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1
Chapter 1: Introduction

1.1. Historical perspective
Computer networks form an essential substrate for a variety of distributed applications, but

they are expensive to build and operate. This makes it important to optimize their performance
so that users can derive the most benefit at the least cost. Though most networks perform well
when lightly used, problems can appear when the network load increases. Loosely speaking,
congestion refers to a loss of network performance when a network is heavily loaded. Since
congestive phenomena can cause data loss, large delays in data transmission, and a large vari-
ance in these delays, controlling or avoiding congestion is a critical problem in network
management and design. This dissertation presents some approaches for congestion control in
wide-area computer networks.

Historically, the first wide-area networks (WANs) were circuit-switched telephone networks.
Since these networks carry traffic of a single type, and the traffic behavior is well known, it is pos-
sible to avoid congestion simply by reserving enough resources at the start of each call. By limit-
ing the total number of users, each admitted call can be guaranteed to have enough resources
to achieve its performance target, and so there is no congestion. However, resources can be
severely underutilized, since the resources blocked by a call, even if idle, are not available to
other calls.

Early research in computer data networking led to the development of reservationless
store-and-forward data networks [132]. These networks are prone to congestion since neither
the number of users nor their workload are regulated. Essentially, the efficiency gained by statist-
ical multiplexing of network resources is traded off with the possibility of congestion. This problem
was recognized quite early [22], and a number of congestion control schemes were proposed;
references [44, 110] provide a detailed review of these.

In the past three years, there has been a renewed interest in congestion control, as a
glance at the Bibliography will indicate. We feel that at least three factors have been responsi-
ble. First, the spread of networks such as ARPANET, NSFNET, CSNET and BITNET, and their intercon-
nection, has created a very large Internet whose size has made it unmanageable. The large
number of users and a complete decentralization of network management made it inevitable
that congestion would pose problems sooner or later. Matters came to a crisis around mid-1987,
and prompted two pioneering research efforts. Jain, Ramakrishnan and Chiu at Digital Equip-
ment Corporation developed the DECbit congestion control scheme [117]. Simultaneously,
Jacobson at Lawrence Berkeley Laboratories and Karels at UC Berkeley modified the well-known
Transmission Control Protocol (TCP) [21, 108] to intelligently react to congestion, and to recover
from it [63]. The success of these efforts brought congestion control into focus as a major
research area in the Internet community.

The second factor is the development of optical fiber technology. Optical fiber trunks offer
data bandwidths that are a factor of 10,000 larger than earlier circuits (a ratio of 600 Mbps to
56kbps). A number of researchers have recognized the critical role of congestion control in
high-speed WANs, since the bandwidth-delay product of a single circuit in such networks can be
as large as 30 Mbits (600 Mbps x 50 ms round-trip delay across the USA). With such large pro-
ducts, a single source could introduce a transient load large enough to swamp buffers at the
switches, leading to packet losses and excessive end-to-end delays for all the hosts on the net-
work.

The third factor is social, rather than technological. The networking community has long
been divided into two camps: the computer data networking community, and the telecom-
munications community. However, in recent years, the telecom community has realized the
benefits of packet switching, resulting in the Asynchronous Transmission Mode (ATM) proposal
from CCITT. Similarly, data networking researchers have realized that they need to provide real-
time bounds on data transfer for services such CD-quality audio and interactive video [35, 154].
This growing together of the two communities has led to a cross-fertilization of ideas about
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congestion management. Indeed, some of the most exciting proposals for future networks are
arising from this interaction.

The present time appears to be critical for the design of future high speed networks, and in
particular, their congestion control mechanisms. In this dissertation, we propose a number of
ideas that we believe are useful for high speed networks. We hope that our work will contribute
to the ongoing debate about congestion control.

This chapter is laid out as follows. Section 1.2 presents the environment of discourse. Sec-
tion 1.3 defines congestion, and section 1.4 defines and discusses congestion control. Section
1.5 describes the fundamental requirements of a congestion control scheme, and the next sec-
tion presents the fundamental assumptions made in this thesis. Section 1.7 reviews previous work,
and the scope of this thesis is presented in section 1.8.

1.2. Environment of discourse
We survey congestion control techniques in two types of wide-area networks (though the

dissertation is limited to techniques suitable for the first type). In both networks, data is sent from
sources of data to sinks through intermediate store-and-forward switching nodes. Sources of
data could be human users, transferring characters in a remote login session, or transferring files.
For our purposes, we will refer to processes at OSI layer five and above as data sources. Sinks are
the ultimate destinations of the data. They are the peer processes of the sources that receive
and consume the received data, and they are typically assumed to acknowledge the receipt
of each packet. Switches route and schedule incoming packets on outgoing lines, placing
data in output buffers when the arrival rate exceeds the service rate. The simplex stream of
packets between a source of data and its sink is called a conversation. Usually, a conversation
corresponds to a pair of transport level endpoints, for example, two BSD sockets [21, 23].

The first type of network under consideration, called a reservationless network, is an
abstract model for networks such as the Internet. In such a network, while intermediate switches
may reserve buffers (which does not reduce statistical multiplexing of the bandwidth), they may
not reserve bandwidth (which does). Hosts on reservationless networks are assumed to be con-
nected directly to switches, that in turn connect to other switches or hosts. A switch could be a
piece of software that resides in a host, or could be a separate piece of hardware.

The other type of networks are those where switches reserve both bandwidth and buffers
on behalf of Virtual Circuits (VCs) (such as in Datakit [41]). We call these reservation-oriented
networks. We assume that these networks carry two types of traffic: performance-oriented
traffic, which usually needs some form of real-time delay, bandwidth and jitter guarantees, and
best-effort data traffic, which does not make such demands [35]. Since no bandwidth is
reserved on behalf of best-effort traffic [68], the best-effort component of a reservation-oriented
network can be modeled as a reservationless network. Hence, schemes that are designed for
reservationless networks can be transferred, with appropriate modifications, to reservation-
oriented networks.

We believe that most future generation networks will tend to be reservation-oriented.
Nevertheless, there are still some valid reasons to study congestion control in reservationless net-
works. First, reservationless networks will always be able to use bandwidth more efficiently than
reservation-oriented networks due to the gain from statistical multiplexing. So, network providers
who want to optimize cost will continue to build reservationless networks. Second, the tech-
niques that are developed for congestion control can be applied to control best-effort traffic in
reservation-oriented networks. Thus, the results of this work will apply even in those networks.
Third, reservationless networks are currently the most common type of computer network. We
believe that because of inertia, and a desire to stay with known and proven technology, they
will continue to exist in the future.
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1.3. What is congestion?
Despite the large and rapidly proliferating literature on congestion control, we are not

aware of a satisfactory definition of congestion. We now discuss some common definitions,
point out their flaws, and then propose a new definition that we consider to be superior.

Some common definitions of congestion
Since congestion occurs at high network loads, definitions of congestion focus on some

aspect of network behavior under high load. We first discuss a scenario that leads to network
congestion in reservationless networks, and then motivate some definitions.

Consider a reservationless network, where, due to some reason, the short term packet
arrival rate at some switch exceeds its service rate. (The service rate is determined by the pro-
cessing time per packet and the bandwidth of the output line. Thus, the bottleneck could be
either the switch’s CPU or the outgoing line: in either case, there is congestion.) At this point,
packets are buffered, leading to delays. The additional delay can cause sources to time out
and retransmit, increasing the load on the bottleneck [101]. This feedback leads to a rapidly
deteriorating situation where retransmissions dominate the traffic, and effective throughput
rapidly diminishes [63, 114]. Further, if there is switch to switch flow control (as in ARPANET, Tym-
net, Datapac, Sirpent, etc.), new packets may not be allowed to enter the switch, and so pack-
ets might be delayed at a preceding switch as well. This can lead to deadlock, where all traffic
comes to a standstill [132].

Note that three things happen simultaneously. First, the queueing delay of the data pack-
ets increases. Second, there may be packet losses. Finally, in the congested state, the traffic is
dominated by retransmissions, so that the effective data rate decreases. The standard
definitions of congestion are thus of the form: ‘‘A network is congested if, due to overload, con-
dition X occurs’’, where X is excessive queueing delay, packet loss or decrease in effective
throughput. The first definition is used in references [66, 117], the second in reference [63], and
the third in reference [85].

These definitions are not satisfactory for several reasons. First, delays and losses are indices
of performance that are being improperly used as indices of congestion, since the change in
the indices may be due to symptoms of phenomena other than congestion. Second, the
definitions do not specify the exact point at which the network can be said to be congested
(except in a deterministic network, where the knee of the load-delay curve, and hence conges-
tion, is well defined, but that is the trivial case). For example, while a network that has mean
queueing delays in each switch of the order of 1 to 10 service times is certainly not congested, it
is not clear whether a network that has a queueing delay of 1000 service times is congested or
not. It does not seem possible to come up with any reasonable threshold value to determine
congestion!

Third, a network that is congested from the perspective of one user is not necessarily cong-
ested from the perspective of another. For example, if user A can tolerate a packet loss rate of 1
in 1000, and user B can tolerate a packet loss rate of 1 in 100, and the actual loss rate is 1 in 500,
then A will claim that the network is congested, whereas B will not. A network should be called
uncongested only if all the users agree that it is.

New definition
From the discussion above, it is clear that network congestion depends on a user’s perspec-

tive. A user who demands little from the network can tolerate a loss in performance much better
than a more demanding user. For example, a user who uses a network only to send and receive
electronic mail will be happy with a delivery delay of a day, while this performance is unaccept-
able for a user who uses a network for real-time audio communication. The key point is the
notion of the utility that a user gets from the network, and how this utility degrades with network
loading.
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The concept of ‘utility’ used here is borrowed from economic theory. It is used to refer to a
user’s preference for a resource, or a set of resources (often called a resource bundle). Strictly
speaking, the utility of a user is a number that represents the relative preference of that user for a
resource (or performance) bundle, so that, if a user prefers bundle A to bundle B, the utility of A is
greater than the utility of B. For example, if A is {end-to-end delay of 1 second, average
throughput 200 pkts/second}, and B is {end-to-end delay of 100 seconds, average throughput
20000 pkts/second}, a user may prefer A to B, and we would assign a utility to A that is greater
than the utility of B, while another user may do the opposite. In classic microeconomic theory,
utilities are represented by a function over the resources [140]. Since utilities express only a
preference ordering, utility functions are insensitive to monotonic translations, and the utilities of
two users cannot be compared; the function can only be used to relatively rank two resource
bundles from the point of view of a single user.

An example of a utility function is αT − (1−α)RTT, where α is a weighting constant, T is the aver-
age throughput over some interval, and RTT is the average round-trip-time delay over the same
interval. As the throughput increases, the utility increases, and as delays increase, the utility
decreases. The choice of α determines the relative weight a user gives to throughput and delay.
A delay-sensitive user will choose α→0, whereas a delay-insensitive user’s α→1.

In practice, a utility function may depend on a threshold. For example, a user may state
that he or she is indifferent to delay, as long as it is less than 0.1 seconds. Thus, if the user gets a
delay of 0.05 seconds during some interval of time, and 0.06 seconds in a later period, as far as
the user is concerned, there has been no loss of utility. However, if some user’s utility does
decrease as a result of an increase in the network load, that user will perceive the network to be
congested. This motivates our definition.

Definition
A network is said to be congested from the perspective of user i if the utility of i decreases
due to an increase in network load.

Remarks:

1. A network can be congested from the perspective of one user, and uncongested from the
perspective of another.

2. A network can be said to be strictly uncongested if no user perceives it to be congested.

3. A user’s utility may decrease due to something other than network load, but the user may
not be able to tell the difference. The onus on the user is to determine the cause of the loss
of utility, and to take appropriate corrective action.

This definition is better than existing definitions since it avoids the three problems raised ear-
lier. First, we make a clear distinction between a performance index and a congestion index. It
is possible for a performance metric to decrease (for example, for RTT to increase), without a
change in the congestion index (for example, if α = 1). Second, the definition makes it clear that
congestion occurs from the point of view of each individual user. Finally, the point of congestion
is precisely the one where the user detects a loss of utility. No further precision is necessary,
since, if the users are not dissatisfied with the available service, then the network performance,
no matter how poor it is in absolute terms, is satisfactory.

Our definition places congestion control in a new light. A network that controls congestion,
by our definition, must be responsive to the utility function of the users, and must be able to
manage its resources so that there is no loss of utility as the load increases. Thus, the network
must be able to differentiate between conversations, and prioritize conversations depending on
the stringency of their owner’s utility. A naive approach that ignores the user’s quality-of-service
requirements is automatically ruled out by this definition.
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1.4. Congestion control
The previous section presented a new definition of congestion; this section describes

congestion control. Two styles of control, proactive and reactive control, are presented. It is
shown that congestion control must happen at several different time scales.

1.4.1. Proactive and reactive control
Congestion is the loss of utility to a user due to an increase in the network load. Hence,

congestion control is defined to be the set of mechanisms that prevent or reduce such a
deterioration. Practically speaking, a network can be said to control congestion if it provides
each user with mechanisms to specify and obtain utility from the network. For example, if some
user desires low queueing delays, then the system should provide a mechanism that allows the
user to achieve this objective. If the network is unable to prevent a loss of utility to a user, then it
should try to limit the loss to the extent possible, and, further, it should try to be fair to all the
affected parties. Thus, in reservationless networks, where a loss of utility at high loads is unavoid-
able, we are concerned not only with the extent to which utility is lost, but also the degree to
which the loss of utility is fairly distributed to the affected users.

A network can provide utility in one of two ways. First, it can request that each user specify
a performance requirement, and can reserve resources so that this level of performance is
always available to the user. This is proactive or reservation-oriented congestion control. Alter-
natively, users can be allowed to send data without reserving resources, but with the possibility
that, if the network is heavily loaded, they may receive low utility from the network. The second
method is applicable in reservationless networks. In this case, users must adapt to changes in
the network state, and congestion control refers to ways in which a network can allow users to
detect changes in network state, and corresponding mechanisms that adapt the user’s flow to
changes in this state.

In a strict proactive scheme, the congestion control mechanism is to make reservations of
network resources so that resource availability is deterministically guaranteed to admitted
conversations. In a reactive scheme, the owners of conversations need to monitor and react to
changes in network state to avert congestion. Both styles of control have their advantages and
disadvantages. With proactive control, users can be guaranteed that they will never experi-
ence loss of utility. On the other hand, to be able to make this guarantee, the number of users
has to be restricted, and this could lead to underutilization of the network. Reactive control
allows much more flexibility in the allocation of resources. Since users are typically not
guaranteed a level of utility by the network, resources can be statistically multiplexed. However,
there is always a chance that correlated traffic bursts will overload the network, causing perfor-
mance degradation, and hence, congestion.

It is important to realize that proactive and reactive control are not mutually exclusive.
Hybrid schemes can combine aspects of both approaches. One such hybrid scheme is for the
network to provide statistical guarantees [37, 48]. For example, a user could be guaranteed an
end to end delay of less than 10 seconds with 0.9 probability. Such statistical guarantees allow a
network administrator to overbook resources in a controlled manner. Thus, statistical multiplexing
gains are achieved, but without completely giving up performance guarantees.

Another hybrid scheme is for the network to support two types of users: guaranteed service
users and best-effort users [35, 68]. Guaranteed service (GS) users are given a guarantee of
quality of service, and resources are reserved for them. Best-effort (BE) users are not given
guarantees and they use up whatever resources are left unutilized by GS users.

Finally, a server may reserve some minimum amount of resources for each user. Since every
user has some reservation, some minimum utility is guaranteed. At times of heavy load, users
compete for resources kept in a common pool [62]. Assuming some degree of independence
of traffic, statistical multiplexing can be achieved without the possibility of a complete loss of util-
ity.
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1.4.2. Time scales of control
Congestion is a high-load phenomenon. The key to congestion control lies in determining

the time scale over which the network is overloaded, and taking control actions on that time
scale. This is explained below.

Consider the average load on a single point-to-point link. Note that the ‘average load’ is
an interval-based metric. In other words, it is meaningless without also specifying the time interval
over which the average is measured. If the average load is high over a small averaging interval,
then the congestion control mechanism (for example, the reservation mechanism) has to deal
with resource scheduling over the same small time scale. If the average load is high over a
longer time scale, the congestion control mechanism needs to deal with the situation over the
longer time scale as well as on shorter time scales.

An example should clarify this point. Consider a conversation on a unit capacity link. If the
conversation is bursty, then it could generate a high load over, say, a 1ms time scale, though the
average load over a 1 hour time scale could be much smaller than 1. In this case, if the conver-
sation is delay-sensitive, then the congestion control scheme must take steps to satisfy the user
delay requirement on the 1ms time scale. Over longer time scales, since the average demand is
small, there is no need for congestion control.

On the other hand, if the conversation has a high average demand on the 1 hour time
scale as well as the 1ms time scale, then congestion control has to be active on both time
scales. For example, it may do admission control (which works over the 1 hour time scale) to
make sure that network resources are available for the conversation. Simultaneously, it may also
make scheduling decisions (which work on the 1ms time scale) to meet the delay requirements.

This example illustrates three points. First, congestion control must act on several different
time scales simultaneously. Second, the mechanisms at each level must cooperate with each
other. Scheduling policies without admission control will not ensure delay guarantees. At the
same time, the admission control policy must be aware of the nature of the scheduling policy to
decide whether or not to admit a conversation into the network. Third, the time scale is the time
period over which a user sees changes in the network state. A congestion control mechanism
that is sensitive to network state must operate on the same time scale.

We now discuss five times scales of control: those of months, one day, one session, multiple
round trip times (RTTs), and less than one RTT. We believe that the design of congestion control
mechanisms for each time scale should be based on sound theoretical arguments. This has the
obvious advantages over an ad hoc approach: general applicability, ease of understanding,
and formal provability of correctness. At each time scale of control, a different theoretical basis
is most appropriate, and this is discussed below.

1.4.2.1. Months
Some changes to networks happen over a period of months: for example, an increase in

the number of connected sites, or additional communication loads due to a new collaboration
between geographically distributed sites. If these changes cause trunk lines to be substantially
overloaded over long periods of time, then the only way to provide acceptable service may be
to increase trunk bandwidths. Otherwise, no matter how clever the schemes at faster time
scales, the network will not be able to accommodate the additional demand.

The typical response to long term overload is to lay additional bandwidth: the gradual
replacement of 9600 baud serial lines with 10 Mbps Ethernets and 56 kbps trunks, and now with
100 Mbps FDDI rings and T1 trunks, is a graphic illustration of this process. Over this time scale, the
formal problem corresponding to congestion control is that of capacity planning. This problem
has been studied in the operations research literature. Basically, a traffic matrix, representing the
volume of traffic between all pairs of sites, is constructed. A cost function describing the cost of
trunk bandwidth and the utility from the network is then optimized using standard linear pro-
gramming techniques to obtain an optimal capacity allocation along each path.
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The problem with this approach lies in the determination of the traffic matrix. It is hard to
collect all the required information, and, besides, the matrix can be quite large. Furthermore,
there is no guarantee that the system workload during the next time period would be similar, so
the computed solution may solve the wrong problem. Nevertheless, the use of a formal capa-
city planning approach would be an advance over the current ad hoc approach.

1.4.2.2. One day
Traffic measurements have shown that network usage exhibits cyclical behavior, with the

time period of a day [13, 105]. Networks are typically lightly loaded or idle at night, but are busy
from 9 am to 5 pm, reflecting the work day. A congestion control scheme that spreads the load
more uniformly throughout the day will ensure that the workload is less bursty, leading to better
utilization of capacity. This can be done by introducing a pricing scheme for data transfer
[20, 155], and charging more for data transmitted during peak hours than during off-peak hours
[7, 111, 130]. Peak-load pricing schemes used by electric and telephone utilities have much the
same purpose. We believe that using ideas from economics to shape the workload on the order
of a day (or several hours) is a useful form of congestion management at this time scale.

While some economic approaches have been proposed in the recent past [32, 146], we
feel that the area needs much more study. Current approaches have numerous problems, such
as:

g a user’s assumed utility function, or, in some approaches, demand curve, is overly simple

g the system takes a long time to reach equilibrium. For example, the SPAWN system [146]
postulates multiple rounds of bidding each time a new user enters the system, and each
round could take many seconds. Since new users could join every few seconds, it is not
clear that the system can ever reach equilibrium.

g the approaches assume that the number of users is fixedl; in fact, given that the systems are
slow to reach equilibrium, this number is like to have changed by the time equilibrium is
reached

g all the users are assumed to be rational; in reality, some users may make unsophisticated,
and hence irrational, decisions

g a single administrative authority is assumed

g it is time-consuming for users to bid for every resource they need

g bursty users, whose peak and average resource requirements differ considerably, are not
considered.

However, the economic approach is promising, since it gives deep insights into network
pricing and usage accounting that are otherwise unavailable.

1.4.2.3. Session
In connection-oriented networks, a session is the period of time between a call set-up and

a call teardown. Admission control in connection oriented-networks is essentially congestion
control on the time scale of a session: if the admission of a new conversation could degrade the
quality of service of other conversations in the network, then the new conversation should not be
admitted. This is yet another form of congestion control.

At the time a conversation is admitted to the network, the network should ensure that the
resources requested by the conversation are what it really needs. Thus, the admission control
scheme should give incentives to users to declare their resource needs accurately [20]. This can
be designed using a variant of the standard Clark-Groves direct truth revelation mechanism
(since naive users in a system with partial information would choose a dominant strategy equili-
brium over more sophisticated Bayesian or sequential equilibria) [80]. The theoretical basis of this
work is the area of game-theory known as ‘mechanism design’. An admission control system
based on such principles has been extensively studied by Sanders [121-123].
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The mechanism design approach has all the problems of the economic approach, and
more. Mechanism design makes strong assumptions about the information structure in the sys-
tem: for example, each switch is assumed to know the form of the utility function of each user.
Further, the dynamics of the system over time are ignored. However, in the same way as
economics, it can provide insights into the design of admission control.

The choice of a route at session establishment time can also be used to control congestion.
If the routing establishment algorithm keeps track of network utilization along the links, it can
route a new circuit along lightly loaded paths. Some proposals have exploited this idea
[29, 77, 92]. Integrating feedback flow control with adaptive routing is complex, and the dynam-
ics of their interaction are not well known. Some simplified models for the problem have been
studied [29], but the applicability of these studies to real networks is unclear. In this thesis, we
assume static routing, so this form of congestion control is specifically ignored.

1.4.2.4. Multiple round trip times
One round trip time (RTT) is the fundamental time constant for feedback flow control. It is

the minimum time that is needed for a source of data to determine the effect of its sending rate
on the network [117]. Congestion control schemes that probe network state and do some kind
of filtering on the probes operate on this time scale. Examples are various window adjustment
schemes [54, 63, 96, 117].

The theoretical bases for these approaches lie in queueing theory and control theory. The
queueing theory approach is well studied [44], but requires strong assumptions about the net-
work such as: Poisson arrivals from all sources, exponential service time distribution at all servers,
and independence of traffic. Since observations of real networks have shown that none of
these assumptions are satisfied in practice [51, 52, 104], the results obtained from a stochastic
queueing approach are not entirely convincing. We believe that a naive deterministic queue-
ing approach has several benefits, though, and this is discussed in Chapter 4.

The control-theoretic approach has also been studied in the literature, though not as
thoroughly [1, 38, 66, 79, 133, 137, 138]. The drawback with existing studies is that either they are
informal, and thus do not provide any formal proofs [63, 117], or they make strong assumptions
about traffic behavior, service rates and so on, that do not hold in practice [126, 137, 138].
Chapter 5 presents an alternative approach that overcomes some of these problems.

Assuming that each packet is acknowledged, multiple acknowledgements can be
received each RTT. If information about the state of the network is extracted from each ack-
nowledgement, then the congestion control scheme can react to changes even faster than
once per RTT. Such a scheme is described in Chapter 5, and is also made possible by a control
theoretic modeling of the network.

Previous work in the area of congestion control schemes that work at the multiple RTT time
scale is examined in greater detail in section 1.7.

1.4.2.5. Less than one RTT
On a scale of less than once per RTT, congestion control can be considered to be identical

to scheduling data at the output queues of switches. The goal of a scheduling policy is to
decide which data unit is the next to be delivered on a trunk. This choice determines the
bandwidth, delay, and jitter received by each conversation, and hence the choice of the
scheduling discipline is critical. A scheduling discipline that does not vary its allocations as a
function of the network load is hence a congestion control mechanism. Examples are the Vir-
tual Clock scheme [154], Delay-EDD [37] and Stop-and-Go queueing [47].

If the trunk bandwidth is considered as a resource, then the server implementing the
scheduling discipline is essentially a resource manager that allocates bandwidths, delays and
delay-jitters to each conversation. Then, it is in the best interest of a conversation to send data in
such a way that it obtains the best possible utility from the server. Given that all the conversa-
tions have this objective, and the gain of one could be the loss of the other, it is clear that this
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framework can be cast in the form of a non-cooperative game [125]. Then, each conversation
must choose a strategy (in this case, a sending rate) such that its utility is maximized. Such a
model has been considered by Bharath-Kumar and Jaffe [6], Sanders [121-123], Douligeris and
Majumdar [25-27] and Lazar et al [59]. Unfortunately, the game theoretic formulation of the
problem requires utilities to be defined for each player, as well as strong information and
rationality assumptions, as in the economic approach. Thus, we do not feel that it is viable in
practice.

1.4.3. Need for congestion control in future networks
Congestion is a severe problem in current reservationless networks. However, in future net-

works the available bandwidths and switching speeds will be several orders of magnitude larger
[84]. Why should congestion arise in such networks? There are several reasons:

g Large bandwidth-delay product : The service rate of a circuit multiplied by the round trip
time determines the amount of data that a conversation must have outstanding in order to
fully utilize the network. The round trip time is bounded from below by the speed-of-light
propagation delay through the network. Hence, as the raw trunk bandwidth and the ser-
vice rate of a conversation increases, so does the amount of outstanding data per conver-
sation. For example, a conversation that is served at 6 Mbps and has a round trip time
delay of 60 ms can have as much as 45 kbytes of data outstanding. If the service rate sud-
denly drops to half of its previous value, or 3 Mbps, due to cross traffic, then it takes 60 ms to
react to this change, and 45/2 = 22.5 Mbytes of data can accumulate at the slowest server
along the path. Since this far exceeds most buffer sizes, data loss is likely, leading to a loss
of utility. Thus, a large bandwidth-delay product causes problems for reactive control and
can lead to congestion.

g Speed Mismatch : If a switch connects a high speed line to a slower line, then a bursty
conversation can, when sending data at the peak rate, fill up its buffer share, and subse-
quently lose packets at the switch. This creates congestion for loss-sensitive conversations.
This source of congestion will persist in high-speed networks, in fact, it is probably more likely
in such networks.

g Topology : If several input lines simultaneously send data through a switch to a single outgo-
ing line, the outgoing line can be overloaded, leading to large queueing delays, and possi-
ble congestion for delay-sensitive traffic. This is a special case of the speed mismatch prob-
lem noted earlier.

g Increased Usage : Memory sizes have increased exponentially during the last decade. Yet,
the demand for memory has remained, since larger memory sizes have made it feasible to
develop applications that require them. Drawing a parallel to this trend, we postulate that
as bandwidth increases, new applications (such as real time video) will demand these
enormous bandwidths. As the available bandwidth gets saturated, the network will be
operated in the high-load zone, and congestive problems are likely to reappear.

g Misbehavior : Congestion can be induced by misbehaving sources (such as broken sources
that send a stream of back-to-back packets). Future networks must protect themselves and
other sources from such misbehavior, which will continue to exist.

g Dynamics : As network speeds increase, the dynamics of the network also changes. Since
queues can build up faster, congestive phenomena can be expected to occur much
more rapidly, and perhaps have catastrophic effects [101, 132].

From these observations, we conclude that even though future networks will have larger trunk
bandwidths and faster switches, congestion will not disappear.

1.5. Fundamental requirements of a congestion control scheme
We would like a congestion control scheme to have a number of properties. These are:
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g Efficiency

g Ability to deal with heterogeneity

g Ability to deal with ill-behaved sources

g Stability

g Scalability

g Simplicity

g Fairness

We discuss these in turn. In the discussion, we will use the term ‘the control scheme’ to mean an
integrated control scheme that simultaneously operates over all the time scales of control.

1.5.1. Efficiency
There are two aspects to efficiency. First, how much overhead does the congestion control

scheme impose upon the network? As an extreme example, control packets such as the Source
Quench packets in TCP/IP [112] themselves overload the congested network. We would like a
control scheme to impose a minimal additional burden upon the network. This is not necessarily
a binding condition: with the rapid increase in communication bandwidth, the extra load may
not significantly affect network efficiency.

Second, does the control scheme lead to underutilization of critical resources in the net-
work? Inefficient control schemes may throttle down sources even when there is no danger of
congestion, leading to underutilization of resources. We would not like to operate the network
suboptimally. (This raises the issue of determining what is meant by optimal utilization, but we
defer the discussion to Chapter 4.)

1.5.2. Heterogeneity
As networks increase in scale and coverage, they span a range of hardware and software

architectures. A control scheme that assumes a single packet size, a single transport layer proto-
col, or a single type of service cannot be successful in such an environment. Thus, we want the
control scheme to be implementable on a wide range of network architectures.

1.5.3. Ability to deal with misbehaving sources
Note that in current networks, a network administrator does not have administrative control

over the sources of messages. Thus, sources (such as users of personal workstations) are free to
manipulate the network protocols to maximize the utility that they get from the network. When a
switch informs a source that it should reduce its sending rate, a well-behaved source should do
so. However, it is possible that an ill-behaved source may choose to ignore these signals, in the
hope that this may enable it to send more data. A congestion control scheme should not fail in
the presence of such hosts. In other words, badly behaving sources should not adversely affect
the performance of well-behaved sources. This may require punishment of a badly behaved
source, or threats of punishment that will give all sources an incentive to behave well.

1.5.4. Stability
Congestion control can be viewed as a classic negative-feedback control problem. One

added complexity is that the control signals are delayed. That is, there is a finite delay between
the detection of congestion and the receipt of a signal by a source. Further, the system is noisy,
since observations of the system’s parameters may be corrupted by transients. These complexi-
ties may introduce instabilities into the network. Thus, we would like the control scheme to be
robust, and if possible, provably stable.
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1.5.5. Scalability
It is the nature of a distributed system to grow with time, and we have seen an explosive

growth in network sizes in the last decade. The key to success in such an environment is scalabil-
ity. We would like a congestion control scheme to scale along two orthogonal axes: bandwidth
and network size.

The development of high bandwidth fiber-optic media has made it possible to build net-
works that have three orders of magnitude more bandwidth than networks of the recent past
(45000 kbps to 56 kbps) [69]. Further, hundreds of thousands of local area networks have been
interconnected in the last five years into an enormous internetwork that spans the globe. These
developments make it imperative that any proposed congestion control scheme scale well on
both axes.

1.5.6. Simplicity
Simplicity (unlike stupidity) is always an asset. Simple protocols are easier to implement,

perhaps in hardware, and can handle increases in bandwidth. Also, simple protocols are more
likely to be accepted as international standards. Thus, we would like an ideal congestion control
mechanism to be simple to implement.

1.5.7. Fairness
It may be necessary for some sources to reduce their network load to control congestion.

The choice of which source to throttle (either by requesting it to do so, or by dropping its pack-
ets) determines how fairly the network allocates its resources [23]. For example, if an excessive
demand by some source A causes the throttling of another source B, then clearly the network is
treating B unfairly. We do not want a congestion control scheme that results in unfair network
resource allocation.

There are two tricky aspects of fairness: definition and implementation. The problem of
defining fairness has worried network designers and welfare economists alike. Numerous fairness
criteria have been proposed in the literature [43, 55, 106, 107, 115, 139, 149]. Each criterion has
some problems, and there seems to be no absolute guide to deciding which is the best criterion
to adopt [44]. Nevertheless, it is necessary to pick some justifiable criterion, since this is much
better than none at all.

The second aspect is that of implementation. Implementing a fairness criterion brings in
issues that lie beyond what is traditionally considered to be the scope of congestion control. For
example, we may decide that it is fair to give preference to sources that are willing to pay for it.
If this criterion is to be implemented, a switch needs to determine a pricing schedule and incor-
porate a contract negotiation and enforcement mechanism [20, 155]. This leads naturally to
issues in contract theory, mechanism design and incentive compatibility. Such issues have been
ignored by existing congestion control schemes.

To summarize, there are a number of issues that are affected by the choice of a conges-
tion control scheme. In this thesis, we present the design of a set of congestion control mechan-
isms that substantially meet the requirements posed in this section.

1.6. Fundamental assumptions
Underlying any congestion control scheme are some implicit assumptions about the net-

work environment. These unstated assumptions largely determine the nature of the control
scheme and its performance limits. We consider some of these assumptions in this section.
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1.6.1. Administrative control
Can we, as designers of congestion control mechanisms, assume administrative control

over the behavior of sources (for example, by dictating that only one version of a transport pro-
tocol is to be used in the network)? Or, can we assume administrative control only over the
behavior of switches? Some schemes assume that we can control sources but not switches e.g.
[63]. Others assume that we can control both the sources and the switches [117]. Still others
assume complete control over the switches, and the ability to monitor source traffic, but no con-
trol over source traffic [54].

