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Abstract

In this paper we describe an algorithm for obtaining a placement of large scale cell-based ICs
subject to performance constraints. The problem is formulated as a constrained programming
problem and is solved in two phases: continuous and discrete. Constraints are placed on total
path delays rather than nets and behaviour of all the paths is captured. A unified mathematical
technique, based on Lagrangian Relaxation is used. The algorithm yields good results as weshow
on a set of real examples. On the average, weare able to make upto 15%improvement in the wire
delay of these examples with little or no impact on chip area after routing. These improvements
are obtained by modifyingthe placement alone. The acronym RITUAL represents the key idea
of our technique: Residual Iterative Technique for Updating All Lagrange multipliers.

1 Introduction

1.1 How Does Physical Layout Affect Performance?

One of the most important trends in silicon technology has been the scaling down of device and
linegeometries. The minimum feature width of devices that can be etched on silicon has decreased
from about 8 microns in the late seventies to about 0.8 microns today. The speed of the metal-oxide
semiconductor transistor which is the basic building block for cells, has increased dramatically by
a factor of 20. Unfortunately, aggressive scaling has resulted in interconnect capacitance becoming
the dominant determiner of performance in today's circuits. Informally, a net is the set of wire
connections that link a cell to all of its output cells. A cell drives its outputs through interconnect
wires belonging to the output net of that cell and as the wire capacitance increases, the time
taken to charge and discharge the net increases. In fact, according to [El-Mansy 88] "the value
of capacitance is increasing at a fast pace and promises to be the major performance limiter". In
addition, the size of the chips manufactured today has increased, compounding the interconnect
delay problem because signals have to travel longer lengths from input to output.

Interconnect wires have a significant contribution to delay as the following analysis illustrates.
Consider a simple example to get an idea of the contribution of interconnect delay in today's ICs.
The values in this analysis are derived from an industrial cell library. Let Ga be a cell driving
a length of interconnect wire that connects Ga to a receiving cell Gj. Typical cell delays for 0.8
micron technology are between 0.5 and 0.7 ns. Let us compute the RC delay contribution when
the pullup transistor of Ga charges the interconnect wire. The average "on"-resistance of a pullup
in performance optimized 0.8 micron CMOS technology is about 2.0KJ1. The capacitance per unit
length of0.8 micron Aluminium wire is 2.0 pF/cm. Consider a chip 2.0 cm on a side. Assume that
the wire connecting Ga to Gd travels across one eighths ofthe chip width (0.25 cm). The RC delay
in such a wire is proportional to

2.0pF/cm x 0.25cm X 200012 = 1.0ns



This value is already as much as the delay through a cell and the wire delay to cell delay ratio
is expected to continue increasing in the future. When we consider the fact that the average
interconnect length of a net on a 2.0 cm x 2.0 cm chip using Rent's rule is about 0.25 cm (see
[Bakoglu 90a]) and there are about 15-30 levels of logic in a typical IC and thus 15-30 nets along
a typical path, it is obvious that interconnect delay is a significant proportion of the total delay
along a path in a circuit.

1.2 Problem Definition

Given a sequential circuit composed of a large number of small cells the problem is to place the
cells on a two-dimentional plane so as to minimize total wire length while satisfying user specified
timingconstraints and cell position constraints. The total wirelength is a measure of routablityof
the circuit. The cell position constraints are required to satisfy the design rules. They may include
constraints such as requiring cells to lie on a grid, or to place them in rows, etc. Even simpler
formulations of the problem without timing constraints are known to be NP-Complete.

1.3 The State of the Art

A performance driven computer tool should satisfy at least two goals in order to be useful:

1. It should deliver circuits with predictable performance

2. It should be efficient i.e., it should assist in designing faster chips in a short time.

The quest for such a tool in the area of physical layout started receiving attention in the early
eighties. In one of the first documented attempts at performanceoptimization, [Wolff 78] developed
techniques for optimizing the power and timing of LSI chips using ideas from physics to place
the cells. Connections between cells were modeled as "springs" and a location was found for
each cell that minimized its "potential energy". The model was a crude approximation of the
wirability of the circuit at best. [Dunlop 84] did pioneering work in this area by designing a
system that worked as follows: the circuit was initially laid out and then completely simulated on a
computer to determine which input-to-output paths were limiting the performance. The layout was
subsequently readjusted and then simulated again. The process was repeated several times till a
layout that satisfied the performance and area requirements was obtained. The approach had several
problems: (1) simulation was time-consuming, (2) it was not clear at the time how to modify the
layout to ensure better performance, (3) sometimes the iterative process did not converge. Later,
[Burstein 85] developed performance-driven circuit partitioning heuristics that resulted in some
performance improvements with little loss in the wirability of the resulting circuit. However, the
heuristic could not guarantee that the resulting chip met the performance requirements. In 1986,
[Teig 86] described a method that interleaves timing analysis with placement and routing steps to
successively refine net weights. The net weights are a measure of a net's criticality to timing and
are used to bias layout tools.

An important development in the area of performance came from [Hauge 87, Nair 89]. They
developed a method of generating constraints on the sizes of nets that connect cells so that per
formance would be guaranteed. Any physical layout satisfying their bounds on the lengths of nets
would also satisfy the timing constraints. However, no technique was given for positioning the cells
that would guarantee the net bounds. [Jackson89] developed a linear-programming approach for
finding a layout that minimizes the estimated cycle time of a circuit. The true timing constraints
and the measure of wirability of the resulting circuit are modeled by approximations in this ap
proach. The method works well on small examples, but on circuits of moderate size, it takes hours



or even days to find a layout. The authors [Youssef 89] attempt to predict the critical path before
placement of a circuit using correlation coefficients derived from historic data. The problem with
predicting critical paths prior to placement is that the circuit performance cannot be guaranteed.
[Marek-Sadowska 89] used ideas from rectilinear distance facility location and partitioning to min
imize wire delay, but they too could not guarantee the performance of the resulting placement.
[Prasitjutrakul 89] and [Ogawa 86] directed their efforts towards the general-cell style of physical
layout.

Recently, Lin and Du [Lin 90] developed a constructive method of placing cells sequentially
with a cost function that tries to capture timing behavior, but cannot guarantee satisfaction of the
timing model. In [Sutanthavibul 90], the authors define regions in which cells that constrain the
performance of the circuit must be placed and then attempt to meet these requirements by means
of heuristic assignment of cells to regions on the chip. Donath and others in [Donath 90] use the
technique of simulated annealing [Sechen 85, Vecci 83], which while being very effective, takes a
long time to produce satisfactory results.

2 Overview

The strategy used in RITUAL is to perform timing constrained optimization in continuous space
followed by a discrete-space optimization step to satisfy timing and cell position constraints. The
first phase, called the global phase, formulates the problem as a constrained quadratic programming
problem. The second phase, called the assignment phase, is formulated as a constrained assignment
problem. A unified technique based on Lagrangian Relaxation is used in both phases.

