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Abstract

This work explores new and challenging problems encountered during the physical design

of very large scale high performance integrated circuits. The first problem considered is

that of determining a placement for the logic cells of a design on a chip in such a way that

performance constraints axe met. The problem is formulated and analyzed and efficient

algorithms are developed for solving the formulation, including a number of practical con

straints. The effectiveness of the techniques is illustrated by a successful implementation

of the algorithms, experimentation on real circuits and comparisons with other approaches.

The techniques axe shown to have achieved the most important goals of a computer-aided

design tool which axe: (1) to deliver circuits whose performance is consistently enhanced,

(2) to produce results that axe predictable and chaxacterizable and (3) to be efficient in

terms of computer time and memory, even for very large designs.

The next problem addressed is that of controlling the precise instants at which

storage elements in a large design are clocked in such a way as to minimize the clock

period of the system. New and heretofore unsolved problems axe formulated and solved

under a variety of practical and realistic constraints using efficient algorithms. One of

the most interesting subproblems occur when the logic delays axe random variables with

chaxacterizable probability distributions. Efficient solutions axe presented even under these

constraints. The applicability of the techniques is illustrated through experimentation on

real designs.

Prof. Ernest S. Kuh
Thesis Committee Chairman
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Chapter 1

The Scenario

1.1 The Case for Computer Tools

The first microprocessor, Intel's 4004, introduced in 1971, contained 2,300 tran

sistors, operated at 0.06 MIPS and addressed 640 bytes of memory. In 1991, the newest

descendant of the 4004, the Intel 80486 contains close to 1 million transistors, "operates at

upto 27 MIPS, has enough addressing capability for an eight-page history of every person

on earth", and "can scan the Encyclopaedia Britannica in 2 seconds" [Com 91]. What

has made this four hundred-fold speed increase and thousand-fold increase in complexity

possible in a short span of 20 years? How is it possible to define a multi-million transis

tor circuit on a piece of silicon that is just two centimeters on each side and be confident

that it will work? The explosive progress has been made possible through the use of so

phisticated computer tools and computer-aided design (CAD) techniques. The central role

of computer tools in designing Very Large Scale Integrated (VLSI) circuits is compexity

management. The ability to manage multi-million transistor circuits efficiently makes it

possible to develop increasingly complex integrated circuit functions in a short time. The

result is unabated technological advancement as we have witnessed in the last two decades.

As proof of the role of computer aided design in technological advancement is the surge of

the electronic design automation business industry from nothing in the 70's to $2.5 billion

at the beginning of the current decade [Hig 89].

The design of an integrated circuit system using currently available computer

techniques progresses in a sequence of well-defined steps (see Figure 1.1):
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1. High-level synthesis: during this phase of the design process the behavior of the

system, its components and the functionality of each component is described in a

symbolic description languageand verified automatically by high-level simulation tools

2. Logic Synthesis: at this level the interacting components are synthesized (generated)

by means of tools that convert high-level symbolic descriptions of behavior into low-

level logic implementations using logic cells- the basic building blocks of digital logic.

The cell level description is usually called a netlist

3. Physical Synthesis: the netlist is converted into a layout and a precise geometric

shape, size and location on several two-dimensional surfaces axe defined for each cell

The reason for the division of the design into these three steps is to make the design process

tractable. However, we axe already beginning to witness a blurring at the boundaries

between these steps and most researchers believe that future computer aided design systems

will unify the steps into "system synthesis".

1.2 The Motivation for This Work

During the inception of the field of CAD designers were preoccupied with packing

many devices (transistors) into the smallest area possible. This increased the number of

chips that could be fabricated on a silicon die leading to increased revenue. At the time

I began this research there were many techniques for area optimization at all three levels

of IC design and area optimization was accepted as a xeasonably well understood topic.

Techniques for performance optimization were limited to the high-level synthesis step due

to two reasons: (1) the high levels of the design were most often done manually and the

methods had achieved sufficient maturity that some of the manual techniques were being

translated into computer algorithms and (2) performance optimization has been a much

harder problem primarily because the goal is to optimize performance with a minimum

impact on the quality of other attributes.

As the first generation of commercial RISC chips gained acceptance in the com

puting world, designers began to realize (retrospectively) the need for computer tools that

could assist in designing chips with predicable performance. The early RISC machines

were almost an order of magnitude faster than the CISC computers primaxily because of

peformance-oriented high level design techniques. If performance optimization at the high
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High level description

Mask

Figure 1.1: The flow of a typical IC design
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level could bring about such a drastic improvement, what potential the other two steps of

IC design held! It was in this setting that the work in this thesis evolved.

1.3 The Focus of This Work

There is potential for performance optimization at each level of the IC design

process: high-level synthesis, logic synthesis and physical synthesis. Each area is unique in

the problems it poses for the CAD algorithm developer and the problems are quite tightly

coupled; one cannot truly perform optimization at the logic level without knowledge of

the physical level for example, but the intractability of the whole synthesis problem often

necessitates doing optimizations at each level independent of the other.

Gate-level
netlist

Mask

Focus of
this work

compaction,
skew optimization

Figure 1.2: The focus of this thesis
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The focus of this work is the area of performance directed physical synthesis. At

the time of this work, the high-level designers were busy improving upon their successful

performance improvement ideas and the logic designers were not far behind [Brayton 87].

Successful performance optimization techniques for physical design were woefully lacking

and hence there existed a strong motivation for my work. The state of the art in commercial

physical design tools during 1990 was such that Guide Arnout, the vice-president of engi

neering at Silvar-Lisco (a company that manufactures CAD software) [Hig 90] remarked:

"for high-performance designs beyond 50,000 gates1 .. .designers should begin to consider

performing full placement and routing", manually! What greater motivation could there be

to look for new physical design techniques to break the 50,000 gate barrier?

The optimization techniques described herein are such that they do not modify the

logic or perceived behavior of the system. One feature that is pervasive in all the optimiza

tion algorithms developed in this work is the exploitation of the structure in the problems.

Just as the RISC designers were able to make a major leap forward by restructuring their

designs, the techniques described here are able to operate effectively on designs much larger

than before by taking a structured look at the problem. Two techniques for performance

optimization are presented:

1. Performance Directed Placement

2. Clock Skew Optimization under realistic conditions

Neither technique involves modifying the logic circuitry or the high-level architecture of the

design. They are intended to be applied after the behavior and logic description of the

system are sufficiently crystallized to permit a description of the system in terms of logic

cells and interconnections between cells.

1.3.1 The Performance Directed "Placement" Problem

The placement problem is that of determining exact locations for the logic cells

of a digital system on a rectilinear piece of silicon such that performance, area, power and

other electromagnetic requirements are met. It is not an easy problem to solve. Even a

simplified form of the placement problem as defined in [Sahni 88] is considered intractable

and belongs to the class of problems known as "NP-complete" [Garey 79].

*a cell is composed of gates or complementary pairs of CMOS transistors. A 50000 gate circuit would
typically contain about 5000-10000 cells.
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Therefore, to avoid compounding the difficulty of the problem, power and electro

magnetic requirements are given secondary consideration and are usually dealt with after a

layout that meets performance and area constraints is constructed.

Depending on the level at which placement is being done, the process can be

broadly categorized into: (1) general-cell or (2) small-cell placement. The smallrcell type of

design is the target of this work. A small-cell IC is one in which the size of individual cells

is relatively small compared to the dimension of the chip. Such designs are characterized by

several thousand cells packed in an area measuring a few millimeters in length and width.

Not only is the potential for performance optimization at the physical level of such designs

the greatest as described below, but a significant number of application specific circuits

manufactured today use cell-based IC technology. It is predicted [VLS 87] that in the long

term, gate-arrays 2 and cell based ICs can account for upto 80% of the application specific

IC (ASIC) market.

How Does Physical Layout Affect Performance?

One of the most important trends in silicon technology has been the scaling down

of device and line geometries. The minimum feature width of devices that can be etched on

silicon has decreased from about 8 microns in the late seventies to about 0.8 microns today.

The speed of the metal-oxide semiconductor transistor which is the basic building block for

cells, has increased dramatically by a factor of 20. Unfortunately, aggressive scaling has

resulted in interconnect capacitance becoming the dominant determiner of performance in

today's circuits. Informally, a net is the set of wire connections that link a cell to all of its

output cells. A cell drives its outputs through interconnect wires belonging to the output

net of that cell and as the wire capacitance increases, the time taken to charge and discharge

the net increases. In fact, according to [El-Mansy 88] "the value of capacitance is increasing

at a fast pace and promises to be the major performance limiter". In addition, the size of

the chips manufactured today has increased, compounding the interconnect delay problem

because signals have to travel longer lengths from input to output. It is clear that the

layout of cells can significantly affect the performance. In particular, the placement of cells

on the chip can have a significant impact on the performance of the IC. For small-cell ICs,

performance driven placement is particularly important because of the large contribution

2gate arrays are large scale ICs with a regular array-like topology
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of interconnect wire to the delays.

Figure 1.3 taken from [Bakoglu 90a] shows the increasing contribution of intercon

nect delay for long interconnect wires. Short interconnect wires have an equally significant

contribution to delay as the following analysis illustrates. Consider a simple example to get

an idea of the contribution of interconnect delay in today's ICs. The values in this analysis

are derived from an industrial cell library. Let G8 be a cell as shown in Figure 1.4, driving

Interconnect Wire

Figure 1.4: Example to quantify the contribution of wire delay

a length of interconnect wire that connects Ga to cell G^. Typical cell delays for 0.8 micron

technology are between 0.5 and 0.7 ns. Let us compute the RC delay contribution when

the pullup transistor of Ga charges the interconnect wire. The average "on"-resistance of

a pullup in performance optimized 0.8 micron CMOS technology is about 2.0 Kft. The

capacitance per unit length of 0.8 micron Aluminium wire is 2.0 pF/cm. Consider a chip
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2.0 cm on a side. Assume that the wire connecting Ga to G& travels across one eighths of

the chip width (0.25 cm). The RC delay in such a wire is proportional to

2.0pF/cm x 0.25cm x 2000ft = 1.0ns

This value is already as much as the delay through a cell and the wire delay to cell delay

ratio is expected to continue increasing in the future. When we consider the fact that the

average interconnect length of a net on a 2.0 cm x 2.0 cm chip using Rent's rule is about

0.25 cm (see [Bakoglu 90c]) and there are about 15-30 levels of logic in a typical IC and

thus 15-30 nets along a typical path, it is obvious that interconnect delay is a significant

proportion of the total delay along a path in a circuit.
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Figure 1.5: Simulated waveforms to illustrate wire delay

Figure 1.5 shows the simulated waveforms at the beginning and end of a 0.25cm

line driven by a NAND cell in 1.25 micron CMOS technology. The commonly accepted

measure of delay is the time between corresponding 50% points on the two waveforms. The

figure shows the significant contribution of wire delay which is about 2.0 ns for the falling

transition and about 1.0 ns for the rising transition.
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1.3.2 The State of the Art

A performance driven computer tool should satisfy at least two goals in order to

be useful:

1. It should deliver circuits with predictable performance

2. It should be efficient i.e., it should assist in designing faster chips in a short time.

The quest for such a tool in the area of physical layout started receiving attention in

the early eighties. In one of the first documented attempts at performance optimization,

[Wolff 78] developed techniques for optimizing the power and timing of LSI chips using ideas

from physics to place the cells. Connections between cells were modeled as "springs" and

a location was found for each cell that minimized its "potential energy". The model was

a crude approximation of the wirability of the circuit at best. [Dunlop 84] did pioneering

work in this area by designing a system that worked as follows: the circuit was initially

laid out and then completely simulated on a computer to determine which input-to-output

paths were limiting the performance. The layout was subsequently readjusted and then

simulated again. The process was repeated several times till a layout that satisfied the

performance and area requirements was obtained. The approach had several problems: (1)

simulation was time-consuming, (2) it was not clear at the time how to modify the layout

to ensure better performance, (3) sometimes the iterative process did not converge. Later,

[Burstein 85] developed performance-driven circuit partitioning heuristics that resulted in

some performance improvements with little loss in the wirability of the resulting circuit.

However, the heuristic could not guarantee that the resulting chip met the performance

requirements. In 1986, [Teig 86] described a method that interleaves timing analysis with

placement and routing steps to successively refine net weights. The net weights are a

measure of a net's criticality to timing and are used to bias layout tools.

An important development in the area of performance came from [Hauge 87,

Nair 89b]. They developed a method of generating constraints on the sizes of nets that

connect cells so that performance would be guaranteed. Any physical layout satisfying their

bounds on the lengths of nets would also satisfy the timing constraints. However, no tech

nique was given for positioning the cells that would guarantee the net bounds. [Jackson 89]

developed a linear-programming approach for finding a layout that minimizes the estimated

cycle time of a circuit. The true timing constraints and the measure of wirability of the
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resulting circuit are modeled by approximations in this approach. The method works well

on small examples, but on circuits of moderate size, it takes hours or even days to find a

layout. The authors [Youssef 89] attempt to predict the critical path before placement of a

circuit using correlation coefficients derived from historic data. The problem with predict

ing critical paths prior to placement is that the circuit performance cannot be guaranteed.

[Marek-Sadowska89] used ideas from rectilinear distance facility location and partitioning

to minimize wire delay, but they too could not guarantee the performance of the resulting

placement. [Prasitjutrakul 89]and [Ogawa86] directed their efforts towards the general-cell

style of physical layout.

Recently, Lin and Du [Lin 90] developed a constructive method of placing cells

sequentially with a cost function that tries to capture timing behavior, but cannot guarantee

satisfaction of the timing model. In [Sutanthavibul 90], the authors define regions in which

cells that constrain the performance of the circuit must be placed and then attempt to meet

these requirements by means of heuristic assignment of cells to regions on the chip. Donath

and others in [Donath 90] use the technique of simulated annealing [Sechen 85, Vecci 83],

which while being very effective, takes a long time to produce satisfactory results.

1.3.3 Contributions of This Work

In summary, many attempts at performance optimization have been heuristic and

they make few guarantees regarding the resulting performance or area of the circuit. Those

that have succeeded at achieving predictable performance, have often suffered from lack of

computational efficiency.

One of the important contributions of this work [Srinivasan 90a, Srinivasan 91] is

a technique that uses accurate and predictable approximations of wirability and timing of

the circuit and finds a placement that satisfies the approximated timing constraints and

minimizes the measure of wirability significantly faster than previous work. Thus, it is in

keeping with the two basic goals of a performance oriented computer tool. The performance

improvements are controllable and it is possible to make a choice between a range of circuits

that tradeoff area and performance. Another key feature of this work is that its generality

can accommodate a variety of wirability and timing models.

Many of today's VLSI circuits are sequential circuits, i.e., they contain memory or

storage elements in addition to combinational or switching circuitry. These storage elements
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are orchestrated by a clockingscheme that controls the precise instants at which the memory

elements are active. In addition to optimizing the location of combinational and sequential

elements, the model can take clock skew into consideration and simultaneously find optimal

locations for the elements of a clock distribution tree.

The technique has been successfully applied to a wide range of circuits to generate

final layouts. It yields layouts that are significantly faster than those produced by current

area-optimizing placement techniques with little or no increase in chip area.

1.3.4 The Skew Optimization Problem

The clocking methodology of a digital system synchronizes the activity of storage

elements. Researchers [Fishburn 81, Mijuskovic 87, Boon 89, Friedman 86] have developed

a methods for controlling the exact instants at which each storage element is fired in such

a manner that the cycle time of the system is minimized, where cycle time is defined as the

time between successive clock pulses applied to a storage element. The smaller the cycle

time, the faster the rate at which the digital system can operate. The approaches while

effective, proved to be either unreliable on real systems or had to be conservatively applied

because the delays through logic cells or blocks vary from chip-to-chip. For instance, when

hundreds of copies of a system are constructed, there is variation in the delays through

the blocks due to processing, varying temperature of operation and different environmental

characteristics. The delays are functions of random variables whose distributions can be

characterized by historic data. Traditionally, designers have dealt with varying delays either

by performing worst-case analysis or by using rules-of-thumb. For a competitive design that

pushes technology to the limits, an improvement in performance can be optimal, often at

the risk of failure. Previous approaches have also neglected a number of practical issues.

For example, it is not always possible to control every single synchronizing element on a

chip. The number of control lines is limited by manufacturability considerations. The times

at which the synchronizing elements may be fired are usually required to be multiples of

some basic unit.

There has been very little work in the area of performance optimization in the

presence of varying delays and practical constraints. [Fishburn 81] suggested an approach

that considers several samples of the system being optimized and minimizes the worst

deviation from the desired clock period over all samples. However, there is little generality
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in the approach. The method uses cumbersome mathematical optimization techniques that

could take a significant amount of computing resources for large-scale circuits.

In this work [Srinivasan 90b], a systematic approach for obtaining reliability-cycle

time tradeoff curves is presented. The contribution of the work is (1) a generalmathematical

model that considers varying delays, (2) a technique that allows designers to obtain the

smallest clock period such that a given reliability level for the system is achieved and (3)

a formulation that enables a number of practical considerations to be resolved effectively.

The mathematical model encompasses a broad class of systems ranging from ICs to multi-

chip modules (MCMs) to printed circuit boards. Efficient algorithms have been developed

for solving the stochastic optimization problem and obtaining the optimal clock period,

where optimality is defined as the most reliable clock period that satisfies a given set of

constraints. Another result of the work was the development of an efficient polynomial

time algorithm for solving the problem when the delays are deterministic taking the graph

structure of the problem into account. Tests on real examples indicate that useful reliability-

cycle time tradeoff curves can be obtained efficiently. In the deterministic case, significant

improvements in the cycle time can be made without restructuring the logic or redesigning

the circuit.

1.4 Outline of the Thesis

The thesis can be roughly divided into two parts. The first describes the performance-

directed placement problem and the second, the skew optimization problem. Within each

part, the work is presented in chronological order. I believe that the purpose of a thesis

should not only be to convey the ideas of the writer, but also his or her thinking process

for that gives the reader greatest insight and stimulates the development of new thought.

One way to give the reader a glimpse of my thought process was to describe the ideas as

they evolved and that is how I have presented them in this thesis.

The second chapter lays the definitional foundation and describes the assumptions

used in developing this work, and the third chapter called "The First Cut" describes early

work on the performance-directed placement problem and the lessons learned. The fourth

chapter describes how I attempted to improve the shortcomings of the first attempt. The

fifth chapter called "Polishing the Cut" describes the evolution of the techniques into a rea

sonably satisfying form. The reader who is interested in quickly gleaning the key techniques
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developed in this thesis may read the second and third chapters and then skip to the fifth

(risking some loss of insight as a result). The sixth chapter describes the experiments con

ducted on the performance driven placement technique and draws conclusions from them.

The seventh chapter describes the skew optimization techniques developed and conclusions

and final thoughts follow that.



Chapter 2

Definitions and Assumptions

This chapter describes some of the early decisions taken during the course of the

work and why they were made. Wherever possible, I make an attempt to point out the

impact a certain decision had on subsequent work.

2.1 Introduction

Placement begins when the Logic Synthesis step of automatic IC design terminates.

At this stage, a circuit is described in terms of logic cells, their functions, their delays and

the interconnections between logic cells. As pointed out in the introduction, the focus of

this work is on small-cell ICs and the number of cells is expected to be enormous - 10,000

is not uncommon. A performance directed placement algorithm for such a large number of

logic cells must satisfy at least two basic criteria:

1. it should produce placements whose performance is predictable to a fair degree

2. it should be efficient in terms of computer memory and time

The first point needs no further elaboration. Efficiency is essential because the design

process is iterative and during the design of a large scale IC the placement may have to be

performed hundreds of times. A placement technique that takes minutes instead of hours

has a significant impact in reducing the time to market an IC.

15
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2.2 Definitions

After the logic synthesis step is complete an IC may be abstractly viewed as a

collection of modules (or cells). The modules are interconnected by means of nets and a net

is defined as the set of modules (or interchangeably, pins on modules) that it interconnects.

Nets attach to the modules at pins (or terminals). Let M = {mi,m2,...,mAf}, M =

{ni1n21...,npf}i and V = {pi,j>2t •••»?/>} respectively denote the sets of modules, nets,

and pins. The modules can be categorized by function as:

1. combinational: a module that computes a logic function based on its inputs and

produces an output

2. synchronizing: a storage module that has data input, data output and clock signals.

When the clock signal is active, the data input is sampled and stored internally and

after some delay, the data output signal assumes the same value as the internally

stored signal

3. primary input (PI): receives inputs from the external world outside the chip

4. primary output (PO): presents signals from the chip to the external world

To simplify the discussion, it is assumed that each cell computes only one function, each

primary input receives only one signal from the outside world and each primary output

presents only one signal to the outside world. Deviations from these assumptions can be

handled by trivial modifications to the theory presented herein. Let / represent the number

of primary inputs, and g represent the number of primary outputs; thus, there are M - f -g

internal modules where an internal module is one that does not receive any signals directly

from the outside world. The chip is assumed to be a two dimensional region and hence we

can assigna coordinate to the center of a cellmj denoted by (xj, yj). In following discussion,

the term cell location denotes the coordinate of the center of the cell. The coordinates of

the pins on a cell can be derived from the coordinate of the cell itself since the pins are

fixed on the cell. Let xpi and yPi denote the x and y coordinates of pin p,- on the chip. The

locations of the cells of a net n can be indexed by

(s,-,3/,)Vm,en

The locations of pins of the net can be indexed by
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2.3 Wirelength Models

2.3.1 Why Use Models of Wirelength?

The placement problem (with or without performance constraints) using an ex

act model of wirability as a cost function has been shown to be NP-complete [Sahni 88].

