop delay. These two
delays can be guaranteed to be similar (despite process variations, etc.) using appropriate layout techniques, such as keeping
the flip-flop and the buffers near to each other.

432 Logic synthesis for minimal implementation of the combinational logic

In general we have the choice between implementing the on-set or the off-set cover of each signal (inverting the output if
necessary). In the following we will discuss only about the on-set cover, but most results apply also to the off-set cover
implementation.

We want to obtain an implementation that is minimal with respect to some cost function, usually a combination of delay,
area and testability.

Prime and irredundant covers are very important from an implementation point of view, because:

1. heuristic two-level logic minimizers can obtain prime and irredundant covers whose implementation has a nearly min-
imum area among all two-level implementations of the function ((BHMSV84]).

2. atwo-level implementation of a logic function obtained from a prime and irredundant cover is fully testable for single
stuck-at faults.

3. a prime and irredundant cover is a good starting point of multi-level logic synthesis systems ((BRSVW87]).

On the other hand we want to preserve Property 4.1, because it is strongly connected with the hazard properties of the
implemented circuit.

This means that we can expand each cube in the cover F against R to a prime implicant of f, because this does not
introduce additional dependencies of the cube on signals that may change when f must remain constant.

Unfortunately we cannot remove redundant cubes, unless each cube in the original on-set cover is already covered by
some other prime. So we can set up a minimum covering problem similar to the classical Quine-McCluskey minimization

5This case is not a problem even if two distinct sub-circuits interpret the meta-stable value of Q differently, since we are assuming bounded wire delays.
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Figure 8: An STG that requires a redundant two-level implementation

procedure{McC56], where each cube c of the original cover (rather than each minterm of f, as in the original procedure) must
be completely covered by at least one prime in the output cover.

Figure 8.2 contains an example of a live STG with the USC property whose two-level implementation of the flip-flop
excitation function m according to Procedure 4.2 is redundant®. Figure 8.b contains the SG (input variables are ordered
a, b, c, t), while Figure 8.c contains the Kamaugh map of the function m(a, b, ¢).

The cover of m obtained by the procedure is:

m = ab+ aT+ b + Gc

where the implicant a€ is redundant (it is shown by the dashed oval on the Kamaugh map, while non-redundant implicants
are shown by dotted ovals). If the redundant implicant is removed from the cover, then a hazard can occur when the circled
b= transition fires, because the implicant b could go to 0 before the implicant ab goes to 1. This causes a static 1-hazard, and
possibly a malfunction in the circuit, since the S-M flip-flop can be set incorrectly due to this hazard.

The decomposition into an S-M flip-flop and two combinational networks maintains Property 4.1, since every cube in F
has exactly one corresponding cube in the cover of either s or m. Moreover each one of the two covers of s and m is still
prime after the decomposition, because we first split F into a cover F; where no cube depends on ¢ and a cover F> where
every cube depends on the positive phase of ¢, so cofactoring each cube of F; against ¢ leaves it a prime of the cover of m.
Theorem 2.1 allows us to use, for example, S-R flip-flops, instead of the less usual S-M type, applying De Morgans’ law to
the cover of m.

If we want to further improve the area and/or delay performance of the circuit, we can use some multi-level synthesis
techniques, such as those described in [BRSVW87]. In order to retain the hazard properties of the two-level circuit, though,
we must restrict ourselves to the transformations listed by Theorem 2.1. Algebraic factorization is a direct application of
associative and distributive laws, so it can safely be used.

SRecall that the cover of m is the set of those cubes in the on-set cover F for signal ¢ that depend on ¢ itself, cofactored against ¢, while the cover of s is
the set of cubes of F that do notdepend on &.
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4.4 Static hazard analysis of a circuit implemented from an STG

Now let us see what happens when we apply each valid vector pair (v;, v2) as described in Section 4.1, to the circuit imple-
mentation of signal ¢ obtained from the on-set cover F of the next-state/output function f for ¢ as described in Sections 4.2
and 4.3.

We have the following cases for each transition cube ¢ corresponding to the valid vector pair (v1, v2):

1. cis covered by a cube of F or it does not intersect any cube of F': the output is either 1 or 0, and we do not have static
bazards.