This assumption should be constrained by reality. In our work, we assume that we have
administrative control over switches. However, source behavior is assumed to be outside our
direct control (though it can be monitored, if needed). The implication is that the network must
take steps to protect itself and others from malicious or misbehaving users. (Of course, users that
abuse the network because of a hardware failure, such as a jammed ethernet controller, are
always a threat, even when the sources can be controlled administratively.)

1.6.2. Source complexity
How complex should one assume sources to be? Since we do not have administrative

control over sources, we assume that sources will perform actions that will maximize their own
utility from the network. If the congestion control scheme allows intelligent users to manipulate
the scheme for their own benefit, they will do so. On the other hand, users may not have the
capability to respond to complex directives from the network, so we cannot assume that all
users will act intelligently. In other words, while a congestion control scheme should not assume
sophisticated behavior on the part of the users, at the same time, it should not be open to
attack from such users.

1.6.3. Gateway complexity
Some authors assume that switches can be made complex enough to set bits on packet

headers, or even determine user utility functions, whereas others assume that switches simply
route packets. Ignoring monetary considerations, since we have administrative control, we can
make switch control algorithms as complex as we wish, constrained only by speed requirements.
It has been claimed that for high speed operation, switches should be dumb and fast. We
believe that speed does not preclude complexity. What we need is a switch that is fast and
intelligent. This can be achieved by

g having hardware support for rapid switching [100]

g optimizing for the average case [18]

g removing signaling information from the data path [41]

g choice of scheduling algorithm [156]

g an efficient call processing architecture [131].

Thus, we will assume that a switch can make fairly intelligent decisions, provided that this can be
done at high speeds.

1.6.4. Bargaining power
The ultimate authority in a computer network lies in the ability to drop packets (or delay

them). Since this authority lies with the switches, they ultimately have all the bargaining power. In
other words, they can always coerce sources to do what they want them to do (unless this is so
ridiculous that a source would rather not send any data). Any scheme that overlooks this fact
loses a useful mechanism to control source behavior. Thus, schemes that treat switches and
sources as peer entities (for example, [117]) are fundamentally flawed: they need to posit
cooperative sources precisely because they ignore the authority that is automatically vested in
switches.
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1.6.5. Responsibility for congestion control
Either the sources or the switches could be made responsible for congestion control. If

sources are responsible, they must detect congestion and avert it. If switches are responsible,
they must take steps to ensure that sources reduce their traffic when congestion occurs, or allo-
cate resources to avert congestion.

We believe that congestion control is a network function. If we leave the responsibility for it
to sources that are not under our administrative control, then we are endangering the network.
Further, the congestion detection and management functionality has to be duplicated at each
of the (many) sources. In contrast, it is natural to make the fewer, controllable switches responsi-
ble for congestion control.

Note that responsibility is not the same as functionality. In other words, having responsibility
for congestion does not mean that the switches have to actually perform all the actions neces-
sary for congestion control. Switches can enforce rules that make it incentive compatible for
sources to help in containing congestion. For example, a Fair Queueing [23] switch has the
responsibility for congestion control, but it does congestion control by forcing sources to behave
correctly during congestion (this is discussed in Chapter 2).

1.6.6. Bandwidth-delay product
The physical characteristics of the network play a crucial role in determining how effective

a scheme will be. A congestion control scheme has to operate in some bandwidth and delay
regime. When the bandwidth times round-trip-time product is small in comparison to the window
size, feedback from switches to sources is feasible. However, if this product is large, buffering full
windows for all users may not be feasible.

Many current schemes operate on the scale of multiple round-trip-time delays (for exam-
ple, taking flow control decisions only once every two round-trip times [66]). They become
infeasible when the bandwidth-delay product is large. This large product is precisely why
congestion control schemes for high speed networks are so difficult, and so necessary. In this
thesis, we assume that the network operates in the large bandwidth-delay product regime.

1.6.7. Traffic model
The choice of a traffic model influences the design of a congestion control scheme, since

the scheme is evaluated with respect to this model. There are hidden dangers here: for exam-
ple, schemes that assume Poisson sources may not robust, if, in practice, traffic does not obey
this distribution. It is best to design schemes that are insensitive to the choice of the traffic model.
This is achieved if a scheme does not make assumptions about the arrival distribution of packets
at the switches.

What should be the traffic model? We do not have much data at our disposal, since there
are no high-speed WANs yet available to measure. However, there are three trends that point to
a reasonable model. First, the move towards integration of data, telephony and video services
indicates that some number of sources in our environment will be phone and video sources.
These can generate high bandwidth traffic over periods of time spanning minutes or hours.

Second, existing studies have shown that data traffic is very bursty [52, 104]. This tendency
will certainly be exaggerated by increases in line speeds. Finally, we note that current applica-
tions are mostly of two sorts - low bandwidth interactive conversations, and high bandwidth off-
line bulk data transfer [12]. At higher speeds, the bulk data transfers that last several seconds
today will collapse into bursts. This reinforces our belief that future traffic will basically be bursty.

To sum up, we expect that the traffic will be generated by two kinds of sources: one that
demands a sustained high bandwidth, and the other that generates bursts of traffic at random
intervals of time. We call these sources ‘FTP’ and ‘Telnet’ in this thesis (these terms are probably
outdated, but we use them for convenience). This model is fairly simple, and does not involve
any assumptions about packet arrival distributions. Thus, schemes that work for this model will
probably work for a large variety of parametrically constrained models as well (e.g. for traffic
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where the bursts are exponentially or uniformly distributed). Since the traffic characteristics for
future networks are still unknown, this model is speculative. However, we think that it is as reason-
able as any that have so far been studied.

Summary of our assumptions
g We assume that we have administrative control over switches, but not over sources.

g Some sources will be intelligent enough to exploit any flaws in the design, but not all the
sources will be able to implement complex congestion and flow control strategies.

g Switches should be fast, but they should carry out intelligently designed congestion control
strategies.

g The switches should not be treated as peer entities of sources, their inherent capacity to
delay or drop packets should be used to coerce sources to behave in a socially accept-
able manner.

g The responsibility for congestion control should lie with the switches, sources cannot be
trusted with this job.

g The scheme should operate in a regime where the delay bandwidth product is large as
compared to current window sizes.

g Traffic consists of two types of sources, ones that generate sustained high bandwidth traffic,
and others that generate intermittent bursts.

1.7. Previous work
This section surveys previous work in congestion control at the session, multiple RTT and less

than one RTT time scales. Research in these areas of congestion control has mushroomed in the
recent past. Consequently, this survey cannot claim to be complete. We have tried to mention
all the research efforts that we are aware of, but it is almost certain that some others have been
overlooked.

While our work stresses the need for a network to be sensitive to a user’s utility, previous work
on congestion control has concentrated mainly on mechanisms for avoiding packet losses and
reducing queueing delay. The efforts have been strongly oriented towards either reservationless
networks or reservation-oriented networks. For reservation-oriented networks, the work had been
at the session and scheduling time scales, and for reservationless networks exclusively at the mul-
tiple RTT time scale. We now discuss previous work for each class of network.

1.7.1. Reservationless networks
In reservationless networks, control has to be reactive. A reactive congestion control

scheme is implemented at two locations: at the switches, where congestion occurs, and at the
sources, which control the net inflow of packets into the network. Typically, a switch uses some
metric (such as overflow of buffers) to determine the onset of congestion, and implicitly or expli-
citly communicates this problem to the sources, which reduce their input traffic. Even in this
simplified picture, a few problems are apparent.

How is congestion to be detected? (Congestion Detection)

How is the problem signaled to sources? (Communication)

What actions do the switches take? (Decongestion)

Which sources are held responsible for congestion? (Selection)

What actions must the sources take? (Flow Control)

What if some sources ignore these signals? (Enforcement)
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These questions must be answered by every reactive congestion control scheme. Depending
upon the choices made in answering each question, a variety of schemes have been proposed.

Comprehensive surveys by Gerla and Kleinrock [44] and Pouzin [110] discuss numerous
congestion control schemes. However, the taxonomies they develop are oriented towards clas-
sifying flow control techniques, and are not appropriate in our work. Instead, we will base our sur-
vey on the questions raised earlier.

1.7.1.1. Congestion detection
How is a switch or source to detect congestion? There are several alternatives.

g The most common one is to notice that the output buffers at a switch are full, and there is
no space for incoming packets. If the switch wishes to avoid packet loss, congestion
avoidance steps can be taken when some fraction of the buffers are full (such as in the
FQbit scheme discussed in Chapter 2). A time average of buffer occupancy can help
smooth transient spikes in queue occupancy [116, 117].

g A switch may monitor output line usage. It has been found that congestion occurs when
trunk usage goes over a threshold (typically 90%) and so this metric can be used as a signal
of impending congestion (as in CIGALE or Cyclades) [61, 88]. The problem with this metric is
that congestion avoidance could keep the output line underutilized, leading to possible
inefficiency.

g A source may monitor round-trip delays. An increase in these delays signals an increase in
queue sizes, and possible congestion [66].

g A source may probe the network state using some probing scheme (for example, the
packet-pair method described in Chapter 4).

g A source can keep a timer that sets off an alarm when a packet is not acknowledged ‘in
time’ [108]. When the alarm goes off, congestion is suspected [153].

1.7.1.2. Communication
Communication of congestion information from the congested switch to a source can be

implicit or explicit. When communication is explicit, the switch sends information in packet
headers [115] or in control packets such as Source Quench packets [112], choke packets [88],
state-exchange packets [79, 120], rate-control messages [148], or throttle packets [70] to the
source. Implicit communication occurs when a source uses probe values [75], retransmission
timers [153], throughput monitoring [147], or delay monitoring [66] to indicate the (sometimes
only suspected) occurrence of congestion.

Explicit communication imposes an extra burden on the network, since the network needs
to transmit more packets than usual, and this may lead to a loss in efficiency. On the other hand,
with implicit communication, a source may not be able to distinguish between congestion and
other performance problems, such as a hardware problem [153]. Thus, the communication
channel is quite noisy, and a cause of potential instability.

1.7.1.3. Switch action
An overloaded switch can signal impending congestion to the sources, and, at worst, can

drop packets. In virtual circuit network layers, hop level flow control can throttle upstream virtual
circuits. In any case, the problem is to select either the source to throttle, or whose packets to
drop. The fairness of the congestion control scheme depends on this choice made by the
switches.

Schemes that rely on line usage as a congestion metric throttle all sources sending packets
on an overloaded link [14, 110]. This scheme is unfair in the sense that sources that use a small
fraction of the congested link are punished as severely as large users. The Loss-load curve
scheme [148] and the selective DECbit scheme [115] seek to overcome this problem by comput-
ing the share of the load due to each user, and selectively dropping packets from that source.
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If buffer usage is a congestion metric, switches drop packets or throttle sources when a
source exceeds its share of buffers. This share is determined by the buffer allocation strategy,
and the rate at which the buffers are emptied depends upon the service discipline. Thus, the
buffer allocation strategy and the service discipline jointly determine which sources are affected
(with the three exceptions noted below). We now discuss these two aspects of switch behavior.

The optimal buffer allocation scheme has received a lot of attention in the literature, and is
surveyed in [44]. Overall, the conclusion in that survey is that a scheme where each output line
is guaranteed a minimum number of buffers, and is not allowed to exceed a maximum, is fair
and efficient. Other schemes, such as Input Buffer Limit [81], Channel Queue Limit [70], Buffer
Class [45] and Matsumoto’s X.75 proposal [91] discriminate against some sources, and are thus
unfair.

Queue service disciplines are implemented in the servers on the output queues of packet
switches [100]. The choice of service discipline influences the kind of performance guarantees
that can be made to network clients in reservation-oriented networks [156]. We defer a discus-
sion of the choice of service discipline in reservationless networks to Chapter 2.

We claimed earlier that the choice of which source or conversation is affected by conges-
tion is implicitly determined by the service mechanism and the buffer allocation policy. Some
exceptions are in the DEC scheme [115], the Loss-load curve approach [148] and the Random
dropping scheme [90]. These schemes explicitly try to be fair in allocating responsibility for
congestion to sources. In the DECbit and Loss-load schemes, a switch maintains state informa-
tion about the demand for bandwidth by each source and its fair share. When the demand
exceeds the fair share, and the buffers are getting filled, that source is penalized. This is fair by
design. Random dropping is an ad hoc technique to achieve fairness. The essential idea is that,
when a buffer is full, the packet to drop is selected at random. Hence, users who use more
bandwidth, and will probably occupy a larger fraction of the buffer, have a higher chance of
packet loss. However, work by Mankin has shown that, by itself, this scheme does not reduce
congestion [90].

1.7.1.4. Flow control
A number of congestion control schemes have been proposed that operate at the

sources. These schemes use the loss of a packet (or the receipt of choke information) to reduce
the source sending rate in some way. The two main types of schemes are choke schemes and
rate-control schemes.

In a choke scheme, a source shuts down when it detects congestion. After some time, the
source is allowed to start up again [63, 88]. Choking is not efficient, since the reaction of the
sources is too abrupt. The stability of the choke scheme has not been analyzed, but the simple
example given in §1.5.4 seems to indicate that the scheme is prone to oscillations.

In a rate-control scheme, when a source detects congestion it reduces the rate at which it
sends out packets, either using a window adjustment scheme [117] or a rate adjustment scheme
[17, 75]. The latter is particularly suitable for sources that do rate based flow control. The advan-
tage of rate control schemes over choke schemes is that rate control allows a gradual transition
between sending no packets at all to sending full blast. Rate control seems to be an attractive
alternative for congestion control. Detailed analysis of the stability and efficiency of rate control
are presented in Chapters 5 and 6.

1.7.1.5. Enforcement
Congestion is a social problem and, unless the performance perceived by each source is

decoupled from the performance perceived by other sources, every source must cooperate in
solving it. However, in the large non-trustable, non-cooperative networks of the future, such
cooperation can no longer be assumed [118]. Thus, solutions that are predicated upon
cooperative sources are not satisfactory.

16



Many current schemes do not study enforcement. For example, in the DECbit scheme
[117], if a source chooses to ignore the congestion avoidance bits set by a switch, then the other
cooperative sources will automatically give up bandwidth to the ill-behaved source. The same is
true for the Jacobson-Karels TCP scheme [63]. This problem is avoided partially by the Random-
drop scheme [90], and completely by the Loss-load curve method [148].

There is a need for solutions that will work in the presence of ill-behaved hosts. That is, a
congestion control decision must not only be communicated to the sources, it must also be
enforced. Of all existing proposals, only the ones based on the round-robin (such as Fair Queue-
ing, or Earliest Due Date) service discipline have this property. This is discussed in Chapter 2.

1.7.2. Reservation-oriented networks
In reservation-oriented networks, network resources can be allocated at the start of each

session. Then, the network can guarantee a performance level to a conversation by performing
admission control. This can guarantee congestion control, but perhaps at the cost of underutili-
zation of network resources.

One of the earliest schemes to prevent packet losses was developed for the Datakit net-
work [41]. Here, the network places a limit on the size of the flow control window of each
conversation, and the connection establishment packet reserves a full window’s worth of buffer
space at each intermediate switch. Thus, every virtual circuit, once established, is guaranteed
to find enough buffers for each outstanding packet, and packet loss is avoided.

The complementary scheme is to reserve bandwidth instead of buffers. This is the approach
taken by Zhang in the Flow Network [154], by Ferrari et al in their real-time channel establishment
scheme [37], by Topolcic et al in the ST-II proposal [134] and by Cidon et al for the PARIS network
[16]. In a hybrid scheme described in reference [24] a source makes a reservation for buffers at
the beginning of a call, and a reservation for bandwidth before the start of each burst. This
allows bandwidth to be efficiently shared, but each burst experiences a round trip time delay.

There are four major problems with any naive reservation scheme: scaling, queueing delay,
underutilization and enforcement.

1.7.2.1. Scaling
For large and high speed networks, each switch needs a considerable amount of memory.

For example, if the RTT is 70ms over a 1Gbps fiber, one may need as much as 70Mbits of buffering
per conversation per switch! The two-window scheme proposed by Hahne et al [54] greatly
reduces this memory demand, and makes buffer reservation quite attractive. Work by Mitra et
al has shown that, theoretically, this requirement can be reduced even further [96]. Another
way to reduce buffer requirements is to require the user to obey some traffic profile [34].

1.7.2.2. Delay
In a proactive scheme, at overload, a full window could be buffered at the bottleneck.

When this happens, the queueing delay could be unacceptable. Delays can be bounded by
computing the worst-case delay at the time of call set-up, and doing admission control [37].

1.7.2.3. Underutilization
The major problem with reservations is that the network could be underutilized: an over-

zealous admission control scheme could prevent congestion by allowing only a few conversa-
tions to enter. This is not acceptable. The crux of the problem lies in determining how many
conversations can be admitted into the network without reducing the performance guarantees
made to the existing conversations. This has been studied by Ferrari et al [37]. One solution to
the problem is to define statistical guarantees, where some degree of performance loss can be
tolerated [35]. Conversations with statistical guarantees can be statistically multiplexed. Other
hybrid schemes have been described in section 1.4.1.
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1.7.2.4. Enforcement
How can we ensure that conversations actually send data at their reserved rate? There

are two types of enforcement mechanisms: those that act at the network access point, and
those that act at each switch.

Some researchers, especially from the telecom community, have postulated the existence
of Network Access Points (NAPs) where users (subscribers) can access a homogeneous switching
fabric. The NAPs can monitor and shape user traffic. If some users violate their stated traffic
envelope, their data can be dropped or violation-tagged [5]. An efficient way to monitor, and,
if necessary, reshape user traffic behavior to make it less bursty, is the leaky-bucket scheme
[87, 128, 136, 141].

Other schemes do enforcement at each switch. This is through some form of round-robin-
like queueing discipline at each switch. In the Flow network, the Virtual Clock mechanism is
used [154], and in the real-time channel establishment proposal, the discipline is Earliest-Due-
Date with distributed flow control [37]. Ferrari and Verma [36] and Kanakia [68] have proposed
mechanisms based on calendar queues [11] that have a similar effect.

1.7.3. Quality of service
One can view congestion control as being able to guarantee quality of service at high

loads. There has been some previous work in guaranteeing quality of service in networks.

Postel made an early suggestion for reservationless networks, though this was not studied in
any depth [113]. Golestani’s Stop-and-go queueing provides conversations with bandwidth,
delay and jitter bounds, and is similar in spirit to Kalmanek et al’s Hierarchical Round Robin
scheme [46, 47, 68]. Ferrari et al have proposed schemes that deliver deterministic and statistical
guarantees for delay, bandwidth, packet loss and jitter [37, 142]. Other related work is that of
Lazar, who has proposed a network that offers classes of service, where each class has a perfor-
mance guarantee [83]. Note that having only a small number of classes of service, instead of let-
ting each user define its own performance requirements, makes implementation easier, but does
not adequately satisfy our definition of congestion control. Work by Estrin and Clark to ensure
that a conversation can determine a route that best satisfies its quality of service requirement
(policy routing) is also relevant [19, 31].

1.8. Scope of the thesis
As our survey indicates, the study of congestion control is a large and rapidly expanding

area. Since it is impossible to study the entire area in any depth in a single dissertation, we limit
our scope to congestion control in reservationless networks and only at the multiple-RTT and fas-
ter than one RTT time scales. The techniques developed in this work can be used for the ‘best-
effort’ data traffic in reservation-oriented networks.

We initially turn our attention to the problem of protecting well-behaved users from ill-
behaved ones by allocating all users a fair share of the network bandwidth (Chapter 2). We
show that this Fair Queueing discipline not only ensures that each user gets a fair share of the
network bandwidth, but also enables users to probe the network state. After describing tech-
niques for the efficient implementation of Fair Queueing (Chapter 3), we present a novel state
probing technique that a source can use in networks of Fair Queueing servers (Chapter 4). A
flow control algorithm based on control theoretic principles that uses the probe values to do
predictive control is then described in Chapter 5. Chapter 6 provides simulation studies to back
up our claims, and Chapter 7 presents our conclusions.

Our original contributions are in the theoretical modeling of the congestion and congestion
control problems, deriving theoretically sound solutions, and using these to develop practical
algorithms. These algorithms are tested using a network simulator [73] on a set of eight test
scenarios.
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Chapter 2: Fair Queueing

2.1. Introduction
Datagram networks have long suffered from performance degradation in the presence of

congestion [44]. The rapid growth, in both use and size, of computer networks has sparked a
renewed interest in methods of congestion control. These methods have two points of imple-
mentation. The first is at the source, where flow control algorithms vary the rate at which the
source sends packets. Flow control algorithms are designed primarily to ensure the presence of
free buffers at the destination host, but we are more concerned with their role in limiting the
overall network traffic, and in providing users with maximal utility from the network.

The second point of implementation is at the switches. Congestion can be controlled at the
switches through routing and queueing algorithms. Adaptive routing, if properly implemented,
lessens congestion by routing packets away from network bottlenecks. Queueing algorithms,
which control the order in which packets are sent and the usage of the switch’s buffer space,
determine the way in which packets from different sources interact with each other. This, in turn,
affects the collective behavior of flow control algorithms. We argue that this effect, which is
often ignored, makes queueing algorithms a crucial component in effective congestion control.

Queueing algorithms can be thought of as allocating three nearly independent quantities:
bandwidth (which packets get transmitted), promptness (when do those packets get transmit-
ted), and buffer space (which and when packets get discarded by the switch). Currently, the
most common queueing algorithm is first-come-first-serve (FCFS). In this scheme, the order of
arrival completely determines the bandwidth, promptness, and buffer space allocations, inextri-
cably intertwining these three allocation issues. Since each user may have a different prefer-
ence for each allocated quantity, FCFS queueing cannot provide adequate congestion
management.

There may be flow control algorithms that can, when universally implemented in a network
with FCFS switches, overcome these limitations and provide reasonably fair and efficient conges-
tion control. However, with today’s diverse and decentralized computing environments, it is
unrealistic to expect universal implementation of any given flow control algorithm. This is not
merely a question of standards, but also one of compliance. First, even if a universal standard
such as ISO [12] were adopted, malfunctioning hardware and software could violate the stan-
dard. Second, there is always the possibility that individuals would alter the algorithms on their
own machine to improve their performance at the expense of others. Consequently, congestion
control algorithms should function well even in the presence of ill-behaved sources.

Unfortunately, irrespective of the flow control algorithm used by the well-behaved sources,
networks with FCFS switches do not have this property. A single source, sending packets to a
switch at a sufficiently high speed, can capture an arbitrarily high fraction of the bandwidth of
the outgoing line. Thus, FCFS queueing is not adequate; more discriminating queueing algo-
rithms must be used in conjunction with source flow control algorithms to control congestion
effectively in noncooperative environments.

Following a similar line of reasoning, Nagle [101] proposed a fair queueing (FQ) algorithm in
which switches maintain separate queues for packets from each individual source. The queues
are serviced in a round-robin manner. This prevents a source from arbitrarily increasing its share
of the bandwidth or the queueing delay received by the other sources. In fact, when a source
sends packets too quickly, it merely increases the length of its own queue. Nagle’s algorithm, by
changing the way packets from different sources interact, does not reward, nor leave sources
vulnerable to, anti-social behavior. This proposal appears to have considerable merit, and this
chapter describes a modification of Nagle’s scheme and explores its implications in some depth.

The three different components of congestion control algorithms introduced above, source
flow control, switch routing, and switch queueing algorithms, interact in interesting and compli-
cated ways. It is impossible to assess the effectiveness of any algorithm without reference to the
other components of congestion control in operation. We will evaluate our proposed queueing
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algorithm in the context of static routing and several widely used flow control algorithms. The aim
is to find a queueing algorithm that functions well in current computing environments. The algo-
rithm might, indeed it should, enable new and improved routing and flow control algorithms (as
shown in Chapters 4 and 5), but it must not require them.

In circuit switched networks, where there are explicit buffer reservation and uniform packet
sizes, it has been established that round robin service disciplines allocate bandwidth fairly
[55, 72]. Recently Morgan [98] has examined the role such queueing algorithms play in control-
ling congestion in circuit switched networks; while his application context is quite different from
ours, his conclusions are qualitatively similar. In other related work, the Datakit queueing algo-
rithm combines round robin service and FIFO priority service, and has been analyzed extensively
[42, 86]. Similar work has been presented by Zhang [154]; her Virtual Clock switch queueing algo-
rithm is essentially identical to the fair queueing algorithm presented here [157]. Zhang analyzes
this algorithm in the context of a proposed resource reservation scheme, the Flow Network,
whereas we do not consider resource reservation.

2.2. Fair Queueing

2.2.1. Motivation
What are the requirements for a queueing algorithm that will allow source flow control

algorithms to provide users with adequate utility even in the presence of ill-behaved sources?
We start with Nagle’s observation that a queueing algorithm must provide protection, so that ill-
behaved sources can only have a limited negative impact on well-behaved sources. Allocating
bandwidth and buffer space in a fair manner, to be defined later, automatically ensures that ill-
behaved sources can get no more than their fair share. This led us to adopt, as our central
design consideration, the requirement that the queueing algorithm allocate bandwidth and
buffer space fairly. Ability to control the promptness, or delay, allocation somewhat indepen-
dently of the bandwidth and buffer allocation is also desirable. Finally, we require that the switch
should provide service that, in some sense, does not depend discontinuously on a packet’s time
of arrival (this continuity condition will be made precise when we define our algorithm). This con-
tinuity requirement attempts to prevent the efficiency of source flow control implementations
from being overly sensitive to timing details (timers are the Bermuda Triangle of flow control algo-
rithms).

Nagle’s proposal does not satisfy these requirements. The most obvious flaw is its lack of
consideration of packet lengths. A source using long packets gets more bandwidth than one
using short packets, so bandwidth is not allocated fairly. Also, the proposal has no explicit
promptness allocation other than that provided by the round-robin service discipline. In addition,
the static round robin ordering violates the continuity requirement. These defects are corrected
in our version of fair queueing, which we define after first discussing our definition of fairness.

In stating our requirements for queueing algorithms, we have left the term fair undefined.
The term fair has a clear colloquial meaning, but it also has a technical definition (actually
several, as discussed in Chapter 1, but only one is considered here). Consider, for example, the
allocation of a single resource among N users. Assume there is an amount µtotal of this resource,
and that each of the users requests an amount ρi and, under a particular allocation, receives an
amount µi. What is a fair allocation? The max-min fairness criterion [43, 55, 115] states that an allo-
cation is fair if (1) no user receives more than its request, (2) no other allocation scheme satisfying
condition 1 has a higher minimum allocation, and (3) condition 2 remains recursively true as we
remove the minimal user and reduce the total resource accordingly, i.e. µtotal←µtotal−µmin. This con-
dition reduces to µi = MIN (µfair ,ρi) in the simple example, with µfair, the fair share, being set so that

µtotal =
i = 1
Σ
N

µi. This concept of fairness easily generalizes to the multiple resource case [115]. Note

that implicit in the max-min definition of fairness is the assumption that the users have equal rights
to the resource.
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In this application, the bandwidth and buffer demands are clearly represented by the
packets that arrive at the switch. (Demands for promptness are not explicitly communicated,
and we return to this issue later.) However, it is not clear what constitutes a user. The user associ-
ated with a packet could refer to the source of the packet, the destination, the source-
destination pair, or even refer to an individual process running on a source host. Each of these
definitions has limitations. Allocation per source unnaturally restricts sources such as file servers,
which typically consume considerable bandwidth. Ideally, the switches could know that some
sources deserve more bandwidth than others, but there is no adequate mechanism for estab-
lishing that knowledge in today’s networks. Allocation per receiver allows a receiver’s useful
incoming bandwidth to be reduced by a broken or malicious source sending unwanted packets
to it. Allocation per process on a host encourages human users to start several processes com-
municating simultaneously, thereby evading the original intent of fair allocation. Allocation per
source-destination pair allows a malicious source to consume an unlimited amount of
bandwidth by sending many packets all to different destinations. While this does not allow the
malicious source to do useful work, it can prevent other sources from obtaining sufficient
bandwidth.

Overall, allocation on the basis of source-destination pairs, or conversations, seems the best
tradeoff between security and efficiency and will be used here. However, our treatment will
apply to any of these interpretations of the notion of user. Given the requirements for an ade-
quate queueing algorithm, coupled with the definitions of fairness and user, we now turn to the
description of our fair queueing algorithm.

2.2.2. Definition
It is simple to allocate buffer space fairly by dropping packets, when necessary, from the

conversation with the largest queue. Allocating bandwidth fairly is less straightforward. Pure
round-robin service provides a fair allocation of packets sent, but fails to guarantee a fair alloca-
tion of bandwidth because of variations in packet sizes. To see how this unfairness can be
avoided, we first consider a hypothetical service discipline where transmission occurs in a bit-by-
bit round robin (BR) fashion (as in a head-of-queue processor sharing discipline). This service dis-
cipline allocates bandwidth fairly since at every instant in time each conversation is receiving its
fair share. Let R (t) denote the number of rounds made in the round-robin service discipline up to
time t (R (t) is a continuous function, with the fractional part indicating partially completed
rounds). Let Nac(t) denote the number of active conversations, i.e. those that have bits in their

queue at time t. Then,
∂t
∂Rhhh =

Nac(t)
µhhhhhhh, where µ is the speed of the switch’s outgoing line (we will, for

convenience, work in units such that µ = 1). A packet of size P whose first bit gets serviced at time
t0 will have its last bit serviced P rounds later, at time t such that R (t) = R (t0)+P. Let ti

α be the time
that packet i belonging to conversation α arrives at the switch, and define the numbers Si

α and
Fi

α as the values of R (t) when the packet started and finished service. With Pi
α denoting the size

of the packet, the following relations hold: Fi
α = Si

α+Pi
α and Si

α = MAX (Fi −1
α, R (ti

α)). Since R (t) is a
strictly monotonically increasing function whenever there are bits waiting to be sent at the
switch, the ordering of the Fi

α values is the same as the ordering of the finishing times of the vari-
ous packets in the BR discipline.

Sending packets in a bit-by-bit round robin fashion, while satisfying our requirements for an
adequate queueing algorithm, is obviously unrealistic. We hope to emulate this impractical
algorithm by a practical packet-by-packet transmission scheme. Note that the functions R (t)
and Nac(t) and the quantities Si

α and Fi
α depend only on the packet arrival times ti

α and not on
the actual packet transmission times, as long as we define a conversation to be active when-
ever R (t) ≤ Fi

α for i = MAX ( j | tj
α ≤ t). We are thus free to use these quantities in defining our packet-

by-packet transmission algorithm. A natural way to emulate the bit-by-bit round-robin algorithm
is to let the quantities Fi

α define the sending order of the packets. Our packet-by-packet
transmission algorithm is simply defined by the rule that, whenever a packet finishes transmission,
the next packet sent is the one with the smallest value of Fi

α. The continuity requirement men-
tioned earlier can be restated precisely as demanding that the relative transmission priorities
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depend continuously on the packet arrival times. The fact that the Fi
α’s depend continuously on

the ti
α’s means that our algorithm satisfies this continuity requirement.

In a preemptive version of this algorithm, newly arriving packets whose finishing number Fi
α

is smaller than that of the packet currently in transmission preempt the transmitting packet. For
practical reasons, we have implemented the nonpreemptive version, but the preemptive algo-
rithm (with resumptive service) is more tractable analytically. Clearly the preemptive and
nonpreemptive packetized algorithms do not give the same instantaneous bandwidth alloca-
tion as the BR version. However, for each conversation the total bits sent at a given time by these
three algorithms are always within Pmax of each other, where Pmax is the maximum packet size
(this emulation discrepancy bound is proved in reference [50]). Thus, over sufficiently long
conversations, the packetized algorithms asymptotically approach the fair bandwidth allocation
of the BR scheme.

Recall that a user’s request for promptness is not made explicit. The IP protocol [108] does
have a field for type-of-service, but not enough applications make intelligent use of this option to
render it a useful hint. Consequently, promptness allocation must be based solely on data
already available at the switch. One such allocation strategy is to give more promptness (less
delay) to users who utilize less than their fair share of bandwidth. Separating the promptness allo-
cation from the bandwidth allocation can be accomplished by introducing a nonnegative
parameter δ, and defining a new quantity, the bid Bi

α, as Bi
α = Pi

α+MAX (Fi −1
α, R (ti

α)−δ). The quanti-
ties R (t), Nac(t), Fi

α, and Si
α remain as before, but now the sending order is determined by the B’s,

not the F’s. The asymptotic bandwidth allocation is independent of δ, since the F’s control the
bandwidth allocation, but the algorithm gives slightly faster service to packets belonging to an
inactive conversation. The parameter δ controls the extent of this additional promptness. Note
that the bid Bi

α is continuous in ti
α, so that the aforementioned continuity requirement is met.

