A Detailed Description of the VLSI-PLM Instruction Set:
A WAM Based Processor for Prolog

Bruce K. Holmer
holmer@ernie.berkeley.edu
Aquarius Group
Computer Science Division
University of California, Berkeley

ABSTRACT

This document describes the VLSI-PLM instruction set and includes small programs to test details of its implementation. The VLSI-PLM is a single chip implementation of the PLM, a WAM based instruction set for the execution of Prolog. The instruction set is described using C-like code based on the actual microcode of the VLSI-PLM. The test programs are a collection of simple Prolog programs which were used to debug the microcode. This report complements the report of Fagin and Dobry, The Berkeley PLM Instruction Set: An Instruction Set for Prolog.
A Detailed Description of the VLSI-PLM Instruction Set

Bruce K. Holmer
Aquarius Group
Computer Science Division
University of California, Berkeley

1. Introduction

This document describes the VLSI-PLM instruction set and includes small programs to test details of its implementation.

Given below is a set of C code that describes the actions of each VLSI-PLM instruction. It is essentially a level one simulator presented instruction by instruction. I assume that the reader has on hand a copy of The Berkeley PLM Instruction Set: An Instruction Set for Prolog [FaDo]. Warren's original definition of the WAM [War] and Dobry's thesis [Dob] are also very helpful. Material in these documents are not duplicated here unless needed for completeness or to point out corrections.

The code is not a direct transliteration of the VLSI-PLM microcode. I have rearranged operations if the result is more clear. In the use of C, I have restricted myself to arithmetic and logic operations, assignments, if and switch statements, jumps, and function calls. These roughly correspond to the operations available on most microarchitectures, and therefore the elemental operations are less likely to be hidden by C constructs.

2. Fundamentals

2.1. Registers and Memory Layout

The registers and state bits of the VLSI-PLM are:

- P: program counter (30-bit byte address)
- CP: continuation pointer (return address)
- H: heap pointer
- B: choice point pointer
- E: environment pointer
- TR: trail pointer
- HB: heap pointer on backtracking
- N: number of permanent variables
- A0 through A7: eight argument registers
- CUT: cut bit
- MODE: mode bit (READ or WRITE)
- PDL: unification push down list pointer
- H2: global heap pointer

In [FaDo] the argument registers where specified with either Ai or Xi. In this document, I will use only Ai and number the registers starting from 0 (FaDo) and the PLM compiler both start the numbering from 1. Similarly, Yi addressing starts from zero (rather than one as in the compiler). I have chosen this convention since it matches the actual value used in the argument byte of the machine instruction.

March 1, 1989
The program counter (P) is not contained in the VLSI-PLM, but instead is kept in the external instruction prefetch unit. The VLSI-PLM can request a new value for P by either sending the entire new 30-bit value (as in _proceed_) or by sending an 8-bit offset (as in _switch_on_term_). The current prefetch unit treats offsets as positive only (as shown in the pseudo code), however, with a change to the prefetch unit (and assembler) this could be changed to signed offsets.

Choice point structure:

```
<--- B (points at one position beyond end of choice pt)
 TR
 P
 CP
 E
 A7
 A6
 A5
 A4
 A3
 A2
 A1  higher addresses
 A0
 N
 H
 B
```

Structure of environment:

```
Yn
...
Y1
Y0  <--- E
 N
 CP
 CUT | B
 E
```

Structure of trail:

```
...
 VALUE
 NONVAR | ADDR
 VAR   | X
 VAR   | Y  <--- TR
```

Unification of nested structures requires a push down list. On the VLSI-PLM this is supplied as an on-chip circular buffer (with automatic spill to memory on overflow). This mechanism is not included in the following pseudo-code since it would overly complicate the unify algorithm. Instead, I assume the existence of two arrays, _PDL1_ and _PDLr_, and an index pointer, _PDL_. Since a very small fraction of the total execution time is spent in the general unify routine, these arrays could be placed on top of the
environment or heap for the duration of the unify routine with little loss of performance.

In the pseudo code, the comparison ADDRESS == Yi is often used. This does not refer to real
registers or state bits, but reflects the decoding of the opcode of the current instruction. If the opcode indi-
cates that the addressing mode refers to a register (Xi), then this test would be false. Otherwise, if the
addressing mode refers to a permanent variable (Yi), then the test succeeds.

2.2. Cdr coding

The primary rule for handling cdr bits is: the cdr bit is associated with the memory location, not the
data value. Cdr bits (that have meaning) can appear only on the heap and trail, and can only be created by
the unify-nil and unify-cdr instructions. The cdr bit of a stack variable has no meaning, since
lists and structures are not built on the stack. Cdr bits can be removed from a given location only when that
location is reclaimed on backtracking. Binding and detrailing do not change the value of the cdr bit. During
unification the cdr bit does not affect the match between two constants.

The mixture of cdr coding and variable dereferencing gives rise a subtle point. The value (and tag)
of a variable is determined by the data at the end of its dereference chain. However, the cdr bit of the variable
itself must be used (rather than the cdr bit of the dereferenced value).

The Xenologic X1 microcode takes the position that the cdr bit of data in an A register has no mean-
ing, and therefore is always cleared. This was not done in the VLSI-PLM, since the non-WAM instruc-
tions allow the cdr bit to be manipulated by assembly code.