2. f(v1) = f(v2) = 1 and two cubes of F, say c; and c3, are required to cover ¢ (the extension to more than two is.
straightforward): a hazard condition can occur, under an appropriate wire delay assignment.

Every path on the SG from v; to v, contains two transitions j~ and * (ordered j* — 7* on the path) such that:

e i” tumns ¢, off (i.e. ¢; covers the fanin vertex of i and it does not cover its fanout vertex on the SG).
e j* turms c; on (i.e. ¢z does not cover the fanin vertex of j* and it covers its fanout vertex on the SG).

We have a hazard if the transition on the output of ¢; propagates to an input of the flip-flop before the transition on the
output of ¢, since the STG does not specify any transition for signal ¢ (otherwise (v1, v2) would not have been a valid
pair).

Notice that j* transitively enables i* on the STG, because if they were concurrent, then they would be covered by a
single cube.

3. f(v1) = f(v2) = 0 and c intersects some cube c; of F. A hazard condition can occur. under an appropriate wire delay
assignment.
In this case some directed path P in {0, 1}" from v; to v, contains two transitions j~ and i* (ordered j= — i" on the
path) such that: .

e {* turns c¢; on,
e j* turns ¢ off,

We have a hazard if i* propagates to an input of the flip-flop before j=, since the STG does not specify any transition
forsignal t. Again j* transitively enables i* on the STG.

An example of case 2 is the vector pair (000, 110) for the SG in Figure 4.b for output z (see Appendix A). An example
of case 3 is the vector pair (001, 010) for the same SG for output z.

Notice also that in case 3 we do not limit ourselves to SG paths, since they cannot traverse an implicant of F, but we must
check all possible paths, between v; and v, where no variable is allowed to change its value more than once.

Both hazard cases happen when the sub-circuit behaves as though the STG-specified ordering of j* and i* was reversed.
This means that the physical circuit implementation must preserve the transition ordering:

Property 4.2 Given an STG S and a circuit C implementing it, if a transition t] on the input of a sub-circuit C causes a
transition t3 on its output and the two transitions are ordered in S, then no other sub-circuit C, can produce a sequence of
events on its output as a delay-free implementation would have produced if t; had preceded t] in time.

For example in the circuit shown in Figure 9 we must make sure that every path connecting @ — b — c through C and
C, has a longer delay than any path a — ¢ in C; only.

A suitable global handshaking protocol can guarantee that Property 4.2 is met under the unbounded wire-delay model.

For example we can encode each external signal ¢ with two wires, fo and t;, carrying complementary values during
quiescent conditions (dual-rail encoding), and driven with wired-or logic. The logic implementation should also follow the
guidelines described in [Ung69] for speed-independent circuits, that require disjoint two-level implementation.

Under quiescent conditions all sub-circuits drive one of the wires to 0, say to, and leave the other wire at 1. When a
transition = must occur on signal ¢, the sub-circuit who generates its transitions drives ¢ to 0 and releases to. Then all other
sub-circuits, as soon as they recognize the transition, release to, that will go to 1 only when all sub-circuits agree that the
transition fired. Now any transition enabled by ¢~ can fire, and so on.

This approach has two main disadvantages:

17



© R L
()

Figure 9: An STG fragment and its implementation.

1. itrequires some additional logic (for completion detection and for disjoint two-level implementation).
2. itconstrains all the system to follow the speed of the slowest element.

Another way to obtain the same result, under the bounded gate-wire delay model, is to slow down the output of C'; so that
we are sure that every circuit having a as input is stable when we generate a transition on b.

4.5 Hazard removal procedure
As described in Section 4.4, a hazard can occur when the difference between the delays along two paths in one sub-circuit is
greater than the delay between two transitions.

So the procedure below identifies all cases when a hazard can occur. The procedure must be called once for each output

signal ¢, with next-state/output function f, implemented by cover F according to Procedure 4.2. Furthermore let s and m be
the S-M flip-flop excitation functions as described in Section 4.3.1.