The role of this term δ can be seen more clearly by considering the two extreme cases δ = 0
and δ = ∞. If an arriving packet has R (ti

α) ≤ Fi −1
α, then the conversation α is active (i.e. the

corresponding conversation in the BR algorithm would have bits in the queue). In this case, the
value of δ is irrelevant and the bid number depends only on the finishing number of the previous
packet. However, if R (ti

α)>Fi −1
α, so that the α conversation is inactive, the two cases are quite dif-

ferent. With δ = 0, the bid number is given by Bi
α = Pi

α+R (ti
α), and is completely independent of the

previous history of user α. With δ = ∞, the bid number is Bi
α = Pi

α+Fi −1
α and depends only the previous

packet’s finishing number, no matter how many rounds ago. For intermediate values of δ,
scheduling decisions for packets of inactive conversations depends on the previous packet’s
finishing round as long as it was not too long ago, and δ controls how far back this dependence
goes.

Recall that when the queue is full and a new packet arrives, the last packet from the
conversation currently using the most buffer space is dropped. We have chosen to leave the
quantities Fi

α and Si
α unchanged when we drop a packet. This provides a small penalty for ill-

behaved hosts, in that they will be charged for throughput that, because of their own poor flow
control, they could not use. Recent work [57] raises questions about the desirability of this aspect
of our algorithm.

2.2.3. Performance
The desired bandwidth and buffer allocations are completely specified by the definition of

fairness, and we have demonstrated that our algorithm achieves those goals. However, we
have not been able to characterize the promptness allocation for an arbitrary arrival stream of
packets. To obtain some quantitative results about the promptness, or delay, performance of a
single FQ switch, we consider a very restricted class of arrival streams in which there are only two
types of sources. There are FTP-like file transfer sources, which always have ready packets and
transmit them whenever permitted by the source flow control (which, for simplicity, is taken to be
sliding window flow control), and there are Telnet-like interactive sources, which produce pack-
ets intermittently according to some unspecified generation process. What are the quantities of
interest? An FTP source is typically transferring a large file, so the quantity of interest is the transfer
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time of the file, which for asymptotically large files depends only on the bandwidth allocation.
Given the configuration of sources this bandwidth allocation can be computed a priori by using
the fairness property of FQ switches. The interesting quantity for Telnet sources is the average
delay of each packet, and it is for this quantity that we now provide a rather limited result.

Consider a single FQ switch with N FTP sources sending packets of size PF, and allow a single
packet of size PT from a Telnet source to arrive at the switch at time t. It will be assigned a bid
number B = R (t)+PT−δ; thus, the dependence of the queueing delay on the quantities PT and δ is
only through the combination PT−δ. We will denote the queueing delay of this packet by φ(t),
which is a periodic function with period NPF. We are interested in the average queueing delay ∆

∆≡
NPF

1hhhhh
0
∫

NPF

φ(t)dt

The finishing numbers Fi
α for the N FTP’s can be expressed, after perhaps renumbering the

packets, by Fi
α = (i+l α)PF where the l’s obey 0 ≤ l α<1. The queueing delay of the Telnet packet

depends on the configuration of l’s whenever PT<PF . One can show that the delay is bounded
by the extremal cases l α = 0 for all α and l α = α/N for α = 0,1,...,N −1. The delay values for these
extremal cases are straightforward to calculate; for the sake of brevity we omit the derivation
and merely display the result below. The average queueing delay is given by ∆ = A (PT−δ),
where the function A (P), the delay with δ = 0, is defined below (with integer k and small con-
stant ε, 0 ≤ ε<1, defined via PT = PF(k+ε)/N).
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A more detailed analysis of the single server case can be found in reference [23]. What
happens in a network of FQ switches? There are few analytical results here, but Hahne [55] has
shown that for strict round robin service switches and only FTP sources there is fair allocation of
bandwidth (in the multiple resource sense) when the window sizes are sufficiently large. She also
provides examples where insufficient window sizes, but much larger than the pipeline depth of
the communication path, can result in unfair allocations. It can be shown that both of these pro-
perties hold for our fair queueing scheme.

Chapters 4 and 5 analyze networks of FQ switches from the point of view of a single conver-
sation. While this analysis cannot explain overall network dynamics, it is sufficient to model and
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control a single conversation. Simulation results for networks of FQ switches are presented in
Chapter 6.

2.3. Discussion
In an FCFS switch, the queueing delay of packets is, on average, uniform across all sources

and directly proportional to the total queue size. Thus, achieving ambitious performance goals,
such as low delay for Telnet-like sources, or even mundane ones, such as avoiding dropped
packets, requires coordination among all sources to control the queue size. Having to rely on
source flow control algorithms to solve this control problem, which is extremely difficult even in a
maximally cooperative environment and impossible in a noncooperative one, merely reflects
the inability of FCFS switches to distinguish between users and to allocate bandwidth, prompt-
ness, and buffer space independently.

In the design of the fair queueing algorithm, we have attempted to address these issues.
The algorithm does allocate the three quantities separately. Moreover, the promptness alloca-
tion is not uniform across users and is somewhat tunable through the parameter δ. Most impor-
tantly, fair queueing creates a firewall that protects well-behaved sources from their uncouth
brethren. Not only does this allow the current generation of flow control algorithms to function
more effectively, but it creates an environment where users are rewarded for devising more
sophisticated and responsive algorithms. The game-theoretic issue first raised by Nagle, that one
must change the rules of the switch’s game so that good source behavior is encouraged, is cru-
cial in the design of switch algorithms [101]. A formal game-theoretic analysis of a simple switch
model (an exponential server with N Poisson sources) suggests that fair queueing algorithms
make self-optimizing source behavior result in fair, protective, nonmanipulable, and stable net-
works; in fact, they may be the only reasonable queueing algorithms to do so [124]. Our calcu-
lations show that the fair queueing algorithm is able to deliver low delay to sources using less
than their fair share of bandwidth, and that this delay is insensitive to the window sizes being
used by the FTP sources.

The protection property of the FQ algorithm enables a new class of flow control algorithm.
Since each user gets a fair share of the network bandwidth, the stream of acknowledgments
received by the source, is, to a first approximation, dependent only on that source’s own
behavior. Hence, by monitoring the acknowledgment stream, the source can optimize its send-
ing rate regardless of the behavior of the other sources. This idea is explained in greater detail in
Chapters 4 and 5.

In this chapter we have compared our fair queueing algorithm with only the standard first-
come-first-serve queueing algorithm. We know of three other widely known queueing algorithm
proposals. The first two were not intended as a general purpose congestion control algorithms.
Prue and Postel [113] have proposed a type-of-service priority queueing algorithm, but alloca-
tion is not made on a user-by-user basis, so fairness issues are not addressed. There is also the
Fuzzball selective preemption algorithm [94, 95] whereby the switches allocate buffers fairly (on a
source basis, over all of the switch’s outgoing buffers). This is very similar to our buffer allocation
policy, and so can be considered a subset of our FQ algorithm. The Fuzzballs also had a form of
type-of-service priority queueing but, as with the Prue and Postel algorithm, allocations were not
made on a user-by-user basis. The third policy is the Random-Dropping (RD) buffer management
policy in which the service order is FCFS, but when the buffer is overloaded, the packet to be
dropped is chosen at random [90]. This algorithm tends to allocate bandwidth to cooperative
sources more or less evenly. However, it has been shown that the RD algorithm does not provide
max-min fair bandwidth allocation, is vulnerable to ill-behaved sources, and is unable to provide
reduced delay to conversations using less than their fair share of bandwidth [39, 56, 125, 154].

There are two objections that have been raised in conjunction with fair queueing. The first is
that some source-destination pairs, such as file server or mail server pairs, need more than their
fair share of bandwidth. This can achieved by weighted fair queueing, described below. Assign
each source-destination pair a number n α which represents how many queue slots that conver-
sation gets in the bit-by-bit round robin. We now redefine Nac as Nac = Σn α with the sum over
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all active conversations, and Pi
α as 1/n α times the true packet length. With these changes, the

earlier algorithm allocates each user a share of the bandwidth proportional to its weight. Of
course, the truly vexing problem is the politics of assigning the n α. Note that, while we have
described an extension that provides for different relative shares of bandwidth, one could also
define these shares as absolute fractions of the bandwidth of the outgoing line. This would
guarantee a minimum level of service for these sources, and is very similar to the Virtual Clock
algorithm of Zhang [154].

The other objection is that fair queueing requires the switches to be smart and fast. There is
the technological question of whether or not one can build FQ switches that can match the
bandwidth of fibers. If so, are these switches economically feasible? Work by Restrick and Kal-
manek at AT&T Bell Laboratories has shown that it is possible to build fair queueing servers that
switch ATM cells at 1.2 Gbps [69]. This indicates that building smarter switches does not neces-
sarily have to make them slower.
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Chapter 3: Efficient Implementation of Fair Queueing

3.1. Introduction
The performance of packet switched data networks is greatly influenced by the queue ser-

vice discipline in routers and switches. While most current implementations are of the first-come-
first-served discipline, Chapter 2 shows that the Fair Queueing (FQ) discipline provides better per-
formance. Thus, there has been considerable interest in studying the theoretical and practical
aspects of the algorithm [50, 57, 89, 93, 125, 126].

Chapter 2 discussed the properties of Fair Queueing; however, no particular implementa-
tion strategy was suggested. If future networks are to implement the discipline, it is necessary to
study efficient implementation strategies. Thus, this chapter examines data structures and algo-
rithms for the efficient implementation of Fair Queueing.

We begin by summarizing the Fair Queueing Algorithm. After pointing out its three com-
ponents, we study the efficient implementation of each component. The component that criti-
cally affects the performance is a bounded size priority queue. In the rest of the chapter, we
develop a technique to study average case performance of data structures, and use it to com-
pare several priority queue implementations. Our results indicate that cheap and efficient
implementations of Fair Queueing are possible. Specifically, if packet loss can be avoided, an
ordered linked list implements a bounded size priority queue simply and efficiently. If losses can
occur, then explicit per-conversation queues provide excellent performance.

3.2. The Fair Queueing algorithm
Let the ith packet from conversation α, of size Pi

α, arrive at a switch at time t. Let F α denote
the largest finish number for any packet that has ever been queued for conversation α at that
switch. Then, we compute the packet’s finish number Fi

α and the packet’s bid number Bi
α as fol-

lows:

if( α is active )
Fi

α = F α + Pi
α ;

else
Fi

α = R(ti
α) + Pi

α ;
endif

Bi
α = Pi

α + MAX ( F α, R(ti
α) − δα) ;

F α = Fi
α ;

If the packet arrives when there is no more free buffer space, packets are dropped in order
of decreasing bid number until there is space for the incoming packet. The next packet sent on
the output line is the one with the smallest bid number.

3.3. Components of a Fair Queueing server
It is useful to trace a FQ server’s actions on packet arrival and departure. When a packet

arrives at the server, it first determines the packet’s conversation ID α. The server then updates
the current round number R(t). The conversation ID is used to index into the server state to
retrieve the conversation’s finish number F α and offset δα. These are used to compute the
packet’s finish and bid numbers, Fi

α and Bi
α.

If the output line is idle, the packet is sent out immediately, else it is buffered. If the buffers
are full, some buffered packets may need to be discarded. On an interrupt from the output line
indicating that the next packet can be sent, the packet in the buffer with the smallest bid
number is retrieved and transmitted.

From this description, we identify three major components of a FQ implementation: bid
number computation, round number computation, and packet buffering. We discuss each
component in turn.
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Bid number computation
A FQ server maintains, as its internal state, the finish number F α and the offset δα of each

conversation α passing through it. An implementor has to make two design choices: determining
the ID of a conversation, and deciding how to access the state for that conversation.

The choice of the conversation ID depends on the entity to whom fair service is granted
(see the discussion in Chapter 2), and the naming space of the network. For example, if the unit
is a transport connection in the IP Internet, one such unique identifier is the tuple (source
address, destination address, source port number, destination port number, protocol type). The
elements of the tuple can be concatenated to produce a unique conversation ID. For virtual
circuit based networks, the Virtual Circuit ID itself can be used as the conversation ID.

Note that for the IP Internet, one cannot always use the source and destination port
numbers, since some protocols do not define them. For example, if an IP packet is generated by
a transport protocol such as NetBlt [17], this information may not be available. An engineering
decision could be to recognize port numbers for some common protocols and use the IP (source
address, destination address) pair for all other protocols. This may result in some unfairness since
transport connections sharing the same address pair would be treated first-come-first-served.

The conversation ID is used to access a data structure for storing state. Since IDs could
span large address spaces, the standard solution is to hash the ID onto a index, and the technol-
ogy for this is well known [65]. Recently, a simple and efficient hashing scheme that ignores hash
collisions has been proposed [93]. In this approach, some conversations could share the same
state, leading to unfair service, since these conversations are served first-come-first-served. How-
ever, this can be attenuated by occasionally perturbing the hash function, so that the set of
conversations that share the same state changes periodically.

Round number computation
The round number at a time t is defined to be the number of rounds that a bit-by-bit round

robin server would have completed at that time. To compute the round number, the FQ server
keeps track of the number of active conversations Nac(t), since the round number grows at a
rate that is inversely proportional to Nac. However, this computation is complicated by the fact
that determining whether or not a conversation is active is itself a function of the round number.

Consider the following example. Suppose that a packet P0
A of size 100 bits arrives at time 0

on conversation A, and let L = 1. During the interval [0,50), since Nac = 1, and ∂R(t)/∂t = 1/Nac,
R(50) = 50. Suppose that a packet of size 100 bits arrives at conversation B at time 50. It will be
assigned a finish number of 150 (= 50 + 100). At time 100, P0

A has finished service. However, in
the time interval [50, 100), Nac = 2, and so R(100) = 75. Since FA = 100, A is still active, and Nac stays
at 2. At t = 200, P0

B completes service. What should R(200) be? The number of conversations
went down to 1 when R(t) = 100. This must have happened at t = 150, since R(100) = 75 , and
∂R(t)/∂t = 1/2. Thus, R(200) = 100+50 = 150.

Note that each conversation departure speeds up the R(t), and this makes it more likely
that some other conversation has become inactive. Thus, it is necessary to do an iterative dele-
tion of conversations to compute R(t), as shown in Figure 3.1.

The server maintains two state variables, tchk and Rchk = R(tchk) . A lower bound on R (t) is
Rchk + L /Nac(tchk)*(t − tchk), since Nac is strictly non-increasing in [tchk, t]. If some F α is less than this
expression, then conversation α has become inactive some time before time t. We determine
the time when this happened, checkpoint the state at that time by updating the tchk, Rchk pair,
and repeat this computation till no more conversations are found to be inactive at time t.

Round number computation involves a MIN operation over the finish numbers, which sug-
gests a simple scheme for efficient implementation. The finish numbers are maintained in a
heap, and as packets arrive the heap is adjusted (since F α is monotonically increasing for a
given α, this is necessary for each incoming packet). This takes time O(log Nac(t)) per operation.
However, it only takes constant time to find the minimum, and so each step of the iterative
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/* F, ∆ and N are temporary variables */
N = Nac(tchk);
do:

F = MIN(F α | α is active);
∆ = t − tchk;
if (F ≤ Rchk + ∆ * L /N) {

declare the conversation with F α = F inactive;
tchk = tchk + (F − Rchk) * N /L;
Rchk = F;
N = N − 1;

}
else {

R (t) = Rchk + ∆ * L / N;
Rchk = R (t);
tchk = t;
Nac(t) = N
exit;

}
od

Figure 3.1: Round number computation

deletion takes time O(log Nac(t)) (for readjusting the heap after the deletion of the conversation
with the smallest finish number).

In related work by Heybey et al, a heuristic for computing the round number has been pro-
posed [57]. In this scheme, the round number is set to the finish number of the packet currently
being transmitted, and all packets with the same finish number are served first-come-first-served.
If this heuristic (or a small variant) is acceptable, the round number can be easily computed.

Packet buffering
FQ defines the packet selected for transmission to be the one with the smallest bid number.

If all the buffers are full, the server drops the packet with the largest bid number (unlike the algo-
rithm in Chapter 2, this buffer allocation policy accounts for differences in packet lengths). The
abstract data structure required for packet buffering is a bounded heap. A bounded heap is
named by its root, and contains a set of packets that are tagged by their bid number. It is asso-
ciated with two operations, insert(root, item, conversation_ID) and get_min(root),
and a parameter, MAX, which is the maximum size of the heap.

insert() first places an item on the bounded heap. While the heap size exceeds MAX, it
repeatedly discards the item with the largest tag value. We insert an item before removing the
largest item since the inserted packet itself may be deleted, and it is easier to handle this case if
the item is already in the heap. To allow this, we always keep enough free space in the buffer to
accommodate a maximum sized packet. get_min() returns a pointer to the item with the
smallest tag value and deletes it.

Determining a good implementation for a bounded heap is an interesting problem. There
are two broad choices.

1 Since we are interested only in the minimum and maximum bid values, we can ignore the
conversation ID, and place packets in a single homogeneous data structure.

2 We know that, within each conversation, the bid numbers are strictly monotonically
increasing. This fact can be used to do some optimization.

It is not immediately apparent what the best course of action should be, particularly since per-
conversation queueing is computationally more expensive. Thus, we did a performance analysis
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to help determine the best data structure and algorithms for packet buffering. The next sections
describe some implementation alternatives, our evaluation methodology, and the results of the
evaluation.

3.4. Buffering alternatives
We considered four buffering schemes: an ordered linked list (LINK), a binary tree (TREE), a

double heap (HEAP), and a combination of per-conversation queueing and heaps (PERC). We
expect that the reader is familiar with details of the list, tree and heap data structures. They are
also described in standard texts such as References [58, 78].

Ordered list
Tag values usually increase with time, since bid numbers are strictly monotonic within each

conversation (though not monotonic across conversations). This suggests that packets should be
buffered in an ordered linked list, inserting incoming packets by linearly scanning from the larg-
est tag value. Monotonicity implies that most insertions are near the end, and so this reduces the
number of link traversals required.

Binary tree
We studied a binary tree, since this is simple to implement and has good average perfor-

mance. Unfortunately, monotonic tag values can skew the tree heavily to one side, and the
insertion time may become almost linear. This skew can be removed by using self-balancing
trees such as AVL trees, 2-3 trees or Fibonacci trees. However, the performance of the self-
balancing trees is comparable to that of a heap, since operations on balanced trees as well as
heaps require a logarithmic number of steps. Since we do study heaps, we have not evaluated
self-balancing trees explicitly. Our performance evaluation of heaps will also be representative
of the results for self-balancing trees.

Double heap
A heap is a data structure that maintains a partial order. The tag value at any node is the

largest (or smallest) of all the tags that lie in the subtree rooted at that node. Since we require
both the minimum and the maximum elements in the heap, we maintain two heaps (imple-
mented as arrays) and cross pointers between them. The code for implementing double heaps
is presented in Appendix 1.

Per-conversation queue (PERC)
We know that, within a conversation, bid numbers are strictly monotonic. So, we queue

packets per conversation, and keep two heaps keyed on the bid numbers of the head and tail
of the queue for each conversation. insert() adds a packet to the end of the per channel
queue and updates the max heap. get_min() finds the packet with smallest bid number from
the min heap and dequeues it.

3.5. Performance evaluation
The performance of a data structure is measured by the cost of performing an elementary

operation, such as an insertion or a deletion of an element, on it. Traditionally, performance has
been measured by the asymptotic worst case cost of the operation as the size of the data struc-
ture grows without bound. For example, the insertion cost into an ordered list of length N is O(N),
since in the worst case we may need to traverse N links to insert an item into the list.

How should we measure the performance of the four buffering data structures for the
insert() and get_min() operations? Since constant work is needed to add or delete a single
item at a known position to any data structure, the unit of work for linked lists and trees is a link
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traversal and for heaps is a swap of two elements. For linked lists and trees, the time for
get_min() is a constant, and, for the other two data structures, it is comparable to the insertion
time. Thus, an appropriate way to measure the performance of the data structures is to measure
the number of links of the data structure that are traversed, or the expected number of swaps,
during an insert() operation. Let B denote the number of buffers in a gateway, and let N
denote the number of conversations present at any time (B is typically much larger than N).
Table 3.1 presents well known results for the performance of the data structures described above
for the insert() operation.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Best Worst Average (Uniformly random workload)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

LINK O(1) O(B) O(B)
TREE O(1) O(B) O(log(B))
HEAP O(log(B)) O(log(B)) O(log(B))
PERC O(log(N)) O(log(N)) O(log(N))iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c

c
c
c
c
c
c
c

Table 3.1: Theoretical insertion costs

While the asymptotic worst case cost is an interesting metric, we feel that it is also desirable
to know the average cost. However, average case behavior is influenced by the workload (the
exact sequence of insert and get_min operations) that is presented to the data structure.
Thus the best that we can do analytically is to assume that the workload is drawn from some
standard distribution (uniform, gaussian, and so on), and compute the expected cost. We
believe that this is not adequate. Instead, we use a general analysis methodology that we think
is practical, and has considerable predictive power.

Methodology
We first parameterize the workload by some (small) number of parameters. Suitable values

of the parameters are then fed to a realistic network simulator to create a trace of the workload
for those parameter values. Then, we implement the data structure and associated algorithms,
and measure the average performance over the trace length. This enables us to associate an
average performance metric at that point in the workload parameter space. By judicious
exploration of the parameter space, it is possible to map out the average performance as a
function of the workload, and thus extrapolate performance to regions of the space that are not
directly explored.

In our opinion, this methodology avoids a significant difficulty in average case analysis, that
is, reliance on unwarranted assumptions about the workload distribution. Also, by mapping
algorithm performance onto the workload space, it enables a network designer to choose an
appropriate algorithm given the operating workload.

The drawback with this method is that it requires a realistic network simulator, and consider-
able amounts of computing time. Further, the parameterization of the workload and the
exploration of the state space are more of an art than a science. However, we feel that these
drawbacks are more than compensated for by the quality of the results that can be obtained.

Evaluation results
We chose the scenario of Figure 3.2 for detailed exploration. The gateway serves multiple

sources (each of which generates one conversation) that share two common resources: the
bandwidth of the output (trunk) line, and buffers in the gateway. Since there are no inter-trunk
service dependencies, it suffices to model a single output trunk. Further, by changing the
number of sources, and the number of buffers, it is possible to drive the system into congestion,
something that we want to study. Finally, it is simple enough that it can be easily parameterized.
Thus, our choice.
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Note that we do not introduce any ‘non-conformant’ traffic in the sense of [57], since we
wish to explore design decisions for well behaved sources only. If the network is expected to
carry non-conformant traffic as well, then an evaluation of performance similar to the one
described here needs to be carried out for that case.

The simulated sources obey the DARPA TCP protocol [108] with the modifications made by
Jacobson [63]. They have a maximum window size of W each. By virtue of the flow control
scheme, each source dynamically increases its window size, till either a packet is dropped by
the gateway (leading to a timeout and a retransmission) or the window size reaches W. It is
clear that the gateway cannot be congested if

W * N ≤ B.
If the network is not congested, then each source behaves nearly independently, and the work-
load is regular, in the sense that the short term packet arrival and service rates are equal, and
queues do not build up. When there is congestion, retransmissions and packet losses dramati-
cally change the workload. Thus, one parameter that affects the workload is the ratio N/B. We
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also expect the workload to change as the number of conversations N increases. Thus, keeping
W fixed, the two parameters that determine the workload are N and B.

Average work per insertion (20 conversations)(log scale)

Number of buffers

5

210.0160.0110.060.010.0

4

3

2

1

0

-1

-2

-3

TREE

HEAP

PERC

LINK

Average work per insertion (underloaded)(log scale)

Number of conversations

15

10

5

0

413121111
-5

TREE

HEAP

PERC

LINK

Average work per insertion (Overloaded)(log scale)

Number of conversations

4

3

2

1

0

413121111

-1

-2

-3

-4

-5

LINK

TREE

HEAP

PERC

Average work per insertion (50 buffers)(log scale)

Number of conversations

12

423222122

7

2

-3

-8

LINK
TREE

HEAP

PERC

Figure 3.5: Average cost results

Following the experimental methodology outlined above, we used the REAL network simu-
lator [73] to generate workload traces for a number of (N, B) tuples. One practical problem was
to determine the appropriate trace length. Since generating a trace takes a considerable
amount of computation, we decided to generate the shortest trace for which the cost metrics
for all the four implementations stabilized. For simplicity, we determined this length for a single
workload, with N = 10, B = 200, and generated a trace for 2500 seconds of simulated time. We
then plotted the four cost metrics as a function of the trace length (Figure 3.3). We find that at
2500 seconds, all the metrics are no more than 10% away from their asymptotes. Since we only
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Figure 3.6: Average and maximum cost results

wanted to make qualitative cost comparisons, we generated each trace for 2500 seconds.

The (N, B) state space was explored along the five axes (labeled A through E) shown in Fig-
ure 3.4. Each ‘+’ marks a simulation; there were a total of 35 simulations. Cost metrics for each
implementation were determined along each axis. Axis A is the underloaded axis - along every
point in the axis the gateway is lightly loaded, that is W * N < B. Symmetrically, axis B is the over-
loaded axis. Axes C, D and E are partly in the underloaded regime, and partly in the overloaded
regime. Thus, congestion-dependent transitions in the relative costs of the implementations
occur along these axes. The axis marked F is the locus of W*N = B.

Figures 3.5 and 3.6 show the average insertion cost along each of the five axes for each
implementation. This is computed as

# elementary operations / # insertions in the trace

where an elementary operation is the traversal of a single link or a single heap exchange. All Y
axes, though marked linearly, are drawn to logarithmic scale, so that, for example, 2
corresponds to e 2. Conceptually, one can imagine that for each implementation, there is a per-
formance surface overlaying the workload space. Figures 3.5 and 3.6 represent cross sections of
these surfaces as we slice along axes A-E. We can extrapolate the surfaces from these cross
sections.

Results
Examination of the surfaces points out several facts:

g The performance surfaces for all the implementations (except LINK) are generally smooth,
with few discontinuities. Thus, extrapolating the curves is meaningful.

g LINK behavior is somewhat erratic, since the insertion cost is is highly dependent on the
workload. However, it still has a well defined behavior: in some cases, it is the by far the
cheapest implementation, in others, it is clearly the most expensive. Figure 3.7 divides the
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Figure 3.7: Linked list performance

workload space into three zones, numbered I-III. In zone I, it is best to use LINK, in zone III,
LINK has the worst metric.

g As the number of conversations increases, the average HEAP and PERC insertion cost
increases in the overloaded regime and is roughly constant in the underloaded regime.

g The cost metric for PERC is always less than that for HEAP or TREE.

g The cost metric for HEAP is within an order of magnitude of that for PERC in most cases.

g In the underloaded regime, binary trees become skewed, and hence are costly. They per-
form better in the overloaded regime.
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g The average insertion cost for PERC is less than its theoretical average case cost.

g The maximum work done, which is shown for a typical case in Figure 3.6, is as expected in
Table 3.1.

g In the underloaded case, HEAP and PERC show a declining trend, but this is offset by a
larger increasing trend in the deletion time (not shown here).

Interpretation of results
The results give several guidelines for FQ implementation. TREE performs the worst in the

underloaded regime; in the overloaded regime, HEAP and PERC are better. Hence, TREE is a
bad implementation choice. We will not discuss it further.

Among the other strategies, PERC is always better than HEAP, and both of them have small
worst case insertion costs. The worst case work per insertion is bounded by O(log(B)) for HEAP,
and by O(log(N)) for PERC. Assuming that a gateway has 32 Mbytes of buffering per trunk line,
and that packets are, on the average, 1Kbyte long, there will be at most on the order of 32K
packets in the buffer. The number of conversations will be on the order of the square root of this
number, i.e., around 200. With these figures, HEAP requires log(32K) ∼∼ 15, and PERC requires
log(200) ∼∼ 8 elementary operations. Our simulations (Figure 3.5) show that in the trace driven
simulation, the average work for HEAP and PERC is less than half of the worst case work. Thus,
the average cost per insertion for PERC will be more like 4 elementary operations. This is a small
price to pay to implement Fair Queueing.

The behavior of LINK (Figure 3.7) points to another implementation tactic. Note that in
region I, LINK has the least cost. If the network designer can guarantee that the system will never
enter the overloaded region (for example, by preallocating enough buffers for conversations, as
in the Datakit network), then implementing LINK is the best strategy.

One consideration that is orthogonal to the insertion cost is implementation cost. For exam-
ple, it is clear that implementing PERC involves much more work than implementing LINK. There
are two implementation costs, corresponding to the work that is done independent of the
number of elementary operations (static cost), and the work done per elementary operation
(dynamic cost), respectively.

One simple metric to measure static cost is to measure the code size for insert(). We
extracted the code for insert() and all the functions that it calls, for each implementation
and placed it in a file. This file was compiled to produce optimized assembly code (in Unix, by
the command cc -S -O -c). We then stripped the file of all assembler directives, leaving pure
assembly code. Since this was done on a RISC machine, all instructions have the same cost, and
the file length is a good metric of the complexity of implementing a given strategy. Table 3.2
presents this metric for the four implementations, normalized to the cost of implementing LINK.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Implementation Static Dynamic

Cost Costiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LINK 1.0 5
TREE 1.1 18
HEAP 2.5 88
PERC 5.5 96iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Table 3.2: Implementation cost

The dynamic cost was determined by examining the optimized assembly code, and count-
ing the number of instructions executed per elementary operation. Table 3.2 presents the results.
We did not specifically concentrate on reducing the number of instructions while writing the
source code. We believe that the dynamic cost of the more expensive schemes can be consid-
erably reduced by hand coding in assembly language.
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To summarize, we draw four conclusions:

1 Implementing TREE is a bad idea.

2 HEAP provides good performance with low implementation cost.

3 PERC consistently provides the best performance, but has the highest implementation cost.

4 If the network designer can guarantee that the network never goes into overload, LINK is
cheap to implement and has the minimum running cost.

3.6. Conclusions
In this chapter, we have considered the components of a FQ server, and have presented

and compared several implementation strategies. Our work indicates that cheap and efficient
implementations of FQ are possible. Along with the work done by McKenney [93] and Heybey
et al [57], this work provides the practitioner with well defined guidelines for FQ implementation.
We hope that these studies will encourage more implementations of Fair Queueing in real net-
works.

The performance evaluation methodology described here enables realistic evaluation of
the average case performance of network algorithms. As LINK shows, this can lead to interesting
results. We believe that a similar methodology can be used to evaluate a number of other work-
load sensitive network algorithms.

Finally, we believe that these results can be extended to other scheduling disciplines that
are similar to Fair Queueing, such as the Virtual Clock algorithm [154]. Thus, our work has some
generality of application.

3.7. Future work
This chapter does not examine hardware implementations of Fair Queueing. Given the

need for faster packet processing in high speed networks, this is an obvious direction to pursue.

While we presented the means for the cost metric, we ignored the variance. This is because
our simulations are completely deterministic. It would be useful to enhance the performance
methodology described earlier to determine the variance and confidence intervals.
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3.8. Appendix 3.A
A double heap consists of a pair of heaps. Since operations on one heap must be reflected

in the other, we need pointers between the two instances of an element in the double heap.
Since we represent heaps as arrays, pointers are indices, and we implement cross pointers using
two integer arrays of indices.

The physical data structures used are four arrays, min, max, i_min, and i_max. min
and max are the arrays that store the two heaps, one has the minimum element at the root, the
other has the maximum. i_min[k] is the position in max of the kth element of min. i_max is
defined symmetrically.

Every move in either heap must update i_min and i_max. We note that the only time an
element is moved is when it is exchanged with some other element. We encapsulate this into an
operation exchg() that swaps elements in the min or max heap, and simultaneously updates
i_min and i_max so that the pointers are consistent. We actually need two symmetric opera-
tions, min_exchg() and max_exchg(), that swap elements in the min and max heap
respectively. min_exchg() looks like the following:

min_exchg(a, b) /* calls to swap are call by name */
{
swap(min[a], min[b]);
swap(i_max[i_min[a]], i_max[i_min[b]]);
swap(i_min[a], i_min[b]);
}

We now prove that this operation preserves pointer consistency, i.e. that i_min[i_max[a]] =
a and i_max[i_min[a]] = a. Elements are inserted only in the last (say, nth) position in the
heap, so the initial pointer positions are: i_min[n] = i_max[n] = n . It is easy to see that at
the end of each min_exchg() operation, the pointers will remain consistent. Hence, by induc-
tion, pointers are always consistent.

Given the exchange operation, the rest of the heap operations are simple to implement.
Heap insertion is done by placing data in the last element, and sifting up.

min_insert(data,num)
/* num is the current size of the heap */
{
ptr = num + 1;
min[ptr] = data;

for (; (ptr/2 >= 1) &&(min[ptr] < min (ptr/2]); ptr /=2)
min_exchg(ptr, ptr/2);

}

Deletion is done by changing both the min and the max heaps, then adjusting them to
recover the heap property.

min_delete()
{
int save;

min[1] = INFINITY;
save = i_min[1];
min_exchg(1,num);
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min_adjust(1);

max[save] = -1;
max_exchg(save,num);
max_adjust(save);
}

Adjusting a heap consists of recursively sifting the marked element up or down as the case
may be. Termination in a logarithmic number of steps is assured: because of the heap property,
calls either go up the heap or down, and there can be no cycles.

min_adjust(a)
{
int smaller, smaller_son;

smaller = a;
if (min[a] < min[a/2]) smaller = a/2;
smaller_son = (min[lson(a)] < min[rson(a)]) ? lson(a) : rson(a);
if (min[smaller_son] < min[a]) smaller = smaller_son;
if (smaller != a)

{
min_exchg(a, smaller);
min_adjust(smaller); /* recursive call */
}

}
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Chapter 4: The Packet Pair Flow Control Protocol

4.1. Introduction
Most current packet switched data networks have routers and switches that obey a first-

come-first-served (FCFS) queueing discipline, and existing transport layer flow control protocols
have been optimized for such networks. If the service discipline is changed to Fair Queueing,
then flow control protocols can improve their performance. This chapter presents the design
and analysis of a flow control scheme, called the Packet-Pair flow control protocol, enabled by
the Fair Queueing discipline. We first present a deterministic model for networks of Fair Queueing
servers to motivate the design of Packet-pair. We then give implementation details. Subsequent
sections deterministically analyze the transient behavior of Packet-pair.

