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Abstract: Disk arrays represent a new way to construct high performance I/O systems, by replac-
ing a few large formfactor drives by many small drives. Data is striped across the drives, with
data redundancy introduced to improve media availability. A fundamental issue is how best to
configure the array for performance, capacity, and availability. We examine three possible array
organizations: no redundancy (“simplex” or RAID Level 0), 100% redundancy (“mirroring” or
RAID Level 1), and parity redundancy (RAID Level 5). The mirrored approach favors perfor-
mance over capacity, while the opposite is true for parity protected arrays. Since no single array
organization clearly dominates the others, we present several alternative metrics by which to
compare them. We argue that a way to simultaneously evaluate capacity and performance is
needed, and propose a new storage system metric based on data temperature (I0s/second/GB) for
this purpose. We illustrate its use by assessing several example array organizations.

1. INTRODUCTION

Recent advances in magnetic storage device technology are having a dramatic effect on storage
system organizations. Perhaps the most significant trend has been the steady decrease in mag-
netic disk form factor, from 14” large drives to 8”- 10” midsized drives to 5.25” - 3.5” small
drives, coupled with a remarkable increase in storage capacity. In 1990, it is possible to pur-
chase 5.25” disk drives that store 1.7 GBytes of data [Voelcker87] and transfer at a rate of 3
MBytes/second, and 3.5” drives with a 320 MBytes capacity and a 1.25 MBytes/second transfer
rate [IBM89]. This is essentially comparable to older generations of 8" [Fujitsu87] and 14”
[IBM87] drives.

Because of the technological factors that drive the disk industry, storage capacity has
significantly improved and will continue to do so, doubling every two to three years. Transfer
rates are also increasing, albeit more modestly, as drives spin faster (the rotation rate has in-
creased from 3600 rpm to 5400 rpm), as track recording densities rise, and as zoned bit recording
techniques with their ability to store more bits on the outer tracks becoming more pervasive.

In addition to disk transfer rate, disk service time consists of queuing delay, seek time, and
rotational latency. The faster spin rates help to improve the service time, by reducing rotational
latencies (from 16.7 ms at 3600 rpm to 11.1 ms at 5400 rpm), but seck times, from 12 to 16 ms
for the “average” seek, improve only moderately. Despite the advances in spin rates and record-
ing density, a typical disk can perform 30 to 50 random I/Os per second per read/write actuator,
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Figure 1: Arrays Deliver More Actuators per MB

By using small formfactor drives, a disk array can provide more actuators per MB, thus spreading I/O requests over
more actuators and thereby reducing queuing delays and user latency. In addition, the approach provides for more
parallel pathways to data on disk, and thus can result in increased bandwidth to the disk system.

independent of the formfactor. Given that processors are doubling in their MIPS rating every
year or two and that the computing environment is moving towards multiprocessors and/or “clus-
ters” of processors sharing a common file or storage service, it is easy to see that I/O rates
present a formidable bottleneck. Many believe that the critical “I/O gap” will seriously limit
future system performance.

Small format disk devices make attractive a new storage system organization, the disk array.
For a given amount of storage capacity, a disk array obtains high performance by replacing a few
large format disk drives with many small format drives (see Figure 1). The effect is to replace a
few disk actuators with many disk actuators, making possible a much higher aggregate data and
1/O rate. For this to be realized by a given user application, its files must be spread across these
drives, a technique often called “striping” [Salem86). A significant disadvantage of striping is
that if a single disk within the stripe set fails, none of the data can be accessed. A single failure
renders the array unavailable. Since the failure rate of a system scales up with the number of
components, a storage system with many disk drives will experience a disk failure (or controller
failure or power supply failure, etc.) fairly often. Thus, it is critical that a disk array include
some mechanism for insuring that even if a disk drive fails, the data within the array is still
accessible. A common technique is to store the data more than once, usually in an encoded form,
so that the data on a failed disk can be reconstituted from redundantly stored information within
the array. Therefore, the attributes of a storage subsystem that distinguish a disk array from a
“disk farm” are:

« many small physical disk drives to achieve a high aggregate I/O and data rate
« files striped over multiple disk actuators
+ data redundancy for high availability

The rest of this paper is organized as follows. In the next section, we describe two kinds of
redundant array organizations: mirrored disks (sometimes called a 2N array) and parity protected
arrays (called N+1I arrays). In Section 3, we discuss storage system “figures of merit” in wide-
spread use today, and point out why they are inadequate for evaluating alternative array configu-
rations. Section 4 presents a metric that combines aspects of performance and capacity, called
data temperature. The ultimate goal is to be able to compare system reliability within the same
framework, but this must be saved for a future publication. The application of this metric to sev-
eral alternative storage configurations is given in Section 5. Our summary and conclusions are in
Section 6.



2. MIRRORED DISKS AND PARITY ARRAY ORGANIZATIONS

It has long been known that the primary approach for obtaining high availability storage sub-
systems is through redundancy. Data is stored in such a fashion that each bit of data contributes
to another redundant bit stored elsewhere within the array (some detailed mechanisms are de-
scribed below). The concept of redundancy is not limited to data; it can — indeed, in a true fault
tolerant system, it must — also apply to the paths to data (controllers and cabling) as well as sup-
port hardware such as power supplies and fans. Disk system organizations that store redundant
data for the purpose of achieving high availability are called RAIDs, or Redundant Arrays of In-
dependent Disks.

There are two intrinsic penalties associated with any method that uses data redundancy to
improve availability: first, storage capacity is sacrificed to store the extra redundant data, and
second, write bandwidth is forfeit to keep it up to date. There are several alternative RAID orga-
nizations that represent different tradeoffs between availability, I/O performance, and the
capacity penalty [Patterson88]. The two array organizations best suited for high availability and
high I/O rate are mirrored disks (also known as 2 N arrays) and parity arrays (sometimes called
N+1 arrays). Each organization is described next.

