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Abstract

When a surface slanted away from the fronto-parallel plane is viewed binocularly, surface markings
and texture are imaged with slightly different orientations and degrees of foreshortening. These
orientation and spatial frequency disparities are systematically related to surface slant and tilt and
could potentially be exploited by biological and machine vision systems. Indeed, there is evidence
suggesting that human stereopsis has a mechanism that specifically makes use of orientation and
spatial frequency disparities, in addition to the usual cue of horizontal positional disparity. In
machine vision algorithms, orientation and spatial frequency disparities are a source of error in
finding corresponding points in left and right views, because one seeks to find features (or areas)
which are similar in the two views when, in fact, they are systematically different. In other words,
it is common to treat as noise what is useful signal.

We have been developing a new stereo algorithm based on the outputs of linear spatial filters at a
range of orientations and scales. We present a method in this framework for making use of orienta-
tion and spatial frequency disparities to directly recover local surface slant. An implementation of
this method has been tested on curved surfaces and quantitative experiments show that accurate
surface orientation can be recovered efficiently. This method does not require the explicit identi-
fication of oriented line elements and also provides an explanation of the intriguing perception of
surface slant in the presence of orientation or spatial frequency disparities, but in the absence of
systematic positional correspondence. '
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1 Introduction

Stereopsis has traditionally been viewed as a source of depth information. When we view a three-
dimensional scene with our two eyes, the small positional differences of corresponding points in
the two images give information about the relative distances to those points in the scene. View-
ing geometry, when it is known, provides the calibration function relating disparity to absolute
depth. To describe three-dimensional shape, the surface normal, n(z,y), can then be computed by
differentiating the interpolated surface z(z,y) (Grimson, 1981).

However, there are other cues available under binocular viewing that can provide direct information
about surface orientation. When we view a surface that is not fronto-parallel, surface markings or
textures will be imaged with slightly different orientations and degrees of foreshortening in the two
views (Fig. 1). These orientation and spatial frequency disparities are systematically related to the
local three-dimensional surface orientation. Psychophysicists have demonstrated (see Section 2 of
this paper) that humans are able to exploit these cues to determine surface orientation, even when
positional disparity information is absent or inconsistent.

Figure 1: Stereo pair of a planar surface tilted in depth. A careful comparison of the two views reveals
a slightly different orientation and spacing for corresponding grid lines drawn on the surface.

There has been very little work investigating the use of these cues in computational vision. In
fact, it is quite common in computational stereo vision to simply ignore the orientation and spatial
frequency differences, or image distortions, that occur when viewing surfaces tilted in depth. These
differences are then a source of error in computational schemes which try to find matches on the
assumption that corresponding patches (or edges) must be identical or very nearly so.

Some approaches acknowledge the existence of these image distortions, but still treat them as
noise to be tolerated as opposed to an additional signal that may exploited (Arnold and Binford,
1980; Kass, 1983). For example Kass (1987), in a framework based on matching filter outputs,
calculates bounds on the expected range of filter output differences that can arise because of the
image distortions when viewing slanted surfaces and uses this to guide the selection of a match
criterion. The match criterion or threshold can be selected to balance the tradeoff between false-
positive matches and correct matches that are improperly ruled out by the criterion. It is very
much in the spirit of coping with and not using image distortions.

A few approaches seek to cope with image distortions in an iterative framework. These methods
typically start off with the initial assumption that disparity is locally constant, and then from
initial estimates of positional disparity, guess at the parameters of the image distortion and locally



transform the image to compensate so that image regions can be compared once again with the
assumption that corresponding regions are merely translated copies of one another (Mori et al,,
1973; Quam, 1984; Witkin et al., 1987). The intent is that this procedure will converge, but the
initial estimates of positional disparity, which may be made with quite inappropriate assumptions,
are relied upon to guide the convergence. In the case where image regions considered might be as
large as 64 x 64 pixels, this repeated “warping” of the input image regions can be quite a costly
computation. As a model of human stereopsis, this seems an unlikely mechanism, especially since
it is unclear whether the “images” are even available at the earliest stages of cortical processing.
Having a mechanism so specific to stereopsis that warps and re-filters the visual input seems a
heavy price to pay, especially in the presence of the myriad other aspects of human vision.

This paper describes a novel computational method for directly recovering surface orientation by
exploiting these orientation and spatial disparity cues. Our work is in the framework of a filtering
model for computational stereopsis (Jones and Malik, 1990; Jones and Malik, 1991; Jones, 1991)
where the outputs of a set of linear filters at a point are used for matching. The key idea is to
model the transformation from one image to the other locally as an affine transformation with
two significant parameters H,, H, which are the two components of the gradient of horizontal
disparity. These parameters are recovered from the deformation in the outputs of the filters between
corresponding points. This approach bears a clear relationship to previous work by Koenderink
and Van Doorn (1976) which is discussed in Section 4.

For the special case of orientation disparity, Wildes (1991) has an alternative approach based on
determining surface orientation from measurements on three nearby pairs of corresponding line
elements (Canny edges). Our approach has the following advantages:

1. Treatment of both orientation and spatial frequency disparities.

2. The benefit, similar to that in least squares fitting, of making use of all the data. While
measurements on three pairs may be adequate in principle, using minimal information leads
to much greater susceptibility to noise.

This paper is organized as follows: Section 2 reviews relevant psychophysical evidence for the im-
portance of orientation and spatial frequency disparity. Section 3 develops the relationship between
surface geometry and orientation and spatial frequency disparity. Section 4 has a reformulation in
terms of a locally affine transformation. Our model is specified in Section 5. Sections 6 and 7 have
experimental results.

2 Human Visual Psychophysics

Explicit awareness of the cues of orientation and spatial frequency disparity and evidence that they
might be important is a relatively recent development in the study of human vision. Some evidence
is outlined below.