4.2. Fair Queueing servers
Consider the queue service discipline in the output queues of packet routers. If packets

are scheduled in strict Time-Division-Multiplexing (TDM) order, then whenever a conversation’s
time slot comes around and it has no data to send, the output trunk is kept idle and some
bandwidth is wasted. Suppose packets are stamped with a priority index that corresponds to
the packet’s service time were the server actually TDM. It can be shown that service in order of
increasing priority index approximately emulates TDM without its attendant inefficiencies [50].
This idea lies behind the Fair Queueing (FQ) service discipline.

With a FQ server, there are two reasons why the rate of service perceived by a specific
conversation may change. First, the total number of conversations served can change. Since
the service rate of the selected conversation is inversely proportional to the number of active
conversations, the service rate of that conversation also changes.

Second, if some conversation has a low arrival rate, or has a bursty arrival pattern, then
there are intervals where it does not have packets to send, and the FQ server treats that conver-
sation as idle. Thus, the effective number of active conversations decreases, and the rate allo-
cated to all the other conversations increases. When the traffic resumes, the service rate again
decreases.

Note that even with these variations in the service rate, a FQ server provides a conversation
with a more consistent service rate than a FCFS server. In a FCFS server the service rate of a
conversation is linked in detail to the arrival pattern of every other conversation in the server,
and so the perceived service rate varies rapidly.

For example, consider the situation where the number of conversations sending data to a
server is fixed, and each conversation always has data to send when it is scheduled for service.
In a FCFS server, if any one conversation sends a large burst of data, then the service rate of all
the other conversations effectively drops until the burst has been served. In a FQ server, the
other conversations will be unaffected. Thus, the server allocates a rate of service to each
conversation that is, to a first approximation, independent of the conversations’ arrival patterns.
This motivates the use of a rate-based flow control scheme that determines the allocated ser-
vice rate, and then sends data at this rate.

Choice of network model
We would like to design the flow control mechanism for a source in a network of FQ servers

on a sound theoretical basis. This requires an analytic model for network transients. The stan-
dard network analysis technique is stochastic queueing analysis, where, for tractability, the usual
assumptions are that the network consists of M/M/1 servers, the sources inject Poisson traffic, and
the sources generate traffic independently. There are three problems with this approach. First,
the strong assumptions regarding servers and sources are not always justifiable in practice.
Second, the kind of results that can be obtained are those that hold in the average case, for
example, expected queueing delays, and expected packet loss rates. Though the Chapman-
Kolmogorov differential equations describe the exact dynamics (and thus the transient
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behavior) of a single M/M/1 queue, the solution of these equations is as hard as evaluating an
infinite sum of Bessel functions [135]; besides, extending this analysis to a network of M/M/1
servers is difficult. Third, even if an exact analysis of transients in the network is obtained by an
extension of the Chapman-Kolmogorov equations, if the servers are not M/M/1, no such differen-
tial equations are known.

Thus, using stochastic queueing analysis, transient analysis of a network of FQ servers (which
are not M/M/1) is cumbersome, and perhaps impossible. However, flow control depends pre-
cisely on such transients. Thus, we prefer an approach that models network transients explicitly,
but without these complications.

We model a single conversation in a network of FQ servers using deterministic queueing
analysis. This model, formally defined in the next section, makes a major assumption that the ser-
vice time per packet, defined as the time between consecutive packet services from a conver-
sation, is assumed to be constant at each server. This is true if all the packets in a given conver-
sation are of the same size and if the number of active conversations (conversations that have
data to send when their turn in round-robin order comes by) at each FQ server is constant. The
packet size assumption is borne out by studies of data traffic in current networks [13, 51], and will
certainly hold in ATM networks of the near future. The other assumption is harder to justify. A FQ
server isolates a conversation from other conversations if they are not too bursty, but this is not
sufficient justification. We treat this assumption as a necessary crutch to aid deterministic
analysis. We do not expect this assumption to hold in practice, and later in this chapter, the
assumption is relaxed to allow infrequent, single sharp changes in the number of active conver-
sations. However, note that in the important case of a network of FCFS servers, the deterministic
service time assumption is wrong. Hence, for FCFS networks, our analysis is incorrect, and the
Packet-pair flow control protocol is infeasible.

With these caveats in mind, it is nevertheless interesting that a deterministic modeling of a
FQ server network, though naive, allows network transients to be calculated exactly [129].
Waclawsky and Agrawala have developed and analyzed a similar deterministic model for
studying the effect of window flow control protocols on virtual circuit dynamics [144, 145].

Model
We model a conversation in a FQ network as a regular flow of packets over a series of

servers (routers or switches) connected by links. The servers in the path of the conversation are
numbered 1,2,3...n, and the source is numbered 0 (notations is summarized in the Appendix to
this chapter). The source sends packets to a destination, and the destination is assumed to ack-
nowledge each packet. (Strictly speaking, this assumption is not required, but we make it for
ease of exposition.) We assume that sources always have data to send (an infinite-source
assumption). This simplification allows us to ignore start-up transients in our analysis. The start-up
costs can, in fact, be significant, and these are analyzed in [129]. However, for simplicity of expo-
sition, we assume infinite sources from now on.

The service time at each server is deterministic. If the ith server is idle when a packet arrives,
the time taken for service is si, and the (instantaneous) service rate is defined to be ρi = 1/si. Note
that the time to serve one packet includes the time taken to serve packets from all other
conversations in round-robin order. Thus, the service rate is the inverse of the time between con-
secutive packet services for the same conversation. The time taken to traverse a link is assumed
to be zero (if it is not, it can always be added to the service time at the previous server).

If the server is not idle when a packet arrives, then the service time may be more than si.
This is ignored in the model, but we consider its implications in a later section. If there are other
packets from that conversation at the server, the packet waits for its turn to get service (we
assume a FCFS queueing discipline for packets of the same conversation). We assume a work-
conserving discipline, which implies that a server will never be idle whenever a packet is ready.

The source sending rate is denoted by ρ0 and the source is assumed to send packets
spaced exactly s 0 = 1/ρ0 time units apart. We define
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sb =
i

max(si | 0 ≤ i ≤ n)

to be the bottleneck service time in the conversation, and b is the index of the bottleneck server.

µ is defined to be
sb

1hhh, and is the bottleneck service rate.

We now introduce the notion of a rate-throttle, by means of a recursive definition. To start
with, the first server in the path of a conversation is a rate-throttle. Consider the servers along the
path from the source to the destination. A server on the path is a rate-throttle if it is slower than
some previous rate-throttle. Let SL, the ordered set of rate-throttles, be the set of strictly slower
servers from the source to the bottleneck.

We now prove several lemmas about the properties of such conversations. Similar results
and a more detailed analysis can be found in [143, 145].

Lemma 1 : (Basic lemma)
Consider data arriving at an initially idle server j at a rate r.

(a) If r ≤ ρ j, there is no queueing at j, and the departure rate from server j is r.

(b) If r > ρ j, there is queueing at j, and the departure rate from server j is ρ j.

Proof :
(a) Initially, since the server is idle, its queue is empty. If the first packet arrives at time t0, it
will depart at time t0 + sj. Packets in the arriving stream are spaced 1/r time units apart.
Thus, the next packet arrives at time t0 + 1/r. Since ρ j≥r, 1/r ≥ 1/ρ j and t0 + 1/r ≥ t0 + sj, so the
next packet arrives only after the first one has left. Thus, there is no queueing at the server.
Simple induction on the sequence number of the arriving packet gives us the result on
queueing.

The departure rate of the packets is constrained only by the arrival rate, and hence the
output stream from the server has a rate r.

(b) Since the departure of the first packet happens after the arrival of the next packet, the
second packet will be queued in the server. If there is a queue already, and a packet
arrives before the departure of the previous packet, it will only add to the queue. Induction
on the packet sequence number gives us the queueing result.

Since the departure stream from the server has an inter-packet spacing of sj, the output
stream is at rate ρ j.

Lemma 2 : (Composition)
Consider two adjacent servers j and j+1. If data enters server j at a rate r such that
ρ j ≥ r > ρ j+1 queueing occurs only at server j +1.

Proof :
Since r ≤ ρ j, there is no queueing at server j (Lemma 1). Hence, the departure rate of pack-
ets from server j, as well as the arrival rate at server j +1 is r. Since r > ρ j+1, there is queueing at
server j +1 (Lemma 1).

Lemma 3 : (Single bottleneck)
If data enters a segment of the VC numbered k, k+1, .. L, at a rate r such that ρL < r < ρ, ρ ∈∈ {
ρk, ρk +1, . . . , ρL−1}, then queueing occurs only at L.

Proof :
Since r < ρk, there is no queueing at server k and the departure rate from server k is r (Lemma
1). We can thus delete server k from the chain, and repeat the argument for the servers
k+1, k+2, ... L. For the servers L-1, L, we use Lemma 2 to get the desired result.
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Lemma 4 : (Chain of rate-throttles)
Queueing can happen only in elements of SL, the set of strictly slower servers.

Proof:
Break up the server chain 1,2, ... , b into sub-chains 1,2, ... sl1; sl1, sl1+1, . . . , sl2; ... , such that
only sli ∈∈ SL. Consider the first such chain. If ρ0 < ρsl 1

, there is no queueing at sl1. Hence, to
get the worst possible scenario, we assume that ρ0 > ρsl 1

. In that case, from Lemma 3, the
only queueing at the first chain will be at sl1 (if ρ0 is very large, sl1 could just be 1). By
definition of SL, the departure rate from sl1, ρsl 1

, satisfies the requirements for Lemma 3, so
there will be queueing at sl2, and at no other node in that subchain. From induction on the
sequence number of the subchain, we get the desired result.

Lemma 5 : (Probing)
If a source sends packets spaced s 0 time units apart, and ρ0 ≥ ρb, the acks will be received
at the source at intervals of sb time units.

Proof :
By definition of the bottleneck, and Lemmas 1 and 4, the departure rate of packets at the
bottleneck is µ. Since acks are created for each packet instantaneously, the acks will be
spaced apart by sb.

Define ∆ j to be ρslj−1
− ρslj .

Lemma 6 : (Burst dynamics)
If a source sends a burst of K packets at a rate s 0 >> ρi, for all i, then the queue at slj builds up

at the rate ∆ j, reaches its peak at time tj =
i=0
Σ
j−1

si +
ρslj−1

Khhhhh, and decays at the rate ρslj .

Proof :
Consider the situation at slj. This server receives packets at a rate ρslj−1

, and serves them at
the rate of ρslj . Thus, the queue builds up at the rate ∆ j. The queue reaches the maximum
size when the last packet from the previous rate-throttle arrives. Since this is at a rate ρslj−1

,

the time to receive K packets is K /ρslj−1
. To this we add

i=0
Σ
j−1

si, which is the time that the first

packet arrived, to get the desired result. Finally, the queue will decay at the service rate of
the rate-throttle, i.e., ρslj .

Note that in our model, it is not possible to have more than one bottleneck. While queueing may
occur at more than one node, the service rate of the circuit is determined by the lowest indexed
server with a service rate of µ, and this will be the bottleneck.

4.3. Rate probing schemes
How should we design a flow control scheme for a FQ network? Since the network allo-

cates each conversation a service rate at its bottleneck server, a simple flow control scheme
would be to probe the server to determine its current service rate for that conversation, and
then send data at that rate (note that each conversation has its own bottleneck server). Send-
ing it any slower would result in loss of throughput, and any faster would result in queueing at the
bottleneck. Thus, it is clear that we should use a rate-based flow control scheme [17]. Note that
rate-based flow control is explicitly enabled by FQ networks.

Rate based flow control
Our first attempt at designing a rate-based flow control scheme modified an idea

described by Clark et al. for NETBLT [17], but as shown below, it was not successful. If a source
sends data at a rate ρ0, and receives acknowledgments at a rate ρb, then a reasonable control
scheme is: if ρ0 > ρb, decrease ρ0, else increase it. The idea is that the rate at which acknowledg-
ments are received is approximately the rate which the FQ server has allocated to the
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conversation. This should match the sending rate.

The increase and decrease policies are multiplicative, that is the algorithm is
if ( ρ0 > ρb ) then ρ0 = αρ0 else ρ0 = βρ0

where α < 1 and β > 1. As the service rate changes, this adaptive scheme should converge on
the new rate, and the system should stabilize at the correct rate.

However, there are four problems. First, a source cannot determine an increase in avail-
able capacity except by sending at a slightly increased rate and looking at the stream of ack-
nowledgments (acks). Thus, a sudden large increase in the service rate can be adjusted for only
after several round trip times. This is undesirable, particularly in high speed networks, where the
bandwidth delay product can be large. Second, it takes a few round trip times to adjust to a
sharp decrease in service rate. In the meantime, the bottleneck queue builds up. Third, after a
decrease, the source sends at very nearly the service rate, so the built up queues never shrink,
and the network becomes more prone to packet loss. Finally, the rate probe tends to push the
network towards congestion, since the source always tries an increased sending rate, until the
rate can no longer be supported. These problems point to a need for a better rate control algo-
rithm, such as Packet-pair.

4.4. The Packet-pair scheme
Packet-pair is described in three stages. First, we motivate the algorithm. This is followed by

a complete description and implementation details.

Motivation
Packet-pair is based on three observations:

(1) The probing lemma allows a source to determine the bottleneck service rate by sending
two packets at a rate faster than the bottleneck service rate, and measuring the inter-ack
spacing.

Consider a packet pair as it travels through the system, as shown in Figure 4.1. The figure
presents a time diagram. Time increases down the vertical axis, and each axis represents a
node along the path of a conversation. Lines from the source to the server show the transmission
of a packet. The parallelograms represent two kinds of delays: the vertical sides are as long as
the transmission delay (the packet size divided by the line capacity). The slope of the longer
sides is proportional to the propagation delay. After a packet arrives, it may be queued for a
while before it receives service. This is represented by the space between the horizontal dotted
lines, such as de.

In the packet-pair scheme, the source emits two back-to-back packets (at time s). These
are serviced by the bottleneck; by definition, the inter-packet service time is sb, the service time
at the bottleneck. Since the acks preserve this spacing, the source can measure the inter-ack
spacing to estimate sb.

We now consider possible sources of error in the estimate. Server 1 also spaces out the
back-to-back packets, so can it affect the measurement of sb? A moment’s reflection reveals
that, as long as the second packet in the pair arrives at the bottleneck before the bottleneck
ends service for the first packet, there is no problem. If the packet does arrive after this time,
then, by definition, server 1 itself is the bottleneck. Hence, the spacing out of packets at servers
before the bottleneck server is of no consequence, and does not introduce errors into the
scheme. Another detail that does not introduce error is that the first packet may arrive when the
bottleneck server is serving other packets and may be delayed by a time interval such as de.
Since this delay is shared by both packets in the pair, this does not affect the observation.

However, errors can be introduced by the fact that the acks may be spread out more (or
less) than sb due to differing queueing delays along the return path. In the figure note that the
first ack has a net queueing delay of ij + lm, and the second has a zero queueing delay. This has
the effect of reducing the estimate of sb.

43



SOURCE SERVER 1 BOTTLENECK SINK

RTT

s

rate estimate

d
e

i

j

l
m

bottleneck
rate

Figure 4.1: The packet-pair probing scheme

This source of error will persist even if the inter-ack spacing is noted at the sink and sent to
the source using a state exchange protocol [120]. Measuring sb at the sink will reduce the effect
of noise, but cannot eliminate it, since any server that is after the bottleneck could also cause a
perturbation in the measurement.

The conclusion is that the estimate of the service rate made by the sender can be cor-
rupted by noise. In the deterministic model described earlier, even if the server is busy when a
packet arrives, queueing delays are assumed to be zero, and thus Lemma 5 proves that the
source observes the service rate exactly. In reality, these small queueing delays can cause
observation noise. In a later section, we show how the flow control mechanism accounts for this.

(2) If a source has a rate allocation 1/sb and a round trip propagation delay R, it operates
optimally when it has R /sb packets outstanding.

The packets sent from a source and not yet acknowledged constitute a pipeline, in the sense
that they are being ‘processed’ in parallel by the network. Then V, the pipeline depth, is given
by V = R /sb. A source should keep exactly V packets outstanding to fully utilize the bottleneck
bandwidth, and simultaneously have zero queueing delay [64, 97]. V depends on R and sb. In
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the model presented earlier, the values of these quantities are fixed, but, in reality, they could
change with time, and so it is necessary periodically to measure them. The source can measure
sb using the packet-pair method described above. R, the propagation delay, is the time
between sending out a packet and receiving an ack when all the queues along the path are
empty. This can be approximated by measuring rt, the round trip time, though rt will have a
component due to the queueing delay.

(3) If the pipeline depth V can increase or decrease by at most ∆V in any interval of time rt,
then keeping ∆V packets in the bottleneck queue’s buffers will ensure that the bottleneck
will not be idle.

If an increase in R or sb increases the pipeline depth by ∆V, some bottleneck bandwidth will
be unutilized until the source reacts to the change. Since a source takes at least rt time units to
react, the source should have enough packets in the buffer to take up any transients. If the
bottleneck queues ∆V packets, when V increases, the buffer will be drained, and no loss of
throughput will occur. Thus, Packet-pair tries to ensure that, at any given time, at least ∆V pack-
ets are present in the bottleneck queue. We assume a buffer capacity of at least 2∆V per
conversation at every switching node.

Note that this scheme avoids wasted bandwidth but adds a queueing delay (on average
∆Vsb) to every packet served. A user can adjust the targetted bottleneck queue size to obtain a
range of delay versus bandwidth loss tradeoffs. To get a lower average queueing delay, the
bottleneck queue size should be kept small, but this introduces the possibility of a bandwidth loss
when the pipeline depth increases. If this loss is to be avoided, then ∆V packets should be kept
in the queue, but this will also increase the average queueing delay. We denote the target
bottleneck queue size by nb, and in the rest of the chapter, nb is assumed to be ∆V. In practice,
users who desire low queueing delays should choose nb to be close to zero, while those who
desire bulk throughput should choose a larger value. This is discussed in Chapter 5.

Algorithm
There are three phases in the operation of Packet-pair: start-up, queue priming and normal

transmission.

At start-up, the source does not know the value of sb. Since it should not overload the
bottleneck with packets, some sort of ‘slow-start’ is desirable. This can be combined this with an
initial measurement of the conversation parameters by sending a packet-pair, two packets sent
as fast as possible (back-to-back). The round-trip time of the first packet gives us Re, an estimator
for R and the inter-arrival time of the two packets gives us se, an estimator for sb.

Once the source computes Ve = Re /se, an estimator of V, it can decide what nb should be.
nb should be chosen depending on the value of ∆V for the network. This value can be deter-
mined empirically or the administrator can choose this to tune protocol performance. Deciding
nb a priori is possible, but not desirable, since an administrator might want nb to be some fraction
of Ve. Thus, the decision about the value of nb is deferred till the end of the first round-trip-time.
During queue priming, the source sends out a burst of nb back-to-back packets so that the nb

packets accumulate in the bottleneck queue.

During normal transmission the source transmits packet-pairs every 2se time units and
updates se based on the inter-arrival time between paired acks. Re, the estimate for R, is updated
to rt − nbse, which accounts for the queueing delay. To react immediately to changes in V, the
source recomputes Ve on the arrival of every pair.

Let Vnew, Vold be the new and old values of Ve using the new and old estimates, respec-
tively. If Vnew < Vold, the source calculates

nskip = max( R(Vold−Vnew)/2 H, 0),
where Rz H is the smallest integer greater than or equal to z. The source then skips nskip transmission
slots with a duration of the new value of se, and then continues to send pairs of packets at regu-
lar intervals of 2se. If Vnew > Vold, the source immediately transmits a burst of Vnew − Vold back-to-
back packets (these are specially marked as non-paired packets).
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Implementation
Figure 4.2 is the state diagram for a Packet-pair implementation.

ACK TICK

CRQ(nb)vnew < vold

start_up

CRQ(vnew-vold)

get nskip

linefree=1

CRQ(2)

linefree

enqueue pkt

RECEIVE

FREE

TIMEOUT

N

Y

Y

N

Y
N

nskip > 0
Y

N

burst_size > 0

Y N

DEQUEUE/SEND

Figure 4.2: State diagram for implementing Packet-Pair
(CRQ(x) = accept x packets from user and enqueue)

A Packet-pair source usually is in the ‘receive’ state, waiting for an interrupt, one of
a) A signal indicating receipt of an acknowledgment packet. (ACK)
b) A ‘tick’ indicating that at the current sending rate, the next packet

is due to be sent. (TICK)
c) A signal indicating that the output line is now free. (FREE)
d) A signal indicating that the last packet has timed out. (TIMEOUT)

There are two important state variables. linefree indicates that the output line from the
source is free. num_in_burst is the number of packets enqueued in the output queue that
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belong to a burst. As long as num_in_burst is positive, a packet is dequeued and sent on the
arrival of every FREE signal.

When an ACK signal arrives, if the ack is the first of a pair, Re, the estimate for R, is updated.
If it is the second of a pair, se is updated, and the source computes Ve and nskip . If Vnew > Vold, a
burst of Vnew − Vold packets are queued on the output queue.

When an acknowledgment is received, some of the packets it acknowledges may have
been timed out, and may be enqueued waiting to be sent out. So, at this point, all queued
retransmissions that have become invalid are discarded. This implicitly assumes that retransmit-
ted packets are queued at the transport layer. If a retransmitted packet has already been
passed to a lower protocol layer, it will have to be retrieved from that layer, possibly violating
layering. If this is a concern, this step can be ignored, since discarding retransmitted packets is
not essential for the correct operation of the protocol.

If a TICK is received and nskip is non-zero, it is decremented, the TICK timer is reloaded with
2se, and we return to the receive state. Else, two packets (from the client) are enqueued on the
output queue. If the line is free, one of the packets is dequeued and sent, else the source waits
for an FREE to arrive. When an FREE arrives, if there are burst packets to be sent, one of them is
dequeued and transmitted, else the source marks the line as free and returns to the receive
state.

In current versions of TCP, there is a single retransmission timer, that is set on each packet
transmission to r̂t + 2MDM (ignoring some minor details). Here r̂t is a moving average of the meas-
ured round trip time, and MDM is a moving average of the absolute difference between the
measured round trip time and r̂t. When the timer goes off, the last unacknowledged packet is
retransmitted. While we find this algorithm suitable, note that Packet-pair detects impending
congestion using packet-pair probes, so, unlike TCP [63, 153], it is rather insensitive to the exact
choice of the retransmission timer value. Thus, as a simplification, assuming one retransmission
timer per packet, the retransmission timer value is simply Xrt, where X is some small integer, and
can be used as a tuning parameter (we used X = 3). On a TIMEOUT the timed out packet is
placed in the output queue, waiting to be retransmitted. The new timeout value for the packet
is twice the old value.

4.5. Analysis
We will analyze the the behavior of Packet-pair in the steady state (that is, when R and sb

do not change), and its response to transient changes in the virtual circuit. We will make four
simplifying assumptions:

g Flow control is being done on behalf of an infinite source, that always has some data ready
to send.

g Changes in V are bounded from above by ∆V, and the source knows or can estimate this
value.

g Each server reserves B ≥ 2∆V buffers for each source.

g Transients are assumed to be due to a sharp, rather than a gradual, change in the system
state. We assume that the value of a parameter, such as R, is constant until time t0, at
which point it changes discontinuously to its new value. We denote the value of R(t) before
the change as R(t0−ε), and after as R(t0+ε). We define sb(t0−ε) and sb(t0+ε) similarly.

Optimal flow control
We introduce the notion of optimal flow control and show that, in the steady state, Packet-

pair is optimal. An optimal transmission flow control scheme should always operate at the knee
of the load-throughput curve, so that maximum throughput is achieved with minimum delay
[64]. As the conditions at the server change, the source flow control must adapt itself to the
change. However, if we consider the speed-of-light propagation delay in this control loop for
wide-area networks, it is clear that no realizable flow control scheme can always operate at the
knee. Hence, we propose a weaker definition of optimality that is suitable for high throughput
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applications.

Let the bottleneck have B buffer spaces available for each source. Then, a flow control
scheme is optimal in the interval [T 0, T 1] if in every time interval [t1, t2 ] ∈∈ [ T 0, T 1], there are no
buffer overflows, and there is no loss of bandwidth at the bottleneck node. To be precise, at the
bottleneck node, if the buffer occupancy at time t1 is k,

0 ≤
t1

∫
t2

(ρ0(t−d1)−ρb(t)) dt ≤ B−k

where ρ0(t) is the source sending rate at time t, ρb(t) is the bottleneck service rate at time t and d1

is the propagation delay from the source to the bottleneck.

Steady state behavior of Packet-pair
In the steady state, Packet-pair will keep nb packets in the bottleneck queue, and send

packets at exactly the service rate, µ. Proposition 1 proves the optimality of Packet-pair in the
steady state.

Proposition 1:
Let the transmission at the source start at time T 0 and end at time T 1. If V is constant in
(T 0, T 1], then Packet-pair is an optimal flow control scheme in [T 0 + 2R(0), T 1 ].

Proof: At time T 0 + R(0), the source knows µ. Since ∆V = 0, we can set nb = 0, and priming the
queue is not necessary. Thus, the source will immediately start to send a packet-pair
every 2sb time units. The first pair reaches the bottleneck at the latest by T 0 + 2R(0).
Since service is at rate µ, there is no build up of the queue. Clearly, no bandwidth is
lost, and optimality conditions are trivially satisfied in [T 0 + 2R(0), T 1 ].

Remark
Note that many schemes described in the literature do not satisfy this weak notion of

optimality even in the steady state. For example, the Jacobson-Karels version of TCP [63] drops
packets if the maximum possible window size is larger than the buffer capacity at the bottleneck
queue. The DECbit scheme keeps the queues at an average queue length of 1, and so will lose
bandwidth when V increases [64]. As we mentioned earlier, NETBLT causes queues to build up
whenever V decreases, and they are never adjusted for. Hence, a sequence of decreases in V
will cause NETBLT to drop packets. Jain’s delay based scheme [65] will respond poorly if V
decreases due to a decrease in R, since it interprets the decrease in delay as a signal to
increase the window size, which will cause further queueing, and possible packet loss. A more
detailed analysis of these schemes can be found in [129].

Response to transients
In our model, the only network parameters visible to a source are µ and rt. Thus, a flow con-

trol scheme can react to a change only in either of these variables, and we will study the
response of Packet-pair to these changes. For each change, we study the packet or bandwidth
loss, and the time taken to return to steady state.

Note that rt itself depends on R and on the queueing delay in the bottleneck node. In
steady state, queueing delay is constant, and rt changes only if R or µ change. Thus, we need
only consider changes in R and µ. In either case, the effect is to change V = R.µ. We will denote
the time at which the change occurred by t0, and the change in V by δV ≤ ∆V.

4.5.1. Increase in propagation delay

4.5.1.1. Loss of bandwidth
R could increase if the VC is rerouted, and some new servers are added to the VC’s path.

There are two cases: either the path increase occurs before the bottleneck node, or after. If the
increase happens after the bottleneck, then some server downstream of the bottleneck will
have an increased idle time, and there is no loss in bottleneck bandwidth.
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If the increase happens before the bottleneck, then for some period of time, the bottleneck
could be idle, since packets that should have arrived at the bottleneck will now be sent to the
new servers instead. Since we bound the increase in V by ∆V, if the bottleneck queue has ∆V
packets, the buffered packets will be transmitted in the interim, and there will be no loss of
bandwidth.

Another subtle possibility for bandwidth loss is if the first packet of a packet-pair reaches the
bottleneck after time delay D 1 while the second one reaches there after a delay D 1new. The
inter-arrival time of the pair at the bottleneck is then ξ = D 1new−D 1. If this is larger than sb, the proto-
col will react by skipping some pairs of packets. However, Packet-pair will recover as soon as the
next pair of acks arrive.

Proposition 2
The loss of bandwidth will be 2n + ξ/sb packets, where

n = max(R
2
1hh

sb

(Roldhhhhh−
ξ

Rnewhhhhh) H,0)

Proof:
The second term, ξ/sb, is just the bubble size in the pipeline. Since Packet-pair mistakenly
estimates that the pipeline depth is Rnew /ξ, instead of Rnew /sb, it skips n slots, and in each slot
it loses 2 packets, leading to a net loss of 2n packets.

4.5.1.2. Recovery time
Suppose R increased at time t0. This information reaches the source at the latest by time

t0 + R(t0 + ε). The source will immediately send a burst of δV packets. Since the source is sending
at rate µ, all but the bottleneck server will be idle when this burst is initiated. By the Burst dynam-
ics lemma, we see that the last packet of the burst will arrive at the bottleneck at time

t0 +
i=0
Σ
b−1

si +
ρslb−1

δVhhhhh. This replenishes the bottleneck queue and so the steady state is regained. Subse-

quent increases in R are handled as before.

4.5.2. Increase in service rate

4.5.2.1. Loss of bandwidth
µ could increase if the number of conversations at the bottleneck decreases. The increase

in µ could lead to some other node in the VC’s path to become the bottleneck. We need to
consider two cases, depending on whether the bottleneck migrates or not (that is, whether or
not some other node becomes the bottleneck).

Assume that the bottleneck does not migrate. Due to the increase in µ, the bottleneck will
serve packets faster than they arrive, and, until the first packet transmitted at the new rate
arrives, there could be a loss of bandwidth. Now, the increase in µ becomes known to the

source by time t0 +
i=b
Σ
n

si, and the first packet from the burst reaches the server by t0 + R(t0). So, if

there are (sb(t0+ε)−sb(t0−ε))R(t0) ≤ ∆V packets in the bottleneck buffer, there will be no loss of
bandwidth.

If the bottleneck migrates downstream from the old bottleneck, then packets queued at
the old bottleneck will arrive at the new bottleneck and will form a queue there. It is easy to
show that the only loss of throughput happens for the brief interval where the first packet from
the old bottleneck is in transit to the new bottleneck.

If the bottleneck migrates upstream, then the δV packets queued at the old bottleneck
cannot compensate for the bubble in the pipeline. The new bottleneck will be idle till the first
packet from the compensatory burst arrive, and the loss could be as large as δV packets. Note
that no flow control algorithm can prevent this loss, since the source must take at least R(t0) time
to react to the change in sb. Thus we have shown that no feasible flow control algorithm can
satisfy even our weak notion of optimality in non-steady state operation.
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4.5.2.2. Recovery time
The recovery time is just the time for δV packets to accumulate at the bottleneck, and this is

the same as in the case of the increase in R, that is
i=0
Σ
b−1

si +
ρLb−1

δVhhhhh.

4.5.3. Decrease in propagation delay

4.5.3.1. Loss of packets
R could decrease if packets are sent through a shorter route, but through the same

bottleneck. We will assume that the packets in transit are not lost, but are received at the
bottleneck. The effect of this change is to put an additional δV packets in the buffers of the
bottleneck queue. Since in the steady state there are ∆V packets in the bottleneck, and we
assume that we can buffer 2∆V packets, there is no packet loss.

4.5.3.2. Recovery time
The source knows the reduced value of R at the latest by time t0+R (t0 + ε). At this point, it will

skip (Vold−Vnew)/2 transmission slots, taking a time equal to 1/2(R(t0−ε)/sb − R(t0+ε)/sb)2sb,
= R(t0−ε) − R(t0+ε). The first packet after resumption of normal transmission reaches the bottleneck
latest by time t0+R(t0−ε) − R(t0+ε) + R(t0−ε) = t0 + R(t 0−ε). Since the excess packets accumulated at
the bottleneck are exactly (R(t0−ε)/sb − R(t0+ε)/sb), they will all be cleared in this time, and the sys-
tem will reach the steady state at time t0 + R (t0)

4.5.4. Decrease in service rate

4.5.4.1. Loss of packets
The source knows of the decrease in µ at the latest by t0 + R(t0), and will skip δV /2 transmis-

sion slots. The bottleneck could accumulate an additional δV packets in this time. Since there are
2∆V buffers, there is no packet loss.

4.5.4.2. Recovery time

The source detects the decrease in µ by time t0 +
i=b
Σ
n

si, and will skip some transmissions. The

first packet sent at the new rate is received at the bottleneck after a time
i=1
Σ
b−1

si, so that the first

packet arrives at the bottleneck at time t0 + R (t0) + skiptime. During the first R(t0) time units, the
bottleneck queue will accumulate packets in excess of ∆V, but exactly these many packets will
be serviced during skiptime. Hence, at t0 + R (t0) + skiptime the steady state is attained.