In a mirrored disk organization, each disk containing user data is associated with a mirrored
partner. Each data bit on one disk is stored redundantly on the other. Thus, the capacity over-
head for redundancy is 100%. It is no surprise that I/O performance is also affected by the re-
dundancy. Since each disk “mirrors” the other, data can be read from either but writes must be
reflected to both. Thus, the write rate is one—half of what a single disk can deliver (i.e., the write
rate of the pair is equal to the number of writes that can be sustained by a single disk drive).
Because the data is placed under two independent actuators, the read rate is slightly better than
what one disk can provide because of a technique called seek scheduling. That is, the disk with
its head closest to the requested data is allocated to service that request. Improved read rates of
15-20% have been observed, although the results depend critically on the incidence of reads ver-
sus writes in the stream of requests [Chen90]. If one member of the pair fails, then the surviving
member services all requests until the other is replaced. Interestingly enough, write performance
is likely to improve while read performance is made worse in this degraded state. However,
assuming a reasonably short repair time, such as a 72 hour/3 day repair contract, the probability
that both members of the pair will be broken at the same time is quite small, and thus a very
large expected mean time to datra loss (MTTDL) can be achieved.

The parity array organization employs a more clever method to encode redundant data, dra-
matically reducing the capacity overhead. The array is partitioned into independent recovery
groups within which a simple redundant encoding is performed. In mirroring, the recovery
group size is two, that is, each calculation of redundancy applies to exactly two disks, and any
two disk group can survive a single failure. (A disk system constructed from multiple pairs can
suffer a single failure in each pair before it is vulnerable to data loss). In parity arrays, the size
of the group is N+1, that is, N data disks plus an additional disk’s worth of capacity to hold re-
dundant data.

Redundant data is introduced into the array by computing parity bit by bit horizontally across
the disks that form the recovery group. K bits are of odd parity if the number of “1” bits is odd.
Even parity is described analogously. N bits, one from each of the remaining data disks within
the group, are combined to provide a single N+1st encoded parity bit. For odd parity, if the N
bits contain an even number of 1’s, then the N+1st bit is set to 1, making the entire string of bits
odd. If the N bits contain an odd number of 1’s, then the N+1st encoded bit is set to 0. If any
single disk fails within the recovery group, a given bit on the failed drive can be reconstituted
from the associated bits on the surviving N disks, maintaining the appropriate sense of the parity:
an odd number of 1’s means the failed disk must have stored a 0, while an even number implies
it contained a 1. If hot spares are included within the array, accesses can continue to the failed
disk while its contents are being reconstructed onto a spare. With this scheme, the “window of
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vulnerability” to a second failure within a group can be shrunk from the usual 72 hour repair call
to 1 — 2 hours, significantly increasing the MTTDL. Also with this approach, the storage
overhead to obtain tolerance to single failures within a group is reduced to 1/(N+1) bit of redun-
dancy for each data bit. This can be made arbitrarily small simply by increasing group size.

Unfortunately, sector writes become more complicated in this organization. For each bit that
is written, the associated parity bit must also be updated. To do this, it is necessary to read the
old data bits, compute the difference between the old and new bits, read the old parity bits, and
complement any of them that are associated with changed data bits. The computation is actually
quite straightforward, but it is easy to see that a logical write becomes four physical I/Os: read
old data, read old parity, write new data, write new parity. Thus, the write rate is reduced to 25%
of what a non-redundant disk system could deliver. (This “read before write” overhead can be
avoided if data is written in units that are large enough to span the entire recovery group — how-
ever, this is only possible for applications such as scientific codes that read and write large data
sets in bulk.) It is a general observation for parity arrays that the capacity overhead is signifi-
cantly reduced at the expense of an increased penalty for “small” writes.

The reader may infer from the description above that all parity bits are placed on a single
N+1st disk. This need not be the case, and in fact, represents a serious bottleneck since all writes
to the group would then update the same parity disk (a single disk can perform no better than 30
— 50 random I/Os per second). It is a straightforward generalization to compute parity in larger
units, such as a track or cylinder. These can be interleaved among the disks of the group so that
the parity blocks are evenly distributed among the members of the recovery group.

To summarize, mirrors have a higher I/O rate per actuator, but much worse user capacity
than a parity array. Disk arrays offer better capacity, but a lower I/O rate. Mirrors offer better
availability than arrays, but the difference disappears when hot spares are added to arrays (see
[Gibson91] for details). Given the possible tradeoffs between I/O performance, user capacity,
and availability, and the different system workloads that are possible, the major question is to de-
termine the most economical way to configure a storage system with very many disks.

3. STORAGE SYSTEM METRICS

There are many different ways of describing the cost, capacity, performance, and availability of a
storage system. But unfortunately, there is no single metric that blends together these disparate
aspects.

The appropriate metric is highly dependent on the application and the user environment. Ina
time sharing environment, capacity cost ($/MByte) may be the overriding consideration. The
performance of an image processing application will be most sensitive to the disk transfer rate
(MBytes/second), while the I/O processing rate (I0S/second) will be most relevant for a com-
mercial data processing application. Mean Time To Failure (MTTR) or Mean Time To Data
Loss (MTTDL) are appropriate metrics for non-stop and mission critical applications. Environ-
mental factors, such as megabytes per square foot (or cubit foot) and megabytes per watt, are rel-
evant for data centers whose storage demands are increasing but whose machine room space and
power cannot continue to grow.

