*

A Debugger for the PostScript Language

Michael A. Harrison
Fred Meyer
Computer Science Division
University of California

Berkeley, CA 94720
April 29, 1991

Abstract

This report describes dbps, a PostScript! debugger which runs under the
X11 Window System. dbps provides the user with features which allow the
user to do more than display the output of their programs at their workstation.
dbps enables the user to observe the state of the interpreter as the program is
executing, suspend the execution of the program, and interact with the inter-
preter before, during and after the execution of the program. The design and
implementation of dbps are discussed in this paper. The motivation for dbps
is provided by an overview of the PostScript language and how the interpreter
handles errors along with a survey of current PostScript previewers.

1 Introduction

PostScript has emerged as the standard for graphic page description. This page
description language is device independent and contains powerful built-in graphics

*Sponsored by the Defense Advanced Research Projects Agency (DARPA), monitored by Space
and Naval Warfare Systems Command under Contract N00039-88-C-0292. This report is an edited
version of the Masters of Science thesis of the second author written under the supervision of the
first.

1PostScript is a trademark of Adobe Systems Incorporated.

commands. Programs in PostSript are sometimes written by an individual, but for
the most part are generated by an application’s printer driver to produce output
on a PostScript-driven raster output device (traditionally, a laser printer). Creating
PostScript programs and correcting errors are not always easy. When the PostScript
interpreter inside the laser printer encounters an error, it quits executing the program
and sends an error message back to the connected host machine or to a printer log.
In many system configurations this error message is ignored and lost. Therefore, a
PostScript program with an error sent to a laser printer produces literally nothing.

To avoid the difficulties and inconveniences of sending a PostScript program to
the printer when a paper copy is not needed, several PostScript previewers have been
developed to run on graphic workstations[5, 4, 3, 6]. The previewers will interpret a
PostScript program and display the output to the screen of the workstation. These
previewers provide a convenient method to view the output of a program and will
indicate what errors if any occur. However, they do little to display the state of the
interpreter which would assist the user in locating and correcting an error.

This report describes dbps, a PostScript debugger, developed under the X11 win-
dow environment, which provides PostScript program designers an easy to use and
informative user interface to a PostScript interpreter. The features provided by the
interface enable the program designer to observe the state of the interpreter as the
program is executing, suspend the execution of the program, and interact with the
interpreter before, during and after the execution of the program.

The next sections will describe the PostScript language, how programs are created
and how errors are handled. This is followed by a discussion of existing PostScript
previewers. The design and implementation of dbps are presented in the following
two sections. The final section presents some conclusions and suggestions for future
work.

2 PostScript

PostScript is a computer programming language developed by Adobe Systems, In-
corporated to communicate high-level graphics information to digital laser printers.
Because of its powerful graphics commands, PostScript has become a standard as a
page description language. These commands can describe text, graphics and sampled
images and each is given uniform treatment. This greatly facilitates an application’s
ability to combine all of these elements on the same page.

PostScript can be described not only as a page description language but also

as a general purpose programming language. It contains powerful built-in graphics
commands which makes it well-suited as a high-level device-independent interface
between a composition application and a raster output device. The composition
application, such as a word processor or computer-aided design application, produces
output on a raster device in a two-stage process. First, it generates the PostScript
page description and sends it to the raster output device. The output device is
controlled by the PostScript interpreter which takes the high-level page description
and converts it to a low-level raster data format for that specific device. With the
page description language as the intermediary, the composition application is able to
submit its output to any PostScript driven raster output device.

As a general-purpose programming language, PostScript has syntax, data types
and execution semantics. These elements are a part of any PostScript program
whether or not it constitutes a page description. There are three main aspects of
the PostScript language: it is interpreted, stack-based and uses an unique data struec-
ture called a dictionary. The dictionary mechanism gives PostScript a flexible and
extensible base. New PostScript operators can be defined, using existing operators,
and then stored in dictionaries for later use in the program. PostScript is a stack-
based language similar to that of FORTH[2]. It uses a postfix notation in which the
operands are placed on the stack and later consumed by operators. PostScript is also
an interpreted language in which each program is created, transmitted and executed
as source text. There is no compiling or encoding of the program and it need not run
directly on a CPU. An interpreter process reads the input sequence of characters and
breaks it into objects according to the PostScript language semantics. These objects
are then manipulated to change the current state of the PostScript environment.

2.1 Writing PostScript

Most PostScript programs are not written by an individual. This is not to say that
a program cannot be constructed from scratch, but this is not the main intention of
the PostScript language. PostScript programs are intended to be machine-generated.
That is, other application programs such as document processors use PostScript to
express complex graphics in a device-independent format. The part of the application
program that produces the PostScript page description is called the device driver 2.
Part of the printer driver, the script, is generated by the application software and part,

?The principal device is usually a printer but both Display PostScript and NeWS incorporate
PostScript into the window system

the prologue, is written by the application designer. The prologue defines operators
and sets up the PostScript environment to suit the need of the particular application.
The script contains the actual information which is to be displayed on the page.

The application designer uses the printer driver to set up methods for adapting
the application’s graphic data structures to that of the PostScript language image
model. The designer must consider what portion of the PostScript program should
be machine-generated or written by hand. For efficiency, the script should be com-
pact. This is accomplished by defining procedures in the prologue which are executed
in the script to perform more complex tasks. Creating these procedures may take ex-
perimentation to find the most accurate and efficient method for translating between
the two graphic structures. Modularity in PostScript programs is also an important
aspect of program design as it is with any programming language. It is strongly rec-
ommended that each page be independent of the others and that the page elements
on the same page be independent with well-defined interfaces between them. By ad-
hering to these guidelines, the application developer can create and test each aspect of
transformation between graphic states. Some guidelines for PostScript programming
style are given in [8].

2.2 PostScript Errors

Errors in PostScript can be put into two categories: execution errors and “off the
page” errors. Execution errors are ones in which the rules of the PostScript language
have been violated. The interpreter is unable to continue executing the failed program
and flushes it. “Off the page” errors are ones in which the coordinate system mapping
has been modified in such a way that the image is painted off the page. This is not
an error to the interpreter but is likely an error to the user because the image is not
on the page.