Placement is typically an iterative process and ideally, during the course of placement op

timization one would like to completely route every placement obtained to evaluate its

quality. Most of the routing problems generated by cell-based placements have also been

shown to be NP-complete. Needless to say, using an exact model for wirability and evalu

ating the cost of a placement using complete routing would be much too inefficient even on

the most powerful computers available today. Hence, one must resort to efficient estimates

of wirelength that make the problem tractable.

One of the first choices to be made was to decide on a model of chip wirability. I

chose analytical continuous-space models over the discrete models for several reasons. The

work on area-directed placement using analytical models had been extremely successful in

satisfying the two basic criteria of predictable area and efficiency [Kleinhans 91] [Tsay 88].

Secondly, performance constraints can be compactly expressed as analytical constraints

and such constraints have been used to accurately model the behavior of digital circuits

[Horowitz 84]. I believed that analytical timing constraints would integrate well with an

analytical wirelength model and make a unified solution technique possible. One of the

features of this work is that the solution technique is generalizable to different measures of

wirability and timing. I present here three models, in increasing order of complexity and

accuracy.

2.3.2 Quadratic Wirelength Model

This model was originally introduced by Hall in 1971 [Hall 70] and later used

very successfully for producing high quality area-directed layouts by placement systems like

Gordian [Kleinhans 91] and PROUD [Tsay 88]. The quadratic wirelength model uses the

following estimator for the length of net n

in= E ((««-««)*+ (*.-*»)*) (2-1)
Pi,Pj€n
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Figure 2.1: The Quadratic wirelength model

The estimate Ln is the square of the Euclidean distance between the pins on the net

n. This approximation may be inaccurate for chips with large modules because it assumes

that every pair of pins on a net is interconnected separately. However, for the type of ICs

considered in this work (small-cell ASICs), the estimate has been shown to be accurate by

[Hall 70], [Cheng 84] and [Tsay 89] and has been widely used in practice. Other quadratic

measures have been introduced since the work of Hall. [Kleinhans 91] uses a model in which

the wirelength of a net is modeled by the sum of the Euclidean squared distances of the

cells from the mean coordinate location of the net. The difference between this and the

model of Hall is minor and the analysis in this work remains unchanged.

The estimate of the cost of a placement can be written as

L=lELn (2.2)
2n€.V

Note that since the pin locations can be expressed in terms of cell locations the function L

is a function of cell coordinates. In further discussion, I will assume that the coordinate of

a pin is the same as the coordinate of the cell to which it is attached. This does not detract

from the generality of the techniques described since pin locations can be derived from cell

locations. The effectiveness of the quadratic cost function has been researched in the past

and [Hall 70], [Cheng 84], [Tsay 89] and [Kleinhans 91] show that it is a reliable model of

the final routing.
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2.3.3 Bounding-Box Model
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Figure 2.2: The net bounding-box model
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Another successfully used wirelength measure [Sechen 88b] is the bounding-box

model. Consider net n as shown in Figure 2.2. The estimator for the length of the net is:

where

and

•^n — xmax xmin "> Vmax Vm

Xmax =£ax{Sp,-}
Pitn

'tntn
x^.„ = min{xp.}

2/max = max{ypJ
Picn

Pi€n

The equation for total wirelength is identical to Equation 2.2.

(2.3)

2.3.4 Single-Trunk Steiner Tree Model

This model is the most complex and tends to estimate the final routed length

of nets accurately. As experiments revealed (see Chapter 6), by using this model it was

possible to achieve layouts with low area. As shown in Figure 2.3, in this model the pins

of a net are assumed to connect to a single trunk that passes through the mean position
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of the pins either vertically (Figure 2.3 (a)) or horizontally (Figure 2.3 (b)). In the figure,

the expression for the wirelength estimate for one of the configurations is shown. To get an

accurate estimate of the wirelength, the average net length of the two possible configurations

is taken. Let

K = Vmax ~ Vmin + £ \*Pi ~*n|
Pi€n

LI = xmax " xmin + £ \VPi ~Vn\
Pi€n

where x„ and yn denote the mean x and y positions of the pins of net n. Then the single-

trunk Steiner tree length of net n is defined as:

L„ = -(Li + L«) (2.4)

While the techniques developed in this thesis are applicable to any of these wirelength

4.2.) y
max

/ (1 'f^

*\»>

(4.r mm

(a)

L -Iz -i l + lx -i l + lx,-
n 1 2 3

mm

(2)

(T'<.,,

(4 }

(b)

max

JL
13}

Ulx4-il ♦ymilt- y,^

Figure 2.3: Single-trunk Steiner tree wirelength model

models, the analysis will be biased heavily in favor of the first model, the quadratic wire-

length. It should be noted that any one of the models presented above could be used in

the general solution framework presented in this thesis. Restricting attention to one model

makes subsequent discussions much simpler. The following mathematical property of the

wirelength models is fully exploited in succeeding chapters and is of key consequence:
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Proposition 2.3.1 The total wirelength cost function based on the quadratic, bounding-box

or single-trunk Steiner tree wirelength model is a convex function of the cell locations.

Proof. The convexity of the quadratic wirelength function is proved in 3.2.3. The Steiner

tree wirelength consists of the sum of absolute valued linear terms, each of which is convex.

Thus the total wirelength is a convex function of the cell positions.

The bounding-box wirelength function consists of the difference between the max

imum of linear terms (for example max{arp,.} ) and the minimum of linear terms. The
Pt€«

maximum of a set of linear terms and the negative of the minimum of a set of linear terms

are both convex functions (see [Murty 83]). Hence, the bounding-box wirelength consists

of the sum of convex functions and is itself convex. •

2.4 Timing Models

2.4.1 Timing Problems in Digital Logic

Consider a block of combinational logic receiving inputs from synchronizing ele

ments and presenting outputs to synchronizing elements as shown in Figure 2.4. This is

a general sequential machine model and in this work it is assumed that cycles of combi

national logic do not exist. If signals are applied to the inputs of the combinational logic,

then after some time T/©^ the circuit's outputs will settle to values that are a function of

the circuit's inputs. If the outputs are sampled before Tiong units of time have elapsed the

circuit may not behave as designed. Thus, the longest path delay through the combinational

logic constrains the earliest time that the output may be sampled. Figure 2.4 illustrates

the relationship between the longest path delay T^g, the clock period CP, the skew to the

synchronizing clock pins T8ktw-> the set-up time of the synchronizing elements Tau, and the

synchronizing elements internal clock to output delay Tdk-+Q. This relationship is expressed

as follows

CP > Tlmg + Takew + Tdk^Q + T8U (2.5)

If equation 2.5 is not satisfied, then a long path timing problem exists in the design. The

short path problem occurs when a signal arrives at the output too early and races around

the circuit before the end of one clock cycle. This happens if the clock period is too large
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and the synchronizing elements in the circuit are of the level-sensitive type. [Wakerly 90]

has an excellent discussion of this problem.

2.4.2 Assumptions

This work restricts attention to one specific timing problem: the long path problem

and ignores the related short path problem. Most designers consider the long path problem

to be the key timing problem in large scale digital ICs. Ad hoc methods (such as adding

delay lines) to fix the short path problem usually work well. However,the long path problem

is not usually amenable to ad hoc fixes.

It is assumed that cell signal flow is unidirectional for every input-output con

ducting path in a cell. Similarly, each net has a signal direction associated with its output

pin. Associated with every signal flow is a rising and falling delay that is a function of

the corresponding cell and interconnect delay models. A single delay value is calculated

for each signal flow that is based on the rising and falling transitions. The methods to be

discussed are generalizable to the case of separate rising and falling delays [Hitchcock 83].

Each synchronizing cell is assumed to have a clock pin, data-input pins, and a data-output
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pin. Synchronizing cells may be allowed to move freely within the chip along with other

combinational logic cells. For simplicity of discussion it is assumed that edge-triggered

synchronizing elements are used. The methods described are generalizable to the case of

level-sensitive latches.

The performance of a synchronous digital IC is inversely proportional to the cir

cuit's cycle time or clock period. A path is defined to be a sequence of interconnected

modules and nets with a well-defined starting point and ending point (the starting and

ending points are represented by modules). A critical path is a path whose delay does not

meet the timing requirements of chip.

2.4.3 Graph Representation of Chip Timing

Let the digraph Dt(V, A) represent the integrated circuit in the physical/timing

domain. Let the vertex set V be in one-to-one correspondence with the set of pins. Arc

weights d(i>i, Vj) denote the pin-to-pin signal propagation delays for all (v,-, Vj) G A, and arc

direction represents the direction of signal flow in the circuit. Also, let A1 and AE model

the signal behavior internal and external to all cells respectively; thus, internal signal arcs

represent cell signal flow while external arcs represent net signal flow.

A = A!UAE (2.6)

Let {t>i,..., v\f-g] represent the celloutput pins in the circuit (it is assumed that each net is

driven by a single-output pin and that primary inputs have no input pin and primary outputs

have no output pin) and {vjy-g+i,.. . ,vp} correspond to the cell-input pins. Assume that

Pi is the output pin of m, and connects to n,. In the event that a cell has more than

one output pin, the cell may be replicated for each output with identical nets feeding each

replicated cell and all the copies of the cell are constrained to a common location during

physical design. A path $, is defined by an unbroken sequence (vA,..., ve) of vertices that

uniquely occur along the path. Delay in an integrated circuit may be viewed as consisting

of two components: cell delay and net delay. Let the delay of module mt- be characterized

by

d{vj,Vi) V(«,-,*•) € A1 (2.7)

and let the delay of net n,- be characterized by

d{vi,Vj)^{vi,Vj) 6 AE (2.8)
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Figure 2.5: The timing graph Dt
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The arcs and their meanings are illustrated in Figure 2.6. The greater flexibility of this

multiple-arc cell and net model permits more accurate modeling than single cell and net

delay models. This is particularly important when it becomes necessary to model differ

ent pin-to-pin net delays for aggressively scaled technologies where interconnect resistive

contributions become significant. Let E denote the set of vertices representing path end

Internal arcs (represent cell delays)

External arcs to other cells

^ (net delays)

Figure 2.6: Internal and external arcs of a cell

points that correspond to the input pins of primary outputs and the data-input pins of

the synchronizing modules. Associated with each path endpoint vertex is a required arrival

time r,- specified by the designer of the circuit. In a similar manner, let 5 denote the set

of vertices representing path starting points that correspond to the primary inputs and

data-output pins of the synchronizing modules. Associated with each path starting point

vertex is a designer specified actual arrival time a,.

Path delay in the circuit is computed by a block-oriented search [Hitchcock 83],

Actual arrival times for cells not in S are determined in a breadth-first manner, beginning

at the path starting points and terminating at the path ending points. The worst-case

actual arrival time aj and an arbitrary vertex is given by

aj = max{ai + d(vitVj) |V(v,-,Vj) 6 A} (2.9)

The required arrival times specified for the path end points may be propagated in a backward

breadth-first manner through the circuit starting from vertices in J? so that requirements
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on the required arrival times for vertices not in E may be determined. The required arrival

time rt- for an arbitrary vertex is defined to be

rt- = min{ri - dfr, Vj) | V(t>,-, vj) e A} (2.10)

Based on the calculation of actual arrival and required arrival times for all v,-, a slack s,-

may respectively be defined as

Si = ri —at (2.11)

Slack values are useful in characterizing the timing behavior of a circuit. A negative value

of Si for Vj indicates that a violation of a timing constraint has occurred.

Definition 2.4.1 The timing of the chip is said to befeasible if and only ifsi > 0, Vu,- € V.

A critical long path is defined as follows:

Definition 2.4.2 A critical long path TL is a path $ in which the sequence of vertices

(v3,...,ve), va 6 S and ve 6 E comprising the path all have slack values less than zero.

H = {vi | Si < 0 V Vi e *}

Thus, a necessary and sufficient condition for the non-existence of long paths is s,- > 0, Vv,- €

V.

The arc weights d(v,-,v,) for all (u,-,i>j) 6 AE are a function of the positions of the pins

defining the cells. Let Xi = (xjt)T, Vm* 6 Wi be the vector of x locations of pins on net n,-.

Yi is similarly defined.

Proposition 2.4.1 Letd(vi,Vj) = /(-Xi,YJ),Vn,- € A/* be any convexfunction corresponding

to the arc (vi,Vj). Then, the timing constraints form a convex set.

Proof. For each non-empty path nae = va -* ve, va G 5, ve 6 E, let

d(Hae)= X) d(vi>vj)
(wii«i)€n,c

If there is no path from va to ve, let d(TLae) = —oo. The timing constraints are

equivalent to the following constraints:

d(TLae) < Te,Vva G5,Vve € £

But d(H5e) is the sum of convex functions and is therefore a convex function. So,

d(Rae) < Te is a convex set. D
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2.4.4 Interconnect Delay

The delay in a length of interconnect wire driven by a MOS transistor is an ex

tremely complex function of the MOS transistor characteristics, interconnect line character

istics and the neighborhood of the interconnect wire [Bakoglu 90a]. Choosing a model that

would be efficient and yet accurate was one of the first tasks. Efficiency is of concern for

the following reason. During the process of placement, cell locations constantly change and

as a result interconnect delays change. The interconnect delays may have to be updated

several thousand times during the course of a placement and there may be several hundred

thousand wires interconnecting a large design.

Bakoglu in [Bakoglu 90b] has presented an interconnect delay model that is the

basis for the model chosen in this work. Consider a net n consisting of a driving cell Ga

and \n\ —1 receivers. Cell Ga drives a length of interconnect wire connecting Ga to cell

C?i... G\n\_i as shown in Figure 2.7. In the model, the cell is replaced by an effective source

netn Kg<

0
4 Tc»

% •|nM

(a) (b)

Figure 2.7: A net (a), and associated interconnect delay model (b)

resistance Ra which is computed from simulations. R„ represents the lumped resistance of

the total length of interconnect wire of the net n. As shown by Bakoglu, an excellent

approximation of the total wire delay of a sequence of cells on a path is obtained by taking
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the products of resistive and capacitive terms and adding them. (The RC product is

commonly referred to as the 50% delay). The delay in the interconnect is assumed to be

composed of a "lumped" component di and a distributed component <£<*:

d(s,d) = di + dd

where

dl = Rax(Cn + C9) + RnxC9

Cn represents an estimate of the total capacitance of the net n. Cg is the sum of the gate

capacitances of all the output cells connected to Ga. dj is the distributed RC delay due

to the interconnect resistance and interconnect capacitance. This model has been shown

in [Bakoglu 90a] and [Sakurai 83] to be accurate to within 4% for predicting the delay in

aluminum interconnect wire for VLSI circuits.

2.4.5 Models for the Lumped Delay

In order to estimate di due to a net, we need to model the capacitance and re

sistance of the net during placement. Both these parameters are complex functions of the

layout of the wires and neighboring nets. Once again, a choice has to be made that is

efficient as well as accurate.

Analytical net capacitance models used in the past for large-scale circuits have

relied on simplified net bounding-box estimates [Jackson 89] or similar techniques. However,

the deviation of the final routed net length from the estimated value may be quite large. My

goal was to be able to incorporate models of various complexities into a general framework.

The techniques developed are capable of handling a variety of linear as well as non-linear

delay models.

Bounding Box Model

In this model it is assumed that horizontal and vertical wires are routed on different

layers and hence have different capacitance and resistance characteristics. Let C/, and Rh

represent the capacitance and resistance per unit length respectively of horizontal wire and

Cv and Rv the capacitance and resistance per unit length respectively of vertical wire. The
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estimators for the capacitance and resistance of a net are:

Gn = Ch{Xmax ~ xmin) + CviVmax ~~ Vmin)

Rn = Rh\Xmax —xmin) + RvKVmax ~~ Vmin)
(2.12)

where

and

xmax = 5gj{*«}Pitn

Pi€n

Pi en

Pien

Single-Trunk Steiner Tree Model

This estimator uses a single-trunk steiner tree to model the length of a net. It is

an accurate model and experiments on a number of chips yielded delay values close to delay

estimates based on the final routing of the nets. The interested reader may wish to glance

at Chapter 6.

Qi = Cv(Vmax ~ Vmin) + ^h23p,€n \xPi ~ xn\
QL = ch{x»max - x^in) + cvEP,.€„ \yPi - Wl (2-13)
cn = \(c* + cy)

The resistance is modeled by similar equations.

Star Connected Net Model

Another model that was considered during the experimentation and yielded excel

lent results was the star-connected net. This model tends to overestimate the net length,

but has the advantage of being simple and efficient to compute. Let (xs,ys) represent the

location of the cell driving net n. The capacitance and resistance of the net are estimated

as:

Cn = Em,€n Ch\Xi - X.\ + Cv\Vi - yn\

-Rn = J2mi€n Rh\xi ~ xs\ + Rv\Vi ~ Vn\

2.4.6 The Distributed Delay Model

In the lumped part of the delay expression, the separation of the horizontal and

vertical wire delay components is justifiable since the driver has to charge the vertical and
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horizontal portions of the net. Unfortunately, with the distributed part it is not easy to

determine how to separate the delay into individual components without performing a full

routing for each net. The reason is that during the placement it is unclear whether the

vertical section or the horizontal section of the net comes first along a path. The technique

used in this work is to derive a "mean" resistance and capacitance for the distributed

component. Let Cw = y/CkCv and Rw = y/RhRv> &w and Cw represent the geometric

mean resistance per unit length and capacitance per unit length respectively. The geometric

mean was chosen because the delay model consists of RC products and it yielded excellent

results on simulations.

The distributed interconnect RC delay for the bounding-box model is estimated

as:

dd = 0.5RwCw{x^ax - x^in + C - CJ2 (2-15)

The factor of 0.5 which multiplies the expression arises because the resistive and capacitive

terms are distributed (see [Bakoglu 90a]). For the single-trunk Steiner tree model, the

equations are:

•^n = \Vmax ~ Vmin) + Z^pi^n \xPi ~ xn\

LVn = (^ax " *S»») + Ep,€„ |yPi " Id (2-16)
dd = \RwCw{L*n + LI)2

and for the star connected net model, we have:

dd = o.srwcw y, (l*« - x°\ + \yi - y°\)2 (2-17)
mi€n

2.4.7 Can interconnect resistance be ignored?

Assuming a constant value for Rn based on the average net length or neglecting it

completely does not introduce significant error for current CMOS technology. Figure 2.8

compares the waveforms obtained using two models to a sophisticated lossy transmission

line simulation based on [Roychowdhury 91]. The two models used are (1) the second order

model that includes d\ + dd and (2) the first order model that includes only interconnect

capacitance and neglects dd and Rn. The length of the interconnect wire is 0.25cm which is

the typical length of a net in 1 micron technology on a 4.0 square cm chip. The simulation

was performed using SPICE and the parameters for the driving cell as well as the intercon

nect wire were derived from a 1.0 micron process. The cell was driven by a 100MHz square
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Comparing various delay models at lOOMHz

I 7G53I

— RCmoJeT

"CaoSA"

10*
40jOO

Figure 2.8: Simulation to compare various delay models
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wave. As seen in the figures, the deviations for both the simplified models from the more

sophisticated lossy transmission fine model are minimal for this set of parameters The error

introduced for this example by neglecting Rn completely is 5.3% for the falhng transition

and 5.5% for the rising transition of the output. The conclusion is that for current technol

ogy and for some time in the future, dd and Rn may be safely ignored. However, for feature

sizes below 0.6 micron, dd begins to take on significant values and cannot be neglected.

2.4.8 Different Rising and Falling Signal Delays

In practice, different combinations of inputs to cells may have different delays

to cell outputs. In addition, rising inputs may cause different cell delays and cell drive

resistance values than falling signals. All of these generalizations can be dealt with in a

similar manner to the analysis in the preceding sections. In order to keep the discussion

simple, techniques will be presented for single delay values. However, the experimentation

was conducted using a more complex delay model.

2.4.9 Putting it All Together

Having decided on models for the net capacitance and interconnect delay, we can

now put them together. Consider cell m,- connected as shown in Figure 2.9. Let us compute

the delay for the portion of a path defined by vertices (vjx , v,-, vk). The quantity d(vjx, v,) is

the intrinsic delay of the cell m,- from input vertex v^ to output vertex v,- and is a constant.

