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Abstract

Since its first release in May of 1989, the BErkeley Reliability Tools (BERT) has been steadily debugged,
enhanced, and augmented. This is the second release of BERT and incorporates many new features not
available in the first. BERT 2.0 is a circuit simulation program for reliability analysis, including the original
modules: the Circuit Aging Simulator (CAS), Circuit Oxide Reliability Simulator (CORS), Electromigra-
tion (EM) - as well as a new module, the Bipolar Circuit Aging Simulator (BiCAS). Just like the first ver-
sion of BERT, BERT 2.0 works with SPICE2 and SPICE3 circuft simulators (up to SPICE3ex). Further-
more, changes have been made so that the CORS module works with the IRSIM timing simulator. Other
major enhancements include integration of BERT with the BSIM2 model, subcircuit expansion, and the

addition of a second model for time dependent dielectric breakdown.

This work was supported by the Semiconductor Research Corporation



Preface

This manual describes Version 2.0 of the Berkeley Reliability Tools (BERT). It replaces UCB/ERL
Memoranda M90/2, M90/3, and M90/4 which were provided to users of BERT Version 1.0. BERT 2.0
consists of four modules, each for a different reliability failure mechanism, which may be executed con-
currently. The four modules and their primary authors are listed below.

Circuit Aging Simulator (CAS) - Peter M. Lee and Mary Kuo
Circuit Oxide Reliability Simulator (CORS) - Elyse Rosenbaum
Electromigration (EM) - Boon-Khim Liew

Bipolar Circuit Aging Simulator (BiCAS) - J. David Burnett and Chester Li

Although each module is identified with one or two primary authors, BERT is a group project. After BERT
1.0 was released, new students joined the project, Robert Tu, Chester Li and, later, Wilson Chan. These
three students are responsible for most of the new features in BERT. Their hard work and dedication have
resulted in a program which is much easier to use. Mention must also be made of our research advisors,
Professors Chenming Hu and Ping Ko, who have guided our efforts the past three years. Their expertise
and advice has been invaluable.

Elyse Rosenbaum
November 23, 1991
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1. Introduction!™

In designing a complex circuit, designers make a large number of circuit simulations, design
changes, and optimizations so that they can predict the circuit’s performance reasonably accu-
rately before committing it to silicon. It would be unthinkable to bypass the circuit simulation
and analysis and rely entirely on the testing of finished IC’s to discover errors or to find out if the
performance of the circuit meets specifications. Yet, this is basically the way IC reliability is
treated today.

A logical altemative is to predict circuit reliability at the circuit design stage. To achieve this
goal, we must, for each failure mechanism, identify a set of parameters relevant to circuit reliabil-
ity (these would be the device model parameters in the analogy of circuit performance simula-
tions) and develop simple methods of extracting these parameters for a given process or technol-
ogy usually involving accelerated DC stress tests on test structures.

At the present time, reliability assurance relies mainly on failure detection, which occurs only at
the end of a lengthy product development and qualification process. It would be highly desirable
to predict the circuit reliability at the circuit design stage as we predict circuit functionality and
performance today. This is the function of BERT.

The BERT simulator contains modules for four reliability phenomena. They are CAS --Circuit
Aging Simulator (for hot-carrier degradation in MOSFETs); CORS -- Circuit Oxide Reliability
Simulator; EM -- Electromigration; and BiCAS -- Bipolar Circuit Aging Simulator (for hot-
carrier degradation in BJT’s). In general, the four modules can be categorized by two functional
forms: modules that simulates aged circuit behavior and modules that predicts failure times.
CAS and BiCAS allow the user to simulate circuit behavior after many years of continual use.
On the other hand, CORS and EM project the fraction of circuits at a given time which will have
undergone catastrophic failure due to time dependent breakdown or electromigration. The four
modules can be used together or separately to simulate IC reliability. It is anticipated that addi-
tional models will be introduced in the future.

BERT is linked to SPICE extemally in a pre- and post- processor fashion to form an independent
simulator. BERT can be used with either SPICE 2 or 3 and with any of the MOSFET models
(Level 1,2,3 or BSIM 1 and 2) and bipolar transistor models. '

Users should expect a reliability simulator to require more user input than a circuit simulator,
mainly in statistical data collection and parameter extraction on degraded devices. Considerable
tweaking of the parameters may be necessary initially before quantitative agreement with failure
data is obtained. This is somewhat similar to the early experience with IC process simulators and
should not distract from the long-term potential of reliability simulations.
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2. Bert Configuration and Operation

This chapter describes the organization and operation of BERT. A description of the program,
the steps needed to install and run the program, and a programmer’s guide are included. The
programmer’s guide contains a detailed description of the BERT program, and tips on how to
modify the code to suit the user’s own purpose. This chapter also describes a shell-script which
allows for interaction with BERT in a user-friendly environment.

2.1 SYSTEM CONFIGURATION

Figs. 2.1 and 2.2 show the general operation of BERT. As shown in the figures, BERT consists of
a pre- and post-processor to SPICE, with several intermediate files created for communication
between the pre- and post-processor (Fig. 2.1). The pre-processor interprets the BERT com-
mands, prepares the input deck so that it is SPICE-compatible, and writes information to an inter-
mediate file for communication with the post-processor.

If CAS, CORS, or BiCAS are called, the pre-processor requests SPICE to print out all node vol-
tages necessary for the calculation of substrate current, oxide voltage or junction voltage, respec-
tively, by the post-processor. Irsim can provide node voltages to CORS in lieu of SPICE; this is
detailed in Chapter 7. The post-processor calculations provide the information wanted by the user
of CORS or EM but further simulation is necessary to derive the aged circuit waveforms usually
requested by the user of CAS or BiCAS. EM requests SPICE to print out all the branch currents
so that current density may be calculated by the post-processor.

If aging is requested in CAS, the post-processor creates the file agetable listing the ages of all
MOSFETs in the circuit (Fig. 2.1). The pre-processor is run a second time with the original input
file as its argument (Fig. 2.2) to create the aged model parameters. The pre-processor recognizes
that it should perform this function by the presence of file “agetable." The aged model parame-
ters are based on the data in the experimentally-derived stressed device parameter files (barrels in
Fig. 2.2). The pre-processor also creates a new input deck to run with the new aged model
parameter files. The pre- and post-processor combination is run with this new input deck to obtain
the aged behavior of the circuit.

The BiCAS module operates similarly. However, different file names are used, such as ageta-
bleBJT. The stressed model parameter sets will have "BJT" added to their filename.

The simpler CORS and EM modules run in "single-pass" mode - unless the user wishes to have
the effects of bum-in simulated by CORS. The user may not request CAS, BiCAS, or EM
analysis along with bumn-in. Bum-in is simulated by two passes through CORS; this process is
explained in Appendix A in the .BURNIN command summary.
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Fig. 2.1 BERT system configuration: First pass is to calculate degradation information
(such as device lifetime) and the agetable.
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Fig.22 BERT system configuration: Second pass is to generate the aged model
parameters at the future time point specified by the .age’ command.




2.2 INSTALLING AND RUNNING BERT

A standard makefile exists in the bert directory for compiling of both the pre- and post-processor.
Simply typing ‘'make’ on UNIX systems in bert/ will compile all modules and place all execut-
able codes in the bert/exe/ directory. All CAS-related files (source code, sample input decks and
sample BSIM1 and BSIM2 model parameter files) are located in bert/CAS; all CORS related files
are located in bert/CORS; all EM related files are located in bert/EM; and all BiCAS files are
located in bert/BiCAS. To remove all object files (*.0) from these directories, type *make clean’.
The user is encourgaed to examine the README files and sample input decks inside the Sample
directories (bert/CORS/Sample, bert/CAS/Sample, etc).

Typing *make,’ will also create the executable codes for the layout extractor mextra, sim2spice
and a cif plotting program cif2ps, all for use with EM. A “stand alone" version of the electromi-
gration simulator can be created by typing make emonly in the BERT/EM directory.

To run BERT execute the shell-script (Section 2.4) or type
prebert -x deck | spice | postbert > outfile

where the deck is the file containing the circuit description and bert commands; x is "2" for
SPICE2G6; "3" for SPICE3C1,SPICE3D2, SPICE3EL1, or SPICE3E2; or "4" for the special ver-
sion of SPICE3C1 where the level 4 MOSFET model is the BSIM2 model. The default (if no
option is specified) is "3."

To use BERT to run EM and CORS analyses or to only find device lifetime from CAS and
BiCAS, the above execution is the only step required. To simulate circuit aging, the following
three lines must be executed in the order shown:

prebert -x deck | spice | postbert > outfilel (to generate the agetable/agetableBJT),
prebert -x deck (to generate the aged process files),

prebert -x inpdeck | spice | postbert > outfile2 (to simulate the aged circuit).

The second step generates inpdeck. ".age/.ageBJT" and ".ageproc/.ageprocBJT" aging commands
are omitted from inpdeck.

A different procedure is required to use Irsim rather than SPICE with BERT. Details may be
found in Chapter 7. In this release of BERT, CORS is the only module capable of processing data
from Irsim.

People who would just like to use BERT,as is, and have no need for programming details should
skip the next section (2.3) which describes the detailed implementation of BERT.

2.3 BERT PROGRAMMER'’S GUIDE

This section provides information required only by users planning to modify the source code.
Four modules (CAS,CORS,EM, and BiCAS) are currently implemented in BERT in modular
fashion. Section 2.3.1 explains how to place new modules in BERT. Section 2.3.2 further details
the CAS module and suggests methods of adding new device models, and the remaining two sec-
tions examine debugging options and explain how to modify BERT for use with a circuit simula-
tor other than SPICE.



2.3.1 Overall BERT Structure

Fig. 2.1 outlines the configuration of the pre- and post-processor in relation to SPICE. Basically,
the pre-processor prebert reads in the SPICE input deck and device model parameter files, filters
from the input deck all non-SPICE commands, and adds SPICE commands that are needed for
BERT calculations (e.g. voltage node printout commands for CAS or CORS). If the CAS or
BiCAS modules have been invoked, the following steps are taken. If the model parameter files
declared in the PROCESS command are BSIM1 process files (see Ref[8] or Section 2.1), they
are converted to the SPICE .model format and copied to the temporary files rwmdx, where x is an
integer which labels the different model parameter sets. The rwmdx files are created for use by the
post-processor postbert. When using SPICE2 with the BSIM1 model in table format, the tem-
porary files RWPRCX are also created; these are in the same format as the BSIM1 process files
except all lines dealing with Is,}, and the degradation parameters are commented out. These files
are used in the PROCESS declaration in the modified SPICE2 input deck. For models in .model
format, the temporary files rwmdx are appended to the input deck, with Ig,, and degradation
parameters commented out during the copy.

Prebert also creates a file called rawsub to communicate with postbert. The file rawsub contains
information such as which BERT-specific commands have been specified the number of transis-
tors to be analyzed, etc.

When prebert is run with the file agetable present, prebert will read in the transistor ages from
agetable, generate the aged model parameters, and place them into files named AGEx, where x
differentiates between model parameters sets. Different aged model parameters sets exist either
because the fresh transistors had different parameter sets or the aged transistors have different
ages. Prebert then creates the file inpdeck which contains a modified input file so that the new
model parameter files AGEx can be used. The aging commands .AGE and .AGEPROC are also
deleted in inpdeck. In a similar way, BiCAS creates an aged input deck.

Postbert reads the SPICE output file from the standard input, and rawsub. If CAS or BiCAS has
been invoked, all model parameters are loaded in by opening the rwmdx files. Afier all calcula-
tions are completed, postbert writes to standard output any output requested from SPICE by the
user with the results of BERT appended. All temporary files, such as rawsub and rwmdkx files are
erased. :

Both prebert and postbert are written in standard UNIX C and use dynamic memory allocation
(using malloc( and calloc()) so that there is no inherent limitations to the number of transistors or
number of SPICE timesteps that can be accommodated (available memory and hard disk space
become the determining factor). Program testing has been done on DEC VAX machines, the
DEC 3100 and 5000 workstations, the Sun 3/60, and the Sun SPARCstation .

The following subsections describe prebert and postbert in more detail.

Prebert:

Fig. 2.3.1 shows how the main routine in the source code file prebert.c is organized. The routine
OpenRaw() opens rawsub for writing, and the routine ArgU() reads in all arguments and makes
sure relavant files can be opened. At this stage, the input deck is temporarily copied to a file
called rawinpl.

Control is then transferred to the routine PreFilter() which scans rawinpl for BERT-specific com-
mands and sets up the necessary flags. The flags HotModel, DBModel, EMModel and/or



Fig.23.1

Routines Input File Conversion

START

j!

OpenRaw(

6

rawinp1

)

—> HotElectModelQ

4
—>! TddbSetup(

2
—>1 EMSetup()
....................... Y.,
. Add new modules in identical fashion here. X
l e.g. BiCAS .
Copy rawinpl to '
standard output

Filtered SPICE

m input file

The structure of the main program in prebert.c. The solid arrows show the
path of program execution, while the dotted arrows show the path the input
deck takes through the different modules, Square symbols represent routines
or a particular program function, diamonds are decision points, and barrels
represent files.
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BJTPass are set to 1 if CAS-specific, CORS-specific, electromigration-specific, or BiCAS-
specific commands are present, respectively. Once this is done, control is passed to each of the
four modules depending upon the status of the appropriate flag.

Any module invoked reads in rawinpl, adds lines to rawsub, and modifies rawinpl as necessary
(for example, in a CAS simulation, .PRINT commands for voltage printouts are added). In prac-
tice, since reading and writing simultaneously to the same file is not permitted, the original
rawinpl is copied to a file rawinp2. All additions or modifications necessary are also done in the
file rawinp2. Finally, before the particular module is exited, rawinp2 is moved to rawinpl. Once
all necessary modules are executed, the main routine checks for any errors that may have
occurred, and if none have occurred, rawinpl is dumped to standard output after appending the
model parameter files. Prebert then erases rawinp].

Error flagging is handled by the global integer variable *Error’ and the character string "ErrMsg’
which contains a description of the error (including the one-letter module identifier and two-digit
error code for prebert errors). If an error occurs, ErrMsg is printed to standard error so that the
user can immediately see that something is wrong by looking at his or her screen. ErtMsg is also
placed in the rawsub file so that postbert can print it into the standard output as well.

Following is a list of the source code files and a brief description of each:

1)  prebert.c: This file contains the main routines of BERT and CAS.

2) procsub.c:This file contains routines that create the rwmdx and RWPRCX files. The
rwmdx files are in SPICE '.model’ format, while the RWPRCX files are in BSIM1
process file format with the Isub and degradation parameters commented out.

3) age.c: This file contains the main routines that calculate the aged model parameter
sets for CAS.

4)  bsimext.c:This file contains routines that extract the aged model parameter sets for
the BSIM1 model (SPICE3 Level 4).

5) spext.c:This file contains routines that extract the aged model parameter sets for
SPICE Level 1, 2, and 3 models.

6) tddb.c: This file contains all routines related to CORS.
7) preem.c: This file contains all routines related to electromigration simulation.
8) premisc.c: This file contains miscellaneous routines used by the rest of the program.

9)  bertpr.h, bertpr2.h:These files contain the global variable declarations of prebert.
bertpre.h contains all variable declarations and is included only in prebert.c and
procsub.c. All variables in bertpr2.h are declared as extern variables and are used
for the other source files.

10) tdbprdef.h: This file contains the variable declarations for tddb.c.

11) empredefh: This file contains the variable declarations for the electromigration
module.

12) preirsim.c: This file contains the routines for parsing Irsim input files.

13) preirsim.h: This file contains the variable declarations for preirsim.c.

14) prebjt.c: This file contains all routines related to BiCAS. ’

15) Dbjtprdef.h, bjtprdef2.h: These files contain global variable declarations for BiCAS.

16) agebjt.c: THis file contains the main routines that calculate the aged model parame-
ter sets for BICAS

17) expckt.c: This file contains routines which allow subcircuit expansions.
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18) bsim2ext.c: This file contains routines that extract the aged model parameter sets for
the BSIM2 model.

The following items must be done to add a new module to prebert:

1)  Code to search for new keywords and commands should be added to the routine Pre-
Filter(.

2)  Appropriate global flags must be set according to the keywords found during execu-
tion of PreFilter() so that control is transferred to the new module when required.
The global flags should be declared in the variable declarations files bertpr.h and as
an extemn variable in the new module’s "definition" (*.h) file.

3) Each module must adhere to the rule of reading rawinpl, writing the modified input
file to rawinp2, then moving rawinp2 to rawinpl (rawinp2 should not remain after
the module is exited). All non-SPICE commands related to the module should be
commented out. The module should be in its own source file, and it may have its
own variable declaration file. Any other intermediate files that need to be created
must begin with the word ’raw’, and any files not needed by the remaining portion
of prebert or postbert must be deleted before exiting the module.

4) If any errors are detected, the variable "Error’ must be set to 1 and a description of
the error including its error code should be copied to the string variable 'ErrMsg’.
The error code consists of one or two letters identifying the module involved, fol-
lowed by a two-digit number, in tumn followed by a colon before the actual error
message (see Appendix A for error codes for examples).

Postbert:

Fig. 2.3.2 shows the routines within the main program of postbert.c. The format for the program
execution path, the path of the output file, and the symbols are the same as in Fig. 2.3.1. Follow-
ing some error checking, standard input (i.e. the SPICE output file) is copied to the file rawout!.
Similar in function to rawinp1 in prebert, rawoutl becomes the file that each module reads to do
its calculations. Any deletions to the output file (for example, deleting all CAS-requested voltage
node printouts) are made by copying rawout! to file rawout2, making the necessary changes and
subsequently moving rawout2 to rawoutl before the module is exited. Any information to be
added to the output by each module is saved in separate files (for instance, the file rawhot in
CAS), and these files are appended to the final rawout! file after all modules have been executed.
Finally, rawout! is placed into standard output.

Error flagging is handled in a similar fashion to prebert, except that the integer variable Error is
equal to 1 if a postbert error has occurred, and Error is equal to 2 if a prebert error previously
occurred (the prebert error assignment is automatically handled by the main program as long as
each module in prebert correctly assigns the error variable and message). Again, all error mes-
sages are written into the character string ErrMsg, including the one- to two-letter module
identifier and, this time, a three-digit error code for postbert errors, and the error messages are
printed out both to standard error (which shows up immediately on the screen) and to the output
file. :



Routines Output File Conversion

START ‘ SPICE Output File ,

4
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l e
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%
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Fig.23.2  The structure of the main program in postbert.c. ‘The solid arrows show
the path of program execution, while the dotted arrows show the path
the SPICE output file takes through the different modules. Square
symbols represent routines or a particular program function, diamonds
are decision points, and barrels represent files,
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Following is a list of the source code files and a brief description of each:

)
2)

3
4)

5)
6)
D

8)

9)

10)
11)

12)
13)
14)

15)

postbert.c: This file contains all the main routines of BERT.

readpar.c:This file contains routines that read various transistor information and
obtain model parameters from the rwmdx files.

degcalc.c: This file contains the Isub, Igate, and degradation models for CAS.

mos.c: This file contains all the drain current models (SPICE Level 1, 2, 3, and 4
(BSIM1)).

output.c: This file contains all the routines used for CAS output file printout.
postddb.c, nrcalcs.c: These files contain all CORS-related routines.

postem1.c, postem2.c:These files contain all routines associated with the electromi-
gration module.

postmisc.c: This file contains miscellaneous routines used by the rest of the pro-
gram.

bertpo.h, bertpo2.h:These files contain the global variable declarations of postbert.
bertpo.h contains all variable declarations and is included only in postbert.c. All
variables in bertpo2.h are declared as extern variables and are used for the other
source files .

tdbpodef.h: This file contains the variable declarations for CORS.

empodef.h: This file contains the variable declarations for the electromigration
module.

postbjt.c: This file contains all routines associated with the BICAS module.
bjtpodef.h: This file contains the variable declarations for the BiCAS module.
consort.c: This file contains routines for parsing the output of irsim and reformatting
it.

bsim2.c: This file contains the routines to do BSIM2 model aging computation.