PostScript programs are executed by the interpreter inside a job server loop. This
loop executes the user program inside of a stopped context® in order to regain control
if an error occurs. When an error occurs, a procedure is executed for that particular
error. The following steps are taken when an execution error occurs:

e The interpreter finds the procedure for the specific error in the dictionary
errordict and executes it.

e The procedure captures the contents of the operand, execution and dictionary

3{...user program...} stopped, if an error occurs stopped returns a true otherwise false.

stacks and places them into an array in a sub-directory of errordict known as
$error.

e The name of the error is stored under errorname in $error along with the
offending command under the name command.

e Finally, the procedure executes the stop command.

Whenever stop is executed, control returns to the innermost stopped context. If
the server loop stopped command returns the value true, it executes the procedure
handleerror. This procedure sends an error message back to the host computer.

Even with PostScript’s many error handling mechanisms, it is often difficult to de-
termine the specific problem with a program. The PostScript device (i.e, the printer)
is often shared on a network. This configuration poses two problems. First, because
the device is shared it is not possible for one person to take sole control of it to debug
their program. Also, direct communication with the device may be difficult to setup.
Messages sent back by the PostScript device may not reach the sender of the job.
These messages may be logged in a printer log or displayed on the host terminal but
often the messages are ignored and lost. When the sender does receive the message,
it does not always provide enough information to find the error.

2.3 Testing and Debugging

Testing and debugging an interpreted language should be fast and easy. Because an
interpreted language is not compiled, there are no steps between the creation of the file
and execution. Postscript is interpreted, but it can still be difficult to test and debug
a PostScript program. Complications arise from the fact that the interpreter may
run on a remote processor over which the developer has little to no control. In many
environments it is difficult or even impossible to set up interactive communications
with the PostScript device. To address this problem many PostScript previewers
have been developed which run on graphic display workstations. These previewers
give application designers the ability to execute PostScript programs and view the
created image on the display of their workstation. Although they do not provide
the designer with interactive communication to the interpreter, the user is able to
execute their programs to discover if and when an error occurs. If the program is not
correct, the designer can quickly make a change and retry the program. Aside from
the quick response time, PostScript previewers do not provide the designers with any
more information than they would have received from the printer.

3 PostScript Previewers and Debuggers

GhostScript, dxpsview, UCBPS and x11ps are a few of the existing PostScript in-
terpreters and previewers which run on graphic work stations under the X window
system. LaserTalk[1] is a PostScript debugger which runs on the Macintosh* and uses
the LaserWriter® as an interpreter. Each of the previewers allows the user to display
the output of their PostScript programs on the display of their workstation. However,
each of these applications function differently and offer the user a variety of services.

3.1 GhostScript

GhostScript is a previewer /interpreter for the GhostScript language. The GhostScript
language, developed by Aladdin Enterprises, bears a very strong resemblance to the
PostScript language. It conforms, almost exactly to version 25.0 of the PostScript
language description as described in the PostScript language reference manuall7].
GhostScript also extends the PostScript language by adding additional operators.

The user invokes GhostScript from the UNIX command line by entering: gs
<filenamel> ... <filenameN>. The interpreter reads the files in sequence and
executes them. The images created are displayed in a new window which GhostSeript
brings up. Following the execution of the files, the user is presented with a GS> prompt
in the originating terminal window. At this prompt the user may enter additional
GhostScript commands one line at a time. To exit the interpreter, the user may enter
the GhostScript command quit. An end-of-file character or an interrupt character
can also be used to terminate the interpreter.

When the GhostScript interpreter encounters an error, it provides the user with
an error message in their terminal window. This error message contains the name
of the error, the offending command and the contents of the operand, execution,
and dictionary stacks. This error message is difficult to use because the execution
and dictionary stacks are presented in a fairly cryptic form. The presentation of the
dictionary stack is not a list of names as might be expected. Instead, it is a list of
number pairs depicting the size and usage of each dictionary (e.g, 35/100, 35 elements
defined out of 100 possible). The execution stack contains a list of nontrivial strings
which for the most part have to do with the GhostScript executive and nothing to do
with the terminated user program.

*Macintosh is a trademark of Apple Computer, Incorporated.
>LaserWriter is a trademark of Apple Computer, Incorporated.

Following the error message, the user is presented with the GS> prompt. At
the prompt the user may enter GhostScript commands to explore the state of the
interpreter. This ability to do further exploration of the interpreter at the time of
the error is a great advantage in determining the exact nature of the error and how
to correct it.

3.2 Dxpsview

Dxpsview is a PostScript previewer which comes with DECstations running the X
window system. It consists of an interpreter written by Adobe Systems and an X11
window system implementation created by DEC. Dxpsview allows the user to display
the output of their PostScript programs in a window at their workstation. Because
the interpreter was written by Adobe Systems, the image produced is exactly as it
would appear if the program was sent to a PostScript printer.

Dxpsview is started by entering dxpsview <filename> at the UNIX command
line. Programs are sent to the interpreter from the command line when starting
dxpsview or from a file selection dialogue when dxpsview is running. The image is
displayed in a viewer window which contains scroll bars to move the window around
the image. The display also contains command buttons to allow the user to view the
next and previous pages of the programs output if they exist. This feature makes
dxpsview well-suited for previewing multi-page documents before sending them to the
printer.

Dxpsview is strictly a previewer in that the user is not given the opportunity to
communicate with the interpreter in any way. Dxpsview executes the user’s programs
in a batch mode. This means the user’s programs are sent to the interpreter one by
one. If an error occurs in a program, the user is informed of the type of error and
the offending command. The user is not given any other information. Also, because
dxpsview is strictly a previewer, the user is not given the opportunity to explore the
interpreter’s state at the time of the error. The program is then flushed and dxpsview
is ready to accept another program.

3.3 UCBPS and x11ps

UCBPS is an interpreter which faithfully implements almost all of the PostScript
interpreter language®. The PostScript interpreter was developed at the University of

50nly the image operator is not implemented.

California at Berkeley”. Users execute UCBPS from the UNIX command line and
communicate with it over the standard 1/O channels. It is used to execute PostScript
programs and report errors back to the user’s terminal. UCBPS also has an executive
procedure which provides the user with an interactive mode. In the interactive mode
the user is given a prompt at which to enter PostScript commands. The commands
are executed and any output to standard output or standard error is reported to the
user’s terminal. Successful execution is indicated by the return of the prompt. If an
error occurs the error message reported is the same as that of the Apple LaserWriter,
stating what error occurred and the command that caused the error.

x11ps is a PostScript previewer also developed at the University of California,
Berkeley. As its name suggests, it is a previewer which runs under the X window
system. x11ps is actually a shell script which starts a special version of the UCBPS
interpreter. This version of UCBPS contains a special dictionary (X11dict) which
contains PostScript operators for creating and maintaining an X window. The x11ps
script also defines additional operators in the X11dict and creates a window to display
the user’s program.