Let the drive resistance of cell m,- be given by J2,-. Suppose we are using the star connected

net capacitance model. Let Ck and C/ represent the input gate capacitances of m* and m/

respectively. The expression for the delay of arc (»,-, Vk) (<2(i>j, vjb))1S

Ri x (Cn. + Ck + Ci) + Rni x (Ck + Ci) + dd

Cn. and Rnt are the capacitance and resistance respectively of the output net of mt- for the

star connected net model and can be written as:

Cni = Ch(\xk - Xi\ + \x\ - Xi\) 4- Cv(\yk - yt\ -r \yi - y,|)

Rn. = Rh(\xk - Xi\ + \xt - Xi\) + Rv(\yk - y,| + \yi - j/,|)

and the distributed delay component can be estimated as:

0.5RwCw(\xk - xi\ 4- \xi - Xi\ + \yk - yi\ + \yi - yi\)2
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J3 cell i
cell I

Figure 2.9: Example illustrating how to apply the delay models

Proposition 2.4.2 The interconnect delay estimates based on the bounding box capaci

tance model, the single-trunk Steiner tree model or the star connected net model are convex

functions of cell positions.

Proof. It is easy to see that the lumped delay expressions are linear (absolute valued terms

are considered linear) and hence convex. The distributed delay terms for all the three

models consist of the square of a sum of absolute valued terms and can be represented by

the general form:
k

12

Let

i=l

g(uu...yuk) = ^2\ui\
»=i

Let u = (tti,..., Uk). g is a convex function and f(g) is an increasing convex function of g.

In order to prove the convexity of / we need to show:

a/(u) 4- (1 - «)/(u') > f{au + (1 - o>')

for two distinct points u and u'. We know that

ag(u) + (1 - Q)g(uf) > g(au 4- (1 - o>')
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Since / is an increasing function of g, we have

/(<*<jr(u) + (1 - a)g(u')) > f(g(au + (1 - a)u'))

but, by convexity of f(g) we have

a/(<7(u)) + (1 - a)f(g(u')) > f(ag(u) + (1 - a)</(u'))

2.5 Conclusions

To summarize, the key assumptions made in this work are listed below.

• The ICs considered have a large number of small cells. This enables estimates of

wirability of the circuit to be made by simplified analytical wirelength functions.

• The circuit conforms to the model of a general sequential machine without combina

tional logic loops. It is possible to extend this work to the case where combinational

logic loops exist provided the timing conditions that the loops must satisfy can be

expressed by means of analytical equations.

• The circuit is operated at frequencies such that interconnect delays are convex func

tions of the pin locations that define the interconnect pattern.

Although the RC interconnect delay model described in this chapter is arguably

a very basic one it is not the only model which can be used with the techniques in this

thesis. More complex models like the H ladder circuit and the T circuit can easily be

incorporated should the need for greater accuracy arise. The gains obtained by using a

more sophisticated model are limited since the delay functions for most of the models are

similar in the mathematical sense, i.e, reducing the delay obtained by one expression also

reduces the delay obtained by using the other.



Chapter 3

The First Cut

This chapter describes the first attempt at solving the performance-driven place

ment problem. A general recipe for solving the problem is described and then a specific

solution technique is given for the the quadratic wirelength model and the bounding-box de

lay model. The general recipe follows a modified active set strategy. An active set strategy

is a widely used mathematical programming technique for solving constrained optimization

problems [Luenberger 84].

3.1 A General Recipe

3.1.1 Formulation

Let w denote the combined vector of x and y coordinates of cells in the circuit.

The problem of minimizing wirelength subject to timing constraints can be stated as the

following nonlinear programming problem.

minimize L(w) (GP)

subject to

a3 > <n + dfa, vj) V(v;, Vj) e A

a3 < Tj Vvj e E

aJ > Tj Vvj6 5

d(vi,vj) = f(Xi,Yi) Mm erf

35

(3.1)
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where T,-, Vj € E and Tj, Vj 6 5 respectively represent the required arrival times at the

path endpoints and the actual arrival times at the path starting points which are derived

from the performance specifications and the clocking methodology. As before, L represents

the wirelength measure which could be based on any one of the models presented earlier.

Xi is the vector of x coordinates of the cells on net n,- and Yi is similarly defined.

Thus, the performance-driven placement problem can stated very simply and it

is tempting to assume at this point that it is amenable to solution by the use of widely

available conventional techniques for mathematical programming. Unfortunately, conven

tional techniques fail on this problem even for circuits of small size, taking hours or even

days to obtain a solution. For example, Jackson [Jackson 89] experimented with using the

Simplex Method for solving the problem with the bounding-box model for wirelength and

net capacitance and reported running times of the order of 16 hours for a circuit with about

1400 modules!

3.1.2 Why is the Problem Difficult to Solve?

Definition 3.1.1 Active constraints at a point are defined to be those constraints that are

satisfied with equality.

Consider a simple example shown in Figure 3.1 (a). The delays through the cells are assumed

to be the same for each input. Figure 3.1(b) shows the cell delays and net delays calculated

as a function of cell positions for the current position of the cells. Let the required arrival

time at all primary outputs be 7.4 units and the actual arrival time at all inputs be 0.0

units. The notation d;_j is used as a short form of d(vi,v3) and dj denotes the intrinsic

delay of module mj which, for this particular example is the same for all inputs. The timing
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input vertex
(a) Vertex numbering

CeO dday feme fir all inputs)

LO

Net delay

(b) Associated delays

Figure 3.1: An example of a nethst, its vertex numbering and delays
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constraints for this example can be written as follows:

ax = 0.0 +di = 1.0

a2 = 0.0 +d2 = 1.5

0-12 = &1 + ^1-12

Ol3 = fl2 + ^2-13

^4 = a2 + ^2-14

(Z4 > <*12 + ^4

a\ > ^13 + d\
(3.2)

023 = Gl8 + ^10 + ^18-23

d(l,ll) = fdxux^x^iyuy^ys))

d(l,12) = d(l,ll)

d(2,13) = f((x2,x3,x4),(y2,y3,y4))

d(2,14) = d(2,12)

Figure 3.2 (a) shows the values for the arrival times at all the vertices. The arcs correspond

ing to the active constraints form a forest and such a forest is shown for this example in

Figure 3.2 (b). Let us perform a simple calculation to determine the number of active con

straints and "active" variables associated with the constraints. Assume that the net delays

are calculated by means of the bounding-box net capacitance and interconnect resistance is

neglected. In order to use this model, four additional variables are needed for each net to

represent the extents of the bounding box. In addition 4 x |n,| constraints are needed for

each net so that the net delays may be expressed as a function of the bounding box of each

net.

Let x%ax, x%in, y%ax and y%in be the extents of the bounding-box of n,-. As before, let Cg.

denote the total gate capacitance of all the inputs connected to net n,-. We can define these

four variables in terms of inequalities as follows:

xmax > xjy V™>3 € 71; (3.3)

xmin < xh Vm,- <E n{ (3.4)

Vmax > Vjy V™i <= n,- (3.5)
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Vmin < »i» V™i € ni (3.6)

The bounding box based delay equation for an external arc (v;, Vj) can be written as:

dKt>i) = *[Cfc(*^-*2fa)+C.(Ja«-C»)]+<^[^(*^-Cm)+^(»Sl«-»Sr«)]
(3.7)

.Rj represents the driving resistance of cell m,- (whose output net is n;).

For each net n,-, at least four of the bounding-box constraints will be active, cor

responding to the cells that actually define the extents of the net. (There may be more

if more than one cell defines any particular extent of a net). Thus, the number of active

constraints contributed by the net delay model is at least 4 x N and the number of variables

is also 4 X N. Since under the assumptions of Chapter 2, each cell has only one output

net and the primary outputs do not have output nets, there are M —g nets. Hence, the

minimum number of active constraints can be written as 4 x (M —g).

For each vertex, the worst-case actual arrival time of the signal at that vertex

comes from one of its inputs and there will be one active timing constraint of the form

ai = aj + d(vi,vj)

The number of active constraints contributed by the arrival time constraints is at least as

many as the number of nets which equals M —g. Each constraint has two variables a,-

and aj, hence there are 2 X (M —g) active arrival time variables. In all, there are at least

5 x (M —g) active constraints and 6 x (M —g) active variables.

For the simple example with 13 vertices, the total number of active constraints is:

5 x (M - g) = 5 x (13 - 3) = 50

and the number of active variables is:

6 x (M - g) = 6 X (13 - 3) = 60

For a small sized circuit with 1000 internal cells, the number of active constraints are at

least 5000 and the number of active variables are at least 6000!. By itself, the size of the

problem vexes conventional techniques, but coupled with the degeneracy in the constraints,

the problem becomes the bane of standard non-linear programming packages. Before we

understand degeneracy and why it occurs, some preliminarynotions need to be introduced.
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0.0 L0

25w3.7

00 Vertex arrival times

(Luactive)
0>) Corresponding active forest

Figure 3.2: Arrival time calculations and active forest derived therefrom
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3.1.3 Reducing the Size of the Problem

It is assumed in the following discussion that the wirelength models and the timing

models used are one of those presented in Chapter 2. Under this assumptions, due to the

convexity of the objective function and the constraints, the general formulation GP is a

convexprogramming problem. Let A* denote the vector function (possibly non-linear) of

the active constraints at a global minimum w* and VA* denote the associated Jacobian

matrix. Since the programming problem is convex, there exist Lagrange multipliers (one

per constraint) [Luenberger 84] X satisfying

VL(w*) + ATVA* = 0

ArVA* = 0

X > 0 (3.8)

provided w* is a regular point of the constraints, i.e., at w* the matrix VA* has full

rank. The above conditions are popularly known as the Kuhn-Tucker first-order optimality

conditions.

The Lagrange multiplier associated with a constraint at a given point w has a

useful mathematical interpretation. It represents the sensitivity of the cost function to that

constraint at that point. If the Lagrange multiplier is zero, then the constraint is inactive

and has no effect locally. A positive value indicates that the constraint is binding and

moving away from it towards the interior of the feasible region will increase the objective

value. A negative Lagrange multiplier indicates that moving away from the constraint

towards the interior of the feasible region will result in a decrease in the objective value

and hence that constraint can be "dropped" provided all the other binding constraints are

retained. An excellent treatment of Lagrange multipliers and their interpretation may be

found in [Murty 83].

Proposition 3.1.1 The active timing constraints and delay equations at the optimal solu

tion w* can be replaced by an equivalent set of active constraints which consists of equations

for arcs on paths1 in Dt from vertices in S to E.

Proof. Let Ec —{«,- G E\ai = T,}. In this discussion, consider external arcs. Internal

arcs have constant delays and these delay values can be taken to the the right-hand side of

rthe reader is referred to definition 2.4.2 for the definition of a path in this context
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the extern arc equations. (In the example of Equation 3.2 the delays corresponding to the

internal arcs are represented by the constants d;_j.) If Ec £ 0 there exists a forest of arcs

ta such that

aj = ai + d(vi,Vj), V(v,-, Vj) 6 ta

For each arc (v,-, Vj) € ta, if Vj; £ <EC and v,- has no arcs in ta directed out of it or Vj € Ec

and aj < Tj, we can increase aj by a finite positive value c without affecting the feasibility

of the current solution. The solution remains optimal because aj does not appear in the

objective function. Thus, the equation corresponding to (v,-, Vj) can be deleted from the

active set. If vt- has no other arcs in ta directed out of it, or all the arcs directed out of

Vi were deleted by the above process, we can delete the delay equation for the output net

associated with vertex Vj.

Similarly, if there is an arc (v,-, Vj),Vi £ S with no arcs in ta directed into v,-, we

can decrease a,- by a finite positive constant € and make the arc equations inactive with

out affecting the feasibility or optimality. Similar arguments can be made for the delay

equations of the output net of a movable module with no arcs in ta directed into it. This

process of deleting timing and delay equations can be repeated until the resulting forest r'A

is rooted in 5 and all the arcs terminate in Ec. If Ec is empty, then all the constraints are

removed by the process and the solution corresponds to the unconstrained optimal solution

of the objective function. •

The forest resulting from this reduction is called a reduced active forest (RAF). The sig

nificance of this proposition is that in searching for an optimal solution, it suffices to look

for solutions such that the set of active arcs form trees rooted in 5 and terminating in E.

What benefits does this offer?

1. A vast reduction in the number of active variables and constraints is one effect. Con

sider the same small example presented earlier containing 1000 modules. In such an

example, a typical number of cells on critical paths would be 10% or about 100. The

number of active variables and constraints for this subset are about 400 each. However

this saving alone is not enough to bring about a dramatic improvement in the time

to solve the problem. To understand that, we need to delve into the solution process.

2. The numerical stability of the solution procedure is vastly improved. The reason is

that degeneracy is avoided by restricting attention to only those constraints that are

essential.
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0.0.

0.0_l-5

Figure 3.3: Reduced active forest for the simple example

3. A systematic and general solution technique can be developed for solving the problem,

based on reduced active forest manipulation. The reduced active forest for the simple

example is shown in Figure 3.3.

3.1.4 A General Algorithm

The generic primal active set algorithm is very simple and proceeds as follows:

1. Start with an arbitrary initial feasible solution and a current reduced active set ta-

Let the current cell location vector be w.

2. Solve the equality-constrained non-Hnear programming problem corresponding to the

current active forest. The solution yields a "step" or a direction from the current

location to the new location obtained by the solution. Let this step be <5w.

3. Move along 6w until a new reduced forest becomes active.

4. Update the current RAF.

5. Check the current solution for optimality (using Equation 3.8. The Lagrange multi

pliers are obtained as a by-product of the solution process.) If it is optimal, stop.

6. Go to step 2.
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Step 2, which involves solving an equality-constrained non-linear programming

problem is as easy as unconstrained optimization for the wirelength and delay models pre

sented in this work. It can be implemented very efficiently [Gill 89]. The key steps in the

procedure axe Step 3 and Step 4, which if performed efficiently, will make the entire algo

rithm practical. The remainder of this chapter is devoted to a discussion of how these steps

can be implemented efficiently and the specific case of the quadratic wirelength model and

bounding-box capacitance model is used to illustrate the ideas.

3.1.5 Degeneracy and How the Algorithm Avoids it

Definition 3.1.2 The unique arcs of a path are those arcs that are not part of any other

active critical path.

Definition 3.1.3 The unique arcs of a set of pathspath r with respect to a set of paths r

are those arcs of r that are not part of r .

Definition 3.1.4 The equations for an external arc (v,-, Vj) are defined as thefollowing:

aj = ai + d(vi,Vj)

d(vi,Vj) = f(Xi,Yi)

where f(Xi,Yi) is one of the interconnect delay estimates described in Chapter 2.

Definition 3.1.5 A solution of GP associated with an RAFta is the solution obtained by

solving the equality constrained problem with all the constraints in ta taken as equality and

all other constraints ignored.

Proposition 3.1.2 When a path becomes active, the equations for the unique arcs of the

path canbe added to the active set simultaneously, i.e., thestep vector need not be computed

after adding each unique arc on the path.

Proof. Let the path be ft. Let there be q unique arcs in the path. Suppose we have

added timing and bounding-box constraints for t < q arcs to the current active forest ta,

obtaining a new active forest t'a. Then, at least one of the following are present in ta: (1)

an arc (v,-, Vj) 6 ft such that v,- £ 5 and v,- has no arcs in ta directed into it, (2) an arc

(vi, Vj) € ft such that such that v'j &E and v'j has no arcs in t'a directed outward from it.
Informally, when we have activated t < q unique constraints, ft is disconnected because of
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the uniqueness of the q arcs. By Proposition 3.1.1, the forest t'a can be reduced to ta, so

the optimal solution for ta is also optimal for t'a- n

Corollary 3.1.1 Let ta represent a reduced active forest and t'a represent an active forest
that differs from ta in exactly one path, i.e., t'a —ta is a single path from S to E. Let ft^
be the unique arcs ofrA with respect to ta> LetUA beany propersubset o/ftyi. Then all the

solutions of GP associated with the different active forests ta Ulja have the same objective

function value.

Proof. For any lja C ft>i, ta Uwa can be reduced to ta and hence by Proposition 3.1.1

has the same objective function value as ta. E

Corollary 3.1.2 Themaximum number ofpaths in any reduced active forest is bounded by

the number of arcs in the timing graph Dt-

The significance of Proposition 3.1.2 is that when we encounter a new RAF during

the algorithm, we need to add only a limited number of variables and constraints to the

active set - those belonging to the unique arcs and more importantly, the addition itself

can be done in one step. This method differs considerably from conventional mathematical

programming techniques which, when moving from one RAF to the next, would add the

variables for the arcs one at a time, in a random order, without making any progress

(i.e., without improvement in the cost function) until all the unique arcs are added (by

corollary 3.1.1). Until all of them are added the Lagrange multipliers for the unique arcs

are zero (or very close to zero in practice due to numerical errors). It is possible for a

conventional method to start cycling, i.e., to get stuck in an endless loop when there are

numerical errors in Lagrange multiplier values. The above problems are often collectively

(and informally) referred to as the degeneracy problem. Each degenerate addition step in

a conventional method involves expensive matrix refactorizations and solving an equality-

constrained problem which leads to inefficiency. On the other hand, Proposition 3.1.2 avoids

these degenerate steps and obtains the next useful intermediate solution in one fell swoop.

Corollary 3.1.2 is extremely powerful and is exploited fully in Chapter 5.

Informally, degeneracy in this context means that there are many active forests

with the same objective value. The total number of degenerate active forests could be an
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exponential function of the number of arcs in the timing graph. Conventional algorithms

are unable to detect this problem.

3.1.6 Speedup Obtained

To get an idea of the magnitude of the speedup, a rough calculation may be

illustative. Suppose a conventional algorithm encounters k active forests during the course

of finding an optimum. Let the average number of arcs in a critical path be t. Let the

fraction of all the modules that he on critical paths be (3. Assuming that about 30% of the

arcs in a critical path are unique arcs, the conventional solution technique would take at

least 0(tk) iterations, performing 0(M2) work per iteration for the factorizations. Hence,

the work done would be roughly 0(M2tk) (one factorization per arc added). On the other

hand, the modified algorithmwould take 0(k) iterations performing about 0(/?2M2) work

per iteration (this is a highly pessimistic estimate). The work done would then be about

0(/32M2k). For the small example with 1000 modules and with (3 approximately equal to

0.1 and with about 15 levels oflogic (t = 15) the speedup would be 0(^5q3<) or about 450.
Such a speedup was observed in practice. For larger examples, the speedup may be even

greater.

3.1.7 Comment on the Generality of the Algorithm

Thus far, the algorithm discussed is completely general and may be applied to any

combination of the wirelength and delay models presented in Chapter 2. The requirements

are mild - convexity in the cost function and delay model. An interesting result is that the

estimated speedup is independent of the models used.

3.2 Applying the Ideas

In order to illustrate the ideas more effectively, let us consider how the generic

algorithm may be applied to a specific case. The quadratic wirelength model and bounding-

box capacitance model are used as examples. In the delay model the distributed RC delay

(the second-order term) of the interconnect wire is neglected.
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3.2.1 Quadratic Cost Function

The modules can be partitioned into two sets, fixed and movable. Fixed modules

are input/output pads or modules that have been assigned a location on the chip, for

example, clock pads. Movable modules have variable x and y coordinates. The quadratic

cost function of Equation 2.1 can be rewritten as

L=\ £ _««((*<-**)* +(WW)*) (3-10)
where cy represents the number of nets that modules m; and mj share. (xi,yi) and (xj,y3)

represent the locations of m,- and mj. Using matrix notation to compactly represent L, we

get:

L(x, y) = -(xrBx 4- yTBy) + cTx + dTy (3.11)

where x is a vector of the x-coordinates of the module locations and y is a vector of the y-

coordinates. c and d are constant vectors arising from the fixed modules. B is a symmetric

matrix with

B = D - C (3.12)

where C = [cy] and D is a diagonal matrix with da —£J=1cy. Typically, B is a highly
sparse matrix and can be stored very efficiently using sparse matrix data structures as in

[Bunch 76]. In addition, it is shownin a following section that B is positive-definite.

3.2.2 Bounding-Box Net Delay Model

Let x%ax, x^in, y%ax and yJJ/m be the extents of the bounding-box of n,-. We can define

these four variables in terms of inequalities as follows:

xmax > xi> v™j e «i (3.13)

Cm < *i. Vm; € m (3.14)

Vmax > y;, Vm; e nt- (3.15)

Vmin < Vj> Vm,- e ni (3.16)

The bounding box based delay equation for an external arc (v,-, v3) can be written as:

(3.17)
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where as before Ri represents the driving resistance of cell m,- (whose output net is n,) and

Cg. is the total capacitive load due to cell inputs connected to net n,-.