The source skips transmission for the time during which the bottleneck services the excess
packets accumulated in its queue. Hence,

skiptime = max(R
2
1hh

sb(t0−ε)

R (t0)hhhhhhhhmi
sb(t0+ε)

R(t0)hhhhhhhh H, 0)sb(t0+ε)

4.6. Conclusions
This chapter models networks of FQ servers as a sequence of D/D/1 queues. In recent work

[156], we have shown that the FQ discipline is similar to the Virtual Clock [154] and Delay-EDD
[37] service disciplines. Thus, this modeling approach may be applied to networks of Virtual
Clock and Delay-EDD servers as well. The network model initially assumes that the bottleneck
service rate is constant. Later, this assumption is relaxed, and infrequent, single sharp changes in
the bottleneck service rate are allowed. Some lemmas about the model are proved, which
motivates the design of the Packet-pair flow control scheme. The detailed design of Packet-
pair, as well as the state diagram of an implementation are presented. The Packet-pair protocol
has several advantages over other flow control protocols: it responds quickly to changes in the
network state, it takes advantage of FQ routers to probe network state, and it does not require
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Table 4.1: Summary of analytic results

any assistance from routers, such as bit-setting. A similar approach to passively probing the net-
work, though not using packet pairs, is described in reference [53], where each probe packet is
time stamped, and the time series of delays suffered the probes is used to obtain a congestion
indicator. Then, the packet sending rate is adjust to be proportional to the inverse of the level of
congestion in the network. However, the Packet-pair protocol is not without its limitations. First, it
requires that all the packet routers in the network implement Fair Queueing or a similar round-
robin-like discipline. This is not necessary for flow control schemes such as the one in TCP [63, 109]
or Jain’s delay-based approach [65]. Since most current networks do not implement FQ, our
approach is of limited practical significance, but it is hoped that this situation will change in the
future. Second, Packet-pair assumes that changes in the bottleneck service rate happen slower
than one round trip time. This is true if the conversations are long lived, and not too bursty. This is
plausible if most of the traffic consists of fairly smooth (perhaps, uncompressed video) streams.
However, if the number of active conversations can change drastically over the time scale of
one round trip time, then Packet-pair is inadequate. We address this in Chapter 5, where we use
a formal control-theoretic approach to flow control, and propose a hybrid flow control scheme
that integrates window and rate-based flow control. Buffer reservations at each packet switch
ensures that even if the flow control scheme incorrectly estimates the bottleneck service rate,
there is no packet loss. With these changes, the packet-pair scheme performs well in FQ net-
works even if the bottleneck service rate changes rapidly and drastically.
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4.7. Appendix 4.A : Notation
The following notation is used throughout the paper. Since a single conversation is studied,

it is implicitly assumed that the variables are subscripted with the conversation identifier. The
time dependencies are usually ignored in the text.

si(t): service time at the ith server in the path.
ρi(t): service rate at the i server, ρi(t) = 1/si(t).
sb(t): service time at the bottleneck server.
µ(t): bottleneck service rate = 1/sb(t).
se(t): estimator for sb(t).
sli: ith rate throttle in the path.
∆ j: ρslj−1

−ρslj

R(t): round trip propagation delay (excluding queueing delays).
rt(t): R(t) + queueing delay
Re(t): estimator for R.
V(t): pipeline depth = R /sb.
Ve(t): estimator for V = Re /se.
δV: actual change in V.
ρ0(t): source sending rate
R(t0−ε): R (t) before a change at time t0.
R(t0+ε): R (t) after a change at time t0.
sb(t0−ε): sb(t) before a change at time t0

sb(t0+ε): sb(t) after a change at time t0

nb: desired number of packets in the bottleneck buffer
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Chapter 5: A Control-Theoretic Approach to Flow Control

5.1. Introduction
If networks implement Fair Queueing at each server, then new flow control protocols are

enabled. In Chapter 4, we presented the 2P protocol, which was enabled in this way. The 2P
protocol is strongly motivated by a deterministic model for the network. Since, in practice, this
assumption cannot always be justified, this chapter presents the design of a flow control protocol
that works well even in the presence of stochastic changes in the network state. We use a
control-theoretic approach to determine how a conversation can satisfy its throughput and
queueing delay requirements by adapting its data transfer rate to changes in network state,
and to prove that such adaptations do not lead to instability.

A control-theoretic approach to flow control requires that changes in the network state be
observable. We have shown in Chapter 4 that it is possible to measure network state easily if the
servers at the output queues of the switches do Fair Queueing, and the transport protocol uses
the Packet-Pair probing technique. Thus, in this chapter, we will make the assumption that the
queue service discipline is FQ and that the sources implement Packet-Pair. Our approach does
not extend to First-Come-First-Served (FCFS) networks, where there is no simple way to probe the
network state.

The chapter is laid out as follows. We first present a stochastic model for FQ networks (§5.2).
Next, we use the Packet-Pair state probing technique as the basis for the design of a stable
rate-based flow control scheme (§5.3). A problem with non-linearity in the system is discussed in
§5.4. We present a Kalman state estimator in §5.5. However, this estimator is impractical, and so
we have designed a novel estimation scheme based on fuzzy logic (§5.6). A technique to
increase the frequency of control based on additional information from the system is presented
in §5.7, and this serves as the basis for a new, stable control law. Practical implementation issues
are discussed in §5.8, and these include correcting for parameter drift, and interaction with win-
dow flow control. We conclude with some remarks on the limitations of the approach (§5.9) and
a review of related work (§5.10).

5.2. Stochastic model
In the deterministic model of Chapter 4, µ, the service rate at the bottleneck of a conversa-

tion, is assumed to be constant. Actually, µ changes due to the creation and deletion of active
conversations. If the number of active conversations, Nac, is large, we expect that the change in
Nac in one time interval will be small compared to the value of Nac. Hence the change in µ in
one interval will be small, and µ(k +1) will be ‘close’ to µ(k). One way to represent this would be
for µ to be a fluctuation around a nominal value µ0. However, this does not adequately capture
the dynamics of the process, since µ(k +1) is ‘close’ to µ(k) and not to a fixed value µ0. Instead,
we model µ as a random walk where the step is a random variable that has zero mean and low
variance. Thus, for the most part, changes are small, but we do not rule out the possibility of a
sudden large change. This model is simple, and, though it represents only the first order dynam-
ics, we feel that it is sufficient for our purpose. Thus, we define

µ(k +1) = µ(k) + ω(k),

where ω(k) is a random variable that represents zero-mean gaussian white noise. There is a prob-
lem here: when µ is small, the possibility of an increase is larger than the possibility of a decrease.
Hence, at this point, the distribution of ω should be asymmetric, with a bias towards positive
values (making the distribution non-gaussian). However, if µ is sufficiently far away from 0, then
the assumption of zero mean is justifiable.

The white noise assumption means that the changes in service rate at time k and time k +1
are uncorrelated. Since the changes in the service rate are due to the effect of uncorrelated
input traffic, we think that this assumption is valid. However, the gaussian assumption is harder to
justify. As mentioned in [2], many noise sources in nature are gaussian. Second, a good rule of
thumb is that the gaussian assumption will reflect at least the first order dynamics of any noise
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distribution. Finally, for any reasonably simple control-theoretic formulation (using Kalman esti-
mation), the gaussian white noise assumption is unavoidable. Thus, for these three reasons, we
will assume that the noise is gaussian.

These strict assumptions about the system noise are necessary mainly for doing Kalman esti-
mation. We also describe a fuzzy prediction approach (§5.6) that does not require any of these
assumptions

Note that the queueing-theoretic approach to modeling µ would be to define the density
function of µ, say G (µ), which would have to be supplied by the system administrator. Then, sys-
tem performance would be given by expectations on the distribution. For example, a metric
X(µ), that depends on the service rate µ would be described by E(X(µ)) = X(µ̂), where µ̂, the aver-
age value of µ is given by µ̂ = ∫µG(µ) dµ. Now, if G(µ) is unknown, so is µ̂. Further, E(X) depends on
µ̂, an asymptotic average. In contrast, we explicitly model the dynamics of µ and so our control
scheme can depend on the currently measured value of µ, instead of an asymptotic time aver-
age.

5.3. Design strategy
This section describes the strategy used to design the flow-control mechanism, some prelim-

inary considerations, and the detailed design. The design strategy for the flow control mechan-
ism is based upon the Separation Theorem [3]. Informally, the theorem states that, for a linear
stochastic system where an observer is used to estimate the system state, the eigenvalues of the
state estimator and of the controller are separate. The theorem allows us to use any technique
for state estimation, and then implement control using the estimated state x̂ instead of the
actual state x. Thus, we will derive a control law assuming that all required estimators are avail-
able; the estimators are derived in a subsequent section. We first discuss our assumptions and a
few preliminary considerations.

5.3.1. Choice of setpoint
The aim of the control is to maintain the number of packets in the bottleneck queue, nb, at

a desired setpoint. Since the system has delay components, it is not possible for the control to
stay at the setpoint at all times. Instead, the system will oscillate around the setpoint value. The
choice of the setpoint reflects a tradeoff between mean packet delay, packet loss and
bandwidth loss (which is the bandwidth a conversation loses because it has no data to send
when it is eligible for service). This is discussed below.

Let B denote the number of buffers a switch allocates per conversation (in general, this may
vary with time; in our work, we assume that B is static). Consider the distribution of nb for the con-
trolled system, given by N (x) = Pr (nb = x) (strictly speaking, N (x) is a Lebesgue measure, since we
will use it to denote point probabilities). N (x) is sharply delimited on the left by 0 and on the right
by B, and tells us three things:

1) Pr(loss of bandwidth) = Pr (FQ server schedules the conversation for service | nb = 0).
Assuming that these events are independent, which is a reasonable assumption, we find
that Pr(loss of bandwidth) is proportional to N (0).

2) Similarly, Pr (loss of packet) = Pr (packet arrival | nb = B), so that the density at B, N (B), is
proportional to the probability of a packet loss.

3) The mean queuing delay is given by

0
∫
B

N (x)dx

sbhhhhhhhhh
0
∫
B

xN (x)dx,

where, on average, a packet takes sb units of time to get service at the bottleneck.

If the setpoint is small, then the distribution is driven towards the left, the probability of
bandwidth loss increases, the mean packet delay is decreased, and the probability of packet
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loss is decreased. Thus, we trade off bandwidth loss for lower mean delay and packet loss. Simi-
larly, if we choose a large setpoint, we will trade off packet loss for a larger mean delay and
lower probability of bandwidth loss. In the sequel, we assume a setpoint of B/2. The justification
is that, since the system noise is symmetric, and the control tracks the system noise, we expect
N (x) to be symmetric around the setpoint. In that case, a setpoint of B/2 balances the two
tradeoffs. Of course, any other setpoint can be chosen with no loss of generality.

Queueing-theoretic choice of setpoint
In recent work, Mitra et al [96, 97] have studied asymptotically optimal choices of window

size for window based flow control, when the scheduling discipline at a switch is either FCFS or
processor sharing (PS). With some caveats as to its generality, their approach is complementary
to ours, and can provide insight into the choice of setpoint.

The basis for their study is product-form queueing network theory, where asymptotic net-
work behavior is studied as the bandwidth-delay product tends to infinity. In this regime, the
analysis of virtual circuit dynamics indicates that the network behaves almost deterministically
(which reinforces our earlier claim). Further, if a source wishes to optimize the throughput to
queueing delay ratio, or power, then the optimal window size K is given by

K = λ + α√ddλ

where λ is the bandwidth delay product, and α is approximately
2√dddM

1hhhhhh, M being the number of

hops over which the circuit sends data. Thus, the optimal choice of the setpoint is simply α√ddλ .
Since α can be precomputed for a circuit, and changes in λ can be determined using the
packet-pair protocol, the setpoint can be dynamically adjusted to deliver maximum power
using the earlier control model. Thus, the two theoretical approaches can be used in conjunc-
tion to determine the bandwidth delay product, the optimal setpoint, and, also, a mechanism to
keep the system at the optimal setpoint.

However, there are several difficulties with the queueing-theoretic approach that limit its
generality. First, the analysis assumes that the scheduling discipline is either FCFS or PS. While Fair
Queueing can be approximated by Head-of-Line Processor Sharing [50], approximating it by PS
does not seem to be reasonable. Second, the analysis assumes that the cross traffic is strictly
Poisson. Since there is no empirical evidence that the assumption is valid, it may be inaccurate.
Third, the packet service time is assumed to be exponentially distributed. This assumption is
almost certainly incorrect, since numerous studies have indicated that the packet size distribu-
tion is usually strongly multi-modal (usually bi-modal), so that the service times will follow a similar
distribution [13, 51].

Nevertheless, even with these caveats, the queueing approach is a strong basis to justify
our intuitions, and, to a first approximation, these results can be used to determine the choice of
the setpoint in the control system.

5.3.2. Frequency of control
We initially restrict control actions to only once per round trip time (RTT) (this restriction is

removed in §5.7). For the purpose of exposition, we divide time into epochs of length RTT (= R +
queueing delays) (Figure 5.1). This is done simply by transmitting a specially marked packet-pair,
and when it returns, taking control action, and sending out another marked pair. Thus, a control
action is taken at the end of every epoch.

5.3.3. Assumptions regarding round trip time delay
We assume that the propagation delay, R, is constant for a conversation. This is usually true,

since the propagation delay is due to the speed of light in the fiber and the hardware switching
delays. These are fixed, except for rare rerouting.

We assume that the round trip time is large compared to the spacing between the ack-
nowledgments. Hence, in the analysis, we treat the arrival of the packet pair as a single event,
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which measures both the round trip time and the bottleneck service rate.

Finally, we assume that the measured round trip time in epoch k, denoted by RTT (k), is a
good estimate for the round trip time in epoch k +1. The justification is that, when the system is in
equilibrium, the queue lengths are expected to be approximately the same in successive
epochs. In any case, for wide area networks, the propagation delay will be much larger than
the additional delay caused by a change in the queueing delay. Hence, to a first approxima-
tion, this change can be ignored. This assumption is removed in §5.7.

5.3.4. Controller design
Consider the situation at the end of the kth epoch. At this time we know RTT(k), the round

trip time in the kth epoch, and S(k), the number of packets outstanding at that time. We also
predict µ̂(k+1), which is the estimator for the average service rate during the (k +1)th epoch. If the
service rate is ‘bursty’, then using a time average for µ may lead to problems. For example, if the
average value for µ is large, but during the first part of the control cycle the actual value is low,
then the bottleneck buffers could overflow. In such cases, we can take control action with the
arrival of every probe, as discussed in §5.7.

Figure 5.1 shows the time diagram for the control. The vertical axis on the left represents the
time of the source, and the axis on the right that of the bottleneck. Each line between the axes
represents a packet pair. Control epochs are marked for the source and the bottleneck. Note
that the epochs at the bottleneck are time delayed with respect to those at the source. We use
the convention that the end of the kth epoch is called ‘time k’, except that nb(k) refers to the
number of packets in the bottleneck at the beginning of the kth epoch.

We now make a few observations regarding Figure 5.1. The distance ab is the RTT meas-
ured by the source (from the time the first packet in the pair is sent to the time the first ack is
received). By an earlier assumption, the propagation delay for the (k +1)th special pair is the
same as for the kth pair. Then ab = cd, and the length of epoch k at the source and at the
bottleneck will be the same, and equal to RTT (k).

At the time marked ‘NOW’, which is the end of the kth epoch, all the packets sent in epoch
k −1 have been acknowledged. So, the only unacknowledged packets are those sent during
the kth epoch itself, and this is the same as the number of outstanding packets S(k). This can be
approximated by the sending rate multiplied by the sending interval, λ(k)RTT (k). So,

S(k) = λ(k)RTT(k) 5.1

The number of the conversation’s packets in the bottleneck at the beginning of the (k +1)th
epoch is simply the number of packets at the beginning of the kth epoch plus what came in
minus what went out in the kth epoch (ignoring the non-linearity at nb = 0, discussed in §5.5.6).
Since λ(k) packets were sent in, and µ(k)RTT (k) packets were serviced in this interval, we have

nb(k +1) = nb(k) + λ(k)RTT(k) − µ(k)RTT (k) 5.2

Equations (5.1) and (5.2) are the fundamental equations in this analysis. They can be combined
to give

nb(k +1) = nb(k) + S(k) − µ(k)RTT (k) 5.3

Now, nb(k +1) is already determined by what we sent in the kth epoch, so there is no way to con-
trol it. Instead, we will try to control nb(k +2). We have

nb(k +2) = nb(k +1) + (λ(k+1) − µ(k +1))RTT (k+1) 5.4

From (5.3) and (5.4):

nb(k +2) = nb(k) + S(k) − µ(k)RTT (k) + 5.5

λ(k+1)RTT(k+1) − µ(k +1)RTT (k+1)

The control should set this to B/2. So, set (5.5) to B/2, and obtain λ(k+1).
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Figure 5.1: Time scale of control

nb(k +2) = B/2 = nb(k) + S(k) − µ(k)RTT (k) 5.6

+ (λ(k+1) − µ(k +1))RTT (k+1)

This gives λ(k+1) as

λ(k+1) =
RTT(k+1)

1hhhhhhhhh 5.7

[B/2 − nb(k) − S(k) + µ(k)RTT (k) + µ(k +1)RTT(k+1)]

Replacing the values by their estimators (which will be derived later), we have

λ(k+1) =
RTTˆ (k+1)

1hhhhhhhhh 5.8

[B/2 − n̂b(k) − S(k) + µ̂(k)RTT (k) + µ̂(k +1)RTTˆ (k+1)]

Since both µ̂(k) and µ̂(k +1) are unknown, we can safely assume that µ̂(k) = µ̂(k +1). Further, from an
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earlier assumption, we set RTTˆ (k +1) to RTT(k). This gives us:

λ(k+1) =
RTT(k)

1hhhhhhh[B/2 − n̂b(k) − S(k) + 2µ̂(k)RTT (k)] 5.9

This is the control law. The control always tries to obtain a queue length in the bottleneck equal
to B/2. It may never reach there, but will always stay around it.

Note that the control law requires us to maintain two estimators: µ̂(k) and n̂b(k). The effec-
tiveness of the control depends on the choice of the estimators. This is considered in sections 5
and 6.

5.3.5. Stability analysis
The state equation is given by (5.2)

nb(k +1) = nb(k) + λ(k)RTT(k) − µ(k)RTT (k) 5.10

For the stability analysis of the controlled system, λ(k) should be substituted using the control law.
Since we know λ(k+1), we use the state equation derived from (5.2) instead (which is just one
step forward in time). This gives

nb(k +2) = nb(k+1) + (λ(k+1)−µ(k+1))RTT(k+1)

Substituting (5.8) in (5.10), we find the state evolution of the controlled system:

nb(k +2) = nb(k +1) − µ(k +1)RTT(k +1) +
RTT(k)

RTT (k +1)hhhhhhhhhh

[B/2 − n̂b(k) − S(k) + 2µ̂(k)RTT (k)]

By assumption, RTT (k) is close to RTT (k +1). So, to first approximation, canceling RTT (k) with RTT (k +1)
and moving back two steps in time,

nb(k) = nb(k −1) − µ(k −1)RTT(k −1) +

B/2 − n̂b(k −2) − S (k −2) + 2µ̂(k −2)RTT (k−2)

Taking the Z transform of both sizes, and assuming nb(k −2) = n̂b(k −2), we get

nb(z) = z −1nb(z) − z −2µ(z)*RTT(z) +

B/2 − z −2nb(z) − z −2S(z) + 2z −4 µ̂(z)*RTT (z)

Considering nb as the state variable, it can be easily shown that the characteristic equation is

z −2 − z −1 + 1 = 0

If the system is to be asymptotically stable, then the roots of the characteristic equation (the
eigenvalues of the system), must lie inside the unit circle on the complex Z plane. Solving for z −1,
we get

z −1 =
2

1±√ddddd1 − 4hhhhhhhhh =
2

1±i √dd3hhhhhhh

The distance from 0 is hence

√ddddd2
1hh

2

+
2

√dd3hhhh
2

= 1

Since the eigenvalues lie on the unit circle, the controlled system is not asymptotically stable.

However, we can place the pole of the characteristic equation so that the system is
asymptotically stable. Consider the control law

λ(k+1) =
RTT(k)

αhhhhhhh

[B/2 − n̂b(k) − S(k) + 2µ̂(k)RTT (k)]
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This leads to a characteristic equation

αz −2 − z −1 + 1 = 0

so that the roots are

z −1 =
2α

1± i√ddddddd4α − 1hhhhhhhhhhhh

The poles are symmetric about the real axis, so we need only ensure that

| z −1 | > 1

=> √dddddddd(
2α
1hhhh)

2

+ (
2α

√ddddddd4α − 1hhhhhhhh)2 > 1

=>
√ddα
1hhhh > 1 => α < 1

This means that if α < 1, the system is provably asymptotically stable (by the Separation Theorem,
since the system and observer eigenvalues are distinct, this stability result holds irrespective of the
choice of the estimators).

The physical interpretation of α is simple: to reach B/2 at the end of the next epoch, the
source should send exactly at the rate computed by (9). If it does so, the system may be
unstable. Instead, it sends at a slightly lower rate, and this ensures that the system is asymptoti-
cally stable. Note that α is a constant that is independent of the system’s dynamics and can be
chosen in advance to be any desired value smaller than 1.0. The exact value chosen for α con-
trols the rise time of the system, and, for adequate responsiveness, it should not be too small. Our
simulations indicate that a value of 0.9 is a good compromise between responsiveness and insta-
bility. Similar studies are mentioned in [30].

5.4. System non-linearity
This section discusses a non-linearity in the system, and how it can be accounted for in the

analysis. The state equation (5.9) is correct when nb(k +1) lies in the range 0 to B. Since the system
is physically incapable of having less than zero and more than B packets in the bottleneck
queue, the equation actually is incorrect at the endpoints of this range. The correct equation is
then:

nb(k +1) =
R
J
J
Q otherwise nb(k) + S(k) − RTT (k)µ(k)
if nb(k) + S(k) − RTT (k)µ(k) > B then B
if nb(k) + S(k) − RTT (k)µ(k) < 0 then 0

The introduction of the inequalities in the state equation makes the system nonlinear at the
boundaries. This is a difficulty, since the earlier proof of stability is valid only for a linear system.
However, note that, if the equilibrium point (setpoint) is chosen to lie inside the range [0,B], then
the system is linear around the setpoint. Hence, for small deviations from the setpoint, the earlier
stability proof, which assumes linearity, is sufficient. For large deviations, stability must be proved
by other methods, such as the second method of Liapunov ([102] page 558).

However, this is only an academic exercise. In practice, the instability of the system means
that nb can move arbitrarily away from the setpoint. In section 10.2, we show how window-
based flow control can be used in conjunction with a rate-based approach. Then, since nb can
never be less than 0, and the window flow control protocol ensures that it never exceeds B, true
instability is not possible.

Nevertheless, we would like the system to return to the setpoint, whenever it detects that it
has moved away from it, rather than operating at an endpoint of its range. This is automatically
assured by equation (9), which shows that the system chooses λ(k +1) such that nb(k +2) is B/2. So,
whenever the system detects that it is at an endpoint, it immediately takes steps to ensure that it
moves away from it.
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Thus, the non-linearity in the system is of no practical consequence, except that the flow
control mechanism has to suitably modify the state equations when updating n̂b(k+1). A rigorous
proof of the stability of the system using Liapunov’s second method is also possible, but the gain
from the analysis is slight.

5.5. Kalman state estimation
A practical scheme is presented in §5.6. Having derived the control law, and proved its

stability, we now need to determine stable estimators for the system state. §5.5 presents a Kal-
man state estimator, and shows that Kalman estimation is impractical. We choose to use Kal-
man estimation, since it is a well known and robust technique [49]. Before the technique is
applied, a state-space description of the system is necessary.

5.5.1. State space description
We will use the standard linear stochastic state equation given by

x(k+1) = Gx(k) + Hu(k) + ν1(k)
y(k) = Cx(k) + ν2(k)

x, u and y are the state, input and output vectors of sizes n, m, and r, respectively. G is the nxn
state matrix, H is an nxm matrix, and C is an rxn matrix. ν1(k) represents the system noise vector,
which is assumed to be zero-mean, gaussian and white. ν2(k) is the observation noise, and it is
assumed to have the same characteristics as the system noise.

Clearly, u is actually u, a scalar, and u(k) = λ(k). At the end of epoch k, the source receives
probes from epoch k-1. (To be precise, probes can be received from epoch k-1 as well as from
the beginning of epoch k. However, without loss of generality, this is modeled as part of the
observation noise.) So, at that time, the source knows the average service time in the k-1th
epoch, µ(k −1). This is the only observation it has about the system state, and so y (k) is a scalar,
y (k) = µ(k −1) + ν2. If y (k) is to be derived from the state vector x by multiplication with a constant
matrix, then the state must contain µ(k −1). Further, the state must also include the number of
packets in the bottleneck’s buffer, nb. This leads to a state vector that has three elements, nb,
µ(k), and µ(k −1), where µ(k) is needed since it is part of the delay chain leading to µ(k −1) in the
corresponding signal flow graph. Thus,

x =
R
J
J
Qµ−1

µ
nb

H
J
J
P

where µ−1 represents the state element that stores the one-step delayed value of µ.

We now turn to the G, H, ν1, ν2 and C matrices. The state equations are

nb(k +1) = nb(k) + λ(k)RTT(k) − µ(k)RTT(k)

µ(k+1) = µ(k) + ω(k)

µ−1(k +1) = µ(k)

Since RTT (k) is known at the end of the kth epoch, we can represent it by a pseudo-constant, Rtt.
This gives us the matrices

G =
R
J
Q 0 1 0

0 1 0
1 −Rtt 0 H

J
P

H =
R
J
Q 0

0
Rtt H

J
P

ν1 =
R
J
Q0
ω
0 H

J
P
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C = [ 0 0 1 ]

ν2 is simply the (scalar) variance in the observation noise. This completes the state space
description of the flow control system.

5.5.2. Kalman filter solution to the estimation problem
A Kalman filter is the minimum variance state estimator of a linear system. In other words, of

all the possible estimators for x, the Kalman estimator is the one that will minimize the value of
E([ x̂(t) − x(t)]T[x̂(t) − x(t)]), and in fact this value is zero. Moreover, a Kalman filter can be manipu-
lated to yield many other types of filters [49]. Thus, it is desirable to construct a Kalman filter for x.

In order to construct the filter, we need to determine three matrices, Q, S and R, which are
defined implicitly by :

E
I
K
L

R
J
Qν2(k)
ν1(k) H

J
P
[ν1

T (θ)ν2(θ)]
M
N
O

=
R
J
QS

T R
Q S H

J
P

δ (t − θ)

(where δ is the Kronecker delta defined by, δ(k) = if (k = 0 ) then 1 else 0). Expanding the left
hand side, we have

Q = E
R
J
J
Q0 0 0
0 ω2 0
0 0 0 H

J
J
P

R = E (ν2
2)

S = E
R
J
J
Q 0
ων2

0 H
J
J
P

If the two noise variables are assumed to be independent, then the expected value of their pro-
duct will be zero, so that S = 0. However, we still need to know E(ω2) and E(ν2

2).

From the state equation,

µ(k +1) = µ(k) + ω(k)

Also,

µobserved(k +1) = µ(k +1) + ν2(k +1)

Combining,

µobserved(k +1) = µ(k) + ω(k) + ν2(k +1)

which indicates that the observed value of µ is affected by both the state and observation
noise. As such, each component cannot be separately determined from the observations alone.
Thus, in order to do Kalman filtering, the values of E(ω2) and E(ν2

2) must be extraneously supplied,
either by simulation or by measurement of the actual system. Practically speaking, even if good
guesses for these two values are supplied, the filter will have reasonable (but not optimal) perfor-
mance. Hence, we will assume that the values of the noise variances are supplied by the system
administrator, and so matrices Q, R and S are known. It is now straightforward to apply Kalman
filtering to the resultant system. We follow the derivation in [49] (pg 249).

The state estimator x̂ is derived using

x̂(k+1) = Gx̂(k) + K(k)[y(k) − Cx̂(k)] + Hu(k)

x̂(0) = 0

where K is the Kalman filter gain matrix, and is given by

K(k) = [GΣ(k)CT + S ][CΣ(k)CT + R]−1
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Σ(k) is the error state covariance, and is given by the Riccati difference equation

Σ(k +1) = GΣ(k)GT + Q − K(k)[CΣ(k)CT + R]K(k)T

Σ(0) = Σ0

where Σ0 is the covariance of x at time 0, and can be assumed to be 0.

Note that a Kalman filter requires the Kalman gain matrix K(k) to be updated at each time
step. This computation involves a matrix inversion, and appears to be generally expensive. How-
ever, since all the matrices are at most 3x3, in practice this is not a problem.

To summarize, if the variances of the system and observation noise are available, Kalman
filtering is an attractive estimation technique. However, if these variances are not available,
then Kalman filtering cannot be used. In the next section, we present a heuristic estimator that
works even in the absence of knowledge about system and observation noise.

5.6. Fuzzy estimation
This section presents the design of a fuzzy system that predicts the next value of a time

series. Consider a scalar variable θ that assumes the sequence of values

{θk} = θ1, θ2, . . . , θk

where

θk = θk−1 + ωk−1

and ωk (called the ‘system perturbation’) is a random variable from some unknown distribution.

Suppose that an observer sees a sequence of values

θ̃1, θ̃2, ....., θ̃k −1

and wishes to use the sequence to estimate the current value of θk. We assume that the
observed sequence is corrupted by some observation noise ξ, so that the observed values {θ̃k}
are not the actual values {θk}, and

θ̃k = θk + ξk

where ξk is another random variable from an unknown distribution.

Since the perturbation and noise variables can be stochastic, the exact value of θk cannot
be determined. What is desired, instead, is θ̂k, the predictor of θk, be optimal in some sense.

5.6.1. Assumptions
We model the parameter θk as the state variable of an unknown dynamical system. The

sequence {θk} is then the sequence of states that the system assumes. We make three weak
assumptions about the system dynamics. First, the time scale over which the system perturba-
tions occur is assumed to be an order of magnitude slower than the corresponding time scale of
the observation noise.

Second, we assume that system can span a spectrum ranging from ‘steady’ to ‘noisy’.
When it is steady, then the variance of the system perturbations is close to zero, and changes in {
θ̃k } are due to observation noise. When the system is noisy, {θk} changes, but with a time con-
stant that is longer than the time constant of the observation noise. Finally, we assume that ξ is
from a zero mean distribution.

Note that this approach is very general, since there are no assumptions about the exact
distributions of ω and ξ. On the other hand, there is no guarantee that the resulting predictor is
optimal: we only claim that the method is found to work well in practice.
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5.6.2. Exponential averaging
The basis of this approach is the predictor given by:

θ̂k +1 = αθ̂k + (1−α)θ̃k

The predictor is controlled by a parameter α, where α is the weight given to past history. The
larger it is, the more weight past history has in relation to the last observation. The method is also
called exponential averaging, since the predictor is the discrete convolution of the observed
sequence with an exponential curve with a time constant α:

θ̂k =
i=0
Σ
k−1

(1−α)θ̃iαk−i−1 + αk θ̂0

The exponential averaging technique is robust, and so it has been used in a number of
applications. However, a major problem with the exponential averaging predictor is in the
choice of α. While in principle, it can be determined by knowledge of the system and observa-
tion noise variances, in practice, these variances are unknown. It would be useful to automati-
cally determine a ‘good’ value of α, and to be able to change this value on-line if the system
behavior changes. Our approach uses fuzzy control to effect this tuning [82, 152, 158].

5.6.3. Fuzzy exponential averaging
Fuzzy exponential averaging is based on the heuristic that a system can be thought of as

belonging to a spectrum of behaviors that ranges from ‘steady’ to ‘noisy’. In a ‘steady’ system (
ω<<ξ), the sequence {θk} is approximately constant, so that {θ̃k} is affected mainly by observation
noise. Then, α should be large, so that the past history is given more weight, and transient
changes in θ̃ are ignored.

In contrast, if the system is ‘noisy’ ( ω∼∼ξ or ω>ξ), {θk} itself could vary considerably, and θ̃
reflects changes both in θk and the observation noise. By choosing a lower value of α, the
observer quickly tracks changes in θk, while ignoring past history which only provides old informa-
tion.

While the choice of α in the extremal cases is simple, the choice for intermediate values
along the spectrum is hard to make. We use a fuzzy controller to determine a value of α that
gracefully responds to changes in system behavior. Thus, if the system moves along the noise
spectrum, α adapts to the change, allowing us to obtain a good estimate of θk at all times.
Moreover, if the observer does not know α a priori, the predictor automatically determines an
appropriate value.