2.3. Instruction Formats

Although Dobry's thesis contains explicit information about instruction formats, a brief summary of
instruction opcodes and arguments is given here. All opcodes are a single byte. Instructions have up to
three arguments, the first is either one or four bytes and the next two are always one byte.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Opcode (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>allocate</td>
<td>00</td>
</tr>
<tr>
<td>deallocate</td>
<td>01</td>
</tr>
<tr>
<td>proceed</td>
<td>80</td>
</tr>
<tr>
<td>cut</td>
<td>05</td>
</tr>
<tr>
<td>trust_me_else</td>
<td>0b</td>
</tr>
<tr>
<td>fail</td>
<td>82</td>
</tr>
<tr>
<td>unify-nil</td>
<td>02</td>
</tr>
<tr>
<td>nop</td>
<td>04</td>
</tr>
<tr>
<td>halt</td>
<td>06</td>
</tr>
<tr>
<td>reset</td>
<td>81</td>
</tr>
</tbody>
</table>

Instructions with no arguments

March 1, 1989
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Opcode</th>
<th>Arg1</th>
<th>Arg2</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch_on_constant</td>
<td>d0</td>
<td>table address</td>
<td>hash mask</td>
</tr>
<tr>
<td>switch_on_structure</td>
<td>d1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>try</td>
<td>45</td>
<td></td>
<td>destination address</td>
</tr>
<tr>
<td>retry</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>trust</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>try_me_else</td>
<td>41</td>
<td></td>
<td>continuation address</td>
</tr>
<tr>
<td>retry_me_else</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cutd</td>
<td>49</td>
<td></td>
<td>continuation address</td>
</tr>
<tr>
<td>execute</td>
<td>44</td>
<td></td>
<td>destination address</td>
</tr>
<tr>
<td>jump</td>
<td>4c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>call</td>
<td>54</td>
<td></td>
<td>destination address</td>
</tr>
<tr>
<td>get_constant</td>
<td>50</td>
<td></td>
<td>constant</td>
</tr>
<tr>
<td>put_constant</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>get_structure</td>
<td>51</td>
<td></td>
<td>functor</td>
</tr>
<tr>
<td>put_structure</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unify_constant</td>
<td>40</td>
<td></td>
<td>constant</td>
</tr>
</tbody>
</table>

Instructions with four-byte Arg1

<table>
<thead>
<tr>
<th>Escape</th>
<th>Opcode</th>
<th>Arg1</th>
</tr>
</thead>
<tbody>
<tr>
<td>External (arity 0)</td>
<td>4a</td>
<td>00000100</td>
</tr>
<tr>
<td>External (arity 1)</td>
<td>4a</td>
<td>00000101</td>
</tr>
<tr>
<td>External (arity 2)</td>
<td>4a</td>
<td>00000102</td>
</tr>
<tr>
<td>External (arity 3-7)</td>
<td>4a</td>
<td>00000103</td>
</tr>
<tr>
<td>Additional regs dumped</td>
<td>4a</td>
<td>00000180</td>
</tr>
<tr>
<td>External (arity 0)</td>
<td>4a</td>
<td>00000181</td>
</tr>
<tr>
<td>External (arity 1)</td>
<td>4a</td>
<td>00000182</td>
</tr>
<tr>
<td>External (arity 2)</td>
<td>4a</td>
<td>00000183</td>
</tr>
<tr>
<td>X7 to H2</td>
<td>4a</td>
<td>00000060</td>
</tr>
<tr>
<td>H2 to X7</td>
<td>4a</td>
<td>00000061</td>
</tr>
<tr>
<td>X7 to H</td>
<td>4a</td>
<td>00000062</td>
</tr>
<tr>
<td>H to X7</td>
<td>4a</td>
<td>00000063</td>
</tr>
<tr>
<td>X7 to S</td>
<td>4a</td>
<td>00000064</td>
</tr>
<tr>
<td>S to X7</td>
<td>4a</td>
<td>00000065</td>
</tr>
<tr>
<td>X7 to B</td>
<td>4a</td>
<td>00000066</td>
</tr>
<tr>
<td>B to X7</td>
<td>4a</td>
<td>00000067</td>
</tr>
<tr>
<td>X7 to E</td>
<td>4a</td>
<td>00000068</td>
</tr>
<tr>
<td>E to X7</td>
<td>4a</td>
<td>00000069</td>
</tr>
<tr>
<td>X7 to TR</td>
<td>4a</td>
<td>0000006a</td>
</tr>
<tr>
<td>TR to X7</td>
<td>4a</td>
<td>0000006b</td>
</tr>
</tbody>
</table>

Escape instructions (Arg1 is four bytes)

March 1, 1989
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Opcode</th>
<th>Arg1</th>
<th>Arg2</th>
<th>Arg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>switch_on_term</td>
<td>0x24</td>
<td>constant offset</td>
<td>list offset</td>
<td>structure offset</td>
</tr>
<tr>
<td>get_nil</td>
<td>0x10</td>
<td></td>
<td>A register</td>
<td></td>
</tr>
<tr>
<td>get_list</td>
<td>0x11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put_nil</td>
<td>0x12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put_list</td>
<td>0x13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>get_variable</td>
<td>0x20</td>
<td>A register</td>
<td>A register</td>
<td></td>
</tr>
<tr>
<td>get_value</td>
<td>0x21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put_variable</td>
<td>0x22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put_value</td>
<td>0x23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>get_variable</td>
<td>0x28</td>
<td>Y index</td>
<td>A register</td>
<td></td>
</tr>
<tr>
<td>get_value</td>
<td>0x29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put_variable</td>
<td>0x2a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put_value</td>
<td>0x2b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>put_unsafe_value</td>
<td>0x2c</td>
<td>Y index</td>
<td>A register</td>
<td></td>
</tr>
<tr>
<td>unify_variable</td>
<td>0x15</td>
<td>A register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unify_value</td>
<td>0x17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unify_cdr</td>
<td>0x14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unify_variable</td>
<td>0x1d</td>
<td>Y index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unify_value</td>
<td>0x1f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unify_cdr</td>
<td>0x1c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unify_void</td>
<td>0x18</td>
<td>count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deref</td>
<td>0x1e</td>
<td>A register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>add</td>
<td>0x24</td>
<td>A register source</td>
<td>A register destination</td>
<td></td>
</tr>
<tr>
<td>sub</td>
<td>0x25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and</td>
<td>0x26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>0x27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eor</td>
<td>0x2d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mult</td>
<td>0x2e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>memread</td>
<td>0x34</td>
<td>A reg (addr base)</td>
<td>A register destination</td>
<td>positive offset</td>
</tr>
<tr>
<td>memwrite</td>
<td>0x35</td>
<td>A reg (addr base)</td>
<td>A reg (addr base)</td>
<td>positive offset</td>
</tr>
<tr>
<td>coderead</td>
<td>0x16</td>
<td>A reg (address)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>codewrite</td>
<td>0x19</td>
<td>A reg (address)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jeq</td>
<td>0x5b</td>
<td>A register</td>
<td>A register</td>
<td>positive branch offset</td>
</tr>
<tr>
<td>jlt</td>
<td>0x5b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jle</td>
<td>0x5b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>jumpn</td>
<td>0x90</td>
<td>A register</td>
<td></td>
<td></td>
</tr>
<tr>
<td>loadn</td>
<td>0x1a</td>
<td>new N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Instructions with one-byte Arg1

