Computing the Generalized Singular Value Decomposition *

Zhaojun Bai'!  and James W. Demmel?

Abstract

We present a new numerical method for computing the GSVD [36, 27] of two matrices A
and B. This method is a variation on Paige’s method [30]. It differs from previous algorithms
in guaranteeing both backward stability and convergence. There are two innovations. The first
is a new preprocessing step which reduces A and B to upper triangular forms satisfying certain
rank conditions. The second is a new 2 by 2 triangular GSVD algorithm, which constitutes the
inner loop of Paige’s method. We present proofs of stability and convergence of our method,
and demonstrate examples on which all previous algorithms fail.

Subject Classifications: AMS(MOS): 65F30; CR:G1.3

1 Introduction

The purpose of this paper is to describe a variation of the Paige’s algorithm for computing the
decomposition described in the following theorem.

Theorem 1. Given a real m x n matriz A and p X n matriz B where rank((AT, BT)T) = n,
the following generalized singular value decomposition (GSVD) of A and B ezists:

UTAQ = TR, VTBQ = IR, (1)

where U, V and Q are orthogonal matrices, R isan x n nonsingular upper triangular, and

r g n—-r-gq r g nm—-T-—g
T I p—n+r1 {0
Y1=4¢ Dy , Y2=4¢ D, . (2)
m-—r—¢q Oy n—r—gq I

I and I, are identity matrices, O1 and O, are zero matrices,

Dl = diag(ar+17"-aar+q)v D2 = dia'g(ﬂr+17"‘9ﬂr+q)’ (3)

1> @1 2 2 arpg >0, 0< fryr <00 < Bryg < 1, (4)
a?-}-ﬂ?:l, i=r+1,...,7r+¢q.

(The assumption that rank((AT, BT)T) = n is not essential but simplifies exposition.)
If we denote

X =QR™Y,

*This work was supported in part by NSF grants ASC-8715728 and ASC-9005933. The first author was also
supported in part by NSF grant ASC-9102963.

tDepartment of Mathematics, University of Kentucky, Lexington, KY 40506

{Computer Science Division and Mathematics Department, University of California, Berkeley, CA 94720




The Direct GSVD Algorithm 2

then the GSVD can also be expressed as:
UTAX =%,, VIBX=%, (5)

The GSVD was first introduced by Van Loan [36] in form (5). Form (1) is used by Paige and
Saunders [27], and is more amenable to numerical computation. The GSVD is a generalization
of the singular value decomposition (SVD) in the sense that if B is the identity matrix, then the
GSVD of A and B is the SVD of A. Moreover, if B is nonsingular, then the GSVD of A and B is
equivalent to the SVD of AB~!. The pairs (i, 5;) defined as

a; =1, B;=0, for i =1,...,7,
a; and G; in(3), for i=7r+1,...,7+4q,
a;=0, Bi=1, fori=r+qg+1,...,n,

are called generalized singular value pairs (GSV pairs). The quotient A; = a;/f3; is called a general-
ized singular value (GSV). Note that the A; are the square roots of the eigenvalues of the symmetric
definite pencil ATA — ABTB.

Other closely related decompositions are the CS decomposition of an orthonormal matrix [34],
and the product singular value decomposition (PSVD) of two matrices [21, 16]. The numerical
technique developed in this paper can be extended to deal with the numerical computation of these
decompositions. We will not go into the details in this paper.

The GSVD of two matrices A and B is a tool used in many applications, such as the Kronecker
canonical form of a general matrix pencil [23], the linear constrained least-squares problem [38],
the general Gauss-Markov linear model [29, 3}, the generalized total least squares problem [22], and
real time signal processing [32]. As a further generalization of the SVD, Ewerbring and Luk [13],
Zha [39] proposed a SVD for the product of matrix triplets, and De Moor, Golub and Zha [7, 8]
have generalized the SVD into a factorization of any number of matrices. For all these applications
and multi-matrix generalization of the SVD, the development of a stable and efficient algorithm
for computing the GSVD of two matrices is a basic problem.

Stewart [34] and Van Loan [37] proposed an algorithm for computing the GSVD. Their method
has two phases: The first phase is to compute the QR decomposition (or the SVD if necessary)
of G = (AT,BT)T. The second phase is to compute the CS decomposition. In order to avoid
possible numerical difficulties from combining matrices A and B with very different scalings, Paige
proposed a Jacobi-Kogbetliantz approach [30], which we refer to as the direct GSVD algorithm.
Paige’s method applies orthogonal transformations to A and B separately. It also has two phases:

(1). Reduce matrices A and B to the following forms

T g n—-r—g

n
T Au A12 A13
UTAP = ¢ 0 0 0 z;_n@), (6)
m-r—-q\ 0 0 0
T q n—-r—gqgq n
r B Bi2 Bis n I3
VIBP = ¢ 0 B Baa = . (0), (7)
p—r—q\ 0 0 0 P

where U and V are orthogonal matrices, P is a permutation matrix, A1 is nonsingular upper
triangular, By; is upper triangular, and if ¢ > 0, B2y is nonsingular upper triangular.

(2). Compute the GSVD of two n x n upper triangular matrices by a generalized Kogbetliantz
algorithm?®.

1We may need to add zero rows or columns to get square matrices. This is not essential but it simplifies the
description.



The Direct GSVD Algorithm 3

Phase 1 can be done first by the QR factorization with column pivoting of matrix A [18],
meanwhile permuting the columns of matrix B in the same way, and then the QR factorization
with column pivoting of the last 7 — r columns of B; this yields forms (6) and (7). Phase 2 is
iterative. In particular, if matrix B has full column rank, then phase 2 is mathematically equivalent
to computing the SVD of the triangular matrix RS 1.

In this paper, we will present a new numerical method for computing the GSVD. This method
is a variation on the method of Paige just presented. Hereafter, we assume that A and B have been
preprocessed to the upper trapezoidal forms (6) and (7). There are two innovations. The first is
as follows: In Paige’s paper [30], it is assumed (without providing detail) that in (7) the nonzero
part of VT BP has full row rank. It is known that it is complicated to choose V to guarantee this
condition. In our algorithm, we do not require this condition, and so we can simply use conventional
QR factorization with column pivoting.

The second innovation is a new 2 by 2 triangular GSVD algorithm, which constitutes the
inner loop of Paige’s method. We present proofs of stability and convergence of our method, and
demonstrate examples on which all previous algorithms fail.

The rest of the paper is organized as the follows: Section 2 reviews the Kogbetliantz algorithm
for computing the SVD of a triangular matrix, and Paige’s generalization of the Kogbetliantz
algorithm for computing the GSVD. Section 3 explores the inner loop of the Paige’s algorithm,
which includes the GSVD of a 2 x 2 matrix in term of exact and floating point arithmetic. In
section 4, we describe the overall algorithm. The last section reports the results of numerical
experiments. In appendix, we include Demmel and Kahan’s 2 x 2 triangular SVD code, which has
not been published in its entirety before, and plays an essential role in the algorithm.

2 Paige’s GSVD Algorithm

To describe Paige’s direct GSVD algorithm, we first review the Kogbetliantz algorithm [24] for
computing the SVD of an upper triangular matrix A. Then we describe Paige’s algorithm for
computing the GSVD of A and B with B is nonsingular. Finally, we discuss how to generalize the
idea to the case where B is ill-conditioned or singular.

2.1 Kogbetliantz algorithm for the SVD of a triangular matrix

The Kogbetliantz algorithm is a Jacobi-like scheme which is based on the following observation.
At the kth (7, 7) transformation, let
@ s
Al — 11 1)
! ( 0 aj )

be the 2 x 2 submatrix subtended by rows and columns 7 and j of A. Let the rotation matrices

Cu Su Cy, 8
Ux = Lo Ve= | & v,
—S8y Cu —Sy Gy

UEAiVie = ( h Yii )
22

is the SVD of A;;, where ¢, = cos ¢k, s, = sin¢y and ¢, = COS Pk, Sy = sin¢;. Let U and Vi be
identity matrices with (i,7), (3,7), (j,7) and (7, 7) elements replaced by the (1,1), (1,2), (2,1) and
(2,2) elements of Uy and V}, respectively. Then let

be chosen so that

Aks1 = OF AV,



The Direct GSVD Algorithm 4

where Ag = A. After the first sweep through all the (i,7) in row cyclic order, an upper triangular
matrix A will become lower triangular. The second sweep will restore upper triangular form,
and so on [21, 20]. There is a literature on the different sweep orders for sequential and parallel
computations besides the conventional row and column order, for example [26, 14].