The result of the first phase is a uniform distribution of cells on the chip that satisfies timing
constraints. However, the solution may not satisfy all cell position constraints. This result is
referred to as a global placement. The global placement is used as an initial solution for the second
phase. In the assignment phase, cells are assigned to prespecified slot locations such that timing
and spatial constraints axe met. There is a smooth transition from the global to the assignment
phase.

In addition to placing cells within the core of the chip, RITUAL can place input and output
pads on the periphery of the chip so as to satisfy constraints and improve the quality of the
placement. Pad placement can be done simultaneously with core placement or as an independent
step.

The solution technique used in RITUAL is very powerful and allows us to handle a variety of
constraints easily. Besides timing constraints, constraints such as, net length bounds, matching two
or more net lengths, clock tree buffer placement and distances between cells can be incorporated.
Any practical requirements that can be formulated as convex constraints (linear or non-linear) can
be included.

3 Definitions

After the logic synthesis step is complete an IC may be abstractly viewed as a collection of modules
(or cells). The modules are interconnected by means of nets and a net is defined as the set of
modules (or interchangeably, pins on modules) that it interconnects. Nets attach to the modules at
pins (or terminals). Let M = {mi,m2,...,771a/}, M = {»i,»2>•••»»//}» and V = {pi,P2»«««iPp}
respectively denote the sets of modules, nets, and pins. The modules can be categorized by function
as:



1. combinational: a module that computes a logic function based on its inputs and produces an
output

2. synchronizing: a storage module that has data input, data output and clock signals. When
the clock signal is active, the data input is sampled and stored internally and after some
delay, the data output signal assumes the same value as the internally stored signal

3. primary input (PI): receives inputs from the external world outside the chip

4. primary output (PO): presents signals from the chip to the external world

To simplify the discussion, it is assumed that each cell computes only one function, each primary
input receives only one signal from the outside world and each primary output presents only one
signal to the outside world. Deviations from these assumptions can be handled by trivial mod
ifications to the theory presented herein. Let / represent the number of primary inputs, and g
represent the number of primary outputs; thus, there are M - f —g internal modules where an
internal module is one that does not receive any signals directly from the outside world. The chip
is assumed to be a two dimensional region and hence we can assign a coordinate to the center of a
cell mj denoted by (xj,yj). In following discussion, the term cell location denotes the coordinate
of the center of the cell. The coordinates of the pins on a cell can be derived from the coordinate
of the cell itself since the pins are fixed on the cell. Let xp{ and yPi denote the x and y coordinates
of pin pi on the chip. The locations of the cells of a net n can be indexed by

(*»».•) Vm,-6 n

The locations of pins of the net can be indexed by

4 Timing Models

4.1 Timing Problems in Digital Logic

Consider a block of combinational logic receiving inputs from synchronizing elements and presenting
outputs to synchronizing elements as shown in Figure 1. This is a general sequential machine model
and in this work it is assumed that cycles of combinational logic do not exist. If signals are applied
to the inputs of the combinationallogic, then after some time Tiong the circuit's outputs will settle
to values that are a function of the circuit's inputs. If the outputs are sampled before Tiong units
of time have elapsed the circuit may not behave as designed. Thus, the longest path delay through
the combinational logic constrains the earliest time that the output may be sampled. Figure 1
illustrates the relationship between the longest path delay Tiong, the clock period CP, the skew
to the synchronizing clock pins T8kew> the set-up time of the synchronizing elements Taui and the
synchronizing elements internal clock to output delay Tdk-*Q> This relationship is expressed as
follows

CP > Tiong + Takew + Tdk-^Q + Tau (1)

If equation 1 is not satisfied, then a long path timing problem exists in the design. The short path
problem occurs when a signal arrives at the output too early and races around the circuit before
the end of one clock cycle. This happens if the clock period is too large and the synchronizing
elements in the circuit are of the level-sensitive type. [Wakerly 90] has an excellent discussion of
this problem.
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Figure 1: Figure illustrating clocking constraints
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4.2 Assumptions

This work restricts attention to one specific timing problem: the long path problem and ignores the
related short path problem. Most designers consider the long path problem to be the key timing
problem in large scale digital ICs. Ad hoc methods (such as adding delay lines) to fix the short
path problem usually work well. However, the long path problem is not usually amenable to ad
hoc fixes.

It is assumed that cell signal flow is unidirectional for every input-output conducting path in a
cell. Similarly, each net has a signal direction associated with its output pin. Associated with every
signal flowis a rising and falling delay that is a function of the corresponding cell and interconnect
delay models. A single delay value is calculated for each signal flow that is based on the rising and
falling transitions. The methods to be discussed are generalizable to the case of separate rising and
falling delays [Hitchcock 83]. Each synchronizing cell is assumed to have a clock pin, data-input
pins, and a data-output pin. Synchronizing cells may be allowed to move freely within the chip
along with other combinational logic cells. For simplicity of discussion it is assumed that edge-
triggered synchronizing elements are used. The methods described are generalizable to the case of
level-sensitive latches.

The performance of a synchronous digital IC is inversely proportional to the circuit's cycle time
or clock period. A path is defined to be a sequence of interconnected modules and nets with a
well-defined starting point and ending point (the starting and ending points are represented by
modules). A criticalpath is a path whose delay does not meet the timing requirements of chip.

4.3 Graph Representation of Chip Timing

Let the digraph Dy(V, A) represent the integrated circuit in the physical/timing domain. Let the
vertex set V be in one-to-one correspondence with the set of pins. Arc weights d(vt-, Vj) denote the
pin-to-pin signal propagation delays for all (v,-, Vj) G-4, and arc direction represents the direction of



signalflow in the circuit. Also, let A1 and AE model the signalbehavior internal and external to all
cells respectively; thus, internal signal arcs represent cell signal flow while external arcs represent
net signal flow.

A = A!UAE (2)

Let {vi,..., VM-g} represent the cell output pins in the circuit (it is assumed that each net is driven
by a single-output pin and that primary inputs have no input pin and primary outputs have no
output pin) and {vM-g+i, ••-,^p} correspond to the cell-input pins. Assume that pi is the output
pin of m,- and connects to n,-. In the event that a cell has more than one output pin, the cell may
be replicated for each output with identical nets feeding each replicated cell and all the copies of
the cell are constrained to a common location during physical design. A path $, is defined by
an unbroken sequence (v«,...,ve) of vertices that uniquely occur along the path. Delay in an

Figure 2: The timing graph Dt

integrated circuit may be viewed as consisting of two components: cell delay and net delay. Let
the delay of module m,- be characterized by

d(vj,Vi) V(vj,Vi) E A1

and let the delay of net n,- be characterized by

d(vi,Vj) V(vi,Vj) e AE

(3)

(4)



The greater flexibility of this multiple-arc cell and net model permits more accurate modeling
than single cell and net delay models. This is particularly important when it becomes necessary to
model different pin-to-pin net delays for aggressively scaled technologies where interconnect resistive
contributions become significant. Let E denote the set of vertices representing path end points
that correspond to the input pins of primary outputs and the data-input pins of the synchronizing
modules. Associated with each path endpoint vertex is a required arrival time r; specified by the
designer of the circuit. In a similar manner, let S denote the set of vertices representing path
starting points that correspond to the primary inputs and data-output pins of the synchronizing
modules. Associated with each path starting point vertex is a designer specified actual arrival time