3.2.3 Specific Problem Formulation

Since variables representing bounds on each net and arrival times at the vertices

on the timing graph have been introduced, the total number of variables in the problem

is 2Af 4- 4JV + P. However, the (4JV + P) arrival time and bounding-box variables do not

enter into the cost function, so the value of the cost function at any point is unchanged and

the sparsity of the matrix representing the cost function is retained. To simplify further

discussion some notation is introduced. Let

WceM =

be the combined vector of x and y coordinates of cell positions. Let w^t denote the vector

of net bounding-box variables and Wp,n the vertex arrival time variables. Then

w =

WceH

Wnet

'pin

is the 2M + 4JV 4- P vector of all variables. Let

Q =

B 0 0 0

0 B 0 0

0 0 0 0

0 0 0 0

be the combined (2Af+ 4JV + P) x (2M + 4N + P) matrix for the cost function and let

b =

Then, the cost function can be rewritten as

L = -wTQw + bTw
2

(3.18)



CHAPTER 3. THE FIRST CUT 49

The problem of minimizing wirelength subject to timing constraints can now be stated as

the following nonlinear program

minimize L (NLP)

subject to "max > X3 Vmj € n,-, Vn,- GAf

xmin < X3 Vmj Gn;, Vn,- GAf
«n»*
Umax > yj Vmj G n,-, Vn,- GAT

*»rom
< Vi Vmj G ri,-, Vti,- GA/*

aj > at 4- d(vi, Vj) V(«,-, «;) G A

aj < Tj Vvj G £

aj > ?3 Vi;,- G 5

(3.19)

Theorem 3.2.1 For all x ^ ore w/iere e = (1,1,..., 1), xrBx > 0. Similarly, for all
y ^ ae where e = (1,1,..., 1), yTBy > 0.

Proof. The proof proceeds by assuming that there is a vector x ^ ae such that xTBx = 0

and showing that this assumption leads to a contradiction. (Note that since the objec

tive function consists of the sum of squared terms, it can never be negative). There

fore, for some integers p and q the components of the vector x must satisfy xp ^ xq.

Define C(i) = {mj\cij ^ 0}. Consider a term in the objective function of the form

cij(xi —Zj)2,j G C(i). This expression can be zero only if a,- = xj. But this forces
Xj = x,-,V j G C(i). Since the modules form a connected graph (by assumption), this in

turn forces all modules connected to C(i) to have the same x location as a:,-. Proceeding in

this manner, we have x\ —x2 = ... = xm, which is a contradiction. That yTBy > 0 can

be proved similarly. D

Corollary 3.2.1 // there exist at least twofixed modules at distinct x and y locations and

the modules do not form disconnected subsets, then xrBx and yrBy are strictly positive

for all non-zero vectors x and y, i.e., the matrix B is positive definite.

Corollary 3.2.2 Any relative minimum of L is also a global minimum.

Proof. See [Luenberger 84, p459,p216,pl80] D

Corollary 3.2.3 The satisfaction of the Kuhn-Tucker first-order necessary conditions are

both necessary and sufficient for a point to be a global minimizer of L.
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3.2.4 The Specific Algorithm

This section describes the algorithm used to solve the optimization problem. The

algorithm follows a primal active set method, but departs from conventional techniques in

the representation of constraints and activation of constraints.

Definition 3.2.1 An active critical path is a path such that all of its vertices have zero

slack.

The algorithm proceeds as a sequence of major iterations. At major iteration k, a

feasible point w(fc) is known, which satisifies the activeconstraints with equality. A denotes

the set indices of constraints that are active. Let A^) denote the matrix of constraints

that are active duringiteration k, i.e., A(*) denotes those constraints that are satisfied with

equality. This includes both path constraints and bounding-box constraints for nets that

Heon active critical paths. For linear constraints, VA = A, so the Kuhn-Tucker conditions

reduce to:

VL(w*) + ATA* = 0

ATA* = 0

X > 0 (3.20)

Let r^ = {III,• ..,D<) be the set of active critical paths during iteration k. Let

A/r Q Af denote the set of nets that form the critical paths. Let Ar Ci denote the set

of arcs in Dt that lie on the active critical paths. Let Er and Sr denote the starting

and ending points of the active critical paths. Each major iteration attempts to locate

the solution to an equality constrained problem formed by deleting the inactive constraints

from NLP. This is done by shifting the origin to w^ and looking for a "step vector" 6 that

solves the following problem.
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minimize

subject to

= {xj\xj = m*Xk{xk, Vmjt Gn,}}, Vnt- GA/r

= {xi\xi = nun/b{afci Vm* Gn,}}, Vnt- GA/r

= ivAVj = maxfc{yjt, Vm* Gn,}}, Vnt- GA/r

= ivAVj = minib{yA:, Vm* Gn,}}, Vn; GA/r

= ai + d(vi,Vj)

= Te

= T*

'max

.*»«

ifmax

vni.
vmtn

ai

g(*) is the gradient vector at the current point, defined as

g<fc) = VL(wW) = Qw<*> + b
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(EP)

V(vi, Vj) G Ar

Vvj G ET

Vvj G 5r
(3.21)

(3.22)

The solution to the above problem (EP) can be found by solving the Kuhn-Tucker

conditions for EP, which form a linear system of equations, corresponding to the Hessian

matrix of the augmented Lagrangian.

Q AT'
A 0 A

=

0

(3.23)

The step vector 6^ consists of three parts: 6^11, the step vector corresponding to cell

positions, 6net corresponding to the net bound variables and 6pin corresponding to the

arrival time variables. The vector A is the vector of Lagrange multipliers for the constraints

in A.

If 6^ is feasible with respect to the constraints not in A(fc), i.e., a timing verifi

cation on the graph yields a feasible timing graph, then the step is accepted and w(*+1) =

w(fc) 4- #(*). If not, then a line search is made in the direction of 6^kho find the best feasible

point. The line search procedures are explained in detail in following sections. At this point,

it suffices to note that these procedures return a step length parameter a^ such that

w(*+i) = w(*) + a(k)6(k) (3.24)

minimizes L along the direction 6^ and w(fc+1) is feasible withrespect to all the constraints.

If aW < 1.0, a new constraint becomes active and this is added to the current active set A.
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If£(*) = 0, and \W > o, i = 1,..., \A\, then by Theorem 1, we are at the optimal solution.
If

A<fc> < 0 (3.25)

for some constraint q G A, it is possible to drop constraint q from A according to the

interpretation of Lagrange multipliers discussed in Section 3.1.3. After removing constraint

q, the algorithm continues as before. If more than one constraint satisfies Equation 3.25,

then select

g= axg T Aj*> (3-26)
The algorithm starts with a feasible point w (*) andan initialactive set ofconstraints whose

matrix is A^1). (Finding a feasible point is discussed in Section 3.2.9) The flow of the

algorithm may be summarized as follows:

Algorithm

1. Given w^1) and an active set A, set the iteration index fc to 1.

2. Solve(EP)for£(*).

3. If6W = 0 and \\k' > 0, Vi GA, stop. The optimal solution has been reached.

4. Find a(k\ a step length parameter and set w(fc+1) = wM 4- a(*W*'

5. If aW < 1 add some constraint(s) to A according to Section 3.2.7

6. If A^ < 0for some q, delete a constraint from A

7. Set k = k 4-1 and go to step 2

Proposition 3.2.1 If the conditionsof Theorem 3.2.1 are satisfiedand at each non-terminal

step a(*) ^ 0, the algorithm given above terminates ina finite number ofsteps at the optimal

solution w*.

Proof.

The proof of this proposition follows the proof of the active set theorem in [Luenberger 84].

After the solution corresponding to an active set is found, since the step length is positive,

the step results in a strict decrease in the objective function. Thus, once the algorithm

leaves an active set, it never returns to it. There are only a finite number of reduced active
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forests. Associated with each RAF, there are only a finite number of active sets correspond

ing to different active bounding-box constraints. •

3.2.5 Line Search Procedure (1): Bounding-Box Constraints

Given S, and the current active set of bounding box constraints, this procedure

computes cti, the maximum step length such that the cells defining the bounding-box for a

net on an active critical path change. Let Nr denote the set of nets that lie on some active

critical path. Let 6xj denote the computed step in the x direction for cell j and 6yj the

step in the y direction. Let Sx„\ax denote the step for the maximum x bound for net n and

Sx^in the step for the minimum x bound. tfyJJ,ax and 6y„\in are similarly defined for the y

direction.

For each net n G Nr, the procedure involves computing the parameters

ax =

X _
a

aY =

ay =

mm

mj G n

min

mj G n

min

mj G n

min

mj G n

,n
'max

6xj - 6x^

-Xj

Sxj —6xn •

"max -Vi

h3- hmax

Vmin -Vi

% " 6Vm

ot\ =n€Nr {min(l, a*, ax, or , ay)}

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

3.2.6 Line Search Procedure (2): Timing Constraints

Given S and #i, this procedure computes the maximum step length a(*) such

that the chip's timing remains feasible. a(*) is determined by performing a bisection tim

ing verification (BTV). The bisection timing verificationis a combination of bisection line

search and timing verification and departs from conventional techniques in that the graph

representation of the timing constraints is used to compute a maximum feasible step. The
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procedure is very efficient and its run time depends Unearly on the size of the timing graph

(number of edges and cells). In the procedure, 6 is a small positive constant.

1. a = a\

2. Update the cell positions based on a

3. Update the net bounding-box positions

4. Update the delays for all external arcs

5. Calculate the minimum slack in Dt

6. If the minimum slack < 0 (the step length is too long)

(a) a = a / 2

(b) a = a —a

(c) While the absolute value of the minimum slack in Dt > 0, do

i. Update the cell positions based on a

ii. Update the net bounding-box positions

iii. Update the delays for all external arcs

iv. Calculate the minimum slack in Dt

v. a = o I 2

vi. If the minimum slack > e then set a = a 4- a

vii. If the minimum slack < —e the set a = a — o

7. STOP

The bisection search can be performed to any degree of accuracy. For any fixed degree of

accuracy, the whileloop is performed a constant number of times and each iteration involves

a breadth first traversal of the timing graph which is O(M). Hence, the work done in this

procedure is O(M). Since the error decreases at a quadratic rate, very few iterations are

required in practice.
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3.2.7 Activating a constraint

There are several conditions under which new constraints are added to the active

set. These may be listed as follows:

1. a(*) = 1. No new constraint is added since the full step is feasible. The algorithm

proceeds to the next major iteration.

2. aW = a\ < 1. In this case, anew bounding box constraint becomes active. Without

loss ofgenerality, assume that ai =| j*™JJ*J |, for some net n. The constraint that
becomes active is £jj,ax > Xj. This constraint is added as an equality to A. If more

than one net constraint gives «i =| g*m*i~n' |, all of them are added to the active

set.

3. q^) < ai. In this case, a new critical path becomes active. Several constraints

corresponding to timing constraints for unique arcs of the critical path and bounding-

box equations for each unique arc become active. By Proposition 3.1.2, we can add

all the equations simultaneously to the active set.

Let ft = (va,..., ve) denote the new critical path. Let A/q C Af denote the set of nets

that form the new critical path. Let An C A denote the set of unique arcs in Dt

that he on the new critical path. For the critical path ft, the constraints that become

active are

xmax = ixj\xj = maxfc{a:jt, Vm* Gnt}}, Vrc,- GA/h

xmin = ixj\x3 = min*{arjb, Vm* Gn,}}, Vn,- GA/h

Vmax = {vAVj = maxfc{yfc, Vm* Gn,}}, Vnt- GA/h

Vmin = iVjlVj = minjfcfei V™>k e n,}}, Vnt- GA/b (3.32)
aj = ai 4- d(vi, vj) V(v,-, Vj) G An

ae = Te ve G Eq

aa = Ta va€SQ

3.2.8 Deleting a constraint

The strategy used to delete a constraint is to select the constraint with the most

negative Lagrange multiplier and remove it from the active set A. This selection is not

invariant to scaling of the variables in the problem, but since the Quadratic Program (QP)
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for placement is naturally well scaled, the strategy works well. When deleting a bounding-

box constraint from the active set, the algorithm follows the usual active set method. Since

the algorithm adds only the unique arcs, when one timing constraint is deleted, following

Proposition 3.1.2, equations for all the unique arcs associated with a path are deleted.

Again, this results in an increase in efficiency over conventional active set methods and

avoids degeneracy and the problems associated with it.

3.2.9 Finding an initial feasible point

Theoretically, the problem of finding a feasible solution for the timing constraints

is as difficult as solving the optimization problem. However a practical heuristic method

that works for almost all chips proved effective in finding an initial feasible solution. The

idea is to place all the movable cells at the same location, say the center of the chip. For

cell-based ICs, the fixed cells are usually input or output pads. Typically, the input pads

have a very low resistance (high drive capability). Likewise the cells whose outputs are

connected to output pads are also capable of driving large wire loads since they have only

one fanout. In the event that this method fails, one may resort to a Simplex-like algorithm

or a similar feasible point routine that operates on RAF's. Fortunately, the development

of better techniques during the course of this work rendered finding an initial solution

unnecessary and these techniques are the subject of following chapters.

3.2.10 Solving the Linear System Efficiently

Most of the work done at each iteration of the algorithm involves solving the

system

Q Ar

A 0

6

X

However, the standard efficient way of solving a positive definite QP is not to directly

solve the above system. Typically, the problem is solved by projecting the Hessian and the

gradient onto the nullspace of the current working set A^ [Gill 89]. Let Z^ denote a

matrix whose columns form a basis for the set ofvectors orthogonal to A (*). The projected

Hessian is Z(fc)TQZ(fc) and the step at wW in the reduced space (wj ') is obtained by
solving

zWQZWwJ**1) = -Z^V** (3.33)

r(fc)

0
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The structure of the positive definite quadratic objective function is exploited. Since the

Hessian matrix is symmetric, usually a Cholesky factorization of the projected Hessian is

maintained. Special techniques are applied to update the factorization with minimum effort

when a constraint is added to the active set or deleted from it.

3.2.11 An Example

A simple example may help to clarify the key steps involved in the algorithm.

Consider four cells connected as shown in Figure 3.4. All the cells except cell m2 have

•fig T = 2.4 sec

Resistance - 2

(a) Netlist

1.0

(b) IO pad location

1.0

Figure 3.4: Example to illustrate steps of Primal algorithm

a driving resistance of 1 unit. Cell m2 has a driving resistance of 2 units. The required

time is 2.4 units for all primary outputs and there are no sequential cells in the circuit.
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The initial feasible solution is shown in Figure 3.5(a). The initial RAF is the empty set.

The algorithm proceeds by computing a step direction at this initial solution that takes it

towards the optimal solution. However, before the entire step can be taken, a new RAF is

encountered (shown in Figure 3.5(b)). The longest step that can be taken before the new

RAF is encountered is detected by the bisection timing verification procedure described

earlier. Next, the algorithm computes a step direction (Figure 3.5(c)) subject to the

equality constraints associated with the current RAF. Before the entire step can be taken,

the cell defining the maximum x extent {xmax) of the bounding box of net n2 changes from

m4 to m3. The constraint a:J,OI = x$ is added to the active set. In the figure, the step

is displayed as a vector emerging from cells 7713 and m^. Only the x component of the

step is shown for simplicity. The algorithm steps upto the point where this change occurs

(Figure 3.5(d)) and then computes a new direction. Once again, the step of Figure 3.5(d)

is limited by the activation of a new bounding box constraint for net 2. The constraint

Vmax ~ V2 is added to the active set. A new step is computed and the algorithm terminates

at the optimal solution. Optimality is detected in Figure 3.6(e) because the Lagrange

multipliers for all the active constraints are non-negative and the computed step has zero

length.

3.3 Using a More General Delay Model

So far the second order delay effects of interconnect, namely the distributed RC

effects have been neglected. What happens to the solution technique when the second order

effects are included?

The general algorithm remains the same. However, at each iteration a quadratic

function needs to be minimized, subject to second-order equality constraints. This problem

can be converted to one of solving a nonlinear system of equations at each iteration. There

are many commonly known and highly stable techniques for solving nonlinear systems

composed of convex functions. One popularly used method that has been very successful

for other large-scale circuit analysis methods such as SPICE [Nagel 75] is Newton's Method.

The methods for determining the step length parameter a also need to be modified to

deal with second order constraints and efficient procedures exist for such computations

[Zangwill 69]. Other than increasing the computational effort, using a second order delay

model has no significant impact on the general technique presented in this chapter.
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3.4 Simultaneous Clock Tree Placement

A simple example is used to illustrate how a clock distribution network may be

placed simultaneously along with the other cells in the circuit. For the purposes of the

Latch 1 Lafch2

(Xj.yp

(^'V

delay - d Clock source
delay-db

Figure 3.7: Clock tree placement example

objective function, the clock tree nets are treated like any other net. Consider the example

shown in Figure 3.7. Let the cycle time be T for all latch-to-latch paths. In the figure,

it is assumed that there is only one path from latch 1 to latch 2, with delay <fi_2- The

intrinsic delays of the buffers are denoted by da and db. The equations that model the

timing behavior of the paths in the figure can be written as:

T > da + d{na) + di_2 - db - d{nb)

d{na) = f(xi,yuxa,ya) (3.34)

d{nb) = f(x2,y2,Xb,yb)

The delay of net ns does not appear in the expression because this delay is incurred along

the path from the source to either latch and cancels out. It is the difference in the delay

between the clock source to the two latches that is important. By writing equations in this

manner, it is possible to model a general clock network and determine a placement for the

elements of the tree.
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3.5 Conclusions

In a large scale IC the cells need to be laid on a regular grid without any overlaps

so that design rules are not violated. The algorithm described in this chapter will find

a "global" solution, i.e., one in which cells may possibly overlap. There are many tech

niques that can be integrated with the primal algorithm. For example, Tsay [Tsay 89] uses

a method of hierarchical partitioning which yields subproblems with the same structure

as the original problem. Jackson [Jackson 89] advocates adding linear constraints succes

sively. Breuer [Breuer 77] uses hierarchical partitioning to successivelygenerate smallerand

smaller problems until exactly one cell remains in each partition. While these and other

methods have been successful, the technique that was used in this work is different and

needs additional explanation before it can be introduced. For that reason, discussion of

overlap resolution methods will be relegated to Chapter 5. While the Primal algorithm

delivers the speedups it promised, it still suffers from two shortcomings. Firstly, it re

quires an initial feasible routine which may not always be trivial to find. Secondly, after

experimentation I came to the conclusion that the speed up was not sufficient to be able

to place extremely large circuits (larger than 2500 cells or about 10000 gates). The basis

for this conclusion is explained in detail in Chapter 6. The problem lies in the memory

requirements of the Primal active set method. As the algorithm proceeds, constraints are

appended to the active set and each addition requires updating sparse matrix factors. The

process of updating typically adds fUlins to the matrix and some of the sparsity is lost. For

large examples, it was observed that the matrix quickly became unwieldy and some of the

advantages of the RAF based efficient algorithm were lost. This problem may be alleviated

by reordering and refactorizing the matrix every few iterations. Unfortunately, that takes

a significant amount of time for large circuits. The succeeding chapters describe how the

techniques were substantially revised to avoid these problems.



Chapter 4

Refining the Cut

The Primal algorithm described in the previous chapter suffers from two short

comings. To summarize the concluding section of that chapter:

1. It requires an initial feasible solution that may not be always available readily. Finding

an initial feasible solution using conventional techniques like Phase-I of the Simplex

method, a Big-M method [Murty 83] or even an interior point method [Karmarkar 84]

takes a long time.

2. For large examples (2500 cellsor more), the matrix manipulation techniques required

to implement the Primal algorithm become a speed and memory bottleneck.

4.1 Some Observations

What led me to the algorithms described in this chapter? Experimentation with

industrial circuits using the Primal algorithm raisedsome interesting questions. The timing-

constrained solution was typically not drastically different (i.e., did not involve a drastic

change in cell locations) compared to the unconstrained solution. Was it possible to use the

unconstrained solution as a starting point?

Allied to this question was the fact that similar to the conventional Primal active

set algorithm, mathematical programming researchers had successfully devised Dual active

set methods that were proven to be more efficient. These algorithms started with the

unconstrained solution and did not require a feasible point. Was it possible to extend the

Dual active set methods to operate on RAF's and retain the efficiency and advantages of

63
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RAF's? Would it be possible to prove convergence as easily as in the Primal algorithm?

4.2 The General Dual Algorithm

The work of Idnani on dual active set methods [Idnani 80] was an inspiration. A

general outline of the dual active set method of Idnani is described briefly in this section.

Following that, the extensions and modifications required for the algorithm to work on

RAFs is presented.

Definition 4.2.1 A point is said to be primal optimal with respect to the constraints of a

constrained convex minimization problem if it satisfies the Kuhn- Tuckerfirst order necessary

conditions.

Definition 4.2.2 A point is said to be dual feasible for a constrained convex minimization

problem if it is primal optimal with respect to any subset of the constraints of the problem.

The dual active set method always maintains a "solved subproblem" which is dual

feasible i.e., primal optimal with respect to a subset of the constraints. The active set for

the solved problem is iteratively updated according to the following strategy.

1. Let the current solved subproblem be SP = 0.

2. Select a violated constraint, if any, say p. If there is no violated constraint, terminate;

the optimal solution has been found.

3. Let VP = SP U {p}.

4. Solve VP.

5. If VP has no solution, terminate because the feasible region is empty; othewise we

have a new solved subproblem. Let SP = VP, go to step 2.