Determining the (unformatted) capacity of a disk is straightforward: vendors quote the ca-
pacity in terms of megabytes. The performance metric most frequently used by disk vendors is
megabytes per second. However, more than one transfer rate can be cited: peak transfer rate
from an embedded track buffer, instantaneous transfer rate from the disk head, track transfer rate
(a function of sector size and influenced by the formatting efficiency of the disk), cylinder trans-
fer rate (includes head switch times), and spiral transfer rate (includes both head switches and
track-to-track seek times). The former will yield the highest rate but can be sustained only for a
very short period of time. For example, a track buffer may be able to provide a transfer rate of 5
MBytes/second, but it could sustain it only for the time to empty the buffer, a few milliseconds.
It takes a full rotation, over 10 ms, to refill the buffer. The track transfer rate, which takes into
account the amount of space on the device allocated to intersector gaps, is a more realistic
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performance measure for most applications, although cylinder or spiral transfer rates are relevant
for applications that access data in large chunks, such as image processing.

Note that drive manufacturers do not quote I0s/second, the most relevant metric for many
data and transaction processing applications, including order entry, airline reservations, funds
transfer, etc. The problem is determining just what is a “standard” 1/O request, since this is so
highly application dependent. It is a function of request size, the temporal and spatial locality of
reference patterns (e.g., 80% of the references to a file may be to 20% of its records), and the tol-
erable disk service time (the time from when the application requests an I/O to the time that the
requested data is delivered to the application is a function of queuing delays, and seek, rotate,
and transfer times). For example, Bates [Bates89] has characterized the VAX/VMS timesharing
environment as:

» Average seek distance is 10% of the full stroke of the disk

*

The most frequent seek distance is 1 cylinder

50% of all seeks are already positioned at the correct cylinder

Average transfer size is 4K bytes

The most frequent transfer size is 512 bytes (one sector)

L]

90% of all requests are less than or equal to 8K bytes
» 70-80% of all references are reads

Given such seek and transfer size distributions, and a target response time target (e.g., /Os must
complete within 50 ms), it is possible to obtain a realistic IOs per second metric (see Figure 2).
While raw performance is important, most users are interested in the cost to obtain a given
level of performance. Users and vendors tend to think in terms of capacity cost, that is, $ per
megabyte, but rarely in terms of cost per IO per second or MByte per second. For capacity sen-
sitive environments (most timesharing environments fall into this class), $/MB is a relevant
cost/performance metric. Users purchase enough disk drives to satisfy their capacity needs, rath-
er than to satisfy a performance goal. Gray [Gray90] claims that transaction processing environ-

Response 4
Time
50 ms /
———*—j

10s per Second

Figure 2: Two System Configurations Able to Support Different IO rates @ 50 ms Response
Response time is usually presented in terms of the maximum number of /O requests that can be serviced within a
set ime. The response time curve is characterized by a long flat region that begins to climb rapidly towards infin-
ity as the system reaches saturation.
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ments are configured for cost per I0s/second. Users purchase enough disk drives (actually disk
actuators) to meet their IOs per second demands. The drives are rarely filled to capacity.

To understand the differences in configuring for I/O performance and capacity for OLTP
versus time sharing environments, consider the following example. Assume that either configu-
ration is using the same building block: a 1 GByte disk drive that can service 40 random I/Os per
second. Both environments need to store 10 GBytes. In addition, the OLTP performance goal is
1000 IOs/second. The most cost effective configuration for the time sharing environment is to
purchase 10 disk drives and to fill them to full capacity. This yields only 400 IOs/second
performance, insufficient for the OLTP environment. To achieve the latter goal, we must pur-
chase 25 drives, leaving them 60% empty. This results in particularly poor $/MB, and illustrates
the inadequacy of depending on $/MB as the storage system figure of merit for all applications.

Up to this point, we have concentrated on cost and performance. Now we turn to reliabili-
ty/availability metrics. A reliable component is one in which there is a small probability that it
will fail. An available system admits that components do fail, and provides mechanisms that in-
sure that the system remains operational despite component failures, although its performance
may be degraded. MTTF is a reliability metric, e.g., data cannot be accessed but is still stored on
disk. MTTDL is an availability metric, e.g., the contents of a disk have been irrevocably lost.

The Mean Time To Failure curve (failure rate as a function of system lifetime) exhibits a fa-
miliar “bathtub” shape. Because of infant mortality among the system’s components, the failure
rate is high during its early lifetime. Then it enters a region with a constant (hopefully small)
failure rate. Finally, as the system ages, it reaches the “wear out” region, with a rapidly increas-
ing rate of failure. An artifact of the way MTTFs are computed indicates that a significant num-
ber of components will fail before the Mean Time To Failure is reached (there is a 33% proba-
bility that a drive has failed before its MTTF). To placate customers, many drive vendors quote
a relatively low MTTF, in the 30,000 — 50,000 hour range (NOTE: 1 year = 8760 hours), assum-
ing that customers will interpret this number as meaning that no drive will fail in that many hours
(in fact, a small number of will fail regardless). A general trend in the industry is to revise these
numbers upwards, into the range of 100,000 — 150,000 hours (almost 20 years!). The basis for
this is not clear, since very few disks have been left powered on and in use for this length of
time.

So why should a user be interested in MTTFs that are measured in decades? Under the
constant failure rate assumption, the MTTF of the system scales down directly with the number
of drives in the system For example, a system with a single drive may exhibit a 50,000 hour
Mean Time To Failure. A system constructed from 10 such drives is expected to experience a
drive failure once every 50,000/10 hours = 5000 hours, which is once every 7 months. A disk
array with 10 drives including parity protection and a hot spare still has an MTTF of 5000 hours,
but an MTTDL that is measured in millions of hours.

This justifies a different way of looking at the issue of availability. Suppose that a system
manager has the goal of achieving a particular level of availability for his or her storage system,
such as an MTTDL of one year. Figure 3 shows the effect of redundancy on the size of the stor-
age system that meets this goal. Redundancy allows you to build a much larger storage system
while still maintaining an acceptable level of availability. For storage systems constructed from
many disks, a basic assumption underlying the disk array approach, some form of redundancy
will be required just to achieve availabilities comparable to that of a single disk, let alone
multiple disk lifetimes.