Path delay in the circuit is computed by a block-oriented search [Hitchcock 83]. Actual arrival
times for cells not in S are determined in a breadth-first manner, beginning at the path starting
points and terminating at the path ending points. The worst-case actual arrival time aj and an
arbitrary vertex is given by

aj = max{a, + d(v^ Vj) | V(v,-, Vj) GA} (5)

The required arrival times specified for the path end points may be propagated in a backward
breadth-first manner through the circuit starting from vertices in E so that requirements on the
required arrival times for vertices not in E may be determined. The required arrival time r,- for an
arbitrary vertex is defined to be

r,- = min{rj - d(i>,-, Vj) | V(ut-, Vj) GA} (6)

Based on the calculation of actual arrival and required arrival times for all v,-, a slack Si may
respectively be defined as

Si = ri-ai (7)

Slack values are useful in characterizing the timing behavior of a circuit. A negative value of s,- for
Vi indicates that a violation of a timing constraint has occurred.

Definition 4.1 The timing of the chip is said to befeasible if and only if «,- > 0, Vi;,- G V.

A critical long path is defined as follows:

Definition 4.2 A critical longpath U is a path $ in which the sequence of vertices (vs,...,ve),
v8 G S and ve G E comprising thepath all haveslackvalues less than zero. H = {v,- |s,- < 0Vuj 6 ^}

Thus, a necessary and sufficient condition for the non-existence of long paths is $,- > 0, V u,- G V.
The arc weights d(vi,Vj) for all (»,-,Vj) G AE are a function of the positions of the pins defining
the cells. Let Xi = («jb)r, Vm* G»i be the vector of x locations of pins on net n,-. YJ is similarly
defined.

Proposition 4.1 Let d(vi,Vj) = /(JT,-,!^), Vn,- GA/" be any convex function corresponding to the
arc (vi,Vj). Then, the timing constraints form a convex set.

Proof. For each non-empty path ILae = va —* ve, va G 5, ve G E, let



If there is no path from va to ve, let <2(IIae) = —oo. The timing constraints are equivalent to
the following constraints:

d(Hae) < Te,Vva G 5,Vve G E

But d(ILae) is the sum of convex functions and is therefore a convex function. So, d(TLae) < Te
is a convex set. O

4.4 Interconnect Delay

Bakoglu in [Bakoglu 90b] has presented an interconnect delay model that is the basis for the model
chosen in this work. Consider a net n consisting of a driving cell Ga and \n\ —1 receivers. Cell Ga
drives a length of interconnect wire connecting Ga to cell G\. ..G\n\-\ as shown in Figure 3. Let

Rratae

netn

IL^,

S
4 Tc»

* '|nM

(a) (b)

Figure 3: A net (a), and associated interconnect delay model (b)

represent the resistance of the driving cell during a rising transition on its output and R{alt
be the resistance during a falling transition. The rising and falling waveform delays of the output
net of G8 can be approximated by:

= Ruy - = iLaJ{Cnet + Cioad) + 0.5Rw(Cnet + Cload)
dfall = R(^(Cnet +Cioad)+0.5Rw(Cnet-rGtoad) (8)

Gnet is the interconnect capacitance of the output net of Ga and Cioad is the capacitance of the driven
pins. Rw is the lumped interconnect resistance and for current technologies, its contribution is of
the second order. The factor of 0.5 which multiplies Rw is based on the analysis of [Bakoglu 90b] to
model distributed RC delay. Although RITUAL can be easily modified to include the second order
delayeffects due to Rw, in this paper wewill neglect it for simplicity. For details see [Srinivasan 91].



4.5 Models for the Lumped Capacitance

In order to estimate driae and djall due to a net, weneed to model the capacitance of the net during
placement. Both these parameters are complex functions of the layout of the wires and neighboring
nets. Once again, a choice has to be made that is efficient as well as accurate.

Analytical net capacitance models used in the past for large-scale circuits have relied on sim
plified net bounding-box estimates [Jackson 89] or similar techniques. However, the deviation of
the final routed net length from the estimated value may be quite large. Our goal was to be able
to incorporate models of various complexities into a general framework. The techniques developed
are capable of handling a variety of linear as well as non-linear delay models.

4.5.1 Bounding Box Model

In this model it is assumed that horizontal and vertical wires are routed on different layers and hence
have different capacitance and resistance characteristics. Let Cn and Rh represent the capacitance
and resistance per unit length respectively of horizontal wire and Cv and Rv the capacitance and
resistance per unit length respectively of vertical wire. The estimators for the capacitance and
resistance of a net are:

Cn = Cn{xmax —xmin) •+• Cv{ymax —ymin) /gx
Rn = Rhix^ - *»in) 4- Rviy^ax ~ Vlnin) V '

where

xmax =Jfgjfaw}
xmin = Sgii**}

Vmax =5Jf*{%>.)

4.5.2 Single-Trunk Steiner Tree Model

This estimator uses a single-trunk steiner tree to model the length of a net. It is an accurate model
and experiments on a number of chips yielded delay values close to delay estimates based on the
final routing of the nets.

Ci = Gv(y„\ax - jft,.n) + Ch £p.6n \xPi - xn~\
Cyn = Ch{x^ax - x»min) + Cv £p.€n IyPi - $T| (10)
c» = i(c* + cg)

The resistance is modeled by similar equations.

4.5.3 Star Connected Net Model

Another model that was considered during the experimentation and yielded excellent results was
the star-connected net. This model tends to overestimate the net length, but has the advantage of
being simple and efficient to compute. Let (z„ y0) represent the location of the cell driving net n.
The capacitance and resistance of the net are estimated as:

and

Cn - £m,.€„ Ch\xi - xa\ + Cv\yt - yn\
Rn = 12mi€n Rh\xi - Xa\ + Rv\y{ - yn\ (11)



Proposition 4.2 The interconnect delay estimates based on the bounding box capacitance model,
the single-trunk Steiner tree model or the star connected net model are convex functions of cell
positions.

For the proof, see [Srinivasan 91].

5 Phase I: Continuous Space Optimization

5.1 Quadratic Objective Function

The quadratic objective function was originally introduced by Hall in 1971 [Hall 70] and later used
very successfully for producing high quality area-directed layouts by placement systems like Gordian
[Kleinhans 91] and PROUD [Tsay 88]. The variant of the quadratic wirelength model we use has
the following representation for the length of net n

Ln = £ ((*»• - ^)2 + (»„• - 1ST)2) (12)
PitPj€n

where Xn~ and y^ are defined as:

Other quadratic measures have been introduced since the work of Hall. The differences between

Figure 4: The Quadratic wirelength model

these models are minor and the analysis in this work remains unchanged for any convex model.
The estimate of the cost of a placement can be written as

L= £ L* (13)

Note that since the pin locations can be expressed in terms of cell locations the function L is a
function of cell coordinates. In further discussion, we will assume that the coordinate of a pin is
the same as the coordinate of the cell to which it is attached. This does not detract from the

generality of the techniques described since pin locations can be derived from cell locations, of the
final routing. The extension of this work to other models (for example the bounding-box model or
the approximate Steiner tree model) of wirelength has been fully explored in [Srinivasan 91].
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5.2 Formulation

minimize

subject to
L(w)

ai

(GP)

> at + d(vi, Vj) V(«,-, Vj) € A
< Tj VvjCE
> r,•3 c *j Vvj e s

d(vi,vj) = f(Xi9Yi) Vine*

(14)

where the function f(Xi,Yi) is the net delay equation for the output net of cell m,- based on the
bounding-box, steiner or star connected net capacitance estimate presented earlier.