Procedure 4.3

1. for each vector pair (v, v2) such that:

o f(vn1) = fv2). ,
e vy and v, are maximally distant on the SG.

o no directed path on the SG connecting v, to v3 contains an edge labeled t*.
do:

(a) if f(v1) = f(v2) = 1 then:
i. for each directed path P on the SG from v, to v, for each pair of distinct implicants cy, ¢z € F traversed by
P:
A. find the pair of transitions i" and j~ on P that turn ¢y off and c3 on.
B. let dy be a lower bound on the delay along the path from input i along cube c to M for transitioni*.
C. let d» be an upper bound on the delay along the path from input j along cube c, to M for transition j*.
D. letds be a lower bound on the delay between transition j* and i* .
E. if (da — dy) > ds then a hazard condition exists.
(b) else (f(v1) = f(v2) = 0):
i. for each directed path P in {0.1}" from v to v,, for each implicant c, € F traversed by P:
A. find the pair of transitions i~ and j* on P that turn ¢, on and ¢, off.

B. let dy be a lower bound on the delay along the path from input i along cube ¢, to either S or M7 for
transition i".

"Depending on whether ¢ belongs to the cover of s or m.
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C. let dy be an upper bound on the delay along the path from input j along cube c1 to either S or M for
transition j*.

D. letds be a lower bound on the delay between transition j* and i*.
E. if (d2 — dy) > ds then a hazard condition exists.

Notice that the implicants that may cause a hazard in step 1(a)i can only belong to the cover of m, since the SG path from
v; 10 v, does not use any edge labeled with a transition for ¢. So all the implicants of f that are involved must contain literal
t, because they all are generated by Procedure 4.2 when ¢ has value 1 and no transition for ¢ fires.

The upper and lower bounds on d) and d; can be obtained by timing simulation on the circuit, where some bounds onthe
gate delays and wire delays must be known. The input vectors for this timing simulation are just the vectors corresponding
to the fanin and fanout states of i* and j* on each path. Notice also that we must simulate, except for fanout load effects on
the delay, only the part of the circuit corresponding (either directly or through algebraic factorization) to the implicant of F
whose delay we are measuring. Otherwise the measurement could be invalidated by a transition on the output of some other
implicant.

The lower bound on d; can either be obtained in the same way (if we are also synthesizing the circuit for signal 7) or from
any other information source, such as a data sheet. In the worst case we can assume it to be zero.

Whenever Procedure 4.3 finds a hazard condition, we record the triple of paths and delays.

At the end, we have two choices for each triple (d;, d2, d3) that failed the above test:

1. speed up d, and/or slow down d;. This brings the circuit closer to the gate-delay case, where all delays inside the sub-
circuit for each output ¢ are supposed to be balanced. This may not always be possible, furthermore it may introduce
cyclic dependencies, so that when we try to remove one hazard we can make another one worse.

2. slow down d3. This is always possible (just add buffers after the output of the sub-circuit for signal 7). Furthermore we
are guaranteed that we do not introduce cyclic constraints, since d, and d ; are measured from a sub-circuit input to a
flip-flop input, so adding delay after a flip-flop does not change any of them.

If we take the second choice, then we just record by how much each flip-flop output faﬂs to pass the test, and then slow
it down by the maximum difference.

Notice the close similarity between what we do here and what is classically done in synchronous circuit synthesis:
o in the synchronous case we slow down the clock signal until no more events are propagating along the whole circuit.

o in the asynchronous case we slow down each signal until no more events that caused its change are propagating along
the whole circuit.

So this approach, even if it does not generate speed-independent or delay-insensitive circuits, can still be considered
faithfully adherent to the “asynchronous philosophy”, in that every element must obey a “locally defined” protocol, and
elements that are logically far apart must not be slowed down due to each other.

If we are synthesizing also the circuit for signal , a specially bad case for Procedure 4.3 would be d; = 0, that corresponds
to signal  being identically equal to signal j. But signal i can be equal to signal j, given Procedure 4.2, if and only if every
transition for j is immediately followed by the same transition for i. Such condition can be easily detected on the STG, and
we can just collapse i~ nodes into j* nodes without changing the specified behavior. In all other cases, the delay between j
and ¢~ is at least one logic gate.

4.6 STG Persistency and hazards

An STG is persistent ((Chu87]) if all its transitions are persistent. A transition v " is persistent if for each immediate prede-
cessor t* of u~, u* and 7~ are ordered.

For example in Figure 2.a transition y+ is not persistent, because ithas z+ as a predecessor, but z~ and y* are concurrent
(that is not ordered).