When adding new modules to postbert, these guidelines should be followed:

1

2)
3)

4)

S)

Declare global flagging variables in the variable declaration files bertpo.h and the
new module’s include file (as an extern in the new include file).

Call module from the main routine.

In the routine FindInfo() in the main routine, modify code to search for new key-
words in the rawsub file ‘

Each module should be written in its own source code file, with any variables
specific to the module declared in its own variable declarations file.

Within each module, the file rawout] should be read to obtain waveform informa-
tion necessary for reliability calculations. rawout! should be copied unaltered to
rawour2 except for items requested of SPICE by the module prebert during pre-
processing that are no longer necessary. However, care must be taken not to delete
information that will be used by any subsequent modules (For example, voltage
node printouts are used by both CAS and CORS. CAS deletes the printout from
rawout2 unless CORS is requested. In this case, CORS deletes the node voltage
printouts from rawout2. Any information that needs to be added to the output file
should be stored in a separate file such as outtddb, rawdevtab, Ifoutbjt, etc. Finally,
rawout2 should be copied to rawoutl before the module is exited.
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6) Make sure postbert appends the module’s output file to rawout1 in the main routine
after all modules have been executed.

2.3.2 Adding New Device Models to CAS

Adding new device models into the CAS portion of BERT involves a fair amount of effort
because there will be new parameters, which means that new keywords must be searched for and
new data structures must be created. However, the necessary routines can be created in parallel
with the existing routines for the present models.

First of all, in prebert, no modification is necessary if the device model parameters are to be
declared in the usual ".model’ format. If the model parameter format is unlike that of the SPICE
.model card, a translator routine such as Proc2ModSub() in procsub.c must be written to translate
the format to a form recognizable by SPICE. Of course, the new model must already be imple-
mented in SPICE.

In postbert, the formulation of the new model should be added as a routine to the file mos.c for
drain current models, and degcalc.c for models involved with device degradation (including sub-
strate and gate currents). Once these have been added, the routines involving calculation of
currents should be used in the routine CalculateCurrents() in postbert.c, while routines involved
with calculating device degradation should be included in SubAnalysis() in postbert.c in a similar
fashion to the existing degradation routines.

The new model parameters should be appended to the existing TmArray data structure in the
variable declaration files bertpo.h and bertpo2.h. A new routine in parallel with ReadParame-
ters() should be created in readpar.c to recognize new parameter keywords and load the model
parameters into the appropriate variables. A routine similar to BSIMsetup() and SPICEsetup()
should be created to assign default values to parameters not assigned explicitly.

Fig. 2.3.3 shows the algorithm in age.c used in prebert to calculate aged model parameters for
each transistor listed in the agetable. After general memory allocation (MemAlloc()), the SPICE
input file is read to find the files listed in the . AGEPROC command (GetAgeCards()). The aget-
able is read by GetDevAge(), and then the loop to calculate the aged model parameters for each
device listed in the agetable begins. The appropriate pre-stressed model parameter files are
loaded in ReadAgePar(), and a check is made to see what model is used. The routines
BSGenAgeParm() and SPGenAgeParm() do the actual calculation to find the aged model parame-
ter set from the pre-stressed model parameters and device age, and the newly-created parameters
are placed in the AGEX files. Memory space is freed for use by the next loop if more devices
remain in the agetable. Once all aged model parameters have been found for all devices, then
GenlInpDeck() takes the original SPICE input file and creates a modified input deck inpdeck for
use with the new aged parameter sets.

The aging portion of CAS uses separate data structures for the BSIM1 model and the other
SPICE models. In addition, separate data structures are used for the pre-stressed model parame-
ters and calculated aged model parameters. For new models, new structures should be created,
and the routine ReadAgePar) must be modified to load the new parameters. New aged-
parameter extraction routines specific to the model should be written (as indicated in the dotted
box in Fig. 2.3.3). The extraction routines written for the SPICE Level 1, 2, and 3 models are the
best routines to follow when creating the new routines.
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2.3.3 Modifying BERT To Work With Other Circuit Simulators

BERT, in its present form, cannot be used with circuit simulators other than SPICE2G.6,
SPICE3Cx... SPICE3EX, and Irsim because of its use of specific keywords and pattemns to recog-
nize input deck commands and output file information. If a different circuit simulator is to be
used, then all parsing routines in prebert and postbert must be modified so that the correct key-
words are searched. Prebert must be further modified to output the appropriate commands for the
new simulator. These functions are concentrated in prebert routines (and subroutines of) Read-
Voltage(), TddbModel(), EMPost(), ReadVoltageBJT(). In postbert, the routines to be modified
are main(), FindInfo() in postbert.c and the subroutines they call.

2.3.4 Debugging Options in BERT

To use the UNIX C debuggers (such as dbx), alter the top-level Makefile so that CFLAGS is
defined as *-g’ (to include the symbolic table used for debugging) rather than ’-O’ (optimized for
execution).

2.3.5 Summary

This section has provided some hints and guidelines to follow when adding new modules to
BERT, new device models to CAS, and when use of a circuit simulator other than SPICE is
desired. Adding new modules to BERT is relatively simple because of the modular structure.
Adding new device models to CAS involves more effort because of the new model parameters
that need to be recognized. Modifying BERT to be used for non-SPICE circuit simulators
involves modifying input parsing and output routines and requires a varying degree of effort
depending upon how similar the circuit simulator is to SPICE.

2.4 BERT SHELL SCRIPT PROGRAM FOR UNIX ENVIRONMENTS

A shell script-program for BERT has been developed for use in a UNIX environment. A menu-
driven system enables the user to choose the desired simulation without having to enter the
lengthy piping commands. The shell-script has also been designed to alert the user whenever he
or she may be executing BERT in an erroneous fashion. The shell-script was designed to be
informative and user-friendly. All operations are automated for convenience and speed. In addi-
tion, an option is added to iteratively age the circuit so that ongoing degradation can be taken into
account.

To call the shell, simply type
bert < input file > < output file >

Specifying the input and the output file in the command line is optional; the shell will prompt the
user to enter them if they are not specified.

Fig. 2.4.1 shows the opening menu. Three different options are available: 1) Simulation using
SPICE, 2) Simulation using IRSIM, 3) Exit the program. These options are self-explanatory.
Choosing option 1 leads to the main menu. Fig. 2.4.2 shows the main menu. Three different
options are available: 1) a one-pass simulation (such as calculating the degradation information in
CAS, or doing a CORS or electromigration simulation), 2) a CAS/BiCAS aging type simulation
(multiple-pass circuit aging), or 3) and program termination.
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Fig. 2.4.3 shows the menu when the one-pass option is selected. The first option allows the user
to alter the input file by entering the UNIX "vi" editor, while the second option permits the user
to use entirely different input and output files. Option (3) makes it possible to call and use model
parameter files from a different directory than the one in which the simulation is done. This
allows the user to store all his model parameter files in one directory while switching from direc-
tory to directory for his simulations. Option (4) starts the actual simulation, option (5) returns the
user to the main menu (Fig. 2.4.2), and option (6) exits the shell.

Fig. 2.4.4 shows the screen format when option (3) (selecting a new path for the parameter files)
is chosen. Presently, the user can customize his shell by writing in four different often-used paths
in the shell code. Path (1) is the default path that is active whenever the shell program is started.
The user can also enter an entirely new path (option (5)). This path, however, will not be stored
when the shell is exited. Option (6) allows the user to stay with the present path listed at the top
of the screen.

After doing all the necessary adjustments, the user can select option (4) in the one-pass menu
(Fig. 2.4.3) to start the simulation. While the programs are running, the present status of the exe-
cution is successively displayed until the END OF SIMULATION menu appears (Fig. 2.4.5).
Here, the user has the choice of viewing the newly created output file, going back to the one-pass
menu (Fig 2.4.3), going back to the main menu (Fig. 2.4.2), or exiting the shell altogether.

When the CAS/BiCAS option is selected from the main menu, a menu similar to the one-pass
menu is displayed (Fig. 2.4.6). All options are identical, except for option (2). This option is
only available to CAS. This option enables iterative simulation so that ongoing degradation can
be taken into account. For instance, the user may want to simulate his circuit 10 years in the
future. He may iterate only once so that the aged process files created by CAS are directly based
on the degradation that occurred in the fresh circuit, or he may subdivide the 10 years into, for
example, 10 intervals equally spaced in log time, so that each CAS simulation will generate
model parameter files that have aged for an intermediate length of time. The aged model parame-
ters of the first simulation is used by the next CAS simulation to produce the next set of aged
model parameters files. This cycle is continued progressively until the 10 years is reached. In
this way, the change in circuit degradation from continually changing device characteristics can
be taken into account. Greater accuracy can undoubtedly be achieved with a larger number of
iterations, but with a sacrifice in speed and CPU time.

Once the simulation is started by selection of option (5) from the CAS/BiCAS menu (Fig. 2.4.6),
diagnostics that are similar to that of the one-pass case are displayed. The diagnostics show the
present status of the simulation, with the END OF SIMULATION menu again appearing when
program execution is completed. The same options as in the one-pass case are present, except
that the user can now view the output files of both the fresh and the aged circuit.

When the Irsim Option is selected, the menu in Fig. 2.4.7 will be diplayed. This menu is basi-
cally the same as the one-pass menu.

Once the shell script is exited, all temporary files used by the shell and the pre- and post-
processors are erased. The input file, the fresh and aged output files, the agetable of each itera-
tion, and the aged model parameter files remain. The fresh output file can be identified by a ".fr"
suffix added to the name of the output file specified by the user. A word of caution. The BERT
system uses temporary files beginning with "raw" and "age", both in lower and upper cases. The
user should avoid naming his personal files matching this pattern, as these files will be overwrit-
ten and erased when BERT is exited.
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Following are instructions for installing the shell-script program. The shell-script is a normal text
file and can be copied directly into the desired directory for use. Four additional items, however,
must be taken care of by the user. These involve editing the shell-script. All four modifications
are made at the beginning of the program, and directions are contained in the listing (Fig. 2.4.8).
First, you must specify the path of your SPICE/Irsim executable code so that BERT knows where
to find SPICE/Irsim. Specify the path after the "alias spice” statement (e.g. in Fig 2.4.8, the path
for SPICE is specified as "usr/cad/spice3"). Second, you must determine the proper flag for the
pre-processor prebert so that it will work correctly with the SPICE version specified in the "alias
spice” statement. This flag which appears in double quotes after “set preflag = " in Fig. 2.4.8,
corresponds to the ’-x’ flag in Section 2.2. Third, the location of the various programs required to
run BERT must be specified in the seven "alias” statements that follow next. The relevant paths
are entered in the third column of text in similar fashion to specifying the SPICE path. The vari-
ous programs include the BERT pre- and post-processor, as well as a collection of programs that
are used exclusively by the BERT shell script. All necessary executable files except SPICE are
placed in the bert/exe directory once the makefile is executed (Section 2.2). Finally, the fourth
modification is to set the paths for the location of the process files that will appear in the path
selection menu (Fig. 2.4.4). The text after the equal sign in the "set PfDirx = " statements should
appropriately be replaced by the desired paths. Note that double quotes must surround the path
listing.

Once these additional items are done, BERT can be used immediately.

2.5 RESTRICTIONS

Hot-carrier degradation of transistors in which the source and drain are switched regularly in cir-
cuit operation (such as transmission gates) cannot be simulated properly in this version of CAS.

2.6 SUMMARY

We have described the installation and operating procedure of BERT in this section. Being able
to separate the pre- and post-processing adds flexibility in use, but for convenience, a UNIX shell
script program has been developed that automates the simulation process, as well as making itera-
tive aging simulations possible. Finally, in this chapter we have discussed the detailed operation
of BERT and methods which users can use to modify BERT to satisfy their own needs.
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Fig.24.1 The opening menu of the shell script program.
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Fig.2.4.2 The initial main menu of the shell script program,
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Fig.243 The one-pass menu of the shell script program,
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BERKELEY RELIABILITY TOOLS (BERT)
SHELL SCRIPT PROGRAM

Vexrsion 2.0
By Peter M. Lee
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
July 10, 1990

L
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¢
L
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' $

This program runs a shell script for use with the pre- and post- 4
processing system of the BErkeley Reliability Tools (BERT). With this ¢
shell script, automatic execution of the single-pass Isub, Igate, hot- L
carrier lifetime, oxide (CORS), and/or electromigration simulations can ¢
be done, as well as the multiple pass Circuit Aging Simulator (CAS) type ¢
simulations. With the modification in version 2.0, this shell script $
can also do circuit oxide simulation (CORS) utilizing IRSIM. :
4

¢

$

4

t

Copyright (c) 1988, 1989, 1990 Peter M. Lee All rights reserved.
Modified 1991 by W. Chan
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lIC#SCOII#0#!!##!#!0!00!!llllll#0!!!00000Olllllllll0!03'0!0000!0!00!#l!ll#il'
H .

# Edit the following ten lines to set the correct path for the various
t simulation programs.
]

alias spice /usr/cad/spice3

Set preflag to the argument of prebert corresponding to the spice
version specified above according to the following: L]

SPICE2G6: -> set preflag to "-2v,
SPICE3C]l or SPICE3D2 with level 4 as BSIM1 model, level 5 as BSIM2 model
or SPICE3El or SPICE3E2: -> get preflag to “-3%,
SPICE3C1 special version with BSIM2 model as level 4: -> set preflag to "-4",

e e e e W W e e W

set preflag = "-3%
L

alias prebert prebert

alias postbert postbert

alias CopyProc copyproc

alias CopyProcBjt cpprocbjt

alias DelProc delproc

alias AgeFilter agefilt

alias AgeConv  ageconv

alias Convinp convinp

alias irsim ~wchan/Irsim/irsim

Put the paths of the location of your process files equal to the
variables PfDirl through PfDird4 for CAS and PfDirBil through PfDirBi4
for BiCAS.

Paths for process files for CAS:-

W W O W W SR

set PfDirl = "/usr/cad/bert/CAS/Sample”
set PfDir2 = ",,/../CAS/Pfiles"

set PfDir3 =

set PfDir4 =

[

§# Paths for process files for BiCAS:-

#

set PfDirBil = "/usr/cad/bert/BiCAS/Sample"”

set PfDirBi2 « ",./../CAS/Pfiles"

set PfDirBi3 = .

set PfDirBi4 =

4
#9##!8#!#9#8!###!!!0!90!l#li'l'0!0l#il.lCll!'000'0#0!!00}0#'0!0060!0!lllll!lll
# Do not modify below this line. 4
####a#t####l######t##ll!!i#l!0!#!0#0#!0##!0!!!0!00#'0li!l!#!!l!tttll!!ll#!!l!l
clear

set PfDir = $PfDirl

Fig. 2.4.8 The first several lines of the shell script program. To customize the shell, the user must
modify the "alias” statements and the "set PfDirx" statements as described in the text.
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3. Circuit Aging Simulator (CAS)

Hot-electron degradation is becoming a worrisome issue as device dimensions continue to shrink.
Past research has concentrated on the device level to study and model hot-carrier degradation
[21,22,23,24,25,26,28,4,31,32,34,6,36,37,38,40,42,44,13], and to design hot-carrier-resistant
structures such as the Lightly-Doped-Drain (LDD) and Doubly-Diffused-Drain (DDD) devices.
By understanding the mechanisms of hot-carrier degradation and using these degradation-
resistant structures, devices with satisfactory hot-electron reliability can be designed.

So far, because hot-carrier degradation research has concentrated on the device level, researchers
have used device-related parameters such as drain current degradation, transconductance degrada-
tion, or threshold voltage shift to quantify and judge hot-carrier reliability. It remains unclear,
however, how these device-level degradation changes actual circuit behavior. Reference [7] has
demonstrated the varying sensitivity of the circuit output on each transistor in the circuit. For
example, a certain transistor M1 may experience 20% drain current degradation but affect the cir-
cuit output minimally, while another transistor M2 may suffer only 5% degradation and yet cause
substantial degradation in circuit performance. Furthermore, each transistor may have varying
sensitivity depending upon what aspect of the circuit performance is considered critical. Trying
to define an arbitrary level of device degradation (such as 10% current degradation) can be
misleading and overly conservative or dangerously optimistic. In addition, to predict degraded
circuit behavior, the degradation of the individual devices of the circuit subjected to the dynamic
circuit-determined waveforms must be predicted. This is in sharp contrast to the DC or uniform
AC waveforms used to study device-level degradation behavior.

This chapter introduces the Circuit Aging Simulator (CAS) [11]. CAS predicts hot-carrier degra-
dation of MOS devices undergoing dynamic operation in circuits and can therefore predict the
degraded circuit behaviour after a user-specified operating time. Used in conjunction with the
SPICE circuit simulator [20,46,19], CAS uses a parametric I, model with a device degradation
model to calculate aged model parameters for each device in a circuit. With CAS, circuit output
sensitivity to different transistors within the circuit no longer becomes an issue. Since raw circuit
behavior is simulated, we can study the effect of hot-carrier degradation on any aspect of the cir-
cuit.

CAS is a successor to SCALE (Substrate Current And Lifetime Evaluator) [8,9,10,53] which
computes device-level degradation information such as the I,,;, waveform and device lifetime.
CAS incorporates the structure and models of SCALE: 1) the system is configured in a pre- and
post-processor fashion external to SPICE so that no modifications to SPICE is necessary; and 2)
transient substrate current waveforms and device lifetimes can still be calculated. In fact, SCALE
has become a wholly enclosed subset of CAS, so that SCALE commands will also work in CAS.
A new quantity, Age, is introduced to quantify the amount of degradation each device suffers.
The age includes extracted degradation parameters, the device width, and the substrate and drain
currents. Device parameters corresponding to the user-specified future time point are then calcu-
lated by comparing the ages calculated for the circuit devices to that of devices at varying degrees
of stress with model parameter sets associated with each different stress level. The newly created
"aged" model parameters files are then used to simulate the circuit. In these simulations (as well
as in the device lifetime simulations), two assumptions are made: 1) the SPICE analysis must be
a transient analysis since aging is based on time; and 2) circuit behavior is assumed to be periodic
with the period equal to the length of the SPICE analysis (i.e., the waveforms of the input, output,
and all internal voltage nodes are assumed to repeat the pattern simulated in the SPICE run up to
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the user-defined future time point).

CAS has been configured to use SPICE level 1, 2, and 3 models as well as the two BSIM models
(BSIM1 [39] and BSIM2 [45,47]) . Any mixture of the models can be used in the SPICE input
deck.

Below, is a general outline for the complete process of simulating the aging of a circuit using
CAS.

(1) Extract fresh and stressed process files (a minimum of four).

(2) Extract degradation and Iy, and I, parameters.

(3) Reconcile experimental discrete device data (fresh and stressed) with SPICE I-V characters-
tics.