This discussion has highlighted the most obvious storage metrics, that is, performance, ca-
pacity, and availability, but this by no means completes the list. For example, other metrics may
concentrate on expected uptimes (e.g., 99.95% available) or system responsiveness (€.g., 95% of
all transactions complete in 2 seconds or less). These are particularly important for transaction
processing environments. Also, we have not addressed the metrics related to machine room effi-
ciency: MBytes of capacity per square foot or cubic foot, or MBytes per watt. These metrics are
extremely important for applications like the Lexus/Nexus retrieval services, whose data capacity
demands grow faster than their machine room space.
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Figure 3: Ability to Support a Larger Storage System MTTDL vs. Storage System Size
A storage system architecture that yields a higher MTTDL means that the storage system can continue to grow in
size while still sustaining a given level of availability.
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4. A NEW STORAGE SYSTEM METRIC FOR CAPACITY AND PERFORMANCE

4.1. MIRRORED VS. ARRAYED PERFORMANCE

In this section, we will propose a new way of looking at storage system metrics that attempts to
combine cost per megabyte and cost per I/O per second. We will apply the method to compare
the relative merits of mirrored disks versus parity protected disk arrays. It is important to devel-
op such a combined metric because mirrors exhibit better cost for a given level of performance
while parity arrays are more attractive based on cost for capacity. In addition, arrays can exhibit
enhanced availability if they are packaged with hot spares [Gibson91].

We start with a simple model of I/O performance, based on previous work reported by Gray
[Gray90]. The model computes two key elements of performance: response time and disk busy
time. Response time is essentially the elapsed time to complete a request, and takes into account
parallel /O actions in the disk system. Disk busy time is related to throughput, and is the sum of
the times that disks are occupied performing I/O operations. For example, a mirrored write can
complete in the worse case expected time to write a single disk, since the writes to the two disks
in the pair are overlapped. However, the disk busy time would record the sum of the times that
the two disks are busy servicing the request.

The response time and disk busy time for mirrored read and write operations are as follows.
Seek(n) is a function that returns the expected time to seek n heads to the same track position.
Bitton [Bitton89] has shown that the expected seek time increases with the number of heads that
must be simultaneously positioned.

Mirrored Response Time
Read:

Rotate . Request Size
2 Transfer Rate

.8 * Seek(1) +
Write:



Rotate  Request Size
2 Transfer Rate

Seek(2) +

The read response time is described as 80% of the average seek time (the 20% improvement
comes from advantageous seek scheduling) plus the expected rotation time plus the transfer time.
The write time is similar, except that the expected seek time has increased. Basically, we must
pay a slight penalty to bring the two disk arms back to the same track position to perform the
mirrored write.

Mirrored Disk Busy Time
Read:

Rotate | Request Size

*
.8 * Seek(1) + 5 Transfer Rate

Write:

2 [Seek(z) + Rotate | Request SIZC]

2 Transfer Rate

The mirrored disk busy time for read is exactly the same as the read response time, since only
one disk is involved in the read operation. However, the write time is twice the write response
time because both disks are kept busy servicing the I/O request.

Now we turn to N+1 parity arrays. The read and write response times are as follows:

N+1 Response Time

Read: ;
Seek(l) + Ro;ate '[l‘{r?;]lsl::; lsllaztz
Write:
Seek(2) + 1.5 * Rotate + %Z%S‘;Is{—i%

The read response time is similar to that of mirrored disks, but cannot take advantage of seek
scheduling, since the data can only be accessed by a single actuator. For write operations, the re-
sponse time formula is more complex. Two heads must be positioned, to update the data block
and the parity block, and thus the penalized seek time must be used. Further, since old data and
parity must be read, the bit changes determined, and new data and parity written back to disk,
this will require one and one-half disk revolutions (assuming the disks are rotationally
synchronized).

N+1 Disk Busy Time
Read:
Rotate | Request Size
k(1) +
Seek(l) 2 Transfer Rate
Write:

Request Size
2 k 1.5*R —_—
‘{ Seek(2) + 1.5 * Rotate + Teansfer Ratc]
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Configuration Response Time Disk Busy Time

R W R A%
N 27 ms 27 ms 27 ms 27 ms
2N 24 29 24 58
N+1 27 46 27 92

Table 1. Relative Response/Busy Times of the Three Organizations

The N+1 busy times are derived in a similar fashion as in the Mirrored case. The read busy time
is the same as the response time, because only one disk is involved in the operation, and the write
busy time is twice the write response, because two disks take part in the write.

To see the implications of this model, consider the following disk parameters, based on the
specification of the Tandem disks described in Gray’s paper:

« Seek(1) = 17 ms, Seek(2) = 19 ms
« Rotation time = 16.7 ms, Rotation/2 = 8.3 ms
+ Request Size/Transfer Rate = 2 ms

Under these assumptions, the response and busy times for read and write operations are shown in
Table 1. For a conventional, non-redundant “simplex” organization, the read and write response
and busy times are expected to be 27 ms. In the mirrored configuration (2N), the read response
and busy times are actually better, because of the advantageous seek scheduling. The write times
are worse, because of the longer expected seeks associated with positioning the two heads. For
the parity array (N+1), the read times are the same as a conventional disk, while the writes are
considerably worse: about three times the busy time of a non-redundant disk and 60% worse than
than mirrored write. While the detailed comparisons will vary with the disk parameters, the
major additional expense associated with array writes versus mirrored writes is the additional ro-
tation time (which is doubled for the disk busy time). This is an unavoidable situation given that
arrays must perform a read/modify/write strategy in order to update parity.