5.3 Optimality Conditions

The quadratic objective function can be written compactly in matrix notation as:

£(*,y) = 2(xTBx +yT]By) +cTx +dTy (15)

where x is a vector of the x-coordinates of the module locations and y is a vector of the y-
coordinates. c and d are constant vectors arising from the fixed modules. B is a symmetric
matrix, typically sparse and can be stored very efficiently using sparse matrix data structures as in
[Bunch 76]. In addition, it is shown that B is positive-definite.

The total number of variables in the problem is 2M + P. However, the P arrival time variables
do not enter into the cost function, so the value of the cost function at any point is unchanged and
the sparsity of the matrix representing the cost function is retained. To simplify further discussion
some notation is introduced. Let

x

WceH =

be the combined vector of x and y coordinates of cell positions. Let Wp,n denote the vertex arrival
time variables. Then

wce//

w.
w =

is the 2M + P vector of all variables. Let

Q =

'pin

BOO

0 B 0

0 0 0

be the combined (2M + P) x (2M + P) matrix for the cost function and let

b =

Then, the cost function can be rewritten as

L = -wTQw + bTw

11

(16)



Theorem 5.1 If there exists at least one module with fixed x coordinate andone module with fixed
y coordinate and the modules do not form disconnected subsets, then GP has a unique solution.

Proof. When there axe more than one fixed module, the proof that a unique solution exists can
be found in [Srinivasan 91]. When there is one fixed module the obvious unique optimal solution
is the one in which all the cells occupy the same location as the fixed module. •

It is assumed in the following discussion that the wirelength models and the timing models used
are one of those presented in in earlier. Under this assumption, due to the convexity of the objective
function and the constraints, the general formulation GP is a convex programming problem. Let
A* denote the vector function (possibly non-linear) of the active constraints at a global minimum
w* and VA* denote the associated Jacobian matrix. Since the programming problem is convex,
there exist Lagrange multipliers (one per constraint) [Luenberger 84] A satisfying

VL(w*) + ArVA* = 0
ArVA* = 0

A > 0 (17)

provided w* is a regular point of the constraints, i.e., at w* the matrix VA* has full rank. The
above conditions are popularly known as the Kuhn-Tucker first-order optimality conditions.

The Lagrange multiplier associated with a constraint at a given point w has a useful mathe
matical interptretation. It represents the sensitivity of the cost function to that constraint at that
point. If the Lagrange multiplier is zero, then the constraint is inactive and has no effect locally. A
positive value indicates that the constraint is binding and moving away from it towards the interior
of the feasible region will increase the objective value. A negative Lagrange multiplier indicates that
moving away from the constraint towards the interior of the feasible region will result in a decrease
in the objective value and hence that constraint can be "dropped" provided all the other binding
constraints are retained. An excellent treatment of Lagrange multipliers and their interpretation
may be found in [Murty 83].

Corollary 5.1 The satisfaction of the Kuhn-Tucker first-order necessary conditions are both nec
essary and sufficient for a point to be a global minimizer of L. (Forproofsee [Srinivasan 91].)

5.4 Why is the Problem Difficult to Solve?

The number of constraints and variables in GP can be enormous even for problems of moderate
size. For a typical problem with 1000 cells and 3000 nets, the number of active variables could be
upto 18,000 and the active constraints could number 15,000. However, what makes the problem
even more difficult is that the constraint set is highly degenerate. The effect of degeneracy is
that standard quadratic-programming algorithms flounder for many steps without improving the
objective function. For a detailed description of the problems in using conventional quadratic
programming methods, see [Srinivasan91].

6 Lagrangian Relaxation

Lagrangian Relaxation has been used occasionally in the past by economists and operations re
searchers but has not found widespread use because of the difficulties involved in getting the method
to converge to a solution on general problems. However, problems with special structure in the ob
jective function and constraints respond magnificently to the technique [Fisher 85]. Unfortunately,

12



finding special structure requires special insight in most cases. Luckily, the constrained optimiza
tion problem as stated in this work possesses some very useful properties that have been exploited
fully in this work. In order to give the reader an idea of the method of Lagrangian Relaxation, a
simple example is discussed.

6.1 A Simple Example

Consider the constrained optimization problem:

min (5x -14)2 (lg)
subject to i2<5 * '

The optimal solution to this problem is x = y/Z. From basic Lagrangian theory [Fisher 85] it can
be shown that the problem stated above is equivalent to the following optimization problem:

max min L(z,/x) = (5a; - 14)2 -f /i(x2 - 5) (19)
/j>0 x

where as before fi is the Lagrange multiplier associated with the constraint (if there are multiple
constraints, there is one multiplier associated with each constraint). The method of Lagrangian
Relaxation as applied to this problem is now described skeletally. The description here is consider
ably simplified for ease of explanation and the reader should be cautioned that several complicating
details have been omitted. A more comprehensive treatment can be found in [Shapiro 79]. The
method proceeds iteratively as follows:

1. Start with an initial value for /x, say 0. (Usuallyone can start with an educated guess).

2. For a fixed value of /x, solve the problem of Equation 19. For fixed fi this is an unconstrained
minimizationproblem (and for problems with special structure, it is easy to solve).

3. Update \i based on the solution obtained. Intuitively, \i acts like a penalty on the constraint.
If the current value of \i results in a solution that violates the constraint, it needs to be
increased. If the value of /x is too high, the solution will be far from optimal - the constraint
is satisfied by a wide margin. Thus, it is possible to update \l based on the residue in the
constraint. There are many possible update methods that will guarantee convergence of the
method for convex programming problems. One that is widely used is:

t(°) = a

fi(k+i) = max{0,/z(*) +#)(*(*)2-5)} (20)

where a is a positive constant and /? is a positive constant < 1.0.

4. Repeat steps 2 and 3 till convergence.

Let us apply this recipe to the example, with a = 1.0,(3 = 1.0. For a fixed value of fi, the optimal
solution is

2(5x-14) + fi(2x) = 0 .
T - -14- W

The values for x and fi are listed for each iteration.

1. Solve Equation 21 with //(°) = 0. The optimal solution is x^ = 2.8.
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2. Solve Equation 21 with fi^ = fi^ + (x^2 - 5) = 2.84. The initial value of fi was too low
and this step increases it by an amount equal to the residue in the constraint.

3. Proceeding in a similar manner to Step 2,we obtain xM = 1.78, fi^ = 1.03.

4. z(2) = 2.32, /i<3) = 1.42.