The user starts x11ps by entering x11ps <filename> at the UNIX command line.
A new X window is created and the PostScript image is displayed. If no filename
is given as an argument, x11ps creates an empty window. Additional PostScript
programs can be executed by typing an “f” in the window. The user is then prompted
for the name of the program to be executed. The same program can be quickly
executed again by typing “r” in the window. This allows the user to make a change
to the program and quickly send it to the interpreter.

x11ps has additional commands which are bound to keys that are typed in the
X window. The user is able to evaluate a PostScript statement by typing an “e”.
At the eval: prompt the user can enter the statement. A carriage return sends the
statement to the interpreter. The current contents of the operand stack can be viewed
by typing an “s” in the X window. A popup dialogue displays the contents of the
stack. Because only a portion of the image is displayed in the window, the keys “17,

(AR}

r’, “u”, “d”, “t7, “b”, “h” are bound to commands which move the window left,

b
right, up, down, top, bottom, and home.
When an error occurs, the user is notified by a popup dialogue. This dialogue

contains the error which occurred and the offending command. Along with this

“John Coker wrote most of the first version. Steve Procter contributed extensively to the graphics
aspect, especially the algorithms for clip and fill. Doris Karlson Tonne ported the system to X11
and completed the interpreter.

information the contents of the operand stack are also displayed in the dialogue. The
user must then click the mouse button in the dialogue to pop it down and continue
further communication with the previewer. Once the dialogue is popped down the
current program is flushed and the state of the interpreter is reset. This makes it
impossible to do any further investigation of the interpreter’s state.

3.4 LaserTalk

LaserTalk is a PostScript language development environment created by Emerald City
Software to run on the Macintosh. More than a PostScript previewer, it provides users
with an environment to create and debug their PostScript programs. The interpreter
used by LaserTalk is inside of the LaserWriter printer. LaserTalk communicates with
the Apple LaserWriter over the AppleTalk® network.

LaserTalk operates in two modes, “online”, connected to the LaserWriter or “off-
line”, not connected. When not connected, the user can use the file Editor/Debugger
window to create and edit PostScript programs. Also, while offline, the file in the
editor can also be downloaded to the printer for printing. Connecting with the printer
starts an interactive conversation between LaserTalk and the LaserWriter. LaserTalk
loads a special dictionary into the interpreter which contains operators LaserTalk uses
to retrieve information about the interpreter. LaserTalk also starts an executive in
the interpreter and presents the user with an Interactive window. In this window,
the user can communicate interactively with the interpreter. The user is also able
to display various elements of the interpreter’s context in the Status window, ex-
plore dictionaries with the Dictionary Browser and display the created image in the
Previewer window. In the Editor/Debugger window the user is now able to send a
program line by line to the interpreter and observe the changes in its state.

When an error occurs while debugging a program or during conversation in the
Interactive window, a dialogue box is popped up indicating the error. This error
message contains the type of error which occurred and the offending command. To
continue, the user clicks on the “Ok” button in the dialogue. At this point the inter-
preter is in the same state as it was before the execution of the offending command.
The user can easily investigate the error by examining the contents of the Status
window or by a dialogue with the interpreter in the Interactive window. If the er-
ror occurred while stepping through a program, the erroneous line may be corrected
and sent without having to resubmit the entire program. Also, because the status

8 AppleTalk is a trademark of Apple Computer Incorporated.

window is being continually updated, the user has the ability to observe the changes
in the interpreter’s state just before the error occurred. This can give the user some
important clues as to the cause of the error.

4 dbps Design Goals

dbps has been designed as a tool to make the creation and debugging of PostScript
programs easier and faster. Anyone who has written PostScript programs knows how
difficult it is to get them to produce the desired effects. It requires many iterations
of trial and error before the output is correct. This trial and error process can be
slow and tedious (not to mention a waste of paper) if each attempt must be sent to
the laser printer with the hope that something comes out. The research described in
this report involved the design and implementation of a tool to overcome the problem
described above.

dbps is designed to provide the user with an environment to create, debug, and
experiment with PostScript programs. The desired features of this environment are:

o Interactive communication with the PostScript Interpreter.

A prompt display of the current PostScript context.

The display of the current page.

The ability to step through a PostScript program and observe the effects of each
statement.

The capability of browsing through commands defined in dictionaries.

This section describes the design issues for each of these features.

4.1 Interactive Communication

It is important for dbps to preserve the ability of the user to communicate with the
interpreter directly, that is, to be able to carry on an interactive dialogue with the
interpreter. This will not only assist the user in debugging a program but will also
give the user the opportunity to experiment.

When debugging a program, the user needs the ability to modify the PostScript
context to determine exactly how to correct a problem. By allowing the user to

10

create commands specific to the program, these commands can then be used as tools
to assist in the debugging. For example, in debugging a procedure the user can create
a command to reset the state of the interpreter to the state that existed before the
execution of the procedure. This provides a convenient way for quick retries.

Designers of PostScript programs may wish to experiment with the language dur-
ing their program development process. Persons unfamiliar with the language would
also want to experiment with and learn how PostScript’s built-in commands work.
Novices and experts can also develop and test procedures before entering them into
their programs. This ability to work out bugs and get commands working correctly
before entering them into the body of a program is very desirable.

Previewers such as GhostScript and LaserTalk provide the user with the above
functionality. These applications are examples of existing tools which demonstrate
the usefulness of an interactive environment and provided the inspiration to include
at least this functionality in dbps.

4.2 Display of the PostScript Context

A natural extension of being able to experiment interactively, is the ability to monitor
the current state of the interpreter. The results of every command depend on and
change the context of the interpreter. The user, being able to monitor the context,
is better able to understand errors and detect when they occur.

In direct communication with the PostScript device, context information can be
requested by the user. The interpreter returns the information back to the user’s
terminal which is connected to the interpreter’s standard output. For example, the
pstack command will non-destructively print the contents of the operand stack to
standard output. Not all aspects of the PostScript context are this easy to get. The
stack is the only part of the context which has a built-in command to print it to
standard output. The difficulty in printing other aspects ranges in complexity from
a few instructions to complex procedures.

