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Abstract

Many algorithms exist for the halftoning of digital images. These algorithms all suffer
well studied defects, which are especially apparent in the case where the resulting image
is to be displayed at the marginally sampled resolution and viewed at the critical pixel
merge distance.

Recently, it has been shown that neural network approach may be useful for halfton
ing [KA91]. Here, the feasibility of using neural networks in a practical application is
considered. The Cellular Neural Network (CNN) architecture is chosen for its proven
implementibility in VLSI, high speed, and programmability [CC91b]. Since both the
CNN and halftoning have a geometrically local character, the CNN provides a natural
implementation. The CNN template weights are derived by analogy to the well known
error diffusion algorithm for halftoning. Some limitations of the neural network approach
are analyzed providing an advance in designing template weights over previous methods.
These limitations are shown to be especially critical in the case of the small interconnec
tion neighborhoods needed for efficient implementation.

Our design criteria are validated by direct simulation. The resulting halftones are
shown to be more faithful reproductions of the original than those produced by the error
diffusion algorithm. It is suggested that a CNN with optical inputs could provide a
high-speed scanner/halftoner for applications such as FAX.

0 Introduction

Cellular Neural Networks (CNNs) are locally connected analog nonlinear processing arrays.
The simple processing elements are placed on a 3-D grid (in 2-D layers) [CY88b, CY88a].
The first tested working VLSI chip has a very high speed: 0.3 x 1012 operations/second on
lcm2. Using nonlinear and delay-type template elements ('synapses') [RC90] a very broad
class of dynamic nonlinear spatial convolution operators can be implemented.
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and by the National Science Foundation under Grant MIP 86-14000.
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Halftoning is a local operation on grey-scale images resulting in binary images giving a
similar impression to the viewer. Due to this locality, CNN is an ideal 'one-to-one' device for
halftoning.

In this paper different halftoning CNN templates are developed. Their main geometrical
and circuit properties are studied. Rigorous analytical results and experimental tests are
presented.

In Section 1, the background information on halftoning as well as preliminary results and
the CNN framework are presented. Section 2 contains the main results: the development of
the CNN templates, their properties, and some limitations. Template design examples and
experimental verification are shown in Section 3. The application potential is discussed in
Section 4. In the conclusion it is explained that the method presented here can be used in
other types of problems as well.

1 Background and Preliminaries

1.1 Halftoning

Image halftoning is the process of converting a grey-toned image to a binary-valued image.
This process is required in many applications where the display medium can only support
binary output. For instance, photographic halftoning techniques have long been used in
newspaper printing where the resulting binary values represent the presence or absence of
black ink. Upon display it is hoped that, by the blurring of the eye, the halftone image will
appear similar to the originalcontinuous toned image. Digitalimagehalftones are required in
many present day electronic applications such as facsimile (FAX), electronic scanner/copying,
laser printing, and low bandwidth remote sensing.

The framework in which halftoning is usuallyembedded is depicted in Figure 1. A digital
image is assumed to be generated by windowing a real-world scene which contains unlimited
detail followed by spatial low-pass filtering and sampling. The image is low-pass filtered to
half the sampling rate to prevent aliasing. Sampling takes place on a regular square grid.
Each sample may be quantized to a finite representation of the light intensity at that location.
At this point, we have as much of the original information that can ever be expected to be
recovered by ideal reconstruction and viewing. Halftoning such an imagewill further quantize
the intensity representation at each pixel to one of two possible values. In some cases it may
be possible to increase the sampling rate before halftoning for a higher resolution display. The
display device then marks the halftoned image on the binary medium producing a physical
reconstruction of the image. Finally, the halftoned and displayed image is viewed at the
proper distance and should give the illusion of a continuous toned image.

In general halftoning with finite resolution results in the loss of some information which
it may replace with artificial information. A good halftone will retain as much of the relevant
information as possible, and in that sensecan be considered an image compression technique.
Howone defines the relevant information depends on the application, and can be formulated
in terms of a cost between the display and view operators (.4) applied to the halftone (y)
and the ideal reconstruction and view (B) applied to the sampled input image (u).

A keyaspect ofour framework is the block representing the processing done by the human
visual system. In [MS74] a compressive nonlinearity1 followed by a linear filter is used as

*The standard model is that perceived brightness increases only logarithmically with intensity, but exper
imental evidence in [MS74] suggests that a0-33, where u is the input intensity, may be better.



a model for human perception. The form of the equations was assumed a priori and the
optimal coefficients were chosen by human subjects. The resulting model is demonstrated to
agree closely with other experimental evidence.

The linear portion in the frequency domain, called the Modulation Transfer Function
(MTF), is shown along one radial frequency direction in Figure 2. It can be expressed by

MTF(fr) =2.6(0.0192+ 0.114/r)e-^114/r)(11> (1)
which describes a radial bandpass characteristic which rises quickly to peak at about 8 cy
cles/degree and then drops oflinearly until an attenuation of1/10 at 35 cycles/degree which
continues exponentially to zero2. However, it is suggested in [BKT89] that the transfer func
tion near zero for low frequency is actually an artifact of experimental techniques.

In addition, most linear models make compensation for the anisotropy in the visual sys
tem. [KA91] suggests the use of a L\ measure of distance from the frequency origin, i.e.
fr = l/il + I/2I resulting in lines of constant magnitude along square diamonds. [SRM91]
proposes complex adjustments which attenuate the diagonal frequencies even further.

Note that the frequency axis in Figure 2 is given in cycles/degree. It can be seen that C
cycles/degree corresponds to a frequency of F cycles/mm in an image viewed at R mm if
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for small subtended angles. As anexample, a common FAX sampling rateis 8 samples/mm.
If the output is viewed at a half meter, then the sampling rate is about 70 cycles/degree.
This image is considered near critically viewed since the highest frequency preserved in the
original image, 35 cycles/degree is near the largest frequencies the eye can detect. If it is
viewed closer, the eye reconstruction will begin aliasing. If viewed farther away, some of the
information in the image will be lost by the filtering of the eye.

To demonstrate these principles, see Figure 3, the Arden Chart. The highest frequency
in the image will correspond to 70 cycles/degree if the chart is observed at 2.8 meters. The
Arden chart increases in frequency from left to right and decreases in contrast from top to
bottom. If the chart is covered and slowly exposed from the bottom, you should be able to
determine the first point when each frequency becomes visible. The resulting graph should
give a rough idea of your MTF. This method ignores the anisotropy of the human eye.