5.6.4. System identification
Since α is linked to the ‘noise’ in the system, how can the amount of ‘noise’ in the system be

determined? Assume, for the moment, that the variance in ω is an order of magnitude larger
than the variance in ξ. Given this assumption, if a system is ‘steady’, the exponential averaging
predictor will usually be accurate, and prediction errors will be small. In this situation, α should be
large. In contrast, if the system is ‘noisy’, then the exponential averaging predictor will have a
large estimation error. This is because, when the system noise is large, past history cannot predict
the future. So, no matter the value of α, it will usually have a large error. In that case, it is best to
give little weight to past history by choosing a small value of α, so that the observer can track the
changes in the system.

To summarize, we have observed that, if the predictor error is large, then α should be small,
and vice versa. Treating ‘small’ and ‘large’ as fuzzy linguistic variables [151], we can build a
fuzzy controller for the estimation of α.
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5.6.5. Fuzzy controller
The controller implements three fuzzy laws:

If error is low, then α is high
If error is medium, then α is medium
If error is high, then α is low

The linguistic variables ‘low’, ‘medium’ and ‘high’ for α and error are defined in Figure 5.2.

1.0

0.0

0.5

1.0

LOW MEDIUM
HIGH

Linguistic variables to describe α

1.0

0.0 1.0

LOW MEDIUM
HIGH

0.7

Linguistic variables to describe the error

Figure 5.2: Definition of linguistic variables

The input to the fuzzy controller is a value of the error, and the controller outputs α in three steps.
First, the error value is mapped to a membership in each of the fuzzy sets ‘low’, ‘medium’ and
‘high’ using the definition in Figure 5.3. Then, the control rules are used to determine the applica-
bility of each outcome to the resultant control. Finally, the fuzzy set representing the control is
defuzzified using a centroid defuzzifier.
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The error | θ̃ − θ̂ | is processed in two steps before it is input to the fuzzy system. First, it is con-

verted to a relative value given by error =
θ̃k

| θ̃k − θ̂k |hhhhhhhhh. It is not a good idea to use the relative error

value directly, since spikes in θ̃k can cause the error to be large, α would drop to 0, and all past
history would be lost. So, in the second step, the relative error is smoothed using another
exponential averager. The constant for this averager, β, is obtained from another fuzzy controller
that links the change in the error to the value of β. The idea is that, if the change in error is large,
then β should be large, so that spikes are ignored. Otherwise, β should be small. β and the
change in error are defined by the same linguistic variables, ‘low’, ‘medium’ and ‘high’, and
these are defined exactly like the corresponding variables for α. With these changes, the
assumption that the variance in the observation noise is small can now be removed. The result-
ing system is shown in Figure 5.3.

Exponential Averager

Exponential Averager

Fuzzy System

Fuzzy System

β

z −1

z −1

z −3

α

Observation

Proportional
error

Smoothed proportional error

Estimate
θ̃

θ̂

Figure 5.3: Fuzzy prediction system

Details of the prediction system, and a performance analysis can be found in reference [75].
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5.7. Using additional information
This section describes how the frequency of control can be increased by using information

about the propagation delay. Note that n̂b(k+1), the estimate for the number of packets in the
bottleneck queue, plays a critical role in the control system. The controller tracks changes in
n̂b(k), and so it is necessary that n̂b(k) be a good estimator of nb. n̂b(k) can be made more accu-
rate if additional information from the network is available. One such piece of information is the
value of the propagation delay.

The round-trip time of a packet includes delays due to three causes:

g the propagation delay due to the finiteness of the speed of light and the processing at
switches and interfaces

g the queueing delay at each switch, because previous packets from that conversation
have not yet been serviced

g the phase delay, introduced when the first packet from a previously inactive conversation
waits for the server to finish service of packets from other conversations

The propagation delay depends on the geographical spread of the network, and for WANs, it
can be of the order of a few tens of milliseconds. The phase delay is roughly the same magni-
tude as the time it takes to process one packet each from all the conversations sharing a server,
the round time. The queueing delay is of the order of several round times, since each packet in
the queue takes one round time to get service. For future high speed networks, we expect the
propagation and queueing delays to be of roughly the same magnitude, and the phase delay
to be one order of magnitude smaller. Thus, if queueing delays can be avoided by the probe
packet, the measured round-trip time will be approximately the propagation delay of the
conversation.

An easy way to avoid queueing delays is to measure the round-trip time for the first packet
of the first packet-pair. Since this packet has no queueing delays, we can estimate the propa-
gation delay of the conversation from this packet’s measured round trip time (though it has a
component due to phase delay). Call this propagation delay R.

The value of R is useful, since the number of packets in the bottleneck queue at the begin-
ning of epoch k +1, nb(k +1), can be estimated by the number of packets being transmitted (‘in
the pipeline’) subtracted from the number of unacknowledged packets at the beginning of the
epoch, S(k). That is,

n̂b(k +1) = S(k) − R µ̂(k)

Since S, R and µ̂(k) are known, this gives us another way of determining n̂b(k+1). This can be used
to update n̂b(k+1) as an alternative to equation (2). The advantage of this approach is that
equation (2) is more susceptible to parameter drift. That is, successive errors in n̂b(k+1) can add
up, so that n̂b(k+1) could differ substantially from nb. In the new scheme, this risk is considerably
reduced: the only systematic error that could be made is in µ, and since this is frequent sampled,
as well as smoothed by the fuzzy system, this is of smaller concern.

There is another substantial advantage to this approach: it enables control actions to be
taken much faster than once per round trip time. This is explained in the following section.

5.7.1. Faster than once per RTT control
It is useful to take control actions as fast as possible so that the controller can react immedi-

ately to changes in the system. In the system described thus far, we limited ourselves to once
per RTT control because this allows us to use the simple relationship between S (k) and λ(k) given
by equation (1). If control actions are taken faster than once per RTT, then the epoch size is
smaller, and that relationship is no longer true. The new relationship is much more complicated,
and it is easily shown that the state and input vectors must expand to include time delayed
values of µ, λ and nb. It is clear that the faster the control actions are required, the larger the
state vector, and this complicates both the analysis and the control.

66



In contrast, with information about the propagation delay R, control can be done as
quickly as once every packet-pair with no change to the length of the state vector. This is
demonstrated below.

We will work in continuous time, since this makes the analysis easier. We also make the fluid
approximation [1], so packet boundaries are ignored, and the data flow is like that of a fluid in a
hydraulic system. This approximation is commonly used [8, 133], and both analysis [97] and simu-
lations show that the approximation is a close one.

Let us assume that λ, the sending rate, is held fixed for some duration J, starting from time t.
Then,

nb(t+J) = nb(t) + λ(t)J − µ(t)J 5.11

where µ is the average service rate in the time interval [t, t +J ], and nb is assumed to lie in the
linear region of the space. Also, note that

nb(t) = S(t) − Rµ(t) 5.12

The control goal is to have nb(t+J) be the setpoint value B/2. Hence,

nb(t+J) = nb(t) + λ(t)J − µ(t)J = B/2 5.13

So,

λ(t) =
J

B/2 − S(t) + R µ̂(t) + J µ̂(t)hhhhhhhhhhhhhhhhhhhhhhhh 5.14

which is the control law. The stability of the system is easily determined. Note that n
.

b(t) is given
by

n
.

b(t) =
δ→0
limit

δ
nb(t+δ) − nb(t)hhhhhhhhhhhhhhh = λ(t) − µ(t) 5.15

From equation (5.13),

n
.

b =
J

B/2 − nb(t)hhhhhhhhhhhh 5.16

If we define the state of the system by

x = nb(t) − B/2 5.17

then the equilibrium point is given by

x = 0 5.18

and the state equation is

x
.

=
J

−xhhh 5.19

Clearly, the eigenvalue of the system is -1/J, and since J is positive, the system is both Lyapunov
stable and asymptotically stable. In this system, J is the pole placement parameter, and plays
exactly the same role as α in the discrete time system. When J is close 0, the eigenvalue of the
system is close to −∞ and the system will reach the equilibrium point rapidly. Larger values of J will
cause the system to move to the equilibrium point more slowly. An intuitively satisfying choice of
J is one round trip time, and this is easily estimated as R + S (k)µ(t). In practice, the values of R and
S (k) are known, and µ(t) is estimated by µ̂, which is the fuzzy predictor described earlier.

5.8. Practical issues
This section considers two practical problems: how to correct for parameter drift; and how

to coordinate rate-based and window-based flow control.
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5.8.1. Correcting for parameter drift
In any system with estimated parameters, there is a possibility that the estimators will drift

away from the true value, and that this will not be detected. In our case, the estimate for the
number of packets in the bottleneck buffer at time k, n̂b(k), is computed from n̂b(k −1) and from
the estimator µ̂(k). If the estimators are incorrect, n̂b(k) might drift away from nb(k). Hence, it is
reasonable to require a correction for parameter drift.

Note that, if λ(k) is set to 0 for some amount of time, then nb will decrease to 0. At this point,
n̂b can also be set to 0, and the system will resynchronize. In practice, the source sends a special
pair and then sends no packets till the special pair is acknowledged. Since no data was sent
after the pair, when acks are received, the source is sure that the bottleneck queue has gone to
0. It can now reset n̂b and continue.

The penalty for implementing this correction is the loss of bandwidth for one round trip time.
If a conversation lasts over many round trip times, then this loss may be insignificant over the life-
time of the conversation. Alternately, if a user sends data in bursts, and the conversation is idle
between bursts, then the value of n̂b can be resynchronized to 0 one RTT after the end of the
transmission of a data burst.

5.8.2. The role of windows
Note that our control system does not give us any guarantees about the shape of the

buffer size distribution N (x). Hence, there is a non-zero probability of packet loss. In many appli-
cations, packet loss is undesirable. It requires endpoints to retransmit messages, and frequent
retransmissions can lead to congestion. Thus, it is desirable to place a sharp cut-off on the right
end of N (x), or, strictly speaking, to ensure that there are no packet arrivals when nb = B. This can
be arranged by having a window flow control algorithm operating simultaneously with the rate-
based flow control algorithm described here.

In this scheme, the rate-based flow control provides us a ‘good’ operating point which is
the setpoint that the user selects. In addition, the source has a limit on the number of packets it
could have outstanding (the window size), and every server on its path reserves at least a
window’s worth of buffers for that conversation. This assures us that, even if the system deviates
from the setpoint, the system does not lose packets and possible congestive losses are com-
pletely avoided.

Note that, by reserving buffers per conversation, we have introduced reservations into a
network that we earlier claimed to be reservationless. However, our argument is that strict
bandwidth reservation leads to a loss of statistical multiplexing. As long as no conversation is
refused admission due to a lack of buffers, statistical multiplexing of bandwidth is not affected by
buffer reservation, and the multiplexing gain is identical to that received in a network with no
buffer reservations. Thus, with large cheap memories, we claim that it will be always be possible
to reserve enough buffers so that there is no loss of statistical multiplexing.

To repeat, we use rate-based flow control to select an operating point, and window-based
flow control as a conservative cut-off point. In this respect, we agree with Jain that the two forms
of flow control are not diametrically opposed, but in fact can work together [67].

The choice of window size is critical. Using fixed size windows is usually not possible in high
speed networks, where the bandwidth-delay product, and hence the required window, can be
large (of the order of hundreds of kilobytes per conversation). In view of this, the adaptive win-
dow allocation scheme proposed by Hahne et al [54] is attractive. In that scheme, a conversa-
tion is allocated a flow control window that is always larger than the product of the allocated
bandwidth at the bottleneck, and the round trip propagation delay. So, a conversation is never
constrained by the size of the flow control window. A signaling scheme dynamically adjusts the
window size in response to changes in the network state. We believe that their window-based
flow control scheme is complementary to the rate-based flow control scheme proposed in this
chapter.
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5.9. Limitations of the control-theoretic approach
The main limitation of a control-theoretic approach is that it restricts the form of the system

model. Since most control-theoretic results hold for linear systems, the system model must be
cast in this form. This can be rather restrictive, and certain aspects of the system, such as the
window flow control scheme, are not adequately modeled. Similarly, the standard noise
assumptions are also restrictive, and may not reflect the actual noise distribution in the target sys-
tem. These are mainly the limitations of linear control. There is a growing body of literature deal-
ing with non-linear control, and one direction for future work would be to study non-linear
models for flow control.

Another limitation of control theory is that, for controller design, the network state be
observable. Since a FCFS server’s state cannot be easily observed, it is hard to apply control
theoretic principles to the control of FCFS networks. In contrast, FQ state can be probed using a
packet pair, and so FQ networks are amenable to a formal treatment.

5.10. Related work and contributions
Several control-theoretic approaches to flow control have been studied in the past. One

body of work has considered the dynamics of a system where users update their sending rate
either synchronously or asynchronously in response to measured round trip delays, or explicit
congestion signals, for example in references [6, 9, 10, 27, 127]. These approaches typically
assume Poisson sources, availability of global information, a simple flow update rule, and
exponential servers. We do not make such assumptions. Further, they deal with the dynamics of
the entire system, and take into account the sending rate of all the users explicitly. In contrast,
we consider a system with a single user, where the effects of the other users are considered as a
system ‘noise’. Also, in our approach, each user uses a rather complex flow update rule, based
in part on fuzzy prediction, and so the analysis is not amenable to the simplistic approach of
these authors.

Some control principles have been appealed to in work by Jain [116] and Jacobson [63],
but the approaches of these authors are quite informal. Further, their control systems take multi-
ple round trip times to react to a change in the system state. In contrast, the system in §5.9.1
can take control action multiple times per RTT. In a high bandwidth-delay product network, this
is a significant advantage.

In recent work, Ko et al [79] have studied an almost identical problem, and have applied
principles of predictive control to hop-by-hop flow control. However, they appeal primarily to
intuitive heuristics, and do not use a formal control-theoretic model; hence they are not able to
prove the stability of their system. Further, we believe that our fuzzy scheme is a better way to
predict service rates than their straightforward moving-average approach.

A control-theoretic approach to individual optimal flow control was described originally by
Agnew [1], and since extended by Filipiak [38] and Tipper et al [133]. In their approach, a
conversation is modeled by a first order differential equation, using the fluid approximation. The
modeling parameters are tuned so that, in the steady state, the solution of the differential equa-
tion and the solution of a corresponding queueing model agree. While we model the service
rate at the bottleneck µ as a random walk, they assume that the service rate is a non-linear func-
tion of the global queue length (over all conversations), so that µ = G (nb), where G (.) is some non-
linear function. This is not true for a FQ server, where the service rate is independent of the
queue length. Hence, we cannot apply their techniques to our problem.

Vakil, Hsiao and Lazar [137] have used a control-theoretic approach to optimal flow control
in double-bus TDMA local-area integrated voice/data networks. However, they assume
exponential FCFS servers, and, since the network is not geographically dispersed, propagation
delays are ignored. Their modeling of the service rate µ is as a random variable instead of a ran-
dom walk, and, though they propose the use of recursive minimum mean squared error filters to
estimate system state, the bulk of the results assume complete information about the network
state. Vakil and Lazar [138] have considered the design of optimal traffic filters when the state is
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not fully observable, but the filters are specialized for voice traffic.

Robertazzi and Lazar [119] and Hsiao and Lazar [60] have shown that, under a variety of
conditions, the optimal flow control for a Jacksonian network with Poisson traffic is bang-bang
(approximated by a window scheme). It is not clear that this result holds when their strong
assumptions are removed.

In summary, we feel that our approach is substantially different from those in the literature.
Our use of a packet pair to estimate the system state is unique, and this estimation is critical in
enabling the control scheme. We have described two provably stable rate-based flow control
schemes as well as a novel estimation scheme using fuzzy logic. Some practical concerns in
implementing the scheme have also been addressed.

The control law presented in §5.9.1 has been extensively simulated in a number of scenarios
and the results are presented in Chapter 6. The results can be summarized as

g The performance of the flow control with Fair Queueing servers in the benchmark suite
described in reference [23] is comparable to that of the DECbit scheme [117], but without
any need for switches to set bits.

g The flow control algorithm responds quickly and cleanly to changes in network state.

g Unlike some current flow control algorithms (DECbit and Jacobson’s modifications to 4.3
BSD TCP [63, 117]), the system behaves extraordinarily well in situations where the
bandwidth-delay product is large, even if the cross traffic is misbehaved or bursty.

g Implementation and tuning of the algorithm is straightforward, unlike the complex and ad-
hoc controls in current flow control algorithms.

g Even in complicated scenarios, the dynamics are simple to understand and manage: in
contrast the dynamics of Jacobson’s algorithm are messy and only partially understood
[156].

In conclusion, we believe that our decision to use a formal control-theoretic approach in
the design of a flow control algorithm has been a success. Our algorithm behaves well even
under great stress, and, more importantly, it is simple to implement and tune. These are not for-
tuitous, rather, they reflect the theoretical underpinnings of the approach.

5.11. Future work
This chapter makes several simplifications and assumptions. It would be useful to measure

real networks to see how far theory and practice agree. We plan to make such measurements in
the XUNET II experimental high speed network testbed [69]. Other possible extensions are to
design a minimum variance controller and a non-linear controller.

5.12. Appendix 5.A - Steady state
As a sanity check, consider the steady state where µ does not change. We prove that in

this case λ is set to µ, and that the number of packets in the bottleneck will be B/2.

In the steady state, any sensible estimator µ̂(k) will converge, so that µ̂(k) = µ̂(k+1) = µ. We will
assume that we are starting at time 0, that nb(0) = 0 and that α = 1.

In the steady state, the state equation (2) becomes

nb(k +1) = nb(k) + λ(k+1)RTT(k +1) − µ(k+1)RTT(k +1)

We assume that the estimators converge to the correct value, since there is no stochastic varia-
tion in the system. Hence,

RTTˆ = RTT for all k

This makes the control law

λ(k+1) =
RTT (k)

1hhhhhhh[B/2 − n̂b(k) − S(k) + µRTT (k) + µRTT(k)]
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λ(k+1) = 2µ − λ(k) +
RTT (k)

1hhhhhhh[B/2 − n̂b(k)]

The first packet pair estimates µ, and, for simplicity, we assume that this is exactly correct.
Hence,

λ(1) = 2µ − µ +
RTT (1)

1hhhhhhh(B/2)

λ(1) = µ +
RTT(1)

B/2hhhhhhh

The buffer at the end of epoch 1 is given by

nb(1) = 0 + (µ +
RTT(1)

B/2hhhhhhh)RTT (1) − µRTT (1)

nb(1) = B/2

To check further, at time 2, we get

λ(2) = 2µ − µ +
RTT(2)

1hhhhhhh[B/2 − B/2]

and, since n̂b(k+1)(1) = B/2.

=> λ(2) = µ

And,

nb(2) = B/2 + µRTT (2) − λ(2)RTT (2)

nb(2) = B/2 5.A1

So, the buffer is B/2 at time 2. Let us see what λ(3) is when λ(2) is µ.

λ(3) = 2µ − µ +
RTT (3)

1hhhhhhh[B/2−B/2]

λ(3) = µ

So, if λ(k) = µ and nb(k) = B/2, λ(k +1) = µ, and λ is fixed from time 3 onwards. From (5.A1) we see
that if λ = µ and nb(k) = B/2 then nb(k +1) = B/2. Thus, both the recurrences reach the stable point
at (µ, B/2) at time 3. Thus, if the system is steady, so is the control. This is reassuring.

5.13. Appendix 5.B - Linear quadratic gaussian optimal control
This section considers an approach to optimal control, and shows that it is infeasible for our

system. We consider optimal control of the flow control system described in §5.5. One optimal
control technique that is popular in the control theoretic literature is Linear Quadratic Gaussian
(LQG) control. This technique provides optimal control for a linear system where the goal is to
optimize a quadratic metric in the presence of gaussian noise. We follow the description of LQG
presented in [102] (pg. 835).

The quadratic performance index to minimize is given by

J = xTQ x

where the state vector x is modified so that it reflects a setpoint of nb at B /2. Thus, minimizing the
expected value of J will keep the state close to the setpoint, so that the system is close to
optimal.

There is a problem with this formulation. Classical LQG demands that J include a term that
minimizes u (the control effort). In our case, we are not interested in reducing u, since a) increas-
ing u is not costly and b) in any case, the goal is to send at the maximum possible rate, and this
corresponds to maximizing u rather than minimizing it! If we impose this restriction, then we can
no longer do standard LQG.
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We can get around this problem by modifying the criterion so that

J = xTQx + uTεIu

and then considering the control as ε → 0 (assume for the moment that the limit of the series con-
verges to the value of the control at the limit). However, note that the Kalman criterion for stabil-
ity of the optimal control is that:

rank [Q 2
1hhh *

| G*Q 2
1hhh *

| (G*)2Q 2
1hhh *

] = 3 5.B1

where Q 2
1hhh

is defined by Q = Q 2
1hhh

Q 2
1hhh

, and the * denoted the conjugate transpose operator. If we
want to minimize (nb − B/2)2, then

Q =
R
J
Q00 0
0 0 0
1 0 0 H

J
P

Thus, the rank of the matrix in (5.B1) is 1, which is less than 3. Hence, the Kalman stability criterion
is not satisfied, and the LQG optimal control is not stable.

Note that the problem with the control is not due to our assumption about R being εI.
Rather, this is because of the nature of the matrix Q. However, the nature of Q is determined
completely by the form of x and the nature of the control problem itself. We conclude that for
this system, stable LQG control is not feasible.
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Chapter 6: Simulation Experiments

6.1. Introduction
The previous chapters have presented the design and analysis of the Fair Queueing

scheduling algorithm and the Packet-Pair flow control scheme. This chapter presents simulation
experiments to study these mechanisms and to compare them with some others in the literature.
The simulations also justify some of the claims and assumptions made earlier.

We first present the simulation methodology (§6.3) and then briefly describe some compet-
ing flow control proposals (§6.5). Finally, we present simulation results to compare and contrast
the competing schemes (§6.6).

6.2. Why simulation?
Flow and congestion control schemes can be analyzed using several techniques, the most

powerful of which are mathematical analysis and simulation. We used the former approach in
earlier chapters. In Chapter 4 we used deterministic queueing analysis, and Chapter 5
presented a control-theoretic approach. Though mathematical modeling and analysis is a
powerful technique, it has a few drawbacks. First, mathematical analyses make several simplify-
ing assumptions that may not hold in practice. For example, the deterministic and stochastic
models in Chapters 4 and 5 make strong assumptions about the bottleneck service rate, and the
Fokker-Planck approximate analysis of reference [99] assumes that the bottleneck service rate is
constant. Second, mathematical models ignore interactions that can prove to be critical in
practice. For example, packet losses can trigger a spate of retransmissions, which, in turn, can
cause further losses. In general, the sequence of events leading to congestion can be complex,
and hard to analyze mathematically. For these two reasons, a simulation study of flow control
protocols is not only useful, but often necessary.

In addition, the implementation of a protocol in a simulator brings out practical difficulties
that are sometimes hidden in a formal approach, and this itself motivates new approaches. A
good example of this is our use of fuzzy prediction in place of a mathematically adequate, but
impractical, Kalman estimator.

6.3. Decisions in the design of simulation expermients
At least four decisions have to be made before undertaking a simulation study of flow and

congestion control protocols. These are the choices of

g Level of detail in modeling

g Source workload

g Network topology

g Performance metrics

We discuss each in detail below.

Level of detail
Some network simulation packages, such as IBM’s RESQ, are strongly oriented towards

queueing theoretic models. Sources are assumed to send data with interpacket spacings
chosen from some standard distribution, such as the Erlang or exponential distribution. Users can
only choose the form of the distribution, and cannot model the details of the congestion control
algorithms. The effectiveness of a congestion control algorithm is often dependent on the imple-
mentation details. Since this is ignored by this approach, we feel that this level of modeling
detail is inadequate.

Our approach, also used by others in the field [93, 117, 154], is to simulate each source and
switch at the transport level. A source or switch is modeled by a function written in C, which
mimics in detail the implementation of a congestion control protocol in, say, the UNIX kernel.
The major difference between the model and the actual implementation is that, instead of
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sending packets to a device driver for transmission, the model makes a simulator library call
send() that simulates the transfer of a packet along a channel to another node. Similarly,
instead of receiving packets from the data link layer, the model makes a blocking receive()
call to the simulation package. Thus, the behavior of flow and congestion control algorithms is
modeled in detail.

However, for simplicity, we ignore operating system issues, that, perhaps, are also
significant. For example, we assume that, when a packet is forwarded by the network layer, it is
put on the output trunk instantaneously. This ignores scheduling and bus contention delays.
However, since these delays are on the order of tens of milliseconds, whereas the round trip time
delays are on the order of hundreds of milliseconds, we feel that the error is not too large.

Choice of source workload
A flow control mechanism operates on behalf of some user. How should user demands be

modeled? Specifically, we would like to map each user to a series of packet lengths and a
series of inter-packet time intervals. Two approaches are used in practice: a trace-driven
approach, and a source-modeling approach [33].

In a trace-driven approach, an existing system is measured (traced), and the simulations
use the traces to decide the values of variables such as the inter-packet spacing, and the
packet size. However, the results from such a study are closely coupled to a few traces, and so
they may not be generally valid. A stronger criticism is that traces measure a particular system,
whereas they are used to simulate another system, with different parameters. For example, a
trace may contain many retransmission events, due to packet losses at some buffer. If this is
used to run a simulation where the buffer size is large enough to prevent losses, then the results
are meaningless, since the retransmission events will not occur in the simulation. More insidiously,
even packet generation times are closely linked to system parameters, and so the measured
values cannot be used as the basis for the simulation of another closed system. A third objection
is that the measured system is an existing one, whereas simulations are usually run for future sys-
tems that are still to be built. Hence the measured workload may not be a valid basis for simulat-
ing future systems. For example, current WAN workloads do not have any component due to
video traffic, but this is expected to be a major component of future workloads.

Finally, traces can be extremely voluminous. If a large number of nodes are to be traced,
the required storage can run into several gigabytes per day. Since simulations usually cannot
use the entire trace, some part of the trace must be chosen as ‘typical’. This choice is delicate,
and hard to make.

Most of these objections can be overcome by measuring application characteristics,
instead of transport layer timing details, as in reference [12]. In that approach, the volume of
data is condensed by extracting histograms of metrics, and driving simulations by sampling
these histograms with a random number. However, this tests the average case behavior of the
congestion control scheme, while we are interested in worst case behavior. Thus, we do not use
a trace-based workload model.

In the other approach, based on source modeling, an abstract source model is used to
generate packet sizes and interpacket spacings. Typically, these values are generated from
standard distributions such as the exponential and Gaussian distribution. We feel that this
method is not realistic. Instead, our source models are loosely based on measurements of net-
work traffic [13, 51, 105]. These studies indicate that:

1) the packet size distribution is strongly bimodal, with peaks at the minimum and the max-
imum packet size;

2) packet sizes are associated with specific protocols: mainly file-transfer-like protocols (FTP)
and Telnet-like protocols (as explained in §1.6.7). We will call them ‘FTP’ and ‘Telnet’ for
convenience, as before. ‘FTP’ sends data in maximum sized packets, and receives
minimum sized acknowledgments. ‘Telnet’ sends data, and receives acknowledgments, in
minimum sized packets.
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Since FTP is used for bulk data transfer, we model FTP sources as sources that always have data
to send, limited only by the flow control mechanism (infinite source assumption). The Telnet pro-
tocol sends one packet per user keystroke, and so this is modeled as a low data-rate source,
with exponential interpacket spacing.

While our simulations mainly use FTP and Telnet workloads, there are a few other sources of
interest. A Poisson source sends data with exponential interpacket spacing, and unlike a Telnet
source, does not have any flow control. A malicious source sends data as fast as it can, and
does not obey flow control. These sources are used to model cross traffic, as is explained in
§6.6.4 and §6.6.7.

Choice of network topology
We define network topology to be the number of sources and switches, their interconnec-

tion, and the sizes of various buffers in the switches. Network topologies can be chosen in at
least three ways: to model an existing network, to model the ‘average’ case, or to model the
worst case.

When simulations are meant to isolate problems in existing networks, it makes sense to simu-
late the existing topology. However, if the network is yet to be designed, then this approach is
not useful.

Some researchers choose to simulate the average case. However, the notion of ‘average’
is poorly defined. Authors have their own pet choice, and it is not possible to reasonably com-
pare results from different studies, or, for that matter, extrapolate the results from the chosen
topology to another topology.

Our approach is to create a suite of topologies, each of which, though unrealistic by itself,
stress tests a specific aspect of a congestion control mechanism. The contention is that one can
better understand the behavior of these mechanisms by evaluating such behavior across an
entire set of benchmarks, rather than on a single ‘average’ or existing topology (our choice of
benchmarks is presented in section 6). While we do not claim to predict or test behavior in the
average case, we can identify specific weaknesses in a congestion control mechanism, and this
can be extrapolated to networks with similar topologies.

Choice of metrics
The two main performance metrics used in flow control protocol evaluation are throughput

and delay. Throughput refers to the number of packets sent from the source to the destination
and correctly received, (of course excluding retransmissions), over some period of time. A
packet’s delay is the time taken by the packet to reach the destination from the source, or,
more precisely, the time from the packet is handed to the network layer at the source to the
time it is received at the transport layer at the destination. Delay sensitive sources (such as Tel-
net conversations) prefer low delays, and throughput sensitive sources (such as FTP conversa-
tions) prefer large throughputs. Thus, these measurements determine how far a congestion con-
trol mechanism can provide utility to the users.

In our simulations, we measure throughputs over simulation intervals. The time scale over
which networks state changes is determined by visual inspection of state vs. time graphs, and an
interval is chosen to be much larger than the time scale of network dynamics. Queueing delays
are measured at each queueing point; round-trip delays are also measured. In addition, we
measure the number of retransmissions and the number of packets dropped due to buffer
overflows (in our simulations, there are no packet losses in transmission due to network errors such
as bit corruption or line noise).

The metrics mentioned above are averages over one interval. Since simulation experi-
ments typically are run for several simulation intervals, it is possible to calculate the standard
deviation of the means over each interval. If each interval is ‘long enough’, then the distribution
of the interval means of a metric can be approximated by a Gaussian distribution. Then, 95%
confidence intervals for the mean of means can be calculated as thrice the standard deviation
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on each side of the mean of means. This computation assumes that an interval is long enough
that simulation dynamics are averaged out. While this can be achieved by linking the length of
a simulation run to the confidence in the metrics [33, 103], we simply choose measurement inter-
vals that are conservative enough that the standard deviation of the mean is fairly small, so that
the confidence in the mean of means is high. Further, we ignore the mean over the first interval,
so that the initial phase transient behavior is eliminated.

6.4. Simulator
All the simulation results presented here use the REAL network simulator. REAL is based on

the NEST simulation package [4, 28] from Columbia University, and is described in detail in refer-
ences [73, 74]. It provides users with the ability to specify network traffic workloads, congestion
control algorithms, scheduling algorithms, and network topologies. These are then simulated at
the application and transport levels at the sources, and the network layer at the switches, using
event-driven simulation. The design decisions described in the previous section are reflected in
REAL.

The user interface to REAL is through NetLanguage, a special-purpose language that
describes the simulation scenario. Results are generated every simulation interval through
reports that provide the means of the chosen metrics. At the end of a simulation run, the mean
of means and the standard deviation of the metrics are reported. Users can also choose to plot
the dynamics of any chosen variable, and these can be plotted on a display or a printer. The
capabilities of REAL are illustrated in the simulations in this chapter.

6.5. Flow and congestion control protocols
We will present results from a simulation analysis of a few selected flow and congestion

control protocols. A large number of congestion control schemes have been proposed in the
literature, and these have been reviewed in Chapter 1. Due to their number, it is not practical to
study them all. Instead, we focus our attention on three major flow control protocols that have
been extensively studied in the literature, and also implemented in current networks. These are a
generic transport flow control protocol [108, 150], the Jacobson-Karels modifications to TCP (JK)
[63, 127, 154, 156], and the DECbit scheme [114-117]. We also study the control-theoretic version
of the Packet-Pair protocol (PP_CTH) presented in Chapter 5. These protocols are briefly sum-
marized below.

A generic version of source flow control, as implemented in XNS’s SPP [150] or in TCP
(before 4.3 Tahoe BSD) [108], has two parts. The timeout mechanism, which provides for conges-
tion recovery, retransmits packets that have not been acknowledged before the timeout period
has expired and sets a new timeout period. The timeout periods are given by βrtt where typically
β ∼ 2, and rtt is the exponentially averaged estimate of the round trip time (the rtt estimate for
retransmitted packets is the time from their first transmission to their acknowledgement). The
congestion avoidance part of the algorithm is a sliding window flow control scheme, with a con-
stant window size. The idea is that, if the number of packets outstanding from each source is lim-
ited, then the net buildup of packets at bottleneck queues will not be excessive. This algorithm is
rather inflexible, in that it avoids congestion if the window sizes are small enough, and provides
efficient service if the windows are large enough, but cannot respond adequately if either of
these conditions is violated.