LaserTalk’s status window is an example of the usefulness and convenience of
having the context information promptly and automatically displayed. Its usefulness
has demonstrated the need for a similar functionality in dbps. However, LaserTalk’s
implementation of the status window can be awkward. Everything is displayed in one
window in whatever order the user has selected. Because of this awkwardness, dbps
separates the status window into multiple windows.

Some of the elements in the PostScript context are important for all aspects of
debugging and experimentation. For this reason, they should be continuously dis-

11

played in their own window. For example, the operand and dictionary stacks are two
of the most important elements of the PostScript context. These stacks are involved
in the execution of every command. Therefore, it would be beneficial for debugging
and experimentation if these stacks are constantly displayed in their own windows.

Other elements vary in importance depending on the goals of the particular ap-
plication. Because it is not necessary for them to be displayed continuously, they
should be displayed in a list whose contents can be chosen by the user. By displaying
this list in alphabetical order, finding a particular context element would be greatly
facilitated.

4.3 Current Page

The purpose of a PostScript program is to produce an image on a piece of paper. The
need for debugging a program may not only be to find execution errors but also to
correct the appearance of the image on the paper. While debugging a program, the
user must be able to see the image as it is being created. Therefore, dbps needs to
provide the user with a previewer window which contains the image.

LaserTalk handles the display and management of its previewer window in an
unique manner. It is able to download the contents of the LaserWriter’s frame device
to create an image on the Macintosh’s screen. Getting the LaserWriter to dump the
contents of its frame device to standard output is not one of its normal operations.
The interpreters and previewers which run on graphic workstations usually do not
have this ability. Because dbps is designed to communicate with an interpreter only
over standard I/O channels, the creating and maintenance of the previewer window
must be handled by the interpreter and not dbps.

4.4 File Debugger

When the interpreter encounters an execution error it returns a message stating what
error occurred and the command that caused the error. Even if the user should
receive this message, it may not contain enough information to correct the problem.
Non-execution errors can be even more difficult. This is because the only information
the user receives is an incorrect image. A user with an error in a PostScript program
would like to be able to step through the execution of the program and observe the
effects that the execution of each statement has on the interpreter’s context. This
ability would allow the user to quickly pinpoint the cause of the error. Monitoring

12

the changes in the interpreter’s context would also give the user clues as to how to
fix the error.

The above difficulties apply not only to PostScript printers. Many previewer tools
such as dxpsview, GhostScript, and x11ps suffer from the same problems. These
applications provide the user with the ability to execute their programs at a graphic
workstation and to quickly see the results. If an execution error does occur, the
user always receives the error message that might have been lost from the printer.
However, the viewers do not give any detail of the events which led to the error.
These details are important for the user to find and correct the error.

LaserTalk provides the user with the ability to step through a program. This
allows the user to monitor the PostScript context and better determine the events
which lead to an error. LaserTalk has an easy to use graphical interface for setting
break points and sending statements to the printer. However, LaserTalk does not
provide the user the ability to set a break point inside a procedure. This makes the
debugging of procedures difficult because the user does not have the ability to stop
the execution of the procedure to examine portions of the PostScript context.

Based on the above issues, one of dbps’s goals is to provide the user with an
environment in which he/she can step through a PostScript file and monitor the
context of the interpreter. Experience with Laser Talk has also demonstrated the
need for dbps to provide an environment that permits break points to be set inside
and outside of procedures.

4.5 Dictionary Browser

The PostScript language contains an unique data structure called the dictionary.
Everything currently defined in the PostScript language is defined in dictionaries.
There are times when the user may wish to look at what is currently defined. The
user may be debugging a program because he/she has received an undefined error for
an operator defined earlier in the program. By searching the dictionaries which are
currently defined at the time of the error, the user may find that the operand is no
longer defined or has been misspelled. He/She could also discover that the operand
is defined in a dictionary which is not currently on the dictionary stack.

When a user is experimenting or writing a program, he/she may wish to see a
list of available commands. For example, the user may wish to see the names of the
available fonts. By listing the FontDirectory (which is a dictionary), the user can see
a list of font names which are currently available.

The PostSeript code to list the keys of a dictionary is very simple: dictionary {pop

13

=} forall. The above code will list the keys of the dictionary to standard output.
However, the user must be able to interactively communicate with the interpreter at
the time the search is desired (i.e., at the time of an error). Because some of the keys
may represent other dictionaries, the search procedure can become complicated. In
addition, entering this statement for each dictionary to be searched is tedious. dbps
needs to provide the user with an interface which allows the user to easily list the keys
of currently defined dictionaries. The list of keys need to be in alphabetical order
and must also provide the user with a display of each dictionary contained therein,
so that the user is able to search every dictionary.

The user may wish to find where a particular command or name is located. If the
user wants to execute a particular command, the dictionary which holds its definition
must be on the dictionary stack.

In PostScript, it is easy to accidentally or intentionally rename an operator. This
occurs when an operator is defined by giving it the same name as one lower on the
dictionary stack. When the interpreter searches for names it finds the one defined
higher on the stack. Even PostScript built-ins can be redefined in this manner. When
the execution of an operator does not perform the expected operation, the user may
wish to look at its definition. By examining its definition he/she can tell if this is the
intended operator.

To allow the user to view the definitions of all the dictionaries on the dictionary
stack, a goal of dbps is to provide the user with a tool to investigate the contents
of currently defined dictionaries. LaserTalk’s dictionary browser demonstrates that a
useful and intuitive graphical interface would allow the user to easily and coherently
perform this search. By including a similar feature in dbps, the user would be able
to:

e Display all the dictionaries currently defined.
e Display a list of keys defined in each dictionary.
e Display the associated value of a particular key.

It would also be beneficial to be able to browse the dictionaries in the middle of
debugging a file or when an error occurs.

14

5 Implementation

This section discusses the implementation of dbps whose design goals were presented
in the previous section. dbps was implemented using the Athena Widget Set[10] and
the X Toolkit Intrinsics[9] as an interface to the UCBPS interpreter.

