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ABSTRACT

The behavior of anisotropically etched crystalline materials is studied
at the geometrical level. The crystal shape is represented with a polyhedral
boundary description in which the various faces advance with rates solely
dependent on their orientations. Particular attention is paid to the situa-
tions under which new truncation or bevel faces that were not previously
present appear at vertices or edges of the crystal. A new method of analysis
based on convex hulls over the extrema of the inverse of the etch-rate polar
diagram (slowness diagram) is presented which can handle corners of
arbitrary complexity. Results are presented that were obtained with a pro-
totype of a 3-dimensional etching simulator based on this representation.



1. INTRODUCTION

For certain anisotropic etching solutions such as KOH (potassium hydroxide in water)
or EDP (a watery solution of ethylenediamine and pyrocatechol), the dense {1 1 1} planes
of a silicon crystal which have face normals with components of equal magnitude in the x,
y, and z directions, will etch a hundred times more slowly than other, more loosely packed
planes [Bass78, Bean78]. This fact has been used for making ultra flat faces, vertical
walls, tapered pits, gratings, or beveled cantilevers [Pete82]. Figure 1 shows how ink-jet
nozzles can be fabricated as a combination of pyramids on one side of the wafer with
properly aligned etch pits cut through from the other side. This structure relies on the
slowness of the etching of the {1 1 1} planes to define the tapered walls on the inside and
outside of the pyramids.
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Figure 1: Construction (a) and final shape (b) of inkjet nozzles produced with
anisotropic etching.

Under other circumstances, much more complex geometries can result from such
anisotropic etching. When several different faces and edges come together at odd angles,
it is often difficult to predict and to visualize what geometries might result. Tools are
needed that can properly model such etching processes in order to fully exploit the poten-
tial for tailoring silicon and other substances to form sophisticated transducers or micro-
electromechanical systems. Ideally such process simulation tools are as fast and interac-
tive as possible. This goal excludes simulation by stochastic cell removal in an array of
“atomic” cells. It requires that the etching processes be modeled at some higher level of
abstraction. For efficiency and simulation speed, one would thus like to model the facets
of the crystal surface as entities that can be advanced and modified as a whole.

In this paper we investigate the macroscopic geometrical effects that describe the etch-
ing of anisotropic but uniform crystalline materials. In particular we study the shape
changes that occur because of the advancement of differently oriented faces at different
speeds. We present some new insights into the geometrical changes that can occur, such
as the emergence of new faces at edges and corners. We then outline an approach to con-
struct an efficient simulator that makes such geometric effects visible. Our prototype sim-
ulator for anisotropic etching is based on a boundary representation of the current surface
of the crystal and modifies this description as a function of etching time.




2. GEOMETRY OF ANISOTROPIC ETCHING

2.1 Etch-Rate Diagram

Anisotropic etching relies on the fact that in all crystalline structures the atomic bonds
in some planes are more exposed than in some others. A suitably designed etching agent
will thus attack and strip away certain plane orientations more quickly than others.
Throughout this paper we will assume the presence of a homogeneous crystalline material
with a constant orientation of its lattice. As a consequence, during etching, a planar face
will remain planar and move parallel to itself at some rate that depends only on the orien-
tation of the face [Fran58]. These etch-rates, measured normal to the actual crystal sur-
face, are described conveniently in a polar plot in which the distance from the origin to the
polar plot surface (or curve in 2D) indicates the etch-rate for that particular normal direc-
tion (Fig.2a). Figure 2b shows a complete polar plot for a hypothetical two-dimensional
biclinic crystal.
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Figure 2: Some key etch rates (a), the complete etch-rate diagram (b), and its
inverse: the slowness diagram (c).

For the analysis of how the etching process alters the geometry of the crystal surface, it
is more informative to plot the reciprocal value of the etch-rate; this results in a slowness
diagram (Fig.2c). In this inside-out mirroring, short vectors in one figure turn into long
ones in the other, and vice versa. Notice that in this inversion process the contour of the
slowness diagram takes on a shape that is nearly piecewise linear; we have used this fact
to simplify the construction of usable 3-dimensional etch-rate polar diagrams [Séqu91].

2.2 Offset Surface Construction

For didactical reasons, we first present our approach to modeling the etching process
with a two-dimensional model. The extension to three dimensions is then conceptually
straight-forward — even though much harder to implement. If the complete polar dia-
gram (27 in 2D, 4% in 3D) is known, then constructing the new crystal shape after some
specified etching time amounts to computing an offset surface with proper, orientation-
dependent offsets. Every face is advanced by a distance proportional to the etch-rate in




that particular direction. These faces are then intersected, thus determining the new posi-
tions of the edges and corners.
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Figure 3: Snapshots in time of etching contours: special case where all vertex
trajectories meet in one point (a), the general case with disappearing faces (b).

Under the above circumstances, it is known that vertices between faces as well as
small surface elements of a given orientation move through space on linear trajectories
[Fran58, BMFS73]. However, the crystal shape will not simply change in scale as in the
special case shown in Figure 3a. Depending on the angles and sizes of the starting faces,
some faces may disappear quickly while others become dominant (Fig.3b). The real diffi-
culty stems from the fact that new faces can emerge from vertices with orientations that
were not previously present. At convex corners, faces of high etch-rates may suddenly
appear, while in concave corners, bevel faces may be produced by the slow-etching faces.
Faces of equivalent orientation do not always appear — it depends on the geometry of the
comner and, in particular, on the orientation of the adjacent faces. For instance, in Figure
4, a diagonal facet will emerge at the upper left corner, but not at the upper right one. To
understand this, we have to look at the vertex movements in more detail.
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Figure 4: Offset contours with disappearing and with newly emerging faces.