5. z(3) = 2.18, /x<4) = 1.17.

6. x(4) = 2.27, ix<5) = 1.31.

7. z(4) = 2.22, //(6) = 1.23....

In the limit x converges to the optimal value of 2.23... In practice, there are several methods of
accelerating the convergence and for well structured problems, typically only a few iterations are
required (see further references in [Fisher 75]). This example illustrates the power of the relaxation
method in solving nonlinearly constrained problems by series of unconstrained optimizations.

6.2 Detailed Recipe for Lagrangian Relaxation

Let us now consider a detailed description of the method of Lagrangian Relaxation for a general
convex problem of the form:

min f(rr)
subject to g(x) < c (22)

h(x) < d

where g(x),h(s) are convex vector functions of x. The constraint set is partitioned into g(a?)
and h(x). It is assumed that g(x) consists of constaints that complicate the problem and they
are termed "complicating" constraints. It is also assumed that the problem is easy to solve in the
absence ofg(x). As an aside and a preview of the techniques in this chapter, note that the wirelength
optimization problem is very easy to solvewithout the timing constraints. Hall [Hall 70] first solved
it for the quadratic wirelength model and showed that the solution corresponds to solving a linear
system of equations. Later, Tsay [Tsay 88] exploited the structure of the unconstrained problem to
solve very large scale wirelength minimization problems. The corresponding Lagrangian problem
is:

max min f(x) + Xt(r(x) —c)\>o * v } vev } ' (23)
subject to h(x) < d

where Ais a vector of multipliers. The most general method proceeds as follows:

1. Select an initial value for A.

2. Solve
min f(x)+\T(g(x)-c)
subject to h(a;) < c

for a fixed value of A.

3. Update A.

4. Repeat steps 2-3 until convergence.

Step 3 is critical to the convergence of the algorithm, particularly for discontinuous absolute-valued
constraints like the timing constraints of Section 4. Step 2 is critical to the efficiency of the
algorithm. The key contributions of this chapter are efficient methods for performing steps 2 and
3.
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7 Resolving Slot Constraints

A common requirement in most cell-based ICs is that the cells lie in slots or regular arrays. A
solution of NLP will yield a "placement" that usually does not satisfy the slot requirements. Such
a placement has been called an "initial" or "global" placement. Several techniques have been
proposed to refine the global placement to produce a slotted final result [Breuer 77, Kleinhans 91,
Tsay 88, Cheng 84, Jackson 89]. The technique that is used in this work is generalization of that
proposed in [Kleinhans 91]. The key feature of the technique is the highly efficient method used to
solve the problem with slot resolution constraints in the presence of timing constraints. The solution
technique will be presented in a later section. At this point, it suffices to assume that an efficient
solution method exists for the wirelength optimization problem in the presence of constraints.

Let rx and ry represent the coordinates of the center of the chip. First the global timing-
constrained placement problem is solved with two additional constraints:

¥ri€MXJ. : I* (25)
This is termed as the "level 0" problem. These constraints ensure that the cells are spread around
the center of the chip. After this, the cells into are partitioned four equal sized sets. This is done
by first dividing the cells into two equal sized sets along the y-direction and then subdividing each
set into two subsets along the x-direction. Let the sets be So, Si, 52 an<^ ^3* ^ne cn*P 1S divided
into four equal-sized regions and (rJ, rjf) denotes the coordinate of the center of the ith region.
Now, eight centering constraints (four in the x direction and four in the y direction) are added to
the constraint set to form a new problem GP\, termed the "level 1" problem. Figure 5 shows an
example with four regions and the sets of cells in different shades after the solution. (Note that
some cells from one region have migrated into another).

T3jfE.es,. *.- = r], j=l,...,4
JL V- „ v - ry. i - 1 4 ^ '

The effect of these constraints is to spread the cells out in the four directions. Note that unlike many
other partitioning approaches, a cell is not required to lie within its region. A cell has freedom to
migrateinto any other region. This allows the algorithm greater flexibility in minimizingwirelength
while still satisfying slot constraints. It alsomakes the partitioningof cells more flexible in that a cell
may change partitions later in order to reduce wirelength or satisfy timing constraints. Following
the solution of GP\, the cells are repartitioned into sixteen sets, giving thirty two center of mass
equations, and the new problem GP2 is solved (with the timing constraints included). During the
repartitioning, the old partition information is not considered and new partitions are generated
based on current cell locations. The solution and repartitioning process can be repeated to a
level of granularity such that one cell remains within each region. This technique can effectively
resolve the slotted array requirements of cell-based ICs. However, following this method with a
new constrained discrete optimization technique yielded significantly better results than using this
method alone. The discrete optimization will be described in a following section. Note that the
values for rx and r!f need not be restricted to uniformly distributed centers of mass, but can be
derived from the structure and location of slots on the chip.

8 The Continuous Optimization Algorithm

In this section, the details of the first phase are discussed. For illustration purposes, the quadratic
wirelength and the star net delay models are used. Some of the features of the method are:
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Figure 5: A sequence of showing application of spread constraints
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• Memory requirements are linear in the size of the problem

• The technique is iterative and very fast

• The problem can be solved to any desired accuracy

• It is generalizable to arbitrary convex delay functions

• All critical paths are considered in a very efficient manner

• Slot resolution constraints are integrated in an efficient and consistent manner with the timing
constraints

• The problem is solved optimally at every level

8.1 Solving the Lagrangian

The specific problem for the quadratic wirelength model and the star net delay model (neglecting
interconnect resistance) with k centers of mass is restated below:

minimize L(w) (GPk)
subject to aj > a, + d(vi, Vj) V(v,-, Vj) € A

aj < Tj Vi>j G E
a3 > Ti Vvj e s
d(vi, Vj) = f{Xi,Yi) Vnt- G M

13JT £•'€$*
13JT £«'€S;

Xi = rh j= l,...,fc

Vi = * j= !,...,&

(27)

Let w represent the combined vector of cell x and y positions and vertex arrival time variables.
Let Aw < c be the matrix representation of the timing and center of mass constraints. For
the performance driven placement problem, with the quadratic wirelength model, the Lagrangian
equation can be written as:

maxmin -wTQw + bTw + AT(Aw - c) (28)
A>o x 2 v ' v '

where Ais a vector of multiphers. For any fixed value of A, say A* the problem has a very simple
solution 1.

W(M) - _q-i[\(k)A + b] (29)

Note that Q is independent of cell locations. Thus, at every iteration, the only component that
changes in the right-hand side of Equation 29 is Aand the only product to be computed is A(fc)A.
This is a linear-time computation since the maximum number of active equations is equal to the
number of edges in the timing graph. In an efficient implementation, Q_1 is never computed.
Since Q is positive definite, the equation Equation 29 can be solved iteratively using an algorithm
like the accelerated Gauss-Seidel method for solving linear systems of equations[Golub 89]. If the
Gauss-Seidel method is used, at each iteration k the previous solution w(*-1) can be used as an
initial solution for rapid convergence. It is interesting to note that Rockafellar [Rockafellar84]
shows solving Equation 29 is equivalent to solving a minimum quadratic cost flow problem.