Forsythe and Henrici [17) considered the convergence of the row cyclic Kogbetliantz algorithm.
Fernando [15] proved a global convergence theorem under the weaker assumption that one of the
rotation angles {@x, ¥} at each (i,7) transformation lies in a closed interval J C (-7/2,7/2),ie.,

o€ dJ or P € J, k=1,2,... (8)

This is the condition that our algorithm will satisfy, thus guaranteeing its convergence. Further-
more, Paige and Van Dooren [31] have shown that the cyclic Kogbetliantz algorithm ultimately
converges quadratically when no pathologically close singular values are present. In the case of
repeated or clustered singular values, the quadratic convergence rate for a triangular matrix has

been proved in [2, 6].

2.2 The Generalization of the Kogbetliantz Algorithm for the GSVD

Let us start by computing the GSVD of two upper triangular matrices A and B with B nonsingular.
It is known that this is equivalent to the computation of the SVD of the triangular matrix C =
AB-!. Of course, it is unwise to form the matrix C explicitly. We note that a sweep of the
Kogbetliantz algorithm applied to the upper triangular matrix C will make it lower triangular.
This means that there are orthogonal matrices Uy and Vj such that

vrcv, = (. (9)
where C; is a lower triangular matrix. Recasting (9) as
vla=c VB,
we see that if we can determine an orthogonal matrix @1, which satisfies
UTAQ: = A1, V' BQ1 = By,
where A;, By are lower triangular, then equivalently, we have
Cy = A1B7.

This reveals that using a sweep of Kogbetliantz algorithm on an upper triangular C to get a lower
triangular C; is equivalent to the problem of finding orthogonal matrices Uy, V) and @ so that
U, and V; transform the implicitly defined upper triangular matrix C to lower triangular form C'y,
and meanwhile UTAQ; and VT BQ; are lower triangular. Heath et al [21], Paige [30] and Hari and
Veseli¢ [20] have shown that we may take advantages of the triangular structures of A and B and
the ordering of sweeps to get the desired orthogonal transformations Uy, V3 and @, without forming
B-1 and AB-! explicitly. Specifically, at transformation (i, j) of the Kogbetliantz algorithm, the
needed 2 x 2 submatrix C;; of C' can be obtained by

-1
- aii Qi bii by
=asn= () () o

where a;; and b;; are the elements subtended by the rows and columns ¢ and j of the updated A
and B, respectively. So using the SVD of Cj; ( UgCin/ij = diag(¢;;,¢;;)) we have

T Cii
U A = ( N )V,-}B,-j.

€



The Direct GSVD Algorithm 5

This shows that the corresponding row vectors of U 5 A;; and Vg B;; are parallel. Hence if we choose
rotation @;; so that V{jrB,-jQ,-j is lower triangular, then UgAijQ;j must also be lower triangular,
which is just the GSVD of the 2x2 triangular matrices A;; and B;; as desired. With this observation,
we see that after completing a sweep in row order, the desired Uy, Vi and @, are the products
Ur2U13,y ooy Un_10y V12Vi3, ..., Vo1 n and Q12Q13,-- -, @n_1.n, respectively. Let us illustrate the
idea in detail for 4 x 4 matrices A and B. 2 C = AB~! can be written as

a); @412 413 4ai4 c11 €12 €13 Ci4 b1 b1z bz big
azz @23 0424 _ C22 €23 C24 bao ba3 boy (11)

azz a34 €33 C34 b3z b34

a44 C44 bas

For the (1,2) transformation, the needed 2 x 2 matrix C12 is

-1
c c a a b b
Cip = ( 1 C:: > = A;4B7} = ( H a; ) ( 1 b;z ) .

By computing the SVD of the 2 x 2 matrix Cy2: UlTQCmVlz = diag(éy1,22), we have

C
UbA, = ( " Ers )ngBlz-

This implies that the corresponding row vectors of ULAj2 and V5 By, are parallel. Hence if Q12
is chosen such that V;LB12Q1 is lower triangular, then U, A12Q12 must also be lower triangular.
Applying this to equation (11), we have

U5AQ1, = ULCVi, - VIS BQra,

or componentwise,

dir 0 a3 an tn 0 ¢i3 Cia by 0 bz bg
dgy Ggp g3 G4 | _ éyy C3 €4 ba1 b2 baz bay
asz @Gss | €33 C34 bz bsa

Q44 Caq baa

This completes the (1,2) transformation. Next for the (1,3) transformation, we have

. ) . . - - -1
c _(611 613>_<f111 013)(1111 b13>
13 = . = ) - )
€33 33 b33
Just like (1,2) transformation, we determine rotation matrices U3, V13 and Q13 such that
U5(05A012)Q15 = UK(U5CV12)Vis - Vis(Vi5BQ12) @1,

and componentwise,

d]] 0 0 ém 611 0 0 614 511 0 0 514
Gg1 @2z @3 G4 | _ | €21 Ca2 é23 Cog bar byy Doz boa
az asz Gas | €33 €34 bay bas bs4

d44 é44 844

2By incorporating Gentleman’s suggested row and column permutations [30] after each transformation, we need
only use an upper triangular array to carry out the computation. But for clearer exposition, we will use the entire
square array in this paper.



The Direct GSVD Algorithm 6

Following this procedure until the end of the row cyclic sweep, we obtain lower triangular matrices
A; and B;. Then the next sweep consists of zeroing lower off-diagonal elements of C = A1 Byt in
column order to return it to upper triangular form, and so on.

Observing an individual transformation, we see we are actually carrying out the Kogbetliantz
algorithm to diagonalize the implicitly defined matrix C. At convergence, this gives U T(AB-1)V =

¥, a diagonal matrix. That is
UTAQ=x-VTBQ

with the i-th row of UTAQ parallel to the i-th row of VTBQ, which is the desired GSVD of A and
B.

In general, if B is ill-conditioned with respect to inversion or B is singular after phase 1, then
this approach is not recommended, since the 2 x 2 matrix Bj; in (10) may be ill-conditioned or
singular. To circumvent this, Paige {30} suggests using

Ci; = Ajj-adj(Byj) = ( . aliJ: ) ( bii _bi{ ) (12)

a’]] 11

instead of C;; in (10) in transformation (z,7), where adj(B;;) stands for the adjugate of matrix
Bij. Since Bjj - adj(B;;) = det(Bi;)/, it seems to be direct and natural to use adj(B;;) instead
of B,-;I. The incorporation of (12) into the Kogbetliantz algorithm circumvents the problem of
ill-conditioned B;;. But it also introduces two questions. First, are there still rotation matrices
Uij, Vij and Q;; such that U%TAUQ,-]' and VgB;jQij are the GSVD of 2 by 2 matrices 4;; and B;;?
More generally, when B;; is singular, does the scheme still gives the GSVD of A;; and B;;? Second,
does the scheme converge to our required GSVD forms of A and B? The following section will
address these questions.

3 The GSVD of 2 by 2 Triangular Matrices

As we showed in the last section, the kernel of computing the GSVD using a generalized Kog-
betliantz algorithm is the computation of the GSVD of 2 by 2 matrices. Substituting adj( B;;) for
B,-;l in the 2 x 2 GSVD circumvents the problem of ill-conditioned B;;. However when the idea is
extended to two n X n matrices A and B of the forms (6) and (7), the 2 x 2 matrix B;; might well
be exactly singular. This immediately raises the questions of how to compute the 2 x 2 GSVD,
and how to guarantee eventual convergence starting from the forms (6) and (7). In this section,
we first discuss the computation of the 2 x 2 GSVD for different possible 2 X 2 matrices A;; and
B;; in exact arithmetic, and then we will discuss the computation in presence of the floating point
arithmetic.

3.1 The 2 x2 GSVD in exact arithmetic

When A and B are processed to have upper trapezoidal forms (6) and (7), we see that transforma-
tion (i,7) in row order, the 2 X 2 matrices A and B are of the forms3

_ appr a2 _ b1 b2
A—-(O (122) and B—(O b22)1 (13)

where a;; # 0, if A is nonzero. We have the following lemma:

3For simplicity of exposition, we drop the subscript ij from the 2 by 2 triangular matrices A;; and Bij, which are
obtained by subtending rows and columns 1 and j of n x n matrices A and B.