2.1 Spatial Frequency Disparity

When viewing a visual stimulus in which the left and right eyes see vertical sinusoidal gratings with
different spatial frequencies, the perception is that of a planar surface rotated about the vertical axis



(Blakemore, 1970). When the spatial frequency is higher for the right eye, the surface appears to
slant away from the observer to the left. The correspondence between bars in the grating, however,
provides a positional disparity cue, leaving it unclear whether the spatial frequency difference itself
is utilized. To eliminate this correspondence, the grating can be replaced by uncorrelated dynamic
visual noise, filtered to contain a certain spatial frequency band — giving the appearance of a
mixture of blurred vertical bars of different widths, rapidly and randomly changing. When there is
a spatial frequency difference, but no systematic positional correspondence, the perception of slant
remains (Tyler and Sutter, 1979).

2.2 Orientation Disparity

A similar stimulus can be constructed to test whether, in the absence of systematic positional cor-
respondence, an orientation difference in the two eyes is sufficient to lead the perception of a surface
tilted in depth. Using uncorrelated dynamic random lines, with a slightly different orientation in
each eye, there is also a consistent perception of slant (von der Heydt et al., 1981).

In much the same way that random dot stereograms confirmed the existence of a mechanism that
makes use of horizontal disparities (Julesz, 1960), these experiments provide strong evidence that
the human visual system possesses a mechanism that can and does make use of spatial frequency
and orientation disparities in the two retinal images to aid in the perception of surface slant.

2.3 Improved Thresholds from Orientation Disparity

An important question, though, is whether under normal viewing conditions these cues make any
difference. It might be argued that horizontal disparities alone are sufficient for the recovery of
three-dimensional shape. After all, a surface tilted in depth will give rise to a gradient in the
disparity map, so given the output of a horizontal disparity mechanism, the surface orientation
could, in principle, be recovered by taking partial derivatives in the estimates of horizontal disparity.
In practice, any inaccuracies present in the horizontal disparity estimates will be compounded by
taking derivatives. If there were a mechanism that recovered surface shape more directly, by making
use of orientation and spatial frequency disparities, then the perception of surface slant would be
more accurate.

This question has been addressed experimentally (Rogers and Cagenello, 1989). Consider the
task of discerning the direction that a planar disc, ruled with a grid pattern similar to that in
Figure 1, is tilted around the vertical axis. Depending on the orientation of the grid lines, there
will be differing amounts of orientation disparity. Vertical and horizontal grid lines (0°/90°) give
rise to no orientation disparity, whereas grid lines at +45°, give rise to orientation disparities that
increase as the surface is rotated about the vertical axis. Equations describing this relationship are
described later. On the other hand, grid line intersections provide very good features for establishing
positional correspondence and measuring horizontal disparity, regardless of the orientation of the
grid. If only horizontal disparities are important in judging depth and surface orientation, then
the smallest noticeable tilt away from fronto-parallel (the psychophysical threshold) should be
unaffected by the orientation of the grid pattern on the disc. This is not the case. The just
noticeable tilt is over twice as large when there are no orientation disparities (0°/90°) as compared
to when there are orientation disparities (+45°).



This evidence supports the idea that even in normal circumstances, orientation disparities, and
possibly spatial frequency disparities as well, are used in order to provide a greater accuracy in the
perception of three-dimensional shape than could be provided by positional disparities alone.

3 Geometrical Basis for Using Orientation and Spatial Frequency
Disparities

This section outlines the geometrical relationships that link the three-dimensional orientation of a
surface to the resulting orientation and spatial frequency disparities that are observed in a pair of
images. Parameters that can be used to specify three-dimensional surface orientation are described
and then it is shown how orientation and spatial frequency disparities depend on these. Using Monte
Carlo methods, the ezpected magnitude and range of orientation and spatial frequency disparities
have been shown to be large enough to warrant interest (Arnold and Binford, 1980; Jones, 1991).
The task of stereo vision, of course, is to attempt to solve the inverse problem, recovering the
surface orientation from the measured disparities in a pair of images.

3.1 Coordinates and Parameters

In order to discuss the geometry involved how the three-dimensional orientation of a surface is
related to orientation and spatial frequency disparities a coordinate frame and set of parameters
must be established. Consider a small surface patch with some arbitrary texture on it. Without
loss of generality, we may consider the appearance of a series of evenly spaced parallel lines on
a plane. The results obtained will apply when considering orientation and spatial frequencies of
general texture patterns.

Let the fixation point lie at the origin of an object-centered coordinate system, as shown in Figure 2.
The z-axis is to the right, the y-axis is up, and the z-axis points towards the viewer. The viewer’s
eyes (or cameras) lie in the zz-plane and their optical axes make angles £A¢, with the z-axis, and
are not rotated about their optical axes.

To describe the parameters of an arbitrarily oriented plane with a series of evenly spaced parallel
lines on it, start with a unit vector pointing along the z-axis, (1,0,0). A rotation ¢, around the
z-axis allows the pattern to have any orientation on the surface. A rotation of ¢, around the z-axis
followed by a rotation ¢, around the y-axis combine to allow any orientation of the surface itself.

3.2 Projection onto the Image Planes

The three-dimensional vector v resulting from the above transformations can be written concisely:

cos¢, 0 sing, 1 0 0 cos¢, —sing, 0 1
v = 0 1 0 0 cos¢, -—sing, sing, cos¢p, O 0
| - sing, 0 cosgy 0 sin¢g, cos¢, 0 0 1 0

[ sin ¢, sin ¢, sin @, + cos Py cos @,
= €OSs ¢ 5in ¢,
sin ¢, cos ¢y, sin ¢, — sin @, cos ¢,
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Figure 2: Parameters for specifying the three-dimensional orientation of a small planar surface
patch. A planar surface (disc) is viewed at a distance d, from two vantage points separated by a distance
b. A three-dimensional vector, v, is used as a reference in the direction of a generic surface texture (a set of
parallel lines). An arbitrary configuration can be achieved by first rotating the surface pattern ¢, around
the z-axis, then rotating the surface ¢, around the z-axis, and lastly rotating the surface ¢, around the
y-axis. The different viewpoints can be handled conveniently by adding an additional rotation £A¢, around
the y-axis, where A¢ = tan!(b/2d) around the y-axis.