The second generation of flow control algorithms, exemplified by Jacobson and Karels’ (JK)
modified TCP [63] and the original DECbit proposal [15, 115-117], are descendants of the above
generic algorithm, with the added feature that the window size is allowed to respond dynami-
cally in response to network congestion (JK also includes, among other changes, fast retransmits
in response to duplicate acknowledgements and substantial modifications to the timeout calcu-
lation [63, 71]). The algorithms use different signals for congestion; JK uses timeouts and duplicate
acknowledgements whereas DECbit uses a header bit which is set by the switch on all packets
whenever the average queue length is greater than one.
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The second generation also includes rate-based flow control protocols such as NETBLT [17]
and Jain’s delay-based congestion avoidance scheme [65]. The NETBLT scheme, described in
Chapter 4, allows users to increase and decrease their sending rates in response to changes
monitored in the acknowledgment stream. A slowed down acknowledgement rate implicitly
signals congestion, and triggers a reduction in the source’s sending rate. The delay-based
congestion avoidance scheme reduces a source’s window size whenever there is an increase in
a congestion indicator which is computed using the round-trip-time delay. To a first approxima-
tion, an increase in the round-trip-time delay causes a reduction in the window size. We do not
study these schemes in our simulations, since they are not widely implemented in current net-
works.

In addition to the changes in the flow control protocol, some second generation flow con-
trol protocols are designed to work with selective congestion signaling. For instance, in the selec-
tive DECbit scheme and the Loss-load curve proposal [116, 148], the switch measures the flows of
the various conversations and only sends congestion signals to those users who are using more
than their fair share of bandwidth. The selective DECbit algorithm is designed to correct the pre-
vious unfairness for sources using different paths (see reference [116] and the simulation results
below), and appears to offer reasonably fair and efficient congestion control in many networks.

Our simulations are for the selective DECbit algorithm based on the description in refer-
ences [115, 116]. To enable DECbit flow control to operate with FQ switches, we developed a
bit-setting FQ algorithm in which the congestion bits are set whenever the source’s queue length
is greater than 1⁄3 of its fair share of buffer space (note that this is a much simpler bit-setting algo-
rithm than the DEC scheme, which involves complicated averages; however, the choice of 1⁄3 is
completely ad hoc, and was chosen using performance tuning).

The Jacobson/Karels flow control algorithm is defined by the 4.3BSD TCP implementation.
This code deals with many issues unrelated to congestion control. Rather than using that code
directly in our simulations, we have chosen to model the JK algorithm by adding many of the
congestion control ideas found in that code, such as adjustable windows, better timeout calcu-
lations, and fast retransmit, to our generic flow control algorithm.

The control-theoretic Packet-Pair Protocol, PP_CTH, is implemented according to the details
presented in Chapter 4, with the exception that the sending rate is computed using the fuzzy
predictor and the once per probe rate computation as described in §5.6 and §5.7.

6.6. Simulation results
This section presents a suite of eight benchmark scenarios for which the congestion control

schemes are evaluated. Scenarios 1 and 2 study the relative performance of FTP and Telnet
sources. In the other scenarios, there are no Telnet sources, since their performance is qualita-
tively identical to what is obtained in the first two scenarios, and they have no appreciable
impact on the performance of FTP sources.

In each scenario, we study a number of protocol pairs, where each pair is a choice of a
flow control protocol and a switch scheduling algorithm. The two scheduling algorithms studied
are FCFS and FQ. The flow control protocols studied are Generic (G), JK, Selective DECbit (DEC)
and PP_CTH. Though PP_CTH is designed for an environment where a source can reserve buffers
and prevent packet losses, in this study, for the sake of comparison, such reservations are not
assumed. The labels of the various test cases are given in Table 6.1.

The values chosen for the line speeds, delays and buffer sizes in the scenarios are not
meant to be representative of a realistic network. Instead, they are chosen to accentuate the
differences between the congestion control schemes. We choose to model all sources and
switches as being infinitely fast. Thus, bottlenecks always occur at the output queues of switches.
(This assumption is not critical, since a network with slow switches can be converted to its dual
with slow lines, with the only change being that output queueing in converted to input queue-
ing. So, if we assume that the scheduling algorithms are run at the input queues instead of at
the output queues, our simulation results hold unchanged.)
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Label Flow Control Queueing Algorithmiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS Generic FCFSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ Generic FQiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS JK FCFSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ JK FQiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC DECbit Selective DECbitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQbit DECbit FQ with bit settingiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ PP_CTH FQiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 6.1: Algorithm Combinations

In the scenarios, there are slow lines that act as bottlenecks, and fast lines that feed data to
switches and bottleneck lines. All lines have zero propagation delay, unless otherwise marked.
The packet size is 1000 bytes for FTP packets, and 40 bytes for Telnet packets. This very roughly
corresponds to measured mean values of 40 and 570 bytes in the Internet [12]. Slow lines have a
bandwidth of 80,000 bps, or 10 packets/sec. Fast lines have a bandwidth of 800,000 bps, or 100
packets/sec. All the sources are assumed to start sending at the same time. The average inter-
packet spacing for Telnet sources is 5 seconds. Both FTP’s and Telnet’s have their maximum win-
dow size set to 5 unless otherwise indicated (this is larger than the bandwidth delay product for
most of the scenarios).

Sinks acknowledge each packet received, and set the sequence number of the ack-
nowledgment packet to that of the highest in-sequence data packet received so far. Ack-
nowledgement packets traverse the data path in the reverse direction, and are treated as a
separate conversation for the purpose of bandwidth allocation. The acknowledgement (ACK)
packets are 40 bytes long.

The switches have finite buffers whose sizes, for convenience, are measured in packets
rather than bytes. The small size of Telnet packets relative to FTP packets makes the effect of the
FQ promptness parameter δ insignificant, so the FQ algorithm was implemented with δ=0.

Format of the results
Simulation results are presented as tables, and also in the form of throughput vs. delay plots

(which we call utility diagrams). The tables present, for each scenario, and each protocol pair,
the effective throughput (in packets per second), the mean round-trip-time delay (in seconds),
the mean packet loss rate (in losses per second), and the mean retransmission rate (in packets
per second). Throughputs and delays are written in the form X Y, where X is the mean of means
over simulation intervals, and Y is the standard deviation around X. Variances are shown in
oblique font, and values of less than 0.005 are omitted. Further, to improve readability, means of
0.0 are represented as 0. The numbers in the header are the numbers of the sources in the
corresponding figure for each scenario.

An example of a utility diagram is presented in Figure 6.1. Here, we compare the simulation
results for two sources, labeled 1 and 2, when the scheduling algorithm is FCFS or FQ. Each plot-
ted number shows the throughput and round-trip-time delay experienced by the corresponding
source (throughput values exclude retransmissions). The values are measured over a simulation
run that lasts a number of simulation intervals (typically 7 intervals). Normal fonts are for results
using FCFS scheduling, italics are for FQ. Some of the numbers are surrounded by boxes: the
width of a box marks the 95% confidence interval in the measured throughput, and the height of
a box marks the corresponding confidence in the delay. For the sake of clarity, if the
confidence intervals are too small to be shown distinctly, the bounding rectangle is omitted.

In the example above, we note that with FCFS scheduling, source 1 receives a low queue-
ing delay, and low throughput. The measured values of the mean throughput and delay for
source 1 have high enough confidence that the bounding box is omitted. However, the
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Figure 6.1: Example of results

confidence in the values for 2 is low, so the box is plotted. Note that with FQ, both sources
receive more throughput, though source 1 also gets higher delay.

The utility diagram representation summarizes six dimensions of information - the means of
delays and throughputs, their 95% confidence intervals, comparison between sources, and
between scheduling disciplines. We feel that this novel representation of simulation results
makes them easy to grasp.

Results

6.6.1. Scenario 1

FTP

Telnet

Telnet

FTP

Switch
40 buffers

Sink

0 delay
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800,000 bps
0 delay

Max window = 5
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4

1

Figure 6.2: Scenario 1

This scenario is the simplest in the suite; it measures the performance of a congestion con-
trol scheme when it is under no stress. There are two FTP sources and two Telnet sources that
send data through a single bottleneck switch. There are enough buffers so that, even when the
FTP sources open their window to the maximum, there is no packet loss. The cross traffic is from
the Telnet sources, which use little bandwidth and hence do not cause significant changes to
the number of active conversations. Finally, the slow line does not have any propagation delay,
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so the sources can adjust to state changes almost immediately.

We now examine the simulation results for the various protocol pairs for this scenario. These
are summarized in Tables 6.2 and 6.3.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 1 - FTPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Protocol Pair Throughput Delayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 1 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 4.99 4.99 1.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 4.99 4.99 1.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 4.99 4.99 1.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 4.99 4.99 1.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 4.99 4.99 0.20 0.20iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 4.99 4.99 1.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 4.99 4.99 1.48 1.22iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6.2: Scenario 1 : Simulation results for FTP sources

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 1 - Telnetiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Protocol Pair Throughput Delayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
3 4 3 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0.20 0.02 0.21 0.03 0.95 0.95iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0.20 0.02 0.21 0.03 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0.19 0.03 0.18 0.02 0.95 0.94iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0.20 0.03 0.18 0.04 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0.20 0.02 0.21 0.03 0.14 0.14iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0.20 0.02 0.21 0.03 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0.20 0.02 0.21 0.03 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 6.3: Scenario 1 : Simulation results for Telnet sources

With generic flow control, both FCFS and FQ provide a fair bandwidth allocation (of the
bottleneck capacity of 10 packets/second, Telnet sources get all that they can handle, and the
FTPs get half each of the rest, nearly 5 packets/second). However, as the utility diagram in Fig-
ure 6.3 illustrates, FQ provides a much lower queueing delay for Telnets than FCFS does, without
affecting the delay of the FTPs significantly. Since the interactive Telnet conversations gain utility
from lower delays, this is a useful property of FQ.

Nearly identical results hold for the other protocol pair combinations, and so their utility
diagrams are omitted. However, the selective DECbit flow control protocol gives a lower value
for the Telnet delay than FCFS, since that flow control scheme is designed to keep the average
queue length small. The results for PP_CTH illustrate two points. First, the setpoint is chosen to be
5 packets at the bottleneck, and so the RTT delay for PP_CTH FTPs is larger than for the other pro-
tocols, which keep their queue lengths smaller. However, since FTPs are not delay sensitive, this is
of no consequence - in any case, lower delays can be obtained by choosing a lower setpoint
(for example, with a setpoint of 2, the RTTs for sources 1 and 2 are .846 and .788 seconds respec-
tively). Second, the protocol is sensitive to the initial estimate of the round trip propagation
delay. Here, source 1 correctly estimates its delay, whereas 2 does not, since its first packet is
queued behind source 1’s first packet. Hence, it consistently overestimates the propagation
delay, and consequently has a lower queue size, and a shorter RTT delay than source 1.

In all the simulations, there are no dropped packets, and no retransmissions, as expected.
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Figure 6.3: Scenario1: Utility diagram for generic flow control (G)

6.6.2. Scenario 2
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0 delay
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Figure 6.4: Scenario 2

This scenario has 6 FTP and 2 Telnet sources competing for a single line. The number of
buffers at the switch (25) is such that if all the 6 FTPs open their window to the maximum (5 pack-
ets), there will be packet losses. Thus, they will experience congestion, and each source must
cope not only with packet losses, but the reaction of the other sources to packet losses. This
scenario also measures the resilience of the packet-pair probe. Since each PP_CTH source
sends out data in the form of probes, it is possible that the probes may interact in non-obvious
ways leading to a large observation noise.

The results of the simulation are presented in Table 6.4 and 6.5 and the corresponding utility
diagrams in Figures 6.5-6.8. We discuss the results for each protocol pair below.

When FCFS switches are paired with generic flow control, the sources segregate into
winners, which consume a large amount of bandwidth, and losers, which consume very little
(Figure 6.5). This phenomenon develops because the queue at the bottleneck is almost always
full. The ACK packets received by the winners serve as a signal that a buffer has just been freed,
so their packets are rarely dropped. The losers retransmit at essentially random times, and thus
have most of their packets dropped (the time when losers retransmit in relation to the winners,
that is, their relative phase, plays a critical role in determining the exact form of the segregation.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Protocol Pair Throughputiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FCFS 1.69 0.68 1.99 0.06 1.09 0.60 1.76 0.33 1.37 0.63 1.94 0.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 1.46 0.18 1.66 0.10 1.57 0.12 1.51 0.15 1.64 0.07 1.66 0.14iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 1.80 0.14 1.52 0.50 1.90 0.16 1.71 0.44 1.49 0.65 1.43 0.49iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 1.60 1.60 1.60 1.60 1.59 1.59iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 1.66 1.66 1.66 1.66 1.66 1.66iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 1.66 1.66 1.66 1.66 1.66 1.66iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 1.66 1.66 1.66 1.66 1.66 1.66iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c

c
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c
c
c
c
c
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c
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c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Protocol Pair Delayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FCFS 3.19 1.59 2.50 0.07 3.71 1.45 2.57 0.13 3.96 2.83 2.52 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 2.85 0.29 2.56 0.12 2.67 0.19 2.75 0.22 2.56 0.09 2.55 0.15iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 2.47 0.04 2.47 0.03 2.46 0.04 2.44 0.06 2.44 0.04 2.45 0.04iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 2.37 0.12 2.31 0.11 2.31 0.07 2.31 0.16 2.13 0.03 2.17 0.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0.60 0.60 0.60 0.60 0.60 0.60iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 1.09 1.11 1.12 1.14 1.11 1.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 2.40 2.40 2.40 2.40 2.40 2.40iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Protocol Pair Drop rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FCFS 0.02 0.04 0 0.06 0.03 0.02 0.02 0.04 0.03 0 0.01iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0.08 0.08 0.08 0.08 0.08 0.08iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0.02 0.01 0.04 0.04 0.01 0.01 0.02 0.03 0.03 0.04 0.04 0.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0.06 0.07 0.07 0.07 0.01 0.08 0.08iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Protocol Pair Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 3 4 5 6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FCFS 0.02 0.04 0 0.06 0.03 0.02 0.03 0.04 0.03 0 0.01iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0.08 0.08 0.08 0.08 0.08 0.08iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0.02 0.01 0.04 0.04 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0.06 0.07 0.07 0.07 0.01 0.08 0.08iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 6.4: Scenario 2 : Simulation results for FTP sources

This has been studied in depth by Floyd and Jacobson in [39, 40]). Occasionally, a loser can
place a packet in a buffer before a winner gets to it, and if this causes a winner to drop a
packet, it becomes a loser. This alternation of winning and losing phases causes high variability
in both the throughput and delay received by a source, and this is clearly seen in the utility
diagram (Figure 6.5). In particular, source 3, which has a large loss rate and a high retransmission
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 2 - Telnet Throughputs and Delaysiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Protocol Pair Throughputs Delaysiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7 8 7 8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0.05 0.03 0.05 0.04 2.30 0.04 2.23 0.10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0.20 0.03 0.21 0.03 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0.08 0.01 0.03 0.06 2.30 0.06 1.54 1.09iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0.20 0.03 0.21 0.02 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0.20 0.03 0.21 0.03 0.55 0.55iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0.20 0.03 0.21 0.03 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0.20 0.03 0.21 0.03 0.06 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 2 - Telnet Drop rate and Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Protocol Pair Drop rate Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
7 8 7 8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0.06 0.02 0.04 0.02 0.04 0.01 0.04 0.01iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0.05 0.03 0.02 0.04 0.02 0.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6.5: Scenario 2 : Simulation results for Telnet sources

rate, is a loser most of the time, while sources 2 and 6 are winners that enjoy more than their fair
share of the bandwidth (1.66 pkts/sec). Note that sources 2 and 6 never have packet losses,
whereas 1, 3, 4 and 5 have packet losses, which plunge them into losing phases. Further, Telnets,
which also transmit at random time intervals, are shut out.

When generic flow control is combined with FQ, the strict segregation disappears, and the
throughput available to each source, though variable, is more even overall. This is immediately
obvious from the utility diagram. Also, note that Telnets get much lower delays, an effect noted
in Scenario 1. The useful bandwidth (rate of nonduplicate packets) is around 90% of the net
bottleneck bandwidth, while with FCFS it is nearly 100%. Both the variability in throughput and the
underutilization of the bottleneck link are due to the inflexibility of the generic flow control, which
is unable to reduce its load enough to prevent dropped packets. This not only necessitates
retransmissions but also, because of the crudeness of the timeout congestion recovery mechan-
ism, prevents FTP’s from using their fair share of the bandwidth.

The combination of JK flow control with FCFS switches produces effects similar to those dis-
cussed for generic flow control (Figure 6.6). The segregation of sources into winners and losers is
not as complete as with generic flow control approach, but all the sources exhibit winning and
losing phases, and so experience high variability in throughput. Since the bottleneck queue is
almost always full, the round trip delays show less variance. Note that the Telnets are shut out, as
before. This is because the JK algorithm ensures that the switch’s buffer is usually full, causing
most of the Telnet packets to be dropped.

A detailed examination of the segregation phenomenon in similar scenarios has been car-
ried out recently [39, 40]. This work shows that the appearance of segregation with JK FTP
sources and FCFS switches depends strongly on the choice of the link delays, the maximum win-
dow size, and the buffer capacity at the switch. For some choices of these parameters (such as
in our scenario) segregation happens, but there are many other choices for which the
phenomenon is absent. Our aim is only to show that segregation is a possibility with the JK/FCFS
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Figure 6.5 Scenario 2: Generic flow control: FCFS vs. FQ

protocol pair, and it should be borne in mind that this reflects our choice of parameter values.

In contrast, JK flow control combined with FQ produces reasonably fair and efficient alloca-
tion of the bandwidth, as shown by the corresponding utility diagram (Figure 6.6). The lesson is
that fair queueing switches by themselves do not provide adequate congestion control; they
must be combined with intelligent flow control algorithms at the sources. Also, note that, when
FQ switches are used with either generic or JK flow control, the Telnet sources receive full
throughput and relatively low delay.
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Figure 6.6: Scenario 2: JK flow control: FCFS vs. FQ

The selective DECbit algorithm manages to keep the bandwidth allocation perfectly fair,
and there are no dropped packets or retransmissions. All the FTP sources receive identical
throughputs and delays, and Telnets get a slightly lower delay (note that the Y axis on the utility
diagram in Figure 6.7 is only from .54 to .60). The addition of FQ to the DECbit algorithm retains
the fair bandwidth allocation and, in addition, lowers the Telnet delay by a factor of 9. The FTP
delay does increase, but this should not decrease the utility of the FTP sources.

The PP_CTH FTP sources receive identical bandwidth, and this is exactly their fair share (Fig-
ure 6.8). There are no packet losses or retransmissions. The delays for the FTPs are higher than
with JK, but they can be reduced by choosing a lower setpoint, as explained in Scenario 1. This
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Figure 6.7: Scenario 2: DEC flow control: Selective DECbit vs. FQbit

simulation indicates that the probes used by PP_CTH do not, in fact, interfere with each other.
Also, the effect of slightly different estimates in the propagation delay, due to the reliance on
the first value of the probe, does not produce any appreciable difference in either the
throughput or the delays received by the FTP sources.

Thus, we conclude that, for each of the first three flow control algorithms, replacing FCFS
switches with FQ switches generally improves the FTP performance and dramatically improves
the Telnet performance of this extremely overloaded network. We also noted some interesting
phase effects that lead to segregation, staggered delay distributions and high variability in the
throughput. Both FQ and PP_CTH show their effectiveness as congestion control schemes in
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Figure 6.8: Scenario 2: PP_CTH flow control

overloaded networks.

6.6.3. Scenario 3

FTP

FTP

Switch
40 buffers

Sink
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800,000 bps
0 delay

2 second delay

Max window size = 40

Background

1

2

Bkg

Figure 6.9: Scenario 3

Scenario 3 explores the effect of propagation delay in a simple topology. Two identical FTP
sources send data through a bottleneck line that has a propagation delay of 2 seconds. Cross
traffic is modeled by a simple background source that sends data at half the bottleneck rate for
300 seconds, is idle for 300 seconds, and then resumes for 300 seconds. We expect the propa-
gation delay to affect flow control protocols since changes in network state are detected only
after some delay.

Simulation results are presented in Table 6.6 and Figures 6.10-6.13. The table shows
throughputs, losses and retransmissions for each source for two situations: when the background
source is off, and when it is on. Since the simulation is almost completely deterministic, the
values shown are for a single on or off period: the other periods are nearly identical. The figures
show the dynamics of the flow control protocols in response to a change in the network state.

The switch has 40 buffers. The bottleneck rate of 10 pkts/s, with a round trip propagation
delay of 4 seconds gives an equivalent to 40 packets of storage on the link. Each source has a
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Background offiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Throughput Drop rate Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 1 2 1 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 5.00 5.00 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 4.77 4.69 0 0 0 0.04iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
J/FCFS 5.03 4.91 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
J/FQ 4.94 4.92 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 3.84 3.48 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 4.90 4.90 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 4.92 4.92 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Background oniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Throughput Drop rate Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 Bkg 1 2 Bkg 1 2 Bkgiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 4.94 4.94 0.12 0 0 4.87 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 1.85 0.39 4.49 .13 .19 .44 .13 .14 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
J/FCFS 2.21 2.35 4.89 .09 .09 .83 .02 .02 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
J/FQ 3.04 3.08 3.39 .10 0.14 1.52 0.03 0.03 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 1.37 1.59 5.00 0 0 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 3.33 3.33 3.34 0 0 1.54 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 3.35 3.35 3.23 0 .05 1.65 0 0.06 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6.6: Scenario 3 simulation results

maximum window size of 40. Thus, when the background source is inactive, even if both sources
open their window to the maximum, there is no packet loss (though spurious retransmissions are
possible). When the background source is active, the number of buffers is no longer enough for
all three sources. Since the background source is non-compliant (or ill-behaved), it can force
the other sources to drop packets or cut down their sending rate. An ideal congestion control
scheme will allocate a throughput of 5.0 packets/s for each source when the background
source is inactive, and a throughput of 3.33 packets/s otherwise.

With generic flow control and FCFS queueing, when the background source is inactive,
there are no packet losses. Since both the sources have the same window size, they share the
bottleneck throughput exactly in half. Since the sources do not adjust their window size in
response to changes in network state, the transition of the background source from off to on
does not affect the window size, and full throughput is achieved (unlike other protocol pairs that
take some time to increase their window in response to the state change, and hence lose
throughput).

When the background source becomes active, it is after its inactive phase, and so it always
finds the bottleneck buffer full (this is similar to the segregation phenomenon described in in
scenario 2, and is also sensitive to parameter choice). Hence, it drops almost all its packets, and
the FTP sources split the bandwidth between themselves even when the background source is
active.

When the scheduling discipline is FQ, matters are different. We discuss the situation when
the background is active first. Here, the Generic FTP sources do not react to the presence of the
background source, and hence keep their window at 40 packets. This causes packet losses and
retransmissions. Thus, the background source is able to take up most of the bandwidth. This
shows that, even with a fair bandwidth sharing scheduling algorithm, if the sources are insensitive
to network state, the overall bandwidth allocation can be badly skewed. FQ cannot protect
sources that adapt poorly to changes in network state.
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Even when the background source is inactive, the FTPs still suffer from the effects from that
source’s previous active period. Hence, in this period, the FTPs share the throughput, though
slightly unevenly. There are a few retransmissions that result from losses in the earlier period.

With JK flow control and FCFS scheduling, the situation is somewhat better. The window size
vs. time diagram (Figure 6.10) explains the behavior of the FTP sources.
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Figure 6.10: Scenario 3: JK/FCFS Window dynamics

JK FTP sources open their flow control window, first exponentially, and then linearly, until a packet
loss causes the window size to drop to one. This cycle then repeats.

When the background source is inactive, the window can open to its maximum of 40
without packet loss, and so between times 300 and 600 the window is stable at 40. In this region,
the two FTP sources share bandwidth approximately equally. However, they take a while to
open their windows up in reaction to a change in the state, and so they lose some throughput.

When the background source is active, it occupies some fraction of the buffers. This causes
packet losses, and the FTP sources periodically shut down their window. Since the background
source does not respond to packet loss, it gets much more throughput than the FTP sources.
Thus, non-conforming sources can adversely affect JK flow control if the scheduling algorithm
does not provide protection.

When the scheduling algorithm is FQ, the dynamics are nearly identical, except that the
FTP sources are protected from the background source. Thus, the background source is forced
to drop packets due to its non-compliance, and the three sources share the bandwidth equally.
FTP sources have a few losses, but these are due to the intrinsic behavior of JK flow control.

With selective DECbit congestion control, the non-compliance of the background source is
a major problem. Even when that source is inactive, the long round-trip time delay implies that
the sources take a long time to achieve the correct window size, thus losing throughput. By the
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time they do reach the right size, the background source fires up, which drives the switch
towards congestion. In response, the switch goes into panic mode, and sets bits on the FTP
sources, which shut down their window to accommodate the background source. Thus, when
the background source is active, it gets all the throughput it wants, and the FTP sources adjust
themselves to its presence. This is clear from the window vs. time diagram (Figure 6.11).
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Figure 6.11: Scenario 3: DEC/DEC Window dynamics

When the scheduling is FQbit, the sources are protected from the background source. This
has two effects. First, when the background source is active, all three sources share bandwidth
equally. Second, when the background source is active, the average window size of an FTP
source is larger. So, when the background source turns off, the FTP source can attain the right
size more quickly, thus getting more throughput even when the background source is inactive.
This is clear from Figure 6.12.

When PP_CTH flow control is used with FQ scheduling, matters are almost as good as with
DECbit/FQbit, but without the need for additional information from the switches. When the
background source is inactive, the two FTP sources get almost half the bottleneck bandwidth
each: the bandwidth loss is because it takes a while for the sources to adjust their sending rate.
When the background source is active, the three sources share the bandwidth equally. Source
2 has a few drops, since it takes a short while to react to the presence of the background
source, and, in this interval, it can lose data. Source 1 does not have this problem. The inverse of
the sending rate of the PP_CTH source, which corresponds roughly to the window size, is plotted
in Figure 6.13.

The figure reveals that in the second period (times 600-900), source 1 window oscillates
rapidly. This is because of its sensitivity to the Packet-Pair probe. In this scenario, there are only
two sources, so that the consecutive probe values can differ by as much as 100%. This grossly
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Figure 6.12: Scenario 3: DEC/FQB Window dynamics

violates the assumption that the system state changes somewhat slowly on a RTT time scale.
Nevertheless, the overall behavior of the two sources is reasonable, as the table shows.

The other feature is a spike in the ‘window’ size at time 300, when the FTP source discovers
the absence of the background source. This spike, though large, occurs for such a small dura-
tion that it does not affect the overall sending pattern of the source, and so it is not a matter of
much concern. A detailed examination of why the spike occurs, and how it affects flow control,
is presented in the analysis accompanying scenario 7.

One way to control these oscillations is to take control actions only once per 2 RTTs, as is
done in the DECbit scheme. However, we believe that in high-speed networks, it is better to
respond quickly, and perhaps overcompensate, than to respond too slowly, and lose
throughput. This is a matter for debate and future study.

6.6.4. Scenario 4

91



20

40

60

80

PP/FQ ‘Window’ size

Window
size

Time

0 300 600 900

Figure 6.13: Scenario 3: PP/FQ ‘Window’ dynamics
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Figure 6.14: Scenario 4

In scenario 4 there is a single FTP and a single Telnet competing with an ill-behaved source.
This ill-behaved source has no flow control and sends packets at the rate of the switch’s outgo-
ing line. This tests the ability of a scheduling algorithm to provide utility to users in the face of a
malicious source. If the congestion control mechanism is poor, the FTP or Telnet source may
experience a loss of utility due to the ill-behaved source.

The scenario exaggerates the effects already noted in scenario 3, and the results are sum-
marized in Table 6.7. They are, for the most part, self explanatory. With FCFS, the FTP and Telnet
sources are essentially shut out by the ill-behaved source. With FQ, they obtain their fair share of
bandwidth. It is clearly seen that FCFS cannot provide any protection from malicious sources,
whereas with FQ, malicious sources cannot get any more than their fair share (note that we do
not punish malicious sources by incrementing the finish number even for dropped packets. Had

92



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 4 Resultsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Throughput Delayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 3 1 2 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0.03 0.07 9.85 0.07 0 8.84 2.94 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 5.03 0.01 0.23 0.05 4.96 0.01 0.99 0.06 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 2.38 0 7.62 2.10 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 5.02 0.21 0.04 4.97 1.00 0.06 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0.48 0 9.52 2.10 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 5.09 0.01 0.23 0.05 4.90 0.01 0.73 0.06 0

PP/FQ 5.09 0.01 0.23 0.05 4.90 0.01 0.73 0.06 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 4 Resultsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Drop rate Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 3 1 2 3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0.12 0.05 0.15 0.07 0 0.12 0.04 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0 0 5.04 0.02 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0 0 0.01 2.38 0 0 0.01 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0 0 5.03 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0 0 0.48 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0 0 5.10 0.02 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0 0 5.10 0.02 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6.7: Scenario 4 simulation results

we done so, with FQ, malicious sources would have got almost zero throughput). Thus, FQ
switches are effective firewalls that can protect users, and the rest of the network, from being
damaged by ill-behaved sources. While scenario 2 showed that FQ switches cannot control
congestion by themselves, this scenario suggests that FQ switches can control the effect of
congestion.

6.6.5. Scenario 5
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Figure 6.15: Scenario 5

One of the requirements of a congestion control scheme, as stated in Chapter 1, is the abil-
ity to work in heterogeneous environments. In this scenario, we test whether a congestion con-
trol algorithm can allocate bandwidth fairly with a mixture of flow control protocols at the
sources. We would like the algorithm not to require a smart flow control protocol, but to provide
incentives for smart ones. By comparing the relative performance of pairs of flow control
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protocols for FCFS and FQ algorithms, we see how far they satisfy this criterion.

The sources have a maximum window of 5, and the buffer has a capacity of 15, hence
packet losses can occur. Depending upon the flow control protocol, as well as the response of
the other sources, we see a variety of outcomes. These are summarized in Table 6.8.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/G with FCFSiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK1 JK2 G1 G2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Throughput 0.18 3.21 3.21 3.21iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Delay 1.60 1.56 1.56 1.56iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Drop rate 0.20 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Retransmission rate 0.20 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/G with FQiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK1 JK2 G1 G2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Throughput 2.75 0.03 2.83 0.03 2.56 0.06 1.20 0.01iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Delay 1.49 0.01 1.58 0.12 1.34 0.10 2.94 0.03iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Drop rate 0.11 0.06 0.06 0.26 0.08 0.17iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Retransmission rate 0.15 0.07 0.07 0.26 0.08 0.17iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PP/G with FQiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PP1 PP2 G1 G2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Throughput 3.32 3.32 2.69 0.01 0.52 0.02iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Delay 1.21 1.21 1.67 6.70 0.20iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Drop rate 0 0 0.07 0.07iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Retransmission rate 0 0 0.07 0.07iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PP/JK with FQiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP1 PP2 JK1 JK2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Throughput 2.50 2.50 2.50 2.35iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Delay 1.60 1.20 2.00 1.16iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Drop rate 0 0 0 0.15iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Retransmission rate 0 0 0 0.15iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 6.8: Scenario 5 simulation results

If the congestion control scheme were ideal, there would be no packet losses, and each
source would get an equal share of the bandwidth, i.e., 2.5 packets per second. However, this is
not achieved by any of the algorithm pairs.

With an FCFS switch, and Generic and JK flow controls, we find that the two Generic
sources obtain a higher share of the throughput. This is because the JK sources respond to
packet loss by shutting down their window, which allows the Generic sources to appropriate
more than their share of the throughput. One of the two JK sources has segregated and is in the
low throughput regime: this is due to the same segregation mechanism as in scenario 2.

With a FQ switch, the situation is reversed. Since each source gets an equal share of buffer
space, the Generic sources, which mismanage their share, do not do as well as the JK sources.
One of the two Generic sources suffers from retransmission timer backoff (indicated by the large
RTT delay) and hence has a very low throughput. The JK sources also have packet losses, which
is due to their congestion sensing mechanism, but overall, since they respond to the congestion
signal, they perform better. Thus, the FQ switch has provided an incentive for sources to
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implement JK or some other intelligent flow control, whereas the FCFS switch makes such a move
sacrificial.

The other two cases judge the behavior of PP_CTH sources when they are in a heterogene-
ous network. The PP/G case shows the same qualitative behavior as JK/G, except that PP
sources get a larger share of the throughput than the JK sources. This indicates that in simple
topologies such as the one here, it does not hurt for a system to switch over from Generic to PP.

With JK and PP sources, all four sources get an equal share of the raw throughput. How-
ever, since source 4 has a retransmission rate of 0.15, its effective throughput goes down to 2.35
packets/sec. One of the PP sources has a larger RTT delay: this is because of the error in the first
probe, as explained for scenario 1.

6.6.6. Scenario 6
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Figure 6.16: Scenario 6

We noted earlier that a window-based scheme tends to allocate bandwidth unfairly -
conversations spanning a shorter number of hops will get a larger bandwidth allocation than
conversations over longer paths (unless congestion signals are selectively set). Scenario 6 has a
multinode network with four FTP sources using different network paths. Three of the sources have
short mutually nonoverlapping conversations and the fourth source has a long path that inter-
sects each of the short paths. The simulation results are presented in Table 6.9. There were no
packet losses or retransmissions, so these results are omitted.