The display function block represents the technique by which the image is reconstructed
for viewing. For instance, on a printer, a zero-order hold can be approximated by marking
black squares on a white page. But, this is an over simplification. If you look at a black box
made by a laser printer it will appear as more of a splattering of toner particles which may
overlap with neighboring boxes. This effectis not symmetrical; black markingsmay spill over
into unmarked white regions, but not the reverse, causing a general darkeningof the displayed
image. For a video monitor, the output intensity produced by a pixel can be approximately
modeled as obeying a spatial Gaussian function. In general, the display function of a device
is nonlinear and stochastic. For a detailed discussion of these and other output devices, see

[UU90].
Despite the nonlinearities and other complexities of the display and viewing process,

throughout this paper wewill be so boldas to modelA in the halftone path and B in the ideal

2DifFerent parameters are used in [SRM91] resulting in a slightly different transfer function.



path by linear filters. In addition, these linear filters will be discrete space approximations
to the continuous space processes3.

Many deficiencies of halftoning algorithms have been studied. Stated in the positive,
there are many possible criteria for the evaluation of a given halftoning technique. They can
be divided into categories, which are not necessarily mutually exclusive, as follows:

effective quantization The interval of possible input grey levels can be partitioned into
equivalence classes according to the output produced by the halftone algorithm on
constant input images. The effective quantization is the number of these equivalence
classes. If this is too small, artificial contouring may be introduced in slowly varying
regions of the image. If there are too many partitions, objectionable microstructure
could result. For instance, an algorithm that attempts to emulate a grey level very
near black by putting one white dot on a black page is not necessarily doing the correct
thing. In addition, there is no need to generate output accuracy beyond that of the
input or what is perceptible by the human eye.

representation linearity The lengths ofthe partitions of the input grey level interval may
vary. This may be desirable, especially if the effective quantization is small. For
instance, the human eye is logarithmically sensitive to intensity. Therefore, it may
be wiser to use more of the equivalence classes to represent darker grey values where
small changes have a greater impact on perception.

average density Each equivalence class has an average density associated with it. This is
the average component of the output image produced by this class. In the case where
the partitions are connected intervals it is considered desirable that the average density
be equal to the centroid of the partition. However, it is common in image processing to
apply a nonlinearity to adjust the tone scale to provide some 'snap' or 'graphic punch'
to account for the reproduction technique [Uli90]. In this case, the average density
produced by halftoning could be modified to provide this effect.

edges A halftoning algorithm must not only preserve the presence an edge, but also its
location. In the worst case, an edge could be completely obliterated. More likely, the
edge will be blurred so that its position is no longer exact. Other algorithms may
actually enhance edges along some or all directions. The desirability of this feature
would depend on the intended use. Another possibility is the introduction of edges
that did not exist in the original. This is known as artificial contouring.

microscopic structure The preservation of small structures can be measured for varying
levels of contrast against the object's background. This is an especially useful measure
in the case that text is present in the image. More important, some algorithms intro
duce annoying and misleading microstructure. This can take the form of meandering
structure termed 'worms' or 'squiggles'.

blue noise spectrum In [Uli90] it is found desirable that the output of a constant grey
level input image have a 'blue noise' frequency spectrum. For each possible input
intensity a principal wavelength is defined as the expected distance between output
pixels of the same value. A "Well Formed Dither Pattern" for a constant input should
have a frequency spectrum which has the proper DC component, a region with no

3One could argue that the retina actually performs discrete space filtering, albeit on a much finer scale
than we will be modeling.



energy, a peak at the principal frequency, followed by a level region of noise. That is,
the output spectrum will have all its noise energy in the high frequencies above the
principal frequency. According to Ulichney, "Blue noise patterns enjoy the benefits of
aperiodic, uncorrected structure without low frequency graininess." [Uli90, page 233]

frequency weighted mean square error It is proposed in [Ana89] and [SRM91] that the
mean square error (MSE) between the perceived input and output images is a relevant
measure of the performance. This has the advantage of reducing the evaluation of a
particular halftone algorithm on a given image to a single quantitative value.

isotropy Isotropy is the ability of an algorithm to perform the same invariant of direction.
Isotropy in the frequency domain ofoutput images is deemed very important by [Uli90].
Others [SRM91, especially] have found some anisotropy beneficial as the human visual
system is less sensitive to high frequencies along the diagonal directions.

From the framework described in Figure 1 it can be understood that one should not expect
a single halftoning algorithm to be universal. In particular, its performance will depend on
the characteristics of the display device, the distance of viewing, and the interpretation of
relevant information used in the application. The most challenging halftoning problems occur
when the image has been sampled and displayed at or slightly above the Nyquist rate and is
being viewed closer than the critical merge distance. When the image has been oversampled,
there is lots of room for halftone noise in the unused high frequencies. When viewed from too
great a distance, the high frequency information in the original image would be unseen and
can be replaced by halftoning error. In either case, introduced microstructure would not be
visibly distracting. In practice, these conditions are not often met and the problem, which
is addressed here, becomes the placement of the error introduced by halftoning in the least
objectionable way. As Ulichney states, "This is a study of controlled noise" [UU90, page 2].

If the image has been severely oversampled or can be displayed with greatly increased
resolution, simple halftoning techniques such as ordered dither suffice. However, in many
applications the image may only be marginally oversampled. In this case, simple techniques
may obscure edges and destroy fine detail such as text. The more advanced error diffusion
algorithm can handle this situation but have been shown to introduce distracting patterns
because of the directional nature of the process.

1.2 Mathematical Preliminaries

To formalize the current discussion, the following definitions are introduced.

Definition 1 The support of an M x N image, SmxN C Z2, is a collection of ordered pairs
such that SmxN = {(hj) • i € {0,1,...,M- 1},j € {0,1,..., JV- 1}}. The elements of SMxN
are called pixels, or sometimes cells.

Definition 2 An M x N digital image is a mapping from some finite support SmxN to a
set of values which represent reflectivity. For our purposes we make the useful definitions:

grey-scale image: SmxN -* [-1,1] C 3ft

binary image: SmxN -+ {-1,1} C 2

Of course other representation sets may be used. For instance, in reality a digital image will
be quantized at each pixel so that the representation set contains some power of two number
of elements for representation in a computer memory.



Definition 3 A halftoning algorithm is a mapping from the set of all grey-scale images into
the set of all binary images. That is:

halftoning algorithm: [-l,l]MxN - {-l,l}MxN

Definition 4 The signum function is defined:

, x f 1 ifx>0*&<*) ={ _i else
Definition 5 The two-dimensional discrete spatial convolution of two functions is given by

(w **x)itj •-+ 2S(w)ww*,--*j-i

The following notationhas been adopted to distinguish among various typesof mappings:

• Functions defined on a connected domain will be lower case.