The Direct GSVD Algorithm 7

Lemma 2. There exist 2 x 2 rotation matrices U,V and (), such that

A:UTAQ=<(}” 0 ) B:VTBQz(’.’“ 0 )

asy Q29 b21 b22

is the GSVD of A and B. Moreover

(i). @11 # 0 if A is nonzero.

(ii). byy # 0 if both A and B are nonzero, unless A = aal a(1)2 and B = b(l)l b(1)2 ,
and first rows of A and B are parallel. In this case, U =V =1, and @ is chosen such that

AQ:(aélg), BQ:(B(I)lg). (14)

Proof. The proof proceeds by considering all possible cases. If B is nonsingular, the lemma
follows immediately by the discussion in section 2.2. If A or B is zero, the results are trivial. The
remaining cases are for B singular but not zero. This includes the following three cases:

_ [ b1 b2 . . _ . _ [ 0 aipzbyy —anbiz | _
(1). B = ( 0 0 ) with by; # 0. In this case, C = A-adj(B) = ( 0 ambry | =

( 8 212 . If ¢;5 = 0, i.e., the first row vectors of A and B are parallel, then if c3; is also equal
22

to zero, U = V = I. @Q;; is chosen to zero (1,2) entry of A and must also zero the (1,2) entry
of B, yielding the lemma for the special case (14). If cz2 # 0, then both U and V' are chosen as
permutation matrices. @ is chosen to zero the (1,2) entry of UTA.

If ¢12 # 0, then U is chosen to zero (2,2) entry of C and V' is a permutation matrix. VTB has
second row nonzero. The lemma follows by choosing @ to zero (1,2) entry of UTA.

(2). B = 0 b ) with bgs # 0. Hence C = A -adj(B) = an ( bar =biz ) ey o,

0 b22 0 0
and V is chosen to zero (1,2) entry of C, i.e. to zero the (1,2) entry of B. The lemma follows by
choosing Q to zero (1,2) entry of A.

0 0 0 0

we can choose U = I, V being a permutation. Therefore the second row of VTB is nonzero. The
lemma follows by choosing @ to zero (1,2) entry of UTA. O

(3). B = ( 0 biz ) with by # 0. We see that C = A-adj(B) = ( 0 —anbu ) Then

It has been shown by induction (see [30, 4] ) that with the properties of Lemma 2, a sweep in
row order with possible reordering takes the initial upper trapezoidal forms (6) and (7) of A and
B into the forms

r n—-r T n-—rT

_ T _T Aun 0 T T B 0
Al_UlAQl—n—T‘<O 0 )a Bl_VlBQl_n—T<B21 B22 2 (15)

where Aj;, Bi; and By are lower triangular, and Ay, By, are nonsingular. By may be singular,
but there must exist nonzero diagonal elements in the nonzero rows of Bi;.

;From (15), we see that at transformation (7, j) of the column order sweep, the 2 X 2 matrices

A and B are of the forms
a;; 0 bin O
A= , B= , 16
( azy Q22 ) ( ba1 b2 > ( )



The Direct GSVD Algorithm 8

where if A is singular, then A is either the zero matrix or its second row is zero. If bg2 = 0, then
by; = 0. For the GSVD of these 2 by 2 lower triangular matrices, we have the following lemma.

Lemma 3. There ezist rotations U, V and Q such that
. iy @ - by b
A=vUTag=( " ) B=vTBQ=|"" V|,

Q ( 22 Q bos
is the GSVD of A and B, and moreover

(). a1 # 0 if A is nonzero.

(11). byy # 0, if both A and B are nonzero. If by = 0, then byy = 0.

Proof. The proof is by analogy with the proof of Lemma 2. O

The proof of Lemma 2 and 3 suggest the following algorithm to compute the GSVD of 2 by 2

triangular matrices.

Algorithm 4 (The 2 x 2 GSVD algorithm).
form C = A -adj(B);
compute the SVD of C: UTCV = diag(oy,02);
form the products G = UTA, H=VTB,
if A and B are upper triangular matrices
if A is nonzero, then
determine Q to zero out (1,2) entry of G;
else
determine @ to zero out (1,2) entry of H;
end if
A=GQ; B=HQ; a12=0; b2 =0;
else if A and B are lower triangular matrices
if A is nonsingular, then
determine Q to zero out (2,1) entry of G}

else
determine @ to zero out (2,1) entry of H;
end if
A=GQ; B=HQ; an=0; by =0
end if

By induction, it has been shown [30, 4] that under the properties stated in Lemma 3, after the

second sweep in column order, we have

T T2 n-rT T T2 n—r

T Ayn Az Ass ™ 0 0 0
Ay = UF A1Q2 = 12 0 Ay A |, Ba=VFBiQa= 7 0 By; Bas
n-—r 0 0 0 n—r 0 0 ng

(17)
where Aq1, Agz, B2z and Baz are nonsingular upper triangular matrices, rq + 72 = . Hence there is
a unique (n — 1) X (n — r1) upper triangular matrix G such that

Az Aas | _ G By B
0 0 0 Basz |’
This implies that the rest of computation is mathematically equivalent to computing the SVD of the
implicitly defined matrix G. By the global convergence theory of the cyclic Kogbetliantz algorithm



The Direct GSVD Algorithm 9

(see section 2.1), we have

G-z, (18)
where T is a diagonal matrix, and the convergence is ultimately quadratic, provided the rotation
angles of U and V obey (8). (18) implies that

A2 i ElR, B2 - E2R

which is the desired GSVD of 4 and B.

3.2 The 2 x 2 GSVD in Presence of Floating Point Arithmetic

In this section, we will use the usual model of floating point arithmetic: barring over/underflow,
fl(z oy) = (1+ 8)(z o y) where o is one of the basic operations {+,—, X, +} and |§] < € where € is
the machine roundoff. This model eliminates machines like Crays without guard digits, but with
some effort all the results can be extended to these machines as well.

When using floating point arithmetic, roundoff can cause the row vectors of A and B computed
by algorithm 4 not to be parallel. This means A and B are not part of the GSVD of the 2 x2 matrices
A and B, or in short, the algorithm is not convergent. Another possibility is that the computation
may not be backward stable, because the entries a2 or b1o (@gy or by1) which are explicitly set to zero
by algorithm 4 may be much larger than O(e)||A|| and O(¢)|| BJ|, respectively. Thus, the algorithms
in (30, 21, 4], which use SVD of 2 by 2 triangular matrix to guarantee convergence, do not avoid
numerical instability. On the other hand, to guarantee numerical stability, it has been suggested
in [19, 5] that after computing the SVD of the 2 x 2 triangular matrix C: UTCV = diag(oy,02),
one should use U (say), to form G = UTA, then determine @ such that GQ is lower triangular,
and finally determine V such that VT BQ is also lower triangular. However, UTCV might not be
diagonal at all, which results in nonconvergence. In section 5, we will present numerical examples
illustrating the failures of these schemes. In this section, we will propose a new algorithm to
overcome these shortcomings. We first discuss the two fundamental algorithmic building blocks:
SROTG and SLASV2.

SROTG takes f and g as input and computes ¢ = cos§, s = sinf and r so that

(-§i><§>=(6>~ (19)

Clearly one could simply compute ¢ = f/sqrt(f%+ g%) and s = g/sqrt(f + g*), but this is subject
to spurious over/underflow. A more robust way to compute ¢, s and 7 is as follows:

SROTG(f,yg,c,s,7)

if (f = 0) then
c=0;s=1;r=g;

elseif (| f| > |g]) then
t=g/fiy=sqrt(l+1txt)
c=1/y;s=t*c;r= fxy;

else
t=f/g,y=sqri(1+txt);
s=1/y;e=t*sr=gxy;

end if

Barring underflow and overflow (which can only occur if the true value of r itself would nearly
overflow), SROTG computes ¢, s and 7 to nearly full machine accuracy.