5.1 Communication

dbps is implemented as a separate interface process to that of UCBPS. It communi-
cates with UCBPS via pipes connected to the interpreter’s standard I/O channels.
dbps sends PostScript commands to UCBPS’s standard input and reads from its
standard output. For each command sent, dbps reads UCBPS’s standard output
until there is no more to read. A special protocol and executive are used for the
communication between the two processes.

The user starts dbps from the UNIX command line. The dbps process starts
UCBPS by forking and execing. The communication channels are then set up and the
initialization file db.ps is sent to UCBPS. This file contains the protocol information
and also creates PostScript commands to be used by dbps. The final command in the
initialization file starts dbps’s special executive procedure. This procedure handles
all further transactions between UCBPS and dbps. Finally, the user is presented with
dbps’s main window as shown in Figure 1.

dbps communicates with UCBPS by sending it PostScript commands and reading
the interpreter’s output line by line. This communication is facilitated by a simple
signaling protocol. dbps appends code to the end of every Postscript command it
sends. This code instructs UCBPS to send an “end of transmission” signal to dbps at
the end of execution of the user’s command. This signal is a nonprintable character
in the first position of a line read from UCBPS. When dbps receives the “end of
transmission” signal, it knows that UCBPS is ready for another PostScript command.

dbps also looks for other signals in this protocol. These signals come to dbps
asynchronously and are also in the first position of the line. These asynchronous
signals are:

o SIG.BEGIN_START
o SIG.BEGIN_END
o SIG.END_START
o SIG.ERROR_START

15

| dbps

[Clear Stack |[Hodify ML ||Debug File||View Page|[Dict Brows ||Quit |

Interactive Hatch List
P5> 10 dict begin Gray: 0.5925
P5> /new 10 dict def RGBcolor—-
P5> new begin .
PS> 0.5 0,75 0 setrgbcolor EEd' . 3'25
PS> /box Einoveto reen. *
10 0 rlineto Blue: 0.0
0 10 rlineto Screen--
=10 0 rlineto Proc: f==dup
closepathi Angle: 45,0
P5>

Frequency: 27.86H

Dict., Stack Current. Point
- top -- ¥: undefined
new ¥: undefined
<unna?ed dict> CTH
userdict
systendict 1.0 0.0 0
= bot. - 0.0 1.0 0

0,0 0.0 1

Current. Font

undef ined

Figure 1: dbps’s Main Window

16

e SIG.ERROR_END
e SIG.BREAK_START
SIG_BEGIN_START and SIG_.BEGIN_END signals are sent when the begin com-

mand is executed. The begin command has been redefined in userdict to send dbps
the name of the last dictionary pushed onto the dictionary stack. dbps will find the
name between these two signals.

The SIG.END_START signal is sent whenever the end command is executed. The
end command has also been redefined to tell dbps that a dictionary has been popped
off the dictionary stack.

SIGCERROR_START and SIGCERROR_END signals are sent when an error oc-
curs. They are sent from inside the executive’s error procedure. dbps is able to
find information about the error (i.e, the name of the error and offending command)
between the two signals.

dbps communicates with dbExecutive, a special executive running in UCBPS.
dbExecutive has been written to handle the communications between dbps and the
interpreter. Because dbps will break inside a PostScript procedure when debugging
a file, this executive is more complicated than UCBPS’s default executive. Also,
because UCBPS allows only a limited number of curly braces to be open in a procedure
definition at one time, dbExecutive needed to be defined in two procedures:

/dbInterLoop {
{dbps /dbHoldFile get token
{ {dup type (arraytype) eq not {exec} if}
stopped
{$error /newerror get
{ /dbERROR_START $db
errordict /handleerror get exec
(\n) = /dbERROR_END $db /dbEND $db exit
by
{stop}
ifelse
by
if
by
{exit}
ifelse

17

} loop
} bind def

/dbExecutive {
{ flush
{disableinterrupts (Jstatementedit) (r) file enableinterrupts}
stopped
{pop pop $error /newerror false put enableinterrupts}
{dup status not
{pop (quit\n) print flush exit} if
dbps exch /dbHoldFile exch put
{/dbInterLoop $db} stopped {exit} if
by
ifelse
} loop
} bind def

5.2 Interactive Window

The Interactive window to the PostScript interpreter has been implemented as a sub-
window of the main window in Figure 1. This subwindow is a text widget which
prompts the user to enter PostScript commands. When a complete command is en-
tered, it is sent to the interpreter. If the user types a carriage return before completing
a full command (e.g., an incomplete procedure definition) dbps will hold the input
and not return the PS > prompt until the command is completed. The cursor is
then moved to the next line where the user is able to complete the command.

The text widget’s translation table has been modified to call a parsing procedure
whenever a carriage return is typed. This parsing procedure reads the user’s input
character by character, moving the characters into a buffer to be sent to the inter-
preter. When a complete PostScript command has been entered, the buffer is sent to
the interpreter. While the parsing procedure is transferring the characters, it is also
looking for the following special characters: “(°, *)’, “{’, ‘}’, and ‘%’. These special
characters delimit syntactic entities such as strings, procedures and comments.

The special character ‘%’, not inside a string, introduces a comment. Because
PostScript is a line-based language, the comment consists of all characters between
the ‘%’ and the next newline character. When the parsing procedure encounters
the comment character, it disregards the rest of the line. This prevents unnecessary

18

characters from being placed in the buffer and sent to the interpreter.

The parentheses and curly brackets delimit string and procedure syntactic entities,
respectively. If either of these are not complete before being sent to the interpreter,
the interpreter and dbps become deadlocked.

When the parsing procedure encounters ‘{’, it considers itself to be inside an
executable array, also know as a procedure. This is noted by incrementing an internal
counter. The ‘{’ is added to the buffer and the parsing procedure continues. If
additional ‘{’s are encountered, the counter is incremented again. When a ‘}’ is
encountered while the parser is inside an executable array, the counter is decremented.
When the parsing procedure reaches the end of the user’s input, it checks to see if the
counter is zero. If it is not, it knows that a complete executable array has not been
entered. The user’s partial command is not sent to the interpreter, but is held in the
buffer. The cursor is moved to the beginning of the next line in the interactive window
and control is returned to the text widget. The user does not receive a prompt but
can complete the command.