2.3 Vertex Movements

Consider the simple two-dimensional crystals shown in Figures 3 and 4. Any two
faces forming a corner get advanced by their respective etch-rates, and the new corner
location is formed by the intersection of the new face positions. From the vertex’ loca-
tions at two different etching times, its trajectory can readily be determined. However,
there is a more elegant way to derive this vertex movement directly. The vertex slowness
vector is the perpendicular vector onto the chord connecting the two slowness vectors of
the two adjacent faces [Fran58].

This fact is easily proven with Figure 5 for either concave or convex corners. The cir-
cle c,p, with etch-rate vector 1, as its diameter acts as a circle of Thales for the two right-
angled triangles involving the etch-rates r, and r, and their corresponding crystal surface
etching fronts. If this circle c,, is inverted at the unit circle ¢, around the original vertex
position, it will transform into a straight line Ly,. This line forms the chord between the
tips of the two slowness vectors S, and Sy, which have resulted from the inversion of the
two etch-rate vectors r, and r;,. The slowness vector Sy, of the vertex motion is the
inverse of the vector r.. Because of the symmetric position of the latter in the circle cyp,
S.p is also perpendicular to the chordal line Ly,
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Figure 5: Proof that vertex moves normal to chord between slowness vectors:
concave 2D case (a) and convex 2D corner (b).

2.4 Growing and Shrinking Faces

Knowing how the vertices move as a function of time, permits us also to construct the
various facets between them. As long as the vertex trajectories do not intersect, the num-
ber of faces will not change, even though their sizes will change as a function of time. If
the vertex trajectories converge, the face will shrink and will eventually disappear; if the
trajectories diverge, the face will actually grow in size, — possibly at the expense of one or
both of its neighbors.




Knowing the trajectories of all vertices allows us to parameterize the etched crystal
surface in time and forms the basis for an interactive display of the whole etching process
on a particular piece of crystal geometry. Since all expressions are linear functions of
time, the vertex positions and thus the coordinates that define all the faces that make up
the crystal surface can readily be evaluated in real-time as the surface is displayed on a
computer graphics screen. However, we need to pre-calculate key frames at “interesting”
time points when the structure of the crystal surface changes, such as when adjacent verti-
ces merge, and the edge between them disappears. But in between such time points, we
can simply display all faces after the parameter substitution for the current time has been
made.

To build a truly useful simulator, we also must test for non-local interactions where a
vertex trajectory intersects with some unrelated face. The latter issue becomes important
if we etch long enough so that holes may etch to the other side of the wafer or overhanging
features may get cut off. Dealing with such non-local, topological changes presents an
additional set of difficulties since it requires more than just strictly local analysis. We will
come back to this issue later.

3. CORNERANALYSISIN2D

3.1 Emerging New Faces

If the etch-rate diagram shows significant speed differences, the situation can get even
more complicated: Faces cannot only disappear, but new faces with orientations not previ-
ously seen can emerge along edges or at corners. Such a case is illustrated in Figure 6a,
where face f_, is growing at the expense of its two neighbors. Extrapolating the vertex tra-
jectories backwards, shows that such a face can even emerge out of a simple vertex
between two faces f, and fy, (Fig.6b). The main difficulty here is that it is not a priori clear
what face orientations should be considered for potential emergence of new faces at a par-
ticular corner.

Just considering the original two faces f, and f, in Figure 6b, the vertex between them
would move in the direction S,p, perpendicular to the chord between the tips of S, and Sy,
But if there is a face orientation f, between f, and fy, that moves faster than the combined
action of the two faces f, and f;, on the vertex, the new face will become visible at this ver-
tex. Such a face orientation will readily manifest itself in the slowness diagram as a slow-
ness vector that does not extend all the way to the chord. This will cause an inward bump
S, in the slowness curve (which, of course, also passes through S, and Sp). In this case,
the original vertex will split. Two new vertices V,. and V,,, moving perpendicular to the
two sub-chords, i.e., along S, and S¢p, will drift apart as a function of time and form the
new face f. between them.

Similarly, it can be seen that for concave corners, the slowest etch directions will
lead to outward bumps in the slowness curve which then produce new vertices that move
apart and form new faces between them (Fig.6¢).
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Figure 6: Growing face (a) and development of a new face due to a minimum in
the slowness curve (b) and due to a maximum (c).

Moreover, under the right circumstances, e.g., isotropic etching of concave corners,
rounded features can develop, which means that an infinity of new face orientations are
introduced. Thus, in general, one must analyze the complete polar diagram to find all ori-
entations in which new faces can potentially form. Whether a particular face will actually
appear at a specific corner, is then a question of what angles it forms with the adjacent two
faces.

In three dimensions this problem can become particularly challenging since multiple
new bevel faces may emerge along individual edges which then interact in complicated
ways with additional faces that truncate the corner where they all merge. A robust and
reliable technique is required that can handle all possible situations.

3.2 Convex Hull Constructions

The general case of a concave 2D corner with an arbitrary, ragged etch-rate or slow-
ness diagram is shown in Figure 7a. In this case there are several locally dominant slow-
etching faces which all might lead to visible faces, and they would all have to be analyzed
in their local environment of the adjacent faces. This analysis can be done in a global
manner by finding the convex hull over all the bumps generated by local maxima in the
slowness curve. The corners in this convex hull correspond to all the truncation faces that
will become visible at this vertex. Similarly, at a convex crystal comer, the hull over the
minima of the slowness curve defines all the newly emerging fast-etching faces (Fig.7b).
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Figure 7: Convex hull construction to find new faces: at a concave 2D corner (a),
and at a convex 2D corner (b).

In cases, where the slowness curve has noticeable curvature — as in the case of uni-
form etching where it is a circle — this curvature may give rise to an infinite set of new
growing face orientations, i.e. it will lead to a rounded piece of crystal geometry. For sim-
plicity and efficiency, this round shape is approximated in a piece-wise linear manner with
a polygon with enough facets to provide the accuracy needed in the etching simulation.