The Direct GSVD Algorithm 10

The second basic algorithm is SLASV2, which computes the SVD of a 2 x 2 upper triangular

matrix
Cu Su f g ¢y =8 \ (o1 O
—8y €y 0 h Sy ¢ ) A0 o2 )

Barring over/underflow, SLASV2 computes all of ¢y, Su, Cy, Sy, 01 and o, to nearly full machine
precision. This high accuracy is essential in the proof of correctness of the overall algorithm. This
algorithm was described briefly in [9], but not published in its entirety. For completeness, we include
a listing in the appendix of this paper. As discussed in [9], the high accuracy of SLASV2 is based
on the fact that the algorithm uses formulas for the answers that only contain products, quotients,
square roots, sums of terms of like sign, differences of computed quantities only when cancellation
is impossible, and the difference |f| — |h| of the input data, which, if cancellation occurs, is exact .

Using the algorithms SROTG and SLASV2, we now give a high-level description of an algo-
rithm for computing the GSVD of 2 by 2 upper triangular matrices. Later we will show that the
algorithm guarantees numerical stability and convergence. We will use the notation |X| to denote
the componentwise absolute value of the matrix X.

Algorithm GSVD22 (The GSVD of 2 by 2 upper triangular matrices): Let the 2 X 2 upper
triangular matrices A and B be denoted

_ a;l a2 _ bll bl?
A—(O 1122>’ B_(O b22)'

The following algorithm computes the orthogonal matrices

Cu Su €y Sy cq Sq
U= ) V= ) Q = ’
—8y Cy —Sy Cy —Sg g

such that :
A:UTAQ:(““ -0>, B:VTBQ=<I~)“ 0)

&21 a22 b21 b22

are the GSVD of A and B. In the interest of brevity, we omit the part for the 2 by 2 lower triangular
matrices, which can be described similarly.

compute C = A * adj( B).
use SLASV?2 to compute the SVD of C: UTxC+V = L.
compute G =UT+ A, H=VTxB.
compute G = |U|T « |A|, H=|V|T«|B|.
/* The angles of U and V are chosen to satisfy the convergence condition. */
if |cu| > |su] or |cu| > |sy] then
/* Choose Q to zero out (1,2) entries of UTA and VTB */
if g12/(lgnl + lgr2]) < haz/(lh11| + [haa|) then
call SROTG(—g11, 912, Cq» Sgs T) /* Compute Q) from UTA */
else
call SROTG(~hi1, h12, ¢4, 84, T) /* Compute @ from VIB */
end if
A=Gx*xQ;B = H*Qiayp=0;b1=0.

*This exact cancellation property, which is essential for the accuracy claim of SLASV2, requires a guard digit and
so fails on machines like the Cray. On a Cray we retain backward stability of SLASV2, but lose forward stability.
This is why a different proof is needed on a Cray.



The Direct GSVD Algorithm 11

else
/* Choose Q to zero out (2,2) entries of UTA and VT B and then swap rows. */
if gaa/(lg21] + l9221) < hoa/(|haa] + |ha2|) then
call SROTG(—g21, 922, Cq, S¢>T) /* Compute Q from UTA */
else
call SROTG(—=h21, haz, ¢q, 54, 7) /* Compute Q from VTB */
end if
A=G*Q;B=Hx*Q;iay =0;by =0.
/* Swap, where P = ( (1) —(1) ) */
A«—P*A;B«—P*B;
U—~UxP;V~VxP;
end if

We now present a theorem about the stability and convergence of the above algorithm. Quan-
tities with bars (like C') denote actual computed quantities.

Theorem 5. The A and B computed by Algorithm GSVD22 have the following properties.
(a) Both are triangular;

(b) They are computed stably, i.e. there exist 6A and 6B, where ||[6A|| = O(e)||A]| and ||6B|| =
O(o)||B||, and orthogonal U,V and Q such that

A=UT(A+64)Q, B=VT(B+6B)Q,

(c) The rows of A and B are within O(¢)||A|| and O(¢)|| B, respectively, of being parallel.

Proof. Without loss of generality, we assume that ||A|| = 1, [|B|| = 1. We only prove a branch
of the algorithm where @ is computed from UTA and used to zero out the (1,2) entries of UTA
and VT B; the proof for the other cases is similar.

We first note the following simple facts about the algorithm:

1. C=(A+6A;)-adj(B + 6B,) where §A; and 6B, are small componentwise relative pertur-
bations of A and B.

2. The computed U and V from SLASV2 satisfy U = U + 6U, V =V + 6V, where UTCV is
the exact SVD of C and 86U (6§V) is a small componentwise relative perturbation of U (V).

3. The roundoff error in the computed g;; (k;;) is bounded by 2¢g;; (2ei:z,').

We note that triangularity (a) holds by construction. Let 5o = §y5¢/(|711] + |g12]), and 7 =

}:1126/(|7zu| + |R12]). Then 7, (1) is an approximate bound on relative error of @ if it is computed
from UTA ( VTB). In the branch of the algorithm we consider, 7, < m. There are two cases:

Case 1: 7, = O(¢). Then the computed @ = Q + 6Q has relative errors of size O(¢) in each
component; here @ is exact rotation such that UT(A + 64;)Q and VI(B + §B,)Q is the exact
GSVD of A+ 84, and B + §B;. Since 5, = O(¢), U has O(e) relative errors in each component, so

fUGQ) = GQ+0(e)=TUTAQ + O(e)
= (U+6U)T(A-64148641)(Q+6Q)+ O(e) = UT(A+ 841)Q + O(¢)



The Direct GSVD Algorithm 12

is within O(€) of the exact GSVD of A+ §A;. Similarly, fHQ) = VT(B+6B;)Q+ O(¢) is within
O(¢) of the exact GSVD of B + éB1. This proves assertion (c). Assertion (b) follows since the
entries explicitly set to zero are O(¢) and so

A= flGQ)+0(e) = UT(A+6A41)Q +O(e) = UT(A+ 64)Q

and
B = fIHQ) +0(e) = V(B +6B)Q + O(c) = V(B + ¢B)Q
where [|6A|| = O(¢) and ||§B|| = O(e).

Case 2: 7, > €. First we prove assertion (c), then (b). The top rows of A and B are trivially
parallel by construction (their second components are zero), so we only consider the bottom rows.
From the full machine accuracy of the singular value decomposition of 2 by 2 triangular matrix
computed by SLASV2, we know that bottom row of UT(A+6A,) and the bottom row of VI(B+
§B1) are parallel. Thus the bottom rows of G = UT(A+8A41)+O(¢) and H=VT(B+6B;)+0(e)
are within O(€) of being parallel. So for any Q, the bottom row of fI(GQ) = GQ + O(¢) and the
bottom row of fI(GQ) = GQ + O(e) are within O(¢) of being parallel. This proves assertion (c).

To prove assertion (b), we need to show the (1,2) entry of fI(HQ), which is zeroed out to get
B, is O(¢). (Q is chosen to accurately zero out the (1,2) entry of fI(GQ).)

FU(AQ)12) = h118,(1 4 O(€)) + h128(1 + O(€)) = h11q + h12€, + O(€).
It is easy to see that ) .
hy1 = hi1 + O(€),  hiz = hia + O(e).

Also
O(e)

YU
Next, by construction, we know that ¢, = ¢, + é¢, and &, = s; + 654, where |6cg|, |684] < Ma. Thus

IFI(AQ)N2)l = I(hin + O(€))(sq + 854) + (h12 + O(€))(cq + 8¢g) + O(e)]
|(hllSq + h126q) + (huésq + hlgécq) + O(€)|

- _ € =
|ha1| + [hiz] = —h12 =
Yl

< [har] [85q] + IRzl I6¢g] + O(€)
< (Jha1l + |R12])ne + O(€)
< 99, 4o =0

b

since 1, < mp. This proves assertion (b). O.

4 Summary of the Complete Algorithm

Summarizing the above algorithms, we present a high-level version of Paige’s direct GSVD algorithm
for computing the GSVD of two upper triangular matrices A and B of the forms (6) and (7). Let &
be a user chosen parameter specifying the maximum number of cycles the algorithm may perform
(say, k = 20). Let P;; be the identity matrix with rows ¢ and j interchanged.