• Functions defined on a discrete domain will be bold lower case.

• Functions described on a discrete domain for which it is convenient to think of as a
matrix will be upper case.

• Transformed functions will have a tilde over them and will inherit their boldness and
case. It should be clear from context whether the Fourier Transform, DTFT, DFT, or
Z-Transform is being used.

• Spatial coordinates will be shown as subscripts.

• Temporal or transform coordinates will be shown as arguments.

1.3 Current Algorithms

For motivational and comparison purposes three of the most popular digital halftoning algo
rithms are presented. For a good overview ofmany current techniques see [SM81].

1.3.1 Ordered Dither

The popularity of ordered dither is largely due to the simplicity of the algorithm rather
than its halftoning properties. The main advantage is that the ordered dither process is
memoryless and can be applied directly to the data stream without buffering or performing
complex computation, making it popular in FAX machines and laser printers. Also, the
output is highly compressible, an advantage in FAX machines, but an indication that much
information is lost by the algorithm.

The method converts a pixel to a binary value in a method that can be considered
the electronic analogue of the classical printer's screen. A threshold matrix ("screen") is
periodically applied to the input image. The entries of the threshold matrix represent the
value to which the input pixel underneath is compared against. If the input falls below the
threshold, a decision is made to set the output to black (ink). Otherwise, the output is set
to white (no ink). In our terminology:



Definition 6 Let u and y be M x N input and output grey scale images respectively. Also
let T be an K x L threshold matrix. Then for (ij) € SmxN,

ordered dither: y,-j = sgn(u;j - rtmodK'+i,jmodL+i)

The algorithm has the effect of replacing a constant grey region of the image by a reg
ular pattern with the approximately correct density. The number of these patterns, hence
the effective grey-level quantization, is directly related to their spatial period. Therefore,
increasing quantization levels requires a larger threshold matrix. However, the size of the
threshold patterns is inversely related to the size of the smallest object that can be guaran
teed to be preserved by the algorithm. Given this constraint, the algorithm will only produce
acceptable results when the image is well oversampled or displayed at increased resolution.

The entries of the matrix can be chosen in many ways, each giving different dot patterns
for a constant input. The best of these is dispersed dot ordered dither, of some order k
which determines the effective quantization. The method introduces a minimal amount of
low frequency structure by maximally separating dots for a given grey level input while
supplying the appropriate overall density. To use this method, an accurate display device is
needed to mark the isolated dots.

A fifth-order dispersed dot ordered dither, as derived in [Uli90], is used for the examples
in this paper. The threshold matrix is given by

/ 1 30 8 28 2 29 7 27 \
17 9 24 16 18 10 23 15

5 25 3 32 6 26 4 31

21 13 19 11 22 14 20 12

2 29 7 27 1 30 8 28

18 10 23 15 17 9 24 16

6 26 4 31 5 25 3 32

\ 22 14 20 12 21 13 19 11 /

where the input has been scaled to fit the range [0,33]. Figure 5 shows all 2k + 1 = 33
possible representation values using this method. Dispersed dot dithering methods can be
seen to suffer from artificial contouring because of the very discrete change in grey-level
representation in a slowly varying region (see Figure 26). Also apparent are loss of edges
and introduction of periodic microstructure. The visibility of periodic microstructure can be
reduced by using a lower order dither, but at the expense of some grey level representation.

T =

1.3.2 Error Diffusion

Error diffusion is a very popular halftoning algorithm because it does much to correct the
problems of dithering yet remains fairly computationally simple. As the name implies, error
diffusion begins at one corner of the image and proceeds to distribute the halftoning error
across the image so as to make the average error zero. A more rigorous explanation is given
later. The standard error diffusion algorithm can be described by the following state and
output difference equations.

Definition 7 Let u, x, y be M x N input, state, and output grey scale images respectively.
Also, define Uij,Xij,yij = 0 for (i, j) $ SmxN- Let w, the error diffusion filter, be defined



on a causal mask with non-zero support S. Then, error diffusion is defined to sequentially
generate the elements of the state and output images according to:

xi,j = tttj-(w**0ox)t-j (2)
Vij = sgn(a;1>i) (3)

where g(x) = sgn(x) - x. The states and corresponding outputs are generated in any order
for which the convolution makes sense.

The most popular masks have finite non-symmetric half-plane support with
T,12(i j)es witj = 1- This allows the recursion to proceed on a row-by-row basis without
violating causality. The unity sum condition maintains the proper representation density.
Some popular 12-weight error diffusion filters of this type are shown in Figure 4.

All three filters introduce a good deal of anisotropic microstructure (See Figures 6,7,and
8). It can also be noted that the high frequency information in the image is actually magnified,
which may be desirable in certain applications.

1.3.3 Mean Square Error Minimization

In Section 1.1,it was discussed that the mean-square filtered error (MSE) between the input
and output images could be used as a measure ofhalftoning algorithm performance. By this
criteria, minimizing the MSE over all possible binary output images will result in an optimal
halftone. Therefore, this criteria along with a minimization algorithm would perform as a
halftoning technique.

There are many means of achieving at least a "local minimum" which should produce
an acceptable output. One of these, simulated annealing, is employed by [SRM91] for this
purpose. Ofmore interest here, [AK88, and others by the same authors] proposes the use of
Hopfield typeneural networks to perform the minimization. A slightly more general analysis
of this technique is given here so that it is consistent with the block diagram framework.

For convenience, we write the Mx N input, output, andstate images as vectors oflength
MN by applying anordering to their support SmxN- Let A and B beMNxMN convolution
matrices which represent some hnear filter model for the systems A and B with respect to
this ordering. Then the filtered or frequency-weighted MSE between the input image u and
output image y can be written

dist(y, u) = (Ay - Bu)T(Ay - Bu)

Now, for a Hopfield neural network

•£x(t) = -x(*) +Wy(t) +Vu (4)
at

y(t) = sgn(x(t)) (5)

where W and V represent weighting matrices, the network finds a local minimum for the
well known Lyapunov-energy function

E=-iyTWy - uTVTy (6)

Now,



dist(y, u) = (Ay - Bu)T(Ay - Bu) =yTATAy - yTATBu - urBTAy +uTBTBu

since u represents a constant input vector, minimizing dist(y, u) is equivalent to

min iyTATAy - ±yTATBu- ±uTBTAy=±yTArAy- uTBTAy (7)
ye{-i,i}M"2 * 2 2 2

Matching terms with Equation 6 it can be seen that by choosing W = -ATA and
V = ATB the neural network will find a local minimum of the desired error function.