At this point it should be emphasized that it is not strictly the fastest-etching face ori-
entations that produce the emerging facets at a convex crystal vertex — it depends on the
local constellation. Data published by Sato er. al. [SaKT89] provides an interesting case
in point. They look at the emerging bevel faces at an edge between two {100} type planes
when etching in aqueous KOH. In a separate experiment they had determined that at
higher temperatures (78°C) the {320} planes show the fastest etch-rate. Experimentally
they observe two bevel faces with angles of 34° from the {100} planes (Fig.8a) — as one
would expect from analyzing the corresponding slowness diagram (Fig.8a).
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Figure 8: The usual situation where the fastest etching directions yields the
emerging bevel faces (a) and a special situation where the marginally faster face
is suppressed by the compound effect by its two neighbors (b).




At lower temperatures (40°C) the maximum of the etch-rate moves towards the {110}
direction, and for low enough temperatures one might thus expect to see a 45° bevel
appearing at this edge. But they still observed a double bevel corresponding to two faces
with angles of 16° from the {100} planes (Fig.8b). Drawing the slowness diagram for this
situation reveals that even though the S}g is the shortest vector in this diagram, it is long
enough to cross the cord between the two instances of slowness vectors Sc and Sy that
point towards two inward kinks of the slowness curve; thus S; ;4 does not form a corner in
the convex hull around the slowness curve. In such tricky situations, the convex hull anal-
ysis automatically predicts the right result.

3.3 Need for Vertex Analysis

At the start of an etching simulation, we need to check all the corners to determine the
possible presence of virtual faces that will grow into existence. But once the vertices have
been analyzed and their (possibly split) vertex trajectories have been calculated, no further
analysis on these same vertices is needed until the surface structure changes. When the
two trajectories of two adjacent vertices intersect, the vertices merge and the edge between
them disappears. A new situation is created with a vertex between two faces that now
span a potentially larger range of angles between them (Fig.9a). How much analysis does
this new situation require ? Figure 9a implies that there cannot emerge any new face ori-
entations that would not have already shown themselves before the merger: Any slowness
vector that might give rise to a new face, e.g. Sy, would have to fall inside the chord L,;
however, such a vector would also stop short of the chords Lgp and Ly, and would thus
lead to a new face even before the vertex merger. On the other hand, if we look at the sit-
uation shown in Figure 9b where a convex vertex merges with a concave one, it is possible
to have a slowness vector, €.g. Sq, that crosses the original chord Ly but stops short of
the chord L, formed by the vertex merger, thus producing a new face after the merger.
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Figure 9: When do merging vertices provide a need for a new vertex analysis ?
Merging convex vertices (a), merging convex and concave vertex (b), topological
change of contour (c).

Furthermore, whenever there is a merger of non-adjacent vertices, such as A and B in
Figure 9c, or the crash of a vertex into another face, we obtain a new topological situation




that needs to be analyzed from scratch. For simplicity and to be on the safe side, our sim-
ulator repeats the vertex analysis after every merger and any time the surface structure
changes.

4. ETCHING SIMULATIONS IN 2D

4.1 Simulator Prototype

A two-dimensional simulator was first developed as a learning experience. The simu-
lator accepts etch-rate values for certain key directions and then calculates several inter-
mediate etch-rates by mixing the etch-rates of the adjacent key directions in the proper
proportions [Foote 89]. This creates a quasi-smooth piecewise linear polar diagram. The
specific etch-rate required for a particular face orientation is then obtained from this data
base by interpolation.

The simulator then reads in a polygonal starting shape in UniGrafix format [SéSm90].
The vertex analysis is carried out for all original vertices, and the newly emerging faces
are introduced into the contour data structure where necessary. The corresponding vertex
trajectories are calculated at the same time. This yields a parameterized description of the
complete etching contour as a function of time.

For this two-dimensional prototype, non-local interactions are searched for in a brute-
force manner. All vertex trajectories are intersected with one another and with all existing
faces. The corresponding intersection events are inserted into a time-ordered event list
which marks the times when there are changes in the contour structure. The simulator
then runs from event to event until it stops at a user-specified time.

4.2 Etching Contours in 2D

Figure 10a shows a result of etching a rectangular shape of a two-dimensional crystal
with an assumed underlying biclinic slowness curve as indicated in Figure 10b. The eight
faces of type {2 1} etch fastest and will dominate a convex shape after some etching
time. Superposed on Figure 10a are the paths taken by the various vertices, showing
clearly the splitting and merging of vertices and the corresponding appearance and disap-
pearance of faces.
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Figure 10: Nested etching contours on a hypothetical 2D crystal (a), underlying
biclinic slowness diagram (b), merging contours causing topology changes (c).
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A more complicated case for a similar type of crystalline material is depicted in Figure
10c. Here the starting geometry has two triangular holes. As etching progresses, these
holes first merge with each other, later with the outer contour.

5. TOOLS FOR 3D ANALYSIS

Our three-dimensional etching simulator takes the same basic approach as the 2D sim-
ulator above. The main difference is that there are now many more different key direc-
tions, and the interpolation to determine the etch-rate in an arbitrary direction becomes
more difficult. Also, the data structures in 3D are more complicated and are harder to
implement.

The analysis of three-dimensional corners is more difficult, because they can be of
several different types. There are not just convex and concave corners to be distinguished.
There are also saddle corners that are neither one nor the other type. Furthermore, while a
polygon corner has exactly two sides attached, a polyhedral comer may have an unlimited
number of faces incident.

Nevertheless, the analysis that has to be performed at three-dimensional comners is
conceptually the same as in the planar case. We need to find the extrema on the proper
hull over the slowness surface segment (SSS) within the solid angle defined by the face
normals around the vertex of interest. These extrema define the new faces that will
emerge at this vertex or on the associated edges. These faces must be properly inserted
into the data structures describing the boundary surface and then advanced according to
their own etch-rates. The added difficulty is that there may be emerging bevel faces along
the edges in addition to new truncation faces at the corner, which then all interact with one
another. We will deal with these issues one at a time. In all cases, the discussion gets facil-
itated by looking at the vertex figure projected onto the slowness surface.