3. Details of Pseudo Code

Constants and user visible registers are given names consisting of all capital letters. The constants VAR, CON, LST, and STR represent the tag values for variables, constants, lists, and structures, respectively. Temporary variables are usually specified by lower case, e.g. t0, valt0, etc. These temporaries do not necessarily correspond to scratch registers in the microarchitecture.

In the VLSI-PLM, logic operations and equality tests are 32-bit. Arithmetic operations and inequality tests operate on only the value field (28 bits). The pseudo code below adopts the usual meaning of these operators in C (working on 32-bit signed integers). Explicit use of value along with an operation or

March 1, 1989
comparison signifies the fact that that operation or comparison is 28-bit (thus the comparisons are unsigned).

There are several basic operations that often occur. I define them here in terms of arithmetic and logic operations, but the microarchitecture directly supports them.

```c
int tag(t0) {
    return (t0 >> 30) & 3; /* return bits <31:30> */
}

int cdr(t0) {
    return (t0 >> 29) & 1; /* return bit <29> */
}

int value(t0) {
    return t0 & 0xffffffff; /* return bits <27:0> */
}

int construct(tag, cdr, val) /* gc bit is cleared */
{
    t0 = (tag << 30) & 0xc0000000;
    t1 = (cdr << 29) & 0x20000000;
    t2 = val & 0xffffffff;
    return (t0 | t1 | t2);
}
```

In addition, the function memread(t0) performs a memory read from the address given by value(t0), and returns the entire 32 bits at this address. The function memwrite(t0, t1) performs a memory write to the address given by value(t0), storing the entire 32 bits of t1 at this address. The functions coderead and codewrite are similar, but read and write to the code address space (which is separate from the data address space).

4. Basic Operations

4.1. Dereference

This dereference routine assumes that t0 is a variable. The VLSI-PLM has a conditional micro-subroutine branch based on the tag value, and so this is the natural thing to do. An alternative is to test t0 in dereference and return immediately if the t0 is not a variable.

One must beware of the case when the last element of a dereference chain is an unbound variable, and it and the previous link (the variable pointing to the unbound variable) have differing cdr bits. The code given here is conservative and will dereference an extra time in this case.
derefence(t0)
{
 /* assumes that on entry: tag(t0) == VAR */

L1:
 t1 = memread(t0);
 if (t0 == t1 || tag(t1) != VAR) return t1;
 t0 = t1;
 goto L1;
}

4.2. Trail

It is important that the entire 32 bits of the variable be written to the trail stack, since the detrail routine (in fail) restores the value by a 32-bit transfer.

Although the trail grows toward low memory, the trail pointer, TR, points at the next available location (rather than the top entry of the stack).

trail(t0)
{
 /* assumes that t0 is the unbound variable to be trailed */
 valt0 = value(t0);
 if ((valt0 < value(B) && valt0 > value(H)) || /* unbd var on stack */
 valt0 < value(HB)) {/* unbd var on heap */
 memwrite(TR, t0);
 TR--;
 }
}

4.3. Fail

The VLSI-PLM does not have variable sized choice points, so all of the argument registers are saved, even if it is not necessary. This makes garbage collection harder, since one does not know which values are valid starting points for marking. A possible solution is to store the number of valid argument registers in X7's position (X7 is used by the compiler only as a temporary).

The detailing done in fail must be done by popping the trail stack. This is important because several setarg entries may modify the same memory location, and the oldest trail entry should be restored. The setarg trail entry consists of an address/value pair. The address must have a non-variable tag to differentiate it from a normal (unbound variable) entry.
fail()
{
 PDL = 0;
 if (value(B) == value(STKbase)) {
 goalfail();
 return;
 }
 newTR = memread(B - 1);
 P = memread(B - 2);
 CP = memread(B - 3);
 E = memread(B - 4);
 A[7] = memread(B - 5);
 A[6] = memread(B - 6);
 A[5] = memread(B - 7);
 A[4] = memread(B - 8);
 A[3] = memread(B - 9);
 A[2] = memread(B - 10);
 A[1] = memread(B - 11);
 A[0] = memread(B - 12);
 N = memread(B - 13);
 H = memread(B - 14);
 L1:
 if (value(newTR) == value(TR)) return;
 TR++;
 t0 = memread(TR);
 if (tag(t0) == VAR) {
 memwrite(t0, t0); /* normal trail entry */
 } else {
 TR++;
 /* 2 word entry for setarg */
 t1 = memread(TR);
 memwrite(t0, t1);
 }
 goto L1;
}