Several methods for choosing the A and B matrices are proposed in [KA91]. Using our
framework notation, one method is to derive a hnear approximation to A is by using an ideal
reconstruction to model the display and the MTF to model viewing. A discrete space filter
with small non-zero support is found by windowing the inverse DFT of a sampled version of
this approximation in the frequency domain. Then, A represents the convolution done with
this filter4. For choice of B, B = A and B = (AT)_1 are both suggested for their simplicity.
The second case will over-enhance high frequencies since it demands that a low-pass version
of the output look like a high-frequency gain version of the input.

A little reflection will reveal that multiplying the transpose of a symmetric convolution
matrix by another convolution matrix gives the matrix for the convolution of the two. One
immediate disadvantageous consequence of this is that if the convolution kernel of the desired
filter has support with £<» radius r then the weight matrix will have local interconnections
with radius 2r. Therefore, the choice of A and B must be constrained to be very diameter-
limited so that the resulting weight matrices do not have too many connections to make
implementation feasible. The class of all possible weight matrices is therefore artificially
reduced.

Several other methods for deriving weights are suggested [KA91], including training the
network on outputs produced by error diffusion. None of the actual weights achieved by any
of the methods are reported.

1.4 Cellular Neural Networks

A Cellular Neural Network (CNN), as first proposed in [CY88b], is a continuous time neural
network with diameter-limited local interconnections and a unity-gain piecewise linear ap
proximation to the standard sigmoidal output function. The 'neurons' are placed in a regular
array and 'synaptic' connections are allowed only locally. Due to this topology, the CNN can
be considered a composite system - it incorporates discrete space filtering and continuous
time dynamics. The local nature of the interconnections are critical when considering VLSI
implementation.

A particular subclass of CNN which constrains the allowed interconnections is considered
in this paper:

Definition 8 Let u, x, y be the MxN input, state, and output grey scale images respectively.
Let A and B be functions such that A,B : Z2 -• 3ft with Aij,Bij = Aij,B-i-j and
Aij,Bij = 0 for ||(i,j)||oo < t, some small neighborhood radius. Let I be a constant. Also,

4This matrix will have the form symmetric block Toeplitz with symmetric Toeplitz blocks.



define utj,a:ttj,yt)j = 0 for (i,j) £ SmxN- The symmetric space-invariant Cellular Neural
Network can be described by the following state and output equations operating on SmxN-

jtxitj(t) = -xtii(<)-f(A**y(Oki +(B**u)tii +/ (8)

where / : x •-> f (|s + 1| - I* ~ l|)>s € 3ft

The functions A and B are called cloning templates and can be considered 2r +1 x 2r +1
matrices. The condition Aij = A-i-j is called template symmetry. Note that template
symmetry is not required by the original definition [CY88b] and is what enables us to write
the state equations in spatial convolution form without reflecting the template.

An even stronger condition on the templates is isotropy. Forisotropy, the template must
satisfy Aij = Ak,i for (t,j) and (k,l) the same L2 distance from the origin. This condition
implies template symmetry and will be useful in halftoning applications.

A very useful theorem follows:

Theorem 1 [[CY88b]] If j40)o > 1and A is a symmetric template, then the systemconverges
with

Urn \xij(t)\ > 1
I—*oo

and

lim yitj(t) € {±1}

fOT(i,j)€SMxN-

It can be shown in a more general setting that that symmetry is not required [NSRC90].
The topology and local nature of the CNN suggest amenability to many types of highly

parallel analog computation. In fact, several fundamental image processing tasks have been
converted to CNN templates [IEE90, CYK91]. The speed of the CNN is mostly constrained
by the input/output bandwidth. The use of optical sensors to supply the input in parallel
is being investigated. In such a system, applications which map continuous valued inputs to
binary output, Uke halftoning, would be much faster than a digital system performing the
same task.

The CNN model is preferable for implementation in this application over the Hopfield
network for several reasons. The local geometric interconnection pattern and the form of
the output nonlinearity are especially well-suited for implementation in VLSI circuitry. In
fact, CNN VLSI circuits have been built and tested [CC91a]. In addition, sound theoretical
results are known for the boundedness of the internal states of the system - a necessity
when considering circuit implementation [CY88b]. Also, the unity-gain nonlinearity disallows
the output oscillations common in a Hopfield network providing fixed-point behavior in the
output. Moreover, for intuitive reasons it is expected that a CNN will find a better local
minimum for the halftoning application as explained in Section 2.1. Finally, the possibility
of using nonlinear templates has been studied [RC90] and may prove useful in a halftoning
context.
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2 Halftoning with CNN

2.1 Development of the CNN Halftoning Algorithm

The error diffusion algorithm for halftoning is often considered to produce 'good' halftones.
For this reason, we explore the possibiUty ofdeveloping a CNN halftoning algorithm which
emulates the best aspects of error diffusion.

First, it is shown that error diffusion attempts to solve a certain type of minimization
problem. Then, possible sources of defects in the algorithm are identified and corrections are
suggested. Finally, it is shown that a CNN can achieve the same minimization and correct
some defects simultaneously.

The following lemma will be used several times.

Lemma 1 The solution to

min |6y+ c| 6 ^ 0,c G 9£

is

y = - sgn(6c)

Proof:

|6 sgn(6c) + c\ - \-b sgn(6c) + c\ =

\b sgn(6) + c sgn(c)| - |6 sgn(6) - c sgn(c)| =

\b\ + \c\-\\b\-\c\\>\b\ + \c\-\b\-\c\>0

Proposition 1 The error diffusion algorithm described in Definition 7 is equivalent to a
determination of the output by the following decision criterion:

with

nun |((h**(y-u))iti)|
y,,j€{-l,l}

h=2-1[l +r^=-]
1 - w

where the yij € SmxN are chosen in the causal order such that the convolution makes sense.