Let n+ denote an added (violated) constraint. Let N denote the matrix ofcurrently

active constraints. The constraints are of the form:

Nx < b
(4.1)

n+x < b+
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As shown in [Idnani 80], VP has no solution if the added constraint is linearly dependent

on the constraints in the active set and the following condition is satisfied:

Condition 4.1: There exists an r such that NTr = n+ and r < 0.

Proof. Suppose z is a allowable step direction for the above constraints. It follows that z

must satisfy the following condition.

Nz < 0 , ,

n+z < 0

But n+ = rTN. Therefore,

n+z = rTNz

But r < 0 and Nz < 0 imply that n+z > 0 which is a contradiction. Therefore, there is

no allowable direction such that Nz < 0 and n+z < 0 and therefore, the subproblem is

infeasible. D

The vector r is called the vector of infeasibility multipliers. By maintaining infeasibility

multipliers as shown in [Goldfarb 83] Condition 4.1 can be checked very efficiently whenever

a new constraint is added to the active set. Note that unlike the primal method, there is a

choice of which constraint to add in the dual method.

4.2.1 Extending the Algorithm to RAF's

The general dual algorithm is very appealing for three reasons: (1) It uses the

unconstrained solution as a starting point. For the performance-driven placement problem,

it is likely to start out closer to the final solution than an arbitrary solution (like the Primal

algorithm). (2) It does not require a feasible solution. (3) It can detect infeasibility very

efficiently.

Fortunately, by modifying the general procedure, carefully selecting the added

constraints and modifying the definition of a subproblem, it is possible to prove finite

termination (without the degeneracy assumption) and solve the problem efficiently.

Definition 4.2.3 A subproblem corresponding to a reduced forest ta (RFPa) is defined

as the subproblem of GP obtained by considering the path and arc delay constraints corre

sponding to ta and ignoring all the other constraints.

Definition 4.2.4 A solved subproblem corresponding to a reduced forest ta (RFSPa)

is defined as the reduced active forest tsa and solution vector w obtained by finding
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the optimal solution for the subproblem of GP subject to the path and arc delay constraints

associated with ta, i.e., by solving RFPa>

Definition 4.2.5 In the following discussion, define a critical path Q to be synonymous

with the set of constraints consisting of timing constraints and arc delay equationsfor some

path with nonpositive slack.

The notation ta is used unambiguously to refer to both - a forest and the timing

and delay equations for arcs in the forest. The modified dual active set algorithm proceeds

as follows:

1. Solve the unconstrained problem corresponding to NLP. The current reduced forest

is ta = 0.

2. Select a path fi with negative slack, if any. If there is no such path, terminate; the

optimal solution has been found.

3. Let t'a = taU n.

4. Solve the subproblem corresponding to t'a (RFPa) to obtain tsa-

5. If RFPa has no solution, terminate because the feasible region is empty; othewise we

have a new solved subproblem. Let ta = tsa, go to step 2.

4.3 Specific Algorithm

In order to illustrate the details of the dual algorithm, the familiar case of the

quadratic wirelength model and bounding-box based net delay model is considered. Let

A(fc) denote the matrix of constraints that are active during iteration fc, i.e., A (*) denotes

those constraints that are satisfied with equality. This includes both path constraints and

bounding-box constraints for nets that lie on active critical paths. Let T^ = {Hi,.. .,11/}

be the set of active critical paths during iteration fc, i.e., the reduced active forest. Let

A/r C Af denote the set of nets that form the active critical paths. Let Ar C A denote

the set of arcs in Dt that lie on active critical paths. Let Ep and 5p denote the starting

and ending points of active critical paths. Recall that the delay along an external arc is
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expressed as a function of the bounding box of the net corresponding to that arc and the

bounding box of a net n,- is represented by the following constraints:

*£a* > *i, Vm,- G nt- (4.3)

*£*» < *i. Vm,- € n.- (4.4)

Vmax > Vi> V™* € n,- (4.5)

Vmin < Vi> V«*i € m (4.6)

Let A(*) denote the Lagrange multipliers at iteration k. Let 6X denote the computed step

direction for the Lagrange multipliers.

The flow of the specific algorithm is first described and then the important steps

are described in greater detail.

1. Compute the unconstrained minimum.

W(0) = _Q"lb

w(°) is a dual feasible point for NLP, i.e. it is primal optimal for the null set of

constraints. Set the initial active set A(°) = 0 and the initial reduced forest r(°) = 0.

Set the initial Lagrange multipliers A(0) = 0. Let the current subproblem SP = 0.

Let the iteration index k = 1.

2. Determine an RFP.

Let sq denote the slack of path SI. Select a path ft which satisfies:

sq = min Si

If ft = 0, terminate; the optimal solution has been found. Let r(*) = r(*-1) Uft.

3. Solve the RFP.

Solve thesubproblem associated with tW toobtain RFSP^k). Update A<*), X^ and
wW. During the process of solving RFP^k), it is possible that some paths may leave

r(fc). There is considerable freedom in choosing a method to solve the subproblem.

For example, one could use the primal algorithm of Chapter 3 or the general dual

algorithm described in Section 4.2 could be used. The dual algorithm is preferred

because it can detect infeasibility.
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4. Let k = k+ 1. Go to step 2.

Proposition 4.3.1 If the dual method is used to solve the subproblem of step 3, the dual

activeset algorithm defined above willfind theoptimum point in a finite number of iterations

or terminate when there is no feasible solution.

Proof. Just before step 3 of the algorithm is executed, some subproblem of the original

problem is solved because the algorithm always maintains dual feasibility. Every time that

the step is executed, the objective value increases, since it corresponds to a RFP containing

a violated critical path not in the previous RFP. Therefore, after solving an RFP we never

return to the RFP again. There are only a finite number of RFPs. The proof that solving

an RFP is a finite process is identical to the proof of finiteness of the dual algorithm in

[Goldfarb 83]. D

4.3.1 Solving an RFP

The preferred method used to solve the subproblem associated with r(fc) is the

dual algorithm. Such a "dual algorithm within a dual algorithm" can detect infeasibility in

the constraints very easily as described in the next section. The dual method for solving an

RFP proceeds as follows: Given a reduced forest rW, compute *,- the slackfor each vertex

of the reduced forest. Define

sT(w) = minis,}

Define

r(w) = min {rti|rti = x3max - x{,Vi € nj}
nj€/Vr

/(w) = min {lij\Uj = xi - xJmin,Vi 6 nj}
n,-€/Vr

ii(w) = min {uij\uij = yj,ax - j/,,Vi Gnj}

6(w) = min {6y|6y = Vi - yiin1Vi e nj}
nj*€/Vr

5T(w) represents the minimumslackin the current reduced forest. r(w) represents the most

violated right extent bounding-box constraint in the current reduced forest. Similarly /(w)
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represents the most violated left extent bounding-box constraint. tt(w) and 6(w) can be

interpreted similarly. The RFP is not solved until the following conditions are satisfied:

sJw) > 0
" (4-7)

min[r(w),/(w),u(w),6(w)] > 0

The strategy is to continue adding violated constraints until a solution is found or infeasi

bility is detected.

1. If 5T(w) < 0 then timing constraints in r are violated. The constraints to be added

to the active set are the timing and bounding-box constraints for unique arcs of the

violated path. All the constraints can be added simultaneously as per Proposition 3.1.2

of Chapter 3.

2. If sr(w) > 0 and min[r(w),/(w),w(w),6(w)] < 0 then a bounding-box constraint for

some net in ta is violated. The constraint to be added is the violated bounding-box

constraint.

3. If sr(w) > 0 and min[r(w),/(w),w(w),6(w)] > 0 the RFP is solved.

4. Compute the step directions 6w and 6X assuming the violated constraint(s) is(are)

active.

5. Compute ti the maximum step before a Lagrange multiplier turns negative. Com

pute *2, the maximum step such that the added constraint becomes active. Let

t = min(<i,*2)«

6. Apply the infeasibility test at this time, (see Section 4.3.2) and stop if the constraints

are infeasible.

7. If t = t\ drop the constraint corresponding to t\. Such a step is called a partial step

because the violated constraints still remain violated. The algorithm will try to add

them again during the next iteration. Such a step is necessary because dual feasibility

must be maintained at all times.

8. If t —%2 a constraint(s) is(are) added to the active set.

9. Update w<*), A<*), r<fc) and A**) and go to step 1.



CHAPTER 4. REFINING THE CUT 70

4.3.2 Testing Infeasibility Efficiently

Definition 4.3.1 A path is said to be feasible if there exists an assignment of locations to

the cells of all the nets along the pathsuch that the required arrival time at thepath endpoint

is satisfied.

Let ft be a single path from S to E. It is trivial to test ft for infeasibility. Let m r denote the

cell with the highest drive (smallest resistance) on ft. Let ft = {va,v\,..., vr,vr+i,..., ve}

be the sequence of external vertices occurring along ft. If at least one of v8 and ve are

movable vertices, then ft is feasible because we can then collapse all the cells to one point.

Suppose both v9 and ve are fixed cells. Place all the cells of the output nets associated

with {vSi..., vr} at the location of va. Place all the cells of the output nets associated with

{vr+i,...,ve} at the location of ve. Compute the delay of ft in this configuration. If it

exceeds the required arrival time of ve then ft is infeasible since no other configuration of

cells along ft will yield a smaller delay. When a new path ft is added to the current reduced

forest r, the procedure for testing feasibility is as follows:

1. Apply the simple feasibility test to the single path ft. If it is infeasible, stop.

2. If ft is feasible by itself and ft n r = 0 stop, because ft n r is also feasible.

3. If ft n r ^ 0, apply the second feasibility test to the constraints.

The second feasibility test is as follows. Let a+ denote an added constraint. Let A denote

the matrix of currently active constraints. The constraints are of the form:

Ax < b
(4.8)

We need to test whether there exists a vector r such that ATr = a+ and r < 0. A has

full rank (and hence so does AT) by construction. (If A does not have full rank, there is a
redundant constraint in A which can be deleted during the course of the algorithm.) The

method of determining r is to solve the linear system ATr = a+ and test if r < 0. The key

to efficiency is to solve the linear system incrementally as constraints are added to the active

set, rather than solving the entire system every time. This is done by maintaining sparse

factors ofAT and updating the factors every time a new constraint is added. [Idnani 80]
shows how to combine the sparse factors of AT and A efficiently.
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4.3.3 Speedup Obtained

A similar calculation to the one used in Chapter 3 can be used to estimate the

speedup due to operating on RAFs. Suppose a conventional dual algorithm encounters k

active forests during the course of finding an optimal solution. Let the number of arcs in a

critical path be t. Let the fraction of all the modules that lie on critical paths be /?. Assuming

that about 30% of the arcs in a critical path are unique arcs, the conventional solution

technique would take at least 0(tk) iterations, performing 0(M2) work per iteration for

the factorizations of A and AT. Hence, the work done wouldbe roughly 0(M2tk). On the

other hand, the modified algorithmwould take 0{k) iterations performingabout 0((32M2)

work per iteration. The work done would then be about 0(/32M2k) which is identical to

the expression obtained earlier.

4.3.4 An Example

Consider the example of Chapter 3 with four movable cells and two fixed cells.

The dual algorithm starts out with the unconstrained solution shown in Figure 4.1(a). The

initial active set is empty. There are two violated critical paths as shown. Normally, the

algorithm would add path 1 (the most violated) to the active set, in which case it would

terminate in one step at the optimal solution! However, for the purpose of illustration, let

us add path 2 instead. Following this, we solve the subproblem obtained by considering

only the constraints associated with path 2 and ignoring all the other constraints. This

yields the solution shown in Figure 4.1(b). At this point, the Lagrange multiplier of path 2

is positive. Note that path 1 is still violated and so we add the constraints associated with

path 1 to the active set and solve the problem. This yields a step such that if the entire step

is taken, the Lagrange multiplier for path 2 becomes negative (i.e., if the full step is taken,

path 2 is no longer binding). So, we take a partial step upto the point where the Lagrange

multiplier of path 2 is about to turn negative Figure 4.1(c). We cannot take the full step

because dual feasibility must be maintained at all times. Then we drop all the constraints

associated with path 2 and proceed to the optimal solution as shown in Figure 4.1(d). Even

when we did not add the most violated path first, the Dual algorithm takes fewer steps than

the Primal and does not involve any bounding box changes. In general too, it was observed

that the Dual algorithm typically required fewer steps than the Primal and involved fewer

bounding-box changes.
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4.3.5 A Comparison of the Dual and the Primal Algorithms

The significant advantages of the Dual Algorithm over the Primal are:

1. An initial feasible solution is not required.

2. Bisection Timing Verification is not required.

3. It can be implemented more efficiently [Goldfarb 83].

4. There is a choice of which constraint to add, unlike the primal.

5. Typically, experience indicates that the unconstrained optimal solution is "close" to

the constrained one, and the dual converges rapidly to it.

One point to be noted here is that all the advantages of operating on RAFs apply to the dual

algorithm too. Firstly, when a path becomes active, all the constraints for the unique arcs

may be added simultaneously. When a path leaves the active set as result of a partial step,

all the constraints for the unique arcs may be dropped simultaneously. Updating of sparse

factors of the constraint matrix A or AT can be done in one fell swoop for all constraints

corresponding to the unique arcs. Another important point is that the dual algorithm

converges without any assumptions on the step size. To summarize the differences between

the primal and the dual algorithm, a few features are recapitulated here. The Primal

algorithm:

• starts from a feasible solution

• produces a non-increasing sequence of objective values

• maintains feasibility at all times

while the Dual algorithm

• starts from the unconstrained optimal solution

• produces a non-decreasing sequence of objective values

• maintains dual feasibility at all times, i.e., it is infeasible with respect to the entire

set of constraints until the final step

• detects infeasibility
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1.

2.

3.

4.

1.

3.

4.

5.

Solve the unconstrained problem corresponding to HLP.
Set the current active forest to ra =0.

Select a path Q with negative slack, if any. If there is no such path, terminate;
the optimal solution has been reached. Let rA = ta Ufi.

Solve the subproblem corresponding to t'a ( RFPa)-

If RFPa has no solution, terminate because the feasible region is empty; othewise
ve have a new solved subproblem. Let ta = tsa* go to step 2.

Figure 4.2: Outline of the Dual Algorithm

Start with an arbitrary initial feasible solution and a current reduced active set
ta. Let the current cell location vector be w.

Solve the equality-constrained non-linear programming problem corresponding to the
current active forest. The solution yields a "step" or a direction from the
current location to the new location obtained by the solution. Let this step be
6vr.

Move along 6w until a new reduced forest becomes active.

Update the current RAF.

Check the current solution for optimality (using Equation 3.8. The Lagrange
multipliers are obtained as a by-product of the solution process.) If it is
optimal, stop.

Go to step 2.

Figure 4.3: Outline of the Primal Algorithm
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4.4 Conclusions and Comments

The dual algorithm avoids one of the key problems of the primal: the requirement

of an initial feasible solution. In addition, it avoids the timing verifications that were

necessary for the primal algorithm. It tends to start closer to the final solution than the

primal algorithm and in experiments, it required fewer iterations to solve the problem. This

corroborates the observations of Idnani.

Usually, fewer iterations are required and fewer fillins are created in the matrix

factors. However, the improvement over the primal is at best a factor of two or three

which is still not enough to solve very large problems. This led me to investigate methods

for solving the problem without requiring matrix factorizations which is the subject of the

following chapter.



Chapter 5

Polishing the Cut

The Primal method of Chapter 3 and the Dual method of Chapter 4 left many

problems unsolved. The developments discussed in this chapter address and solve those

issues. This chapter forms the bulk of the thesis and as a prelude to the contents, the

key features are summarized in this section. The theoretical foundation of the techniques

described here rests on an emerging method for solving very large-scale mathematical opti

mization problems that have structure inherent in them: Lagrangian Relaxation.

• The techniques are significantly faster than the Primal or Dual method. They keep

the promise of being able to automatically place circuits of extremely large size (20K

gates and more) in a short time on currently available computers.

• Degeneracy is no longer a problem.

• The slot constraints that were not addressed earlier can now be resolved in a unified

manner.

• The method works in two phases. During the first phase, continuous constrained opti

mization is performed, and during the second phase, constrained discrete optimization

techniques are applied. The transition from continuous to discrete space is gradual

and smooth.

• No initial feasible solution is required and no unweildy matrix factorizations are nec

essary. In fact, the method demands only linear memory requirements.

76
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• The method can handle convex nonlinear delay functions like those of the distributed

model described in Section 2.4.6.

To ilhistate the method the star-connected delay model is used and interconnection resis

tance effects are neglected for simplicity. First, the original problem is restated for conve

nience:

ninimize L(w) (GP)

subject to

aj > a,- + d(vi, vj) V(vt-, Vj) e A

aj < Tj Vvj 6 E

aj > Tj Vvj e s

d(viyVj) = f[XuYi) Vn.GJV

(5.1)

For the star-connected net delay model (neglecting the interconnect resistance effects), the

delay of external axe (V|,vj) can be written as:

d(vi, vj) = Ri £ [Ch\xj - Xi\ +Cv\yj - Vi\] (5.2)

Figure 5.1 shows a star connected net and the vertical and horizontal segments for the

connections.

5.1 Lagrangian Relaxation

Lagrangian Relaxation has been used occasionally in the past by economists and

operations researchers but has not found widespread use because of the difficulties involved

in getting the method to converge to a solution on general problems. However, problems

with special structure in the objective function and constraints respond magnificently to

the technique [Fisher 85]. Unfortunately, finding specialstructure requires specialinsight in

most cases. Luckily, the constrained optimization problem as stated in this thesis possesses

some very useful properties that have been exploited fully in this work. In order to give the

reader an idea of the method of Lagrangian Relaxation, a simple example is discussed.
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Figure 5.1: Example of a star connected net

5.1.1 A Simple Example

Consider the constrained optimization problem:

min (x —2)2

subject to x > 5

The obvious optimal solution to this problem is x = 5, with optimum objective value 9.

First, we rewrite the problem so that all the inequalities are of the form a < 0.

min (x —2)2 ,
(5.4)

subject to 5 —x < 0

From basic Lagrangian theory [Fisher 85] it can be shown that the problem stated above is

equivalent to the following optimization problem:

max minx L(x,ji) = (x —2)2 + /*(5 —x)
fi>0

78

(5.3)

(5.5)

where as before ft is the Lagrange multiplier associated with the constraint (if there are

multiple constraints, there is one multiplier associated with each constraint). The method

of Lagrangian Relaxation as applied to this problem is now described skeletally. The de

scription here is considerably simplified for ease of explanation and the reader should be

cautioned that several complicating details have been omitted. A more comprehensive

treatment can be found in [Shapiro 79]. The method proceeds iteratively as follows:
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1. Start with an initial value for //, say 0. (Usually one can start with an educated guess).

2. For a fixed value of //, solve the problem of Equation 5.5. For fixed \i this is an

unconstrained minimization problem (and for problems with special structure, it is

easy to solve).

3. Update // based on the solution obtained. Intuitively, n acts like a penalty on the

constraint. If the current value of fi results in a solution that violates the constraint,

it needs to be increased. If the value of fi is too high, the solution will be far from

optimal - the constraint is satisfied by a wide margin. Thus, it is possible to update fi

based on the residue in the constraint. There are many possible update methods that

will guarantee convergence of the method for convex programming problems. One

that is widely used is:

t(°) = a

ji<*+i> = max{0,/#> +#) (5-*<*))} (5.6)
*(*+i) = /?*(*)

where a is a positive constant and /? is a positive constant < 1.0.

4. Repeat steps 2 and 3 till convergence.

Let us apply this recipe to the example, with a = 1.0,/? = 1.0. The values for x and // are

listed for each iteration.

1. Solve Equation 5.5 for /z(°) = 0. The optimal solution is ar(°) = 2.

2. Minimize £(x,/x) with respect to x for fixed /if1) = /z(°) + (5 —xW) = 3. The initial

value of \i was too low and this step increases it by an amount equal to the residue in

the constraint. The solution is x^ = 3.5.

3. Proceeding in a similar manner to Step 2, we obtain fiW = 4.5, xW = 4.25.

4. /*<3) = 5.25, x(3) = 4.625.

5. /z<4) = 5.625, z(4) = 4.8125.