While writes are certainly more expensive in the array organization, it is still attractive when
compared with a small number of large drives. For example, consider the following comparison.
A large drive has a capacity of 1.2 GBytes compared with a small drive of capacity 120 MBytes.
We will construct three alternative organizations: a single non-redundant “simplex” large drive, a
single pair of mirrored large disks, and a 10 + 1 + 1 (hot spare) parity array of small disks. Note
that [Gibson89] shows that the spare pool can be quite small, in the range of 1% of the data
disks, but we will be conservative here. The three organizations exhibit the same user available
storage, 1.2 GBytes, although in the mirrored organization, the user must purchase a total of 24
GBytes, while in the parity array, 1.44 GBytes (120 MBytes X 12 drives) must be purchased.
We assume that the system cost is determined by capacity ($/MB purchased) and that the cost
per MB is the same for the small disks as the large disks (we will relax this assumption later in
this section). For computing availability, we assume that the repair time for the mirrored pair is
24 hours to obtain the replacement disk and to rebuild the its contents, while it is 1 hour for the
array with its hot spare.

The comparison is shown in Table 2. The relative costs are determined by the relative num-
ber of MBytes that must be purchased in the configuration. The availability is measured in “disk
lifetimes”, i.e., the computed mean time to failure for the collection of disks divided by the mean
time to failure for a single disk. An availability of 1000 disk lifetimes for the mirrored configu-
ration means that a mirrored pair has an expected lifetime 1000 times as long as single disk. Ex-
pressed differently, 1000 pairs would yield the same media availability as a single conventional
disk. The disk array offers an intermediate level of availability, but at a more modest capacity
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Configuration Rel. Cost Avail. 10Is per disk 10Is per disk 10/s per sys IO/s per sys

IR:IW 2R:IW IR:IW 2R:IW
Big N 1 1 18 18 18 18
Big 2N 2 1000 12 14 24 28
Small 10+1+1 1.2 380 8 10 88 110

Table 2. Relative Cost and Performance of Large Disk versus Small Disk Configurations

cost as compared to mirroring. And while the read and write performance is degraded when
compared with mirrors, the array wins this back by providing almost twice as many actuators,
and a significantly better aggregate thruput.

In a bottom line comparison, the array organization costs 72% of the large mirrored configu-
ration, provides 38% of its availability, and yields almost four times the performance. An array
based on small disks is clearly superior to a mirrored configuration based on large disks.

Because of its advantage on the basis of IOs per actuator, mirroring will yield higher perfor-
mance if we had compared mirrored small disks versus arrayed small disks. A major issue is
how best to configure an array of small disks, as collections of mirrored pairs or as parity arrays.
We tackle this question in the next subsection.

4.2. CAPACITY VS. PERFORMANCE

Parity arrays and mirroring represent two points within a space of tradeoffs between capacity and
performance. To better examine these tradeoffs, it is useful to construct a graph of MBs (capaci-
ty) versus IO/second (performance).

In Figure 4, we display two separate graphs: IOs per second as a function of cost and MB as
a function of cost. In the performance case (the left chart of the figure), as we spend more
money, we buy more disks and achieve a higher rate of I0s. From the previous subsection, we
know that mirrored disks deliver more IOs per actuator than parity arrayed disks. Assuming that
we are purchasing the same kinds of disks (thus costing the same) for either the mirrored or ar-
rayed configuration, then the change in I/Os per second as a function of cost will be greater for
the mirrored case. To reach a particular I/O performance goal, mirrored disks will attain it at

) 10s/sec AusermB Arrays
Mirrors
10 goal / Cap goal
Arrays / Mirrors
»$
Mirror < Array Array < Mirror
Cost Cost Cost Cost
Cost vs. Performance Cost vs. Capacity

Figure 4: Cost versus Performance (I0/second) and Capacity (MB)

For a given performance goal, mirrors will achieve at a lower system cost. On the other hand, the disk array
will meet a capacity goal at a lower cost. The best organization is the one that fulfills both performance and
capacity goals for the lowest overall cost.
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Figure 5: Cost/Capacity and Cost/Performance in Three Dimensional Space
Cost/Capacity and Cost/Performance are combined to form a third plane upon which to project equal cost sys-
tem organizations with different tradeoffs between performance and capacity.

lower costs than a parity array. The graph is conceptual, and shows the diminishing performance
returns as more disks are added to the configuration (e.g., controller or other system bottlenecks
limit performance). In reality, the curves would look more like a stairstep, as performance im-
proves in discrete steps as we incrementally add more disks.

The right part of Figure 4 shows a similar kind of conceptual chart, this time comparing re-
liable storage as a function of cost. Since the mirrored configuration must purchase more phy-
sical storage than the array method for a given amount of user storage, it comes as no surprise
that the cheapest way to achieve a given capacity goal is with arrays. Once again, the chart
should really be a stairstep, as storage is purchased in discrete increments.

Mirror

y4
I0/s
Figure 6: Capacity Goal and Costs for Mirror and Array Implementation
For a given capacity goal (.g., user MBytes), the array organization will yield a lower overall system cost than
a mirrored organization.
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Array

Mirror

Performance Go

Y4
10/s
Figure 7: Relative Costs to Reach a Given Performance Goal
Similarly, the mirrored system will achieve the performance goal at lower cost than an arrayed system. This
assumes that both systems are constructed from the same building block disks.

Figures 5, 6, and 7 use the charts of Figure 4 to construct a three dimensional space that
trades off between cost, performance, and capacity. We choose to set the X axis to capacity, the
Y to cost, and the Z to performance. The XY and YZ planes are simple transformations of the
graphs of Figure 4. Their projection onto the XZ plane represents the tradeoff between capacity
and performance.

Figure 6 shows the effect of setting a capacity goal for a particular configuration. The mir-
rored implementation costs more than the array implementation, as can be seen by the intersec-
tion with the cost axis. Figure 7 applies the same idea, except for a particular performance goal.
In this case, the array implementation will cost more to attain the same level of performance.