'To keep the notation simple, it is assumed that A(fc) refers to a row vector, i.e., the transposition symbol is
dropped.
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8.2 Updating the Lagrange Multipliers

The method used to update Lagrange multiphers from iteration to iteration is based on the sub-
gradient method for setting dual variables [Held 74]. This technique starts with an initial value Ak
and iteratively applies the formula:

A<*+1> = max{0, A<*> + t<*>(Aw<*) - c)} (30)

In this formula, tW is a scalar step size and wW isthe optimal solution for Equation 29 for A= A(fc).
The components of Aw^ —c are the slacks in the constraints. For the timing constraints the
components are none other than the vertex slacks for the cells on critical paths. For the spread
constraints, they are the differences between the desired centers of mass of the various groups and
the actual centers of mass. The choice of <(*) is critical to the success of the algorithm for two
reasons: (1) it is closely tied to the linearization of the absolute valued delay constraints and (2)
it affects the convergence of the algorithm. The procedure for computing <(*) is explained in the
following subsection. The convergence properties of such a method for updating Aare described in
detail in [Held 74].

8.3 Computing *<*>

Recall that all the delay models described in Section 4 have equations with absolute valued terms
in them. It is possible to convert these delay constraints to linear constraints by using additional
variables as in Section 5.4. However, there is a more efficient method that avoids introducing
variables. Suppose the solutionis w(fc). At this solution, for all the critical edges, write the delay
equations as linear equations, removing the absolute values from Equation 11, switching signs
wherever necessary to ensure that all the terms are non-negative. For example if currently x^ > X2
and there is a critical path passing from cell mi to cell 7713, write £3 —a?2, otherwise, we write xi -£3
(see Figure 6). Then, the right hand side of Equation 29 is updated based on this configuration

0

0
solution at ith step switch signs solution at i+2th step

Figure 6: Linearizing absolute valued constraints

and the system of equations is solved for for w(fc+1). Next, the largest valueof t(*) is chosen such
that a term in one of the delay equations just changes sign (i.e., is about to change from its current
configuration to the opposite one as shown in Figure 6). w(*+1) and A(fc+1) are updated according
to this value of <(*).
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8.4 Updating the critical arc set

The algorithm maintains a set of active critical arcs throughout the algorithm. Active arcs axe
those whose current Lagrange multipliers are positive. By maintaining the set of active arcs,
further efficiency can be achieved since the components of ATA need not be computed when some
component of A, say Aj = 0. Since not all arcs are critical, this typically makes updating the right
hand side a sub-linear procedure. In any event, the number of critical arcs at any time is linearly
bounded. Thus, the maximumnumber ofmultipliers that are active at any time is linear in the size
of the timinggraph. Note that although the matrixA contains all the arc equations, in a practical
implementation they are never explicitly computed or written unless they axe required. The only
arcs that actually participate in updating the right hand side axe those whichbelongto the current
set of critical arcs .

After solving for w(fc+1), a fast timing analysis on the timing graph is performed to determine
the arcs that have become critical since the previous iteration. These arcs axe then added to the
critical set with zero initial-valued Lagrange multiphers.

8.5 Computational Complexity

The flow of the algorithm is described in Figure 7. The work done per inner-loop iteration of
the algorithm is very little since it involves a right-hand side update which is 0(M), one step of
matrix solution(assuming a direct solutionmethod) to solve for the newvalueofw whichis 0(M 2),
computing t, whichis 0(E), where E is the number ofedgesin D?, and updating the critical edges,
which can be done in 0(M + E). Therefore, the work done per inner-loop iteration is bounded by
0(M2). Note that the critical arc set is continuously updated as new paths become critical. For
the linearized delay equations, this procedure converges according to [Held 74, Shapiro 79]. There
is no theoretical bound on the number of iterations required for convergence of the inner loop,
however, in practice the number of iterations required per level was very low - 200-400 even for the
largest examples tested.

8.6 Extension to Nonlinear Delay Models

It is straightforward to extend the Lagrangian Relaxation algorithm described above to a convex
nonlinear delay model like that of the star-connected net with interconnect resistance effects. As
sume that an iterative method like Gauss-Seidel relaxation is used to solve the system of equations
generated at each iteration. In the case of linear delay equations, only the right-hand side of Equa
tion 29 had to be updated every iteration. When the timing constraints axe nonlinear however,
some matrix entries may also need to be updated. The work done per iteration remains the same,
although the number of iterations to convergence usually increases.

9 Phase II: Discrete Space Optimization

Although it is possible to add slot constraints as described in Section 7 till exactly one cell remains
in each region, using a modification of that technique results in further improvement in timing and
wirelength. The star connected net delay model is used to illustrate the ideas.

The idea is to perform hierarchical partitioning until a few (10-20) cells remain in each region.
Followingthis, constrained Assignment (weightedbipartite matching) is used to assign slot positions
to the cells within each region. Consider a region 5* containing M cells and N > M slots. A cost
matrix C is set up with as many rows as the number of the cells in the region and as many columns
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1. Initialize the level /= 0.

2. Initialize the current active set to 0.

3. Add the spread constraints for level / to the active set. There are no Lagrange
multpliers for the timing constraints initially since ra is empty. (Multipliers
exist for the spread constraints for level 0.)

4. Update ATA and solve Equation 29.

5. Perform a timing verification on the timing graph Dt and update the current active
arc set.

6. Update the Lagrange multipliers for the active constraints (timing and spread). In
the formulation, there is one constraint per edge in the timing graph.

7. If the spread constraints for the current level are satisfied and there are more
levels, increase the level, and go to step 3.

8. If the constraints are satisfied to the desired accuracy, and the current level is
at the maximum level for the chip, STOP.

9. Go to step 4.

Figure 7: Outline of Lagrangian Relaxation

as the number of slots in the region. An entry C,j in the cost matrix is the cost of assigningthe cell
mi to slot Sj within region 5*. Let z^ be an integervariable € {0,1} that is 1 if cell m,- occupies
slot Sj and 0 otherwise. Let Xj be the x position of slot Sj and Yj denote the y position of slot
Sj. X is the constant vector of slot x positions and Y is the constant vector of slot y positions.
The combined vector of cell x and y positions is denoted by vfceii as before. The first M entries
in Wee// correspond to cell x positions and the subsequent M entries correspond to cell y positions.
For the sake of brevity the subscript will be dropped from Wceii ia the following analysis. Let
Z = [z^] denote the M x N 0-1 matrix constructed from the assignment variables z^. For each
cell i, the assignment variables corresponding to that cell axe in row i of the matrix Z. There is
exactly one non-zero entry per row. Thus, for example ZX is the vector of cell x positions at the
current solution.