In the limit x converges to the optimal value of 5. In practice, there are several methods of

accelerating the convergence and for well structured problems, typically only a few iterations

are required (see further references in [Fisher 75]). For example, if we had chosen a = 2.0

the algorithm would have converged to the optimal solution in one step.
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5.1.2 Detailed Recipe for Lagrangian Relaxation

Let us now consider a detailed description of the method of Lagrangian Relaxation

for a general convex problem of the form:

min f(x)

subject to g(x) < c (5.7)

h(x) < d

where g(x),h(ar) are convex vector functions of x. The constraint set is partitioned into

g(x) and h(x). It is assumed that g(x) consists of constaints that complicate the problem

and they are termed "complicating" constraints. It is also assumed that the problem is easy

to solve in the absence of g(s). As an aside and a preview of the techniques in this chapter,

note that the wirelength optimization problem GP of Chapter 3 is very easy to solve without

the timing constraints. Hall [Hall 70] first solved it for the quadratic wirelength model and

showed that the solution corresponds to solving a linear system of equations. Later, Tsay

[Tsay 88] exploited the structure of the unconstrained problem to solve very large scale

wirelength minimization problems. The corresponding Lagrangian problem is:

max min f(x) + Xt(r(x) —c)
A>° x (5.8)
subject to h(x) < d

where A is a vector of multipliers. The most general method proceeds as follows:

1. Select an initial value for A.

2. Solve

min f(x) + AT(g(x) - c)

subject to h(x) < c

for a fixed value of A.

3. Update A.

4. Repeat steps 2-3 until convergence.

Step 3 is critical to the convergence of the algorithm, particularly for discontinuous absolute-

valued constraints like the timing constraints of Chapter 2. Step 2 is critical to the efficiency

of the algorithm. The key contributions of this chapter are efficient methods for performing

steps 2 and 3.
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5.1.3 Lagrangian Relaxation for Discrete Optimization Problems

The method of Lagrangian Relaxation is not restricted to continuous space opti

mization. It has been applied successfully by Held et. al. [Held 70],for solving the Traveling

Salesman problem. Again, exploitation of the structure of the problem is key to successful

application. Constrained discrete optimization is used to resolve slot constraints during the

second phase of the algorithm described in this chapter.

5.2 Resolving Slot Constraints

A common requirement in most cell-based ICs is that the cells lie in slots or regular

arrays. A solution of NLP will yield a "placement" that usually does not satisfy the slot

requirements. Such a placement has been called an "initial" or "global" placement. Several

techniques have been proposed to refine the global placement to produce a slotted final

result [Breuer 77, Kleinhans 91, Tsay 88, Cheng 84, Jackson 89]. The technique that is

used in this work is generalization of that proposed in [Kleinhans 91]. The key feature of

the technique is the highly efficient method used to solve the problem with slot resolution

constraints in the presence of timing constraints. The solution technique will be presented

in a later section. At this point, it suffices to assume that an efficient solution method exists

for the wirelength optimization problem in the presence of constraints.

Let rx and ry represent the coordinates of the center of the chip. First the global

timing-constrained placement problem is solved with two additional constraints:

TrZieM*i = rx (5l0)

This is termed as the "level 0" problem. These constraints ensure that the cells are spread

around the center of the chip. After this, the cells are partitioned into four equal sized sets.

This is done by first dividing the cells into two equal sized sets along the y-direction and

then subdividing each set into two subsets along the x-direction. Let the sets be So, Si, 52

and 53. Thechip is divided intofour equal-sized regions and (rj, rj) denotes the coordinate
of the center of the ith region. Now,eight centering constraints (four in the x direction and

four in the y direction) are added to the constraint set to form a new problem GPi, termed

the "level 1" problem. Figure 5.2 shows an example with four regions and the sets of cells

in different shades after the solution. (Note that some cells from one region have migrated
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into another). The eight constraints axe:

•\Sj\EieSj2i = rh i=1»-»4 (511)
jSJlEieSjVi = ryj, j =l,...,4

The effect of these constraints is to spread the cells out in the four directions. Note that

unlike many other partitioning approaches, a cell is not required to lie within its region.

A cell has freedom to migrate into any other region. This allows the algorithm greater

flexibility in minimizing wirelength while still satisfying slot constraints. It also makes the

partitioning of cells more flexible in that a cell may change partitions later in order to

reduce wirelength or satisfy timing constraints. Following the solution of GPi, the cells

axe repartitioned into sixteen sets, giving thirty two center of mass equations, and the new

problem GP2 is solved (with the timing constraints included). During the repaxtitioning,

the old partition information is not considered and new partitions axe generated based on

current cell locations. The solution and repartitioning process can be repeated to a level

of granulaxity such that one cell remains within each region. This technique can effectively

resolve the slotted array requirements of cell-based ICs. However, following this method

with a new constrained discrete optimization technique yielded significantly better results

than using this method alone. The discrete optimization will be described in a following

section. Note that the values for rj and rjf need not be restricted to uniformly distributed

centers of mass, but can be derived from the structure and location of slots on the chip.

5.3 The Continuous Optimization Algorithm

In this section, the details of the first phase axe discussed. For illustration purposes,

the quadratic wirelength and the star net delay models axe used. Some of the features of

the method axe:

• Memory requirements axe linear in the size of the problem

• The technique is iterative and very fast

• The problem can be solved to any desired accuracy

• It is generalizable to arbitrary convex delay functions

• All critical paths axe considered in a very efficient manner
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• Slot resolution constraints axe integrated in an efficient and consistent manner with

the timing constraints

• The problem is solved optimally at every level

5.3.1 Solving the Lagrangian

The specific problem for the quadratic wirelength model and the star net delay

model (neglecting interconnect resistance) with k centers of mass is restated below:

minimize L(w,) {wk)

subject to
aj > at + d(vi, Vj) V{viyVj)eA

aj < Tj Vvj G E

aj > Tj Vvj € S

d(vtii*j) = f(Xi,Yi) Vn,- Gtf

P7I Eies,- Xi = rh j= l,...,fc
l

JSJ\ St'eSj- Vi = * i = !,...,*

(5.12)

Following the notation of Chapter 3, let w represent the combined vector of cell x and y

positions and vertex arrival time variables. Let Aw < c be the matrix representation of

the timing and center of mass constraints. For the performance driven placement problem,

with the quadratic wirelength model, the Lagrangian equation can be written as:

maxmin -wTQw + bTw + Ar(Aw —c) (5.13)
A>o x 2

where Ais a vector of multipliers. For any fixed value of A, say A* the problem has a very

simple solution 1.

w(*+i) = _Q-i [A<*)A + b] (5.14)

Note that Q is independent of cell locations. Thus, at every iteration, the only component

that changes in the right-hand side of Equation 5.14 is A and the only product to be com

puted is A(*)A. This is a linear-time computation since by Corollary 3.1.2 the maximum

number of active paths is linear in the size of the timing graph. In an efficient implemen

tation, Q-1 is never computed. Since Q is positive definite, the equation Equation 5.14

1Tokeep the notation simple,it is assumed that \W refers to a rowvector, i.e., the transposition symbol
is dropped.
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can be solved iteratively using an algorithm like the accelerated Gauss-Seidel method for

solving linear systems of equations[Golub 89]. If the Gauss-Seidel method is used, at each

iteration k the previous solution w(*_1) can be used as an initial solution for rapid conver

gence. It is interesting to note that Rockafellar[Rockafellar84] shows solving Equation 5.14

is equivalent to solving a minimum quadratic cost flow problem.

5.3.2 Updating the Lagrange Multipliers

The method used to update Lagrange multipliers from iteration to iteration is

based on the subgradient method for setting dual variables [Held 74]. This technique starts

with an initial value A* and iteratively applies the formula:

A<fc+1) = max{0, A<*> + *<*)(Aw<*) - c)} (5.15)

In this formula, <(*) is a scalar step size and w(*) is the optimal solution for Equation 5.14

for A= A(fc). The components ofAw^ —c axe the slacks in the constraints. For the timing

constraints the components are none other than the vertex slacks for the cells on critical

paths. For the spread constraints, they axe the differences between the desired centers of

mass of the various groups and the actual centers of mass. The choice of tW is critical to

the success of the algorithm for two reasons: (1) it is closely tied to the linearization of

the absolute valued delay constraints and (2) it affects the convergence of the algorithm.

The procedure for computing <(*) is explained in the following subsection. The convergence

properties of such a method for updating Aare described in detail in [Held 74].

5.3.3 Computing #>

Recall that the delay models described in Chapter 2 all have equations with ab

solute valued terms in them. It is possible to convert these delay constraints to linear

constraints by using additional vaxiables as in Section 3.1.2. However, there is a more ef

ficient method that avoids introducing vaxiables. Suppose the solution is w(*). At this

solution, for all the critical paths, write the delay equations as linear equations, removing

the absolute values from Equation 5.2, switching signs wherever necessary to ensure that

all the terms axe non-negative. For example if currently x$ > X2 and there is a critical path

passing from cell mi to cell 7713, write 23 —£2, otherwise, we write x<i —x^ (see Figure 5.3).

Then, the right hand side of Equation 5.14 is updated based on this configuration and the



CHAPTER 5. POLISHING THE CUT

cell 2

9 ceI13

0«D2

cell 3

odlS

d& 3) - yc^c x§- xf) +ct( 7%- ya)l

da 3) - Rt[Ch( xB- xt ) +Ct( yf- jj]

1/
OTVBCzl •8DB

da 9 - ych<xf- xt ) +C( yf- yf)l

ccii2

Figure 5.3: Linearizing absolute valued constraints
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system ofequations is solved for w(fc+1). Next, the laxgest value of*(*) is chosen such that a

term in one of the delay equations just changes sign (i.e., is about to change from its current

configuration to the opposite one as shown in Figure 5.3). w(fc+1) and A(*+1) axe updated

according to this value of tW. This method is equivalent to the method of introducing

additional vaxiables and produces identical behavior without the expense of more vaxiables.

5.3.4 Updating the critical path set

The algorithm maintains a set of active critical paths (i.e. RAF) throughout the

algorithm. Active paths axe those whose cuxrent Lagrange multipliers axe positive. By

maintaining the set of active paths, further efficiency can be achieved since the components

of ATA need not be computed when some component of A, say A, = 0. Since not all paths

axe critical, this typically makes updating the right hand side a sub-linear procedure. In any

event, the number of critical paths required to represent the problem at any time is linearly

bounded as shown in Corollary 3.1.2. Thus, the maximum number of multipliers that axe

active at any time is linear in the size of the timing graph. Note that although the matrix

A contains all the arc equations, in a practical implementation they axe never explicitly

computed or written unless they axe required. The only axes that actually paxticipate in

updating the right hand side axe those which belong to the current set of critical paths

(RAF).

After solving for w(fc+1), a fast timing analysis on the timing graph is performed

to determine the paths that have become critical since the previous iteration. These paths

axe then added to the critical set with zero initial-valued Lagrange multipliers.

5.3.5 Computational Complexity

The flow of the algorithm is described in Figure 5.4. The work done per inner-loop

iteration of the algorithm is very little since it involves a right-hand side update which is

O(M), one step of matrix solution (assuminga direct solution method) to solvefor the new

value of w which is 0(Jlf2), computing t, which is 0(E), where E is the number of edges

in Dt, and updating the critical paths, which can be done in 0(M + JE7), Therefore, the

work done per inner-loop iteration is bounded by 0(M2). Note that the critical path set is

continuously updated as new paths become critical. For the linearized delay equations, this

procedure converges according to [Held 74, Shapiro 79]. There is no theoretical bound on
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2.

5.

6.

7.

Initialize the level /=0.

Initialize the current RAF r* = 0.

Add the spread constraints for level / to the active set. There are no Lagrange
multpliers for the timing constraints initially since ra is empty. (Multipliers
exist for the spread constraints for level 0.)

Update ATA and solve Equation 5.14.

Perform a timing verification on the timing graph Dt and update the current RAF.

Update the Lagrange multipliers for the active constraints (timing and spread). In
the formulation, there is one constraint per edge in the timing graph. Although
multiple edges in the timing graph will be added to the RAF, independent Lagrange
multipliers are not necessary for each edge. By Corollary 3.1.1 there is only one
effective Lagrange multiplier per path, since the equations for all the unique
arcs of a path have the same slack.

If the spread constraints for the current level are satisfied and there are more
levels, increase the level, and go to step 3.

If the constraints are satisfied to the desired accuracy, and the current level is
at the maximum level for the chip, STOP.

Go to step 4.9.

Figure 5.4: Outline of Lagrangian Relaxation

the number of iterations required for convergence of the inner loop, however, in practice the

number of iterations required per level was very low - 200-400 even for the largest examples

tested.

5.3.6 Extension to Nonlinear Delay Models

It is straightforward to extend the Lagrangian Relaxation algorithm described

above to a convex nonlinear delay model like that of the star-connected net with interconnect

resistance effects. Assume that an iterative method like Gauss-Seidel relaxation is used

to solve the system of equations generated at each iteration. In the case of linear delay

equations, only the right-hand side of Equation 5.14 had to be updated every iteration.

When the timing constraints axe nonlinear however, some matrix entries may also need

to be updated. The work done per iteration remains the same, although the number of

iterations to convergence usually increases.
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5.4 Resolving Slot Constraints in Practice

Although it is possible to add slot constraints as described in Section 5.2 until

exactly one cell remains in each region, using a modification of that technique results in

further improvement in timing and wirelength. The star connected net delay model is used

to illustrate the ideas.

The idea is to perform hierarchical partitioning until a few (10-20) cells remain in

each region. Following this, constrained Assignment (weighted bipartite matching) is used

to assign slot positions to the cells within each region. Consider a region 5* containing M

cells and N > M slots. A cost matrix C is set up with as many rows as the number of the

cells in the region and as many columns as the number of slots in the region. An entry C,j

in the cost matrix is the cost of assigning the cell m,- to slot Sj within region 5*. Let Z{j be

an integer variable € {0,1} that is 1 if cell m,- occupies slot Sj and 0 otherwise. Let X^- be

the x position of slot Sj and Y^ denote the y position of slot Sj. X is the constant vector

of slot a; positions and Y is the constant vector of slot y positions. The combined vector of

cell x and y positions is denoted by Wee// as before. The first M entries in Wee// correspond

to cell x positions and the subsequent M entries correspond to cell y positions. For the sake

of brevity the subscript will be dropped from Wee// in the following analysis. Let Z = [zy]

denote the M x N 0-1 matrix constructed from the assignment variables Zij. For each cell

t, the assignment vaxiables corresponding to that cell axe in row i of the matrix Z. There is

exactly one non-zero entry per row. Thus, for example ZX is the vector of cell x positions

at the current solution.

For each region, the problem can be written as:

minZijCijZij (DP)
subject to

E£i*i = 1. i=l,...,M
L&* Si, i=i,...,tf (516)
x = ZX

y = ZY

Aw < c

^j e {o,i}, Vi,i

The additional constraints Aw < c are the familiar timing (path) constraints written in

terms of cell locations. The cost of assigning a cell to a slot is the total wirelength of all the
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nets that attach to the cell. Any wirelength model can be used here and no assumptions

axe made on the mathematical pxoperties of the model. Obviously, one would use the most

accurate model available. The problem as stated above is an integer program and falls in

the class NP-complete.

5.4.1 Solving the Constrained Problem

Once again, the structure of the problem comes to the rescue. Observe that if

the timing constraints axe dropped, the problem reduces to Linear Assignment (bipaxtite

matching). Algorithms of polynomialcomplexity exist for solving Lineax assignment prob

lems [Lawler 76]. Hence, wemay view the timing constraints as "complicating constraints"

and apply Lagrangian Relaxation to the problem. Let W denote the combined vector of

slot locations:

w=[x
Y

Using this notation, we can rewrite w in terms of the assignment vaxiables as:

Let

The problem can be rewritten as:

min

subject to

Y^ z-2-rj=l ZIJ

AZX|/W

za

w =

Z 0

0 Z
w

Ziy =

LsijCijZij

<

<

Z 0

0 Z

(DP)

1, 1 = 1,.. .,M

i. i = i... ;N

c

{0,1}, Vt,i

(5.17)
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The relaxed problem is:

maxmin Eiii EjLidj*ij +i/T(AZxyW - c)

subject to

Ef=i*; =1, t=i,..., if (5-18)
E£i«u < i, i = i,...,JV
*i € {0,1}, Vi,j

This problem remains NP complete for variable v. However, by relaxing it further a tractable

formulation can be obtained. When v is fixed, the term vc becomes a constant and can be

dropped from the problem. For a fixed v consider the problem:

min t%Li EjLi OijZij +uT(AZxyw)
subject to

(5-19)
ZjLiZij = 1, i=l,...,Af
Eiii^j < 1, i=l,...,JV

Note that the integer constraints on z,-j have been dropped too. Let A have p constraints.

Then AZxyW can be rewritten as:

p M N

AZxyW = E EE(A^Xi +M,i+MYj)zij

Substituting this expression in i/^AZ^yW, we can state the problem more intuitively as:

min Zijidj + ELi «*(AkX,- + Akti+MYj))zij
subject to

J (5-2°)EjLiZij = i, t=i,...,M
EiiiZij < i, i = i,...,iv

Thus, for fixed v, the formulation is a Hnear assignment problem (or minimum cost flow or

weighted bipaxtite matching) which has an integer solution if it is feasible and it is to this

problem that Lagrangian Relaxation is applied. The flow of the algorithm is:

1. Start with an initial value of v — i/(°).

2. Solve LA for the current value of v.

3. Update the set of critical paths (i.e. A, the matrix representation of the current RAF)

and v according to i/(fc+1) = max(0, u^ + (Aw —c)).
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4. Repeat steps 2 and 3 until the constraints axe satisfied to a desired accuracy.

The relaxed linear assignment problem has an intuitively appealing interpretation. Consider

the cost of assigning a cell m,- to a slot Sj. The cost of this assignment is:

p

c'ij = Cy + £ Vk(AkiXj + Ajbtl+AfYj)

At every iteration, the cost of assigning a cell to a slot is modified by adding a term that is

derived by looking at the Lagrange multipliers of the paths. The multipliers themselves axe

derived from the path slacks. Thus, the additional cost of assigning a cell to a slot can be

derived by looking only at the paths with non-zero multipliers passing through the cell. As

the reader may recall, Corollary 3.1.2 assures us that only a linear number of paths need to

be considered in the worst case.

Unlike the continuous case, it may not be possible to obtain the exact optimum by

solving the relaxed problem in this manner. However, a solution that is close to the optimal

can usually be obtained very quickly. The term "neax-optimal" deserves some explanation.

What it means in this context is that the timing constraints may be violated by a marginal

amount depending on the level of discretization. The reason is that since the cells axe

required to lie on discrete locations, there may not be a solution where the constraints axe

satisfied exactly - there are only a discrete number of possibilities for the left-hand side of

each constraint. The amount of error in the constraints is usually extremely small and the

larger the problem size, the smaller the granularity in the left-hand side and the smaller

the violation. Note that the constraints axe not always violated. They may be satisfied by

an equally marginal amount (i.e., the error due to discretization could go either way). In

practice, the observed violation was of the order of 1-2%.

Note that any solution obtained is locally near-optimal for a region only with

respect to the connections outside the region, and does not guaxantee to minimize the

cost of connections within the region. (The timing constraints however, do represent the

correct behavior inside and outside the region). The problem could have been formulated

as a Quadratic Assignment to handle the connections within the region properly. However,

the large run time of Quadratic Assignment makes it impractical for regions with even a

moderate number of cells. For regions with fewer cells, the effect of interconnection within

the region is small, and by repeating the Linear Assignment a few times an improved

solution can be obtained. A further improvement in wirelength and timing can be obtained
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by allowing cells to migrate outside their region. This is achievedby shifting the regions in

x and y directions by half the region size at alternate iterations as shown in Figure 5.6 and

repeatingthe process until the improvement is small. Note that the absolute valued delay
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Figure 5.6: Regions of optimization axe shifted at alternate iterations

equations can be dealt with in a manner similar to the continuous case, i.e., by ensuring

that the equations axe always written with the correct signs. The flow of the slot assignment

algorithm is shown in Figure 5.7.

1. Divide the chip into a number of regions containing a lew cells.

2. Start with an initial value oi i/ = i/(°).

3. Solve LA lor the current value of v.

4. Update the set of critical paths and u according to v <k+1) = max(0, i/(*) + (Aw --c)).

5. Shift the regions of optimization. (See Figure 5.6)

6. Repeat steps 2-5 until the constraints are satisfied to a desired accuracy.

Figure 5.7: The Slot Assignment Algorithm
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5.4.2 Some Comments on the Formulation

Experiments proved the method of constrained assignment to be extremely effec

tive in reducing the wirelength while satisfying the timing constraints. The ability to use

any assignment cost, regardless of the mathematical properties of the cost function makes it

possible to include routability and congestion factors. A question that may arise in the mind

of the reader at this time is: Why not perform assignment alone and drop the continuous

space optimization altogether?

The reason is that the discrete constrained assignment is a local optimization.

Linear Assignment is 0(N2) and it would be prohibitively expensive to perform it on the

entire chip. Additionally, since the assignment formulation does not model interconnection

costs within the region, it would not work well for large sized regions. It works best for

small regions and does local cell placement effectively. Thus, the first phase provides an

excellent initial solution for the second phase.

5.5 Input/Output Pad Assignment

Further improvements in delay and wirelength can be obtained by reassigning

the input and output pad locations on the boundaxy of the chip. This assignment can

be performed by using the Linear Assignment technique described in the previous section

to the inputs and output cells. However, the problem may be solved in a way that makes

constrained assignment unnecessary. The idea is to keep the core of the chip (cells within the

boundaxy) fixed during this procedure. First, the primary outputs are assigned to slots on

the boundaxy, setting the cost of a slot to co if assigning the output pad to that slot violates

a timing constraint. If the slot is feasible, the cost is the wirelength of the nets attaching to

that pad. Following this, the primary inputs axe assigned to the remaining slots in a similar

manner. This procedure may be iterated a few times to improve the solution obtained.