Algorithm GSVD (The Direct GSVD Algorithm)
/* Initialization */
cycle 1= 0;
l:=7+q+1;
U:=1I;V:=1; Q:=Iif desired;



The Direct GSVD Algorithm 13

/* Main loop */
if nonconvergence and cycle < & do
cycle := cycle + 1;
do (¢, 7)-loop
/*2x2GSVD */
call Algorithm GSVD22 to find U;, Vij, Qij from ai, aij, ay; and by, b;j, b;;;
/* Updating */
A= UgAQij;
B := V;; BQij;
U:=UU;; Vi=VVy; Q= QQ; if desired;
/* reordering */
if creates a nonzero at (J,j) position of B, where j > [, then

A:= APy;;
B:= P[jBP]]‘;
Vi=VVy; Q:=QPF; if desired;
I:=1+1
end if

end of (7, 7)-loop
convergence test if cycle is even.
end if

The (i,)-loop in the above algorithm can be simply chosen as the standard cyclic pivot sequence,
i.e., in odd cycle, (4, j)-loop is row ordering (1,2), (1,3), ..., (1,n),(2,3),...,(2,n),...,(n—1,n),
and in even cycle, (i,7)-loop is column ordering (2,1), (3,1), ..., (n,1), (3,2), ..., (n,2), ...,
(n,n —1).

It is natural to use the parallelism (linear dependency) of the corresponding row vectors of
UL AQy and VIBQ) as stopping criterion of the iteration. To measure the parallelism of two
k-vectors a and b in high accuracy and against possible over/underflow, we propose the following

scheme: first compute the QR factorization of the k x 2 matrix (ﬂ%ﬂ’ ﬂ%ﬂ)

a b Hil M2
QT (_1 _> = 0 H22 [
lal* Tiel o o

and then compute the singular values y; > 72 > 0 of the 2 X 2 upper triangular {u,;}. It is clear
that
par(a,b) = 72
measures the parallelism of these two vectors. If vectors a and b are exactly parallel, then v2 = 0.
Using the above described scheme as stopping criterion in algorithm GSVD, let a; and b; be
the i-th row vectors of A and B, respectively, at the end of even cycle, we take

n

error = Z par(a;, b;)
=1

as an indicator of convergence. For a given tolerance value tol, if

error < n - tol,



The Direct GSVD Algorithm 14

then the corresponding row vectors of A and B are tol-parallel. This means that there are pertur-
bations of size at most n - tol - ||a;|| in row a; and n - tol - ||b;]] in row b; that make them exactly
parallel. This means that after making these perturbations, there would exist scalars «; and §;
such that

Bia; = ab;, i=1,...,n (20)
where o; and B; can be chosen so that a? + 3% = 1. From (20), it is seen that there would then be
an upper triangular matrix R, such that

UTAQ = diag(a;)R, VTBQ = diag(8i)R,

which is just the desired GSVD of matrices A and B, a; and §; are the GSV pairs.

We note that the algorithm we have described does not give the GSV pairs in the order as
stated in (4) but this can be achieved with an additional sweep after convergence.

5 Numerical Experiments

The numerical experiments we discuss here first compare our new 2 x 2 GSVD algorithm with
previous 2 x 2 GSVD algorithms developed by Paige [30], Heath et at [21], Bai[4], Hammarling [19]
and Bojanczyk et al [5] etc. Then we will evaluate our direct GSVD algorithm for different cases
of random matrices A and B, measuring the backward stability, accuracy, average total number of
sweeps, rate of convergence, elapsed time when computing GSV pairs only, and elapsed time when
computing both GSV pairs and orthogonal matrices.

All tests were performed using FORTRAN on a SUN sparc station 1+. The arithmetic was IEEE
standard double precision[1], with a machine precision of € = 275 =~ 10-1¢ and over/underflow
threshold 10%397. We use tol = 10~!* as the stopping criterion.

5.1 Backward Stability and Accuracy

Before we proceed, it is appropriate to state what we mean by the backward stability and the
accuracy of the direct GSVD algorithm. The backward stability is defined as follows: Let the
computed orthogonal matrices be U, V and Q, the diagonal matrices be £, and ¥4, and the upper
triangular matrix be R. Then the following conditions should be satisfied:

10T - Ilp~e VTV -Ilr~e |QTQ-IlF=e (21)
”(—]TAQ_ - i1RHF ~ e ”VTBQ— - SQRHF ~ (22)
n-||Allr ’ n-||Bllr
where || - || is Frobenius norm. These assertions say that to within roundoff error, the computed

matrices U, V and @ are orthogonal, and the rows of UTAQ and VT BQ are parallel.
The accuracy test of computed GSV pairs by the direct GSVD algorithm is based on Sun’s [35]
and Paige’s [28] perturbation bound of the GSV pairs, which says that :

If rank(G) = raniG) = n, where G = (AT,BT)T, and G = (AT, BT)T = (A +
E)T,(B + F)T)T, and the generalized singular values pairs (e, B;) of A and B, and
(i, B;) of A and B are ordered as in (4), then we have

E

F

If we generate the matrices A and B with known GSV pairs, then the above perturbation bound
can measure the accuracy of computed GSV pairs.

\JZ[(%’ —@)2+ (B - )% < V2min{||G |2, IG7MI2} (23)
=1

F



The Direct GSVD Algorithm 15

5.2 The numerical comparison of different 2 x 2 GSVD algorithms

Since the 2 X 2 GSVD is the inner loop of the direct GSVD algorithm, its accuracy and stability
determine the accuracy and stability of the overall algorithm. Several versions have been proposed
in the literature. There are essentially two kinds of schemes:

Scheme I: First compute the SVD of C = A-adj(B): UTCV = X, then form the product of
G = UTA and H = VT B, and finally compute @ from G such that the (1,2) or (2,1) entry of GQ
is zero. Mathematically, it is known that the (1,2) or (2,1) entry of HQ is automatically zero. The
algorithms proposed by Paige [30], Heath et al [21], Bai {4] fall in this category.

Scheme II: First compute the SVD of C = A - adj(B): UTCV = X, form the product of
G = UT A, compute Q so such the (1,2) or (2,1) entry of GQ is zero, and finally compute V to zero
out the (1,2) or (2,1) entry of BQ. The algorithms proposed by Hammarling [19] and Bojanczyk
et al [5] fall in this category.

To demonstrate the failure of the first kind of scheme, the following example shows that in finite
precision, the (1,2) or (2,1) entry of the final B may be much larger than O(¢)||B||:

2 0 10
A_<1 10‘8>’ B—(3 1)'

With the scheme described by Paige [30], Heath et al [21] and Bai [4], for the computed U, V and
Q, we have

N
.-

If we now set the (2,1) entry of B to zero, the backward stability condition (22) is violated for
matrix B, even though

vTcv = (

=™
—

= UTAQ = 0.70710677509009934D + 00 0.21213203455917919D + 01
B ~ \ 0.00000000000000000D + 00 0.28284271491319831D — 07 |’

) ) _PTBQ - ( 0.31622776518779000D + 00 0.94868330465141837.D + 00 )

j=13
©

—0.33959487444334968 D — 08 0.31622776582710133D + 01

S Ot
(&

0.22360679640833827D + 01 0.00000000000000000D + 00
0.17888543605335784D — 16 0.89442719636647925D — 08

To show how Scheme II can fail for the same example, using Hammarling’s suggested method
[19], we have

i = ap \ 0TAQ = 0.70710677509009934D + 00 0.21213203455917919D + 01
- s | ~ \ 0.00000000000000000D + 00 0.28284271491319831D — 07 |’

( by ) _ pTBQ = ( —0.31622776518778994D + 00 —0.94868327069193081.D + 00 )

B = by 0.11102230246251565D — 15 —0.31622776684588585D + 01

Thus stability is achieved, but for the computed U and V, we have

oTCv = —0.22360679640833823D + 01 —0.24012983681642603D — 07
B 0.78163392273857838D — 16 —0.89442719636647908D — 08

which is not within O(¢)||C]| of diagonal form. This means that the computed A and B are not
the GSVD of A and B, and par(@,,b;) = 7.5935 x 109 .

But using our new scheme described in section 3.2, we have

i = 1) = gTAQ = 0.70710677736817096 D + 00 0.21213203448324349.D + 01
- B T\ 0.30374288814267665D — 16 0.28284271491319831D - 07 |’

1) =yTRO = 0.31622776620657461D + 00 0.94868330431182346.D + 00
- ~ \ 0.00000000000000000D + 00 0.31622776582710133D + 01

[~ -1

2

B

k]

1 O

2



The Direct GSVD Algorithm 16
and also
oTCv = 0.22360679640833827D + 01  0.00000000000000000D + 00
= | 0.17888543605335784D — 16 0.89442719636647925D — 08

Thus both stability and convergence conditions are satisfied and par(&l,Bl) = 7.0216 x 10-17.