In a persistent STG whenever a transition u™ becomes enabled, none of its enabling signals ¢ can change level before u”
bas fired.

A transitiont* disables a transition u~ if there exists an STG marking m where both ¢t* and u™ are enabled, but firing ¢
brings to a marking m’ where " is no longerenabled. Notice that the only transitions that can be disabled in an FC net are FC
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places, so strictly speaking this is not a characteristic of the specification but of the implementation, where such a disabling
can actually occur (we will see below when).

Persistency at the STG level was considered to be a necessary and sufficient condition for the existence of a hazard-free
circuit implementation, due to the the following Theorem, taken from [Chu87] (only the notation is changed here, to be
consistent with the rest of the paper):

Theorem 4.3 Let S be a live STG. For each output signal u, there exists a signalt and a marking m in S such that:
o t* and u® are enabled in m and
o t* disables u™ and
e u” does not disable t*8

ifand only if T is a predecessor of u*, and u™ andt* are concurrent (that is u* is non-persistent).

The case in which u~ is disabled by ¢* but not vice-versa is clearly dangerous, because if the circuit implementing signal
u is not “fast enough” to fire after - fires, then a firing of t* may prevent u* from firing. So we could have a potential hazard,
depending on the delay of the circuit implementing u and the time from #* to¢*. On the other hand a simple persistency check
on the STG would be enough to guarantee that no such hazard occurs.

The proof of this theorem was not based only on STG properties, since strictly speaking no transition in an FC net can be
disabled, but also on specific assumptions on the circuit implementation derived from the STG, namely that if u~ is enabled
by -, then an occurrence of t must disable u* in all circuit implementations of signal u. This is not true in general, but only
if all inputs, except ¢, to the sub-circuit implementing signal u have a non-controlling value in marking m, because otherwise
the output of the sub-circuit does not depend on input ¢.

See for example the STG in Figure 2.a, where y* is not persistent. The logic equation for y is y = z + z, and using the
gate-delay model, as assumed by [Chu87], we know that =~ is caused by =+, so when =~ fires - is already at 1 (a controlling
value for the or gate), and =z~ cannot disable y+. :

Moreover Theorem 4.3 guaranteed hazard-free implementation only if the whole sub-circuit implementing each signal
u could be satisfactorily modeled as a single gate with the unbounded gate delay model. But this model is a reasonable
approximation of reality only if the whole sub-circuit was only one simple gate, such as a nand or a nor.

We can examine now the example in Figure 10 (from [Chu87]), where a circuit implementation was derived from a
persistent STG (only a fragment is shown here). The value of signals in the given marking is Le = 0, Lr = 1, Sa = 0,
Sr=1,Ca = 0and Cr = 0. When La™ fires, then the output of a3 has a rising transition. Suppose that the gate delay of a3
is greater than the gate delay of a, plus the delay between Sa* and Sr, then a hazard occurs on Lr. The only way to avoid
the hazard in the unbounded gate delay model is to assume that the whole group of gates 7;, a3 and 0, can be modeled with a
single delay on the output of o;.

So we can now state that:

Theorem 4.4 Let S be a live STG with the USC property. Let C be a circuit implementation of the signals in S according
to Procedure 4.2 and the decomposition described in Section 4.3.1. If the implementation of each combinational sub-circuit
exciting each flip-flop input, as well as each flip-flop, can be considered single gates with non-zero delay, then C is hazard-free
with the unbounded gate-delay model.

Proof: each signal i in S is implemented by a circuit with non-zero delay, so d3 > 0. Moreover both d; and d, are delays
within the same gate, implementing either s orm, sod) = dz,and d; — d2 = 0 < d3. o

Notice that the assumption that each excitation function may be modeled as a single gate was used, as shown above,
by {Chu87] and [(Men88].

S5 Experimental results

All the algorithms described in this paper have been implemented within the sis sequential logic synthesis system (developed
at U.C. Berkeley).