Recently, Chaudhaxy and others [Chaudhaxy 91] have developed successful methods for

pad placement which could be used in place of the basic procedure described here.

5.6 The Complete Algorithm

The flow of the algorithm is shown in Figure 5.8. The entire algorithm may be

repeated several times if necessary.
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1. Determine number of levels of spread based on chip size/topology

2. Apply the algorithm of Figure 5.4

3. Apply the Algorithm of Figure 5.7

4. Optionally, perform input and output pad assignment on the chip boundary

Figure 5.8: The complete placement algorithm

5.7 Practical Considerations

So fax, the analysis has assumed that all the cells axe of a similar size. Most cell-

based ICs (standard cell, gate array and sea-of-gates) axecomposed of cells whose sizes vary

in both the x and y dimensions. It is possible to accomodate cells of different sizes during

the assignment phase of the algorithm. To illustrate the flexibility of including a variety of

constraints in the algorithm, let us consider the specific example of placing standard cells.

Standard cells are characterized by their uniform height but non-uniform width. If used

unmodified, the algorithm of Figure 5.8 will result in a placement into rows of cells with

different row widths as shown in Figure 5.9. This results in considerable "dead axea" or

wasted space. The problem can be solved by adding a row width constraint on each row.

Let nr be the number of rows and r,- be the width of row i. Let v,- represent the width of

cell m,\

The constraints to be added axe:

|rt- - r\ = 0, i = i,..., nr (5.21)

™«v.*^ . — "jr1 v* is the average row width. The anient width ofarow is the sum ofall the
widths of all cells currently in that row. These constraints may be dealt with in a similar

manner to the timing constraints during the discrete assignment phase of the algorithm.

A multiplier m is associated with each constraint (or conceptually, with each row). These

multipliers can be transferred to slots, i.e., the multipHer for a slot s j is denoted by \ij and

is the multiplier for the row in which the slot is located. The modified Lagrangian can be



CHAPTER 5. POLISHING THE CUT 97

WH44H4M!WJTOlHitaWJ4HHW!4MhH-M|

Figure 5.9: Uneven row widths in standard cells results in dead area

written as:

min Eij[cij + £jt=iI'*(A*»xi + Ak,i+MYj) + fijK^]zij LA
subject to

EjLi^ij = 1, t=l,...,AT
EiiiZij < i, i = i,...,JV

(5.22)

where R,j = «,-, i.e., the width of cell m,-, Conceptually, to the wirelength and timing cost

of assigning a cell to a slot, one must add the product of the multiplier of the row in which

the slot is located and the width of cell. Intuitively, this tends to have the following effect:

Rows that exceed the target width have a positive value of //,- and cells are penalized

for being assigned to that row.

Rows that are shorter than the target width have a negative value of /i,- and the cost

of assigning cells to those rows is reduced.

When assigning cells to a row that exceeds the requirement, a wider cell is penalized

more than a narrower one.
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l.

2.

3.

4.

5.

6.

7.

Divide the chip into a number of regions containing a few cells.

Start with an initial value of v = v (°) and fi = /j(°) .

Solve LA for the current value of v and \i.

Update the set of critical paths and v according to i/(*+1) = max(0, i/(*) + (Aw —c)).

Update the row widths and fi according to the new row widths.

Shift the regions of optimization. (See Figure 5.6)

Repeat steps 2-6 until the constraints are satisfied to a desired accuracy.

Figure 5.10: The Modified Slot Assignment Algorithm

• When assigning cells to a row that is shorter than the requirement, a wider cell is

preferred over a narrower one.

Hence, the mathematical theory has a intuitive and natural interpretation behind it. The

modified assignment algorithm is shown in Figure 5.10.

5.8 Conclusions

The techniques in this chapter brought the seaxch for an effective performance-

driven placement algorithm to a close. Lagrangian Relaxation offers a powerful method

for controlling the tradeoff between the system cycle time and wirelength. Armed with

this tool and assisted by some insight into the problem structure, several theoretical and

practical issues axe resolved in this chapter. Firstly, the techniques axe capable of solving

extremely laxge problems, and as experimentation showed, the problems could be solved

in a short time. Secondly, the elusive slot constraints are effectively integrated into the

solution technique. The next chapter discusses the results of implementing these techniques

in a software package for performance-driven placement called RITUAL.



Chapter 6

Experimental Results

This chapter describes the results of a series of experiments conducted on the

algorithms described in this work. The experiments culminated in a software system for

performance-driven placement of large-scale ICs called RITUAL.

6.1 The Primal and Dual Algorithms

A program that implements the primal and dual algorithms for the solution of

GP has been developed. It uses complete LU factorization [Golub 89] at every iteration to

solve the linear system rather than complex and efficient schemes ([Gill 89]) for updating

the factors. To illustrate the speed-up in computation time obtained even with a simplified

implementation, the program was tested on a 210 cell industrial example that is part of

the control logic for a 4-bit microprocessor and a 1418 cell gate-array. The results axe

compared against an industrial Quadratic Programming (QP) package and the published

results of Jackson in [Jackson 89]. For the primal algorithm, an initial feasible point was

found using the Simplex method. The initial feasible solution took 400 sec for exl and 9

hours for ex2 using Phase I of the Simplex method. (Note that the dual algorithm does

not require an initial feasible solution.) In the 210 cell example the speed-up obtained by

the dual algorithm over standard QP is a factor of 10, while in the 1418 cell example the

speed-up is substantial. After 10 hours of running, the standard QP package had not found

the optimal solution for the 1418 cell array and it was terminated, while the dual algorithm

found the optimal solution in about 7 minutes of CPU time. The increase in speed over the

method of [Jackson 89] is about 20 times.

99
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Ex cells nets nets

on CP

Primal Dual QP

exl 210 170 59 430s 8s 850s

ex2 1418 1161 133 9hrs 7min >10hrs

Table 6.1: Results of a prototype implementation of the primal and dual methods

Example %improvement
in wire delay

%increase in

Quad, wirelen
exl 50% 3%

ex2 5.5% 0.07%

100

Table 6.2: Improvements in quadratic wirelength

The improvement in wire delay is 50% for the 210 cell example with only 3%

increase in quadratic wirelength over the unconstrained placement while for the 1418 cell

example, the dual and primal methods were able to obtain a 5.5% improvement in wire

delay with an increase of only 0.07% in quadratic wirelength. The results axe shown in

Table 6.1. Note that the primal and the dual algorithm make the same improvements as

expected, since the problem GP has a unique global minimum.

While these increases in speed axe substantial, I concluded that they are insuffi

cient to break the 20K cell barrier. The reason is that the matrix factorizations can be

conservatively estimated to be 0(M2) (see Chapter 3). Thus, a rough estimate of the time

for obtaining a solution of GP using the dual algorithm for a 20K cell problem is 1372

minutes or about 23 hours! Upon considering that a solution of GP does not resolve cell

overlaps, it is clear that the primal and dual methods axe inadequate. This discouraging

conclusion spurred the quest for better methods - those of Chapter 5.

6.2 RITUAL

6.2.1 Overview

RITUAL is a software package that incorporates the techniques of Chapter 5. The

inputs to the package axe:

• A sequential or combinational circuit in the form of a netlist,
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• A library that defines the timing and physical characteristics of the cells,

• A description of the topology of the chip and the layout of the slots and,

• Specifications of the required arrival times at the primary outputs and latches and

actual arrival times at the primary inputs.

RITUAL operates in two phases. The first phase uses Lagrangian Relaxation to solve

the problem GP, including "spread" or center of mass constraints. The center of mass

constraints axe derived from the locations of slots on the chip and the topology of the chip.

The first phase is applied until a few cells (15-30) remain in each region of the hierarchy.

Following this, the second phase of placement is applied. The second phase implements

constrained linear assignment in buckets of regions as described in Section 5.4. Finally, if

desired, the placement of input and output pads can be performed on the boundaxy of the

chip. RITUAL can be operated in two modes: wirelength and timing. In the wirelength

mode, wirelength optimization is performed without regard to the timing constraints, while

the timing mode attempts to satisfy the timing requirements while minimizing wirelength.

A sequence of placements obtained during the course of RITUAL is shown in Figures 6.1 -

6.5.

6.2.2 Models Used

During the first phase, the quadratic wirelength model of Section 2.3.2 is used.

During the second phase, the more accurate single-trunk Steiner tree model of Section 2.3.4

is used.

The timing model used in RITUAL is a first order estimate that neglects the

interconnect resistance effects. Provisions axe built into the softwaxe package to enable

the use of a non-linear model if necessary. The timing model takes cell logic function

(inverting/non inverting) into account and for each path, it computes the delay times of

rising and falling waveforms. During the first phase, the stax-connected net delay model of

Section 2.4.5 is used and during the second phase, the single-trunk Steiner tree delay model

of Section 2.4.5 is used. The matrix solution technique used in RITUAL is the Gauss-Seidel

iterative method as described in [Golub 89, page 507].

In order to quantify the results, RITUAL was compared to an industrial quality

placement package- TimberWolf(Version5.6x) [Sechen 88b]. TimberWolfis a sophisticated
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Figure 6.1: Level 0
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placement tool that uses simulated annealing for the placement of cell-based ICs and has

been proven to yield layouts of excellent quality in the CAD industry.

6.2.3 Results

A popular set of sequential and combinational logic benchmarks from the Micro

electronics Research Center of North Carolina[MCN 88] was used to rate the program. The

logic functions of the benchmarks were optimized using the systems misll [Brayton 87] and

sis [Sentovich 91] and mapped to the MSU standard-cell library. There were compelling

reasons for using the logic benchmarks:

• Detailed timing information was available for the library cells

• The logic information which is essential to model the timing behavior correctly was

readily available for the logic benchmarks

• It was possible to experiment with various modes of logic synthesis and investigate

the effects of high level optimizations on performance-driven placement

• The benchmarks include combinational and sequential circuits and axe accepted in

the reseaxch community

OCTTOOLS packages [Spickelmier 88] were used to perform the global and de

tailed routing where possible. Due to limitations on the size of the examples that OCT

TOOLS could handle on the available computers, only some of the examples could be

completely routed. Standard area-based globaland detailed routing tools were used and no

net criticality information was passed to the routers. This ensures that any performance

improvements axe solely due to the placement of the circuits. No 10 pad optimization was

done and both RITUAL and TimberWolf were given identical 10 pad locations.

Table 6.3 compares the two modes of RITUAL with TimberWolf. The column

labeled WL denotes the single-trunk Steiner tree wirelength normalized to the wirelength

mode of RITUAL (i.e., taking the wirelength mode of RITUAL as 1.00). The delaynumbers

axe in nanoseconds and the delay for the longest path is shown (i.e., all paths on the chip

have a delay less than the number shown in the delay column). The delays axe based

on a single-trunk Steiner tree estimation of net sizes. The wirelength mode of RITUAL is

comparable to TimberWolf and the timing mode consistently improves on the delay in every
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example. The average delay improvement is 13%over the RITUAL wirelength mode as well

as over TimberWolf at the average cost of 7% in wirelength over RITUAL in wirelength

mode and 3% over TimberWolf. Note that the improvement in the wire delay component

is of the order of 20-40% because for these examples, the cell delays account for about 50%

of the total delay.

The timing improvements shown in Table 6.3 axe not the best possible improve

ments. Even further delay improvements axe possible on most examples at a greater expense

in wirelength. The results shown axe what I believe represent a fair tradeoff between wire-

length and delay. Any further increase in wirelength would possibly offset the gains made

in delay.

Figure 6.6 compaxes the CPU time of RITUAL in wirelength and timing mode

to TimberW61f5.6. In the figure, second order "best-fit" curves axe plotted. The run time

of RITUAL increases linearly with example size while TimberWolf shows a superlineax

behavior. The speed increase over TimberWolfon the larger examples is about 10-15 times.

Figures 6.7 and 6.8 axe the placements produced by RITUAL on the example C2670 in the

wirelength mode and timing mode respectively. In the figures, the longest path is shown by

means of a thick line and the dotted lines represent fanout cells of nets along the longest

path. A closer look at the figures will reveal that RITUAL has two effects on the path:

1. It tends to "straighten" the path

2. Cells belonging to nets on the path axe brought closer to each other in order to reduce

the net capacitance

The display of other paths in the circuit has been supressed for clarity.

6.2.4 Results After Routing

Table 6.4 shows the results for some chips after complete routing using the OCT

TOOLS routing packages. The average delay improvement over RITUAL in wirelength

mode is 5%, while over TimberWolf, it is about 7%. The chip area increases by only 4%

over RITUAL in wirelength mode and 2% over TimberWolf. Why axe the results not as

substantial as those before routing?

• No special global and detailed routing tools were used
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Figure 6.7: C2670 after placement by RITUAL in wirelength mode
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Chip cells RITUAL TW5.6

Wire Time

WL Delay WL Delay WL Delay

C2670 590 1.00 24.36 1.11 21.70 1.00 24.72

C3540 1254 1.00 47.98 1.08 44.06 1.00 50.39

C5315 1381 1.00 36.26 1.08 31.64 1.02 34.19

C6288 1945 1.00 118.60 1.15 111.50 1.07 124.5

C7552 2150 1.00 52.98 1.06 44.65 1.00 53.51

s9234 2748 1.00 39.80 1.05 31.31 0.94 35.87

S13207 4267 1.00 53.10 1.00 43.37 1.32 51.46

S15850 4981 1.00 57.64 1.00 50.96 0.94 62.40

Average - 1.00 1.00 1.07 0.87 1.04 1.00

Table 6.3: Results of RITUAL before routing

Chip cells RITUAL TW5.6

Wire Time

Area Delay Area Delay Area Delay

C2670 590 1.00 26.80 1.01 25.20 1.06 26.50

C3540 1254 1.00 50.70 1.05 48.50 0.94 50.50

C5315 1381 1.00 37.20 1.06 35.50 0.97 38.10

C6288 1945 1.00 132.70 1.00 130.00 1.00 135.50

C7552 2150 1.00 55.00 1.00 52.10 1.07 58.70

Average - 1.00 1.00 1.04 0.95 1.01 1.02
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Table 6.4: Results on some chips after routing

• The OCTTOOLS packages ([Rudell 88]) tend to move the IO pads to improve the

routability and this changes the timing behavior of the resulting circuit

• The examples axe the smaller ones. Large examples have a greater improvement before

routing and axe expected to retain the improvement after routing

6.3 Conclusions

The experiments demonstrate that it is possible to make significant improvements

in delay at little or no expense in chip area by modifying the placement alone!. The

improvements axe expected to be even better if timing-driven routing tools axe used. The
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CPU time for obtaining these results is small. Even the largest example with about 5000

cells takes 15 minutes using RITUAL in wirelength mode and 30 minutes in timing mode.

The memory requirements of RITUAL axe linear in the size of the circuit and the CPU time

also appears to be linear as shown in Figure 6.6. The wirelength quality of the results axe

compaxable or better than those obtained using simulated annealing and the delay results

axe consistently better. These results can be obtained in a fraction of the time taken by

simulated annealing.



Chapter 7

Skew Optimization

7.1 Introduction

The key determinant of performance is the cycle time ofa system. Keeping all other

factors constant, a decrease in the cycle time results in an increase in the throughput, i.e.,

a decrease in the time taken to perform a computation. This chapter presents a practical

approach for optimizing the clock period subject to physical and electrical constraints.

Given a set of interconnected logic blocks that comprise a system, block delays, interconnect

delays between blocks, latch delays, locations of the blocks on some package and locations

of synchronizing elements (latches) that define the temporal boundaries between blocks, the

formulation allows the designer to determine the smallest clock period and simultaneously

constructs a clock tree. The clock tree is hierarchical and contains programmable delay

elements.

In reality, the logic block delays axe random vaxiables whose distributions can be

characterized using historic data. The commonly used approach to deal with variable delays

is to increase the cycle time by some fixed percentage according to some rules of thumb

or perform worst-case analysis while constructing a clock tree [Mijuskovic 87, Boon 89,

Friedman 86, Kung 82, Fisher 82, Dhar 84, Gura 87, Fishburn 81]. However, this may not

be the best approach in terms of the reliability-cycle time tradeoff and in some sense, may

be overly conservative. For a competitive design that pushes technology to the limits, an

improvement in the performance can be optimal often at the risk of system failure. The

formulation can take these variations into account and determine the smallest clock period

that satisfies a specified reliability value for the system. It is also capable of determining

114
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the most reliable system configuration for a given clock period. In addition, it is possible

to add a vaxiety of practical constraints for example, constraints that limit the number of

clock pins and still solve the problem efficiently.

Typical systems which are amenable to such optimizations involve multi-chip mod

ules and high-performance packaging configurations such as thermal-conduction modules.

The optimization techinques discussed here can be applied hierarchically at various levels,

i.e., at the chip level, within packages comprised of chips and within caxds comprised of

packages.

Gate-level description

Figure 7.1: Figure showing the role of clock skew optimization



CHAPTER 7. SKEW OPTIMIZATION 116

7.2 Skew Optimization

7.2.1 Physical Model

For explanation purposes, consider the physical model of a multi-chip module;

the techniques can be applied to other hierarchical systems. The system is assumed to

be composed of interconnected chips. The input specification consists of chip description

netlists that specify for each chip, the netlist internal to the chip, delays though the cells

internal to the chip, delays in the interconnect between cells, synchronizing element setup

and hold times and wiring delays between chip clock pins and each synchronizing element.

In addition, the interconnections across chips and their associated delays axe also described

by means of inter-chip netlists. An example of a multi-chip module is shown in Figure 7.2.

For the purposes of simplicity, a single phase clock is assumed. The techniques are easily

extensible to the case of multi-phase clocking schemes.

7.2.2 Timing Model

A model for detecting clock hazaxds was presented in [Kogge 81] and a model

for optimizing skew was presented in [Fishburn 81]. The synchronous digital system used

in these models consists of blocks of combinational elements separated by edge-triggered

latches. The set of latches is denoted by L = {/i,.. .,/„}. Let T denote the clock period.

The circuit can be modeled as a synchronous communication graph G containing n vertices,

one for each synchronizing element (henceforth also called a latch). There is a directed edge

between vertex i and j if at some time during the clock cycle, there is a combinational logic

path from latch /,- to lj. Each edge has weights Dy and dtJ- which denote the largest and

smallest combinational logicdelays between latch /,- and lj respectively. The setup and hold

times of a latch, /;, axe denoted by tsETUP i and tuoLDi respectively. The programmable

delay from the clock source to the latch /,• is denoted by Si. This delay is known as the clock

offset for that latch.

Such an abstract communication graph may be easily constructed by a timing

analysis on the physical model presented in the previous section, tracing the longest and

shortest paths in a depth first manner.
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Figure 7.2: An example of a clock distribution network on a MCM
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7.2.3 Formulation

The optimization problem can now be formulated. The first constraint concerns

double clocking. It states that the signal from latch /,- to latch lj through the fastest path

should not race through the circuit before the end of one clock period. The equation can

be written as follows:

Si + dij > Sj + tHOLDj, V(t,i) € G. (7.1)

The second equation concerns zero clocking, i.e., the slowest signal from latch /,- to

latch lj should not arrive at latch lj later than the end of one period. The corresponding

constraint is:

Si + tsETUPj + Dij < Sj + T* V(t, j) GG. (7.2)

Frequently, there may be constraints on the minimum and maximum achievable programmable

delay.

Si > Amtn (7.3)

Si < Amax (7.4)

The optimization problem may be stated as follows:

Find the smallest clock period T such that equations 7.1, 7.2, 7.3 and 7.4 are satisfied.

V : minimize T

subject to

Si + dij > Sj + tnoLDj, V(iJ) €G (7.5)

Si + tsETUPj + Dij < Sj + T, V(i\j) GG

&min S *t S ^max

Figure 7.3 shows an example of a communication graph and the associated vaxiables.

7.3 Practical Considerations

The above basic formulation is impractical because of the following issues:

• It requires every latch in the system to have a programmable delay line from the clock

source.

• All values of offsets may not be achievable in practice.



CHAPTER 7. SKEW OPTIMIZATION 119

Latch j

o (] programmable effect

Clock Source

Figure 7.3: A synchronous communication graph
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• There may be constraints that limit the total number of different clock offsets, on a

per-chip basis and/or across the whole system.

• The specified delays for the cells within chips, inter-cell and inter-chip connections may

be subject to random variations among different instances of the multi-chip modules

due to manufacturing differences and uncontrollable operating conditions.

In contrast to [Fishbum 81] and previous work, this work presents a new approach to clock

skew optimization that considers all of the above constraints. Specifically, by the application

of the techniques described in this chapter, cycle time optimization can be performed under

one or more of the following constraints:

1. The specified delays axe deterministic constants, OR, the specified delays axe subject

to random variations due to external and internal uncontrollable influences. For the

variable delay case, it is assumed that Dij and dij axe random vaxiables with some

known probability distribution functions.