The vector v indicates the three-dimensional orientation of the lines ruled on the surface. In
order to consider orientation and spatial frequency disparities, this vector must be projected onto
the left and right image planes. In orthographic projection, points are projected onto the image
along lines normal to the image plane, instead of converging on a focal point. In what follows,
orthographic projection will be used, since it provides a very close approximation to perspective
projection for the small surface patches under consideration. For orientation disparity, the results
are unchanged whether an orthographic or perspective projection is used. For spatial frequency
disparity, the difference is negligible under most realistic viewing circumstances (when line spacing
is small relative to the viewing distance).

Instead of working with lengths such as the viewing distance d and the baseline separation between
the viewpoints b, it will be more convenient to work with an angle A¢, = tan~!(b/2d). Ortho-
graphic projection of v can be achieved by replacing ¢, with ¢, + A¢, and then discarding the 2
component to give the two-dimensional image vector v;, the orthographic projection of v onto the
left image plane. Similarly, replacing ¢, with ¢, — A¢, gives v,, the projection of » on the right
image plane.

3.3 Orientation Disparity



Figure 3: The slightly different appearance of a tilted surface from two viewpoints. A three-
dimensional surface patch (top), ruled with parallel lines at an orientation given by ¢,, is seen from two
viewpoints, giving two different images (bottom). For reference, three-dimensional vectors lie parallel (v)
and perpendicular (w) to these lines. The surface orientation can be specified by a rotation by ¢, around
the z-axis, followed by a rotation by ¢, around the y-axis. The resulting two-dimensional image textures
(lines) can be described by their orientation, 6, and spacing, A. The text describes how orientation disparity,
8, — 6;, and spatial frequency disparity, A, — /\1/%(/\,. + A1), are related to surface orientation ¢, ¢y.

Let 8, and 6, be the angles the image vectors v; and v, make with the z-axis (Fig. 3). These
orientations can be easily expressed in terms of the components of the image vectors.

cos ¢, tan ¢,

sin ¢, sin(¢, + A, ) tan ¢, + cos(d, + Agy)
cos ¢ tan ¢,

sin ¢, sin(¢y — A, ) tan @, + cos(¢y — Ady)

tané,

tan @,

This is all that is needed if the goal is to determine the orientation disparity 6, — 6;, from a known
pattern orientation ¢,, a known surface orientation ¢, ®,, and a known view angle Ag,.

For solving the inverse problem, it has been shown (Jones, 1991; Wildes, 1991) that given the
orientations 8,60, and 6}, 6, of a pair of corresponding line elements, the three-dimensional surface
normal can be recovered. If more orientations are available, a least squares algorithm can be used
to determine the best fitting surface normal. In Section 5 we present an alternative solution which
does not depend on the identification of corresponding line elements, but simply on the output of
a set of linear spatial filters.



3.4 Spatial Frequency Disparity

Let A;, A, be the spacing, and f; = 1/A, fr = 1/A, be the spatial frequency of the lines in the left
and right images (Fig. 3). The following shows how the spatial frequency disparity f; / fi depends
on the texture orientation ¢,, the surface orientation ¢, ¢,, and the relative viewing distance A¢,.

Spatial frequency is measured perpendicular to the lines in the image. For this reason, a new unit
vector w is introduced which is perpendicular to ». This vector indicates the spacing between the
lines. An expression for w can be easily obtained from the expression for v by replacing ¢, with

¢, + 90°.

sin ¢ sin ¢, cos ¢, — cos @y, sin @,
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When these three-dimensional vectors, v and w, are projected onto an image plane, they generally
do not remain perpendicular. In the left view of Figure 3, for example, v; and w; are no longer
perpendicular. If we let vt = (—vy,,v1,), then u; = vj*/||v)|| is a unit vector perpendicular to v;.
The length of the component of w; parallel parallel to u; is equal to A, the line spacing in the left
image.

w; - v

A Z
llvll

Substituting expressions for v; and w; gives an expression for the numerator.

w; vt = [sin¢sind(d, + Agy)cosd, — cos PPy + Ag¢y)sin ¢, [— cos ¢, sin ¢.]
+ [cos ¢ cos ¢.] [sin ¢ sin(¢, + Ay ) sin @, + cos(dy + Ady) cos ¢,]
cos ¢ cos(¢y + Ady)
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A simple expression for the denominator can be found in terms of 8;, the angle v; makes with the
z-axis.

2
Vo2 + vl
”'vl” - 1’”12 + ‘013 = vl?, (-—:c__y)
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The same can be done to get an expression for the )., the line spacing in the right image. Combining
these gives a concise expression for spatial frequency disparity.

I = M = w; v |lo]]
fi Ar ol w, -

cos(¢y + A¢y)sin 6,
cos(¢py — A, )sin b,




Taking the absolute value is actually unnecessary since ¢, + A¢, is always in (—=, 7) for the surface
to be visible from both viewpoints, and sin ; and sin , always have the same sign.

Once again, if the goal is to determine spatial frequency disparity from a given pattern orientation
., surface orientation ¢, ¢y, and relative viewing distance A@, then this equation and the previous
ones to determine 8;, 8, are all that are needed. Sometimes, it will be more convenient to deal with
the spatial frequency difference relative to the mean spatial frequency A = (Ar + A\1)/2 since, unlike
the ratio A;/ A, this is symmetric about zero spatial frequency disparity.

Ar— A1 9 cos(¢y — Ad,)sin b, — cos(@, + A, )sin b,
A " " cos(¢y — Ag,)sin b, + cos(d, + Ag,)sin b,

For now, consider again the problem of determining surface orientation. It can be shown (Jones,
1991) that a single observation of orientation disparity and spatial frequency disparity is sufficient.
From the spacing A, A, and orientation 6,8, of a pair of parallel line elements in the surface
texture, the three-dimensional orientation of the surface can be recovered. Where more information
is available, it can be exploited using a least squares algorithm (Jones, 1991). To develop a solution
in a filter-based framework, the next section first re-casts the information present in orientation
and spatial frequency disparities in terms of the disparity gradient.