5. Indexing Instructions

5.1. Switch on Term

This instruction takes three 8-bit arguments that give the (positive only) branch displacement for the constant, list, and structure cases. The variable case continues execution with the next statement. The maximum value for the displacement (255) indicates failure.
switch_on_term()
{
 t0 = A[0];
 if (tag(t0) == VAR) t0 = dereference(t0);
 switch (tag(t0)) {
 case VAR:
 return;
 case CON:
 t1 = arg1;
 break;
 case LST:
 t1 = arg2;
 break;
 case STR:
 t1 = arg3;
 break;
 }
 if (t1 == 0x0ff) {
 fail();
 return;
 }
 P = P + t1;
}

5.2. Switch on Constant and Structure

Both of these instructions take a 28-bit code space word address (arg1) which specifies the beginning location of the hash table, and an 8-bit mask (arg2) which is anded with the constant or functor value as the hash function.

switch_on_constant()
{
 t0 = A[0];
 if (tag(t0) == VAR) t0 = dereference(t0);
 switch(t0);
}

switch_on_structure()
{
 t0 = A[0];
 if (tag(t0) == VAR) t0 = dereference(t0);
 func = memread(t0); /* functor of structure */
 switch(func);
}

These switch instructions utilize open addressing hashing with linear probing. The functor or constant value is multiplied by two so that consecutive integers will map to consecutive table entries. The hash function is given by the functor or constant value anded with the mask (arg2).

March 1, 1989
The hash table consists of two word entries, a value and a code address. If the value entry matches
the value of the constant or functor, then execution proceeds at the code address. The cdr bit of the value
entry is used to denote unused table locations and a valid entry just before an unused location. The value
of an empty entry must be unique (different from all constants and functors) since probing can begin at an
empty entry. Failure occurs when all the table entries have been unsuccessfully checked or if after looping
to the top of the table, the cdr bit of the value is set.

switch(t0)
{
 t1 = t0 << 1;
 t1 = t1 & arg2;
 start = arg1 + t1; /* pointer into hash table */
 ptr = start;

 L1:
 t2 = coderead(ptr);
 if (value(t2) == value(t0)) {
 P = coderead(ptr + 1);
 return;
 }
 ptr = ptr + 2;
 if (cdr(t2) == 0) goto L1;

 ptr = arg1; /* start over at beginning of table */

 L2:
 if (ptr >= start) {
 fail();
 return;
 }
 t2 = coderead(ptr);
 if (value(t2) == value(t0)) {
 P = coderead(ptr + 1);
 return;
 }
 ptr = ptr + 2;
 if (cdr(t2) == 0) goto L2;

 fail();
 return;
}

There are several improvements that can be made with this instruction. The updating of arg2 should be
done before the left shift, allowing tables with 256 entries. Also, instead of failing when a hash lookup is
unsuccessful, execution should proceed to the next instruction, allowing several switch instructions to be
placed one after another (this is what is done in the X1). This is useful for hash tables with more than 128
entries. In addition, eliminating the code which probes from the beginning of the table would make
modification of the hash table easier during assert and retract. Finally, the cdr bit should be set only for
empty entries, eliminating the need for unique values in empty entries. These changes are summarized
below with new pseudo code.

March 1, 1989
switch(t0) /* not implemented */
{
 t1 = t0 & arg2;
 t1 = t1 << 1;
 ptr = arg1 + t1; /* pointer into hash table */
 L1:
 t2 = coderead(ptr);
 if (cdr(t2) == 1) goto L2; /* empty if cdr set */
 if (value(t2) == value(t0)) {
 P = coderead(ptr + 1);
 return;
 }
 ptr = ptr + 2;
 goto L1;
 L2:
 return; /* if no match, continue with instruction */
 /* following the switch */
}

6. Procedure Control Instructions

6.1. Try
try()
{
 CUT = 1;
 if (value(E) < value(B)) {
 t0 = B;
 } else {
 t0 = E + N;
 }
 memwrite(t0, B);
 memwrite(t0 + 1, H);
 memwrite(t0 + 2, N);
 memwrite(t0 + 3, A[0]);
 memwrite(t0 + 4, A[1]);
 memwrite(t0 + 5, A[2]);
 memwrite(t0 + 6, A[3]);
 memwrite(t0 + 7, A[4]);
 memwrite(t0 + 8, A[5]);
 memwrite(t0 + 9, A[6]);
 memwrite(t0 + 10, A[7]);
 memwrite(t0 + 11, E);
 memwrite(t0 + 12, CP);
 memwrite(t0 + 13, P);
 memwrite(t0 + 14, TR);
 B = t0 + 15;
 HB = H;
 P = arg1;
}

6.2. Retry

retry()
{
 CUT = 1;
 memwrite(B - 2, P);
 P = arg1;
}

6.3. Trust

trust()
{
 CUT = 0;
 t0 = B;
 B = memread(t0 - 15);
 HB = memread(t0 - 14); /* not the optimal value for HB */
 P = arg1;
}

March 1, 1989
The HE register is not updated optimally in the PLM. Whenever choice points are discarded, the HE register is restored first, and then the choice point is thrown away. What should happen is that the choice point should be discarded first, and then the HE register loaded from the newly activated choice point on top of the stack.

The current HE register updating scheme will give correct operation, but will trail more often than necessary. Fixing the level1 simulator reduced the number of trails on the quicksort benchmark by more than half.

If the last choice point on the stack is discarded, and then the PLM attempts an HE register update, then the HE register gets loaded with garbage. This is because the HE register is always updated from the H field of the current choice point; if there are no choice points on the stack then the value obtained in this way is obviously not meaningful.

However, this doesn’t affect the operation of the PLM, provided the address generated when the PLM attempts to update the HE from the nonexistent choice point is accepted by the memory system. Consider for a moment why this must be so. Only two incorrect actions are possible as a result of an incorrect HE value: either a value is trailed that should not be, or a value is not trailed that should be. In either case, the undesirable effects will not be felt until failure occurs, and the trail is unwound. However, the trail section built with the garbage HE value was placed on the trail stack when there was no choice point, so when failure occurs the PLM reports top level failure and quits.