2. Every latch in the system has a unique clock line. The optimization problem under

this set of constraints is termed the free mode of optimization since each latch is "free"

to have an independent offset value.

3. Every chip has one clock pin. (compressedmode).

4. Chips can have more than one clock pin but the number of clock pins available per

chip is prespecified. (cluster mode).

5. The total number of different clock offsets in the system is prespecified. Some chips

may have a limited number of pins while others may have no restriction. The technique

will automatically distribute the total number of available clock offsets while satisfying

the requirements of the chips with limited clock pins and minimizing the clock period.

6. A hierarchical clock tree with adjustable offset elements at various levels in the tree

may be given. The technique will find assignments for the offsets at all the levels of

the tree subject to any of the above constraints. (2-Ply mode.)

7. Discrete values of clock offset which axe multiples of some basic offset unit may be

required. The technique can be applied to this case subject to any of the above

constraints, including a hierarchical clock tree, (integer mode.)
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8. In many systems, copies of a chip axe used in several subsystems. The constraint on

the copy chips is that they must have identical internal clock trees and number of

clock pins. The algorithm can satisfy this requirement.

9. Within a chip, because of physical layout reasons, it may not be possible for some

latches to have the same value of clock offset. The technique is capable of solving the

cycle time optimization problem subject to this constraint.

A significant feature of the approach is that the modes described above axe not mutually

exclusive, i.e., the constraints can be simultaneously applied.

7.4 Algorithms

In this section, several new algorithms that axe used to implement the techniques

axe presented.

7.4.1 An Efficient Algorithm for Solving V when Delays are Deterministic

V may be solved efficiently using graph-based algorithms as follows. A lower bound

on T is easily obtained as:

Tmin = max{0,min(Aj - Amoar)}
u

An upper bound on T is:

The algorithm is:

Tmax = max{Dij}
*3

1. Perform a bisection search on the values of T between Tmax and Troin to find the

minimum feasible period. This is possible because if a clock period T\ is feasible

(infeasible) then any clock period T2 > T\ (T2 < T\) is also feasible (infeasible).

2. Test each T, obtained during the bisection search for feasibility using the Bellman-Ford

algorithm [Dreyfus 69].

Proposition 7.4.1 The problem V canbe solved in using 0(\og(Tmax—Tmin)n3) operations
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Proof. Let T denote the following problem:

For a given fixed constant To, find a feasible solution to

Si + dij > Sj+ tHOLDj, V(t,i) €G

Si + tsETUPj + Dij < Sj + To, V(t, j) GG (7.6)

Amin < 6$ < Aroax

Let F1 be the following problem: Find a feasible solution to

Si + dij > Sj+ tHOLDj, V(», j) GG

ft + tsETUPj + A; < Sj + T0, V(i,j) GG (7.7)
Si - Sj < Amax - Ami„,Vt,j

Let 5 = {#i,... ,£„} be any feasible solution to T . Let

Smin = min{6j}

Clearly, Sj - Smin < Amax - Amin,Vj. Define 5 = {^ - tfmt-„,...,6n- Smin}. It can be

easily verified that 5 satisfies all the constraints of T. Also, any solution to T trivially

satisfies T . Therefore, ^ and !F axe equivalent. Note that fox a given fixed clock period

To, all the inequalities in T' have the form:

Si - Sj < Cij

where ctJ- axe real numbers. A system of inequalities in which all the equations have this

form can be checked for feasibility and solved very efficientlyin 0(mn) time, where m is the

number of inequalities and n is the number of vaxiables, using the Bellman-Ford algorithm.

Thus, the complexity of the abovealgorithmis 0(log(Tmax —TTOin)n3). Leiserson and Saxe

have shown in [Leiserson 88] that even the mixed-integer version of the above form can be

solved efficiently. D

7.4.2 Stochastic Delays

For simplicity of explanation, in this and following sections, it is assumed that the

hold and setup times tHOLD and tsetup axe included in the delays Dij. In a practical

system, the delays Dij axe not fixed values for that particular system. There may be
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variations in Dij and dij due to processing, temperature, signal variations and other sources.

Dij and dij axe assumed to be random vaxiables with some known probability distribution

functions.

The stochastic optimization problem may be stated as:

VI: minimize T

subject to
(7.8)

*™WT(.j)€g{(*< + d» * 6>) fXft + Dij < Sj + T)}] > a
Ami„ < Si < Aroax for %= 1,..., n

where a G (0,1) is the desired reliability level for the system.

For the purposes of discussion, let us introduce additional vaxiables in the problem

as follows:

VI: minimize T

subject to

Pr°blCl{ij)eG{(*ij +dij >0) f](xij + Dij < T)}] > a (7.9)
Xij = Si - Sj V(i,j) GG

Ami„ < Si < Amax for t = 1,..., n

7.4.3 Computational Strategies

There axe several options available for solving the problem VI. The first is to

impose penalties on the violation of the probabihstic constraints. For example, instead of

minimizing T subject to the timing constraints, one can minimize the following objective

function:

T+ {£log[l - *&-««)] +log[f*(T - *«)]}'
*,j

subject to

xij = Si-Sji V(iJ)£G

Amin < Si < Amax for t = 1,..., fl

where F}j is the probability distribution function associated with dij and Ffj is the distri
bution function associated with Dij. dij and Dij axe assumed to be independent random
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variables. This objective function is nonlinear and may not be easy to optimize, since it is

not separable.

Converting the probabihstic constraints to deterministic ones is the second option

considered. Since Dij and dij involve random variables on the same arc, we make the

following simplifying assumption:

Dij - dij = 7,-, + fiijDij

where 7,j and /itJ- axe non-negative constants. As suggested by Prekopa [Prekopa 88], one

technique is to convert the chance constraints into equivalent deterministic ones. The

deterministic constraints would have the form:

II Prob[Dij <T- Xij f| Dij <(T- 7y)//*«] > a

Prekopa shows that the left hand side of this constraint is logconcave under the

assumption A: Dij has a logarithmic concave distribution. This can be used to demonstrate

that the constraint set is convex. The above constraint could be replaced by:

J2 mln{log(Prob[Dij <T- Xij]),log(Prob[Dij < (T - 7ij)/»ij])} > log a
(*\j)€G

The well known sufficient condition for the concavity of a function of the form:

£iog*H*.)

where Fi is a distribution function is that there exists 0 < p < 1 such that fi(x)* the

density function, is nonincreasing for x > x(pi). x(pi) is the p.-'th fractile. Define the set of

functions

p = {jP(x)|3 0 < p < l*F(x) is nonincreasing for x > x(p)}

Let

po = max(pi)
»€/

Then, S,-€/Log Fi(zi) is concave for all Zi when

For all symmetric unimodal distribution functions Fi G p, po = 0.5 [Kambo 84]. However,

there is no known suitable linearization strategy for dealing with such a constraint.

The actual strategy chosen to efficiently solve the stochastic optimization problem

involves maximizing the reliability and is discussed in the next section.
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7.4.4 The Solution Approach

The strategy used is to maximize the probability of satisfying all the constraints

for a given fixed clock period Tq. After conversion, the optimization problem takes form:

V2 : maximize ^{iJ)€Glog(mm(Prob[Dij ^ (To - lij)I^Prob[Dij < T0 - Xij]))
subject to

x^ = Si - Sj V(i,j) GG

Amin < Si < Amax for i = 1,..., n
(7.10)

Problem V2 is shown to be equivalent to VI. Because of the simple structure of the problem,

the maximization problem turns out to be a separable convex optimization problem subject

to totally unimodular constraints under the assumption A. Thus, efficient polynomial time

algorithms exist for solving such a problem [Hochbaum 89].

Proposition 7.4.2 VI *> V2 when the distribution functions of the logic delays are in

creasing in T

Proof. Instances of VI will be written as Pi(oc) and of V2 as P2(T). For simplicity of

presentation the optimal solutions as written as:

Pi(a) = r

P2(T*) = a*

Let the realized probability of satisfying the constraints in VI at T* be ct\. If a\ > a*,

a* cannot be optimal for V2, which is a contradiction. If ai < a*, we can reduce T* in

V2 until P2(T*) = ai under the assumption that the distribution functions axe continuous.

This leads to a contradiction, because in this case T* cannot be optimal for VI. So, ct\ = a*.

Can

Pi(am) = T*

P2CO = a*, and T 5* T*?

If T < T* we have a contradiction. If T > T*, let (x}j) be the solution to VI. Then, if we
substitute the values (x}j) into the objective function ofV2, we get

II Prob[Dij < min(r - *?,-, (T - 7.;)M;)] > <**
(«J)€G
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since the distribution functions axe non-decreasing and continuous. This leads to a con

tradiction, unless the rehability achievable has reached its upper limit. So in the region of

interest T = T*. •

Proposition 7.4.3 The constraint set ofV2 is totally unimodular

Proof. Consider

xij-Si + 6j = 0i V(iJ)eG

The submatrix of the constraints corresponding to all the x^s is an identity matrix. The

columns corresponding to Si axe that of a node-axc incidence matrix. So the constraint set

is totally unimodular (see [Lawler 76]). D

Now, we have two algorithms for solving the cycle time optimization problem:

• Graph based approach for deterministic delays. (Method A)

• Stochastic optimization approach for non-deterministic delays. (Method B)

7.4.5 The Clustering Algorithm

This clustering algorithm finds natural groupings of latches within a chip in. a

manner that attempts to minimize the increase in the cycle time as a result of the grouping.

The algorithm may be applied iteratively to effect a reduction in the number of distinct

clock lines that axe required for each chip. Note that global paths throughout the system

axe considered simultaneouslywhen solving the optimization problem. The pseudo-code for

the clustering algorithm for the case when every chip has a hmited number of pins is as

follows:

1. Solve the optimizationproblemusingMethodA or B to determine the values ofoffsets

for each individual synchonizing element in the system

2. For each chip, group latches that have the same value of clock offset

3. repeat

(a) For each chip that exceeds the pin requirements
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i. Find a pairof latches (or pair of groups of latches)whose grouping affectsthe

estimated cycle time the least. Let Si and S2 be the offsets of the two latches.

An estimate of the effect on the cycle time as a result of the grouping may

be found by examining the edges incident to both the latches and computing

the cycle time resulting from assigning the offset Si to both latches and the

cycle time resulting from assigning the offset 82 to both latches and taking

the smallest of the two cycle times.

ii. Assign a common clock offset variable to all latches in a group

(b) Solve the optimization problem in the reduced number of vaxiables

(c) Until the pin constraints axe satisfied

The algorithm terminates because at every iteration, the number of distinct clock

offsets per chip is reduced by at least one. In the case when a total number of allowable

distinct clock offsets is given and some chips have a limited number of clock pins, the

following algorithm is applied:

1. Solve the optimization problem (using Method A if the delays axe deterministic and

Method B if they vary) to determine the values of offsets for each individual syn-

chonizing element in the system

2. For each chip, group latches that have the same value of clock offset

3. Let Nc be the total number of chips. Let M be the total number of available clock

offsets. Let pi denote the requirement on the number of pins for chip t. If a chip

j does not have any specifications, pj = 0. Let Ma be the total number of offsets

actually available, i.e., Ma = M - ££If0Pt.

4. repeat

(a) For each chip t such that pt- > 0 and i exceeds the pin requirements

i. Find a pair of latches (or groups) whose grouping affects the estimated cycle

time the least. Let Si and S2 be the offsets of the two latches. An estimate

of the effect on the cycle time as a result of the grouping may be found be

examining the edges incident to both the latches and computing the cycle

time resulting from assigning the offset <$i to both latches and the cycle time
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resulting from assigning the offset 62 to both latches and taking the smallest

of the two cycle times,

ii. Assign a common clock offset variable to all latches in a group

(b) For each chip t such that pt- = 0

i. Define the target number of pins to be allocated to chip i as <,-. Define rt- as

the number of distinct clock offsets actually required by chip t after solving

the current problem. Let Sa = Ei|p,=o r»

ii. U= L£M.J

Hi. If r,- exceeds *,- find a pair of latches (or groups) in chip i whose group

ing affects the estimated clock period the least and assign a common offset

variable to the group

(c) Solve the problem in the reduced number of vaxiables

(d) Until the pin constraints axe satisfied

7.4.6 Discrete Clock Offsets

In the case when the clock offsets axe restricted to be integer multiples of a unit

offset 6, we can reformulate the problem as follows:

V : minimize T subject to

rtiS + dij > njS+ tHOLDj, V(i, j) GG

niS + tsETUPj + Dij < njS+ T, V(i,j) GG

nmin < ni < nmax for i = 1,...,n

The optimization problem V is a mixed integer-linear program. It may be solved

efficiently in the deterministic case by using the Leiserson-Saxe algorithm [Leiserson 88]

instead of the Bellman-Ford algorithm. For the stochastic case, the problem is NP-complete

and approach taken is to integerize the offsets to the nearest integer value.

7.4.7 Hierarchical Clock Tree

A hierarchical clock tree can be modeled with multiple levels of offset programma-

bility by using hnear equations similar to the ones in V. The technique is illustrated for the

simple case of a two-level tree in which each chip has a main programmable offset element
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and the latches have a second level offset element. Extensions to other topologies axe fairly

straightforward and for the sake of simplicity, will not be discussed here. Let c(j) denote

the chip to which latch j belongs.

H : minimize T subject to

sc(i) + Si + dij > Sj + 5c(j) + tHOLDji V(*J) €G

scii)Si + tsETUPj + Dij < Sj + scU) +T, V(t,i) GG (7.12)
Amt„ < Si < Amax for t = 1,..., n

&min Si &k S "max »»

The variables Sk denote the offset vaxiables for each chip A:. The problem may be reduced

to one with the similar unimodular structure of V by a simple variable substitution. Let

vi —sc(i) + S{. Making the substitution, the problem becomes:

HI: minimize T subject to

Vi + dij > Vj + tHOLDj, V(i,i) GG

Vi +1setup j + Dij < vj + T, V(t\i) GG

Amt„ < Si < Amax for i = 1,..., n

Smin S sk S Smax *»

Vi = Sc{i) + ^t

This formulation has unimodular constraints but unfortunately does not possess the same

structure of V. The technique of [Hochbaum 89] can be used to solve the problem for both

the deterministic and the stochastic problem.

7.4.8 Copy Chips

A chip of one type may be used at several places in a system. The constraint on

such chips is that the internal clock offsets of such chips must be identical (for manufac-

turability). Constraints such as these can be easily incorporated in the aboveframework by

introducing variables only for one chip and using the same vaxiables for all the other copies.

Thus, each copy generates a new set of constraints using a common set of offset vaxiables.
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7.5 Experimental Results

7.5.1 Deterministic Case

The algorithms were used to optimize a future proposed machine design for IBM

Poughkeepsie. Figures 7.4 and 7.5 show the clustering technique where 8 iterations were

used to satisfy constraints on the total number of dock offset pins in the system. Clock

period units axe in pico seconds. Offsets axe limited to a maximum of half the longest

path dday in the system. The figures show at each iteration the tradeoff between the dock

period and the number of different dock offset pins. Without performing the optimization,

the dock period is 23ns. In Figure 7.4, the optimized dock period varies from 17.6ns to

20ns depending on the pin constraints. Even in this tightly constrained problem, there is a

minimum improvement of 13%.

Figure 7.6 shows the vaxious modes of operation of the algorithm. (A) represents

the unoptimized dock period (23ns). (B) is the dock period when each chip is constrained

to have one dock pin and the offsets axe integer (20.48ns). (C) represents the case in

which each chip has one dock pin and the offsets axe continuous (20ns). (D) is the integer

dustered mode, in which each chip can have more than one dock pin but the offsets axe

discrete (18.8ns). (E) is the continuous dustered mode (18.2ns). (F) is the integer free

mode, in which each latch in the system is allowed to have a discrete offset (18.0ns). (G)

is the free continuous mode in which every latch can have a continuous offset. (H) is the

dustered mode with a two-levd tree and continuous offsets. (I) is the dustered two-levd

tree with discrete offsets. In the two-levd tree, each chip had a single main offset and groups

within a chip had an individual offset. Both the main and the group offsets were limited to

25% of the longest path dday in the system. In Figure 7.5 the maximum possible speedup

in the dock is 23% and the minimum speedup is 12%. The case of 12% speedup occurs for

the integer mode with one dock pin per chip which represents a very realistic and practical

design point.

7.5.2 Stochastic Case

A prototype program was implemented to obtain tradeoff curves between T and

reliability and Amax and reliability and illustrate the feasibility and applicability of the

ideas. Typical analysis of a digital system with about 100 nodes and 375 edges takes a few
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Figure 7.4: Clock Period v/s Iteration
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seconds of CPU time. The program was tested on an industrial example and tradeoff curves

were obtained for some sample distribution functions for Dij. For a normal distribution,

the curves are shown in Figures 7.7 and 7.8. The curves for a triangular distribution are

shown in Figures 7.9 and 7.10. (Note: there may be small deviations from concavity in the

plots due to the limited numerical resolution of the plotter).

RsEsbaity

Reliabilityv/s Clock Period

P5nod(r«)
00

Figure 7.7: Reliability v/s Clock Period, normal distribution

7.6 Conclusions

In this chapter methods have been devdoped using graph based and linear pro

gramming techniques to optimally assign dock tree dday dements in a manner which

minimizes the system dock period. The method considers all paths simultaneously and the
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Figure 7.9: Rehabihty v/s Clock Period, triangular distribution
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solution is globally optimal across an entire system. The formulation considers practical

constraints such as dock pin counts per chip, dock pin counts over the entire system, copy

chips constrained to be identical, physical latch placement, clock offset integrality require

ments and variations in component ddays due to manufacturing, temperature etc. The

technique is hierarchical and the optimization can be apphed at various levels within a

system, i.e. chip level, package levd, card levd.

The approach is particularly useful for analyzing a system early in the design pro

cess. It allows designers to quickly evaluate various docking topologies and provides insight

as to the performance tradeoff assodated with assigning dock pins, assodating latches with

dock pins and inserting delay offset dements. The complexity of approach supports an in

teractive design environment. A typical analysis for a 16 chip design containing 290 latches

takes 30 cpu seconds on an RS6000/530 workstation.



Chapter 8

Final Thoughts

8.1 Looking Back

We started with an overview of the state of the art in performance optimization

during the physical design of an integrated circuit. The focus of this work was then narrowed

to two problems: (1) performance-driven placement problem for large-scale cell based ICs,

and (2) skew optimization. Following this, wirdength and timing modds were discussed.

The first attempt at devdoping an efficient algorithm - the primal method, proved to be

inadequate for large problems. An improvement was made and the dual algorithm devel

oped. It resolved some of the issues that the primal algorithm could not, but was unable

to break the large-scale circuit barrier. Finally, the method of Lagrangian Rdaxation was

fully exploited in Chapter 5 and an efndent algorithm devised. Experiments on the algo

rithm led to the implementation of a successful package for performance driven placement

- RITUAL. The algorithm accomplished the goals that this work set forth:

• Predictability: the results of the performance optimization axe predictable

• Efficiency

The skew optimization problem was discussed and new docking problems that

are of concern during high performance system design were formulated. The formulation

involving stochastic ddays in Chapter 7 is unique and hopefully opens up possibihties for

research involving stochastic optimization in other areas of CAD. Efficient algorithms were

developed for solving these problems and thdr effectiveness on real systems shown through

prototype implementations.
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8.2 What Lies Ahead?

Performance optimization during physical design is by no means a solved problem.

The problem of relating performance optimizations at the logic levd and the physical levd

still remains unsolved. Is it possible to integrate the logic levd transformations hke those

of [Singh 88] with incremental performance driven placement so that placement and logic

design gohand-in-hand? Is it possible to performtransistorand cellsizing during placement

so that greater control on the wirdength-dday tradeoff is achieved? Can skew optimization,

performance-driven placement and performance optimizations at the logic levd be united

in one theory?

Before these questions can be answered, we must devdop a deeper understanding

of the impact of logic optimizations on physical layout. Redudng the active area of gates

certainly will reduce the total chip area for most moderatdy sized designs. But multi-

million transistor designs are dominated by wiring area. In fact, a circuit with 10,000 cells

may have upto 75% of its total area devoted to wiring! Logic systhesis tools today have

at best a simplified view of the physical characteristics of the design. As designs become

denser, it is increasingly important to devdop a better and more detailed understanding of

the relationship between the structure of a logic drcuit and the resulting wiring area of the

drcuit.

8.3 Conclusions

As drcuits become increasingly complex, new and challenging problems will arise

in every aspect of computer-aided design. It is important not to lose focus amidst the

blurring intricades of chip design; the role of CAD has always been and will always be

complexity management. This body of work has explored and devdoped some methods

for managing the design during one part of the entire process of chip design. It is hoped

that the methods described herein will lead to further discussions in the laboratory and the

dassroom and eventually engender new ideas.
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