5.1 Slowness Surface in 3D

As in two dimensions, the analysis of what happens to three-dimensional crystal cor-
ners is most conveniently carried out with the help of the slowness diagram. Now this
inverse of the etch-rate diagram is a 47 polar diagram that contains the necessary informa-
tion for all possible directions. Unfortunately, complete etch-rate information for all
directions can rarely be found in the literature; typically just two-dimensional slices
through this surface are published, sometimes enhanced with a few specific measurements
for some of the more interesting, low-order crystal plane orientations. Our first task is
therefore to construct a complete and consistent slowness diagram.

First, etch-rates are entered for the key directions in which extreme values can be
expected, enhanced with additional intermediate directions based on available data and on
the desired accuracy of the etching simulations. Around this skeleton, the complete slow-
ness surface is then approximated with a triangulated polyhedron that uses the given val-
ues as corners. This linearized approximation seems justified for most interesting cases
with large variations of the etch-rate, since we observed in our studies on 2D crystals that
the resulting slowness curves were often piecewise linear [Foot90, p21].
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For example in a simple cubic lattice one might only specify the etch-rates for the six
key orientations {100}, {110},{111},{210},{211},and {221}. In this case, the
slowness diagram has 98 vertices and 192 triangular faces. The stereographic projection
of half of this surface is shown in Figure 11a.
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Figure 11: Stereographic projection of key directions in a simple cubic lattice (a)
and superposition of a vertex diagram of a simple crystal corner (b).

To model the behavior of a silicon lattice, it might be more appropriate to replace the
key orientations {2 2 1} with {3 3 1} and to include the orientations {3 2 0} explicitly,
since there is evidence that under certain circumstances, maxima of the etch-rate can occur
in these directions [SeCs82] [SaKT89].

The above data structure can now be queried. Slowness vectors for specific orienta-
tions are extracted by barycentric interpolation in one of the triangular facets shown in
Figure 11. In this linear model, new comer truncation faces can only appear at the verti-
ces, and new edge bevels only at orientations that correspond to points on the edges of this
polyhedral slowness diagram (Fig.11b). This makes the computation of the convex hull
over portions of the slowness surface simple and renders the analysis of the edge-connec-
tivity changes at 3D corners manageable.

5.2 Vertex Figures

As a reference for the relevant face orientations and directions at a crystal corner, it is
useful to draw its vertex figure. This is done by intersecting the normal vectors for all
faces incident on this corner with the unit sphere. In this paper we draw the face normals
into the crystal bulk, so that the normals and the etch-rate vectors point in the same direc-
tion. Adjacent faces sharing a common edge are then connected by great circle arcs in the
vertex diagram, and this arc is labeled convex or concave (typically shown dashed)
according to the dihedral angle at the corresponding crystal edge. For a vertex formed by
N faces (Figs.12a,d: N=4), the vertex diagram will form an N-sided contour (Fig.12b)
which may be self-intersecting if there is a mix of convex and concave edges coming
together at that vertex (Fig.12e). If we label the faces around the crystal corner a, b, ¢,... in
counter-clockwise order (CCW) as seen from the outside of the crystal and compare the
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resulting orientation of the vertex figure, we find that for true convex or concave corners
the positive (CCW) orientation is maintained, whereas for saddle points the orientation is
reversed — either in the whole vertex figure, or at least in some part of it if the vertex figure
is self-intersecting.

This vertex figure is then superposed onto the unit-sphere projection of the slowness
diagram (Fig.12b,e). The inside of this diagram represents the SSS that needs to be ana-
lyzed for extrema that might lead to newly emerging faces. It should be noted that the
straight lines in Figure 12 b,e are really images of great arcs on a sphere.
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Figure 12: Crystal corner (a), vertex figure (b), and convex slowness hull (c).
Another crystal corner (d), its vertex figure (e), and the truncated result ).

6. EDGE ANALYSIS

The analysis of the evolving new crystal geometry starts with the edges. The arcs
between two points in the vertex figure denoting the orientations of two adjacent faces
represent all orientations perpendicular to the crystal edge between the two faces. If the
slowness surface is cut along such an arc, one obtains a slowness curve like the ones ana-
lyzed in the first half of this paper. Depending on whether the crystal edge is convex or
concave, one has to select the extrema on either the inner or the outer hull of the slowness
curve. If extrema of the right sign are present, the edge will split into two or more parallel
edges with bevel faces in between. Since we now assume that the slowness surface is
polyhedral, we can expect extrema of the slowness curve to occur only at points where the
arcs of the vertex figure cross the edges (ridges or grooves) of the slowness polyhedron.
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Each edge can split into several bevel edges, and the bevel faces between them will
form regardless of the configuration of the vertices at the end of the crystal edge because
their formation does not depend on any process taking place at the corners. Several such
beveled edges can join in a single vertex — thus the geometrical situation can become
rather complicated. In addition, even without the presence of any bevel faces, vertices
may form one or more truncation faces.

7. TRUE 3D CORNERS

True crystal corners where all incident edges are of the same type (convex or concave)
are relatively easy to analyze. Saddle points offer more challenges and will be discussed
in a separate section.

7.1 Vertex Movements

When there are exactly three faces incident on a crystal corner, the three edges
between them each move perpendicular to the chords between the tips of the slowness
vectors of the respective pairs of faces (Section 2.3). Correspondingly, the vertex, which
moves in each of the three planes swept out by the three edges, moves perpendicular to the
unique chordal plane through the tips of the three slowness vectors; its speed is the recip-
rocal value of the length of the normal vector from the vertex to that plane. This fact can
also be derived from a 3D analog of Figure 5 in which the sphere that uses the velocity
vector of the original corner vertex as a diameter is inverted at a unit sphere around the
original vertex position. Such a transformation maps this sphere into the chordal plane
mentioned above. This construction of the vertex movement is valid for convex and con-
cave corners as well as for saddle points (Section 8) as long as there are exactly three faces
incident on the vertex and as long as there are no truncation faces emerging.