Proof:

*ij ~ w»,j-(w**g°x)*\j
= Wt,j-(w**(y-x))t-,i

= u»,i - (w ** y )ij + (w ** x)t-j

then, taking the two-dimensional Z-transform:

x = u —wy + wx

(l-w)x = u - wy
u-wy

x =
1-w

= h(u - y) - y

11



then, by inverse transformation,

xitj = (h**(u-y))itj-yi>j

substitution into Equation 3 gives

Vi,j = sgn((h ** (u - y))itj - yitj)

now hoto = 1 by the initial value property and the fact that wo.o = 0. Namely,

lim h(zi,z2) —1
Zl,Z2~*00

So, by Lemma 1, this satisfies the given minimization. •
In words, the goal of error diffusion is at each successive pixel, to minimize the absolute

value of the filtered error of all previous decisions. Now, it is clear that the filter h is not
BIBO stable. This follows since w(l, 1) = £ T,(i,j)es wiJ = *means that there is a pole ofh
on the unit surface. However, on the finite domain given, the output will always be bounded.
In fact h,-j can be considered to be space-varying FIR filter if it is restricted to the domain
where the convolution makes sense.

This interpretation of the action performed by the error filter gives strong insight into
the meaning of the filter coefficients. The shape of the filter in the frequency domain will
determine the characteristics of the halftoning noise. For instance, if the resulting IIR filter is
not circularly symmetric, the algorithm will favor some directions overothers. Consequently,
it will be more likely that halftoning noise will be placed in less-weighted directions. This is
one source of the many squiggles that appear in error diffusion output for popular diffusion
weights 5. Another thing that would be nice to correct is the directionality of the algorithm
which is imposed by iterative computation. The non-symmetric half plane mask could be
converted to a filter with whole-plane support. This will mean that all the outputs will
need to be determined simultaneously. Finally, comparing the block diagram in Figure 1
to the above interpretation, it can be seen that error diffusion conforms to our model. If
the relevant error is taken to be the absolute value of the difference between the outputs
and the filter h represents the visual system and other output blocks. This imphes a loss of
generality, since according to our model, separate filters could be used. Reintroducing this
generality switches the emphasis from "filtering the error between the input and output" to
"error between filtered input and filtered output."

The CNN can be made to perform a halftoning operation by supplying the input image
to u and interpreting y as the halftone output, as follows:

Definition 9 Let a and b be the impulse responses of chosen Hnear filter approximations to
given systems A and B. Then the associated CNNHalftone Template is given by

£>0, small if (i,i) = (0,0)
else

Bi,j - Ki

1 = 0

5This suggests that the interpretation here could provide a way to derive error filters to control the types
of artifacts produced and improving on those currently in use.
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The initial states of the CNN carry noexact meaning in this context and are assumed to
be small and random. To retain the localnature of the connections, the approximation filters
a and b must have non-zero impulse response on a small support. A method for choosing
these filters isexplained in the next section. The halftone CNN will always converge to binary
outputs given by Theorem 1.

If the output image at a specific cell at a specific time isexamined, it can be seen that the
dynamics are "heading" the output in the proper direction to perform the same minimization
as the error diffusion algorithm. That is, the sign of the derivative is the same as the direction
of the optimal output and the magnitude is related to the cost of making a wrong decision!
Now the advantage of not making a solid +1 or -1 decision at this point is clear. The cells
with the greatest error will be corrected the fastest. The correspondence to error diffusion is
clarified in the following claim:

Proposition 2 Assume the halftoning CNN has reached steady state. Then, for each cell
(i,j) define

Kij = -(a ** y),,j + (b ** u)tj + a0,o2/t,i

Now, by Lemma 1, the solution to

min |(a** y)t|J- - (b ** u)t-ti|
Vij €{-1,1}

is yij = sgn(Kij). Let y be the output y with y;,j replaced by yij.
Then, the halftoning CNN has converged to an output yij € {-1,1} which satisfies

|(a **y)t|i - (b **u)tii| - |(a **y)itj - (b **u)iti| < 2min{£, |a0,o|}

Proof: The convergence to a binary output is guaranteed directly by Ao,o > 1 and Theorem 1.
Therefore we have \x{j\ > 1. Now, assume the output has converged to the steady state.
Then,

0 = -Xij{oo) + (A **y(co))t-,i + (B ** u)itj

0 = -xitj(oo) + (1 + e)y,,i(oo) + Kitj

now, since |x,-,j| > 1, yitj = sgn(xl>J) so

3«,j(°°) = (! + £) sgn(xt-ti) + Kij

now, for \Kij\ > e,
Vij= sgn(^fii)

is the solution. This is the optimal one, so the inequality certainly holds. Now, for \Ki,j\ < e,
both possibilities, y^ = ± sgn(Kij), satisfy the condition. In this case,

I~ sgn^Oao.o - Ki,j\ - \ sgn(A't)i)a0,o - #»,j|

= 2min{iri-,j,|a0,o|}

<2min{£,|a0,o|}
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The Proposition claims that, when considering a specific cell in steady state, that cell has
converged to minimize the difference at that location between a filtered version of the input
and a filtered version of the output, unless making the wrong decision introduced nearly the
same error as the correct decision would have. In practice, the center element ao.o will be
bigger than e so that the usefulness of this inequality is concerned with e. Note that as e —• 0
the CNN will be made to make decisions which are arbitrarily close to the form of those made
by error diffusion.

2.2 Choosing Template Coefficients and Effects on Performance

Given the above discussion of interpretation and the block diagram description of the halftone
evaluation process, it would seem that choosing template coefficients would be straightfor
ward. Namely, a and b should be chosen to be hnear filter approximations to the filtering
done in the halftone and ideal paths respectively of Figure 1. However, in a real system which
is to be implemented, there are many complications. These complications are introduced by
the physical constraints of the VLSI process which then exacerbate the mathematical con
straints due to the nature of the algorithm. The primary physical constraint is on network
connectivity due to spatial constraints for VLSI routing. To build a reasonably sized array
in current technology, the A and B template size should be 5 x 5 or smaller, meaning r < 2.
A secondary problem in construction is the relative magnitude of the template coefficients.
From [CC91b] it can be seen that for considerations of silicon area usage, the ratio between
the maximum and minimum template entries should not be too large. However, this is not
a great concern since the nature of the algorithm also does not encourage big ratios of this
type, as explained below.

The Hnear filter model for the eye plus display blocks must be realized in a filter of
finite size. This and template isotropy drastically reduce the degrees of freedom for filter
design. Methods of designing this filter used in [KA91] include sampled and windowed spatial
impulse responses or finding the filter corresponding to the least squares approximation in
the frequency domain. This approach proves to be deficient for this application. There are
three reasons for this, which are enumerated here as additional design constraints on template
design.