Combining Figures 6 and 7 yields Figure 8. For each configuration, we have two cost
points: the cost to achieve a given level of performance and the cost to achieve a given capacity
goal. The best configuration is the one that minimizes the worst case cost. For the array, the
maximum cost is attained in achieving the I/O goal. For the mirrored configuration, it is incurred
for the capacity goal. If the array performance cost, CA, is less than the mirrored capacity cost,
CM, then arrays are the preferred configuration as shown in Figure 8. Of course, with a more
ambitious performance goal, mirroring may have yielded the lower maximum cost.

There are regions of the capacity versus performance plane in which arrays dominate mir-
rors, and vice versa. We examine this in more detail in the next two subsections.

4.3. MODEL COST FOR A STORAGE CAPACITY Q

In this section, we will derive a more realistic model for calculating the cost of a desired storage
capacity for the kinds of disk system organizations described above: simplex, mirrored, and pari-
ty array. Starting with a generic cost model:

Cost=K+R*¥D+C*Q (Equation 1)
where
K = fixed cost of the configuration, such as the controller and host cables

D = the number of disks required to store the data
R = costs proportional to the number of disks, such as cabinets and disk packaging
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Q = number of megabytes
C = cost per megabyte

Let
Cp = cost per megabyte for a single disk

C, = cost per megabyte for a non-redundant simplex string of disks
Cy = cost per megabyte for a mirrored disk
C,, = cost per megabyte for an N+1 array

Then
C=Cp (Equations 2)
Cu=2*Cy
Cp= N+1, Cr
With
mp, = the number of megabytes per disk
Then
Dg = Q/myp, (Equations 3)
Dy =2*Q/mD
_N+1_,Q
DA_ N mp

Combining equations 1, 2, and 3 yields the following equations for the configuration costs:

Array

Mirror

y4

10/s
Figure 8: Using the Three Space Representation to Find the Lowest Cost Configuration

By combining the analysis of Figures 6 and 7, it is possible to determine the configuration that meets both
constraints for the lowest cost. In this case, the array has obtained the lowest cost, as denoted by CA.
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Costy =Ky + Ry ¥*2*¥ Q/mp +2* Cp* Q
Cost, =K, + R, * (IN+1UN} * {Q/mp) + {[N+1J/N} * Cp* Q

Dividing through by the desired capacity Q yields the following:
Cs =K¢/Q + Rg/mp, + Cp (Equations 4)
C, =K,/Q+ {[N+1]/N} * (R, /mp} + {(IN+1]/N} * G,

These final equations give a true system cost per megabyte for each of the three configura-
tions we are considering. The equations will be useful in comparing the costs for alternative
configurations with the same performance and capacity.

4.4. MODEL FOR PERFORMANCE

In Section 4.1, we calculated the read and write I/O performance for the various ways to organize
an array. The objective was to normalize the performance of the configuration by its capacity.

where
104 = 1/O rate for simplex string of Dg disks.

This equation is only an approximation, since it does not take account of the diminish-
ing increments to performance caused by adding additional disks without also increas-
ing controller bandwidth (and hence cost).

10, = I/O rate of an individual disk, and

IOy = 1/2 * 10, * Dy
R+W=1

substituting:
1/10y; = [R/IOp, * D] + [W/({1/2) * IO, * Dyy)

and simplifying:
I0); =10y * Dyy/(R + 2W)

where
10y, =IO rate for a set of mirrored pairs (D) disks and D,,/2 pairs)

This approximation does not take account of the advantage of the closest head seek
scheduling algorithm, nor does it penalize writes when the heads must be re-
synchronized. For the example in Table 1 the reads are 13% faster than this form
predicts, and the writes are 9% slower.

IOy =IO read rate for Dy;/2 mirrored pairs
IOy = IO write rate for D;/2 mirrored pairs
R,W = the proportion of reads and writes respectively in the IO stream
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also
10,z =10, *D,
1/IOA = [R/IOAR] + [W/IOAw]
R+wW=1

substituting
1/10, = [R/(I0p * D )] + [W/({1/4} *10p * D )]

and simplifying yields the following equation:
I0, =10p * D,/(R + 4W)

where
10, = 10 rate of a parity array.
This equation does not precisely model the write penalty. It uses the approximation of
1/4 (2 reads, 2 writes for an array write). The more complete form is discussed in Sec-
tion 4.1 (for the example given in table the factor would be .29).
10k = IO read rate for a parity array of D, disks

10w = IO write rate for a parity array of D, disks

Substituting Equation 3 for the /O performance expressions derived immediately above yields
the following:

104 =10, * Q/mp, (Equations 5)
I0y =10p * [2* Q/mp) * [1/(R +2 * W)]
10, =10p * ([N + 1)/N} * {Q/mp} * {1/(R +4 * W)}

Dividing by the capacity Q yields the next set of equations:

104/Q =10p/mp, (Equations 6)
10,,/Q =2 * [I0p/mp] * [1/(R +2 * W)]
10,/Q = {IOp/mp} * {[N + 1N} * {1/(R +4 * W)}

In Equation 6, a reoccurring subexpression appears: the I/O rate divided by capacity. We call
this parameter the data temperawre (10/Sec/GB). A storage system with a high data tempera-
ture supports a high I/O rate to its capacity. A solid state disk achieves a high data temperature
by providing an intrinsically high 1/O rate to a small capacity. A disk system achieves a high I/O
rate by spreading its capacity over many disk actuators. Too much capacity under a single actua-
tor leads to a low data temperature and inadequate performance in the I/O system.