Recently, Bojanczyk et al [5] proposed a variation of Scheme II, which we refer to as the BELV
scheme. The BELV scheme was originally designed for treating a matrix-triple (A1, Az, As). Tt is
easy to see that the 2 x 2 GSVD of two matrices is a special case when one of the matrices, say
As = I. The BELV scheme does significantly improve Hammarling’s method, but it still suffers
from nonconvergence [5]. Using the BELV scheme, we see that for the following 2 X 2 matrices

A= 100 100 Y . B= 100 100.000001
B 0 0.0001 /’ - 0 0.003 | °

the computed orthogonal matrices U, V and Q by BELV scheme satisfy the stablity conditions
(21) and (22):

i = a \ _ 0TAQ = 0.70710678123422628D — 04 —0.16438067791142968D — 02
- iy | ~ \ 0.00000000000000000D + 00  0.14142135622777383D + 03

B = by \ 7TBQ = 0.21213204616848981 D — 02 —0.49314206025121626D — 01
- by | = | -0.14210854715202004D — 13 0.14142134836229314D + 03

However, the computed U and V' do not diagonalize the matrix C:

gTov = 0.99999994438265301D — 02 —0.64369760606822202D — 14
= | 0.19310930892552092D — 12 0.300000016685205100 + 00

since the off-diagonal elements are much larger than O(¢€)||C|| = 10-'7, and par(a,b;) = 5.6045 X
10-11, j.e., the first rows of A and B are not parallel. But our new scheme algorithm GSVD22
yields

i = a \ _ 0TAQ _ ~0.14142135622777380D + 03 0.00000000000000000D + 00
- i, | =\ —0.16438067791142966D — 02 —0.70710678123422520D — 04
B = by _ VTBQ _ —0.14142134836229312D + 03 0.00000000000000000D + 00
- by | =~ | -0.49314206116154218D — 01 —0.21213204616848981D — 02

and

TV = 0.30000001668520498D + 00 0.135525271560688050 — 19
~ | —0.42351647362715017D — 21  0.999999944382652660 — 02

which is stable and convergent, with par(ay, b1) = 0, and par(az, by) = 9.0122x 10~17. It is possible
to construct more extreme examples to show that the off diagonal elements of UTCV of the BELV
scheme are as large as order O(1).

The above examples show that our new scheme is superior to all previous known schemes.

5.3 Test matrix generation for testing backward stability

To test the backward stability of our GSVD algorithm, we used the LAPACK test matrix gen-
eration suite [10] to generate different types of upper triangular matrices A and B to test the
backward stability of the algorithm. The conditioning of 2 generated upper triangular matrix can
be controlled by the following parameters:



The Direct GSVD Algorithm 17

dist specifies the type of probability distribution to be used to generate the random matrices:
= U: uniform distribution on ( 0, 1 );
= S: uniform distribution on ( -1, 1 );

= N: normal distribution on ( 0,1 ).
cond specifies the reciprocal of the condition number of generated matrix, cond > 1.

mode describes how the singular values d; of generated matrix are to be distributed:
=1:setsd; = 1and d; = 1/cond, : = 2,...,7;
=2 setsd;=1,i=1,...,n—1 and d, = 1/cond;
= 3: sets d; = cond~(=V/(n=1) i =1 .. m;

= 4: setsd,-:l—:;;_ll—(l-%l—d),iz1,...,n;

= 5: sets d; to random numbers in the range ( 1/cond , 1 ) such that their logarithms are
uniformly distributed;

= 6: sets d; to random numbers from same distribution as the rest of the matrix.

We generated 12 separate classes of upper triangular matrices A and B according to different
choices of parameters dist, cond and mode, since this allows us to form different types of matrices
to fairly test the behavior of the algorithm. The 12 classes are as follows:

Class 1: Matrix A was generated by taking dist = U, cond = 10, mode = 6, matrix B by taking
dist = U, cond = 10, mode = 6.

Class 2: Matrix A was generated by taking dist = U, cond = 102, mode = 2, matrix B by taking
dist = S, cond = 10, mode = 6.

Class 3: Matrix A was generated by taking dist = U, cond = 10°, mode = 1, matrix B by taking
dist = N, cond = 10, mode = 5.

Class 4: Matrix A was generated by taking dist = S, cond = 108, mode = 3, matrix B by taking
dist = S, cond = 10, mode = 6.

Class 5: Matrix A was generated by taking dist = S, cond = 10!?, mode = 4, matrix B by taking
dist = U, cond = 10, mode = 5.

Class 6: Matrix A was generated by taking dist = S, cond = 104, mode = 4, matrix B by taking
dist = N, cond = 10, mode = 6.

Class 7: Matrix A was generated by taking dist = N, cond = 10, mode = 6, matrix B by taking
dist = N, cond = 10%, mode = 1.

Class 8: Matrix A was generated by taking dist = N, cond = 10, mode = 6, matrix B by taking
dist = U, cond = 108, mode = 2.

Class 9: Matrix A was generated by taking dist = N, cond = 10, mode = 6, matrix B by taking
dist = S, cond = 10'?, mode = 2.

Class 10: Matrix A was generated by taking dist = S, cond = 10, mode = 6, matrix B by taking
dist = N, cond = 10, mode = 4.

Class 11: Matrix A was generated by taking dist = S, cond = 10°, mode = 4, matrix B by taking
dist = N, cond = 10°, mode = 4.



The Direct GSVD Algorithm 18

Class 1 2 3 4 5 6 7 8 9 10 11 12
n] 5 229 240 2.02 200 2.19 218 207 205 2.00 212 2.0l 193
10 | 3.00 3.01 299 201 3.01 3.00 297 3.0l 2.00 299 3.00 2.00
20| 326 350 3.07 219 3.53 3.30 3.05 321 298 3.23 3.21 2.20
50 | 4.00 4.01 3.99 3.00 4.00 4.00 3.89 4.01 3.00 4.00 4.00 3.00

Table 1: Average Number of double sweeps

Class 12: Matrix A was generated by taking dist = S, cond = 103, mode = 3, matrix B by taking
dist = N, cond = 104, mode = 4.

Thus classes 1-6 consist of well-conditioned matrices B, and the conditioning of matrix A is changed
from well to ill-conditioned. Classes 7-10 consist of well-conditioned matrices A and the conditioning
of matrix B is changed from moderate to ill-conditioned. Classes 11 and 12 consist of moderately
conditioned matrices A and B.

5.4 Test Results

We tested the above 12 classes of matrix pairs of dimension of n = 5,10,20,50. In each class of
dimension 5 we generated 401 random matrices, in each class of dimension 10 we generated 301
random matrix pairs, in each class of dimension 20 we generated 201 random matrix pairs, and in
each class of dimension 50 we generated 101 random matrix pairs. This makes a total of 12,048
different test matrix pairs.

Table 1 illustrates the average number of double sweeps required to converge with the tolerance
value 7 = 1014, where a double sweep consists of a sweep of row ordering and a sweep of column
ordering. None of 12,048 test matrix pairs failed to converge. The observed largest number of
double sweeps required to converge was 5. The backward stability conditions (21) and (22) held
throughout the test. The following quadratic convergence rate of the algorithm is typical of what
we observed:

cycle I 2 | 4 | 6 | 8
error = y 1, par(a;,b;) | 1.5094 | 1.0252- 10~% | 9.4356 - 1077 | 6.4874- 10-1°

where matrices A and B are 50 x 50 matrices, the condition numbers for both matrices are about
104

5.5 Test matrix generation for testing accuracy.

To test accuracy of our algorithm, we generated random matrices A and B with known GSV pairs.
Specifically, let £; = diag(a;) and £, = diag(8;) be the given GSV pairs. Then we used the
LAPACK test matrix generation suite [10] to generate random orthogonal matrices U,V and @
uniformly distributed with respect to Haar measure by the method of Stewart [33], and a random
upper triangular matrix R with specified smallest singular value, and finally formed

A=U-%,-R-QT and B=V-5,-R-Q7T. (24)

Hence the GSV pairs of A and B are known to be (a;, §;). In this way we can generate random
test matrices having any distribution of generalized singular value pairs.

We note that if the test matrices are given by (24), then

IG*1I2" = omin(G) = Omin(R).