1. The relative magnitudes of the entries of the templates have a strong effect on the DC
(that is, constant input) transfer characteristics. Ideally, the relation between a constant
input and the average halftone output density would be a hnear function in some
middle range of intensity with some threshold characteristic at the extremities. Now,
the template size determines the effective quantization of the output since any given
cell can only modify itself according to the density it sees in its template neighborhood.
For instance, in a 5 x 5 neighborhood there are only 26 representable densities. If some
of the template entries are small, or worse, negative, it effectively reduces the size of
the neighborhood. It can be shown, by manipulation of the dynamical equations in
steady state, that the range of input values Uij = u such that only one cell in any
neighborhood will dissent from the others is given by

e- 2minij{aitj} +Et,j#(o,o) ai,j <, .< ~g +E.,j?£(o,o) Q»,j ^

That is, there will be only one cell in any given neighborhood with output - sgn(u).
This corresponds to the intensity levels of input which map to the first reliably rep
resentable shade of grey above complete black or below complete white. Ignoring the
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effects of e,it can be seen that reducing the minimum template element diminishes this
region, when ideally we would like to have about l/26th of the input space mapped
here. And, in fact, ifmint|J{atJ} is not as big as e, these representations will never be
used. The resulting DC transfer characteristic will have a sharp drop near the ends as
seen in Figure 10.

2. The lack of circular symmetry of the DTFT of the template filters is an important
source of the microstructure which can appear in the output. By circular symmetry
it is meant that the lines of constant magnitude in the frequency domain are circles.
This can be explained by the minimization interpretation of the halftoning algorithm.
If the frequency representation is not circular, more of the error will be tolerated in
some directions over others. Although, the eye may be less sensitive to error in these
directions bythehnear model, in reality correlated errorin the form ofsquiggles produce
false texture and misleading structure.

3. Nonmonotinicity along radii of the DTFT of the template filters is an important source
of clustering or clumping in the output. Again, by the water-filling interpretation, more
errorgets put into the frequencies corresponding to the valleys of the function. If these
valleys cover a narrow range of frequencies, the output will show periodic noise. This
provides an important understanding into the pattern formation propertiesof the CNN.

A relation can be made showing Items 1 and 2 to conflict with our primary design goal, and
that Item 3 conflicts with Item 1.

Item 1 conflicts with the goalof halftoning to observe the imageas closely as possible and
still retain most the original information. That means the filter representation of the eye must
extend into the high frequencies. However, it is well known that the widths of the impulse
response and frequency representation are inversely proportional. Therefore halftoning for
close observation will always be at the expense of the linearity and quantization of the DC
transfer characteristic.

Item 2 directly contradicts the anisotropic nature of the eye, so we must disregard the
idea that their is an advantage to putting noise along some directions than others. Even
worse, it is not even possible to get circular symmetry, in general, with a FIR filter even if
the template is chosen to be isotropic.

Item 3 conflicts with Item 2 by another well known property of the DTFT. Namely, sharp
cutoffs in the spatial domain produces ringing in the frequency domain. So, if we desire no
ringing in frequency, the template coefficients must become near-zero along the edge of the
template, a violation of Item 1.

3 Results

3.1 Evaluation Techniques

Several test images were developed to expose many of the potential deficiencies of the algo
rithm. They include a grey scale ramp, an Arden chart, and the standard 'Lena' image.

The grey scale ramp is a 64 x 512 image which starts with minimal reflectivity (as pro
vided by the toner) on one side and proceeds to full reflectivity (as provided by the paper).
The ramp reveals many things about a halftoning algorithm including artificial contouring,
number of representation levels, and microstructure associated with certain levels of constant
input.
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The Arden chart used in this test is 256 x 256 grey scale image with discrete frequencies
to prevent aliasing. Although the visual system is a nonlinear processor, the Arden chart has
proved important in certain clinical testing of acuity and spatial frequency contrast sensitivity
[Ard78]. In this sense, halftoning an Arden chart can give an idea of the preservation of
horizontal frequencies by the algorithm. Ideally, we would hke to see exactly the same
experimental MTF when observing the halftoned chart as the original. Of course, this idea
could be generalized to frequencies at any angle.

Finally, the 512 x 512 standard 'Lena' image provides a real-world image for comparison
purposes. It is suggested in [SM81] that a real image is the most reasonable criteria.

3.2 Template Design

Three halftoning templates were developed for the CNN. A reconstruction function of an
ideal zero-order hold was assumed. That is, perfectly square, non-overlapping, black or white
boxes are to be marked on the display medium. The frequency representation of the zero-
order hold is nearly unity within the unaliased frequency region and tapers offslowly outside.
Therefore, a discrete space filter approximation to the visual MTF must decrease to near zero
to avoid aliasing so that it accurately represents the reconstruction plus eye functions.

The desired filter was chosen to be the composition of the hnear zero-order hold and a
hnear model for the eye. Call this filter q for the halftone path and r in the ideal path. The
hnear model for the eye was chosen to be a modified MTF - the lowfrequency characteristic
was changed to be unity gain6. Then, we would hke a to be as close as possible to q but
obey the constraints discussed in the previous section.

Template 1 has 5 x 5 A and B templates and is optimized for presentation of 8 dots/mm
at 0.5 meters. Template 2 also has 5x5 templates and is optimized for viewing at twice the
distance, or equivalently, the same distance with twice the resolution. Template 3 is a hybrid
5 x 5 in the A template and 3 x 3 in the B template. What it is optimized to do will be
discussed below.

The template design was accomphshed in the following manner. A spatially isotropic 5x5
filter

^ as 04 a3 a± as ^
tt4 tt2 fli a2 04

a = C3 a\ ao a\ a$

Q.4 a2 a\ a2 04

\ as a^ C3 tt4 ^5 /

has six unique elements. Using the shorthand a = {a>o,o.\,a2,az,a4,as}T, and the DTFT
kernel

k=<

1

2cosu>i + 2cosu;2
2 cos(u;i + u2) + 2 cos(u;i - u)2)

2 cos 2ui + 2 cos 2u>2
2cos(a>i + 2u2) + 2cos(2a>i + w2) + 2cos(wi - 2w2) + 2cos(2u;i - u2)

2cos(2u>i + 2u>2) + 2cos(2u>i - 2w2)

the DFT of the template filter can be written a(u;i,u;2) = aTk. One of these is not indepen
dent of the others, since all scalar multiples of a filter are equivalent for this purpose. The

'Since the output intensity range is fixed, the average grey level cannot be allowed to drift.
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sum of the coefficients was demanded to be one for unity gain. Then the coefficients were
forced to be bounded below. The desired frequency response was sampled and a least-square
minimization was performed to match these points. If the resulting filter strongly violated
any of the design principles, the desired function was sampled in different locations chosen
intuitively, and the procedure was repeated. A disadvantage of this design procedure is that
it does not terminate in an obvious way.