7.2 Vertex Splits

When there are more than three faces present, the tips of the corresponding slowness
vectors generally do not lie in a single plane. The vertex figure has to be decomposed into
several planar facets by forming the convex hull around the tips of all the slowness vec-
tors. Each corner on this hull will define a new face, while each facet on the hull defines a
trajectory for a vertex. The ridges between the facets correspond to newly forming crystal
edges. For instance, the four-sided convex pyramid tip in Figure 13b will only survive as
a single vertex if all slowness vector tips lie in a single plane. In general, it will split one
way (a) or another (c) depending on the relative lengths of these four vectors: the upwards
(fast) ridge in the convex hull (Fig.13d,f) is perpendicular to the new edge forming
between the two split vertices. In general, in the absence of truncation faces, an n-sided
vertex will split into n-2 three-sided subvertices with n-3 new edges between them.

When there are directions with fast etch-rates in the range of orientations of interest at
a vertex, truncation or bevel faces may arise in addition to the splits discussed above.
They will show up in the SSS as peaks that are sufficiently high to form corners in the
convex hull stretched over the SSS. Extreme values on the bounding arcs of the original
vertex figure result in bevel faces along the edges, and extrema in the interior of the vertex
figure produce truncation faces. All of the emerging faces can be found by forming the
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convex hulls over all minima of the slowness surface for convex crystal corners and over
all the maxima for concave corners. The resulting polygonal hulls are the duals of the
resulting structure of split vertices and new edges. The normal onto each facet of the hull
defines the new vertex trajectories. This construction automatically reflects the complete
interplay between all truncation faces and bevel faces.

v
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Figure 13: Etching a multifaced corner will typically split the vertex one way (a)
or another (c); only as a special case the vertex will stay intact (b), corresponding
slowness surface segments (d,e f) with face normals producing vertex trajectories.

7.3 Trees of Future-Edges

Foote [Foot90, p48] employed an alternative method to find the connectivity of the
edges forming at a split vertex. He used a recursive processing of the anticipated edge
positions some small time increment into the future and then determined the mutual inter-
sections between these future edges. To distinguish the actual intersections that appear in
the corner geometry from the virtual intersections on the extensions of the edges, this edge
structure was processed recursively from the outside inwards.

Whenever two adjacent future edges have their first intersection with each other, they
are combined, i.e. the face in between is terminated, and a new edge that is the intersection
of the two outer adjacent faces is formed. This process continues until all edges have been
connected into a single tree.

If there are truncation faces present, the network formed by the edges must form a
graph that contains a loop for each of the emerging truncation faces. Each truncation face
is individually inserted into the future-edge tree by intersecting the face plane with all the
edges and constructing the appropriate loop [Foot90, p52]. This is obviously a much more
involved process than simply forming the dual structure of the appropriate slowness hull.
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8. SADDLE CORNERS

A bigger challenge is offered by saddle points where a mix of convex and concave
edges come together (Fig.14). Since they are neither purely convex nor purely concave,
one does not know whether to use the inner or the outer convex hull to find potential new
faces.

8.1 Simplest Saddle Points

Figure 14a depicts two types of simple saddle corners, V and W, with only three faces.
In both cases, the vertex trajectory can be easily computed as the normal onto the chordal
plane as in the case of a true convex crystal corner.
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Figure 14: Two types of 3-sided saddle corners: V and W (a). No truncation
faces can emerge outside the corner (b) or inside (c).

A natural question is whether it is possible to produce any new truncation faces at
such corners. Figures 14b,c show that this is not possible unless some of the edges them-
selves produce bevel faces. Any truncation face would have to pass the original vertex
either outside (Fig.14b) or inside (Fig.14c) the bulk of the saddle corner. The outside face
p for corner type W and the inside face q for corner type V, which are both shown striped
in Figure 14, are clearly impossible. Without additional bevel faces along two of the orig-
inal crystal edges, these faces would have two of their edges dangling in space which is
impossible for a facet that is part of a boundary of a solid.

The outside face u for corner type V and the inside face r for corner type W, shown
white in Figure 14, are geometrically possible but must be ruled out within our first order
etching model. For instance, it is not plausible that there could be a mechanism that pre-
vents the atoms along the convex edge h of face u to be removed less quickly than the
atoms along the concave edge k between faces b and ¢ (Fig.14b). Similarly, it is implausi-
ble that atoms along face e should etch faster than other atoms along the edge m between
faces c and d (Fig.14c), so as to produce the notch bounded by face r. In other words, if a
fast-etching face with the orientation of r could start in the corner W, the same type of face
could start anywhere along edge m, leading to a bevel face along the whole edge. Thus it
is concluded that no truncation faces can form on a 3-sided comer that has a mix of con-
cave and convex edges.
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8.2 Pseudo Saddle Corners

Figure 12d also shows a corner with convex and concave edges. However, the analy-
sis for this case is the same as that for the filled-out convex comer corresponding to the
CCW loop (A, B, I). The CW loop (I, C, D) cannot produce any truncation faces for the
same reasons as discussed above.

For these reasons we like to call such vertices pseudo-saddles. They are characterized
by the fact that all incident edges and faces fit into a half-space on one side of the corner
vertex. The corners V and W in Figure 14 are a limit case of such pseudo-saddles, since
their edges and faces also fit into a single half-space.