The Direct GSVD Algorithm 19

double sweeps for different n

Type a;, B Omin( ) Ar
5 10 20 40

1 U(0,1), U(0,1) 10 |228]3.02]|353| 402 |151.1071
10-6 | 2.02|3.00|3.23| 4.00 |1.21-10-15
10-12 | 2.07 | 3.04 | 345 ] 4.21 |864-10-1°

2 1/i%,1 10 2.01|262|3.00| 3.00 |256-10-1°
106 2.00 | 2.61|3.00| 3.00 |265-10715
10-12 | 2.00|2.61(3.00| 3.10 |9.99-10"15

3 2,1 10 248 | 3.06 | 3.99 | 4.06 |2.52-10"14
10-6 207 |301]399| 4.02 |9.71-1071®
10-12 | 2.75|3.38 | 4.01 | 4.53 | 3.89-10"1¢

4 |1+ mod(in/a+1),1| 10 |1.03]203]3.00]| 400 |7.33.10°
10-5 | 1.00 | 2.26 | 3.04 | 4.02 | 5.11-10-'3
10-12 | 1.08 351|350 459 |195.10-1%

5 | 1-ih(1- Lg)l 10 | 206300355 414 |3.29-10"
1075 | 2.01{3.01(3.62| 4.18 |4.23-10715
10712 | 2.01 | 3.01 [ 3.62| 4.20 |6.05-107%

6 1, cond=(i=1)/(n=1) 10 298 13.00(328] 400 |1.51.1071
10-¢ | 200|277 |3.00]| 317 |298-10"16
10-12 1 2.00|200|3.00| 320 |[1.14.-10715

Table 2: Average double sweeps and accuracy of computed GSV pairs

Hence 0min(R) (the smallest singular value) gives the conditioning of the designed test matrix pair.
If &; and 3; are computed the GSV pairs by the direct GSVD algorithm, then the quantity

1/2
{Z[ i— @)+ —Bi)z]} + Omin(R) (25)

should be O(tol), where tol = 10~ is our stopping criterion.

We designed six different dlstnbutlons of GSV as illustrated in second column of Table 2, where
o; and B; are normalized so that o? 4+ 82 = 1 for i = 1,...,n if necessary, (U(0,1),U(0, 1)) means
that GSV pairs («;, 8;) comes from the normalization of a pair of random numbers from a uniform
distribution on the interval (0,1). cond is the reciprocal of the smallest singular value of the matrix
R in (24). Note that some of the distributions of GSV are well separated, some of them are highly
clustered or multiple.



The Direct GSVD Algorithm 20

5.6 Test Results

We generated several categories of random matrix pairs according to three parameters: the dimen-
sion n, the smallest singular value of R (dmin(R)), and the type of distribution of GSV. We first
separated test matrices with three possible values of Omin(R) = 1,107%,10712, i.e., corresponding
to well, moderately, and ill-conditioned GSVD problems. For each omin(R), we tested matrices of
dimension n = 5, 10, 20, 40 with six different distributions of generalized singular values as showed
in table 1. This makes a total of 3 x 4 x 6 = 72 different classes of matrices. In each class of
dimension 5 we generated 301 random matrices, in each class of dimension 10 we generated 201
random matrices, in each class of dimension 20 we generated 101 random matrices, and in each
class of dimension 40 we generated 51 random matrices, for a total of 10,772 different test matrices.

Table 3 illustrates the average number of double sweeps and accuracy of the algorithm for
different size of matrices. The preprocessing orthogonal transformations of A and B to upper
trapezoidal forms (6) and (7) are performed using LINPACK QR decomposition with or without
the column pivoting subroutine DQRDC [12]. In all test examples, the backward stability conditions
(21) and (22) are satisfied, so we do not report the details here. Given the backward stability, we
can assume that the backward errors E of A and F of B satisfy O(||E||, || Fl]) = O(10 -4y,

The third column in Table 3 is for different conditioned GSVD problems. For each type of
GSV distribution, we let the conditioning (i.e., min(R)) of the GSVD problems vary from well
to moderate to ill-conditioned. The numbers in column 4 to 7 are the average numbers of double
sweeps needed for convergence. The last column of the table is the largest value of A; computed
from the formula (25). We see that all computed results are as accurate as predicted.

Finally, we briefly report timing results. The codes have not been polished intensively in order
to reduce the execution time. The following table illustrates the required time for a 50 by 50 matrix
pair A and B with 5 double sweeps to satisfy the stopping criterion tol = 10-14,

Timing in seconds with tol = 10~

without U, V,Q | with U, V, @

preprocessing 0.28 sec. 1.11 sec.
iteration 13.11 sec. 20.99 sec.

Appendix
The Singular Value Decomposition of 2 X 2 Triangular Matrix - by Demmel and Kahan

In this appendix, for the convenience of the reader, we include Demmel and Kahan’s 2 by 2
triangular SVD algorithm. The algorithm was used in their high relative accuracy bidiagonal SVD
algorithm [9], but the algorithm details were not presented there.

It is known that the singular values of the 2 by 2 upper triangular matrix [ f9 } are the

0 h
values of the unobvious expression 1|\/(f+h)2+g¢% = V(f — k)2 + g2, of which the bigger is
vy and the smaller is 7, = |fh|/71. The right singular vector row (—$y,¢y) turns out to be

parallel to the rows of (f 2 _ ~2 fg). After computing a right singular vector, the corresponding
left singular vector is determined by (Cu,8u) = (few + gSv,hsy)/11. But computing the singular
values/vectors directly from these expressions is unwise because roundoff can destroy all relative
accuracy, and they can suffer from over/underflow in the squared subexpressions even when the
singular values/vectors are far from over/underflow thresholds. Demmel and Kahan have carefully
reorganized the computation as described in the following so that barring over/underflow and
assuming a guard digit in subtraction, all output quantities are correct to within a few units in
the last place (ulps). In IEEE arithmetic [1], the code works correctly even if one matrix entry
is infinite. Overflow is impossible unless the largest singular value itself overflows, or is within a



~

The Direct GSVD Algorithm 21

few ulps of overflow. (On machines with partial overflow, like the Cray, overflow may occur if the
largest singular value is within a factor of 2 of overflow.) Underflow is harmless if underflow is
gradual. Otherwise, results may correspond to a matrix modified by perturbations of size near the
underflow threshold.

SUBROUTINE SLASV2( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL )

REAL CSL, CSR, F, G, H, SNL, SNR, SSMAX, SSMIN
-
* Computes singular value decomposition of 2 by 2 triangular matrix:
* [CSL SNL] . [FG) . [CSR-SNR] = [SSMAX 0 |
* [-SNL CsL} [oH) [ SNR CSR] [ 0 SSMIN ]
* Absolute value of SSMAX is larger singular value, Absolute value of
* SSMIN is smaller singular value. Both CSR**2 4+ SNR**2 = 1 and
- CSL**2 4+ SNL**2 = 1.
-
* .. Parameters ..

REAL ZEROQ, HALF, ONE, TWO, FOUR

PARAMETER ( ZERO = 0.0, HALF = 0.5, ONE = 1.0, TWO = 2.0, FOUR = 4.0 )
b .. Local Scalars ..

LOGICAL GASMAL, SWAP

INTEGER PMAX

REAL A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,

$ MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT
* .. Intrinsic Functions ..