The conditions can be stated more formally as

min£)(q(f)-a(f))2

subject to
j> =i

t

|maxta,|
min a;

<cr\

max -r-a(r cos0, r sin 0) < +a2
r,9 dr

1 f2lT
||a(r cos0,rsin0) - -— / a(r cos 0,rsin0)d0||oo < +03

2nr Jo

where G\, a2, and o$ were chosen to be as small as possible. The first two constraints were
attained computationally, while the last two were measured visually and adjusted by altering
the sample points, s. Following this procedure gave these two templates:

A1 = {1.05,-0.2342,-0.1767,-0.0666,-0.0155,-0.0155} x 1.1317
lemplate 1: Ql _ *LQ^ 0>2342> Q176?) 0.0666, 0.0155, 0.0155}

A2 = {1.05,-0.6041,-0.3592,-0.1298,-0.0860,-0.0304}
lemplate 2: ^2 _ ^ Q(^ Q^^ Q̂5g^ Q12gg^ Q0860? 00304} xl.1068

The design of the third template was motivated by the observation that the wider tem
plate spatially gives better DC characteristics while narrow templates have a better frequency
response. Therefore, it makes sense to develop a spatial wide A template so that the halfton
ing patterns look good and a spatial narrow B template to enhance the frequency components
of the image where they exist. In effect, we are demanding that an image viewed from a dis
tance appear as it were close up. This will boost the high frequencies. The same A template
was used as in Template 2, and the B template was designed by the above procedure, but
with the viewing distance that of Template 1 and the corner coefficients constrained to zero.
Note that this template will have the same DC characteristics as Template 2.

. A3 = {1.05,-0.6041,-0.3592,-0.1298,-0.0860,-0.0304}
lemplate 6: ^3 = j^ Q3565j 01672j 0.0322, 0.0000, 0.0000} X2.1223

The scaling terms in the above templates will now be explained. The templates must
be scaled so that the average density of the output will have a threshold characteristic as a
function of the input giving the proper graphic punch. Using inequality of Equation 10 it
can be seen that the critical input is given by

, , -g + M(E(t,i)gt,i-l)
^E(t,i)^,i
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Either-or rA or tb , the scaling factors, can be solved for to give the desired cutoff points.
Note that the critical input for the black and white cutoffsare symmetrical. For the examples
given here, the cutoffs are designed for \ucrit\ = .75 meaning that the middle 75% of the range
is hnear and the outer 12.5% are thresholded. For they ramp input the template was changed
to |ttcr,t| = .96 so that the interesting things are displayed.

Two other templates were designed for the Hopfield network using the Anastassiou tech
nique. The squared MTF was sampled at rates corresponding to the two viewing distances
above. The closest viewing distance used an L\ metric for measuring frequency distance from
the origin. For the further an L2 metric was used. The resulting templates are derived by
hard windowing the inverse DFT, and are

A4 = {0.00,-0.7112,-0.4766,-0.2825,-0.1413, 0.0400}
Template 4: ^4 _ ^^ 0J112j 0.4766, 0.2825, 0.1413,-0.0400} xl.6353

A5 = {0.00,-0.8757,-0.7665,-0.5861,-0.5116,-0.3363}
Template 5: ^5 = ^^ 0#8757j 0.7665, 0.5861, 0.5116, 0.3363} x1.2464

where the scaling serves the same purpose as the CNN examples. The DTFT of all
the templates are shown in Figures 17 through 20. Notice that the low-pass attenuation
characteristic of the MTF is completely lost in Figures 19 and 20.

In addition, the standard algorithms, 5th order dispersed dot ordered dither and the
Jarvis error diffusion were run on the test images. A threshold nonlinearity was applied to
the Lena Image with cutoffof 0.8 before processing to supply the proper contrast.

3.3 Experiments and Evaluation

Simulations for the dynamical systems were run using numerical integration with small
enough step size to ensure proper convergence. The initial conditions on the state were
chosen to be uniform pseudo-random on [-0.1,0.1] for the CNN simulations. The error
diffusion and ordered dither output are simply calculated by a one pass calculation.

The outputs for a ramp input are shown in Figures 5 through 15. All three error diffusion
templates exhibit much meandering structure near |u| = §. The squiggles in the stucki filter
are mostly in the diagonal directions whereas in the Jarvis and Floyd filters the noise is
correlated in either the vertical or diagonal directions depending on the input. Notice all
three examples exhibit artificial contouring due to the transient. All three have excellent
effective quantization capabihties for low level inputs. However it is questionable whether a
few random white dots on a constant black background will convince the observer that this is
a slightly lighter shade or in fact just some stray spots. The Floyd and Stucki filters produce
the checkerboard pattern near the middle grey, which is desirable. Unfortunately this pattern
is not entirely stable and is frequently interrupted with patches of courser structure.

The ordered dither output shows the many defects of this technique. There are clear
artificial contours as the input crosses a boundarybetween twoof the 33 representation levels.
In addition the noise is strongly coordinated in the diagonal directions (which is better than
the orthogonals). Also distracting are the patterns produced over areas of constant input.

The two CNN ramp outputs are displayed in Figure 9 and 11. Template 1 exhibits some
course two and three pixels connected grainyness. The output of Template 2 and 3 shows less
correlated noise. The noise that does exist is more diagonal which is less important to the
human visual system. The histograms representing the DC transfer characteristics also show
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that the second template has less correlated structure. Also, it can be seen that Template 1
has a highly nonlinear representation for extreme inputs and does not represent them well.
This iscaused by thesmall values in the template. It is possible that using nonhnear template
elements could correct for this as well as the nonhnear perception of intensity by the human
eye.

The first template of the inverse DFT design shows lots of wiggles in the diagonal direc
tions. In addition, the range of representations ends abruptly with a sharp drop-off meaning
that many grey-levels cannot be approximated. The second shows heavy correlation in the
orthogonal directions, as would be expected from the frequency domain anisotropy.

The CSF plots, Figures 21 through 24, demonstrate the design principle of frequency
preservation. Template 1 has a very broad reproduction capability whereas Template 2 which
was designed for more distant viewing attenuates structure associated with higher frequency.
The CSF of Template 3 meets our expectation that this can be recovered by enhancing the
high frequencies by modifying the B template. The error diffusion CSF demonstrates that
the error diffusion algorithm actual enhances high frequencies even more.