4 Formulation using Gradient of Horizontal Disparity

Consider a region of a surface that is visible from two viewpoints. Let P = (z,y) be the coordinates
of a point in this region in one image, and P’ = (z',y’) be its corresponding point in the other image.
If this surface is fronto-parallel, then P and P’ differ only by horizontal and vertical offsets H,V
throughout this region. In this case the image patch is one view is merely a translated version of its
corresponding patch in the other view. Otherwise, if the surface is tilted or curved in depth then
the corresponding image patches will not only be translated, but will also be distorted. For this
discussion, it will be assumed that this distortion is well-approximated by an affine transformation.

_ z! _ 1+ H, H, z H
SRR M

H and V are the horizontal and vertical offsets or disparities due to the surface’s relative depth.
H., H,, V.V, specify the linear approximétion to the distortion. When the surface is fronto-
parallel, these are all zero. For planar surfaces under orthogonal projection, the transformation
between corresponding image patches is correctly described by this affine transformation. For
curved surfaces under perspective projection, this affine transformation provides the best linear ap-

proximation. It will turn out that the image patch over which this needs to be a good approximation
is the spatial extent of the filters used.

The vertical disparity V is relatively small under most circumstances. The vertical components
of the image distortion are even smaller in practice. For this reason, it will be assumed that
Vz,Vy = 0. This leaves H, which corresponds to a horizontal compression or ezpansion, and H,
which corresponds to a vertical skew. In both these cases, texture elements oriented near vertical
are most affected. It should also be noted that the use of H, H, differs from the familiar Burt-Julesz
(1970) definition of disparity gradient, which is with respect to a cyclopean coordinate system.



Setting aside positional correspondence for the moment, since it has to do with relative distance to
the surface and not its orientation, this leaves the following linear transformation.

4[]

If we are interested in how a surface, or how the tangent plane to the surface, is tilted in depth,
then the critical parameters are H; and H,. If they could be measured, then the surface orientation
could be estimated, up to some factor related to the angular separation of the eyes.

What is left then is to relate these parameters in image coordinates to the previous parameters in
object-centered coordinates. For a planar surface, rotated away from fronto-parallel by ¢, around
the z-axis, and ¢, around the y-axis, we already have an equation that relates a point on the
surface to its projection on the image. Specifically, for a point at the end of a vector with an
orientation specified by ¢., its orthogonal projection onto the image is given by the first equation
in Section 3.2.

z _ sin ¢, sin ¢, sin ¢, + cos ¢, cos @,
Y - cos ¢ sin ¢,

Recall that to allow for two viewpoints, ¢, is replaced for ¢, + A¢, for the left view and ¢, — Ag,
for the right view. Note that since the y image coordinate does not depend on ¢, it is clear that

V=Y.
Iy = (1+H.t)'zl+Hy'yl

Only two points will be needed to solve for H; and H, in terms of these 3-D rotations. It is
convenient to choose ¢, = 0° and ¢, = 90° to get the following pair of equations.

cos(¢y — Agy) = (1+ Hz)-cos(¢y +Agy)+ Hy-0
sin ¢ sin(@y — Agy) (14 H;) - sin ¢, sin(@y + Ady) + Hy - cos @,

Solving for H, and H, gives

It

cos(¢y — Agy)

H, = ———3£_
cos(¢y, + Ady) 1
H = tan ¢, sin(2A¢,)
YT cos(¢y + Agy)

These are the parameters for moving from the left view to the right view. To go in the other
direction requires the inverse transformation. This can be computed either by changing the sign of
Ad¢y in the above equations to to interchange the roles of the two viewpoints, or equivalently, the
inverse of the transformation matrix can be computed directly.

r ‘_H::
A = 1+ H,
-H
H = Y
v 1+ H,

Horizontal compression or expansion, H,, of the image in corresponding regions depends only on
how far from fronto-parallel the surface is rotated around the vertical axis, ¢, — a rotation by ¢,



around the horizontal axis has no effect. Vertical skew, H,, is only present when the surface is
tilted away from fronto-parallel by a rotation around the horizontal axis, ¢, but the amount of
skew changes if the surface is also rotated around the vertical axis by ¢,.

In both cases, compression and skew depend on the angular separation 2A¢, of the viewpoints and
are reduced as this angle decreases. Recall that this angle is the angle subtended by the viewpoints,
relative to a point on the surface, so more distant surfaces lead to a smaller angle. This means that
more distant surfaces give rise to lesser amounts of compression and skew, making it more difficult
to judge their inclination.

As an aside, it may be noted that humans are more sensitive to detecting vertical gradients of
horizontal disparity, Hy, than horizontal gradients, H, (Mitchison and McKee, 1990). However,
we have not made any use of this in our model. It should also be noted that we motivated our
particular decomposition of the linear part of the affine transformation by reasoning about the
relative magnitudes of the various terms under typical binocular viewing conditions. If one cannot
exploit this, as in the otherwise very similar case of optical flow, an alternative decomposition which
maximizes the number of “coordinate-free” terms may be appropriate. In this case, the following
formulation from (Koenderink and van Doorn, 1976) could be used:

1+ H, H, 0 -1 10
[V, 1+, f1 oo |To 1| TP
With this decomposition, any linear image transformation is seen to be composed of the elementary
and orthogonal transformations: an anti-symmetric part, with scale factor r, a uniform dilation or

contraction by s, and an area preserving deformation D. This deformation can be written as the
following product

D = d cos¢ sing 1 0 cos¢p —sing
- —sing cos¢ 0 -1 sing cos¢

With D in this form, it is apparent that it has only two parameters. The angle ¢ specifies a
direction and d specifies an expansion in that direction, and a corresponding contraction in the
orthogonal direction. This decomposition just trades the parameters H;, Hy, Vy, V, for new param-
eters 7, s,d, ¢. It has been shown analytically that recovering the deformation component, d, ¢, is
sufficient to recover the image plane gradient of inverse radial distance (Koenderink and van Doorn,
1976). A motivation for this decomposition was to design a method insensitive to either a rotation
or uniform expansion of one image because of evidence that human stereopsis tolerates up to a 6°
rotation or a 15% expansion (Julesz, 1971). For small rotations, most of the change to the transfor-
mation matrix occurs in the r parameter, and for expansions, s is clearly the only parameter that
changes, leaving the deformation d largely unaffected. These results on human stereopsis refer to
rotations or expansions applied the entire image, however, so it is not clear whether ignoring such
image distortions in localized image regions is wise.