8.3 Actual Saddle Corners.

Figure 15-1 shows a more interesting saddle corner. In this case there are at least two
pairs of convex and concave edges in an alternating sequence. This forms a true saddle
corner in which the incident edges do not fit into any half-space. If faces a and ¢ in sucha
comer move considerably faster than faces b and d, what would be the result ? If we move
all four faces in accordance with the assumed etch-rates and then let those four planes
intersect one another, we may obtain the geometry shown in Figures 15-2 or 15-3. But
how do we know which way the vertex will split, and whether there will be other faces
emerging ?

Foote (Foot90, p46) jumps to the conclusion that for reasons similar to the ones above,
no new truncation faces can form at any saddle point without the emergence of some bevel
faces along the original edges. However, recently an intriguing case has been found
where a four-sided saddle corner can produce an isolated truncation face without the pres-
ence of any bevel faces (Fig.15-4). This shape can result, if the horizontal face m etches at
a rate that is fast compared to the rate of the two slow-etching faces, so that it forces a
bevel face at the convex edge between the two slow faces, and if it is simultaneously slow
compared to the rate of the two fast-etching faces, so that it forces a bevel face at the con-
cave edge between the two fast faces.

The difficulty in analyzing this situation with Foote’s method (Section 7.3) is that
because of the pin-wheel configuration of the future edges (Fig.15-1b) there is no single
future-edge intersection which is the first intersection for both edges. Thus this edge figure
cannot readily be simplified from the outside inwards. Depending on the assumed etch-
rate distribution (Fig.15-2, 15-3, 15-4), the resulting connectivity of the edges at this cor-
ner will indeed be different. Figure 15-2 shows a first situation where we assume that the
etch-rate in the vertical direction is slower than any of the etch-rates of the four faces. In
this case the central vertex will split in two, forming a convex edge between the slow-etch-
ing faces a and c. The corresponding slowness surface segment is a pyramidal concave pit.

Figure 15-3 shows the opposite situation. Here the vertical etch-rate is assumed to be
much faster than any of the rates of the four faces. Thus the slowness surface patch is a 4-
sided convex pyramid. In this case the vertex will split the opposite way and form a con-
cave edge between the two fast-etching faces.
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Figure 15: An interesting saddle corner. The crystal shapes before etching (1a)
and afterwards (2a), (3a), and (4a); schematic top views of the corresponding
faces and future edges (b) and the slowness surface segments (c) for three different
etch-rate distributions (2), (3), and (4).
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Figure 15-4 shows the interesting intermediate case. Here the vertical etch-rate is of
intermediate value, faster than the combined rate of the two slow faces at the convex edge,
but slower than the combined rate of the two fast faces at the concave edge. The slowness
surface is now itself a saddle surface. The orientations of the four facets in the SSS readily
indicate how the vertex V will split. Only in the situation shown in Figure 15-4c are the
trajectories of all four subvertices diverging with the proper ordering in space. In cases (2)
and (3), two pairs of trajectories do not separate properly but run into one another; thus
only a two-way split results. Correspondingly, the simplified hull over the SSS should
only show two facets. This is indeed the case if we take the outer convex hull over the
four points S,,... S4 in Figure 15-2c and the inner convex hull in Figure 15-3c. But how do
we know which hull to take ? Moreover, Figure 15-4¢ isn’t even a convex hull at all !
How can we generalize this approach if the SSS has many maxima and minima side by
side ?

8.4 Non-Dominant Faces Defined by Boundary Constraints

Foote discusses an interesting case of a face that is limited in its growth by a virtual
zero-length edge (Foot90, p56). Figure 16a shows a slow bevel face s growing in a con-
cave groove between two faces 1 and r. This face s forms also a convex edge with the
cover face c. If we assume that on this new edge (s,c) there is a fast bevel face f (Fig.16b)
that etches so quickly that this edge gets reduced to zero length faster than the widths of
bevel S grows, the two edges (1,f) and (r,f) will continue to meet in a point, while the rem-
nants of the fast bevel f continue to strip away part of the slow bevel-volume s (Fig.16¢).
This continued stripping action will produce a triangular face t that is anchored at the orig-
inal vertex Vg and which provides the termination of the bevel s towards face c. The ori-
entation of this face does not correspond directly to one of the extreme points of the
slowness surface, since it is defined by the etch-rates of the faces around it. Furthermore,
its growth rate is constrained by the rate at which the bevel grows in width.

Foote’s simulator cannot represent this face t directly. It models it as a collection of
small steps that get emitted by the periodic reevaluation of the situation at the edge (s,b)
when it has grown to some threshold length. Since the steady-state geometry depicted in
Figure 16¢ clearly has a dual representation, we should be able to determine that situation
directly from a corresponding simplified SSS as in the case of simpler corners.

Figure 16d shows the vertex diagram for the starting situation at vertex V. If there is
a slowness maximum on the arc between S; and S, the bevel face s will form, and triangu-
lation of the SSS would force an arc between S; and Sg. The resulting two triangles
(Fig.16d) represent the split of the Vertex V() into V; and V, (Fig.16a). If we now further
assume that along the arc S_-S; there exists a maximum of the etch-rate at some location f,
the SSS must be further tessellated into 4 triangles: V;,... V4 (Fig.16¢). However, if there
is a convex ridge between the two triangles representing the trajectories of V3 and Vy, the
face normals occur in the wrong left-to-right order to represent an actual split. This means
the subvertices V3 and V4 will have to remain together at vertex Vg and need to be repre-
sented by a single planar facet in the SSS. Thus the simplified SSS will have to be trun-
cated by the plane of the original facet representing V. The intersection of arc S¢-S¢ with
this plane determines the location of vertex t (Fig.16f) and thus the orientation of the
actual face t emerging at the crystal corner (Fig.16c).
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The last example shows particularly convincingly what can be gained from the analy-
sis of the slowness surface and the construction of the simplified SSS. The whole splitting
behavior and the connectivity of all old and new edges can be obtained directly as the dual
of the simplified SSS. There is no need for any reevaluation of the subvertices after a
split, and the problems with virtual edges of zero length, which Foote solved by introduc-
ing an artificial length threshold [Foot90, p57], are completely avoided.