When the parsing procedure encounters ‘(’, it considers itself to be inside a
PostScript string. This is noted by incrementing the internal string counter. The
parsing procedure adds the ‘(’ to the buffer along with the characters that follow
without any consideration. The special characters ‘{’, ‘}’, and ‘%’ are also moved to
the buffer without taking the above actions. This continues until the matching)’ is
encountered. The)" is added to the buffer and the string counter is decremented. If
additional ‘(’s are encountered before a ‘)’, the string counter is incremented again.
If the end of the user’s input is reached and the string counter is not zero, the parsing
procedure takes the same action described in the paragraph above for the executable
array.

5.3 Current Page

The current page previewer is implemented by allowing UCBPS to create its own
window and for dbps to monitor the events in that window. When the user wishes
to preview the page, he/she selects the View Page button at the top of dbps’s main
window. Selection of this button causes dbps to send commands to UCBPS, which
installs a frame device and creates an X window where further painting will take
place. Once the user opens the previewer window it cannot be closed and will remain
open until dbps is terminated. The previewer window is updated after the execution
of every command entered in the Interactive window or when a break is reached in the
File Debugger window. To update the window, dbps sends the copypage command

19

to UCBPS. Copypage is the same as showpage except it does not erase the current
page or change the graphics state. The user is able to move the previewer window
around the image by the same commands used by x11ps. By typing an “r”, “17, “u”,
“a7, “t7, “b”, “h” in the previewer window, it is moved right, left, up, down, top,
bottom and home over the image.

This implementation was made difficult because the contents of UCBPS’s frame
device are not accessible to dbps over standard 1/O channels. This means dbps cannot
extract the contents of UCBPS’s frame device to display it in a window directly under
its control. The solution is to have UCBPS manage its own X window. dbps sends
UCBPS some of the same commands which are in the x11ps scripts to install a
frame device and create an X window. The executive started by the x11ps scripts
which manages the events in UCBPS’s window could not be used because it does
not allow UCBPS to accept input from standard input. Therefore, dbps must locate
UCBPS’s window and monitor for events in that window as well as its own. dbps
accomplishes this by forking off a child process which looks for events in only UCBPS’s
window. When events occur, dbps’s child process sends UCBPS PostScript commands
to update its window. These commands are sent over the same channels in which
dbps communicates with UCBPS.

5.4 Stack

The stack window which displays the current contents of the operand stack is imple-
mented as a single column list widget inside a view-port widget as shown in Figure 1.
The stack window is updated after the execution of every user command entered in
the interactive window or when a break is reached in the Debug File window. The
operand stack information is retrieved from the interpreter by sending the dbStack
command which is defined by the db.ps file. The dbStack definition is: {pstack},
which prints the contents of the operand stack to standard output. Each time the
stack is updated the stack list in dbps is cleared and reloaded.

5.5 Dictionary Stack

The dictionary stack window displays the names of the dictionaries currently on the
interpreter’s dictionary stack. This window is also implemented as a single column
list widget inside a view-port in the same way as the stack window as shown in
Figure 1. Complications arise because the elements saved on the dictionary stack
are the dictionaries themselves and not their names. Also, dictionaries do not always

20

have names (e.g., 10 dict begin places an unnamed dictionary on the dictionary
stack). These complications make displaying the list of names of the dictionaries
more difficult than listing the elements on the operand stack.

The dictionary stack is only affected by two PostScript commands: begin and
end. These commands only affect the top of the stack: begin pushes a dictionary
on and end pops the top one off. Because of this, it is only necessary to update
the dictionary stack window whenever a begin or end is executed. Begin and end
are redefined in db.ps to send a signal to dbps when they are executed. The new
definitions of begin and end are:

/begin {begin /dbBEGIN_START $db = flush
currentdict countdictstack array dictstack
{/dbDictFor $db} forall pop
/dbBEGIN_END $db = flush} bind def

/dbDictFor {
{3 -1 roll dup 4 1 roll eq {= flush} {pop} ifelse} forall
} bind def

/end {end /dbEND_START $db = flush} bind def

Dictionary names are added to the stack window when dbps receives the
SIG.BEGIN_START signal. Upon receiving this signal, dbps expects to read from
the interpreter the name of the dictionary pushed onto the dictionary stack followed
by the SIG_.BEGIN_END signal. The redefinition of begin also determines the name
of the dictionary pushed on the dictionary stack and prints it to standard output.
The name of the dictionary in question is found by comparing it with the values of
the key-value pairs of the dictionaries currently on the dictionary stack. The search
starts with the systemdict and works its way up the dictionary stack. If a match is
found, the key of the key value pair is the name of the dictionary in question. If no
match is found, an unnamed dictionary was pushed onto the dictionary stack and no
name is sent to dbps. If a name does not arrive before the end signal, an unnamed
dictionary must have been pushed onto the dictionary stack. In this case the string
“<unnamed dict>"? is used in place of the name.

Names are removed from the dictionary stack window when dbps receives the
SIG_LEND_START signal. Because end removes only the top dictionary from the

9This string contains a space, which guarantees the user could not define a dictionary by this
name.

21

Okay Hodify Hatch List Cancel

Figure 2: Watch List Selection Menu

dictionary stack, dbps needs only to be signaled whenever end is executed. No further
information is needed to correctly maintain the dictionary stack window.

5.6 Watch List

The Watch List is a list of other PostScript context elements. The elements displayed
in this list are chosen by the user. This feature has been implemented as a sub-window
of the main window shown in Figure 1, along with a pop-up selection menu shown in
Figure 2. The selection menu is popped up by clicking on the Modify WL button
on the top of the main window. The user is then presented with the selection menu.
To select an item to be displayed in the watch list window, the user sets the toggle
button by clicking on the circle next to the name of what is to be displayed. Any
number or combination can be selected. The modification is approved by clicking the
Okay button. The Cancel button disregards the changes and the watch list display
remains unchanged. The Okay and Cancel buttons also pop down the selection menu
window.

The watch list display is implemented as a single column list widget inside of a
view-port. Fach selected element in the selection menu is displayed in this window.
This information is updated at the same time the operand stack window is updated.
dbps sends requests to the interpreter for each element to be displayed. The inter-
preter sends the results back to dbps by printing them to standard output. Each
element of the PostScript context has different amounts of information associated
with them. For example, current gray has only one piece of information and current
RGB color has three. dbps expects to receive a certain amount of information per
element. Each piece of information is displayed on a separate line in the watch list
window.