An outline of a method for using a number of oriented line element detectors to recover the de-
formation component, and from that surface orientation has been proposed (Koenderink and van
Doorn, 1976), but not having been implemented, the robustness of this particular approach remains
unclear. )

The assumption that the vertical disparity gradient is zero and that the horizontal disparity gradient
provides the cue for estimating surface slant has received some support from recent psychophysical
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results as the better decomposition for modelling human stereopsis. Recall that under normal stereo
viewing conditions, and especially for central vision, the gradient of vertical disparity is very near
zero. When an artificial stimulus with V, non-zero is presented to a human subject, the result is
an involuntary cyclo-torsion of the eyes that compensates and make the vertical disparity gradient
once again zero (Rogers and Howard, 1991). For more complicated stimuli, where no single rotation
of the eyes could eliminate the the vertical disparity gradients in different parts of the visual field,
the non-zero Vi, V,, does not result in the perception of a slanted surface. This conflicts with the
model of Koenderink and van Doorn (1976), but is in agreement with model presented here, where
V; and V,, are ignored in the recovery of surface orientation.

From a purely machine vision point of view, the advantages of neglecting the inherently small V,,V,
are two fold: reduced computational complexity and, more importantly, improved accuracy in the
detection of the remaining two parameters H;, H;. From numerical analysis considerations the
simultaneous estimation of parameters which are widely different in magnitude is a delicate task.

4.1 The Magnitude of the Disparity Gradient

Before proceeding to make use of these image distortions, it is important to know how large they
will be under different viewing conditions. Since the disparity gradient is dependent on the viewing
angle, 2A¢,, the probability distribution of the disparity gradient is considered for two cases:
typical human viewing conditions at a distance of one metre (A¢, = 2.0°), and conditions more
typical for aerial photography (A¢, = 19.3°).

The horizontal image expansion or compression that arises when viewing a planar surface rotated
¢, around the vertical axis is shown in Figure 4A. Values of H, are plotted for all angles at which
the front surface is visible from both viewpoints. Recall that 1 + H is the expansion of the right
image relative to the left image. Negative H, values mean the right image is compressed relative
to the left image, because the surface is slanting away to the left. Positive H, values mean the
right image is expanded relative to the left image, because the surface is slanting away to the right.
Note that H, as a function of ¢, is not symmetric: 1+ H; has a minimum value of 0, (H, = 1),
and a maximum value of oco.

A useful case to consider is a surface rotated 45° around the vertical axis (¢y, = £45°). In this
case, H, ~ +0.07 under reasonable human viewing conditions. A 7% difference is well within
the range to be used by the human visual system. The shallow slope of this function near fronto-
parallel, however, suggests that rather subtle differences in compression/expansion would need to be
discerned to discriminate small differences in tilt. For the same surface slant, but under conditions
more typical for aerial photography, H; = —0.5 or + 1.0. These values are quite large, suggesting
this information could easily be used in an application with a large stereo baseline. Furthermore,
these large image distortions would clearly pose difficulties for approaches that ignore them by
assuming the corresponding image patches are translated copies of one another.

The vertical image skew that arises when viewing a planar surface rotated ¢, around the horizontal
axis is shown in Figure 4B. Positive H, values mean that the right image patch is skewed counter-
clockwise relative to the left image. Notice that H, as a function of ¢, is symmetric when H, = 0.
In Figure 4C, where H, = H,, this is no longer the case. This figure also illustrates that a rotation
about the horizontal axis can increase the image skew.

When the disparity gradient (H,, H,) becomes too large, it may be impossible to measure accurately
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because corresponding image patches are too dissimilar. An upper limit on the size of the allowable
disparity gradient has been incorporated in several models of stereo vision (e.g., Pollard et al.,
1985). Note that this sets limits on the range of surface tilts that can be measured, and these
limits are different for different viewing conditions. For example, if a disparity gradient limit of 1.0
is chosen, the maximum tolerable surface slant is still quite large (¢, ¢, ~ £85°) under typical
human stereo viewing conditions. For a larger baseline, however, the maximum tolerable surface
slant significantly reduced (¢, ~ +56°¢, ~ +45°). This would be an important consideration for
aerial photography of a mountainous region.
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Figure 4: Image distortions present when viewing a surface tilted in depth. (A) The horizontal
image compression, H, resulting when the surface being viewed has been rotated, ¢,, around the vertical
axis. (B) The vertical image skew, Hy, resulting when the surface being viewed has been rotated, ¢., around
the horizontal axis. (C) The vertical image skew resulting when the surface being viewed has been rotated
around both the horizontal and vertical axes by the same amount (¢: = ¢y).
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4.2 The Expected Range of the Disparity Gradient

Monte Carlo simulation was used to determine the probability distribution for the disparity gradient
(He, Hy) with the assumption that all surface texture orientations are equally probable and all
surface orientations visible from the two viewpoints are also equally probable. One million random
trials were used.