In the ideal case, both the long and short conversations should share the bottlenecks, so
that their throughputs should be 5 packets/s each. The G/FCFS protocol pair gives higher
throughput to the shorter conversation, as expected. Shorter conversations get acks back, and
can send the next packet out, sooner than the long conversation. Hence, they get higher
throughput. With FQ, the bandwidth received by a source is no longer inversely proportional to
its RTT delay; so both long and short conversations receive the same throughput. Almost identi-
cal results hold for JK sources, and for the same reasons.

With DEC sources, the exact division of throughput depends in detail on the choice of a
parameter called the capacity factor, on whether or not the switch can set bits in panic mode,
and on the maximum size of the window. With varying parameters, nearly fair, as well as grossly
unfair, throughput distributions are possible. We present results with a choice of capacity factor
of 0.9, maximum window size of 5, and the switch allowed to go into panic mode. In this situa-
tion, around 12% of the bandwidth is wasted, and the short conversations get about 20% more
than their fair share of the bottleneck bandwidth. The long conversation gets much less, but, as
we mentioned, with a different choice of parameters, it can get as much as 80% of its fair share.

Such sensitivity to parameters, as well as unfair bandwidth allocation, vanishes with the
FQbit scheme. The results for PP_CTH/FQ are also nearly ideal.
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 6: Throughputiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 3 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 7.14 7.14 7.14 2.86iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 5.29 0.21 5.29 0.21 5.29 0.21 4.71 0.21iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 7.14 7.14 7.14 2.86iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 5.00 5.00 5.00 5.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 6.08 0.04 6.14 0.06 6.15 0.05 2.67 0.07iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 5.00 5.00 5.00 5.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 5.00 5.00 5.00 5.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 6: Delayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 3 4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FCFS 0.70 0.70 0.70 1.75iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0.95 0.04 0.95 0.04 0.95 0.04 1.06 0.04iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0.70 0.70 0.70 1.75iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 1.00 1.00 1.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0.37 0.37 0.38 0.88iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0.91 0.91 0.91 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 1.00 1.00 1.00 1.00iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
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Table 6.9: Scenario 6 simulation results

6.6.7. Scenario 7
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Figure 6.17: Scenario 7

Scenarios 1-6 have explored the behavior of the FQ algorithm and PP flow control in net-
works where there is little stochastic variance. Thus, the steady state is easily determined, and
the flow control mechanism, once it determines a correct operating point, does not need to
adjust to state changes. In Chapter 5, we presented a stochastic model for a conversation in a
network with dynamically varying state, and proposed mechanisms that allow sources to
respond to changes in this state. The performance of these mechanisms is explored in scenarios
7 and 8, and is compared to the performance of some other schemes.

Scenario 7 (Figure 6.17) explores problems that arise when there are large propagation
delays, as well as three potential bottlenecks created by cross traffic from Poisson sources
(though a delay of 2 s seems rather large for a single link, since the link speed is slower than in a
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high speed network, the higher delay has the same overall effect on dynamics as a lower delay
on a faster link). Due to the delays, sources receive outdated state information, and this can
affect adversely the performance of a flow control algorithm. The three potential bottlenecks
can lead to bottleneck migration, and large observation noise.

It is generally accepted that a switch should have at least a bandwidth-delay product
worth of buffers to be shared amongst the conversations sending data through that switch [54].
Here, the maximum round trip propagation delay is 12 seconds, and the bottleneck bandwidth
is 10 packets/s. Thus, 120 switch buffers are provided, as 120 is the bandwidth-delay product.
Recall that in our simulations buffers are not reserved.

Each Poisson source has an average interpacket spacing of 0.5 seconds, so that, on aver-
age, it generates 2 packets/s, which is 20% of the bottleneck bandwidth. Since there are 4 Pois-
son sources, they can consume, on average, 80% of the bottleneck bandwidth. However, since
there are 6 sources at each bottleneck, we expect FQ to restrict each Poisson source to 16% of
the bottleneck bandwidth, so they will have some packet losses.

The two PP sources are constrained by a maximum window size of 60 buffers. This is large
enough to take up as much as half of the bandwidth, while we expect them to receive only one
sixth, on the average. Since the sources are identically placed in the network, they should
receive identical treatment. If this does not happen, then the congestion control scheme is
unfair.

The simulation results are summarized in Table 6.10.
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Scenario 7: Throughputs and delaysiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Throughput Delayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

1 2 1 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FCFS 0.02 0.52 1.00 0.59 17.00 22.94 35.43 7.51iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 1.10 0.48 0.21 0.13 41.73 11.05 92.22 56.65iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0.79 0.06 0.82 0.12 16.37 1.06 16.59 1.04iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 1.62 0.16 1.72 0.10 13.53 0.82 16.41 4.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0.08 0.10 0.03 12.97 0.07 12.97 0.10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 1.65 0.15 1.65 0.15 15.22 0.93 15.22 0.93iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 1.70 0.02 1.72 0.01 16.64 4.97 19.58 4.37iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Scenario 7: Drop rate and retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Drop rate Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 1 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0.05 0.10 0 0.01 0.31 0.47 0.12 0.22iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0.02 0.02 0.05 0.04 0.03 0.02 0.06 0.01iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0 0.01 0.03 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6.10: Scenario 7: simulation results

The Poisson sources in this scenario are ‘ill-behaved’; so, as expected, neither the Generic
sources, nor the DEC/DEC pair does well in this scenario. Since the reasons for this have been
examined earlier, we will only concentrate on the other four protocol pairs.

The JK/FCFS protocol pair does much better than G/FCFS, and this is because of its sensi-
tivity to congestion. As the buffers in the bottlenecks build up, packet losses force window
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shutdown, preventing further retransmissions and losses. However, since the FTP sources are not
protected from the Poisson sources, they lose packets because of misbehavior of the Poisson
sources, causing window shutdown, and consequent loss of throughput. This is clear from the
window vs. time diagram for source 1, Figure 6.18.
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Figure 6.18: Scenario 7: JK/FCFS window vs. time

Note that the highest window size achieved is around 25, and, though the number of window
shutdown events is small, the large propagation delay means that the time to open the window
up again is large, and so each shutdown causes a possible loss of throughput (actual
throughput loss will occur if the source does not recover by the time that the bottleneck queue
dissipates).

When the scheduling discipline is changed to FQ, the situation improves considerably (Fig-
ure 6.19). The maximum window achieved is around 35, which indicates that the FTP sources
have long periods of uninterrupted transmission. Both sources achieve almost their fair share of
the throughput, which is 1.66 packets per second. There is some amount of unfairness, but this is
due to the JK protocol, that is adversely affected by each shutdown, rather than to FQ.

The DEC/DEC protocol pair performs poorly: the ill-behaved Poisson sources force the FTP
sources to shut their window down, and the window size never goes beyond 2. When FQbit pro-
vides protection, though, the two sources achieve almost their entire fair share of the bandwidth
(with a much lower queueing delay than JK/FQ). The window vs. time diagram for source 1 is
presented in Figure 6.20. Note that, though the source takes a while to reach the steady state,
once it is there, it proceeds to send data relatively undisturbed by the Poisson sources.

The PP_CTH protocol can respond rapidly to changes in network state. Thus, if any of the
Poisson sources is idle, the PP_CTH source can detect this, and make use of the idle time.
Hence, the two PP_CTH sources obtain more than their fair share of the throughput (Table 6.10).
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Figure 6.19: Scenario 7: JK/FQ window vs. time

Moreover, the presence of multiple (and possibly migrating) bottlenecks, as well as the observa-
tion noise, does not affect the performance of the scheme. There are almost zero packet losses
and retransmissions. This vindicates our decision to use a control-theoretic basis to design flow
control mechanisms, since we outperform even the DECbit algorithm, but without using explicit
congestion signals, in a scenario that challenges many of the simplifying assumptions made in
Chapter 5 (that is, that the number of sources in the cross traffic is large, that the observation
noise variance is small, that bottlenecks do not migrate, as well as numerous less important
assumptions). We now examine the performance of the protocol in some more detail.

Figure 6.21 shows the typical inter-acknowledgement spacing as seen by source 1, and its
corresponding choice of inter-packet spacing (which is the inverse of the sending rate or ‘win-
dow’ size), over a period of 100 seconds. The square-wave like line represents the probe value,
and the other solid line represents the inter-packet spacing of the packets being transmitted
from the PP_CTH source. The dotted line shows the value of the exponential averaging constant
α.

The inter-ack spacing depends on how many other packets get service between two
packets from source 1. Since each packet takes 0.1 seconds to get service, the interpacket
spacing has to be 0.3, 0.4, 0.5 etc., hence the rectangular pattern. The inter-packet spacing, for
the most part, tracks the inter-ack spacing. Note that the source ignores single spikes in the
input, and that, whenever the probe values stabilize, the sending rate catches up to the probe
value exponentially, as explained in Chapter 5. The fact that the source tracks the input rather
closely shows the effectiveness of the fuzzy controller. Essentially, the controller drops the value
of α whenever the prediction error is large. This allows it to quickly catch up with the probe
value. Since the estimator for the prediction error ignores spikes, a large error is very likely due to
the start or the end of a conversation, and, adapting to these changes, the source is able to
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Figure 6.20: Scenario 7: DEC/FQB window vs. time

send more data than it could otherwise.

We had earlier cautioned that it is necessary to do both rate-based and window-based
flow control. The need for window limits is demonstrated by observing a trace of the number of
packets outstanding vs. time (Figure 6.22).

The figure shows that the number of outstanding packets shoots up rapidly, stops at 60,
which is the window limit, and then decays slowly. This shape is explained below.

A rise in the number of outstanding packets is triggered when some Poisson sources are
silent and the bottleneck has an idle period, so that a series of probes report a lower inter-ack
value. When source 1 learns of this, it immediately increases its sending rate, and the number of
outstanding packets rises steeply. The number of outstanding packets stabilizes at 60, which is
the window limit. When a Poisson source becomes active again, the inter-ack spacing goes up,
and further probes indicate that the bottleneck can no longer support the new sending rate. At
this point the source cuts down its sending rate. But, for one RTT, while it is unaware of the lower
service rate, it sends data much faster than the bottleneck can handle it, leading to a build up
of a queue at the bottleneck. Note that the queues are built up quickly, since the source mis-
takenly sends data at a higher speed. However, the new bottleneck service rate is slower than
this, so the queues drain slowly. In fact, even if the source sends no more packets, the number of
outstanding packets will stay high. Thus, the slow decay of the curve.

This figure shows the usefulness of a window limit. In its absence, the source would send far
too many packets in the RTT when it was misinformed, and would have had extensive packet
losses. Here, even though we do not have buffer reservations, because of the window limit there
are no packet losses.
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Figure 6.21: Scenario 7: PP/FQ inter-ack spacing, inter-packet spacing and α

6.6.8. Scenario 8
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Figure 6.23: Scenario 8

Scenario 8 is similar to scenario 7, except that source 1 has a round-trip-time delay of 12
seconds, and source 2, of 24 seconds (see Figure 6.23). Thus, source 2 gets congestion informa-
tion much later than source 1, and this can affect the fairness of the congestion control scheme.
We examine the performances of the 7 protocol pairs in Table 6.11.
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Figure 6.22: Scenario 7: Number of outstanding packets vs. time

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 8: Throughputs and delaysiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Throughput Delayiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 1 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0.82 0.67 0.05 0.75 32.01 9.78 114.26 108.91iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 1.43 0.49 0.37 0.48 35.51 7.05 82.04 91.36iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 1.03 0.20 0.31 0.10 14.75 0.46 39.09 0.64iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 1.39 0.05 0.86 0.38 13.52 0.41 36.88 0.29iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0.09 0.01 0.03 12.96 0.06 12.32 0.06iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 1.90 0.23 0.03 16.73 2.30 12.30 0.11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 1.73 0.02 1.64 22.11 3.48 36.50iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Scenario 8: Drop rate and retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Drop rate Retransmission rateiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 2 1 2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

G/FCFS 0 0 0.01 0.03 0.02 0.43 0.72iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
G/FQ 0 0.01 0 0.04 0.07 0.36 0.40iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

JK/FCFS 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
JK/FQ 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

DEC/DEC 0 0 0 0.03iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DEC/FQB 0 0 0 0.03iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

PP/FQ 0 0 0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table 6.11: Scenario 8 simulation results
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As in scenario 7, the Generic protocol leads to poor performance, with many retransmis-
sions (in fact, nearly 90% of the data transmission of source 2 is in the form of retransmissions!).
The DEC/DEC pair is shut out, as before. The JK/FCFS and JK/FQ pairs both exhibit unfairness to
the source with the longer RTT. This is because, on each packet loss, source 2 takes much longer
to open its window than source 1. Thus, it loses throughput. Source 2 of the DEC/FQbit pair loses
throughput for exactly the same reason. (This effect was not present in scenario 6, where there
were no packet losses.)

In contrast, the PP/FQ pair performs well, with no packet losses or retransmissions. The
throughput allocation is almost fair, which is remarkable, considering that source 2 receives infor-
mation that is rather stale. This scenario hence shows that PP_CTH behaves well even under
fairly adverse conditions.

6.7. Conclusions
In the previous sections, we have presented and justified our simulation methodology, and

have presented detailed simulation results for a suite of eight benchmarks. In this section, we
summarize our conclusions.

Our overall results are encouraging. We have shown that FQ does better than FCFS in
almost all the scenarios. Further, the PP flow control protocol consistently matches or outper-
forms the competing JK and selective DECbit schemes. Thus, we claim that our venture to
design efficient and robust congestion control schemes has been successful. We justify this
claim by reviewing the results from the simulations.

Scenario 1 showed that, unlike FCFS, FQ can provide lower delays, and hence more utility,
to delay-sensitive Telnet sources. All the protocol pairs work well here, but as we examine the
other scenarios, they exhibit their weaknesses. Thus, we should be cautious of simulation results
for an ‘average’ case: the average case may hide poor performance under adverse condi-
tions.

We also saw that the queueing delay incurred by the packets generated by a PP_CTH FTP
source depends somewhat on the initial estimate of the propagation delay. Since FTP sources
do not lose utility from increased delay, this sensitivity does not pose problems in this case. Note
that, if one of the sources somehow obtained a completely wrong estimate of the propagation
delay, then it would accidentally choose a very low setpoint and lose throughput, leading to a
loss of utility. However, the error would arise mainly from phase delay, and, as we argued in §5.7,
this can only slightly affect the estimate. So, we do not expect FTPs to lose utility due to an
incorrect estimate of the propagation delay. The argument is also justified by our simulations,
where competing PP_CTH sources, some of which have errors in their propagation delay esti-
mates, obtain nearly identical throughputs and delays.

We earlier claimed that the role of a congestion control scheme is to provide utility to the
users of the network. FQ allows users to choose their throughput delay tradeoff by choosing their
own setpoint for the size of the bottleneck queue. FCFS links the throughput and delay alloca-
tions, and makes individual tradeoffs impossible (though global tradeoffs are still possible [6]).
The DEC algorithm controls the queueing delay by attempting to keep the average queue size
close to one. However, it does not allow individual users to make different delay/throughput
tradeoffs; the collective tradeoff is set by the switch.

Scenario 2 examined the situation when congestion could occur due to the overloading of
a switch by 6 FTP sources. We found that the Generic flow control algorithm is insensitive to
congestion, and hence performs poorly with both the FCFS and FQ scheduling disciplines. To
get utility, not only must the network provide an appropriate scheduling discipline, the sources
must also react intelligently to network state changes. The JK, DEC and PP_CTH protocols
behave well in this scenario, since they respond adequately to congestion signals.

Scenario 2 also was the first one to exhibit segregation of the sources. The origin of segre-
gation for FCFS sources is easily understood, and has also been studied exhaustively in refer-
ences [39, 40]. The slight segregation with FQ is harder to explain, and depends in detail on the
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exact implementation of the JK source. The major conclusion to draw from this is that segrega-
tion can arise from a number of sources, but, once it arises, it is self sustaining. However, it must
be borne in mind that segregation is sensitive to the exact values of link speeds, buffer capaci-
ties and maximum window sizes, and for a wide range of these values, segregation does not
occur.

Scenario 3 examined the dynamic behavior of flow control algorithms in response to an
abrupt change in the network state. We saw that both JK and DEC take a while to respond to
the change, while PP responds immediately. This is the reason why, in scenario 8, PP outperforms
the other schemes.

The firewall property of FQ is graphically demonstrated in scenario 4. Here, malicious or ill-
behaved sources can completely disrupt the flow of other sources with FCFS switches, while FQ
switches prevent such abuse.

The four cases of scenario 5 demonstrate two things. First, FQ provides an incentive for
users to use an intelligent flow control protocol, such as PP_CTH or JK. In contrast, FCFS makes
such a move sacrificial. Second, PP_CTH works well in networks that have combinations of
PP_CTH and both JK and Generic sources. Users using PP_CTH can only benefit from using it,
which is an incentive to convert to it.

Scenario 6 shows that unlike FCFS, FQ does not discriminate against conversations with long
paths. This is important as the scale of WANs increases.

Scenarios 7 and 8 try to challenge the assumptions made in the design of PP_CTH, and test
the robustness of the algorithm in adverse conditions. In Chapter 5, we assumed that the
bottleneck service rate does not rapidly fluctuate - in scenario 7, on the contrary, Figure 6.21
shows that the inter-ack spacing probe fluctuates rapidly. Further, we had assumed that the
fluctuations in the probe value would be airly small, whereas the changes in the probe value in
Scenario 7 are as large as 10% and 30%. Third, there are three bottlenecks in tandem, so that
bottleneck migration is possible, and can lead to observation noise. Fourth, there are no buffer
reservations, as is recommended when using PP_CTH. Finally, the PP_CTH source has a long pro-
pagation delay, so that the probe values report stale data. In spite of these difficulties, PP_CTH
behaves rather well. This gives us confidence in our design methodology.

The adverse conditions of scenario 7 are worsened in scenario 8, where one source has
double the propagation delay of the other. We see that only PP_CTH is able to deliver reason-
ably fair throughput to the two sources in this scenario.

To summarize, we have shown that both FQ and PP_CTH work well as congestion control
mechanisms, and they work well together. This conclusion is valid to the extent that our suite of
benchmarks is comprehensive. While we have tested for ill-behaved users, severe buffer con-
tention, the differing utilities of FTP and Telnet sources, Poisson cross traffic and multiple
bottlenecks, we have ignored some other (perhaps equally important) factors such as: two-way
traffic, bursty cross traffic, numerous short-duration conversations and the effect of conversations
that start at random times. Thus, these limitations must be borne in mind while reviewing our con-
clusions. We recognize that no suite of benchmarks, at least at the current state of the art, can
claim to be comprehensive. We have tried our best to create worst-case scenarios that test
specific problems in congestion control schemes. It is possible that some of the factors we have
ignored are critical in determining protocol performance, but this is still a matter for speculation.
Developing a more comprehensive suite of benchmarks is a matter for future study.

To conclude, while our simulations are only for a small suite of scenarios, and each scenario
only has a small number of nodes, we feel that our schemes have several promising features that
may make them suitable for future high speed networks. Studying their effectiveness in the real
world is an area for much future work.
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Chapter 7: Conclusions

7.1. Introduction
Chapter 1 presented a survey of congestion control techniques and a set of desirable

characteristics of any congestion control scheme. In this chapter, we review the results from the
preceding chapters, and examine the extent to which we have been successful in our design
effort. We also examine the weaknesses in our work, and areas for future work.

7.2. Summary of the thesis
We define congestion as the loss of utility to a network client due to an overload in the net-

work. This motivates the design of congestion control schemes, which allow users to gain utility
from the network either by reserving resources to prevent overload, or by reacting to increased
network loads. While congestion control can, and should, operate at a number of time scales
concurrently, we restrict the scope of this thesis to reactive control schemes that operate at time
scales ranging from less that one round trip time to a few round trip times. This corresponds to
the design of a scheduling discipline that operates at all queueing points, and a transport level
flow control protocol that is executed at all the hosts. In the course of the thesis, we describe
and analyze the Fair Queueing scheduling discipline (FQ) and the Packet-Pair flow control proto-
col (PP), and claim that these mechanisms provide the required functionality and performance.

Chapter 2 introduced FQ as a way to provide a fair share of switch resources to competing
conversations. We defined the notion of min-max fairness, and showed how this leads naturally
to the FQ algorithm. A simple analysis considered the delay distribution of a Telnet conversation
competing with FTP conversations at a FQ server. Chapter 3 studied data structures and algo-
rithms for the efficient implementation of FQ, particularly the packet buffering scheme. We con-
cluded that, if packet losses are few, then a simple ordered linked list is the best alternative. If
there can be many losses, then a per-conversation linked list data structure is best. In Chapter 4,
the traffic delinking property of FQ is used to build a deterministic model for a conversation in a
network, and, from a series of lemmas, we derive the paired-packet probe. This is used to design
the first version of the PP protocol, which constantly adjusts the data transmission rate to meas-
ured changes in the bandwidth-delay product. In Chapter 5 we recognize the inadequacies of
the deterministic model, and propose a stochastic extension. This motivates a control theoretic
approach to decide how best to use the series of packet pair probes to derive a stable flow
control protocol. Practical issues, such as the unavailability of noise variances, motivated the
design of a fuzzy prediction scheme. The resulting protocol allows users to obtain a desired
delay-throughput tradeoff by choosing a setpoint, and dynamically adjusting the packet
transmission rate so that the setpoint is maintained. As in all design problems, the proof of the
pudding is in the eating. We showed in Chapter 6 that PP can match, or better, the perfor-
mance of some widely known flow control schemes in a variety of scenarios, some of which are
specifically designed to contradict our assumptions.

We now consider the role of FQ and PP as congestion control algorithms. The FQ schedul-
ing discipline provides a number of advantages. First, it protects well-behaved users from ill-
behaved ones, so that well-behaved users can get utility from the network even in the presence
of ill-behaved or malicious users (this was the main purpose of the algorithm as proposed by
Nagle [101]). Second, because it provides the equivalent of per-channel queueing, users can
choose their own delay-throughput tradeoff. As described in §5.3.1, by choosing a setpoint for
the queue size at the bottleneck, users can trade low delay for possible loss of throughput. Such
tradeoffs are not possible with a FCFS discipline. (Even the selective DECbit protocol can only
enforce a global tradeoff, because the FCFS discipline does not allow it to provide different users
with different queueing delays.) Third, by partially delinking the traffic characteristics of the
sources, FQ allows each user to probe the network state. This allows for sophisticated flow con-
trol that can use this information to choose an appropriate sending rate. Finally, FQ switches
give incentives for sources to do more sophisticated flow control. As the simulation results for
scenario 5 in Chapter 6 showed, sources that change to PP from JK or generic flow control get
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better performance.

The PP protocol leverages off FQ to do intelligent flow control. It too provides utility to users
in several ways. First, it allows users to choose a bandwidth-delay tradeoff that corresponds to
their utility function. A user’s utility translates to a choice of setpoint, and PP ensures that the flow
control tracks the setpoint to the extent allowed by control delays. Second, PP allows FTP
sources to maintain their throughput even if the conversation has a large round trip propagation
delay, or there is a lot of cross traffic. As we saw in scenario 8, the other popular flow control
schemes we investigated do not perform too well under such circumstances. Finally, the proto-
col adapts quite rapidly to changes in the network state. Thus, even short periods where
bandwidth is available at the bottleneck can be utilized.

Thus, both FQ and PP are successful congestion control schemes, in the sense that they
allow a user to gain as much utility as possible from the network, even when it is overloaded.

7.3. Requirements re-examined
We now re-examine the seven requirements for a congestion control scheme as presented

in Chapter 1, and see, using the analysis of Chapters 2-5 and the simulations of Chapter 6, to
what extent these requirements have been met.

7.3.1. Efficiency
We desire a congestion control scheme to be efficient in two ways: not to consume exces-

sive amounts of resources, such as network bandwidth and switch CPU time, and second, to
allow the maximum possible utilization of network capacity.

PP does not place any overhead on the net amount of data transferred in the network,
since additional probe or state-exchange packets are not used. Concerning the switch CPU
time requirement, with PP, switches can be completely passive. Unlike the DECbit scheme, they
need not set bits, nor compute averages. FQ implementation looks complicated at first glance,
and it seems as if it may take a lot of switch CPU cycles. However, as we showed in Chapter 3,
the additional overhead is not exceedingly large. With an efficient implementation scheme, we
feel that the benefits of doing FQ outweigh its costs.

With the PP and FQ schemes, the network bandwidth is not underutilized (as it is, for exam-
ple, with the DECbit schemes in Scenario 6). Since FQ is work conserving, it does not keep
bandwidth idle if there are packets waiting to be served. Further, PP adjusts the packet transmis-
sion rate so that the bottleneck queue is never emptyl; hence a source obtains all the
throughput allocated to it as its fair share. Indeed, we note that in Chapter 6, in all the
scenarios, all the available bottleneck capacity is utilized.

Thus, we meet both the efficiency criteria mentioned in Chapter 1.

7.3.2. Heterogeneity
We require that the congestion control scheme accommodate heterogeneity in packet

size, transport layer protocols and type of service requirements. FQ clearly allows for hetero-
geneity in packet sizes: indeed, that is one reason why we modified Round-Robin to obtain FQ.
Second, by allowing users to choose their own delay-throughput tradeoffs, PP with FQ can
accommodate a variety of service requirements. Finally, the results of scenario 5 indicate that
PP can coexist with other protocols, and perform as well as, or better, than they can. Thus, we
have satisfied our heterogeneity requirements.

The only caveat to the above is that, for PP to work correctly, every potential bottleneck
must implement FQ or a similar round-robin-like service discipline. Even if a single bottleneck
serves packets using FCFS, then the values reported by the probes will no longer be valid, and PP
is no longer feasible. However, if the FCFS bottlenecks enforce some sort of rate control, and
can stamp packets with the current service rate, then PP can be salvaged. This restriction is a
major hurdle to the implementation of PP in current, FCFS networks.
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7.3.3. Ability to deal with ill-behaved sources
Scenario 4 adequately answers this requirement.

7.3.4. Stability
In Chapter 5 we precisely defined the stability of a flow control protocol. Given the state

equation that describes the dynamics of the length of the queue at the bottleneck, a flow con-
trol protocol is stable if the queue length remains bounded. This is true if the eigenvalues of the
discrete time state equation lie in the unit circle, or the eigenvalues of the continuous time state
equation lie in the left half plane. In the chapter, we formally proved the stability of PP. We are
not aware of stability proofs for any other congestion control scheme in the literature.

7.3.5. Scalability
Scaling is required along two axes: bandwidth and network size. Higher bandwidths

translate to larger bandwidth-delay products, so that sources can no longer ignore the propa-
gation delay in doing flow control. Both our deterministic and our stochastic model explicitly
model the control delay, and the PP scheme, which is based on these models, is designed to
work in environments with large delays. The effectiveness of PP in networks with large propaga-
tion delays is seen in the results of scenarios 7 and 8, where, even with large control delays, PP
sources behave well.

As the network increases in size, far more conversations are served at each switch. How
well do our schemes cope with this? Chapter 3 showed how to implement efficient data struc-
tures to buffer data from many conversations. We believe that implementing these data struc-
tures in hardware is feasible. Special purpose hardware will allow FQ to serve a large number of
conversations at high speeds.

A large number of conversations also means that the service rate fluctuations for any single
conversation are smoothed out. PP is specifically designed for this environment, and, in fact, its
performance will only improve as the number of users increases. Thus, we claim that our conges-
tion control scheme scales well along both axes.

7.3.6. Simplicity
The simplicity requirement is that a congestion control scheme be easy to specify and

implement. Both FQ and PP are conceptually simple, and can each be implemented in under
two pages of C code. The control law of Chapter 5 translates to a single line of code, and the
entire fuzzy controller takes about 20 lines of code.

One possible complication with PP as we presented it is that is requires one timer per
packet. However, this can be changed to a single timer per conversation with little loss of per-
formance. As a packet is transmitted, this timer is set to the packet’s timeout value. When the
timer expires, the last unacknowledged packet is retransmitted. With this scheme, the timeout
interval is a little larger than the correct value, but there is a substantial savings in implementa-
tion cost.

FQ conceptually requires per-packet queueing, but, as we saw in Chapter 3, this can be
implemented by a single ordered linked list. In any case, with hardware support, we expect that
even per-conversation queueing can be implemented at high speeds (we are aware of one
implementation that enqueues and dequeues ATM cells at 1.2 Gbps).

These figures, however, ignore the realities of protocol implementation, particularly in the
Unix kernel. We are aware of the complexity of implementing a protocol at the kernel level, but
there is nothing specific to PP or FQ that makes it any harder to implement in the kernel than any
other equivalent protocol.
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7.3.7. Fairness
FQ, as its name signifies, makes an effort to deliver min-max fairness to all the conversations

that it serves. Fairness, however, requires that the flow control protocol be slightly sophisticated
about managing its buffers. We saw that the generic flow control protocol does not allow for fair
bandwidth allocation even with FQ. However, in all the simulated scenarios, the PP/FQ protocol
pair provides fair (or nearly fair) bandwidth allocations to the sources. Thus, we claim that PP/FQ
is a fair congestion control scheme.

We conclude that our schemes, with some minor caveats, satisfy the requirements raised in the
first chapter. This is not true for a majority of the congestion control schemes in the literature.

7.4. Comments on design methodology
The success of our schemes owes mainly to our design methodology. We believe that,

while one should not ignore practical problems, congestion control schemes must be based on
a sound theoretical basis. This section presents the mapping from theory to practice that under-
lies our design effort.

Fair queueing is based on the principle of min-max fairness. The definition of min-max fair-
ness immediately points to a bit-by-bit-round-robin (BR) scheme as a mechanism to obtain it,
and FQ can be considered to be a practical implementation of this impractical ideal. This
theoretical background makes FQ robust in the face of ill-behaved users.

The similarity of a BR scheme to time-division multiplexing motivates the deterministic model
of Chapter 4. Once the model is stated, a little insight yields the packet-pair probe (this
approach to the packet-pair scheme was first introduced by Prof. S. Singh and Prof. A. Agrawala
[129]). This gives us a clean way to probe network state.

Having recognized that the network state may change, we see the need for a formal basis
to express the dynamics of the network state. This basis is provided by control theory, and the
control law used by PP is derived from a straightforward application of principles of predictive
control.

The need for state estimation to implement control laws is a well known problem [49]. While
Kalman estimators, and other related estimators, are theoretically adequate, it is increasingly
recognized that, for a large class of practical applications, fuzzy logic has an important role to
play. We use some fundamental principles of fuzzy control to build the fuzzy predictor described
in Chapter 5. As the simulations in Chapter 6 show, this grounding in theory greatly helps the pro-
tocols in practice.

7.5. Contributions
This dissertation has made a number of contributions to the area of reactive congestion

control. We review some of them in this section.

Our main contribution lies in the design of the Fair Queueing discipline and the Packet-Pair
flow control protocol. (The design of FQ was joint work with S. Shenker and A. Demers.) We
believe that both schemes, though conceptually simple, have several interesting features that
will make them suitable for networks of the future. The two work together to provide better
congestion control than some other schemes which are widely implemented in current net-
works.

Besides the schemes themselves, our other contributions are in developing deterministic
and stochastic models for a conversation in a network, developing a control-theoretic
approach to flow control in networks of FQ servers, and design of a fuzzy prediction algorithm.

Our use of deterministic modeling (which is joint work with Prof. S. Singh and Prof. A.
Agrawala) makes the exact analysis of transient queueing phenomena possible. Though the
model is naive, the stochastic version of the model allows for a formal control theoretic
approach to flow control more easily than an equivalent stochastic queueing model.

108



Control theoretic approaches to flow control have been studied earlier for single M/M/1
servers and for Jacksonian networks. Our contribution lies in carrying out the analysis for a deter-
ministic queueing model with propagation delays. The resulting protocol was shown to be
stable. Further, we have implemented the resulting protocol in a realistic network simulator, and
have done extensive simulations to study its behavior in a variety of benchmark scenarios.

We recognize the importance of state estimation in a distributed system with propagation
delays. While we did derive the optimal Kalman estimator for the system state, we feel that such
an approach is impractical for flow control protocols. Instead, our fuzzy prediction technique
provides a practical alternative that performs well, and requires no additional information from
the system.

7.6. Weaknesses and areas for future work
While we believe that our work has several claims to success, there are some weaknesses

as well. Our theoretical models, though adequate for our purposes, are rather naive. We
believe that even better results can be achieved by using more sophisticated models for the
analysis. Thus, this thesis is only a small step in providing practical solutions to congestion control.
What is heartening is that, even with these naive models, much can still be achieved.

Second, the simulations in Chapter 6, though extensive, are still far from a complete study
of protocol behavior. While our choice of benchmark scenarios tries to test for several aspects of
congestion control schemes, there are surely other aspects that we have overlooked. This is an
area where much additional work is needed.

Finally, this thesis ignores two major dimensions of congestion control. To begin with, we do
not consider predictive control. However, this is considered in detail in a contemporaneous
thesis by D. Verma [141]. Also, we have ignored congestion control on time scales larger than
multiple RTTs. Studying issues on larger time scales, and integrating the solutions into a single
control scheme, is an avenue for future work. Other areas for future work are mentioned at the
end of each chapter.

In conclusion, we feel that the area of congestion control is vast, and still in its infancy. We hope
that this thesis makes a contribution to the field.
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