3This means that t* and u* are not both successors of an FC place, otherwise u * would disable ¢ * as well.
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Figure 10: An STG fragment and its implementation

Tibrary 1 Tibrary 2

With hazards | Without hazards || With hazards | Without hazards
Area Delay | Area Delay || Area Delay | Area Delay
c-elem 50 1.2 50 1.2 96 7.6 96 7.6
ebergen 221 44 | 285 5.2 331 7.8 395 104
fifo 89 2.8 89 2.8 112 7.6 112 7.8
“ luciano 580 7.8 |1 580 7.8 857 17.2 | 857 17.2
im 131 3.0 195 52 147 78| 275 12.6
iml 284 42| 316 5.4 332 90| 652 21.2
rpdftl 693 84| 693 8.4 {| 1009 16.0 | 1009 16.2
test 132 1.6 | 132 1.6 148 6.6 | 148 6.6
vbelOb 622 46| 654 52 784 154 1 1072 17.6
221 44 | 253 4.4 245 9.0 309 9.0
161 28| 193 3.8 153 9.0 | 249 9.0

130 30| 130 30| 137 76| 200 78]

Table 1: Experimental results

Table 1 contains the results of the synthesis and hazard removal procedures for a set of STG examples taken from the
literature. The examples were implemented using standard cells, and we used two different libraries, one (Library 1) with a
large set of combinational functions and one (Library 2) with only a few gates with widely unbalanced delays.

The columns labeled “area” contain the total area (excluding routing) of each circuit, while the columns labeled “delay”
give the maximum combinational logic delay between any two flip-flops or between an external input signal and a flip-flop.

6 Conclusions and future work

The principal target of this paper was to show that each live STG’s with the USC property has a hazard-free asynchronous
implementation, using both the unbounded gate-delay and the bounded wire-delay models.

In order to prove this, we gave a synthesis procedure, and we examined what were the hazard properties of the result of
each step, taking care that we did not introduce new causes of hazards, and we removed old ones at each step.

One important consequence of this work is that persistence can no longer be considered a necessary condition for hazard-
free implementation. This is a desirable result, since enforcing persistence reduces the concurrency at the STG level. So we
can claim that if the speed measure is the global throughput of the circuit, and if the throughput is bound by the amount of
parallelism in the implementation, ours is the fastest solution that can be obtained from the given STG specification.
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Notice that liveness and USC are only sufficient conditions for an STG to have a hazard-free implementation, since our
procedure is based on the assumption that only the values of signals specified by the STG can be used as state variables
to encode the SG. So in order to give necessary and sufficient conditions for hazard-free implementation, we will have to
remove the restriction on the state assignment technique, and state those conditions in terms of properties of both the STG
specification and the state assignment procedure.
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Appendix A A synthesis example
In this section we will go through the synthesis procedure for an example, taken from [Men88). Its STG, with the initial

marking, appears in Figure 2.a, and its SG appears in Figure 4.b.
Let us implement an on-set and an off-set cover for each signal. The initial value vector is z7=.

e only y* can fire without enabling = ~.
We add 27 to F (since the value of z is 1 in the current value vector).

1. fire y*. The value vector becomes z=.
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Figure 11: A circuit implementation of the example STG

= z~ can fire. The value vector becomes Ty=. We add Ty to R.
Fire z~. the value vector remains Ty<.

- y~ can fire. We addT< to R.
Fire y~—. The value vector becomes Ty=.

~ Nothing can fire without enabling =+, so we do not add cubes.
We reach an old marking, so we retum.

2. fire z*. The value vector remains z7-.

- y* can fire. We add x> to F.
z~ can fire. We add Gz to F.

(a) Fire z~. The value vector becomes T7:.
+ Nothing can fire without enabling = ~, so we do not add cubes.
‘We reach an old marking, so we return.
(b) Firing y* would reach an old marking, so we return.

So we generate F = z + £y + r= +J: and R = Ty + T=. We can delete covered cubes obtaining F' = r + Yz, and
the implementation of : described in Figure 11.c.

The following valid vector pairs originate transition cubes that might produce hazard conditions for each signal:
X:

1. valid vector pair (001. 010), with transition cube 0 — —. The path 001 — 000 — 010 traverses the implicant 7.
The two transitions that turn it on and off are -~ and y* respectively.
A pair of vectors causing the falling transition on the path from input = through implicant 7= to output s, is
(7=.77). This gives us d,.
A pair of vectors causing the rising transition on the path from input y through implicant 7= to output s; is
(7=, y7). This gives us ds.
d3 can be measured on the circuit for output > applying transition y*, that is from vertex T 7= to Ty:.
ds is the reset delay of an S-R flip-flop, so it is generally going to be larger than the difference between the
switching times of two inputs of a nor gate. So we do not have to slow down the circuit.