(4) Reconcile experimental and simulated Iy and Iy, i.e. confirm the extracted parameters.

(5) Simulate DC stress of discrete devices (n and p channel) and compare the result with exper-
imental Al versus time in order to confirm the extracted parameters.

(6) Create SPICE deck (and check if circuit works in SPICE).
(7) Add CAS commands to SPICE input deck.
(8) Run BERT by using either the shell-script or line commands.

Sections 3.1 and 3.2 of this report will outline the NMOSFET aging models and device lifetime
model, respectively, while Section 3.3 will describe a preliminary degradation and aging model
for PMOSFET devices. Section 3.4 contains a CAS simulation example using the commands
summarized in Appendix A.

3.1 NMOSFET CIRCUIT AGING AND LIFETIME MODELS

This section describes the models and formulations used to generate the aged model parameters at
the user-specified future time point. A new parameter, Age, is introduced to quantify the amount
of degradation each device experiences in a circuit environment. This Age parameter is then used
as the basis in finding the aged model parameters.

3.1.1 Model Formulation

Device degradation is represented by the change in device model parameters, e.g. AB, Ay, etc.
Here, we will generalize the degradation by using the symbol AD. AD may be interchangeably
replaced by any of the three or other degradation parameters in the following equations.

Under DC static stressing conditions, the amount of degradation as a function of time is given by
Ref[4]

AD = f(At) (3.1.1)
where
A = & exp(~4i/GAEn) (3.12)

—
To use the BSIM1 model with SPICE2 requires a special version of SPICE2G.6 [8,30)
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where ¢y, is the critical energy required for the creation of interface traps, A is the electron mean
free path, Ep, is the maximum lateral channel field, W is the device width, and n and C; are
dependent on the processing technology. Here, we have generalized the relationship of the degra-
dation by some monotonic function f (the aging concept does not require an explicit form for f, as
we shall see shortly). Also from Ref[4],

%‘f = C2exp(~$/qAEm) (3.13)

where ¢; is the critical energy required for impact ionization and C; is a process technology con-
stant. Eq. 3.1.3 can be re-arranged in the following manner:

N o
exp(—pi/qAEy) = [eXP(wqu)] W= [ -ég‘i‘f;] (3.14)
m=31

i

By substituting the exponential term in Eq. 3.1.2 with Eq. 3.1.4 and merging all constants into the
parameter H, we can obtain

Aa&,"ﬁ.[}l‘%"] " (3.1.5)

where m and H are extracted parameters and are dependent on device processing technology.
The degradation parameters m and H are also dependent on the gate-drain bias voltage Vgd
Ref[10,53]. Thus, the expression for device degradation from Eq. 3.1.1 becomes

- Ids Imb m
AD—fI:-WH-[-IdT] I] (3.1.6)
3.1.2 NMOSFET Circuit Aging Model

A new parameter, Age, is now introduced to quantify the amount of degradation each device
experiences in a circuit environment. After this parameter has been calculated, it is then used as
the basis in finding the aged model for each transistor.

To determine the amount of degradation that occurs in a device, we must ook back at the degra-
dation equations above. Since the amount of degradation depends on the stressing condition as
well as on time, an Age parameter solely based on time cannot be used. From Eq. 3.1.6, we can
generalize an Age variable that is related to the degradation, AD:

AD = f(Age) (3.1.7)
where

Age= f(yis [ _Iff] "t

Eq. 3.1.7 has all the information necessary - degradation parameters, currents, and time - and is
geometry-independent. During circuit simulation, the Age is calculated for each device at each
timestep, then integrated to obtain the total Age of the SPICE analysis,

Age:r=i)‘lvdﬁ[-1%] Tdt (.1.8)
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where T is, as before, the length of the SPICE analysis. The age that each device would have at
the user-specified time Tyg. is just

T,
Age(Toge) = Ager| =

The list of ages for every device in the circuit is stored in an external file called "agetable" to be
used for the creation of aged model parameters.

To create these aged model parameters, CAS needs a set of model parameter files extracted from
the same device but at different levels of degradation. The principle behind the system is as fol-
lows:

(1) The user extracts model parameters from a fresh device, followed by extractions of the
same device after it has been DC-stressed for different lengths of time.

(2) The user calculates the Age of each of the extracted set of model parameters by using Eq.
3.1.7. This is relatively straightforward since the stressing conditions are known.

(3) CAS simulates the desired circuit and calculates the Age that each device in the circuit
would have if the SPICE analysis is repeated up to the user-specified future time point.

(4) CAS compares the Age of each device in the circuit with that of the stressed model parame-
ter files of step (1), and calculates the new aged model parameters of the devices in the cir-
cuit by interpolation or regression.

The concept of calculating the aged parameter set is graphically given in Fig. 3.1. The barrels
represent the fresh and pre-stressed model parameter files with ages Age;, Age,, etc., with the age
of the circuit device (calculated by CAS) denoted by Age. Typically the age of the circuit device
will lie between two of the pre-stressed model parameter sets. The user has the choice to specify
whether interpolation is used (as shown in Fig. 3.1), or whether regression is desired. In both
cases, the user also has a choice of whether to perform the analysis in the linear-linear, linear-log,
or log-log domain. Generally, log-log is not recommended if the devices in the circuit have very
small ages. If the age of the circuit device lies outside the range of the pre-stressed model param-
eter sets, the two closest parameter sets will be used to extrapolate the age. Extrapolation results
in inaccurate output and is not recommended, because we did not assume any functional form for
the model parameters versus Age. No explicit function f for Eq. 3.1.7 is assumed.

For BSIM1 and BSIM2 parameter extractions, if multiple device extractions are done to create
size-independent process files, every device that will be used to construct one size-independent
process file must be subject to the same amount of degradation when doing stressing so that the
extraction of each set of stressed process files will consist of devices with the same Age. Since it
is difficult to set the same current level for each device, it is recommended that once a current
level is set, the stressing time for each device should be varied to obtain the same Age. In gen-
eral, this method is not reccommended because of its complexity.

3.1.3 NMOSFET Device Lifetime Prediction

This section outlines the models used to calculate dynamic NMOSFET device degradation. This
is the aging output produced after the first pass of BERT. This model implementation differs
from that in SCALE described in Ref[8] in that a bias-dependent n parameter can now be used;
however, the basic workings of SCALE have been imbedded into BERT. Sometimes it is desir-
able to find, for a given stress time, Alg ( or AVT) which is not one of the input aged parameters
or, conversely, to find lifetime for a specified Aly. If AD;is the amount of degradation e.g. Al,, at
which device lifetime, 7, is defined, then for Eq. 3.1.6 and Eq. 3.1.8,
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AD; = f(Agey) (3.19)
=T A8 3.1.10

For any user specified ADg, BERT will first find Ages. T is determined from 3.1.10 and the calcu-
lated Ager, Eq. 3.1.8. Device lifetime is predicted according to Eq. 3.1.10. To find AD at a
specified time, t;p, BERT generates a rough table of AD, e.g. Aly, versus Age, i.e. find the f in Eq.
3.1.9. For device lifetime prediction, f is defined by a exponential function, AD = At®, Once that

is done, AD,, can be found from the table using Age(ts,) = Age.—t%l’-.
3.1.4 Enhanced AC Degradation

There have been several publications describing enhanced hot-carrier degradation from AC
effects Ref[6,37,38,12]. These effects can be catagorized into two waveform cases, the "good"
and the "bad" case. The "bad" waveform, known to cause the greatest enhanced AC degradation,
corresponds to the case where there is a sudden and deep fall of Vg, in the presence of high Vyq
Ref[37,38], while the "good" waveform corresponds to all other cases. Although certain pub-
lished reports show enhanced degradation at the device level even in the "good" case Ref[6,12],
this enhancement does not seem to have a great effect on the calculation of aged model par-
maeters on the circuit level for inverter-class waveforms which are classified as the "good" case.
We thus believe the quasi-static model presented here is adequate for this "good" class of
waveforms (which represent the majority of waveforms encountered in circuits).

In case the "bad" waveform is encountered and the user so specifies, a waming is issued when the
following criteria are met: '

1) Vgfal>3V
2) V43— Vg >4V during the Vi, fall.

3 e > 10Vips

If this situation is encountered, the models presented in this section (as well as the aging model
described in the next section) may be susceptible to underestimation of the hot-carrier degrada-
tion. A more recent publication has suggested that the enhanced degradation seen in the "bad"
class of waveforms is actually due to capacitively-coupled spikes appearing in the drain voltage
during device stressing Ref[51], in which case CAS would be able to predict degradation for both
types of waveforms.

3.1.5 Substrate Current Model

The substrate current model is an empirical model developed for the BSIM1 parameter extraction
program discussed in Ref[5,50,8]. This model is used for all SPICE models including BSIM2.
The following is a summary of the equations and parameters used. Refer to the aforementioned
references for more detailed information,

- Aj - - Bil
Iub= B Lis(Vas Vdsm.)exP[ m]
where

aL(Vos — Vi)
= ch gs th
Vasar Ecill + Vs — Vi

Ecrit = Ecrito + Eqitg Vs + Ecritb Vs
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and

12=1¢4+1c5 ﬁj + 1c6+lc7 vbs-4 Vds

.~ N . J o

A =4 2x102 1/um for NMOS devices
7] 1x103 1/um for PMOS devices

.4 1.7x102 V/um for NMOS devices
Bi=1 3.4x102 V/jim for PMOS devices

Thus, there are 11 additional parameters (Ecri0» Ecritgs Ecritbr 1c0s Lct, 12y 1e3, Ieas Les, 1o 1e7). Inits
simplest form, however, only 1o and E;0 need to be specified, in which case the other parame-
ters are set to zero and the model simplifies to the physical Iy, model Ref[1,27]:

A: .
Lup= —'T;lds(vds - Vdsal)exp[-'vd:__vdm

where
Vo = ~CeritolV. g Vin)
- ol + g~ Vin
See Appendix A for default values.

3.1.6 Device Degradation Parameters -
The implementation of the degradation and device lifetime model introduces three parameters,
each with two coefficients to model their behavior with respect to Vgg. The three parameters, H,
m, and n, are implemented as follows:

H=Ho+HgaVgs
m=mg+ MgVgq
n=np+NggVgq

The parameter n is used only for the device lifetime model. The bias dependence of H and m on
Vg implemented here correlate with the results found in Ref[10,53], while the bias dependence
of n on Vg4 has not been experimentally verified and is thus implemented only as an approxima-
tion to what it may be in reality. A constant n ( ngg =0 ) value should be used for all aging simu-
lations.
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It should be mentioned that these degradation parameters must be extracted by separate device
stressing measurements and added manually to the model parameter file when using any SPICE
model (BSIM and BSIM2 included). More information on creating the modified model parame-
ter file is given in Appendix A.

3.1.7 Device Stressing Methodology

There are several possible techniques in doing device stressing to extract the device degradation
parameters listed in the previous section. The variations concern both the quantity that is moni-
tored, such as Ig;, or Luw/l4s, and what type of device stressing is used, such as constant voltage,
constant I, or constant Igy/Tg,.

Eq. 3.1.6 of Section 3.1.1 suggests that constant field stressing (constant I,;/I45) should be used
to extract consistent degradation parameters. This condition implies that the rate of degradation
is minimally affected by the degradation of device behavior as stressing proceeds Ref[36]. For
instance, for the constant voltage case, as the device degrades, the current levels flowing in the
device will change with time. Thus, the actual stressing condition, which depends on the electric
field in the device, will also change with time.

Eq. 3.1.6 implies that in order to extract m and H, device lifetime should be plotted with the
current ratio I/Igs rather than Iy, alone. By re-arranging Eq. 3.1.6, we can obtain the following
expression:

1:[ {%;] = HF-Y(AD)

If we plot Eq. 3.1.11 in log-log format, we can find m from the slope and H from the intercept.
This method is preferred since it corresponds directly with theory Ref[4,6], correlates well with
device degradation for a wider range of device sizes and stressing biases Ref[42], and relates
directly to the amount of interface traps formed Ref[13].

n is the slope when device degradation is plotted against time in log-log format, AD = At".

Because the parameters m and H are Vg4 dependent as mentioned in the previous section, devices
used to extract one m and H pair should be stressed at the same Vg4 value. Separate sets of dev-
ices should then be stressed at different Vgq biases if the Vg4-sensitivity terms are desired.

Default values for m are expected to be good enough so that extraction of m is probably unneces-
sary. The default value for H’ is also believed to be acceptable. Hy then need be the only value
to be extracted - an easy task.

3.1.8 Summary

In this section we have introduced the concept of Age to generate degraded model parameters for
NMOSFET: for the simulation of circuits at a user-specified future time point. We have also dis-
cussed a lifetime prediction model. The next section will describe the equivalent models for the
PMOSFET.
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3.2 PMOSFET DEGRADATION AND AGING MODELS

This section presents a preliminary PMOS degradation and aging model that is implemented in
similar fashion to that of the NMOS device. The difference is that now the gate current Ig. also
enters the picture as Iy, has for the NMOSFET. Because of the disagreement in the literature on
whether I or Iy, correlates better with degradation Ref{14,31,33,35,41,43], we have incor-
porated both currents through a weighting coefficient that can be specified by the user.

3.2.1 Gate Current Model
The following PMOS gate current model developed by Ref[3] and Ref[ 14] is used in CAS:
I 2

Lgue = G.—“%[%] P(on)exp[--—]%’x] GB.2.1)
where (3.2.2)

PE,) = ﬁ-“"‘g‘sﬁo& ] 3 +2.5x10-2| exp(~300/VEqy)

l“’T::IOFJ l 1+—’f$exp(—ontox/l.5)J

forEx 20, and

P(Eox) = 2.5%10"Zexp(—Xox/Aox) (3.2.3)

forE;x < 0. P(Ey is essentially the probability that a scattered electron will surmount the oxide
barrier and flow to the gate. Gy = 0.5, Ao = 320 A, A.=616 A is the re-direction scattering mean
free path, and A = 105 A is the scattering mean free path of the electron Ref[14]. The oxide bar-
rier height ¢, can be expressed by

&b = 3.2 — 2.6X10~4VE; — VE,23 _ (3.2.4)

where v = 4x1075 in Ref[3]. The maximum electric field E,, can be described by the same for-
mulation as that used for the substrate current in Section 3.1:

Ep = Vs = gvdsalg

where we have used the extra subscript "g" in Vg4, and I to differentiate them with those used in
the substrate current. Vs, and I can be again decomposed into the following parameters:

Vg = Eigl V= V)
dsatp critple + Vs = Vin

el
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r 3 r r N
Lig = g0+ legy Vbsl_dr + [ lega +1cgs3 “VKI—T Ve (3.2.6)
. J L \ 44
r 3 o r N
log =logs + lgs vbsl_ 7| +|legs +1egr Tl—‘f Ves (3.2.7)

Recent studies have shown that this lucky-electron model can predict Igg, for both buried-channel
(n+ poly gate) and surface-channel (p+ poly gate) PMOSFET’s Ref[48,52].

3.2.2 Degradation and Aging Model Based on Igate

This section outlines the models used to calculate dynamic PMOSFET By slightly modifying the
expression from Ref[14] and paralleling Eq. 3.1.7, we can write for a PMOSFET,

I m

AD = f[ 'IH[ ¥t (3.2.8)

As for the Age expression, by looking at Eq. 3.2.8, we can parallel the NMOS analysis and pro-
pose the following generalized expression for Age,

AD = f(Age)
Then,
1| Tome [™
Age= j-ﬁ-[-sw—] dt (3.29)

3.2.3 Incorporation of I, and Igate in Predicting Degradation

To conglomerate the substrate current and gate current degradation models, we can sum the con-
tributions from each component linearly through weighting coefficients (Wg,Wp, = 1 - W) that
can be specified by the user,

Age= W.,x[Age from Is.,,,] + ng[ Age from Igm] (3.2.10)

For the following, Hy, and m;, denote the H and m parameter for I, while Hg and m; denote the
H and m parameter associated with Igae. Note that the n parameter is the same for both cases
(since n depends only on the degradation behavior with time and not on what currents are used as
a basis for degradation). Then, the following equation can be derived for the age:

Age=Wyfoude_| b | Py 1| Tome | ™ (3.2.11)
8= VoI WH; | T, UH | W -

Then AD = f(Age) with Age defined as Eq 3.2.11.

Eq. 3.2.10 and 3.2.11 are then used in the degradation and aging calculations discussed in Sec-
tions 3.1.2 and 3.1.3.
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3.2.4 PMOSFET Device Lifetime

This section outlines the models used to calculate PMOSFET lifetimes. The PMOS degradation
and aging models closely parallel that of the NMOS case. For a given stress time, CAS can
determine Al ( or AVT) or, conversely, find lifetime for a specified Aly. If ADy is the amount of
degradation e.g. Al at which device lifetime, 1, is defined, then Eq. 3.1.9 and Eq. 3.1.10 are also
true for the PMOSFET.

For any user specified ADg, BERT will first find Age;. 7 is determined from 3.1.10 and the calcu-
lated Ager, integrating Eq.3.2.11 over period T. Device lifetime is predicted according to Eq.
3.1.10. To find AD at a specified time, t,,, BERT generates a rough table of AD, e.g. Aly, versus
Age, i.e. find the f in Eq. 3.1.9. For device lifetime prediction, f is defined by a exponential func-

tion, AD = At". Once that is done, AD,;, can be found from the table using Age(typ) = Age.vti,ﬂ.

3.2.5 Parameters Necessary for Simulation

Because the I, model involves Iy, and E,, substrate current parameters must be extracted. At
present, we have made the following parameters user-specifiable: G; (Eq. 3.2.1), v (Eq. 3.2.4),

Ecﬁtp()o Ecﬁ:pgo Ecritpb’ lchv lcgia lch: lcg3: lcg4’ lcgs, lcg6. and 1cg7 (EqS 325-32.7). The Ecrilp and
lg parameters default to corresponding E.;; and 1, parameters specified for the substrate current.

As for the degradation parameters, Hg, mg, and n should be extracted in similar manner as in the
NMOS case. n is the slope when device degradation is plotted against time in log-log format
(AD = At").

As in the NMOS case, we can rearrange Eq. 3.2.8 and obtain the following expression:

1=Hf-l(ADf)(1@‘&)-m (32.12)

where the gate current is normalized by the device width W. Let us assume that the PMOS
degradation follows the same power-law behavior as for the NMOS device. Then,

AD = At" (3.2.13)
Denoting ADy as the degradation level defining the device lifetime T as before, we obtain

AD;= A" (3.2.14)

Solving for the coefficient A using Eqgs. 3.2.8 and 3.2.10, we get

_ ADf| Lge |™
A= B_[_%?_] (3.2.15)

where

H= A_DBJF (3.2.16)
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—m, and B, are the slope and intercept respectively when device lifetime 1 is plotted against Igq.
in log-log format (Eq. 3.2.8). Using Eq. 3.2.16, By must then be converted to H, to remove the
dependency of the parameter set to the level of degradation defined at the device lifetime (Eq.
3.2.9). Hg and m, are further divided into a constant and Vg4-sensitivity term as in the I, case:

Hg=Hgo+ HggaVga

Thus, to summarize, the following parameters must be added to the model parameter set to simu-
late PMOS degradation:

1)  Gj: Gl: constant coefficient for Igq. (default = 0.5)Ref[3].