For all the relatively simple cases discussed in this section, it could be made clear what
the simplified SSS had to look like to produce the expected results. But how do we find
this polyhedral surface for arbitrarily complex corners with an arbitrarily complex slow-
ness surface ?

9. GENERAL CORNER ANALYSIS

The goal of the comer analysis is to determine the trajectory — or trajectories if the cor-
ner splits — of each vertex parameterized in time. The key step is to find the emerging new
facets and edges and their respective connectivity. We need a reliable program to handle
all possible corners.

9.1 True Corners

For true convex and concave corners, we have presented a simple and direct method to
find a faceted convex hull over the slowness surface segment (SSS) that is the geometrical
dual of the resulting corner structure — including all truncation and bevel faces. The con-
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vex hulls used in these cases can be understood as a simplification of the detailed SSS
spanned by the given face normal directions of the original crystal corner. In the case of a
concave corner, any concave pit in the convex hull of the slowness surface corresponds to
a vertex surrounded by a sequence of facets that would have vertex normals that denote
virtual splitting subvertices that run into one another rather than diverging properly as
would be necessary to produce a splitting vertex with a new face in the middle. Such con-
cave pits are thus culled away by the construction of the convex hull, leaving only true
convex vertices that correspond to emerging slow truncation faces at the concave corner.

Similarly, all vertices on the inner convex hull (or concave hull) associated with a true
convex corner must be true concave pits in order to represent emerging fast truncation
faces. In both cases, the formation of the convex hulls can thus be understood as culling
away those features of the SSS that cannot give rise to new emerging faces.

9,2 Saddie Corners

The same principle can now be applied to the SSS associated with a crystalline saddle
corner. Saddle corners are characterized by the fact that at least part of their vertex dia-
gram is a loop with reversed (CW) contour direction. For truncation faces to emerge in
such a surrounding, it is necessary that the corresponding vertex on the slowness surface
be surrounded by facets that have a similar reversed (CW) ordering of their face normals.
This means that such vertices themselves must be saddle points such as the vertex m
shown in Figure 15-4c.

This leads to the strong conjecture that the simplified slowness hull that represents the
dual of the final corner geometry for a saddle corner must be some sort of saddle surface
itself which spans the given contour of the SSS and satisfies all constraints along this con-
tour. Any true convex corners or concave pits on the slowness surface would have to be
culled away, since they cannot give rise to any truncation faces owing to the incompatible
ordering of the associated trajectories of the subvertices.

9.3 A Unified Approach

The above insight leads to the following conceptual construction algorithm for the
simplified SSS: Label the set of faces around the crystal comer in CCW order and draw
the corresponding vertex diagram onto the lattice of key crystal plane orientations. Ana-
lyze each contour segment corresponding to one of the crystal edges incident on the comner
being analyzed and construct the proper inner or outer convex piecewise linear path
through slowness space which defines the bevel faces. Distinguish three different regions
in the vertex diagram: (a) CCW loops corresponding to convex corners, (b) CCW loops
corresponding to concave corners, and (c) CW loops corresponding to saddle corners.
Within each of these regions, remove all inappropriate features on the SSS and simplify it
so that it only contains pure concave vertices in (a), pure convex vertices in (b), and saddle
vertices in (c). This will produce the proper inner/outer convex hulls for the true crystal
comners and saddle surfaces for regions associated with saddle corners which are all com-
patible with the constraints already established on the contour of the vertex diagram dur-
ing edge analysis.
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9.4 Efficient SSS Simplification.

For convex hulls, well-known efficient construction algorithms exist. For saddle sur-
faces this is not the case; it is not even clear whether in general the problem is well
defined! However, for our purpose of SSS simplification, we have a more specialized
problem. We are not trying to construct a saddle surface or a convex hull for an arbitrary
set of points. Rather, we try to cull away unwanted features on an already known single-
valued, polyhedral surface. This also properly defines the construction task for the saddle
surface. An efficient way to construct these simplified slowness surface segments is the
subject of current research.

10. APROTOTYPE SIMULATOR

Prototypes have been constructed of two efficient simulators based on a polygonal
boundary representation of the crystal surface. A complete simulator for the two-dimen-
sional case has been built which takes arbitrary biclinic etch-rate diagrams and accepts ini-
tial crystal geometries of arbitrary complexity. For the first implementation of a three-
dimensional simulator [Foot90, p60], two simplifications have been introduced: First, the
slowness diagram is approximated with a piecewise planar triangulated surface. Second,
only local interactions between faces are being considered so far. Topology changes
resulting from holes etching through to the other side of the wafer have not yet been
implemented. In this simulator, the modeling of the etching process in our surface-based
three-dimensional simulator happens in several discrete phases.

10.1 Constructing a Complete Slowness Diagram

First, the user must provide enough data to specify a complete etch-rate diagram.
Whether the information about the etch-rates in key directions is obtained from the litera-
ture or from a polar diagram generator [Foot90, p31], these values are entered into an
etch-rate data file. The user needs to enter explicitly the values for a generic key direction
of the crystalline material under consideration, the program figures out by itself the values
for the symmetrical directions. The complete 4x shell of the slowness diagram is then
approximated with a triangulated surface supported by the values for the key directions.
The extrema on this surface, among others, specify the potential face orientations in which
new faces might emerge.

10.2 Corner Geometry Analysis

For each corner currently present in the crystal shape being etched, the infinite set of
all possible surface orientations is reduced to those orientations corresponding to faces
that will actually grow in size. This analysis is currently based on the convex hull method
described in Section 7.