22

The current point, translation matrix and current font are other context informa-
tion which is continuously displayed. They are updated along with the stack window.
The retrieval of the current point and font is more complicated than the retrieval of
other context elements. The complication arises from the fact that both the current
point and font can be undefined. When either one is undefined, the execution of
the Postscript built-ins which place their values on the operand stack results in an
error. Therefore, these errors need to be trapped so as not to interrupt the flow of
operation. Instead of dbps receiving an error signal it reads the string “undefined”
from the interpreter’s standard output. The following PostScript code handles the
trapping of the errors and sending of the string:

/dbPoint {{currentpoint}
stopped
{(undefined\nundefined\n) print flush
$error /newerror false put}
{= = flush}
ifelse
} bind def

/dbFont {{currentfont}
stopped
{(undefined\n) print flush
$error /newerror false put}
{/FontName get = flush}
ifelse

} bind def

5.7 File Debugger Implementation

The file debugger window is implemented as a separate window from the main window
and is shown in Figure 3. The user starts up the file debugger by selecting the Debug
File button from the main window. Selection of this button presents the user with
a pull-down menu which has two choices: New and Old. Selection of New brings up
the debugger window with an “Untitled” file. This feature allows the user to create
and test new files. Selection of Old from the pull-down menu presents the user with a
pop-up dialogue requesting the name of a file to be loaded into the debugger as shown
in Figure 4. After entering the name of the file and pressing return or selecting Okay,

23

File Debugger

|@ I Step | Trace | main.ps Save File | | Close |

Z!1P5-Adobe-1,1

##BoundingBox: 0 0 552 479

##Creator: steph:ifhn {F,.H,Heyer}
#ETitle: stdin {xwdunp}

#%Creationbate; Hon Hov 19 15:54:17 1990
#XEndConnents

#xPages: 1

#%EndProlog

#%Page: 1 1

= /bitdunp ¥ stk: width, height, iscale
dump a bit inage with lower left corner at current origin,
acaling by iscale {iscale=l1 neanz 1/300 inch per pixel}
H
read argunents
fizcale exch def
Fheight exch def
Fuidth exch def

=zcale appropriately
width iscale nul height iscale nul scale

allocate space for one scanline of input

(ST fpicstr ¥ picstr holds one scan line
width 7 add 8 idiv ¥ width of image in bytes = ceilil
skring
def

read and dunp the inage
width height 1 [width O O height neg 0 height]
{ current.file picstr readhexstring pop 3

Figure 3: File Editor/Debugger Window

24

Filenane:

fhone/fneyer/ps/nain.ps,

Okay || Cancel

Figure 4: File Name Request Dialogue

the debugger window is brought up loaded with the requested file. Selection of the
Cancel button aborts the file debug session.

Once a program is in the debugger the user can set break points and/or begin to
send PostScript commands to the interpreter. PostScript code is taken from the text
widget a line at a time starting at the current execution position, which is marked by
an arrow in the left margin. Fach time a line is taken the current execution position
is moved to the next line. This line is examined in the same manner as if the line
had been typed at the prompt in the Interactive window. If a complete command is
not obtained, then more lines are taken until the command is complete. The “end
of transmission” signal code is then added to the end of the command and is sent to
the interpreter. dbps waits for the SIG_.END_TRANS signal from the interpreter and
then updates the context displays.

There are two ways the user can send commands from the file debugger to the
interpreter. First, the user can step through the file by selecting the Step button at
the top of the window. Step will collect one complete command from the file and send
it to the interpreter. When the interpreter completes the execution of that command,
dbps updates the context display and awaits further action from the user. The user
may also send commands to the interpreter by selecting the Trace button. Trace
will collect and send complete commands to the interpreter until reaching an outside
break point (inside and outside break points are discussed below) or the end of the
file. Upon reaching either one of these, dbps updates the context displays and returns
control to the user.

Break points are set by selecting and moving stop signs in the margin at the
beginning of a line. When the user moves the mouse pointer into the left margin
of the text widget, it will change to either a stop sign or an arrow. The pointer
indicates which mode the user is in. If the pointer is an arrow, clicking the left mouse

25

button places the current execution point at the beginning of the line pointed to by
the arrow. If the pointer is a stop sign, clicking the left mouse button places a break
point at the beginning of that line. Switching the pointer between the stop sign and
the arrow is done by clicking the Pointer Mode button at the top of the left margin.
This button displays the mode the pointer will change to when the button is selected.

Break points can be placed at the beginning of any line. The manner in which the
break is handled depends on whether it is inside or outside of a string or procedure
definition. When an outside break point is reached while tracing a file, dbps stops
sending code from the file and updates the context displays. Control is then returned
to the user. When stepping through the file, the outside break point has no effects.
An inside break point has the same effect for both tracing and stepping through
the program. When an inside break point is reached, the user is presented with a
dialogue box. The message in the dialogue box depends on whether the break is inside
a string or a procedure definition. Break points inside strings do not make sense and
the message states the break will be ignored. On the other hand, a break inside a
procedure definition will present the user with a message stating a break will occur
at this point when the procedure is executed (how this works is discussed later). In
either case, the user must click on the Continue button inside the dialogue box to
proceed.

Break points defined inside of procedure definitions insert PostScript code into
the definition to signal a break to dbps. The following is the code that is added:

“‘line #’’ /dbBreak $db

where dbBreak is defined as:

/dbBreak {
%send dbps the break signal....
/dbBREAK_START $db = flush
hsend the break ID to dbps,
%should be on TOS before dbBreak called ...
= flush
%run the Break Executive.....
/dbBreakExecutive $db

} bind def

dbBreakExecutive is defined as:
/dbBreakExecutive {

26

{ flush
{disableinterrupts (Jstatementedit) (r) file enableinterrupts}
stopped
{pop pop $error /newerror false put enableinterrupts}
{dup status not
{pop (quit\n) print flush exit} if
{cvx exec}
stopped
{$error /newerror get
{/dbERROR_START $db
errordict /handleerror get exec
(\n) = /dbERROR_END $db /dbEND $db}
{exit} ifelse
}oif
} ifelse
} loop
} bind def

When a procedure is executed which contains a break point, execution will stop
when the break point is reached. The context displays are updated and the user
is presented with a dialogue box. The message in the dialogue states that a break
point has been reached inside a procedure at a particular line number. The dialogue
also contains two buttons: Continue and Delete Break. Continue will continue the
execution of the procedure and Delete Break will remove the break point. Removal
of the break means that when that point is reached again, execution will not stop.