2) v: UPS: sensitivity of ¢y, to the Eo, %3 term (default = 4x10-5 V13¢m?23),

3)  Ecrio: ECRITPO: Constant term of Ecrigp (default = Ecrio 0f Igyp)-

4)  Ecripg: ECRITPG: Vi, depenedence of Ecryp (default = Ecrirg Of Igyp).

5)  Ecripy: ECRITPB: Vy,s depenedence of Ecrip (default = Ecriy Of Isup).

6)  Lego: LOGO: Constant term of leg / Vioy (default = log of Igy).

7)  legi: LOGI: Bias sensitivity term of 1g / Viox (default = 1y of Igy).

8) lgg2: LCG2: Bias sensitivity term of 15 / \/t:; (default = 1 of Ip).

9)  legs: LCG3: Bias sensitivity term of lg / Viox (default = 1g of Iiy).

10) lsgs: LCG4: Bias sensitivity term of 1o / Vi, (default = 1og 0f Lyp).

11) lggs: LOGS: Bias sensitivity term of g / Vio (default = 1 of Lyp).

12) 1gg6: LCG6: Bias sensitivity term of 1cg / \ft:,: (default = 15 of Lup).

13) logz: LCGT: Bias sensitivity term of 1o, / iy (default = 17 of Igyp).

14) Hgo: HGO: intercept parameter of the lifetime versus Igg.e plot (default = 10%).
15) Hgga: HGGD: Vgg-sensitivity term for Hy (default = 0).

16) mgo: MGO: slope parameter of the lifetime versus Iy plot (default = 1.5)Ref[14].
17) mggq: MGGD: Vgy-sensitivity term for m, (default = 0).

18) W;: WG: weighting coefficient for I 4..-based degradation (default = 0 or 1).
19) Vpg VFBG: Flat-band voltage for PMOS Gate current calculation.

Unlike the other model and degradation parameters, the PMOS I, and degradation parameters
are declared in the input deck using the ’.pmosdeg’ command (See Appendix A). The default
value of Wy is 1 if the ".pmosdeg’ command is specified; otherwise W, defaults to 0. ~

3.2.6 Summary

This section has introduced a preliminary PMOS degradation and aging model that parallels that
of the NMOSFET case. The next section will present an example of a BERT deck running the
CAS module.

3.3 CIRCUIT EXAMPLE: 21-STAGE CMOS INVERTER CHAIN

In Appendix A, the CAS commands are described. In this section, we will describe an example
of a BERT deck which uses the CAS commands to invoke the CAS module.
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Fig. 3.4.1 shows a SPICE3 input deck for a 21-stage CMOS inverter chain circuit with a 100
MHz clocked input and 0.1pF capacitive loading at each inverter output (sample input file located
in the bert/CAS/Sample/ directory). For this example circuit, the period of the input waveform is
10 ns. However, to accurately predict circuit degradation, we need to make the SPICE analysis
long enough for the signal to propagate through the last stage of the inverter chain. Thus, the
SPICE analysis is doubled to 20ns, with no additional signal being inputted during the extra time.
This effectively means that, for this particular case, we also need to double the ages we specify
for the ".age’ and ’.agedid’-type of commands if we want to simulate a periodic waveform of
10ns. Thus, in this case, although we want circuit degradation at 10 years in the future, we need
to specify 20 years for the commands. Also, the device lifetime results calculated by the simula-
tor will need to be halved to obtain the correct value. Fig. 3.4.2 shows various degradation infor-
mation for the NMOS (M202) and PMOS (M201) transistor of the 20th stage. As an example, to
correctly interpret the results, the lifetime of M202 is 2.4 + 2 = 1.2 years, and Aly/I40 = 17.1%
after 10 years of operation. Fig. 3.4.3 shows the generated agetable with the Age that all the
transistors would have after 10 years of operation. Fig. 3.4.4 shows the output waveform of the
20th inverter stage comparing the propagation delay difference between the fresh and 10-year
aged inverter chain. As expected, with device degradation, propagation delay is longer for the
aged case.

3.4 CONCLUSION

We have presented a hot-electron reliability simulator CAS which is a part of the BERT reliabil-
ity simulator system. Used in conjunction with the SPICE circuit simulator, CAS can calculate
various degradation information for individual devices in a circuit undergoing dynamic operation.
For instance, by using the device lifetime option, hot spots in the circuit can be easily pin-
pointed. More importantly, CAS can predict the behavior of circuits that have undergone hot-
carrier degradation for a user-specified length of time. With this tool, VLSI design engineers will
be able to better understand the degradation and reliability performance of their circuits.



CMOS CLOCKED INVERTER CHAIN (21 STAGES)
*®

* Power Supplies and Input Pulse.

*

vdd400dc 5.5 '

vin 1 0 pwl(0 0 0.02ns 5.5 5ns 5.5 5.2ns 0 )
vmeas 50 0dc 0

3

* The Inverter Chain
*®

m1214040PC1_pm1_du2 w=60uL=14u
m22100PC2_nm1_dul W=20u L=1.4u

m21 3 2 40 40 PC1_pm1_du2 w=60u L=1.4u
m223200PC2_nmi1_dul W=20u L=1.4u
m314 3 40 40 PC1_pm1_du2 w=60u L=1.4u
m324300PC2_nm1_dul W=20uL=1.4u
m415 4 40 40 PC1_pm1_du2 w=60u L=1.4u
m42 54 00 PC2_nm1_dul W=20u L=1.4u
m516 54040 PC1_pm1_du2 w=60u L=1.4u
m526500PC2_nm1_dul W=20u L=1.4u

m61 7 6 40 40 PC1_pm1_du2 w=60u L=1.4u
m62 7600 PC2_nm1_dul W=20u L=1.4n

m71 8 740 40 PC1_pm1_du2 w=60u L=1.4u
m72 8700 PC2_nm1_dul W=20u L=1.4u
m819 8 40 40 PC1_pm1_du2 w=60u L=1.4u
m82 98 00 PC2_nml_dul W=20u L=1.4u

m91 10 9 40 40 PC1_pm1_du2 w=60u L=1.4u
m92 1090 0 PC2_nm1_dul W=20u L=1.4u
m101 11 10 40 40 PC1_pm1_du2 w=60u L=1.4u
m102 11 10 00 PC2_nm1_dul W=20u L=1.4u
m111 12 1140 40 PC1_pm1_du2 w=60u L=1.4u
ml11212 1100 PC2_nm1_dul W=20uL=14u
m121 13 1240 40 PC1_pm1_du?2 w=60u L=1.4u
m122 13 1200 PC2_nm1_dul W=20u L=1.4u
m131 14 13 40 40 PC1_pm1_du2 w=60u L=1.4u
m132 14 13 00 PC2_nm1_dul W=20u L=1.4u
m141 15 14 40 40 PC1_pm1_du2 w=60u L=1.4u
m142 15 14 00 PC2_nm1_dul W=20u L=1.4u
m151 16 1540 40 PC1_pm1_du2 w=60u L=1.4u
m152 16 1500 PC2_nm1_dul W=20u L=1.4u
m161 17 16 40 40 PC1_pm1_du2 w=60u L=1.4u
m162 17 16 0 0 PC2_nm1_dul W=20u L=1.4u
m171 18 17 40 40 PC1_pm1_du2 w=60u L=1.4u
m172 18 1700 PC2_nm1_dul W=20u L=1.4u
m181 19 18 40 40 PC1_pm1_du2 w=60u L=1.4u
m182 19 18 0 0 PC2_nm1_dul W=20u L=1.4u
m191 20 19 40 40 PC1_pm1_du2 w=60u L=1.4u
m192 20 19 50 0 PC2_nm1_dul W=20u L=1.4u
m201 21 20 40 40 PC1_pm1_du2 w=60u L=1.4u

Fig.34.1 SPICE3 input deck for a 21-stage CMOS inverter chain with substrate
current, gate current, device lifetime, and circuit aging calculations requested
(continued on next two pages).



m202 21 20 0 0 PC2_nm1_dul W=20u L=1.4u
m211 22 21 40 40 PC1_pm1_du2 w=60u L=1.4u
m212 22 21 00 PC2_nm1_dul W=20u L=1.4u

[ ]

* Capacitive Loading.
*

¢2200.1pF
€3300.1pF
¢4400.1pF
¢5500.1pF
€66 00.1pF
¢7700.1pF
¢8800.1pF
€9900.1pF
¢10100 0.1pF
c111100.1pF
€121200.1pF
c131300.1pF
c14 14 00.1pF
¢151500.1pF
c16 160 0.1pF
¢17 170 0.1pF
c18 1800.1pF
€19 190 0.1pF
€20 200 0.1pF
€212100.1pF
€222200.1pF
*®

[

* Numerical Control.
*®

-nodeset v(1)=0 v(2)=5 v(3)=0 v(4)=5 v(5)=0 v(6)=5
+¥(7)=0 v(8)=5 v(9)=0

+v(10)=5 v(11)=0 v(12)=5 v(13)=0 v(14)=5 v(15)=0
+ v(16)=5 v(17)=0 v(18)=5 v(19)=0 v(20)=5 v(21)=0
*®

* For uniform aging of all transistors, the period is 10ns, but

* the SPICE time window is 20ns long to allow the pulse to clear

* the last transistor. The age is modified accordingly so that 10years
* of aging is equivalent to 20years in the SPICE input deck.

*®

.tran 0.02ns 20ns
®
* Output Control.
*®

-print tran v(21)
-width out=80
w

* Model parameter file declarations.
*®

-process PC1 filename = PMOOUT
-process PC2 filename = NMOOUT

Fig. 3.4.1 (cont) SPICES input deck for a 21-stage CMOS inverter chain with substrate
Current, gate current, device lifetime, and circuit aging calculations requested.



-pmosdeg PC1_pm1_du2 g1=0.7 ups=5e-5 hg0=1¢3 mg0=1.5 wg=1
*

* Isub, Igate and lifetime commands.
*

dsubwidth=80

.deltaid 0.1

agedid 20years

Jplotisub m202 all

.Jplotigate m201

*

* Aging Commands.
*®

agemethod interp linlog

age 20years

ageproc PC2 filenames = NMOOUT, NM10OUT, NM20UT, NM30UT, NM4OUT
.end

Fig. 3.4.1 (cont) SPICES input deck for a 21-stage CMOS inverter chain with substrate
current, gate current, device lifetime, and circuit aging calculations requested.



| DEVICE DEGRADATION INFORMATION : TRANSISTOR M201

!

| AVERAGE IDRAIN = 1.8183675e-04 A
| MAXIMUM IDRAIN = 5.0063941e-03 A
| AVERAGE ISUB = 1.1241229e-06 A
| MAXIMUM ISUB - 1.2877306e-04 A
| AVERAGE IGATE = 5.8945641e-10 A
| MAXIMUM IGATE = 1.0475510e-07 A
| DELTA ID / IDO IN THE FIRST TIME PERIOD = 1.3104644e-12

|

—---—-—--—.——------—--—.-————----—--——---——-—-—-———---——-—_-————------—---—-

| DEVICE DEGRADATION INFORMATION : TRANSISTOR M202

AVERAGE IDRAIN 1.6686596e-04 A

I

| =

| MAXIMUM IDRAIN = 4.2653863e-03 A
| AVERAGE ISUB = 1.5277986e-07 A
| MAXIMUM ISUB = 1.5201352e~-05 A
| DELTA ID / IDO IN THE FIRST TIME PERIOD = 1.0239075e-05

|

_—-—————————--——--—--——_----—_—-——--—-—--—-———-—-----——--—---—---—-————-——--

Fig.34.2  Degradation information of the NMOS and PMOS devices of the 20th stage of the 21-stage
inverter chain,

",



Device Name

ml
m2
m21
m22
m31
m32
m4l
m42
m51
m52
mél
mé62
m71
m72
m81l
m82
m9l
m92
ml0l
ml02
mlll
mll2
ml2l
ml22
ml31
ml32
ml4l
mlé2
ml51
ml52
ml6l
ml62
ml71
ml72
ml81
mlg2
ml91
ml192
m201
m202
m211
m212

Fig. 3.4.3

pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2
pcl
pc2

pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml
pml
nml

Model Name

du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du2
dul
du?2
dul
du2
dul
du2
dul
du2
dul
du2
dul

Age
1.311304e-01
4.256910e-05
2.296307e-01
9.017232e-04
2.438348e-01
8.378833e-04
2.559721e-01
1.320404e-03
2.536003e-01
1.275502e-03
3.459318e-01
1.329472e-03
2.503702e-01
1.511937e-03
2.621047e-01
1.417721e-03
2.982601e-01
7.035680e-04
2.524995e-01
1.398250e-03
2.319539%e-01
7.917197e-04
2.778566e-01
1.443027e-03
2.727511e-01
1.315843e-03
2.426205e-01
1.384947e-03
1.877004e-01
1.509574e-03
1.901972e-01
1.370279%e-03
3.457375e-01
1.317324e-03
1.940385e-01
1.795126e-03
2.284004e-01
1.310316e-03 -
1.896623e-01
1.018439%e-03
3.286558e-01
1.817707e-03

The agetable generated by CAS of all the transistors in the circuit.
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Fig.3.4.4 The voltage waveform at the output of the 20th stage showing the propagation
difference between the fresh and aged inventer chain.

delay
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4. Circuit Oxide Reliability Simulator - (CORS)

CORS (Circuit Oxide Reliability Simulator) is a fully integrated part of BERT (BErkeley Relia-
bility Tools). CORS projects the probability of oxide breakdown induced circuit failure as a func-
tion of operating time, temperature, power supply voltage and input waveforms. CORS can also
simulate the effects of bumn-in on subsequent yield and lifetime. The user is required to provide
the simulator with test capacitor breakdown statistics. Either SPICE or IRSIM may be used as
the circuit simulator invoked between calls to the BERT pre-processor and post-processor,
although only SPICE can be used if CAS, EM or BiCAS are being called concurrently.

Appendix C should be reviewed by the user unfamiliar with the capabilities of CORS. This
appendix provides the user with several examples of CORS output selected to demonstrate
CORS’s various features. Section 4.1 discusses the equations for time-dependent dielectric
breakdown (TDDB) implemented in CORS. Section 4.2 describes the procedure for obtaining test
capacitor breakdown data and also details the use of programs DEFECT and EMODEL which are
provided to the user along with BERT for the purpose of formatting this breakdown data so that it
can be read by BERT. Section 4.3 contains examples of BERT input decks containing CORS
commands and the corresponding output listings. Appendix A contains the user’s guide for all of
the CORS commands. The user who needs information on executing BERT, should consult
Chapter 2 of this manual. :

4.1 CIRCUIT FAILURE MODEL AND IMPLEMENTATION
4.1.1 Oxide Breakdown Model

The default model for oxide breakdown in CORS is based on [56] and is referred to as the "-]l:-

model." An altemate model based on [61] has also been implemented in CORS; this model is
called the "E model" and is described in section 4.1.6.

According to the - model, oxide intrinsic lifetime (tap) is

tgp=1 exp[ (i/)z:"] 4.1

where X, is oxide thickness, Vo, is oxide voltage, G and 1 are proportionality constants. Large
area capacitors generally experience "defect-related" breakdown which causes them to have a
non-deterministic lifetime. Defect-related breakdown is modeled as [57)]
GXeff

ox

tep=1 exp[ 4.2)
Note that the random variable X has been substituted for X, in the above expression. The pro-
bability that a device undergoes oxide breakdown before a given tgp is related to the probability
that the oxide contains a specific value of X.g. This is discussed in greater depth later in this sec-
tion.

Using a quasi-static approach, we have extended this model for use with time varying voltages

[58],
tgp
1=1 lexp[ %:‘Tf] dt. 4.3)
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Inside.CORS, V(1) is derived from SPICE or IRSIM node The integral in (4.3) is evaluated
pumencally usipg the.Trapezoidal Rule (following a SPICE simulation) or analytically (follow-
ing an IRSIM simulation). The integral is not actually evaluated for large tgp, such as 10 years;
instead, it is evaluated for the period, T, of SPICE (or IRSIM) simulation and then multiplied by
a factor of —t%.nl. This places a constraint on the simulation results; they are derived assuming

repetitive input waveforms.

4.1.2 Temperature Dependence of Oxide Breakdown

Time-to-breakdown (tpp) decreases with increasing operating temperature. The G and T parame-
ters in (4.3) are temperature dependent to account for this effect [59)]. Specifically, G and T are
defined as follows.

G('r>=c=3m[1+{’E + = 305 (4.4)
-cm=zgooexp[‘k_? . 5

T has units of K°. Default values of G3go, T300, 6 and E;, are provided or the user may provide
values derived from intrinsic oxide studies of his/her technology (Appendix A).

4.1.3 Determination of V(t)

The voltage drop across a capacitor oxide is set equal to
Vox(t) = Vi(t) - Va(t)

where V(t) and V(1) are the SPICE node voltages for the capacitor electrodes. It is assumed that
both electrodes are made from similar materials (so there is no work function difference) and that
both electrodes are highly conductive (so there is no voltage drop across a depletion region).
These are reasonable assumptions for VLSI capacitors.

The voltage drop across a MOSFET oxide is not as straightforward to determine. The voltage
drop across the substrate depletion region must be accounted for and work function differences
must be considered. Furthermore, when current flows along the channel, the surface potential
becomes a function of position and, consequently, so does the oxide electric field. In this release
of CORS, the position dependence of the oxide field along a MOSFET channel is neglected and
the oxide voltage is set equal to the maximum of Vg, and Vg4, minus the depletion region voltage
drop. Specifically, the oxide voltage along the channel is calculated as follows.

N-channel MOSFET

Inversion (Vgs > V.
Surface potential is near the conduction band edge when there is appreciable gate current. There-
fore,

E
Vor=1 Vgg = Oms— £ — 3 |
where ¢ equals the SPICE parameter PHI (surface potential) and ¢y, is the work function differ-
ence between the gate and substrate materials.

Accumulation (Vg —Vp < Vg ).
Surface potential is near the valence band edge when there is appreciable gate current. Therefore,

®,
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Vor= 1 Vg~ Vo=t 2 = $ |

Depletion:
Vox = 0.0

P-channel MOSFET

Inversion (Vg < Voé
Vox= | Vgn—¢ms+"28' +'g' |

Accumulation (Vg —Vy, > Vg, ):
E
Vor =1 Vg= Vo~ Ome— ¢ + $ |

Depletion:
Vox = 0.0

Examination of these equations will show that the difference between the applied and the oxide
voltage is zero or Ey, depending on the gate material employed and the operating regime. Addi-
tionally, the oxide voltage along the device edges must be calculated for the user who provides
the simulator with statistics for defect density per unit length along diffusion and field oxide
edges. Vo, along the field oxide edges is identical to that in the channel. The field at the
source/drain edges is different from that in the channel because these regions have a different sur-
face potential from the channel region due to the different carrier concentrations and types. The
voltage at a diffusion, (say, drain) edge is calculated as follows.