All other transition cubes are either covered by implicants or do not intersect them at all.
y : notice that the circuit for output y is purely combinational in this particular case, so s = f and m = 0.

1. valid vector pair ( 100, 001), with transition cube —0—. The path 100 — 101 — 001 traverses the two implicants
z and . The two transitions that turn off implicant z and turn on implicant = in the cover of f, are £~ and =+
respectively.

A pair of vectors causing the falling transition on the path from input z through implicant r (a trivial implicant
indeed. . .) to output f, is (2%, T<). This gives us d;.

A pair of vectors causing the rising transition on the path from input > through implicant = to output f is (T, Zz).
This gives us da.



-~ Nothing can fire without enabling = ~, so we do not add cubes.
Fire =*. The value vector becomes zyz.
— 2z~ can fire. The value vector becomes Tyz. We add yz to R (since the value of z is 0 in the current
value vector).
Fire £~ . The value vector remains Ty=.
- z~ can fire. We addZTy to R.
Fire =~. the value vector becomes Ty=.

-~ Nothing can fire without enabling = ~, so we do not add cubes.
Fire y~. The value vector becomes T7z.

- z* can fire. The value vector becomes 27=. We add 7= to F. We reach an old marking, so we return.
2. fire >+, The value vector becomes z7z.
- z—,y™ can fire. The value vector becomesTy:. We add = to R.

(a) Fire z~. The value vector remains 7z.
* y* can fire. We add Z: to R. We reach an old marking, so we return.
(b) Firing y* would reach an old marking, so we return.

So we generate F' = z=+ Yz and R = yz 4+ Ty + z +T=. F is already a prime cover, and we obtain an implementation
of z as described in Figure 11.a.

e yt, =% can fire. The value vector becomes zy=.
Weaddzto F.
1. fire y*. The value vector remains zy=. -

~ z% can fire. So we add zy to F. Fire z*. The value vector becomes zy:.

- z~ can fire. Weadd yzto F.
Fire £~. The value vector remains Ty:.

- Nothing can fire without enabling y—, so we do not add cubes.
Fire :~. the value vector becomes Ty=.

-~ z~ can fire. the value vector becomes Ty=. We add Z= to R.
Fire y~. The value vector remains 77=.

- Nothing can fire without enabling y*, so we do not add cubes.
We reach an old marking, so we return.

2. fire =+, The value vector becomes zy:.
-« z~,y* can fire. The value vector becomes Fy=. We add = to F.

(a) Fire z~. The value vector becomes Ty:.
* y* can fire. We add T- to F. We reach an old marking, so we retumn.
(b) Firing y* would reach an old marking, so we return.

So we generate F' = r + 2y + y= + z + Tz and R = F=. We can delete covered cubes obtaining F = z + =, and the
implementation of y described in Figure 11.b.

e y¥,z% can fire. The value vector becomes z3=. We add z to F.
1. fire y*. The value vector becomes zyz.
- =% can fire. We add zy to F. Fire z*. The value vector remains zy-=.

- Nothing can fire without enabling = ~, so we do not add cubes.
Fire £~. The value vector becomes Ty:.
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Notice that liveness and USC are only sufficient conditions for an STG to have a hazard-free implementation, since our
procedure is based on the assumption that only the values of signals specified by the STG can be used as state variables
to encode the SG. So in order to give necessary and sufficient conditions for hazard-free implementation, we will have to
remove the restriction on the state assignment technique, and state those conditions in terms of properties of both the STG
specification and the state assignment procedure.
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Appendix A A synthesis example
In this section we will go through the synthesis procedure for an example, taken from [Men88]. Its STG, with the initial

marking, appears in Figure 2.a, and its SG appears in Figure 4.b.
Let us implement an on-set and an off-set cover for each signal. The mmal value vector is z7=.

e only y* can fire without enabling z~.
We add z= to F (since the value of z is 1 in the current value vector).