This problem didn’t arise before because the HE register was updated from the last choice point discarded from the stack, thus avoiding a special check for the top of the stack every time a choice point was discarded to prevent HE from getting a garbage value. (The above comments are originally from Barry Fagin).

The problem with loading HE with garbage can be eliminated by initializing the choice point stack with a “sentinel” choice point. This choice point would contain the initial values of all the stack pointers and the code address of the routine for goal failure. If this scheme were used, the check $E = \text{STKbase in fail}$ could be eliminated.

6.4. Try me Else
try_me_else()
{
 CUT = 1;
 if (value(E) < value(B)) {
 t0 = B;
 } else {
 t0 = E + N;
 }
 memwrite(t0, B);
 memwrite(t0 + 1, H);
 memwrite(t0 + 2, N);
 memwrite(t0 + 3, A[0]);
 memwrite(t0 + 4, A[1]);
 memwrite(t0 + 5, A[2]);
 memwrite(t0 + 6, A[3]);
 memwrite(t0 + 7, A[4]);
 memwrite(t0 + 8, A[5]);
 memwrite(t0 + 9, A[6]);
 memwrite(t0 + 10, A[7]);
 memwrite(t0 + 11, E);
 memwrite(t0 + 12, CP);
 memwrite(t0 + 13, arg1);
 memwrite(t0 + 14, TR);
 B = t0 + 15;
 HB = H;
}

6.5. Retry me Else

retry_me_else()
{
 CUT = 1;
 memwrite(B - 2, arg1);
}

6.6. Trust me Else

trust_me_else()
{
 CUT = 0;
 t0 = B;
 B = memread(t0 - 15);
 HB = memread(t0 - 14);
 /* not the optimal value for HB */
}

March 1, 1989
6.7. Cut

cut()
{
 t0 = memread(E - 3);
 B = value(t0); /* must get rid of cdr (cut) bit */
 if (cdr(t0) == 1) {
 B = memread(t0 - 15);
 HB = memread(t0 - 14); /* not the optimal value for HB */
 }
}

6.8. Cutd

cutd()
{
 L1:
 t0 = B;
 B = memread(t0 - 15);
 tl = memread(t0 - 2);
 if (tl != arg1) goto L1;
 HB = memread(t0 - 14);
}

7. Clause Control Instructions

7.1. Proceed

proceed()
{
 P = CP;
 CUT = 0;
 if (value(CP) == 0) goalsuccess();
}

The test for CP being a null value could be eliminated if CP is initialized to point to the code for goal success.

7.2. Execute

execute()
{
 P = arg1;
 CUT = 0;
}

March 1, 1989
7.3. Call

call()
{
 CP = P;
P = arg1;
N = arg2;
CUT = 0;
}

7.4. Allocate

allocate()
{
 if (value(E) < value(B)) {
 t0 = B;
 } else {
 t0 = E + N;
 }
 memwrite(t0, E);
 memwrite(t0 + 1, construct(0, CUT, B)); /* record the CUT bit */
 /* as the cdr bit of B in the environment */
 memwrite(t0 + 2, CP);
 memwrite(t0 + 3, N);
 E = t0 + 4;
}

7.5. Deallocate

deallocate()
{
 N = memread(E - 1);
 CP = memread(E - 2);
 E = memread(E - 4);
}

8. Get Instructions

8.1. Get Variable
get_variable()
{
 if (ADDRESS == Yi) {
 memwrite(E + arg1, A[arg2]);
 } else {
 }
}

8.2. Get Value

get_value()
{
 if (ADDRESS == Yi) {
 t0 = memread(E + arg1);
 } else {
 t0 = A[arg1];
 }
 t1 = A[arg2];
 if (tag(t0) == VAR) t0 = dereference(t0);
 if (tag(t1) == VAR) t1 = dereference(t1);
 if (ADDRESS != Yi) A[arg1] = t1;
 unify(t0, t1);
}

8.3. Get Constant

get_constant()
{
 t0 = A[arg2];
 if (tag(t0) == VAR) t0 = dereference(t0);
 unify(t0, arg1);
}

8.4. Get Nil

get_nil()
{
 t0 = A[arg1];
 if (tag(t0) == VAR) t0 = dereference(t0);
 unify(t0, NIL);
}
8.5. Get Structure

```c
get_structure()
{
    t0 = A[arg2];
    if (tag(t0) == VAR) t0 = dereference(t0);
    switch (tag(t0)) {
        case CON:
        case LST:
            fail();
            return;
        case VAR:
            MODE = WRITE;
            memwrite(t0, construct(STR, cdr(t0), H));
            trail(t0);
            memwrite(H, arg1);
            H++
            break;
        case STR:
            MODE = READ;
            tl = memread(t0);
            if (tl != arg1) { /* 32-bit compare works because cdr bit */
                /* is always clear on functor */
                fail();
                return;
            }
            S = value(t0) + 1;
            break;
    }
}
```

8.6. Get List
get_list()
{
 t0 = A[arg1];
 if (tag(t0) == VAR) t0 = dereference(t0);
 switch (tag(t0)) {
 case CON:
 case STR:
 fail();
 return;
 case VAR:
 MODE = WRITE;
 memwrite(t0, construct(LST, cdr(t0), H));
 trail(t0);
 break;
 case LST:
 MODE = READ;
 S = value(t0);
 break;
 }
}

9. Put Instructions

9.1. Put Variable

put_variable()
{
 if (ADDRESS == Yi) {
 t0 = construct(VAR, 0, E + arg1);
 memwrite(E + arg1, t0);
 } else {
 t0 = construct(VAR, 0, H));
 memwrite(H, t0);
 H++;
 A[arg1] = t0;
 }
 A[arg2] = t0;
}

9.2. Put Value

March 1, 1989
put_value()
{
 if (ADDRESS == Y1) {
 A[arg2] = memread(E + arg1);
 } else {
 }
}