N-channel MOSFET

n+ poly gate:
VOx = l Vs - Vd I

D+ poly gate:
Vox=1 V4=V +E; |

P-channel MOSFET

p+ poly gate:
Vox = l Vs - vd l

n+ poly gate:

4.1.4 Calculation of Xg

For a given time-to-breakdown (tgp), Xefr is calculated from (4.3) using Newton-Raphson’s
method (following a SPICE simulation) or directly (following an IRSIM simulation). The Xeg
thus derived is the maximum thickness (least severe defect) which is predicted to fail by tgp.
This calculation is repeated for eight different values of tgp. When SPICE has been used and
both integration and iteration are required to solve for X then these calculations take up the
bulk of the CORS computation time. An alternative algorithm, called "quick," has been added
for the user who wishes to reduce execution time and is willing to sacrifice some accuracy (about
2% - see Section 4.3). The quick algorithm replaces an expression of the form f (V,(t)) with an
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expression 'of the form A*f(Vmad). When "quick" has been specified, CORS calculates Xest
corresponding the smallest tgp from (4.3); these are denoted X% and tdp. The remaining Xeg's
are calculated directly using

= %3% exp V:':(xeq‘f- Xeiff)J . (4.6)

4.1.5 Calculation of tgp after Burn-In

Circuit lifetime after bum-in may be projected by using CORS in a two-pass mode (Appendix A).
During the first pass, SPICE (or IRSIM) provides CORS with the node voltages during bumn-in;
during the second pass, SPICE (or IRSIM) provides CORS with the node voltages under normal
operating conditions. If burn-in is performed, the expression for predicted lifetime, (4.3), must be
modified to account for oxide wear incurred during the bumn-in process [60).

Ig L™
=1 —GopXest 1 —GpiXest
= fexp[ _%TV T ] di+ o ‘[exp ~om | & @.7n

This equation is implemented in CORS using an approximation to save storage space and compu-
tation time. With the approximation, the equation becomes

tsp
-1 —GopXeit Gbi (. _
akow jexp[ ‘Vﬁtr] dt+ exp[ V,E;(X"‘ xeff)] 4.8)
where Xy; is the maximum X screened out by the bum-in trial (calculated during pass one of
CORS). (4.8) is solved for X using Newton-Raphson’s method.

The user may choose to invoke a "quick" algorithm, rather than using (4.8), to calculate Xe.
Accuracy is sacrificed, typically on the order of 50% (see Section 4.3). This loss of accuracy will
be acceptable the user who is only interested in an order-of-magnitude estimate of failure proba-
bility. "Quick" always errs on the conservative side. If "quick" has been invoked, the simulator
calculates Xy; during the first pass. It also calculates a X, p; during the second pass, which is the
X.s that would correspond to tfp if no bum-in had been performed. CORS proceeds to calculate

X.g using

= %3— CXP[——‘-’P—(XM bi— xeff)] +exp Gb’ (th xeff)] . 4.9)

4.1.6 Failure Probability Calculations

CORS assumes that defects are distributed uniformly and independently across the test wafers
and actual circuits. This allows the use of the Poisson distribution to describe the defect density
(see Section 4.2). The probability that a device fails at or before a specified tgp is equal to the
probability that the device contains one or more defects of size X or smaller, where Xegr was
calculated from (4.3) for the specified tgp. Using the Poisson distribution, this probability may be
expressed as

P (failure) = 1 — e AP (4.10)

where D(X.g) is the area density of defects size X or smaller (recall smaller X.'s are more
severe defects) which has been provided by program DEFECT (Section 4.2).

The probability that a circuit fails at or before time tgp is equal to the probability that at least one
device in the circuit fails by time tgp. This may be expressed as
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P (circuit failure) = 1 ~ ﬂe“‘“"‘e‘ﬂ) @.11)

=

where n is the number of MOS devices in the circuit, D( Xl ) is the defect density for the i*h dev-
ice and Xl yields tgp for the particular waveform found at device i.

When a bum-in trial is simulated in addition to normal operation, (4.11) must be modified to
account for the circuits lost during the bum-in test. The expression for failure probability after
burn-in is

P (circuit failure)=In{e'AD(x'i") @4.12)
=

where X{; is calculated for device i from (4.3) with tgp set equal to the bumn-in duration, and Xé,p
is calculated for device i from (4.8).

4.1.7 The E model

There is still disagreement in the engineering community as to whether time-dependent dielectric
breakdown has a functional dependence on electric field of exp -EITT or exp f)onx] . These are
28

referred to as the "é— model” and "E model," respectively. CORS will calculate circuit failure

probabilities based on the E model if so requested by the user. However, simulation of bum-in
using the E model is not supported in CORS.

[61] proposes that

[%"El] =1 4.13)

where F denotes that this expression is to be evaluated at one particular value of fraction of dev-
ices failed. [61] also introduces the concept of effective time at a given field which allows us to
derive the following equation for tgp under time-varying field conditions.

tap

l eEMdt = ebP 4.14)

where b(F) is the "inverse distribution function.” Equation 4.14 is solved for b. Similar to the -113—

model, CORS assumes Poisson statistics and finds P(failure) based on the area density of b (pro-
vided by program EMODEL - Section 4.2).

The E model takes temperature effects into account by allowing y to vary with temperature
according to

— _ .62
YT) 10.36 T @.15)
Recall that

tgp ©< e'YE“

4.2 CHARACTERIZING DEFECT DENSITY USING PROGRAM DEFECT

Programs DEFECT and DEFECT2 (Sections 4.2.1 and 4.2.2) format test capacitor breakdown
data for compatibility with the (default) %- model for oxide breakdown. If the user plans to use

the "E model,” instead, s/he should consult Section 4.2.3.
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4.2.1 Using DEFECT to Obtain Area Density of Defects

DEFECT takes raw data from a test capacitor breakdown experiment and formats it for use by
CORS. There are two commonly used methods for characterizing oxide breakdown statistics, the
time-to-breakdown test and the ramp-voltage-breakdown test. DEFECT will accept data from
either of these experiments. In the absence of experimental data, the user may provide DEFECT
with parameters for a statistical distribution which is thought to represent the oxide breakdown
statistics.

~ A time-to-breakdown test is performed by applying a constant voltage to an ensemble of identical
large-area capacitors. The oxide voltage used is larger than the designed power supply voltage
because one wishes to observe failures in a short amount of time (see Eq. (4.2)). The fraction of
devices which have failed is recorded as a function of time. For each observed breakdown time,
DEFECT derives X.¢ using (4.2). Next, DEFECT obtains the area density, D(Xcgr), from (10).
An ordered list of Xg versus D(X.g) is generated by DEFECT and is stored in a user-named out-
put file which will be referenced by a .XEFF card in the CORS input deck (Section IV.B). Fol-
lowing is a description of the format in which time-to-breakdown data should be placed in the
DEFECT input file.

Line 1: Oxide Thickness (&)
Line2: Area of test structure (cm?)
Line 3: Test temperature (C°)

Line4: 0.0
The value 0.0 notifies DEFECT that
time-to-breakdown data will be provided

Line5: Voltage difference between Vypplicd and Vox.
This value will be subtracted from V gpplica
by DEFECT to yield V ox. This value may be
estimated using the equations in Section I1.C.

Line 6: Vgppliea (+ volts, the voltage applied to the test capacitor terminals)

Lines 7-: tgp (sec), cumulative percent failed
Lines 7- should consist of ordered pairs
ranging from from minimum tgp on
line 7 to the maximum on the final line of the file.

A DEFECT input file listing containing time-to-breakdown data may be found in Example 1 and
a DEFECT output file listing is provided in Example 2.

A ramp-voltage-breakdown test is performed by applying a linearly increasing voltage waveform
to an ensemble of identical large-area capacitors. A record of breakdown voltage (Vgp) versus the
fraction of capacitors failed is generated. Vpp may be related to X by

1= %@d—ex :G_XQ£ (4.16)
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which can be derived from (4.3). DEFECT subsequently derives D(X¢g) using (10). The input
file format needed for DEFECT to process ramp-voltage-breakdown data is as follows.

Line 1: Oxide Thickness (&)

Line 2: Area of test structure (cm?)
Line 3: Test temperature (C°)
Line4: Ramp rate (V/sec)

Line 5: Voltage difference between Vypplied and Voy.
Vepplied is the ramp voltage at a given time.
The difference between this value and V 55
may be inferred from the equations in Section I1.C.
The value listed on line 5 will be subtracted from Vgp.

Line6: 0.0
This is a dummy number, not used by DEFECT when Vgp
is being provided. .

Lines 7- Vpp (volts), cumulative percent failure
Lines 7- should consist of ordered pairs ranging
Jrom minimum Vgp on line 7 to the
largest observed Vgp on the final line
of the file.

A DEFECT input file listing containing Vpp data may be found in Example 3. The DEFECT
output file will be similar to that shown in Example 2.

If test capacitor breakdown data is not available, yet a CORS projection of circuit reliability is
desired, the user may provide DEFECT with a statistical distribution which is believed to model
the time-to-breakdown statistics for the oxide of interest. Specifically, the user may describe
his/her hypothetical breakdown data with a one or two population lognormal or Weibull distribu-
tion. The parameters for these distributions are placed in a file which is then input to DEFECT to
be properly formated for use by CORS. The input file should be formated as follows.

Line 1: Oxide Thickness (&)
Line2: Area of test structure (cm?)

Line 3: Test temperature (C°)
The data on lines 1-3 is, of course, hypothetical.
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Line4: 0.0

Line S: the voltage difference between Vapplied (hypothetical)
and Vox.
See format description for time-to-breakdown data (above)
Jfor an explanation.

Line 6: Vgppiieq (+ volts, the voltage applied to the hypothetical test capacitors)

Line 7: Lognormal
-Or-
Weibull

Line 8: Number of populations (1 or 2)

Line 9: (if Lognormal) t50 median
-or-
(if Weibull) alpha location parameter

Line 10: (if Lognormal) sigma  shape parameter
-or-
(if Weibull)  beta o
If line 8 reads "2", then the information contained
on lines 9 and 10 pertains to one population of samples
and the following lines must be included to describe
the other population.

Line 11: Fraction of samples following distribution #1
A number between 0 and 1.

Line 12: (if Lognormal) t50 for population #2
-or-
(if Weibull) alpha "o

Line 13: (if Lognormal) sigma  for population #2
-or-
(if Weibull)  beta .o

*#¥uk All parameters have units of seconds.*****

A sample DEFECT input file following the above format is contained in Example 4 along with
the generated output file.

4.2.2 Using DEFECT?2 to Obtain Defect Density per Unit Length

The user may also wish to provide CORS with data about the defect density per unit length along
diffusion and/or field oxide edges. There are two techniques for measuring these defect densities.
The first method is to conduct a breakdown test on an ensemble of test capacitors which have a
very large ratio of perimeter to area. If one assumes that the probability that one of these capaci-
tors encompasses a severe area defect is negligible, the user may simply substitute the perimeter
of the structures (cm) on line 2 of the DEFECT input file as described in Section 4.2.1. DEFECT
will then output D(Xg) values which have units of cm™1.
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A second method for determining the density of defects along edges is to conduct breakdown
tests on two ensembles of capacitors having different perimeter, different area or both. DEFECT2
will create two output files for use by CORS, one containing area defect density, the other con-
taining perimeter defect density. The breakdown data for each set of test capacitors should be
stored in a separate file. Each file is formated according to the instructions for program DEFECT
with just one modification; an extra line is to be added to the data file between Line 2 (Area of
test structure) and Line 3 (Test temperature). This extra line should contain the test structure per-
imeter in cm.

DEFECT?2 calculates defect density as follows.

Y =1-FY is yield, F is cumulative fraction failed
Y= exp[ADA + PDp]

4.2.3 Using EMODEL to Obtain Area Density of Defects

The data file which is input to EMODEL should be formated identically to one intended for pro-
gram DEFECT (details in Section 4.2.1). The difference lies in the calculations. EMODEL calcu-

lates the inverse distribution function described in [61]. Similar to Xeg in the -}13- model, each

value of b(F) is associated with a density which when multiplied by device area and placed in the
Poisson equation for yield, gives the correct answer, i.e.,

Y = e-ADB®)] @.17)

Y is yield measured at some value of tgp (or Vpp), b(F) is corresponds to tgp (Vgp) and is calcu-
lated by EMODEL, A is the test device area. D[b(f)] is calculated by EMODEL to complete the
equality in (4.17).

4.3 EXAMPLES

Examples 1-4 are described in Section 4.2. Example 5 shows a CORS input deck for a simple
RC circuit and the subsequent output. This example illustrates the proper use of the .ALTMO-
DEL card. (The oxide defect density distribution used for this simulation is listed in Example 2.)
Example 6 shows a CORS input deck and subsequent output for a 4-input nand gate. This exam-
ple illustrates the proper use of the .EACHPROB and .LSI cards. The input deck shown in
Example 7 is identical to that in Example 6 except that the QUICK option is specified on the
TTF card. Note that the failure projections are not very different from those in Example 6.
Example 8 shows the proper use of the .BURNIN card. Example 9 is identical to Example 8
except that the QUICK option was requested. The user should compare the output listings in
Example 8 and Example 9 to determine if the error introduced by using QUICK during a burn-in
simulation is acceptable for his/her application.
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87,73.3 )
138,75
230,76.7
275,78.3
650,81.7
673,83.3
1100, 85
1165, 86.7
1209,88.3
1250, 90

Example 1

Listing of input file for DEFECT. Contains time-to-breakdown data,



55.307817
57.493666
57.756153
57.990957
58.397273
59.173500
59.535685
59.644417
60.439293
60.583122
61.023990
61.439810
61.984021
62.020858
62.229939
62.295490
62.327557
62.707183
62.786313
' 63.209838
63.565586
64.197553
64.469194
64.633478
65.164452
65.243270
65.311064
65.856248
65.869281
66.331208
- 66.398824
67.426966
68.565377
68.963604
70.880624
70.958118
72.053060
72.181005
72.263623
72.337946

Listing of DEFECT output file. Input file is
defect density for commerical applications!

- e s waw

2.231436

12.652685
2.876821
3.106096
3.326794
3.566749
3.812604
4.049652
4.307829
4.572849
4.828863
5.108256
5.395681
5.673960
5.978370
6.292339
6.931472
71.277386
7.614260
7.985077
8.370176
8.746691
9.162907
9.597203
10.023934
10.498221
10.996128

11.488535°
12.039728
12,623084

13.205066
13.862944
14.567168
15.278579
16.982691
17.897615
18.971200
20.174062
21.455813
23.025851

Example 2

displayed in Ex. 1. This oxide has an unacceptably high
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Example 3.

Listing of DEFECT input file contalning ramp-voltage-breakdown data.



125

.01

217

0

0

9
Lognormal
1

20

2

*** Output file #***

Temp= 27

- Vox= 9,000000
Area= 0.010000
Lognormal

numpop= 1
t50_1/sigmal: 20 2

Ljstipgs of DEFECT

distribution, input and cutput files containing parameters for g lognormal time.-

Example 4

to-breakdown



Qs arGLn

SAMPLE CIRCUIT
C1201.4P

. - 4+ TBDMODEL=CMOD L=10U0 ®¥=500

Rl 121K
VIN1 0 PULSE(0O 5 Sn 5n Sn 10n 30n)
<ALTMODEL CMOD C TOX=12.5N
.TRAN .5N 60N

.XEFF CMOD FILENAME=datal25

.TTF

PRINT tzan v(l) v(2)

CORS Output

TDDB STATISTICS
Operating Temperature=

number
number
number
number
number
number
number
number

seconds 2.592e+06
seconds 7.776e+06
seconds 1.66752e+07
seconds 3.1536e+07
seconds 6.3072e+07
seconds 1.5768e+08
seconds 3.1536e+08
seconds 6.3072e+08

SAMPLE CIRCUIT

27

fraction
fraction
fraction
fraction
fraction
fraction
fraction
fraction

Example 5

failed 2.131181e-05
failed 2.779222e-05
failed 3.983974e-05
failed 4.368089e-05
failed 5.299287e-05
failed 6.692421e-05
failed 7.033430e-05
falled 7.523625e-05

»



FOUR INPUT CMOS NAND GATE

MPA 2 3 1 1 MODP W=20U L=1U0
MPB 2 4 1 1 MODP W=20U L=1U
MPC 2 5 1 1 MODP W=20U L=1U
MPD 2 6 1 1 MODP W=20U L=1U
MNA 9 3 0 0 MODN W=32U L=1U
MNB 8 4 9 0 MODN W=32U L=1U
MNC 7 5 8 0 MODN W=32U L=1U
MND 2 6 7 0 MODN W=32U L=1U
CLOAD 2 0 30F

.MODEL MODP PMOS VTO=-.7 TOX=12.5N KP=8U GAMMA=.,4 TPG=-1

.MODEL MODN NMOS VTO=.7 TOX=12,5N KP=20U GAMMA=.4

VDD 1 0 5.5

VA 3 0 PWL(0 5.5 79N 5.5 80N O 85N 0 87N 5.5 117N 5.5 119N 0 160N 0)
VB 4 0 5.5

VD 6 0 5.5

VC 5 0 PWL(0O 0 5N 0 7N 5.5 37N 5.5 39N 0 80N O 81N 5.5 160N 5.5)
.TRAN 1N 160N

.TTF

.XEFF MODP FILENAME=datal25b

.XEFF MODN FILENAME=datal2$

.LSI 16K 64K

.EACHPROB all

.gﬁgions reltol=.01 abstol=le-9 vntol=.0001 itl1=2000 itl2=500

Example 6



TDDB STATISTICS

Operating Temperature=

number
number
number
number
number
number
number
number

FOUR INPUT CMOS NAND GATE

27

seconds 2.592e+06 (1 mo)
7.776e+06 (3 mo)
1.66752e+07 (6 mo)

seconds
seconds
seconds
seconds
seconds
seconds
seconds

3.1536e+07
6.3072e+07
1.5768e+08
3.1536e+08
6.3072e+08

(1 yr)
(2 yr)
(5 yr)
(10 yr)
(20 yr)

fraction
fraction
fraction
fraction
fraction
fraction
fraction
fraction

TDDB STATISTICS FOR 16000 IDENTICAL CELLS

number
number
number
number
number
number
number
number

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

2.592e+06 (1 mo)
7.776e+06 (3 mo)
1.66752e+07 (6 mo)

3.1536e+07
6.3072e+07
1.5768e+08
3.1536e+08
6.3072e+08

(1 yr)
(2 yr)
(5 yr)
(10 yr)
(20 yr)

fraction
fraction
fraction
fraction
fraction
fraction
fraction
fraction

TDDB STATISTICS FOR 64000 IDENTICAL CELLS

numbexr
number
number
number
number
number
number
number

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

2.592e+06 (1 mo)
7.776e+06 (3 mo)
1.66752e+07 (6 mo)

3.1536e+07
6.3072e+07
1.5768e+08
3.1536e+08
6.3072e+08

(1 yr)
(2 yr)
(5 yr)
(10 yr)
(20 yr)

fraction
fraction
fraction
fraction
fraction
fraction
fraction
fraction

Probability of Failure at 3.1536e+08 seconds

MNB
MNA
MND
MNC
MPC
MPA
MPB
MPD

QOO

.234728e-06
.165112e-06
.922535e-06
.902181e-06
.446983e-07
.814296e-07
.000000e+00
.000000e+00

Example 6

failed
failed
failed
failed
failed
failed
failed
failed

failed
failed
failed
failed
failed
failed
failed
failed

KR

failed
failed
failed
failed
failed
failed
failed
failed

7.834910e-06
1.079340e-05
1.321533e-05
1.605680e-05
1.819782e-05
1.970588e-05
2.125051e-05
2.322021e-05

1.178199%e-01
1.586061e-01
1.905876e-01
2.265628e-01
2.526098e-01
2.704279%e-01
2.882381e-01
3.103201e-01