Let T be the configuration’s data temperature, that is, its sustained I/O rate over its capacity.
This gives us the following equations:

Tg=Tp (Equations 7)
Ty=2*Tp*[/R+2*W)]
T,=Tp* (IN+1]/N} * {I/(R+4* W)}
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where

Ty, = temperature of a single disk

T = temperature of a simplex string comprised of a set of disks each with temperature T,

Ty = temperature of a mirror configuration comprised of a set of disks each with temperature T,
T, = temperature of an array configuration comprised of a set of disks each with temperature TD

Consider the following hypothetical application. If it requires 10 gigabytes of data which is
accessed a maximum of 400 times per second, then its data should be placed in a storage system
that can support a data temperature of 40 I0/Sec/GB. Postulating a set of disks with the actuator
performance described in Section 4.1, we can derive the data temperature capacities as shown in
Table 3.

Capacity Diameter Maximum Temperature --- 1992 Cost ---
(GB) (inches) (I0/sec) (I0/Sec/GB) ($/drive  $/MB)
163 3.5 37 227 350 2.15
210 3.5 37 176 400 1.90
320 35 37 115 500 1.56
420 35 37 88 600 1.43
380 5.25 37 97 820 2.16
760 5.25 37 49 950 1.25
1.100 5.25 37 34 1500 1.36
1.600 5.25 37 23 2400 1.50

Table 3. Comparison of data temperature and cost for various capacity 3.5” and 5.25”
formfactor disks. Cost data (source: Dataquest) is for quantity OEM purchases.

If the application’s data was stored on 7 x 1.6 GByte drives, the storage system would not be
capable of providing sufficient I/O performance during peak demand periods. The data tempera-
ture of 23 I0/Sec/GByte is too low to meet the 40 IO/Sec/GByte requirement, thus the
application would suffer from slow response times. The solution, assuming we are restricted to
1.6 GByte drives, would be to add four additional drives and only partially fill them with data.
The eleven drives would each contain .91 GByte of data, supply 37 10/sec, for a data tempera-
ture of 40 10/Sec/GByte. An alternate configuration might store the data on .76 GByte drives.
These are capable of supporting data temperatures of 49 10/Sec/GByte and thus fourteen drives
would contain the data and would be able to support the desired I/O rates. The deciding criteria
would be cost. If eleven 1.6 GByte drives have a lower cost than fourteen .76 GByte drives, then
the choice would obviously favor the first configuration. Otherwise, the configuration consisting
of the .76 GByte drives would be preferred. Using the data in Table 3, eleven 1.6 GByte drives
would cost $26,400 and fourteen .76 GByte drives costs $13,300. Thus, a system configured
from the .76 GByte drives is preferred.

5. APPLICATION OF DATA TEMPERATURE METRIC

The concepts and equations developed in the previous section can be used to help resolve such
questions as which configuration, an N + 1 array or a 2N mirror, will give lower costs.

The first example is a simplified exercise that demonstrates the principles involved. The
example compares the cost of a 10 + 1 array and a mirror that have the same data temperature
capacity. The application is characterized by 70% reads and 30% writes. Now the
simplification: only the cost of the storage will be considered. Controller costs, cabinet costs,
etc., will be left out of the analysis:
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Ta=Tm
Substituting from Equation 7, and dropping the appropriate terms, yields the following:
T, * {[N+1/N} * {1R +4* W)} =2*Tp* [I/R +2*W)]
with
T, = the temperature of the disk used in the array
Tp, = the temperature of the disk used in the mirror
m, = the capacity of the disk used in the array
mp, = the capacity of the disk used in the mirror
10,=10,=10
N=10

R=.7
wW=.3

T, = 10/m,
Ty, = I0/mp,

Rearranging the terms produces the following:

md/mD={[N+1]/[2*N]}* {([R+2*W]R +4*W]} (Equation 8)
my/mp, = .38

Constructing a 10 + 1 array from disks with half the capacity of those used in a mirrored con-
figuration with the same capacity yields identical data temperatures, and thus equivalent perfor-
mance. Table 4 show the results when Equation 8 is evaluated for various read percentages, i.e.,
O<R<1.

Read % m/my,
100 55
90 A7
80 41
70 38
60 35
50 33
40 31
30 .30
20 29
10 28

0 28

Table 4. Expansion of Equation 8 as a Function of Read Percentage

Let us now consider the costs. With the previously mentioned simplifying assumptions still in
force,
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Ca= Cu

defines a boundary between the region where the array organization has a cost advantage versus
one in which mirrored organization are to be preferred. Using Equation 4, and dropping the
terms for the fixed costs and variable costs that scale with the number of disks in the configura-
tion, we obtain the following equation:

(IN+1)/N} * C;=2*Cp

where
C,4 = cost per megabyte for the array disk

Cp = cost per megabyte for the mirror disk

thus
Cy/Cp= 2* N/[N + 1]
Cy/Cp= 1.82

The array will cost less if the smaller disk can be purchased for less than 1.82 times the cost
per megabyte of the disk used in the mirrored configuration. If an application requires a maxi-
mum data temperature of 50 I0/Sec/GByte at 70% reads, then using the data in Table 3, a mirror
configuration comprised of 1.1 GByte 5.25” diameter drives would provide a solution. A 10 +1
array of .42 GByte 3.5” diameter drives would also be a solution. With the 1992 OEM cost per
megabyte at $1.36 for the 1.1 GByte drive and $1.43 for the smaller .42 GByte drive, the ratio of
C4/Cp, is 1.05, significantly below the boundary value of 1.82. Thus the array configuration is

less expensive. Table 5 summarizes the two configurations.