9.3. Put Unsafe Value

put_unsafe_value()
{
 t0 = memread(E + arg1);
 if (tag(t0) == VAR) t0 = dereference(t0);
 if (tag(t0) != VAR || value(t0) < value(E)) {
 A[arg2] = t0;
 return;
 }
 t1 = construct(VAR, 0, H);
 memwrite(H, t1);
 H++;
 A[arg2] = t1;
 memwrite(t0, t1);
 trail(t0);
}

9.4. Put Constant

put_constant()
{
 A[arg2] = arg1;
}

9.5. Put Nil

put_nil()
{
 A[arg1] = NIL;
}

9.6. Put Structure
put_structure()
{
 MODE = WRITE;
 A[arg2] = construct(STR, 0, H);
 memwrite(H, arg1);
 H++;
}

9.7. Put List

put_list()
{
 MODE = WRITE;
 A[arg1] = construct(LST, 0, H);
}

10. Unify Instructions

 It is very important that before calling the general unify routine given below, that both arguments are
 fully dereferenced.
unify(t0, t1)
{
 /* t0 and t1 must be dereferenced on entry */
 L1:
 if (tag(t0) != VAR || tag(t1) != VAR) { /* neither is a VAR */
 if (tag(t0) == tag(t1)) {
 fail();
 return;
 }
 if (tag(t0) == CON) {
 if (value(t0) != value(t1)) {
 fail();
 return;
 }
 if (value(PDL) == 0) return;
 goto L2;
 } else {
 t2 = memread(t0);
 t3 = memread(t1);
 t0++;
 t1++;
 PDL++;
 PDL1[PDL] = t0;
 PDLr[PDL] = t1;
 t0 = t2;
 t1 = t3;
 if (tag(t0) == VAR) t0 = dereference(t0);
 if (tag(t1) == VAR) t1 = dereference(t1);
 goto L1;
 }
 } else if (tag(t0) == VAR && tag(t1) == VAR) { /* both are VAR */
 if (value(t0) < value(t1)) {
 memwrite(t1, construct(tag(t0), cdr(t1), t0));
 trail(t1);
 } else {
 memwrite(t0, construct(tag(t1), cdr(t0), t1));
 trail(t0);
 }
 } else { /* one is a VAR */
 if (tag(t0) == VAR) {
 memwrite(t0, construct(tag(t1), cdr(t0), t1));
 trail(t0);
 } else {
 memwrite(t1, construct(tag(t0), cdr(t1), t0));
 trail(t1);
 }
 }
 if (value(PDL) == 0) return; /* PDL is not empty */
 L2:
 t0 = PDL1[PDL];
 t1 = PDLr[PDL];
 PDL--;
 t2 = memread(t0);

March 1, 1989
t3 = memread(t1);
if (cdr(t2) == 1) {
 if (tag(t2) == VAR) t2 = dereference(t2);
 t0 = t2;
}
if (cdr(t3) == 1) {
 if (tag(t3) == VAR) t3 = dereference(t3);
 t1 = t3;
}
goto L1;
}

10.1. Unify Void

unify_void()
{
 count = argv1;
 if (MODE == READ) {
L1:
 if (count == 0) return;
 t0 = memread(S);
 if (cdr(t0) == 1) {
 if (tag(t0) == VAR) t0 = dereference(t0);
 switch (tag(t0)) {
 case CON:
 fail();
 return;
 case STR:
 break;
 case VAR:
 MODE = WRITE;
 memwrite(t0, construct(LST, cdr(t0), H));
 trail(t0);
 goto L2;
 break;
 case LST:
 S = value(t0);
 }
 count--;
 S++;
 goto L1;
 } else {
L2:
 if (count == 0) return;
 memwrite(H, construct(VAR, 0, H));
 count--;
 H++;
 goto L2;
 }
 }
}

March 1, 1989
10.2. Unify Value

```c
unify_value()
{
    if (ADDRESS == Yi) {
        t0 = memread(E + arg1);
    } else {
        t0 = A[arg1];
    }
    if (tag(t0) == VAR) t0 = dereference(t0);
    if (MODE == READ) {
        tl = memread(S);
        if (cdr(tl) == 1) {
            if (tag(tl) == VAR) tl = dereference(tl);
            switch (tag(tl)) {
                case CON:
                    case STR:
                        fail();
                        return;
                case VAR:
                    MODE = WRITE;
                    memwrite(tl, construct(LST, cdr(tl), H));
                    trail(tl);
                    goto L1;
            case LST:
                S = tl;
                tl = memread(S);
            }
        }
        S++;
        if (tag(tl) == VAR) tl = dereference(tl);
        unify(t0, tl);
        return;
    } else {
        L1:
            if (tag(t0) == VAR && value(t0) > value(H)) {
                tl = construct(VAR, 0, H);
                memwrite(H, tl);
                memwrite(t0, tl); /* clearing cdr is OK---on stack */
                trail(t0);
            } else {
                memwrite(H, construct(tag(t0), 0, t0));
                /* make sure cdr bit is clear! */
        }
        H++;
    }
}
```

The PLM compiler produces the instruction, `unify_unsafe_value`. For execution by the VLSI-PLM, this instruction should be replaced with `unify_value` (the assembler could do this).

In write mode, if the argument of `unify_value` dereferences to an unbound variable on the stack, then it would be wrong for this to be simply copied to the top of the heap (since a variable link would then point upwards). Instead, a new unbound variable is created on the heap and is bound to the variable

March 1, 1989
on the stack, the binding is trailed if necessary. Thus, our unify_value is Warren's unify_local_value.