3.943398e-01
4.988157e-01
5.707804e-01
6.421507e-01
6.879748e-01
7.166829e-01
7.433513e-01
7.737491e-01



FOUR INPUT CMOS NAND GATE

MPA 2 3 1 1 MODP W=20U L=1U
MPB 2 4 1 1 MODP W=20U L=1U
MPC 2 5§ 1 1 MODP W=20U L=1U
MPD 2 6 1 1 MODP W=20U L=1U
MNA 9 3 0 0 MODN W=32U L=1U
MNB 8 4 9 0 MODN W=32U L=1U
MNC 7 5§ 8 0 MODN W=32U L=1U
MND 2 6 7 0 MODN W=32U L=1U
CLOAD 2 0 30F

.MODEL MODP PMOS VTO=-.7 TOX=12.5N KP=8U GAMMA=.4 TPG=-1

.MODEL MODN NMOS VTO=.7 TOX=12.5N KP=20U GAMMA=. 4

VvDD 1 0 5.5

VA 3 0 PWL(0O 5.5 79N 5.5 80N 0 85N 0 87N 5.5 117N 5.5 119N 0 160N 0)
VB 4 0 5.5

VD 6 0 5.5

VC 5 0 PWL(0O O 5N 0 7N 5.5 37N 5.5 39N 0 80N 0 81N 5.5 160N 5.5)
.TRAN 1N 160N

.TTF QUICK

.XEFF- MODP FILENAME=datal25

.XEFF MODN FILENAME=datal25

.LSI 16K 64K

.EACHPROB all

.options reltol=.01 abstol=le-9 vntol=.0001 itl11=2000 it1l2=500
.END

Example 7



TDDB STATISTICS

Operating Temperature=

number
number
number
number
number
number
number
number

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

FOUR INPUT CMOS NAND GATE

27

2.592e+06 (1 mo)
7.776e+06 (3 mo)
1.66752e+07 (6 mo)

3.1536e+07
6.3072e+07
1.5768e+08
3.1536e+08
6.3072e+08

(1 yr)
(2 yr)
(5 yr)
(10 yr)
(20 yr)

fraction
fraction
fraction
fraction
fraction
fraction
fraction
fraction

TDDB STATISTICS FOR 16000 IDENTICAL CELLS

number
number
number
number
number
number
number
number

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

2.592e+06 (1 mo)
7.776e+06 (3 mo)
1.66752e+07 (6 mo)
3.1536e+07 {1 yr)

6.3072e+07
1.5768e+08
3.1536e+08
6.3072e+08

(2 yr)
(5 yr)
(10 yr)
(20 yr)

fraction
fraction
fraction
fraction
fraction
fraction
fraction
fraction

TDDB STATISTICS FOR 64000 IDENTICAL CELLS

number
number
number
number
number
number
number
number

seconds
seconds
seconds
seconds
seconds
seconds
seconds
seconds

2.592e+06 (1 mo)
7.776e+06 (3 mo)
1.66752e+07 (6 mo)

3.1536e+07
6.3072e+07
1.5768e+08
3.1536e+08
6.3072e+08

(1 yr)
(2 yr)
(5 yr)
(10 yr)
(20 yr)

fraction
fraction
fraction
fraction
fraction
fraction
fraction
fraction

Probability of Failure at 3.1536e+08 seconds

MNB
MNA
MND
MNC
MPC
MPA
MPB
MPD

CObLWUtiddUTL

.523978e-06
.198405e-06
.991622e-06
.922559%e-06
.619827e-07
.925431e-07
.000000e+00
.000000e+00

Example 7

failed
failed
failed
failed
failed
failed
failed
failed

failed
failed
failed
failed
failed
failed
failed
failed

<&

failed
failed
failed
failed
failed
failed
failed
failed

7.834910e-06
1.090249e-05
1.344226e-05
1.635161le-05
1.836965e-05
2.006943e-05
2.169091e-05
2.377342e-05

1.178199e-01
1.600734e-01
1.935211e-01
2.302026e-01
.546618e-01
.746595e-01
.93235%e-01
.163979e-01

WD

.943398e-01
.023027e-01
.769692e-01
.488394e-01
.913874e-01
.231990e-01
.504842e-01
.816197e-01

NSNS nw



**xx* Input deck used during pass #l. ***x

FOUR INPUT CMOS NAND GATE

MPA 2 3 1 1 MODP W=20U L=1U
MPB 2 4 1 1 MODP W=20U L=1U
MPC 2 5 1 1 MODP W=20U L=1U
MPD 2 6 1 1 MODP W=20U L=1U
MNA 9 3 0 0 MODN W=32U L=1U
MNB 8 4 9 0 MODN W=32U L=1U
MNC 7 5 8 0 MODN W=32U L=1U
MND 2 6 7 0 MODN W=32U L=1U
CLOAD 2 0 30F

.MODEL MODP PMOS VTO=-.7 TOX=12,5N KP=8U GAMMA=.,4 TPG=-1
.MODEL MODN NMOS VTO=.7 TOX=12.5N KP=20U GAMMA=.4
vbD 1 0 7
VA 3 0 PWL(O 7 79N 7 80N O 85N 0 87N 7 117N 7 119N 0 160N 0)
VB 4 0 7
VD 6 0 7
VC 5 0 PWL(0O O SN O 7N 7 37N 7 39N 0 80N O 81N 7 160N 7)
.TRAN 1N 160N
.TTF
.XEFF MODP FILENAME=datal25
.XEFF MODN FILENAME datal2s
.LSI 64K
.BURNIN TIME=3600 TEMP=100
.options reltol=.01 abstol=le-9 vntol=.0001 itl11=2000 it12=500
.END -

**** Input deck used during pass #2. ***%*

FOUR INPUT CMOS NAND GATE

MPA 2 3 1 1 MODP W=20U L=1U
MPB 2 4 1 1 MODP W=20U L=1U
MPC 2 5 1 1 MODP W=20U L=1U
MPD 2 6 1 1 MODP W=20U L=1U
MNA 9 3 0 0 MODN W=32U L=1U
MNB 8 4 9 0 MODN W=32U L=1U
MNC 7 5 8 0 MODN W=32U L=1U
MND 2 6 7 0 MODN W=32U L=1U
CLOAD 2 0 30F

.MODEL MODP PMOS VTO=-.,7 TOX=12.5N KP=8U GAMMA=.4 TPG=-1

.MODEL MODN NMOS VTO=.7 TOX=12.5N KP=20U GAMMA=,4

VDD 1 0 5.5

VA 3 0 PWL(0 5.5 79N 5.5 80N 0 85N 0 87N 5.5 117N 5.5 119N 0 160N 0)
VB 4 0 5.5

VD 6 0 5.5

VC 5 0 PWL(0 0 5N 0 7N 5.5 37N 5.5 39N 0 80N 0 81N 5.5 160N 5. 5)
.TRAN 1N 160N

.TTF

.XEFF MODP FILENAME=datal25

.XEFF MODN FILENAME=datal25

.LSI 64K

.BURNIN TIME=3600 TEMP=100

.options reltol=.01 abstol=le-9 vntol=.0001 it11=2000 it1l2=500
.END

Example 8



FOUR INPUT CMOS NAND GATE

TDDB STATISTICS
Operating Temperature= 27

Prior to Operation, Burn In was Conducted for
seconds= 3600.000000 temperature= 100
*** The Yield after Burn-In was 0.999976 **x

number seconds 2.592e+06 (1 mo) fraction failed 7.547313e-09
number seconds 7.776e+06 (3 mo) fraction failed 4.502429e-08
number seconds 1.66752e+07 (6 mo) fraction failed 9.561688e-08
number seconds 3.1536e+07 (1 yr) fraction failed 1.762994e-07
number seconds 6.3072e+07 (2 yr) fraction failed 3.344744e-07
number seconds 1.5768e+08 (5 yr) fraction failed 6.947581e-07
number seconds 3.1536e+08 (10 yr) fraction failed 1.149830e-06
number seconds 6.3072e+08 (20 yr) fraction failed 5.622876e-06

TDDB STATISTICS FOR 64000 IDENTICAL CELLS
*** The Yield after Burn-In for 64000 identical cells was 0.216911 **x

number seconds 2.592e+06 (1 mo) fraction failed 4.829114e-04
number seconds 7.776e+06 (3 mo) fraction failed 2.877407e-03
number seconds 1.66752e+07 (6 mo) fraction failed 6.100795e-03
number seconds 3.1536e+07 (1 yr) fraction failed 1.121975e-02
number seconds 6.3072e+07 (2 yr) fraction failed 2.117888e-02
number seconds 1.5768e+08 (5 yr) fraction fgiled 4.349047e-02
number seconds 3.1536e+08 (10 yr) fraction failed 7.094667e-02
number seconds 6.3072e+08 (20 yr) fraction failed 3.022295e-01

Example 8 .



**xx*x Input deck used during pass *1, *xxx

FOUR INPUT CMOS NAND GATE

MPA 2 3 1 1 MODP W=20U L=1U
MPB 2 4 1 1 MODP W=20U L=1U
MPC 2 51 1 MODP W=20U L=1U
MPD 2 6 1 1 MODP W=20U L=1U
MNA 9 3 0 0 MODN W=32U L=1U
MNB 8 4 9 0 MODN W=32U L=1U
MNC 7 5§ 8 0 MODN W=32U L=1U
MND 2 6 7 0 MODN W=32U L=1U
CLOAaD 2 0 30F

.MODEL MODP PMOS VTO=-.,7 TOX=12.5N KP=8U GAMMA=.4 TPG=-1
.MODEL MODN NMOS VTO=.7 TOX=12.5N KP=20U GAMMA=.4

vbDb 1 0 7

VA 3 0 PWL(O 7 79N 7 80N O 85N 0 87N 7 117N 7 119N 0 160N 0)
VB 4 07

VD 6 0 7

VC 5 0 PWL(O O SN 0 7N 7 37N 7 39N 0 80N O 81N 7 160N 7)
.TRAN 1N 160N

.TTF QUICK

.XEFF MODP FILENAME=datal25

.XEFF MODN FILENAME=datal25

.LSI 64K

.BURNIN TIME=3600 TEMP=100

.options reltol=.01 abstol=le-9 vntol=.0001 it1l1=2000 it12=500
.END

B

**** Input deck used during pass #2. ****

FOUR INPUT CMOS NAND GATE

MPA 2 3 1 1 MODP W=20U L=1U
MPB 2 4 1 1 MODP W=20U L=1U
MPC 2 5 1 1 MODP W=20U L=1U
MPD 2 6 1 1 MODP W=20U L=1U
MNA 9 3 0 0 MODN W=32U L=1U
MNB 8 4 9 0 MODN W=32U L=1U
MNC 7 5 8 0 MODN W=32U0 L=1U
MND 2 6 7 0 MODN W=32U L=1U
CLOAD 2 0 30F

.MODEL MODP PMOS VTO=-.7 TOX=12.5N KP=8U GAMMA=.4 TPG=-1

-MODEL MODN NMOS VTO=.7 TOX=12.5N KP=20U GAMMA=.4

VDD 1 0 5.5

VA 3 0 PWL(0 5.5 79N 5.5 80N 0 85N 0 87N 5.5 117N 5.5 119N 0 160N 0)
VB 4 0 5.5

VD 6 0 5.5 A
VC 5 0 PWL(0O O 5N 0 7N 5.5 37N 5.5 39N 0 80N 0 81N 5.5 160N 5.5)
.TRAN 1N 160N

.TTF QUICK

.XEFF MODP FILENAME=datal25

.XEFF MODN FILENAME=datal2$5

.LSI 64K

.BURNIN TIME=3600 TEMP=100 .

.options reltol=.01 abstol=le-9 vntol=.0001 it11=2000 it12=500
.END

Example 9



FOUR INPUT CMOS NAND GATE

TDDB STATISTICS
Operating Temperature= 27

Prior to Operation, Burn In was Conducted for
seconds= 3600.000000 temperature= 100
*** The Yield after Burn-In was 0.999976 **x*

number seconds 2.592e+06 (1 mo) fraction failed 9.650230e-09
number seconds 7.776e+06 (3 mo) fraction failed 5.340358e-08
number seconds 1.66752e+07 (6 mo) fraction failed 1.132711e-07
number seconds 3.1536e+07 (1 yr) fraction failed 2.080374e-07
number seconds 6.3072e+07 (2 yr) fraction failed 3.917119e-07
number seconds 1.5768e+08 (5 yr) fraction failed 7.987068e-07
number seconds 3.1536e+08 (10 yr) fraction failed 2.683061e-06
number seconds 6.3072e+08 (20 yr) fraction failed 1.006256e-05

TDDB STATISTICS FOR 64000 IDENTICAL CELLS
*** The Yield after Burn-In for 64000 identical cells was 0.216911 **x

number seconds 2.592e+06 (1 mo) fraction failed 6.174241e-04
number seconds 7.776e+06 (3 mo) fraction failed 3.411995e-03
number seconds 1.66752e+07 (6 mo) fraction failed 7.223140e-03
number seconds 3.1536e+07 (1 yr) fraction failed 1.322615e-02
number seconds 6.3072e+07 (2 yr) fraction failed 2.475794e-02
number seconds 1.5768e+08 (5 yr) fraction failed 4.983275e-02
number seconds 3.1536e+08 (10 yr) fraction"failed 1.577818e-01
number seconds 6.3072e+08 (20 yr) fraction failed 4.748161le-01

Example 9
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5. Circuit Electromigration Simulator - (EM)

We have developed models for predicting interconnect and intermetallic contact reliability due to
arbitrary current waveform stress. These models are incorporated in the Circuit Electromigration
Simulator module. The result is a tool which can (1) advise the user, based on user-specified reli-
ability requirements, of the required width and length of each interconnect, as well as give a
safety factor for the contacts and vias; (2) estimate the overall circuit electromigration failure rate
and the cumulative failure percentage of a layout design.

5.1 ELECTROMIGRATION RELIABILITY MODEL

5.1.1 Electromigration’s Dependence on Current Density

The time-to-failure (TTF) due to electromigration caused by arbitrary current waveforms (valid
for frequencies of waveforms greater than 1kHz) is given by [63]:

Apc(T)
TTF= - A .1
|J|m-lj[l+ Ai((; SlJlJ—J )]

where J is the average current density, 1J1 is the average of the absolute current density. m, Apc
and Axc are experimentally determined constants which need to be supplied by the user. Ayc(T)
and Apc(T) have an Arrhenius dependence (with the activation energy E,) on temperature.

5.1.2 Electromigration’s Dependence on Geometry

This simulator uses the independent element analysis described in [67] to find the dependence of
electromigration on the length of the interconnect. The simulator asks for a single time-to-failure
result for a long interconnect (longer than the longest interconnect in the circuit). Failure statistics
are then calculated for shorter lines using the following assumption: a long interconnect is
modeled by a series of shorter segments (see Appendix D) and its Time to Failure (TTF) is deter-
mined by the weakest segment. Therefore, the failure rate of a long metal line is the sum of the
failure rates of the shorter segments. For example, if the user inputs a Median Time to Failure
(MTF) of 7.5 hours for a 4.5 cm long interconnect, the simulator can determine the failure distri-
bution for a line half the length of the original test line which has a failure probability of F(t). The
4.5 cm long line will fail if either or both of the two segments fail, the failure probability of a
2.25 cm line Gy(t) is:

[1-Gam)2=[1~F()]

1
G(=1-[1~-F1)]?

The first equation states that the probability that the long line will not fail is the product of the
probability that the two shorter segments are good. Thus, at time t=7.5, the failure probability
for the 2.25 cm long line is 0.29. In general, for a line that is 1/x of the long test line, Gy(t) is:

1
G()=1-[1-F)]* (5:2)

The width dependence of TTF is obtained from an empirical fit of TTF versus linewidth data
using a piecewise fit of two second order polynomial functions (see Appendix E). This allows the
simulator to model the increase in TTF when the linewidth is decreased below the average grain
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size [68). The width dependence is specified by four parameters, Ay, By, C,, and D, which are
defined by the following equations:
for W 2 By

TTF( W) = Ay, X (W-B,)? + Dy, (5.3a)
for W< By,:
TTF( W) = C,, X (W-B,,)2 + Dy, (5.3b)

By, is the linewidth at the minimum of the TTF versus linewidth data. It is approximately equal to
the average grain size in the interconnect.

5.1.3 Contact Electromigration Model

The lifetime of contact structures is modeled in a way that is similar to the way an interconnect is
modeled (i.e. Eq.(5.1)). Our model assumes the use of barrier metal technology and does not con-
sider failure due to Si migration at the Al-diffusion contact. The parameters in Equation 5.1 are
extracted from lifetime experiments using contact chain structures. When designing the chain
structures, the area of each contact opening in the test structure should be the same as the area of
the contact opening that the user designs in the circuit layout. In the model, the current crowding
effect and step coverage issues are already factored into the parameters Apc and Ac since the
same contact size is used in the test structures and circuit layout. For the same reason, the simula-
tor does not require a model for the dependence of lifetime on contact size. In the layout advisory
table for contacts, the simulator calculates the number of contact openings (each with the same
area) needed to meet the reliability specifications. Current density is assumed to be divided
evenly among contact openings at a particular connection. Via contacts are similarly treated.

5.1.4 Electromigration’s Dependence on the Statistical Distribution

The user is given the choice of using either the lognormal or Weibull distribution function to cal-
culate the failure rate and the cumulative percent failure ([69] has an excellent discussion on the
statistical failure distributions). Although the lognormal distribution function is commonly used
to represent the experimental time-to-failure data, there is no physical reason to expect that the
electromigration failures should be lognommally distributed. If the lognormal distribution is
chosen, the length dependence model adopted in the simulator will result in distributions for
shorter lines that are not lognormal. This inconsistency is illustrated in Appendix D. If the
Weibull distribution is chosen, the inconsistency is removed, i.e. failure distributions for all lines
are Weibull.

52 HOW TO USE THE EM SIMULATOR
5.2.1 General Operation

There are two modes of operation for the simulator, either one or both can be selected by the
appropriate EM commands. In the first mode (Fig. 5.1(a)), the simulator is used as a layout advi-
sor. The user inputs the desired reliability specification, which is a failure rate for the circuit after
a specified number of operating hours. Based on this requirement, the simulator will generate lay-
out guidelines for the width and length of each interconnect (up to three layers of interconnect are
supported), and a safety factor for each contact or via in a circuit. 1/(safety factor) is the number
of contacts/vias that will satisfy the reliability specification.

In the second mode of operation (Fig. 5.1(b)), the simulator calculates the failure rate and/or the
cumulative percent failure of a circuit layout. The user can supply the layout geometry of all the
interconnects, contacts and vias for the layout by hand, or more conveniently, use the layout
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extractor which is provided with our simulator. This layout extractor reads in the Caltech Inter-
mediate Format (CIF) layout description file, extracts the circuit elements, and generates the
SPICE input deck for the circuit. At the same time, it also produces the geometry description file
containing the length and width of each segment and the area of both the metal-to-metal vias and
metal-to-silicon contacts.

CIRCUIT —DESIGNER
SCHEMATIC
l LAYOUT
ELECTROMIGRATION l
SIMULATOR
ELECTROMIGRATION
SIMULATOR
Layout Advisory
EM Reliability
LAYOUT
OK?
® ®)

Fig. 5.1. The electromigration simulator can be used in two ways: (a) to generate layout advisory,
(b) to compute circuit failure rate and cumulative percent failure.