INTRINSIC ABS, SIGN, SQRT

FT=F

FA = ABS( FT )

HT =H

HA = ABS( H)

PMAX =1 /* PMAX points to maximum absolute entry of matrix */

SWAP = ( HA.GT.FA )
IF( SWAP ) THEN
PMAX = 3
TEMP = FT
FT = HT
HT = TEMP
TEMP = FA

END IF /* Now FA .ge. HA */

GT =G

GA = ABS( GT)

IF( GA.EQ.ZERO ) THEN /* Diagonal matrix */

SSMIN = HA

SSMAX = FA

CLT = ONE

CRT = ONE

SLT = ZERO

SRT = ZERO
ELSE

GASMAL = .TRUE.
IF( GA.GT.FA ) THEN
PMAX =2
IF{ ONE+{ FA /{ GA ).EQ.ONE ) THEN /* Case of very large GA */
GASMAL = .FALSE.
SSMAX = GA
IF( HA.GT.ONE ) THEN
SSMIN = FA / ( GA [ HA )
ELSE
SSMIN = ( FA / GA )*HA
END IF
CLT = ONE
SLT = HT / GT
SRT = ONE
CRT = FT [/ GT
END IF
END IF
IF( GASMAL ) THEN /*® Normal case */
D = FA - HA
IF( D.EQ.FA ) THEN /* Copes with infinite F or H */
L = ONE

END IF /* Note that 0 le. L le. 1 */
M=GT/FT /* Note that abs(M) .le. 1/macheps */
T=TWO-L /* Note that T .ge. 1 =/

TT = T*T

= SQRT( TT+MM ) /* Note that 1 le. S .le. 1 + 1/macheps */
IF( L.LEQ.ZERO ) THEN

R = ABS( M)

ELSE
R = SQRT( L*L+MM )
END IF /* Note that 0 .le. R .le. 1 + 1/macheps */

A = HALF*( S+R ) /* Note that 1 Je. A .le. 1 4 abs(M) ¥/
SSMIN = HA / A
SSMAX = FA*A
IF( MM.EQ.ZERO ) THEN /* Note that M iz very tiny */
IF( L.LEQ.ZERO ) THEN
T = SIGN( TWO, FT )*SIGN( ONE, GT )
ELSE
T =GT /SIGN(D,FT)+ M /T
END IF



The Direct GSVD Algorithm 22

ELSE
T=(M/(S+T )+M / ( R+L ) )*( ONE+A )
END IF
L = SQRT( T*T+FOUR )
CRT= TWO /L
SRT=T/L
CLT = ( CRT4+SRT*M ) [/ A
SLT = ( HT / FT )*SRT / A
END IF
END IF
IF{ SWAP ) THEN
CSL = SRT
SNL = CRT
CSR = SLT
SNR = CLT
ELSE
CSL = CLT
SNL = SLT
CSR = CRT
SNR = SRT
END IF
/* Correct signs of SSMAX and SSMIN */
IF{ PMAX.EQ.1 )
$§ TSIGN = SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F )
IF({ PMAX.EQ.2 )
§ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G )
IF( PMAX.EQ.3 )
$ TSIGN = SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H )
SSMAX = SIGN( SSMAX, TSIGN
SSMIN = SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H ) )
RETURN
END

References

(1) IEEE Standard for Binary Floating Point Arithmetic. ANSI/IEEE, New York, Std 754-1985
edition, 1985.

(2] Z. Bai, Note on the quadratic convergence of Kogbetliantz algorithm for computing the singular
value decomposition, Lin. Alg. and Its Appl., 104, pp.131-140(1988).

[3] Z. Bai, Numerical treatment of restricted Gauss-Markov linear model, Comm. in Statis. B17
No.2, pp.131-140(1988).

[4] Z. Bai, An improved algorithm for computing the generalized singular value decomposition,
To appear in Numer. Math.

[5] A. W. Bojanczyk, M. Ewerbring, F. T. Luk and P. van Dooren, An accurate product SVD
algorithm, preprint MCS-P171-0890, Argonne National Lab. 1990.

[6] J. P. Charlier and P. Van Dooren, On Kogbetliantz’s SVD algorithm in the presence of Clusters,
Lin. Alg. and Its Appl. 95, pp136-160(1987).

[7] B. L. R. De Moor and G. H. Golub, Generalized Singular Value Decompositions: A proposal
for a standardized nomenclature, Manuscript NA-89-05, Numerical Analysis Project, Stanford
University, Stanford, Calif., 1989

[8] B. L. R. De Moor and H. Zha, A tree of generalizations of the ordinary singular value decom-
position, ESAT-SISTA report 1989-21, Katholieke Universiteit Leuven, Belgium.

[9) J. Demmel and W. Kahan, Accurate Singular Values of Bidiagonal Matrices, SIAM J. Sci.
Stat. Comput. 11, pp873-912 (1990)

[10) J. Demmel and A. Mckenney, LAPACK Working Notes # 9: A test matrix generation suite,
MCSD, Argonne National Lab. 1989.

[11] J. Demmel and K. Veseli¢, Jacobi’s method is more accurate than QR, to appear in SIAM J.
Mat. Anal. Appl.



The Direct GSVD Algorithm 23

[12] J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK User’s Guide, Society
for Industrial and Applied Mathematics, Philadelphia, 1978.

[13] L. M. Ewerbring, Canonical correlations and generalized SVD: Applications and New Algo-
rithms, J. Comput. Applied Math. 27 (1989), pp.37-52.

[14] K. V. Fernando, On equivalence and convergence of Jacobi and Kogbetliantz methods with
odd-even orderings, NAG Tech. Rep. TR1/88, Numerical Algorithm Group Ltd, Oxford, 1988

[15] K. V. Fernando, Linear convergence of the row cyclic Jacobi and Kogbetliantz methods, Numer.
Math. 56, 73-91, 1989.

[16] K. V. Fernando and S. J. Hammarling, A product induced singular value decomposition for
two matrices and balanced realization, in Linear Algebra in Signals Systems and Control, B.
N. Datta et at eds. SIAM Philadelphia, Penn. 1988, pp.128-140.

[17] G. E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values
of a complex matrix. Trans. Amer. Math. Soc. 94, pp.1-23(1960).

[18] G. H. Golub and C. F. Van Loan, Matrix computations (2nd ed), The Johns Hopkins Univ.
Press, Baltimore, MD, 1989

[19] S. J. Hammarling, private communications, 1989.

[20] V. Hari and K. Veseli¢: On Jacobi methods for singular value decomposition, SIAM J. of Sci.
Stat. Comp. pp.741-754(1987)

[21] M. T. Heath, J. A. Laub, C. C. Paige and R. C. Ward, Computing the singular value decom-
position of a product of two matrices. SIAM J. Sci. Stat. Comput. 7, pp.1147-1159(1986).

[22] S. V. Huffel and J. Vandewalle, Analysis and properties of the generalized total least squares
problem AX =~ B when some or all columns in A are subject to error, SIAM J. Mat. Anal.
Appl. 10, pp294-315(1989).

(23] B. Kagstrom, The generalized singular value decomposition and (4 — AB)-problem. BIT 24,
pp.568-583(1984)

[24] E. G. Kogbetliantz, Solution of linear equations by diagonalization of coefficients matrix,
Quart. Appl. Math. 13, pp.123-132(1955).

[25] F. T. Luk, A parallel method for computing the generalized singular value decomposition, J.
Para. Dist. Comp. 2, pp.250-260(1985)

[26] F. T. Luk and H. T. Park, On parallel Jacobi orderings, Tech. Rep. EE-CEG-86-5, School of
Electrical Engineering, Cornell Univ. Ithaca, 1986.

[27] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal. 18, pp.398-405(1981).

[28] C. C. Paige, A note on a result of Sun Ji-guang: sensitivity of the CS and GSV decomposition,
SIAM J. Numer. Anal. 21, pp.186-191(1984).

[29] C. C. Paige, The general linear model and generalized singular value decomposition, Lin. Alg.
Appl. 70, pp.269-284(1985).

[30] C. C. Paige, Computing the generalized singular value decomposition, SIAM J. Sci. Stat.
Comput. 7(1986), pp.1126-1146.



The Direct GSVD Algorithm 24

[31] C. C. Paige and P. Van Dooren, A note on the convergence of Kogbetliantz’s iterative algorithm
for obtaining the singular value decomposition, Lin. Alg. and Appl. 77, pp-301-313(1986).

[32] J. M. Speiser and C. F. Van Loan, Signal processing computations using the generalized
singular value decomposition, Proc. SPIE Vol.495, Real Time Signal Processing VII, pp.47-

55(1984).

[33] G. W. Stewart. On efficient generation of random orthogonal matrices with an application to
condition estimation. SIAM J. Numer. Anal., 17, pp.403-409(1980).

[34] G. W. Stewart, Computing the CS-decomposition of a partitioned orthonormal matrix, Numer.
Math. 40. pp.297-306(1982),

[35] Sun Ji-guang, Perturbation analysis for the generalized singular value problem, SIAM J. Nu-
mer. Anal. 20, pp.611-625(1983).

[36] C. F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal. 13,
pp.76-83(1976).

[37] C.F. Van Loan, Computing the CS and the generalized singular value decomposition, Numer.
Math. 46, pp.479-491(1985).

[38] C. F. Van Loan, On the method of weighting for equality- constrained least-squares problems,
SIAM J. Numer. Anal. 22, pp.851-864(1985).

[39] H. Zha, A numerical algorithm for computing restricted singular value decomposition of matrix
triplets, to appear in Lin. Alg. & Appl. 1991.