There is no version of unify_value without the check for an unbound variable on the stack because one can never tell at compile time whether the check can be safely eliminated. The following code illustrates this point.

```prolog
main :- a(X), d(X), e, write(X), nl.
a(Y) :- c(X,Y), b(X).
b(_).
c(X, [X]).  % called from a/1 with X set to unbd var on stack
d([X]).
e :- b(X), b(X).
```

10.3. Unify Variable
unify_variable()
{
 if (MODE == READ) {
 t0 = memread(S);
 if (cdr(t0) == 1) { /* S points to cdr of data */
 if (tag(t0) == VAR) t0 = dereference(t0);
 switch (tag(t0)) {
 case CON:
 case STR:
 fail();
 return;
 case VAR:
 MODE = WRITE;
 memwrite(t0, construct(LST, cdr(t0), H));
 trail(t0);
 goto L1;
 case LST:
 S = value(t0);
 t0 = memread(S);
 }
 } S++;
 if (tag(t0) == VAR) t0 = dereference(t0);
 if (ADDRESS == Yi)
 memwrite(E + arg1, t0);
 else
 A[arg1] = t0;
 } else { /* MODE == WRITE */
L1:
 t0 = construct(VAR, 0, H);
 memwrite(H, t0); /* push unbound var on heap */
 H++;
 if (ADDRESS == Yi)
 memwrite(E + arg1, t0);
 else
 A[arg1] = t0;
 }
}

10.4. Unify Constant
unify_constant()
{
 if (MODE == READ) {
 t0 = memread(S);
 if (cdr(t0) == 1) {
 if (tag(t0) == VAR) t0 = dereference(t0);
 switch (tag(t0)) {
 case CON:
 fail();
 return;
 case STR:

 case VAR:
 MODE = WRITE;
 memwrite(t0, construct(LST, cdr(t0), H));
 trail(t0);
 goto L1;
 case LST:
 S = value(t0);
 t0 = memread(S);
 }
 }
 S++;
 if (tag(t0) == VAR) t0 = dereference(t0);
 unify(t0, arg1);
 return;
 } else { /* MODE == WRITE */
 L1:
 memwrite(H, arg1);
 H++;
 }
}

10.5. Unify Cdr
unify_cdr()
{
 if (MODE == READ) {
 t0 = memread(S);
 if (cdr(t0) == 0) t0 = construct(LST, 0, S);
 } else {
 t0 = construct(VAR, 1, H);
 memwrite(H, t0);
 H++;
 }
 if (ADDRESS == Yi) {
 memwrite(E + arg1, t0);
 } else {
 A[arg1] = t0;
 }
}

10.6. Unify Nil

unify_nil()
{
 if (MODE == READ) {
 t0 = memread(S);
 if (cdr(t0) == 0) {
 fail()
 return;
 }
 if (tag(t0) == VAR) t0 = dereference(t0);
 unify(t0, NIL);
 return;
 } else {
 memwrite(H, construct(CON, 1, NIL));
 H++;
 }
}

11. VLSI-PLM Specific Instructions

11.1. Deref

deref()
{
 t0 = A[arg1];
 if (tag(t0) == VAR) t0 = dereference(t0);
 A[arg1] = t0;
}
11.2. Add

 add()
 {
 t0 = A[arg1];
 t1 = A[arg2];
 A[arg2] = construct(CON, 0, t0 + t1);
 }

11.3. Sub

 sub()
 {
 t0 = A[arg1];
 t1 = A[arg2];
 A[arg2] = construct(CON, 0, t1 - t0);
 }

11.4. Mult

 Multiply does an unsigned multiply of two 27-bit integers to produce a 27-bit result. If the result requires more than 27-bits, then an overflow is indicated by setting the answer to the constant NIL. To count the number of iterations, one is shifted left 27 times.

 mult()
 {
 multiplier = A[arg1];
 multiplicand = A[arg2];
 accum = 0;
 cnt = 1;

L1: accum = accum << 1;
 if (accum & 0x08000000 == 1) goto ovrflw;
 multiplier = multiplier << 1;
 if (multiplier & 0x08000000 == 1) {
 accum = accum + multiplicand;
 if (accum & 0x08000000 == 1) goto ovrflw;
 }
 cnt = cnt << 1;
 if (cnt & 0x08000000 == 0) goto L1;

 A[arg2] = construct(CON, 0, accum);
 return;

ovrflw: A[arg2] = NIL;
 return;
 }
11.5. And

 and()
 {
 t0 = A[arg1];
 t1 = A[arg2];
 A[arg2] = t0 & t1; /* 32-bit operation !! */
 }

11.6. Or

 or()
 {
 t0 = A[arg1];
 t1 = A[arg2];
 A[arg2] = t0 | t1; /* 32-bit operation !! */
 }

11.7. Eor

 eor()
 {
 t0 = A[arg1];
 t1 = A[arg2];
 A[arg2] = t0 ^ t1; /* 32-bit operation !! */
 }

11.8. Memread

 memread()
 {
 A[arg2] = memread(A[arg1] + arg3);
 }

11.9. Memwrite

 memwrite()
 {
 }

March 1, 1989
11.10. Coderead

coderead()
{
}

11.11. Codewrite

codewrite()
{
 codewrite(A[arg1], A[7]);
}

11.12. Jump

Same as execute, except that the CUT bit is not affected.

jump()
{
 P = arg1;
}

11.13. Jlt

jlt()
{
 if (value(A[arg1]) < value(A[arg2])) P = P + arg3;
}

11.14. Jeq

jeq()
{
}

11.15. Jle

jle()
{
 if (value(A[arg1]) <= value(A[arg2])) P = P + arg3;
}

March 1, 1989
11.16. JumpXn

```c
jumpxn()
{
    P = A[arg1];
}
```

11.17. LoadN

```c
loadn()
{
    N = arg1;
}
```

12. Test Programs

The following test programs at one time were not correctly executed due to microcode bugs. They all now work correctly on the VLSI-PLM (however, some versions of the PLM level1, PLM level2, and PPP level1 simulators have not been corrected). The programs are given here as test cases for new simulators and PLM implementations.