The probability distribution for H,, which corresponds to horizontal image compression or ex-
pansion, is shown in Figure 4A. For both human and aerial photography viewing conditions, the
distributions are skewed, though it is more apparent in the latter case. The median value of H,
however, should still be exactly zero, since a surface slant to one side or the other are equally
probable. The simulation bears this expectation out: the median value for H; is 0.0002 for human
viewing conditions (A¢, = —2.0°) and —0.0011 for aerial viewing conditions (A¢, = 19.3°).

For various percentage intervals around the median, the range of H. is given in the table below. For
example, the last entry means that 95% of the time, H, will lie within the range —0.475, +0.907
for human viewing conditions and within the range —0.909, 4+9.942 for aerial viewing conditions.

Horizontal Image Expansion or Compression (H;)

percent  human vision aerial photography
Agy = 2.0° Ag, =19.3°

25 —0.028, +0.029 -0.201, +0.250

50 —0.065, +0.070 —0.397, +0.659

75 —0.146, +0.171 —0.635, +1.737

90 —0.310, +0.450 —0.828, +4.804

95 —0.475, 40.907 —0.909, +9.942

The probability distribution for H,, which corresponds to vertical image skew, is shown in Fig-
ure 4B. These symmetric distributions have experimentally determined medians of 0.0002 and
0.0007 for human and aerial viewing conditions respectively. The expected range of H, for various
percentage intervals centered at the median are given in the table below.

Vertical Image Skew (H,)

percent human vision aerial photography
Ay, =2.0° A¢y = 19.3°
25 +0.028 +0.227
50 +0.068 +0.531
75 +0.158 +1.189
90 +0.380 +2.819
95 +0.691 +5.407

5 Surface Shape from Differences in Spatial Filter Outputs

Consider a three-dimensional surface patch, depicted at the top of Figure 6. Because of the two
slightly different viewpoints, the left and right views will be slightly different. If it can be assumed
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Figure 5: Probability distribution of the disparity gradient (H;, Hy). Assuming a uniform random
distribution of surface orientations, the probability distributions for H, (A) and H, (B) are plotted, following
a Monte Carlo simulation with 1,000,000 trials.

the surface is locally planar, the transformation between these images is described by an affine
transformation. Setting aside for the moment the translational component H,V, what is left
is a linear transformation with parameters H;, H,. If the pixels of each image are listed in a
column vector, then this transformation which is in terms of image coordinates, can equally well
be expressed as a linear transformation from one image vector to another.

I, Ty, H, I,

In the continuous case, this would be exact, but because the images are sampled at discrete locations
(pixels), this transformation is an approximation. In some instances, pixels from one image are
mapped to locations in the other image which have fractional coordinates and the results must
be interpolated. For all but very high frequency patterns, this interpolation is quite good. This
transformation is the image warping step that is used in some other approaches mentioned earlier
that cope with image distortions.
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Figure 6: Comparing spatial filter outputs to recover 3-D surface orientation.

Referring to Figure 6 again, consider just the right view. This image region is filtered by a set of
nearly independent linear spatial filters. Each filter f; can be written as a column vector so the
response of the filter is simply the dot product with the image vector. The entire ensemble of filters
can be combined into a large matrix F and the responses of all the spatial filters can be listed in a
single “filter response vector” vp.

ve| = FT
IR

If the surface being viewed is nearly fronto-parallel, then v, and v, will be very similar. If the
surface is tilted in depth, then they will differ, but in a way related to surface orientation. In
what follows, a method is described for determining which choice of H, H, best accounts for the
differences between these filter responses vectors.

Using a singular value decomposition, F T can be decomposed into a change of basis matrix, U,
a diagonal matrix of singular values or weights, ¥, and a matrix VT the rows of which form an
orthonormal basis set for the vector space spanned by the set of spatial filters. If any filters are
redundant, this procedure will make it apparent because some of the singular values will be zero.

FT U z vT

This decomposition can be used to determine the pseudo-inverse of the spatial filters, which could
be used to reconstruct the.original image patch as best as possible from the information in the filter
responses.

16



= 1/ uT Vg

This procedure is numerically stable unless some of the singular values are very small, but this does
not occur when the spatial filters are largely independent.

For a particular candidate surface orientation, specified by H, H,, the reconstructed image patch
can be transformed to give an estimate of how the surface would look from the other viewpoint.

! !
I Ty, H, I,

Lastly, filtering this transformed image patch gives a prediction of the filter outputs for the other
view. As depicted by the large arc in Figure 6 it is possible to start from the filter responses in
one view and, for a given choice of H,, H,, calculate a prediction of what the filter responses in the
other view are expected to be, by this sequence of linear transformations.

v = FT 1/ uT v,
Ty, H, 1%

My, H,

Of course all of these linear transformations can be collapsed into a single one My, g, which maps
the filter responses from one view directly to a prediction for the filter responses in the other view.
These M matrices which depend only on H; and H, and not the input images, can of course be
pre-computed once and for all ahead of time.

There now provides a simple procedure for estimating the disparity gradient (surface orientation)
directly from v, and v,, the output of linear spatial filters. For a variety of choices of H., H,,
compare vi = Mgy, 1, - vy, the filter responses predicted for the left view, with v, the filter
responses actually measured for the left view. The choice of H, H, which minimizes the difference
between v/ and v, is the best estimate of the disparity gradient. The sum of the absolute differences
between corresponding filter responses serves as a efficient and robust method for computing the
difference between these two vectors, or an error-measure for each candidate H,, H,.

An alternative approach for recovering affine transformation parameters from changes in filter
outputs in the context of optical flow is due to Werkhoven and Koenderink (1990). Unlike the
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finite displacement case considered here, they make use of a differential approximation which enables
them to obtain a closed form solution of the parameters. We believe that the elegance of obtaining
an analytic solution is outweighed by the numerical problems inherent in making infinitesimal
approximations. In the context of stereopsis, this problem becomes particularly acute; the eyes (or
cameras) are at fixed finite distances. This makes such a differential approach inappropriate.