For each region, the problem can be written as:

min2ij OijZij DP

subject to

Iw=i zij
22i=l zij

= i, z=l,. ..,M
< i, j = l,. ..,JV

X = zx

y = ZY

Aw < c

za e {0,1}, Vt,i

(31)

The additional constraints Aw < c axe the familiar timing constraints written in terms of cell
locations. The cost of assigning a cell to a slot is the total wirelength of all the nets that attach to
the cell. Any wirelength model can be used here and no assumptions axe made on the mathematical
properties of the model. Obviously, one would use the most accurate model available. The problem
as stated above is an integer program and falls in the class NP-complete.
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9.1 Solving the Constrained Problem

The method of Lagrangian Relaxation is not restricted to continuous space optimization. It has
been applied successfully by Held et. al. [Held 70], for solving the Traveling Salesman problem.
Again, exploitation of the structure of the problem is key to successful application. Constrained
discrete optimization is used to resolve slot constraints during the second phase of the algorithm
described in this chapter.

Once again, the structure of the problem comes to the rescue. Observe that if the timing con
straints are dropped, the problem reduces to Linear Assignment (bipartite matching). Algorithms
of polynomial complexity exist for solving Linear assignment problems [Lawler 76]. Hence, we may
view the timing constraints as "complicating constraints" and apply Lagrangian Relaxation to the
problem. Let W denote the combined vector of slot locations:

W =
X

Y

Using this notation, we can rewrite w in terms of the assignment variables as:

W

Let

w =
Z 0

0 Z

Z*y =
Z

0

0

Z

The problem can be rewritten as:

min

subject to

2^j=l zu

E*=l zij
AZxyW

2-*iQjZij DP

The relaxed problem is:

max nun
i/>0

subject to

Eji=l z*i
£»=i z*j
ZH

-i]

<

<

6

1, 1 = 1,. ..,M

1, j = l,. ..,N

{0,1}, Vt,j

E^iE^iC^i +i/^AZ^W-c) RP

= 1,

< 1,
e {o,i},

i=l,...,M

j = i,...,j\r
Vi,i

(32)

(33)

This problem remains NP complete for variable v. However, by relaxing it further a tractable
formulation can be obtained. When v is fixed, the term vc becomes a constant and can be dropped
from the problem. For a fixed v consider the problem:

mm

subject to

IJj=l zij = 1*
< 1,E$=l zij

E^iEf=iC0^ +^T(AZxyw) RP
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t=l,...,M

j=l,...,N
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Note that the integer constraints on Zij have been dropped too. Let A have p constraints. Then
AZa-yW can be rewritten as:

p M N

AZxyW = £ £ £(A«xi + A^+mY,)^
k=i i=i i=i

Substituting this expression i/TAZxyW, we can state the problem more intuitively as:

min Eo[c«i + ELi^(AfctXi + AJk,l+MYi)]^ LA
subject to „_,.
Y^ *•• - 1 i-1 M ^ '2-fi=i *tj — •»•, i—i,...,m

Ziiizij < i, j = i,...,jv

Thus, for fixed v, the formulation is a linear assignment problem (or minimum cost flowor weighted
bipartite matching) which has an integer solution if it is feasible and it is to this problem that
Lagrangian Relaxation is applied. The flow of the algorithm is:

1. Start with an initial value of v —v(°h

2. Solve LA for the current value of v.

3. Update the set of critical arcs (i.e. A, the matrix representation of the current timing con
straints) and v according to i/(*+1) = max(0, i/(fc) + (Aw - c)).

4. Repeat steps 2 and 3 until the constraints axe satisfied to a desired accuracy.

The relaxed linear assignment problem has an intuitively appealing interpretation. Consider the
cost of assigning a cell mt- to a slot Sj. The cost of this assignment is:

p

C'ij = Cij + £ uk(AkiXj + A*,i+MYj)
fc=i

At every iteration, the cost of assigning a cell to a slot is modified by adding a term that is derived
by looking at the Lagrange multipliers of the arcs. The multipliers themselves axe derived from the
path slacks. Thus, the additional cost of assigning a cell to a slot can be derived by looking only at
the arcs with non-zero multiphers passing through the cell. As the reader may recall, only a linear
number of arcs need to be considered in the worst case.

Unlike the continuous case, it may not be possible to obtain the exact optimum by solving the
relaxed problem in this manner. However, a solution that is close to the optimal can usually be
obtained very quickly. The term "near-optimal" deserves some explanation. What it means in this
context is that the timing constraints may be violated by a marginal amount depending on the level
of discretization. The reason is that since the cells axe required to He on discrete locations, there
may not be a solution where the constraints axe satisfied exactly - there axe only a discrete number
of possibilities for the left-hand side of each constraint. The amount of error in the constraints is
usually extremely small and the larger the problem size, the smaller the granularity in the left-hand
side and the smaller the violation. Note that the constraints axe not always violated. They may be
satisfied by an equally marginal amount (i.e., the error due to discretization could go either way).
In practice, the observed violation was of the order of 1-2%.

Note that any solution obtained is locally near-optimal for a region only with respect to the
connections outside the region, and does not guarantee to minimze the cost of connections within
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the region. (The timing constraints however, do represent the correct behavior inside and outside
the region). The problem could have been formulated as a Quadratic Assignment to handle the
connections within the region properly. However, the large run time of Quadratic Assignment
makes it impractical for regions with even a moderate number of cells. For regions with fewer cells,
the effect of interconnection within the region is small, and by repeating the Linear Assignment
few times an improved solution can be obtained. A further improvement in wirelength and timing
can be obtained by allowing cells to migrate outside their region. This is achieved by shifting the
regions in x and y directions by half the region size at alternate iterations as shown in Figure 8
and repeating the process until the improvement is small. Note that the absolute valued delay
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Figure 8: Regions of optimization axe shifted at alternate iterations

equations can be dealt with in a manner similar to the continuous case, i.e., by ensuring that the
equations axe always written with the correct signs. The flow of the slot assignment algorithm is
shown in Figure 9.

9.2 Some Comments on the Formulation

Experiments proved the method of constrained assignment to be extremely effective in reducing the
wirelength while satisfying the timing constraints. The ability to use any assignment cost, regardless
of the mathematical properties of the cost function makes it possible to include routability and

1. Divide the chip into a number of regions containing a lev cells.

2. Start with an initial value of v —v (°).

3. Solve LA for the current value of v.

4. Update the set of critical arcs and u according to i/ (*+1) = max(0,i/^) + (Aw - c)).

5. Shift the regions of optimization. (See Figure 8)

6. Repeat steps 2-5 until the constraints are satisfied to a desired accuracy.

Figure 9: The Slot Assignment Algorithm
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1. Determine number of levels of spread based on chip size/topology

2. Apply the algorithm of Figure 7

3. Apply the Algorithm of Figure 9

4. Optionally, perform input and output pad assignment on the chip boundary

Figure 10: The complete placement algorithm

congestion factors. A question that may arise in the mind of the reader at this time is: Why not
perform assignment alone and drop the continuous space optimization altogether?

The reason is that the discrete constrained assignment is a local optimization. Linear Assign
ment is 0(N3) and it wouldbe prohibitivelyexpensive to performit on the entire chip. Additionally,
since the assignment formulation does not model interconnection costs within the region, it would
not work well for large sized regions. It works best for small regions and does local cell placement
effectively. Thus, first phase provides an excellent initial solution for the second phase.