5.2.2 Parameters needed by the Simulator

One set of physical and statistical parameters are needed for each layer of interconnects, contacts
and vias. The parameters are entered by the user in the EM design rule file which will be read by
the post-processor.

In the rule file, Apc, Aac, m and E, are required parameters (in Eq.(5.1)). These parameters can
be extracted from the TTF versus current density plot and the Arrhenius plot of TTF versus tem-
perature. In addition, the length, width and thickness of the test structures are required. The user
selects either lognormal or Weibull distribution to represent the TTF data. If TTF is required to
be a function of width (the simulator defaults to constant width dependence), the width parame-
ters (Egs.(5.3a) and (5.3b)) have to be extracted from additional experiments using the same type
of long line but with a number of different widths.

The parameter sets for contact and via are set up similarly. The test data for contact or via elec-
tromigration is obtained from contact/via chain test structures. The EM rule file will contain Apc,
Ac, m, E, as well as the area and the total number of contacts/vias in the chain.
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Example of EM design rule file:

* Reliability parameters for electromigration simulator
PrintCurrent

* print the current in each connection in the circuit
ncurrent=3 0.50¢e-3 1.00e-3 2.00e-3

* requests simulator to generate current layout guidelines for 3 current values
SkipFailpercent

* Do not print cumulative percent failure table, only failure rate table will
* be printed

WorstList=0.5

* print half (50%) of the worst connections in failure rate/cumulative percent
* failure table.

AC_define=0.2

* Definition of Pure AC current

MinJcurrent=1¢2

* ignore anything with current density less than le2 A/cm2
spec_time=1.0e+4 spec_failrate=1.0e-9

* this is the reliability specifications

nwidth=2 1.02.0

* Generate layout guidelines for two widths of interconnect
ncv=3 1.02.04.0

* Generate layout guidelines for three contacts/vias openings: 1,2 and 4
* at a connection

* The following set for metal-one

metall length=4.5e+4 width=1.0 thick=0.1

Tdata=25.0 Ea=0.5

width_a=0.0 width_b=1.0

m=2.0 Adc=1.0e+16 Aac=1.0e+20

Lognormal logsigma=1.0 logmedian=7.52

* The following set for metal-two

metal2 length=4.5e+4 width=1.0 thick=0.1

Tdata=25.0 Ea=0.5

width_a=0.0 width_b=1.0

m=2.0 Adc=1.0e+15 Aac=1.0e+19

Lognormal logsigma=1.0 logmedian=7.52

* The following set for via

via area=1.0 nchain=10.0

* The test structure is a chain of 10 vias, each is lpm2
Tdata=25.0 Ea=0.5

area_a=0.0 area_b=1.0

m=2.0 Adc=1.0e+16 Aac=1.0e+20

Lognormal logsigma=1.0 logmedian=7.52

* Because set for contact and metal-three are not given

* Simulator will ignore them

The pre-processor will generate the geometry file, deckfile.geo (or optionally named geometryfile
with the -G option). If the SPICE input deck was not generated by the layout extractor i.e. the
deck was generated by hand, the pre-processor will add dummy voltages in the SPICE input deck.
The dummy voltages have the prefix VEM and the added node numbers will start from 5000.
Therefore, the original SPICE input deck must not have any voltage sources with the prefix VEM
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or node number greater than or equal to 5000. The user can change the starting number (default
5000) of the dummy nodes by redefining STARTNODE in the pre-processor header file
empredef.h.

5.3 OUTPUT FROM THE SIMULATOR
5.3.1 Current Table

Normally the current table will not be printed, unless the user specifically requests it by including
PrintCurrent in the rule file. In this case, the table will be at the beginning of the output. This
table lists average currents and average absolute currents in amps for each connection in the cir-
cuit. For some connections, where the average current < AC_DEFINE x average absolute current,
the simulator performs the calculation assuming the current waveform is a pure AC waveform by
setting the intemal average current to zero. Those connections are indicated by AC in the current
table. It is a good idea to check this table to make sure that the AC waveform assumptions are
valid. This is particularly important for signal lines in MOS circuit where the gate current is
assumed to be a pure AC waveform. If a particular connection to a purely capacitive node is not
indicated by AC in the output, the layout guideline and the failure rate calculated for this connec-
tion will be too pessimistic (assuming Aac > Adc in the rule file).

5.3.2 Layout Advisory Tables
There are two layout advisory tables. The first table contains the following.

(1) the maximum interconnect length L (in pum) for metal-one, metal-two or metal-three. This
is based on a given DC current (in A).

(2) the safety factor S for contacts or vias for a given DC current (in A). If a number less than
1.0 is printed, the number of contact/via openings carrying the given total DC current is not
sufficient to satisfy the reliability specification.

This table, although generated for a given DC current, can be used as a guideline for circuits
operating on pulse waveforms if m in Eq.(5.1) is equal to 2. This is possible because the only
current density dependence in Eq.(5.1) is J. Therefore, the designer can just read off the average
current from the top of the table. For the case of pure AC current, if m is equal to 2, Eq.(5.1) will
simplify to:

TTE = Aac
IR
or
Apc

e
To use the table for pure AC current waveforms, the current at the top of the table will have to be
multiplied by‘%cc—. For example, if Aac=1.0e20 and Adc=1.0e16, the result in the table for a DC

current of 0.1mA will be the same as an AC current (the average of the absolute current) of
10.0mA.

The second layout advisory table. is a list of maximum interconnect lengths L (in pm) and the
safety factor S for contacts or vias. This guideline is given for a number of specified widths of
interconnects and a number of openings of contacts and vias per connection which the user
specifies by using NWIDTH and NCV in the rule file.
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The safety factor S for contacts and vias is the maximum number of contacts/vias chains that is
allowed along the path of the current flow. For example, let us say the user specified 2 via open-
ings per terminal. If 3 is the result, the number of metal-to-metal via chains (2 vias at each termi-
nal) along the current path can not exceed 3. A number less than 1.0 for a particular number of
contact/via openings indicates that the number of openings per connection is not sufficient to
satisfy the reliability specification.

If the user enters the "stacked" parameter for a connection (See Sec.5.6.3), the results generated
only apply to one connection. If the current density in a connection is smaller than MinJCurrent
(specified using MINJCURRENT= in the rule file), the table entry will be J < MinJ.

5.3.3 Failure Rate Statistics

This part of the output is requested by EMSTAT (if the user set up the geometry file by hand) or
EMSTATX (if the geometry file comes from the layout extractor). In this table, the failure rate
and/or cumulative percent failure for each connection is calculated at times specified using the
EMSTAT or EMSTATX card. The user can select to print out some of the worst connections by
using the WorstList card in the rule file, otherwise all connections will be printed. The first
column of the table is the name given by the simulator for the connection (useful for identifying
trouble spots in CIF file) followed by the node connection in the SPICE input deck. At the bottom
of the table the total failure rate/cumulative percent failure for the design is given. If EMSTATX
is specified, the simulator will print out the locations of connections that pose electromigration
hazards in CIF format. In this output, the names of the connections are listed in descending order
by failure rates. The ranking is attached to the name separated by a dash. The user can then cut
out the CIF format output and superimpose the names on the original CIF layout file for printout.

5.4 OPERATION OF THE LAYOUT EXTRACTOR

This section describes the procedures to extract the SPICE input deck from a CIF layout file.
First, mextra is used to extract the connectivity of transistor, interconnect, contact and via. The
extracted information is written to a file in sim format. sim2spice is called next to construct the
SPICE input deck and also produce the layout geometry database from the sim file. A CIF to
PostScript plotting program cif2ps is provided .to plot the CIF file. cif2ps can also be used to
locate input and power supply nodes in the SPICE deck and also to view any reliability hazards in
interconnects, vias and contacts.

The use of the layout extractor might become cumbersome because this process generates a lot of
data and therefore will consume a considerable amount computation time in the SPICE simula-
tion. If this is the case, setting up the geometry file by hand may be more appropriate (see section
5.5)

5.4.1 Manhattan Circuit Extractor for VLSI Simulation

The operation of the layout extractor: mextra is described in the accompanying manual page (see
Appendix H). The technologies known to mextra are: nMOS ("nmos”), MOSIS P well
CMOS/Bulk, also known as CBPM ("cmos-pw"), MOSIS Scalable CMOS/Bulk N-well, also
known as SCN ("cmos-nw"), MOSIS Scalable CMOS/Bulk P-well, also known as SCP ("cmos-
s"), and MOSIS Scalable CMOS/Bulk Generic, also known as SCG ("cmos-g"). The mask layer
names for each technology are listed in Appendix F. If the CIF layers have different names than
the ones listed in Appendix F, the user can set up his/her own CIF layer names and use the -L
option of mextra (explained in Appendix G). An example of the command line is:
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>mextra -t scmos circ.cif
which extracts the layout from circ.cif file. The technology is scmos.

5.4.2 Modifications in Mextra

Detailed description of the original version of mextra can be found in [70]. Modifications have
been made to the original version to extract interconnect widths and lengths, metal-to-metal via
and metal-to-silicon contact areas. The additional layout information is appended to the
. basename.sim file. The line describing the via or contact geometry has the following format:

type nodel node2 area xloc yloc;

where type is either CONT or VIA (for metal-one to silicon contact or metal-one to metal-two
via), nodel and node2 are the connection nodes, area is in square centi-microns ( =0.0001 um? ).
The location of the via or contact is given by xloc and yloc in cif coordinates.

The line describing the metal-one or metal-two interconnect has the following format:

type nodel node2 width length xloc yloc,

where type is either M1 or M2, node!l and node2 are the connection nodes, width and length are
in centi-micron ( =0.01 p ). The location of the interconnect is given by xloc and yloc in cif coor-
dinates. '

5.4.3 Limitations of the Layout Extractor

The layout extractor has been tested for a number of circuit designs. Although it works well in
most cases, the user has to be aware of its limitations:

(1) mextra can only handle Manhattan type structures. Non-manhattan polygons will be
ignored by the extractor.

(2) mextra can only extract two layers of interconnects.

(3) The extracted interconnect length and width are accurate for long metal lines. mextra tends
to err at irregular comers and where many metal lines join together.

(4) mextra, by default only recognizes the technologies listed in Appendix F. The user is
advised to check the layer names in his/her CIF file with the layers listed in the table to
prevent unknow layers error. If necessary, user can set up alternate CIF layer names (see
Appendix G).

5.4.4 Converting .sim Format to SPICE Input Format

The program sim2spice converts the basename.sim file produced by mextra to a SPICE input
deck and also produces the layout geometry database in file basename.geo. Two files are needed
for a successful conversion: basename.sim which contains connectivity information and
basename.nodes which contains node names and numbers. Both files are generated by mextra.
sim2spice puts the spice input deck in basename.spice and the geometry information in
basename.geo. In the SPICE deck, sim2spice will add for each interconnect and contact structure
a dummy voltage source. For a metal-to-silicon contact and metal-to-metal via, a small series
resistance (0.001 €2) will also be added in the SPICE deck. The name of the dummy voltage
source has the prefix VEM and the series resistor has the prefix REM. The resistor is needed to
prevent a SPICE error when there is a closed loop consisting of voltage sources only.
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The SPICE deck from sim2spice is incomplete. It does not have the input and power sources and
it does not request any spice analysis. The user must insert the voltages and set up the transient
analysis card. The user will also have to insert the following two cards to request EM analysis.
.EMMODEL rulefile
.EMSTATX basename.geo 1.0e4 1.0e5

where rulefile is the EM design rule file and basename.geo is the extracted geometry file from
sim2spice.

The user can locate the input, power and output nodes of the circuit by using the cif2ps program.
This is described in Section 5.4.5.

The extracted SPICE deck may have a number of floating nodes where there is only one connec-
tion to the node. This will cause SPICE2G6 to abort simulation. Therefore, the user is advised to
use SPICE3C or SPICE3E for the extracted SPICE input deck.

The geometry information of the layout in basename.geo has the following format:
nodel node2 VEMxxx type {width length} | area xloc yloc,

where nodel and node2 are the nodes in SPICE deck: VEMxxx is the dummy voltage source in
the SPICE deck; type is one of M1 (for metal-one); M2 (for metal-two); CO (for contact) or VI
(for via); width and length are in pm (for interconnects) and area (for contacts and vias) is in
um?2. The location of the connection is given in CIF coordinates xloc and yloc.

sim2spice also produces a file basename.spcnode containing node numbers in the SPICE deck
and their locations in the layout. The list is written in CIF format. It can be read by cif2ps which
will make a plot showing the circuit with the named nodes superimposed.

An example of this command line is:
>sim2spice circ.sim

After this, the program will read circ.sim, circ.nodes and produce circ.spice, circ.spcnode and
circ.geo. _

5.4.5 Plotting a CIF File

The program cif2ps converts a CIF layout file into a PostScript file which can be sent to a
PostScript printer for printout. The operation of cif2ps is described in the accompanying manual
page (see Appendix H). The following command line:

>cif2ps -t scmos circ.cif | 1pr

will plot circ.cif (which contains CIF layer names of scmos technology). cif2ps is technology
dependent; the layers known to cif2ps are listed in Appendix F. Appendix G describes how to set
up different CIF layer names for mextra and cif2ps.

The -m option of cif2ps can be used to superimpose CIF labels on a CIF layout. This is useful in
locating the SPICE node numbers assigned by sim2spice. Recall that sim2spice writes the loca-
tions of nodes in CIF format into basename.spcnode file. This file can be printed together with
the original CIF layout file basename.cif using cif2ps -m. For example:

>cif2ps -m -t scmos circ.cif circ.spcnode | 1pr
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will print the SPICE node numbers on the layout circ.cif.

The EM simulator produces a listing of metal structures that pose reliability hazards in CIF for-
mat. This listing can be printed on the CIF layout using the same procedure:

>cif2ps -m -t scmos circ.cif circ.worst | 1pr
circ.worst contains the listing of the worst metal structures.

5.5 SETTING UP A GEOMETRY FILE BY HAND

The user may create the geometry file by hand instead of using the layout extractor. For a layout
which uses a large number of standard cells, such as the case with gate arrays and memory chips,
the user is advised to set up the geometry file by hand. In this case, many standard cells are
repeated, but only one cell’s current waveforms are needed. The user can set up subcircuit ele-
ments (using the SUBCKT card in SPICE) for all but one of the standard cells in the circuit. This
implicitly instructs the EM simulator not to calculate the failure probabilities for the metal con-
nections in the subcircuit definition. As a result, the amount of cpu time will be reduced. The user
can setup the geometry file by using the following procedures:

(1) The user enters the layout geometry of one cell by hand (or just have the layout extractor
extract one cell).

(2) The user then sets up the subcircuit definition using the SUBCKT card in SPICE. All but
one cell is replaced by the subcircuit call. (using the Xzzz element in SPICE).

(3) The layout geometry information is entered into the geometry file for the original cell only.
The user is required to identify any "stacked" connections in the circuit. "Stacked" connec-
tions are the connections that simultaneously feed current to a number of cells (e.g. power,
ground and clock lines). An example of a "stacked" connection is explained in Sec. 5.5.2.

5.5.1 The Format of the User Entered Geometry File

The pre-processor of the EM simulator reads the user-entered geometry file geometryfile that is
defined by the .EMSTAT card in the SPICE input deck. This geometry file will have a different
format from the geometryfile produced by the extractor program. The format was designed to be
more user-friendly.

Now, we will describe the organization of the user-entered geometry file. The format for capaci-
tance, inductance, resistance, voltage and current (and other two-node) elements is:

element [ type {width length} | openings ] ...

Type is one of MF, MS, MT, VI, V2, CO which represent respectively metal-one, metal-two,
metal-three, metal-one to metal-two via, metal-two to metal-three via, and contact. For intercon-
nects, the user enters the width and length in pm. The number of contacts or via openings is
entered for contact and vias (the area of the opening is taken to be the same as the area of
contact/via opening entered in the Area= card for the test structure, see Appendix A). The infor-
mation for each element must appear on a single line. For example, a capacitance element
(labeled C10 in the SPICE deck) which has a first level metal connection 4yum wide 100um long
connected to the second level metal (2um wide 20um long)
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through via with 2 via openings would be specified as:
C10 MS 2.0 20.0 MF 4.0 100.0 VI 2.0

The format for a transistor element and for subcircuit elements is:
element [ node nodenumber [ type {width length) | openings ] ... ]

Type is one of MF, MS, MT, VI, V2, CO which represent metal-one, metal-two, metal-three,
metal-one to metal-two via, metal-two to metal-three via, and contact respectively. For intercon-
nects, the user enters the width and length in um. In the definition, the number of contact or via
openings is entered for each connection (the area of the opening is taken to be the same as the
area of contact/via opening entered in the Area= card, see Appendix A). For example, a bipolar
transistor (three terminal device) (labeled Q1 in the SPICE input deck) with the following metal
connections:

(1) Emitter (node number 1) contacting polysilicon,

(2) Base (node number 2) with 1 contact opening to first level metal connection 2um wide Spm
long.

(3) Collector (node number 3) with 3 contact openings to first level metal connection 2.5um
wide 15um long. The first level metal later connects to second level metal interconnect
5.0um wide 100um long through a via with 2 via openings

can be entered in the geometry file as follows:

Q1 node 3 CO 3.0 MF 2.5 15.0 VI 2.0 MS 5.0 100.0 node 2 CO 1.0 MF 2.0 5.0 node 1

Comments can be inserted in the file but typing * in the first column. For example:
* This is a comment line '

5.5.2 "Stacked” Metal Connections

A "stacked" metal connection occurs when a power line (or signal line) successively connects to a
number of identical cells (e.g. the 21-stage BiICMOS inverter chain in Fig. 5.3). The metal seg-
ments between two adjacent cells all have the same length and width. As a result, the average
current density flowing in the metal segments "stack," with the greatest current being in the seg-
ments closest to the power or signal source and the least current in the segments connecting the
farthest cell. As noted earlier (in Sec.5.1), the user can set up a subcircuit definition for the cell
and repeat the subcircuit in the SPICE deck. But to account for the “stacked” connection, the user
will have to set up a dummy resistor between two adjacent cells. This resistor will define the
geometry information of the segement. This can be quite troublesome if the number of cells is
very large.

When entering the geometry information by hand, the user needs to attach a suffix S after type
followed by a "stacking” parameter nSTACK in order to simulate a "stacked" metal connection.
For example:

M1 node 2 MFS 21 10.0 30.0

defines a metal-one connection of 21 segments stacked at node 2. Each segment is 10 pum wide
30.0 um long. When calculating the failure statistics, the simulator will sum the failure rates of
the first segment carrying current density J (the result of the SPICE simulation), the second seg-
ment carrying current density 2 X J, and so on, up to and including the nStack-th segment carry-
ing current density nStack x J.
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5.6 EXAMPLES OF SIMULATION
In this section, we will demonstrate the operation of the EM simulator in three examples:

(1) We design a CMOS EPROM sense amplifier circuit using the layout guideline from the
simulator and make an estimation of the failure rate for the 512K x 8 EPROM.

(2) We assess the failure rate of a 21-stage BICMOS inverter chain. The layout information in
entered by hand. The use of subcircuits and "stacked" connections is demonstrated.

(3) We project the reliability of a CMOS logic circuit designed using arrays of inverters, NOR
and NAND gates. The SPICE input deck is extracted from the CIF layout file.

The SPICE input decks and CIF layout files are found in BERT/EM/Sample in the distribution
tape.