12.1. Dereferencing

Check dereferencing of arguments in general unify:

```prolog
main :- a(X), a(Y), b(X,Y), c(X), d(X,Y), write(Y), nl.

a([S,a]). % create a list on the heap with a variable in it
b([A|_], [A|_]). % bind the two variables together

% at this point one list has a constant as its first element
% and the other has a variable bound to a constant

c([a|_]).

d(A,A). % this unification should succeed
% fails here if variables not deref'd in unification
```

12.2. Cdr Bits

Check that NIL, when used as a constant, does not have its cdr bit set:

```prolog
main :- a([[], []]), write(A), nl, write(B), nl.
    a(X,X).

Another check on the constant NIL:
```

March 1, 1989
main :- write([X, []]), nl.

Test that cdr bit stays the same during variable binding:

main :- A = [X|X], B = [X,Y], X = Y, Y = a, write(x(A,B)), nl.

Test cdr links:

main :- a([A]), X = [a|Y], Y = [b|A], b(X), write(X), nl, fail.
main :- a([A]), X = [a|Y], Y = [b|A], A = [c], b(X), write(X), nl, fail.
a(_).
b([A,B,C]) :- a([A,B,C]).

Another test of cdr links:

main :- a([X]), A = [a|Y], Y = [b|X], X = [c], b(A), write(A), nl, fail.
main :- a([X]), A = [a|Y], Y = [b|X], b(A), write(A).
a(_).
b([X,Y,Z]) :- a(X), a(Y), a(Z).

Check that the cdr bit of an unbound variable is preserved by get_structure:

main :- write([a|b(X)]), nl.

Check decdring in general unify:

% from Chien Chen
main :- a(A), b(B), c(A, B), d(A).
a([a|X]).
b([a| foo(b,c)]).
c(X, X).
d([_|X]) :- c(X, foo(b,c)).

Check that the cdr bit is cleared before writing to the heap in unify_value (write mode):

% from Barry Fasin
main :- a([H|T]), X = Y-T, foo(X), write(X).
a(_).
foo(X-X).

Test unify_void:

March 1, 1989
main :- y(A), write(a),
 z(A,Z), write(b),
 a([X,Y,Z]), write(c),
 z(M,L), write(d),
 z(M,[a]), write(e),
 a([a|Z]).

a([_,_,_]).

y(A).
z(A,A).

12.3. Unsafe Variables

Test comparison for current environment in put_unsafe_value:

main :- a(X), a(Y), b(X,Y), c(X,Y). % this just causes to put_unsafe's
 a(X). % but one does not transfer pointer to heap
 b(X,X).
 c(X,Y) :- d(X,Y), e. % 'e' is just to force an allocate
 d(X,Y) :- a(X), a(Y), f(X,Y), e. % another allocate that destroys
 e. % pointer for X and Y
 f(a,a). % this should succeed

Test put_unsafe_value when two variable are bound together in the current environment (the
end of the variable chain must be changed to point to a newly created unbound variable on the heap):

% from Jeff Gee:

n :- a(X,Y), b(Y), write(X), nl.

a(V,V).
b(joe).

Check that unify_value does unsafe variable globalization in write mode:

main :- a(X), d(X), e, write(X), nl.
a(Y) :- c(X,Y), b(X).
b(_).
c(X, [X]). % called from a/1 with X set to unbd var on stack
d([X]).
 % called from a/1 with X set to unbd var on stack
e :- b(X), b(X).

Test that the overwritten variable on the stack in unify_value (write mode) is trailed.
main :- a(X,Y), b(Z), c(X,Y), d(Z).

a(X,X).
b([]).
b([a,b,c]).
c(X,Y) :- var(X), !.
c(X,Y) :- write('*** BUG ***'), nl.
d([_|_]).

12.4. Detrailing
Test that multiple setargs (to the same location) are untrailed properly:

main :- X = a(a), b(X), fail.

b(X) :- write(X), nl,
 setarb(1, X, b), write(X), nl,
 setarb(1, X, c), write(X), nl.
b(X) :- write(X), nl.

13. Suggestions for Future Instruction Sets

13.1. Eliminate Cdr coding
Cdr coding has been shown not to yield any performance advantage [ToDe], and it complicates the microcode. Many of the last bugs to be removed from the VLSI-PLM microcode were related to cdr coding.

13.2. Eliminate Unsafe Variables
Unsafe variables have also been the source of several bugs. By changing put_variable Yi to create an unbound variable on the heap and a pointer to it in the environment, unsafe variables are eliminated. The benefits include elimination of the put_unsafe_value instruction, simplification of the trail routine (one comparison rather than three), and simplification of unify_value in write mode. The drawbacks include an extra dereference link and the creation of more garbage on the heap. The highly recursive Takeuchi function (see Gabriel's lisp benchmarks) is an example of the second drawback:

March 1, 1989
main :- tak(18,12,6,A), write(A), nl.

tak(X,Y,Z,A) :-
 X <= Y, !,
 Z = A.
tak(X,Y,Z,A) :-
 X1 is X-1,
 tak(X1,Y,Z,A1),
 Y1 is Y-1,
 tak(Y1,Z,X,A2),
 Z1 is Z-1,
 tak(Z1,X,Y,A3),
 tak(A1,A2,A3,A).

In the VLSI-PLM the variables A1, A2, and A3 are allocated on the stack, and the heap is never used. However, if these variables are allocated on the heap, 47,706 words are required.

14. Acknowledgements

Thanks to all who contributed to debugging the VLSI-PLM microcode. Special thanks to Tep Dobry, Barry Fagin, Jeff Gee, Chien Chen, Peter Van Roy, Mike Carlton, Jerric Tam, and Vason Sriniv.

Many of the descriptions given above are derived from electronic mail discussions and I would like to thank those that contributed.

15. References

March 1, 1989