Finally, we evaluate the Lena images in Figures 26 through 30. The ordered dither Lena
reveals how annoying this technique can be. Almost all the fine detail has been destroyed, in
Lena's hat and hair. In addition, the false contouring due to quantization is very apparent
on Lena's cheek.

The error diffusion Lena shows good frequency rendition but lots of misleading microstruc
ture. From context you will know that the squiggles which run from her forehead to her hat
are algorithmic artifacts. But, without looking at the original would you guess that the
down-right sloping lines in Lena's hat are part of the image or an artifact?

The CNN Lena images all appear fine grained. Template 1 exhibits good detail rendition
and is optimized to appear hke the original when viewedfrom 1.4 meters, the proper distance
for this resolution. A fair amount of blocky noise is present as seen in the middle of the
shoulder. Template 2 has a much improved dot correlation at the expense of small structure
preservation. Notice the loss of texture in the upper part of the hat. Presumably, this
would not have been a noticeable feature when viewed from 2.8 meters anyway. Template
3 recovers this frequency capability while keeping the better DC characteristics. For this
reason, we consider Template 3 to provide the best rendition.

Another advantage of the CNN technique is now made clear. For the error diffusion,
the image was thresholded before processing to increase the sharpness of the output. This
represents a preprocessing loss of information. In the CNN, this information is lost during the
halftoning process, but only if the input is spatially constant. If there is frequency information
above the threshold it may still appear in the output. This accounts for the fact that the
DC threshold must be lower for the CNN than the error diffusion to obtain the same level of

graphic punch.
Upon first glance, the error diffusion output for the Lena image may be more appealing

than the CNN output. The reason for this is primarily the sharpening properties of the error
diffusion algorithm. However, as Uhchney states, "... the virtues of a halftoning scheme
should be decoupled from its abihty to sharpen. The improved output perceived from a
method that intrinsically sharpens can misleadingly outweigh other shortcomings in its abihty
to render grey levels accurately and without algorithmic artifacts."[Uli90, page 334] This is
true to the degree that you are able to prefilter to adjust for the sharpening properties. This
is the case here, as we can adjust the B template to get the desired sharpening characteristics.
To demonstrate, Figure 31 shows the output when using the A2 template with an identity B
template.
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Another concern with this statement would be that if a certain frequency is completely
filtered out of an image during halftoning, no amount of prefiltering will be able to save it.
As seen from the CNN CSF this does not occur. Also note, with the CNN the sharpening
and graphic punch can be incorporated as part of the algorithm withno additional processing
cost.

3.4 Stability

Earlier it was mentioned that the class of halftoning CNN templates was stable due to tem
plate symmetry. However, in actual realization, the A template will not be perfectly sym
metric. Stability results for nonsymmetric CNN templates [CR90, CW91] are available. In
this case, however, the dominance ofthe A template can be used to show that the equivalent
large feedback matrix is dominant [Ros88].

4 Applications

A halftoning CNN with optical inputs would be a practical manifestation, for a useful sys
tem, of the oft-discussed highly-parallel analog computation paradigm. The parallel optical
inputs and serial binary output would provide input/output rates suitable to the processing
speed. Since the halftoning operation is very robust to site errors, it is possible that inte
gration on a wafer scale would have reasonable yields. Possible applications include FAX
machines, scanner copiers, remote video, and other systems constrained by bandwidth or
binary reproduction techniques.

For instance, in a FAX machine, system constraints include the communication channel
(when a normal phone line is used), unpredictable reproduction capabihties, scanning time,
scanning density and resolution, and processing time. A CNN scanning chip could solve some
ofthese problems. The CNN halftoning simulations were shown to converge in the order ofa
microsecond. If a chip could be built that scanned a 64 x 64 region in one step, the data rate
generated would be commensurate with that of current systems, with the advantage of an
exceUent halftoning algorithm. Current FAX machine use a dither type algorithm because of
its low computational overhead and storage requirements. However, with the low samphng
rate of current Group 3 FAX, this is not sufficient for quality renditions of images.

Several issues need still be addressed when considering a VLSI implementation. In the
examples in this paper, the initial conditions were assumed to be small and random. The
initial conditions in a real circuit, corresponding to capacitor voltages, would be heavily
correlated to the previous image. Also, the effects of component variations are unknown.
The effect may actually be beneficial for further reducing microstructure in the output as
random variations in the error diffusion filter has been shown to do [Uli90]. Finally, in a real
halftoning application compensation may be necessary to join without incongruity adjacent
edges of separately halftoned portions of the input image.

5 Conclusion

The block diagram framework of Figure 1 provides a general approach to solving halftoning
(and other image processing) problems with CNNs. The use ofnonhnear template elements
could provide better internal models of the ideal and halftone paths.
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It has been shown that it is possible to develop exceUent image halftones using the CNN
paradigm. In addition, by careful choice of template coefficients, it is possible to chose
interconnection diameters small enough that the system could have a reasonable VLSI imple
mentation. The resulting halftoning system could perform real-time samphng and halftoning
on a single microchip with binary output.
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Figure 5: Ordered Dither Ramp Output



Figure 6: Jarvis Error Filter Ramp Output



Figure 7: Stucki Error Filter Ramp Output



Figure 8: Floyd Error Filters Ramp Output



Figure 9: Template 1 Ramp Output
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Figure 10: Template 1 DC Characteristics



Figure 11: Template 2 and 3 Ramp Output
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Figure 12: Template 2 and 3 DC Characteristics



Figure 13: Template 4 Ramp Output
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Figure 14: Template 4 DC Characteristics



Figure 15: Template 5 Ramp Output
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Figure 16: Template 5 DC Characteristics
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Figure 17: Template 1 Frequency Characteristics



Figure 18: Template 2 Frequency Characteristics



Figure 19: Template 4 Frequency Characteristics
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Figure 20: Template 5 Frequency Characteristics
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Figure 21: Jarvis Error Filter Arden Chart Output
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Figure 23: Template 2 Arden Chart Output



Figure 24: Template 3 Arden Chart Output



Figure 25: Original Lena Image



Figure 26: Ordered Dither Lena Output



Figure 27: Jarvis Error Filter Lena Output



Figure 28: Template 1 Lena Output



Figure 29: Template 2 Lena Output



Figure 30: Template 3 Lena Output



Figure 31: Oversharpened CNN Lena Output