5.1 Efficiency and Coarse Coding

The fact that the transformation matrices can be pre-computed ahead of time is crucial for this
method to be practical. Still, if many choices of H:, Hy need to be considered, that is a lot of
computation just for estimating two parameters, especially considering that in the end H,V also
need to be estimated. Unfortunately, these transformations are not a separable functions of H,
and Hy, so it is not possible to do two one-dimensional searches to first solve for H; and then for
H,.

For a particular position in an image of a textured surface tilted in depth, consider the error
measures for each choice of H,, Hy. This error surface is always quite smooth. This is a natu-
ral consequence of the fact that the spatial filters used (Gaussian derivatives), and the family of
transformations between image patches are both smooth functions. This means that this two di-
mensional parameter space can be sampled quite coarsely, with the final estimate of the parameters
being interpolated without considerable loss in accuracy. This coarseness can be chosen to achieve
a desired tradeoff between accuracy and efficiency, with little risk that the correct answer will “fall
through the cracks” between samples.

A biologically plausible implementation of this model would be based on units coarsely tuned
in positional disparity, as well as the two parameters of surface slant. The necessary types of
computation amount to no more than a weighted sum of linear spatial filter outputs followed by
absolute differences, and these weights are fixed.

5.2 An Example of Recovering Surface Shape

Up to this point, the discussion has been purely theoretical. An algorithm has been developed
that, at each point in an image, determines the horizontal and vertical components of positional
disparity H, V, as well the two components of the horizontal disparity gradient, Hz, Hy. This gives
the relative distance and surface orientation for each point in the scene.

There are few potential concerns that one might have when implementing this algorithm. First,
some approximations are involved in the calculation of the predicted filter response vector that must
be compared with the observed one. The pseudo-inverse, for example, only partially reconstructs
the image patch encoded by each filter response vector. The extent to which this does or does not
cause a problem will naturally depend on whether the particular filter set employed has encoded
enough of the relevant information. For the task of recovering surface orientation, the filters must
span a large enough range of orientations and spatial frequencies.

Another question that is easiest answered by testing an implementation of this algorithm is the
degree to which deviations from the assumption that surfaces are locally planar can be tolerated.
For this reason, this algorithm has been tested on a stereo pair of a textured sphere (Fig. 7).
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Figure 7: Stereo pair of a textured sphere.

A table of matrices, My, g, was computed ahead of time for 11 discrete H,, H, values. At each
point in the image, the four parameters H,V, H., H, that minimized the difference between the
predicted and observed filter response vectors was recorded. The results are shown in Fig. 8.
For simplicity, none of the iterative refinement techniques discussed earlier were used. Also, no
interpolation was used to improve upon the somewhat coarse H, H, values. In the next section,
the benefits of such an interpolation is clearly demonstrated.

Figure 8: Recovered disparity maps for textured sphere. The two components of positional disparity
are shown at the top: horizontal disparity, H, (fop left), and vertical disparity V, (top right). The two
components of the disparity gradient are shown at the bottom: H. (bottom left), Hy (bottom right). Zero
values are shown as middle grey. Positive values are lighter and negative values are darker.

The horizontal and vertical disparity estimates are quite accurate, except on a very thin crescent
which was only visible in one view. It is also easy to see that the disparity gradient estimates are
also quite good. The center of the sphere is fronto-parallel (H; = 0, H, = 0), and the H, values
are increasing negative on one side of the sphere and increasingly positive on the other. Similarly,
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the recovered H, values accurately reflect the vertical component of the surface orientation.

6 The Accuracy of Recovered Surface Orientations

Though trying this algorithm on example stereo pairs and examining the results by eye can help
demonstrate the basic successful performance of this scheme for recovering local surface orientation,
it is instructive to have a more quantitative assessment. To this end, experiments were performed
to determine how accurately this approach can estimate the the parameters related to surface
orientation.

6.1 Experimental Method

The computer implementation of this approach was tested quantitatively using test stereo pairs
such as those shown in Figure 9. Each of these nine stereo-pairs depict a textured, planar surface
with known surface orientation. The center surface is fronto-parallel, the middle row is rotated
around the vertical axis, the middle column is rotated around the horizontal axis, and the four
corners are rotated around both axes. The white square marked on the planar surface makes the
horizontal compression/expansion, when H; # 0, and vertical skew, when Hy # 0, quite apparent.

Figure 9: Stereo pair of test surfaces tilted in depth.

In total, 49 test surface orientations were used, with H, H, taking on values: 0.0, £0.1, +0.2, £0.4.
For each test surface orientation, 50 stereo-pairs of a textured, planar surface were created. On
each trial, the parameters of surface orientation, H,, H, were computed using the method described
in this paper. This resulting estimate of surface orientation was based solely upon filter outputs
from the central point in the image. If surface orientation was estimated by averaging over several
positions in the image, the resulting estimate would more accurate. The procedure followed here
thus provides a conservative evaluation of this approach.

6.2 Experimental Results

The graph in Figure 10 shows the disparity gradient estimates, computed by the model, for the
various test surfaces. The axes are the parameters of surface orientation, H,, Hy, with (0,0) at the

20



center being fronto-parallel. Each cluster of dots shows the results of 50 trials. The central open
dot is the test surface orientation and the black dots are the surface orientation recovered on each
trial.

Disparity Gradient Estimates

05 A

-05 00 0.5

Horizontal Component (H,)
(Compression/Expansion)

Figure 10: Disparity gradient estimates for various test surfaces.

These data are summarized in Figure 11, where each test surface orientation is again marked by
an open dot, and the centroid and standard deviation of the recovered surface slant parameters
are marked by a black dot and ellipse. (The standard deviation is also known as the Mahalonobis
distance.) The recovered surface orientations are quite accurate, especially for small slants. For
larger slants, the spread in the recovered surface orientation increases, which is agreement with
human psychophysics since our ability to discriminate different surface orientations declines as the
slant increases.