While the dialogue box is up, the controls on the file debug window are turned
off but the user has control to manipulate the other windows. This insures that the
execution of the procedure will continue from the point at which it was stopped.
Before clicking on the Continue button, the user can manipulate the other windows
as he/she could any other time. Care must be taken on the user’s part not to change
the state of the interpreter in such a way as to cause the program to get an execution
error.

5.8 Dictionary Browser

The Dictionary Browser in dbps is also implemented as a separate window from the
main window. It is brought up by clicking on the Dict Browse button. This window is

27

Dictionary Browser

Dictionary Stack Browser

|f-—noveto—— 10 0 --rlineto-- 0 10 —-rlineto—-—
=10 0 ==-rlineto-- =--closepath--3

-— top —-
irst
second <unnamned dict>
userdict
systendict
== hot ==
Display Iten i nn ﬂhaﬁké Pop fron 5Stack

Figure 5: Dictionary Browser Window

made up of two single column list widgets and a text widget along with four command
buttons as shown in Figure 5. The features available to the user are:

e List the keys of any dictionary on the dictionary stack.
e Display the value associated with a key in the key list.
e Push dictionaries on and pop them off the dictionary stack.

The lower right subwindow is a copy of the dictionary stack from the main window.
Any updates to the dictionary stack are reflected in both copies. The contents of a
particular dictionary are displayed by clicking on the desired dictionary name. The
name is highlighted and the keys defined in the selected dictionary are then displayed
in the lower left subwindow. This is an alphabetically-ordered list of keys of the key-
value pairs defined in the selected dictionary. If any of these keys denotes another
dictionary, an asterisk is appended to its name in the list.

28

Selecting a key from the key list highlights the key along with the Display Iltem
button in the lower left corner of the window. The value of the selected key is displayed
by clicking on this button. The value can also be displayed by double clicking on the
key’s name itself. The value associated with the key is displayed in the text widget.
If the definition does not fit in the text widget, the entire window can be resized to
increase the size of the text widget’s subwindow. dbps instructs the interpreter to
use the == operator to print the key’s value to standard output. The == operator is
used because it produces a text representation that resembles the PostScript syntax
that created it. If the key’s value does not have a printable representation, the ==
operator returns the name of its type in a form such as “-dicttype-” or “-marktype-”.

Dictionaries can also be pushed and popped from the dictionary stack in the
Dictionary Browser window. Where a name in the key list has an asterisk at the end,
its value is a dictionary. Selection of this key will not only highlight the Display Item
button but also the Add to Stack button. The Add to Stack button will push the
selected dictionary onto the dictionary stack. This dictionary can then be selected to
display a list of its defined keys.

Pushing a dictionary onto the dictionary stack also highlights the Pop from Stack
button if it is not already highlighted. The Pop from Stack button is highlighted when-
ever there are other dictionaries on the stack besides the userdict and systemdict
(these two dictionaries cannot be removed from the dictionary stack). Clicking on
this button will remove the top dictionary from the dictionary stack. If the contents
of the top dictionary are currently displayed in the key list, this list is cleared when
the dictionary is popped off.

6 Conclusion

dbps demonstrates the feasibility of an easy to use and informative user interface
to a PostScript interpreter. It provides the user with a more effective way to ex-
periment with, debug and create PostScript programs. Its features allow the user to
continuously observe the state of the interpreter, control the execution of a PostScript
program, and interact with the interpreter during the execution of a program. The
fact that PostScript is an interpreted language and that the interpreter can commu-
nicate over standard 1/O channels lends itself to the addition of an interface of this
sort.

The main window of dbps maintains a continuous display of the interpreter’s state.
The information displayed is selected by the user so only what is desired is displayed.

29

In conjunction with the state display the main window also contains an interactive
subwindow. In this subwindow the user can interact with the interpreter before,
during and after the execution of a program.

The File Debugger window of dbps provides the user with control of the execution
of a program. By stepping or tracing through a program and setting break points,
the user is able to manage its execution. dbps also extends LaserTalk’s ability of
setting break points by allowing them to be set not only outside but also inside of
procedure definitions. The break points inside a procedure definition cause a break
at that point in the procedure when it is executed. This assists the user in debugging
complex procedure definitions.

While the features provided by dbps already greatly facilitate the user’s ability
to work with PostScript, there are additional features which dbps might be able to
provide in the future. To make dbps more of a PostScript development environment,
it would be useful to provide editing functions which are better suited for PostScript.
Key bindings could be added which would assist the user with program structure
and comments so PostScript conforming documents can be more easily produced.
Additional features to improve dbps’s file debugging facilities are another area for
further investigation. It would be desirable to have features such as conditional break
points and the display of user-defined variables when a break occurs.

Another area for further investigation is the updating of UCBPS from the X10
window system to using the X Toolkit under the X11 window system. The modifica-
tions to UCBPS would need to enable it to manage its own window while also being
able to communicate over standard I/O channels. dbps would then no longer have to
fork off a child process to monitor for events in UCBPS’s window. Work in this area
could also lead to making dbps general enough to be compatible with any PostScript
interpreter.

References

[1] Randy Adams. Lasertalk: Postscript language development environment, 1987.

[2] Leo Brodie. Starting FORTH. Prentice-Hall Publishing Company, Englewood
Cliffs, New Jersey, 1981.

[3] John Coker. A UNIX postscript interpreter. VORIEX internal report, Computer
Science Division, University of California, Berkeley, California, 1987.

30

[4] Digital Equipment Corporation. Ultriz Work System Software: DECwindows
Applications Guide, 1988. Section 10.

[5] Aladdin Enterprises. Ghostscript, 1989. Documentation distributed with soft-

ware.

[6] James Gosling, David S.H. Rosenthal, and Michelle Arden. The NeWS Book.
Spring-Verlag Publishing Company, New York, New Yorks, 1989.

[7] Adobe Systems Inc. PostScript Language Reference Manual. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1985.

[8] Adobe Systems Inc. PostScript Language Program Design. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1988.

[9] Joel McCormack, Paul Asente, and Ralph Swick. X Toolkit Intrinsics - C Lan-
guage Interface. MIT X Consortium, X Version 11, Release 4.

[10] Chris D. Peterson. Athena Widget Set - C Language Interface. MIT X Consor-
tium, X Version 11, Release 4.

31