To prevent the data structure from growing more complex than necessary, the program
removes the elements that have disappeared from the boundary of the etched shape. For
instance, edges that have shrunk to zero length are eliminated, their end vertices merged,
and the attached edges properly re-linked. Implementation problems arise here from
coplanar face elements that fold back onto themselves and from bevel faces that shrink to
zero width.
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For applications in microfabrication, the simulator must support masking of the crys-
tal structure. This is implemented by introducing appropriate special cases in the various
algorithms. For instance, at an edge between two masked faces, the geometry will remain
unchanged, and thus the computation of the candidate list can be omitted. At an edge
between a masked face and an unmasked one, overhangs will form owing to undercutting.
If such virtual overhangs are introduced along all mask edges and if the orientations of the
new faces are properly chosen, then the correct geometry changes at the vertices along the
mask’s boundaries will emerge almost automatically.

10.3 Offset Surface Construction

All geometry changes are captured in the calculated vertex trajectories through space.
With these trajectories suitably parameterized in etching-time, the new crystal contour
(2D) or surface (3D) for a specified instant in time can then be constructed readily. The
vertex coordinates are calculated for the desired time point. The corresponding planar
crystal facets are extracted from the boundary representation and are sent to the display.
The display process is so fast, that once the vertex trajectories have been calculated, real-
time interactive animation of the etching process is possible.

10.4 Planned Revisions and Enhancements

We are in the process of revising parts of the simulator. In particular, we hope that the
introduction of a unified corner analysis based on the simplified slowness surface seg-
ments will make the code simpler and more robust and will handle saddle corners and
non-dominant faces defined by boundary constraints in all circumstances without the need
to introduce special cases.

Another required enhancement of our current program is to handle non-local interac-
tions. Since the topology of the contour can change, we need to predict where vertex tra-
jectories run into one another or into other faces. With this goal, we formulate the etching
simulation as an event-driven process where the relevant events are the intersections of
trajectories that may lead to topological changes. The expected etching-time at which
these intersections would occur are calculated, and a corresponding event is placed onto
the event queue. The topology update for the new offset surface is completed for the ear-
liest etching time appearing in the event queue. Any such update may change the structure
and may introduce new events into the queue. For any new comners created, its candidate
faces must be examined and new faces introduced into the contour. This processing con-
tinues until there are no more topology-driven events on the queue with time stamps ear-
lier than the etching termination time specified by the user.

Construction of a complete simulator for three-dimensional shapes, with capabilities
equivalent to those of our 2D simulator, requires no additional conceptual breakthroughs,
but a fair amount of careful software engineering. There also is an important issue of effi-
ciency. It is impractical to intersect all vertex trajectories with all other faces to predict
where topologically significant intersections might occur. Some efficient space manage-
ment scheme, such as a grid or an octal tree, has to be employed to keep the necessary
tests from growing with the square of the number of all the facets in the etched structure.
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11. 3-D SIMULATION RESULTS

Here we present some results obtained with our simulator to demonstrate the impor-
tant role that emerging truncation and bevel faces play in anisotropic crystal etching. A
representative set of etch-rates for a simple cubic lattice with a hypothetical anisotropic
etching process is shown in Table 1 [Foot90, p38]. This is the basis for the simulations
described in this section. The full slowness diagram is generated through interpolation.
While such a diagram may not represent any actual material, its consistency should at least
allow us to carry out meaningful experiments with our surface-based etching simulator.

Table 1: Key Etch-rates Derived from a Simple Cubic Lattice

Face Orientation  Etch-rate Slowness Relative Slowness
{221} .0017 588 1.0
{211} .0014 714 1.2
{111} .00058 1724 29
{210} .00046 2174 3.7
{110} .00030 3333 5.6
{100} .00003 33333 56.0

In the long run it may even be possible to use the atomistic etch-rate modeling
approach used to generate Table 1 to flesh out in a consistent manner partial experimental
etch-rate data into a complete 47 slowness diagram. This can possibly be achieved by
adjusting the six to eight parameters that describe the bond-strengths in the model so as to
match the etch-rate data for the directions in which it is known. However, we have not yet
investigated how easy it would be to carry out such a matching.

Figure 19 shows some representative results obtained with the three-dimensional sim-
ulator. The starting crystal has the shape of three intersecting bricks. A simple cubic crys-
tal lattice is assumed with the etch-rates listed in Table 1. If the brick faces are aligned
with the lattice planes, anisotropic etching will develop the faceting shown in Figure 17.

(a) () ©
Figure 17: Etching a crystal shape for three different time durations (a), (b), (c).
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However, if the initial shape is at some odd angle with respect to the underlying crys-
tal lattice, the faceting becomes more complicated and irregular, and many intriguing
bevel edges develop at the concave edges (Fig.18a). Figure 18b gives a close-up view of
one of the concave corners. For more examples see [Foot90].

Figure 18: Etching of the shape of Fig.17 with a different crystal orientation (a);
close-up of a concave corner (b).

12. CONCLUSIONS

Considerable insight has been gained into the etching behavior of uniform but aniso-
tropically etching polyhedral objects. In particular, we believe that we now understand
precisely under what circumstances bevel faces or truncation faces can form at crystal
edges or corners. The role of the slowness surface has been elucidated, and a unified cor-
ner analysis method based on simplified hulls over relevant segments of this surface has
been conceived. However, this new method has not yet been implemented and must
clearly be subjected to more scrutiny.

Prototypes have been constructed of two efficient simulators based on a polygonal
boundary representation of the crystal surface. They demonstrate the viability of the
approach. The same data structure, algorithms, and overall analysis can also be used to
model growth or deposition processes: in this case the surfaces move outwards. Even pro-
cesses such as the diffusion of impurities or oxidation processes can be modeled with a
boundary representation. In the latter case, two surfaces need to be moved simulta-
neously, one inward and the other outward.

Modeling the etching (or other processing) of a crystalline substance through the
movement of a few hundred polygons is very efficient. Since a surface-based process
simulator can compute a new crystal surface in seconds, it makes a handy tool for interac-
tive exploration of microfabrication process sequences.
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