There are some small systematic errors. For example, for large rotations around the vertical axis,
the slant was overestimated. To the extent that this is as smooth function of surface orientation,
as it appears in these results, this could easily be compensated for by a simple adjustment to the
recovered H, H, values. It is not clear, however, whether this is an inherent feature of the model,
or whether it is an artifact of this particular implementation. Estimating surface orientation from
coarse estimates using the parabolic interpolation as was done here is likely to give rise to some
systematic errors. By examining the general nature of the error surface in the vicinity of actual
surface orientations it should be possible to improve the interpolation accuracy, as well as provide
a better understanding of just how many coarse samples are needed for a desired level of accuracy.

This evaluation provides a conservative estimate of the accuracy with which this approach can
recover surface orientation. The data presented here are surface orientation estimates taken at
a single position in the image. Because the test surfaces are marked with random textures, the
orientation and spatial frequency disparities at this single position encode surface orientation to
varying degrees, and on some trials would provide only very limited cues. For example, horizontal
stripes provide no information about rotation around the vertical axis. For large planar surfaces,
or smooth surfaces in general, estimates could be substantially refined by pooling over a local
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Figure 11: Mean and standard deviation of disparity gradient estimates.

neighborhood. This would, however, trade off spatial resolution for this increased accuracy.

7 Orientation and Spatial Frequency Disparities without Corre-
spondence

The approach for recovering three-dimensional surface orientation developed here makes use of the
fact that it is the identical textured surface patch that is seen in the two views. It is this assumption
of correspondence that allows an accurate recovery of the parameters of the deformation between
the two retinal images. Recall, however, that in Section 2 experiments due to von der Heydt (1981),
and Tyler and Sutter (1979), were described in which orientation and spatial frequency disparities
lead to the perception of a tilted surface, in the absence of any systematic correspondence. One
interpretation of those results might suppose the existence of stereo mechanisms which make use of
orientation or spatial frequency disparities independent of positional disparities or correspondence.
Such mechanisms would seem to be necessarily quite different from the approach suggested here.
On the other hand, it is not immediately apparent how the present approach would perform in the
absence of correspondence.

From the previous experiment, we have an implementation that determines, given a pair of images,
the best estimate of surface orientation. It will always find a best estimate — even if it is nonsense.
This means that the same experiments described in Section 2 can be performed, except instead of
a human subject, the subject will be our computational model.
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7.1 Orientation Disparity

Figure 12 shows an example stimulus which contains an orientation disparity in the two images, but
as inspection of this image pair will confirm, there is no systematic correspondence. Each image
was created by filtering random, uncorrelated one-dimensional noise to have a bandwidth of 1.2
octaves. This is the same bandwidth used in the psychophysical experiments described earlier. In
this example, there is a 10° orientation disparity. Since a different random seed is used for each
image, there is no consistent correspondence or phase relationship between the two images.

Figure 12: Orientation Disparity without Correspondence.

A sequence of 100 such pairs were created and for each, using an the same implementation of
the model used in the previous experiment, the parameters of surface orientation, or the disparity
gradient, H., H, were estimated. Once again, this estimate was made by comparing the outputs
of the linear spatial filters only at the central pixel in each image. As discussed before, this gives a
rather conservative estimate of the the performance of this approach.

Disparity Gradient Estimates
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Figure 13: Disparity gradient estimates from orientation disparity alone.

These estimated parameters are shown in Figure 13. There is a fair bit of scatter in these estimates,
but if the image pairs were presented rapidly, one after the other, as in the experiment, one
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might expect the perceived surface slant to be near the centroid. In this case, H; = 0 and H, is
positive, which corresponds to a surface rotated around the horizontal axis — in agreement with
von der Heydt’s results (von der Heydt et al., 1981). In fact, the centroid lies close to where it
should be based on the 10° orientation disparity (H, = 0.0, H, = 0.175), despite the absence of
correspondence.

Surface Slant
from Orientation Disparity
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Figure 14: Disparity gradient estimates from orientation disparity alone.

The same procedure was repeated for several different orientation disparities and the results are
shown in Figure 14. This graph shows the vertical component of the disparity gradient, Hy as a
function of orientation disparity. In each of these horizontal component, H,, was always near zero.
For a considerable range of orientation disparities, the recovered slant increases with orientation
disparity. This is also in agreement with the psychophysical results of von der Heydt.

7.2 Spatial Frequency Disparity

A similar experiment was carried out for the case of spatial frequency disparity in the absence of
correspondence Figure 15 shows an example image pair with a spatial frequency disparity, but no
systematic correspondence. This stereo-pair was be created in a manner very similar to that used in
the preceding experiment. It is uncorrelated one-dimensional noise, filtered to have a bandwidth of
1.2 octaves and in this case, a spatial frequency disparity. In this example, they differ in frequency
by a factor of 1.4.

The results are shown in Figure 16. This graph shows the horizontal component of disparity
gradient, H,, corresponding to a rotation around the vertical axis, as a function of spatial frequency
ratio. Once again, over a range of spatial frequency disparities, even though there is no systematic
positional correspondence, the recovered surface slant increases with increasing spatial frequency
disparity.
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Figure 15: Spatial frequency disparity without correspondence.
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Figure 16: Disparity gradient estimates as a function of spatial frequency disparity.
8 Conclusion

In this paper, a simple stereopsis mechanism, based on using the outputs of a set of linear spatial
filters at a range of orientations and scales, has been proposed for the direct recovery of local sur-
face orientation. Tests have shown it is applicable even for curved surfaces, and that interpolation
between coarsely sampled candidate surface orientations can provide quite accurate results. Esti-
mates of surface orientation are more accurate for surfaces near fronto-parallel, and less accurate
for increasing surface slants.

There is also good agreement with human performance on artificial stereo pairs in which system-
atic positional correspondence has been eliminated. This suggests that the psychophysical results
involving the perception of slant in the absence of correspondence may be viewed, not as an oddity,
but as a simple consequence of a reasonable mechanism for making use of positional, orientation,
and spatial frequency disparities to perceive three-dimensional shape.
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