10 Input/Output Pad Assignment

Further improvements in delay and wirelength can be obtained by reassigning the input and output
pad locations on the boundary of the chip. This assignment can be performed by using the Linear
Assignment technique described in the previous section to the inputs and output cells. However,
the problem may be solved in a way that makes constrained assignment unnecessary. The idea is to
keep the core of the chip (cells within the boundary) fixed during this procedure. First, the primary
outputs axe assigned to slots on the boundary, setting the cost of a slot to oo if assigning the output
pad to that slot violates a timing constraint. If the slot is feasible, the cost is the wirelength of the
nets attaching to that pad. Following this, the primary inputs axe assigned to the remaining slots
in a similar manner. This procedure may be iterated a few times to improve the solution obtained.
Recently, Chaudhary and others [Pedram 91] have developed successful methods for pad placement
which could be used in place of the basic procedure described here.

11 The Complete Algorithm

The flow of the algorithm is shown in Figure 10. The entire algorithm may be repeated several
times if necessary.

12 Practical Considerations

So fax, the analysis has assumed that all the cells axe of a similar size. Most cell-based ICs
(standard cell, gate array and sea-of-gates) axe composed of cells whose sizes vary in both the x
and y dimensions. It is possible to accomodate cells of different sizes during the assignment phase
of the algorithm. To illustrate the flexibility of including a varietyof constraints in the algorithm,
let us consider the specific example of placing standard cells. Standard cells axe characterized by
their uniform height but non-uniform width. If used unmodified, the algorithm of Figure 10 will
result in a placement into rows of cells with different rowwidths as shownin Figure 11. This results
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in considerable "dead area" or wasted space. The problem can be solved by adding a row width
constraint on each row. Let nr be the number of rows and r,- be the width of row i. Let V{ represent
the width of cell to,-.

cell rows

Figure 11: Uneven row widths in standard cells results in dead area

The constraints to be added are:

|r,-r| = 0, i = i,...,nr (36)

.>, . ttp3 is the average row width. The current width of a row is the sum of all the
widths of all cells currently in that row. These constraints may be dealt with in a similar manner
to the timing constraints during the discrete assignment phase of the algorithm. A multiplier
Hi is associated with each constraint (or conceptually, with each row). These multipliers can be
transferred to slots, i.e., the multiplier for a slot Sj is denoted by fij and is the multiplier for the
row in which the slot is located. The modified Lagrangian can be written as:

mm

subject to

2^7 = 1/?=i ~»j

2-/i=l zij

£,j[Cu + YJk=\ ^-(AjbiXj + Afc,i+AfY,-) + fijKij]zij LA

= 1, i = 1,...,M

< 1, J = 1,...,JV

where Ry = i;,-, i.e., the width of cell m,-. Conceptually, to the wirelength and timing cost of
assigning a cell to a slot, one must add the product of the multiplier of the row in which the slot
is located and the width of cell. Intuitively, this tends to have the following effect:

• Rows that exceed the target width have a positive value of /z,- and cells are penalized for being
assigned to that row.

• Rows that are shorter than the target width have a negative value of /i,- and the cost of
assigning cells to those rows is reduced.

• When assigning cells to a row that exceeds the requirement, a wider cell is penalized more
than a narrower one.

• When assigning cells to a row that is shorter than the requirement, a wider cell is preferred
over a narrower one.

Hence, the mathematical theory has a intuitive and natural interpretation behind it.
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Example # cells RITUAL TimberWolf5.6x

Wire Mode Time Mode

Wirelength Delay Wirelength Delay Wirelength Delay

C2 590 1.00 24.36 1.11 21.70 1.00 28.29

C3 1254 1.00 47.98 1.08 44.06 1.00 50.39

C5 1381 1.00 36.26 1.08 31.64 1.02 34.19

C6 1945 1.00 118.6 1.15 111.5 1.03 120.5

C7 2150 1.00 52.98 1.06 44.65 1.06 55.60

s9234 2748 1.00 39.8 1.05 31.31 0.94 37.6

S13207 4267 1.00 53.10 1.00 43.37 1.32 57.24

S15850 4981 1.00 57.64 1.00 50.96 0.94 62.40

Average 1.00 1.00 1.06 0.87 1.03 1.03

Table 1: Results before routing

Example # cells RITUAL TimberWolf5.6x

Wire Mode Time Mode

Area Delay Area Delay Area Delay
C2 590 436 25.93 473 24.00 486 28.32

C3 1254 1010 50.70 1065 48.50 930 50.50

C5 1381 1215 35.43 1293 33.69 1248 35.95

C6 1945 1380 134.0 1529 128.2 1395 137.2

C7 2150 1648 54.41 1783 49.76 1771 55.13

s9234 2750 3088 45.30 3480 40.90 2950 44.20

Avg 1.00 1.00 1.09 0.93 1.02 1.02

Table 2: Results after routing

13 Experimental Results

We have implemented all the ideas described in this paper in C on a DEC3100 workstation. The
package was tested on a set of ISCAS benchmarks ranging from 500 to 5000 cells. The examples were
generated using SIS [Sentovich 91]. We ran RITUAL with timing and without timing constraints
and compared the results with an Industry standard simulated annealing based placement package
TimberWolf 5.6 [Sechen 88]. The results axe tabulated in Table 1 and 2. Table 1 shows the
estimated wirelength and delay. Results in Table 2 are after detailed routing. The examples were
routed using TimberWolf's globalrouter and the OCTTOOLS[Spickelmier 88] detailed router. No
net criticality information was passed to the global or detailed router. Hence, the improvements
axe solely due to placement modifications. The delay values shown are the worst path delays in ns
which include cell delays on the path. OCTTOOLS could not handle larger examples of Table 1
on our machine.

In wire mode our results axe slightly better than TimberWolf and in timing mode we improve
the total delay by about 20% over TimberWolf at the cost of very small ( 3%) penalty in terms of
area. Please note that the improvement in wire component delay of the critical paths is about 40%
as wire delay axe about 50% of the total delay. Run times for the examples axe plotted in Figure 12.

26



Forlarger examples the run time for RITUAL is more than 10 times lower than TimberWolf. It can
be seen from the graph that the run time increases almostlinearly with example size for RITUAL.
To get some insight into what RITUAL does to the critical paths see Figure 13. The figure shows
a placement for a small example in Wire and Timing mode. The solid lines in the figure show
the most critical path and the dotted lines show the fanout cells of the critical cells. It is dear
from the example that in the timingmode the path has been straightened to a large extent almost
approaching the minimum mahattan distance between the PI and PO. Another effect is to bring
the fanout cells closer to the driver, thus reducing the criticalnet delays. This effect is obtained at
a small cost in wirelength.

14 Conclusions

Lagrangian Relaxation offers a powerful method for controlling the tradeoff between the system
cycle time and wirelength. Armed with this tool and assisted by some insight into the problem
structure, several theoretical and practicalissues axe resolved in this paper. Firstly, the techniques
axe capable of solving extremely large problems, and as experimentation showed, the problems
could be solved in a short time. Secondly, the elusive slot constraints axe effectively integrated into
the solution technique.
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