Mirror 10 + 1 Array
Capacity of Drive 1.1GB 42GB
Diameter of Drive 5.25” 3.5
Temperature of Drive 34 10/Sec/GB 88 10/Sec/GB
Cost/Drive $1500 $600
Drive Cost/MB $1.36 $1.43
# of Drives 8 11
Capacity of System 4.4GB 4.2GB
% Reads 70% 70%
Temperature of System 52 10/Sec/GB 51 I0/Sec/GB
Cost of System $12.0K $6.6K
System Cost/MB $2.73 $1.57

Table 5. A comparison of various parameters of a mirror and an array configuration each
capable of supporting a data temperature of 50 10/Sec/GB at 70% reads. Cost data (OEM)
source: Dataquest.

This analysis suggests that the array configuration is a more cost effective choice for this
application. We now discuss how the simplifying assumptions have effected the conclusion.
Some of the terms in Equations 4 are driven by costs associated with the number of disks. How-
ever, with the mirror configuration using ten disks and the array configuration eleven, there is
little difference and the effect on cost is quite small. The remaining terms are related to the fixed
costs, mostly in terms of the controller. In general, a disk array controller handles data storage
and retrieval as well as managing redundancy and reconstruction. On the other hand, mirroring
is often implemented in the host; the actual disk controller is the same as that used for a simplex
configuration. Thus, the array control cost could represent a substantial difference in system
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costs. In addition, disk array controllers are in their first generation while conventional disk con-
trollers are a mature technology. This results in higher levels of integration and more fully cost
reduced implementations for the latter than the former. While array controllers may be signifi-
cantly more expensive than a mirrored controller today, in the long run we believe the controller
costs for the two architectures will converge.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented a metric, data temperature, that combines aspects of capacity
and performance as a metric with which to evaluate secondary storage systems. This concept has
appeared from time to time in the literature, such as in [Goldstein87]. He introduces Accesses
per second per GByte as a storage system figure of merit, and uses it to examine trends in disk
system organizations into the mid-1990’s. It is well known that the disk drive industry is driven
by price per capacity, but most end users are interested in a combination of performance and
capacity at a reasonable price.

The approach we have advocated uses the data temperature metric (I0/Sec/GB) to provide an
easily measured parameter that can be used to characterize an application’s I/O system require-
ments. This parameter can also be used to quantify the capability of various devices (both single
disks and configurations of disks) to provide the application with the capacity and performance it
demands. Since the metric is easy to measure and can be applied to both applications and devic-
es, it serves a useful role in designing storage systems to meet specific requirements. Once
again, the advantage goes to the particular configuration that satisfies the performance and
capacity goals simultaneously for a lower cost.

Thus data temperature is an important storage system metric, worthy of consideration along
with the classical metrics used in the design of storage subsystems:

Metric Units
Cost $
Capacity Gigabytes
Performance
10 rate 10/sec
Response time milliseconds
Transfer rate MB/Sec
Cost/capacity $/Megabyte
Cost/performance $/10/Sec
Data temperature 10/Sec/GB
Footprint Square feet
Power consumption Kilowatts
Cooling requirements BTU/Hr
Reliability
Mean time to failure Hours or Disk Lifetimes
Mean time to data loss Hours or Disk Lifetimes

7. REFERENCES

[Bates90] K. Bates, “I/O Subsystem Performance,” DEC Professional Magazine, “Part 1: The
Four Primary Performance Measures,” (April 1989); “Part 2: DSA Optimization Techniques,”
(August 1989); “Part 3: I/O Workloads,” (October 1989); “Part 4: How to Measure and Compare
Disk Performance,” (March 1990).

[Bitton88] D. Bitton, J. Gray, “Disk Shadowing,” Proceedings 14th Very Large Database Con-
ference, (September 1988), pp. 331-338.

— 19—



[Bitton89] D. Bitton, “Arm Scheduling in Shadowed Disks,” LE.E.E. Spring COMPCON 1989,
San Francisco, (March 1990), pp. 132-136.

[Chen90] P. M. Chen, G. A. Gibson, R. H. Katz, D. A. Patterson, “An Evaluation of Redundant
Arrays of Disks using an Amdahl 5890,” ACM SIGMETRICS Conference, Boulder, CO, (May
1990).

[Gibson89] G. A. Gibson, “Performance and Reliability in Redundant Arrays of Inexpensive
Disks,” Proceedings 1989 Annual Computer Measurement Group (CMG) Conference, Reno,
NV, (December 1989).

[Gibson91] G. A. Gibson, “Performance and Reliability of Disk Arrays,” Ph.D. Dissertation,
University of California, Berkeley, (January 1991).

[Fujitsu87] Fujitsu Product Specification, “M2361A Mini-Disk Drive Engineering Specifications
(revised),” B0O3P-4825-0001A, (February 1987).

[Goldstein87] S. Goldstein, “Storage Performance -- An Eight Year Outlook,” IBM Santa There-
sa Laboratory Technical Report TR 03.308-1, (October 1987).

[Gray90] J. Gray, R. Horbst, M. Walker, “Parity Striping of Disc Arrays: Low-Cost Reliable
Storage with Acceptable Throughput”, Proceedings 16th Very Large Database Conference,
Brisbane, Australia, (August 1990), pp.148 —159.

[IBM87] IBM Product Specification, “IBM 3380 Direct Access Storage Introduction,” IBM GC
26-4491-0, (September 1987).

[IBM89] IBM Product Specification, “IBM 0661Disk Drive Model 371,”(July 1989).

[Salem86] Salem, K., H. Garcia-Molina, “Disk Striping,” Proc. IEEE Data Engineering
Conference, Los Angeles, CA, (February 1986).

[Patterson88] D. A. Patterson, G. A. Gibson, R. H. Katz, “The Case for RAID: Redundant Ar-
rays of Inexpensive Disks,” Proceedings ACM SIGMOD Conference, Chicago, IL, (May 1988),
pp- 106-113.

[Voelcker87] J. Voelcker, “Winchester Disks Reach for a Gigabyte,” IEEE Spectrum, (February
1987), pp. 64-67.

— 20—