1. fire y*. The value vector becomes zi=.
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C. let dy be an upper bound on the delay along the path from input j along cube c, to either S or Mfor
transition j~. :

D. letds be a lower bound on the delay between transition j~ and i*.

E. if (d2 — dy) > ds then a hazard condition exists.

Notice that the implicants that may cause a hazard in step 1(a)i can only belong to the cover of m, since the SG path from
v; 10 v does not use any edge labeled with a transition for ¢. So all the implicants of f that are involved must contain literal
t, because they all are generated by Procedure 4.2 when ¢ has value 1 and no transition for ¢ fires. )

The upper and lower bounds on d; and d, can be obtained by timing simulation on the circuit, where some bounds on the
gate delays and wire delays must be known. The input vectors for this timing simulation are just the vectors corresponding
to the fanin and fanout states of i* and j* on each path. Notice also that we must simulate, except for fanout load effects on
the delay, only the part of the circuit corresponding (either directly or through algebraic factorization) to the implicant of F'
whose delay we are measuring. Otherwise the measurement could be invalidated by a transition on the output of some other
implicant.

The lower bound on d can either be obtained in the same way (if we are also synthesizing the circuit for signal 7) or from
any other information source, such as a data sheet. In the worst case we can assume it to be zero.

Whenever Procedure 4.3 finds a hazard condition, we record the triple of paths and delays.

At the end, we have two choices for each triple (d;, da, d3) that failed the above test:

1. speed up d; and/or slow down d;. This brings the circuit closer to the gate-delay case, where all delays inside the sub-
circuit for each output ¢ are supposed to be balanced. This may not always be possible, furthermore it may introduce
cyclic dependencies, so that when we try to remove one hazard we can make another one worse.

2. slow down d3. This is always possible (just add buffers after the output of the sub-circuit for signal ). Furthermore we
are guaranteed that we do not introduce cyclic constraints, since dy and d; are measured from a sub-circuit input to a
flip-flop input, so adding delay after a flip-flop does not change any of them.

If we take the second choice, then we just record by how much each flip-flop output fails to pass the test, and then slow
it down by the maximum difference. :
Notice the close similarity between what we do here and what is classically done in synchronous circuit synthesis:

o in the synchronous case we slow down the clock signal until no more events are propagating along the whole circuit.

o in the asynchronous case we slow down each signal until no more events that caused its change are propagating along
the whole circuit.

So this approach, even if it does not generate speed-independent or delay-insensitive circuits, can still be considered
faithfully adherent to the “asynchronous philosophy”, in that every element must obey a “locally defined” protocol, and
elements that are logically far apart must not be slowed down due to each other.

If we are synthesizing also the circuit for signal i, a specially bad case for Procedure 4.3 would be d3 = 0, that corresponds
to signal : being identically equal to signal j. But signal i can be equal to signal j, given Procedure 4.2, if and only if every
transition for j is immediately followed by the same transition for i. Such condition can be easily detected on the STG, and
we can just collapse i nodes into j* nodes without changing the specified behavior. In all other cases, the delay between j*
and " is at least one logic gate.

4.6 STG Persistency and hazards

An STG is persistent ([Ehu87]) if all its transitions are persistent. A transition u " is persistent if for each immediate prede-
cessor t* of u~, u* and ¢~ are ordered.

For example in Figure 2.a transition y* is not persistent, because ithas z+ as a predecessor, but z~ and y* are concurrent
(that is not ordered). .

I;r:dpemistent STG whenever a transition u~ becomes enabled, none of its enabling signals ¢ can change level before u”
has

A transitiont* disables a transition u~ if there exists an STG marking m where both ¢ and u" are enabled, but firing ¢
brings to a marking m’ where u" is no longer enabled. Notice that the only transitions that can be disabled in an FC net are FC
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d3 can be measured on the circuit for output z applying transition = *, that is from vertex z7 T to 27 =.
Again dj is the reset delay of an S-R flip-flop, so it is generally going to be larger than the difference between the
switching times of two inputs of a nor gate. So we do not have to slow down the circuit.

2. valid vector pair (110, 011), with transition cube —1—: same as the previous case.
All other transition cubes are either covered by implicants or do not intersect them at all.

z : All transition cubes are either covered by implicants or do not intersect them at all.
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