5.6.1 Examples’ Design Rules and Reliability Parameters

The EM design rule file for all the examples described later will be emrule. The line:
.EMMODEL emrule ‘
is inserted in the SPICE input deck. The file emrule is given below:

* Reliability parameters for electromigration simulator
PrintCurrent

ncurrent=3 1.00e-4 1.00e-3 5.00e-3
SkipFailpercent

WorstList=0.5

AC_define=0.2

MinJcurrent=1e2

* this is the reliability specifications

nwidth=4 1.02.04.0 10.0

ncv=3 1.02.04.0

* The following set for metal-one interconnect
metall length=4.5e+4 width=1.0 thick=0.5
Tdata=200.0 Ea=0.5

width_a=6.25 width_b=1.0 width_c=40.0
m=2.0 Adc=7.52e+12 Aac=7.52e+16
Lognormal logsigma=1.0 logmedian=7.52

* The following set for metal-one to silicon contact
contact area=1.0 Nchain=10.0

Tdata=200.0 Ea=0.5

m=2.0 Adc=1.0e+13 Aac=9.0e+14
Lognormal logsigma=1.0 logmedian=7.52
spec_time=1.0e+4 spec_failrate=1.0e-9

By using this emrule file the following assumptions and declarations are made.

(1) This emrule file requests a list of currents at each connection.

(2) For the layout advisory, the simulator is instructed to generate guidelines for four intercon-
nect widths: 1um, 2um, 4pm and 10pm, and three contact and via openings: 1, 2 and 4.
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The emrule file requests that layout guidelines be generated for three current values: 0.1
mA, 1.0 mA and 5.0 mA.

The si'mulator is instructed to ignore any connections with current density less than 1e2
A/em”,

A pure AC waveform is defined if the average current is less than 20% of the average abso-
lute current.

The width dependence was extracted from the example in Appendix E.

The metal-one line used in the electromigration lifetime experiment was 4.5 cm long, 2 pm
wide and 0.5 pum thick.

Apc, Aac and m were obtained from accelerated testing at 200°C.

A lognormal failure distribution will be used. For example, 6 = 1.0 and MTF = 7.52 hours
(using Apc=7.52x10'2, the DC stress current is 106 A/cm” at 200°C in the experiment).

(10) The contact chain structure used in the experiment had ten 1um? contact openings in series.
(11) The reliability requirement for the circuit is a failure rate of 1 FIT (10~ failure / device

hour) at 104 hours (1.1 year).

The parameters for metal-two, metal-three and metal-to-metal vias are not given. The simulator
will not perform analysis for these structures.

5.6.2 CMOS EPROM Sense Amplifier

In this example, the designer wishes to generate a layout guideline for a CMOS EPROM sense
amplifier circuit (see Fig. 5.2) and estimate the electromigration reliability of a 512Kx8 EPROM

design.

vdd
kit
—1[ e
——| E M3 Vout
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]

Vy-decode | M7

r--- - e
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21, Mt

Figure 5.2. EPROM sense amplifier
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The SPICE input deck (in file eprom) is set up as follows:

CMOS EPROM SENSE AMPLIFIER

VDD 50DC5

VX 60DC0PWL(0 0 5NS 5 S5NS 5 60NS 0 150NS 0 155NS 5 205NS 5
+ 210NS 0 300NS 0)

VY 70DC 0 PWL(0 0 5NS 5 SSNS 5 60NS 0 150NS 0 155NS 5 205NS 5
+ 210NS 0 300NS 0)

MR1 2 5 00 EPROM L=2U W=3U

+ AD=20P AS=20P PD=14U PS=14U NRD=1.25 NRS=1.25
M22255MODPL=2U W=11U

+ AD=60P AD=60P PD=22U PS=22U NRD=0.42 NRS=0.42
M33210MODN L=2U W=39U

+ AD=200P AD=200P PD=50U PS=50U NRD=0.13 NRS=0.13
M43255MODPL=2U W=7U

+ AD=40P AD=40P PD=18U PS=18U NRD=0.63 NRS=0.63
M54100MODN L=2U W=49U

+ AD=250P AD=250P PD=60U PS=60U NRD=0.1 NRS=0.1
M64 355 MODP L=2U W=11U

+ AD=60P AD=60P PD=22U PS=22U NRD=0.42 NRS=0.42
M71780MODN L=2U W=49U

+ AD=250P AD=250P PD=60U PS=60U NRD=0.1 NRS=0.1
MC1 8 6 0 0 EPROM L=2U W=3U

+ AD=20P AS=20P PD=14U PS=14U NRD=1.25 NRS=1.25

cCci102p
CL400.3P

.MODEL MODN NMOS (LEVEL=2 VTO=0.9 KP=36U GAMMA=0.16 PHI=0.58 LAMBDA=0.04
+ CGS0=2.3E-10 CGDO=2.3E-10 CGBO=1.0E-10 RSH=30 CJ=1E4 CJSW=3E-10

+ JS=3E-9 TOX=300E-10 NSUB=1E15 NFS=2E10 XJ=0.3E-6 LD=0.2E-6 UO=310

+ VMAX=6E4)

-MODEL MODP PMOS (LEVEL=2 VTO=-0.9 KP=17U GAMMA=0.27 PHI=0.63 LAMBDA=0.06
+ CGSO=34E-10 CGDO=34E-10 CGBO=1.0E-10 RSH=120 CJ=1.7E-4 CJSW=6.7E-10

+ JS=1E-9 TOX=300E-10 NSUB=3E15 NFS=2E10 XJ=0.4E-6 LD=0.4E-6 UO=150

+ VMAX=8E4)

.MODEL EPROM NMOS (LEVEL=2 VT0=2.0 KP=14U GAMMA=0.16 PHI=0.58 LAMBDA=0.04
+ CGSO0=2.3E-10 CGDO=2.3E-10 CGBO=1.0E-10 RSH=30 CJ=1E<4 CJSW=3E-10

+ JS=3E-9 TOX=300E-10 NSUB=1E15 NFS=2E10 XJ=0.3E-6 LD=0.2E-6 UO=310

+ VMAX=6E4)

.EMModel emrule

.WIDTH OUT=80

.TRAN INS 300NS 150NS

.OPTIONS NODE METHOD=GEAR VNTOL=0.001 ABSTOL=1.0E-8
JPLOT TRAN V(@) V(1) V(3) V(6) (0,5)

.END
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We have set up the input voltages and the transient analysis card so that SPICE will simulate the
circuit for two read cycles (each read cycle is 150 ns). Keep in mind that in the actual read cycle
of the EPROM, only one out of many cells will be accessed. Since only layout guidelines are
desired, we have omitted the EMSTAT card in the SPICE deck. The command to call the simu-
lator (using SPICE2G6) is:

>prebert -2 eprom | spice2g6 | postbert > eprom.em
or using the "standalone” version of the EM simulator, which saves the SPICE output:

>preem eprom | spice2g6 > eprom.spcout
>postem -S2 -G eprom.geo -R emrule eprom.spcout > eprom.em

A partial listing of the output current table is given below:

<Current Table>

Connection Avg Current(A) Avg Abs Cur(A)

VDD to 5 2.56e-04 2.56e-04

MR1to2 1.12e-04 1.12e-04

MR1to 5 1.49¢-10 2.22e-09 AC
MR1two 0 1.12e-04 1.12e-04

M2tw02 1.11e-04 1.11e-04

M2to2 2.98e-09 4.47¢-08 AC
M2t S5 1.11e-04 1.11e-04

MSto4 1.09e-04 1.09e-04

M5l 4.80e-07 2.29e-06

M5t00 1.09¢-04 1.10e-04

M6to4 1.07e-04 1.07e-04

M61to3 3.48e-07 1.12¢-06

M6t 5 1.06e-04 1.06e-04

M7t01 2.98e-05 3.64¢-05

M7t07 2.19¢-06 2.38e-05 AC
M7t08 2.98e-05 3.03e-05

MClto8 2.98e-05 3.03e-05 )
MClto6 9.04e-08 1.72e-06 AC
MClto0 2.98e-05 3.02e-05

From our results we can see that the currents in the gates of MR1, M2, M7, and MCI1 are treated
as pure AC current. But, note that this is not the case for the current in the gates of M5 and M6.
Therefore, the SPICE simulation might need to be extended to more cycles in order to obtain
steady-state current waveforms. Another solution would be to set AC_Define to a higher value.

The first layout advisory table gives the maximum allowable length for each interconnect, and the
safety factor for each contacts and vias as a function of current passing through:

<Layout Advisory Table for Current>

Maximum Interconnect Length (in micron) or Safety Factor for Contacts or Vias to
guarantee 1.00e-09(/h) failure rate at time 1.00e+04(h) for given Current(A)

DC Current(mA) 1.0e-04 1.0e-03 5.0e-03

Mi1w= 10 2.2¢+13 2.0e+02 5.6e-01
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M1wW= 20 9.4e+20 8.9¢+05 8.0e+00
MlIW=40 1.9e+35 2.5e+14 1.9e+05
M1W=100 1.9¢+60 3.8e+31 9.6e+16
No.of CONT=1.0 9.5e+15 3.9e+01 9.7e-04
No.of CONT=2.0 1.3e+22 9.0e+04 2.7e-02
No.of CONT=4.0 1.2e+29 1.4e+09 4.9e+00

Let us see interpret some of these results. The maximum length allowed for a 2um wide me_tal-
one interconnect carrying 5 mA current is 8um long. And the safety factor for 4 contact openings
is 4.9 if 5 mA of current flows through the contact (each contact opening carries 1.25 mA).

The second table gives layout guidelines for every connection in the circuit. The following is a
partial listing (the least constraining guidelines have been omitted):

<Layout Advisory Table for all connections>
Maximum Interconnect Length (in micron) or Safety Factor for Contacts or Vias to
guarantee 1.00e-09(/h) failure rate at time 1.00e+04(h) in each connection

Metal: (Width) Type 1.0e+00 2.0e+00 4.0e+00 1.0e+01
Cont/Via:(#) Type 1.0e+00 2.0e+00 4.0e+00
VDDt 5 MF 5.4e+07 S5.4e+13 4.5e+25 4.5¢+30
VDD 1to 5 CO 1.0e+09 1.0e+14 7.0e+19
MR1t02 MF 3.9e+12 1.1e+20 4.5¢+30 4.5e+30
MR1t02 (o(0) 1.2e+15 1.2e+21 1.0e+27
MR1to5 MF J <MinJ J <MinJ J <MinJ J <MinJ
MR1to5 CO J <MinJ J <MinJ J <MinJ
MR1to O MF 3.9e+12 1.1e+20 4.5¢+30 4.5e+30
MR1t0 0 CO 1.2e+15 1.2e+21 1.0e+27
M2to2 MF 4.2e+12 1.1e+20 4.5e+30 4.5e+30
M2t02 co 1.2e+15 1.3e+21 1.0e+27
M2to2 MF J <MinJ J <MinJ J <MinJ J <MinJ
M2to2 Co J <MinJ J <MinJ J <MinJ
M2tw5 MF 4.2e+12 1.1e+20 4.5e+30 4.5e+30
M2t 5 CO 1.2e+15 1.3e+21 1.0e+27
M54 MF 6.1e+12 1.9e+20 4.5e+30 4.5¢+30
MStw04 CO 2.0e+15 2.2e+21 1.0e+27
MStw1l MF 4.5¢+30 4.5e+30 4.5¢+30 J <MinJ
MStol CO 1.0e+27 1.0e+27 J <MinJ
M5t00 MF 5.4e+12 1.6e+20 4.5e+30 4.5¢+30
M5t 0 CO 1.7e+15 1.8e+21 1.0e+27
M61o4 MF 8.2e+12 2.7e+20 4.5e+30 4.5¢+30
M6t 4 (60] 2.8e+15 3.2e+21 1.0e+27
M6to3 MF . 4.5¢+30 4.5¢+30 J <MinJ J <MinJ
M6to3 CcO 1.0e+27 J <MinJ J <MinJ
M6to 5 MF 8.6e+12 2.8e+20 4.5e+30 4.5¢+30
M6to 5 CO 3.0e+15 3.4e+21 1.0e+27
M7t01 MF 9.1e+21 4.5e+30 4.5¢+30 4.5e+30
M7t01 CO 1.6e+26 1.0e+27 1.0e+27
M7107 MF 4.5e+30 4.5e+30 4.5e+30 4.5e+30

M7t07 CO 1.0e+27 1.0e+27 1.0e+27
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M7t08 MF 5.8e+22 4.5¢+30 4.5e+30 4.5¢+30
M7t08 Cco 1.0e+27 1.0e+27 1.0e+27
MCitw8 MF 5.8e+22 4.5¢+30 4.5e+30 4.5e+30
MClw8 co 1.0e+27 1.0e+27 1.0e+27
MClto6 MF 4.5e+30 4.5¢+30 J <MinJ J <MinJ
MClto 6 CO 1.0e+27 J <MinJ J <MinJ
MClw 0 MF 6.2e+22 4.5e+30 4.5¢+30 4.5¢+30
MClw0 CO 1.0e+27 1.0e+27 1.0e+27

As pointed out earlier, because the gate current in M5 and M6 is not a pure AC waveform, the
recommendations for the gate of M5 (MS to 1) and gate of M6 (M6 to 3) are too pessimistic.

From the table above, the designer can layout the circuit and also estimate the failure rate of the
layout using the table. The interconnect failure rate for the design at 10* hours is:

Designed FIT = LM%}ﬂ@ x 1 FIT

where L is the maximum length allowed from the layout advisory table. 1 FIT is used on the
R.H.S. of the equation because the layout guidelines are generated for the spec of 1 FIT in 10?
hours. The contact/via failure rate for the design is:

Designed FIT = -é- x 1 FIT

where S is the safety factor from the layout advisory table.

We will calculate the failure rate at 104 hours for a 512Kx 8 EPROM assuming the worst case
scenario: the same 8 EPROM bits located furthest away from the sense amplifier are continuously
accessed in each read cycle. The geometry of interconnects and contacts in the chip are:
(1) All the transistors in the sense amplifier circuit (a total of 8 sense amplifier circuits) have
20pm and 1um wide metal-one lines connected to their source and drain.
Failure rate for these:

_ 1 1 1 1 1
Fo=8X20% | xgerr + 10er v 226z *a2ez T BTz T

+ 1 + 1 + 1
5.4e12 ' 82el2 ' 8.6el2
=2.5x10"19=FIT

(2) The Vdd line for each (total of 8) sense amplifier is 200 um long 2um wide.

Fo=8X g20lz
=3.0%x10"11 =FIT

(3) The bitline (M7 to 8) is 1 pum wide 1 cm long.
Fe=8x 530

=1.4x10"8 =FIT
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(4) In the core cell of the EPROM (the same 8 bits are accessed all the time) the gate, source
and drain connections are each 3pum long 1pum wide.

- 1 1
Fg=8x3 "[ 3822 T 62607
=8.0% 1002 =FIT
(5) The source and drain of each transistor has one contact opening (of area 1um?2),

- 1 1 1 1 1 1
Fe=8x 1.2e15 + 1.2e13+1.2e13 +I.§e13 +21E13 +i.’7ei’3 +

1 1
73815 130e13 T ]

=4,0x 1004 =FIT

Thus, the FIT of the design is:
Designed FIT=F, + F,+ F. + F3+F. = O FIT@ 10% hours

We see that this small circuit is not expected to suffer any electromigration failures in 10* hours.
However, if this small circuit were repeated millions of times inside a single IC (a realistic
scenario) then the FIT would rise to measurable numbers. We can make a better estimation by
assuming a certain probability that the bit is accessed and the associated bit line is activated, and
then run the SPICE simulation over a duration that covers both the active cycles and the idle
cycles. This will produce a more accurate average current flowing in each connection. For exam-
ple, if we know on the average that each EPROM cell will be accessed once every 100 read
cycles and that each bit line is activated once every 10 read cycles, a SPICE deck can be set up
consisting of three EPROM bits (bit A, bit B and bit C). Bit A and bit B are on the same bitline,
bit C is on a different bitline (but connects to the same sense amplifier). Bit A is accessed once
and left idle for 99 cycles, bit B is accessed for 9 cycles and left idle for 91 cycles, and bit C is
accessed for 90 cycles and left idle during the 10 cycles when A and B are activated. The three
bits are set up to continuously provide a signal to the sense amplifier and to activate bit A’s bit-
line once every 10 cycles. The transient duration requested in the SPICE input deck is 100 cycles.
The total failure rate can be calculated by summing the failure rate of all the bits (i.e. multiply the
failure rate of bit A by 512K x 8), the failure rate of the bit lines (i.e. multiply the failure rate of
bit A’s bitline by the total number of bit lines) and the failure rate of the 8 sense amplifiers.

5.6.3 21-Stage BiCMOS Inverter Chain

In this example, the simulator is used to generate layout guidelines and to calculate the failure
rate of a 21-stage BiCMOS inverter chain (Fig. 5.3). The SPICE deck is found in file bicmos:

21-stage BiCMOS output inverter

vdd980dc 5.5

vin 4 0 dc 0.0 pulse (0.0 5.0 1n 10p 10p 7n 15n)

rdummy1 98 1 0.001

rdummy?2 99 0 0.001

ql 1250 npnl

q2 53990 npnl

m1 14 2 1 pmos w=15u l=1.2u ad=60p as=30p pd=23u ps=4u
m2 112 1 pmos w=15u I=1.2u ad=60p as=30p pd=23u ps=4u
m3 2 4 6 0 nmos w=15u I=1.2u ad=60p as=30p pd=23u ps=4u
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m4 6 1 99 0 nmos w=15u 1=1.2u ad=30p as=60p pd=4u ps=23u
mS5 54 799 nmos w=15u I=1.2u ad=60p as=30p pd=23u ps=4u
m6 7 1 3 0 nmos w=15u I=1.2u ad=30p as=60p pd=4u ps=23u
m7 3 5 99 0 nmos w=15u I=1.2u ad=60p as=60p pd=23u ps=23u
c1500.5p

x1 58 10 inverter

x2 8 9 1 0 inverter

x3 910 1 0 inverter
x4 10 11 1 O inverter
x5 11 12 1 O inverter
x6 12 13 1 O inverter
x7 13 14 1 O inverter
x8 14 15 1 O inverter
x9 15 16 1 O inverter
x10 16 17 1 0 inverter
x11 17 18 1 0 inverter
x12 18 19 1 O inverter
x13 1920 1 O inverter
x14 2021 1 O inverter
x15 21 22 1 O inverter
x16 22 23 1 O inverter
x17 23 24 1 0 inverter
x18 24 25 1 O inverter
x19 25 26 1 0 inverter
x20 26 27 1 O inverter

.subckt inverter 4 51 99

* 4 is input 5 is output 1 is +supply 99 is -supply

qs11250npnl

qs2 5399 0 npnl

msl 14 2 1 pmos w=15u I=1.2u ad=60p as=30p pd=23u ps=4u

ms2 11 2 1 pmos w=15u 1=1.2u ad=60p as=30p pd=23u ps=4u

ms3 2 4 6 0 nmos w=15u 1=1.2u ad=60p as=30p pd=23u ps=4u

ms4 6 1 99 0 nmos w=15u 1=1.2u ad=30p as=60p pd=4u ps=23u

ms5 54 799 nmos w=15u I=1.2u ad=60p as=30p pd=23u ps=4u

ms6 7 1 3 0 nmos w=15u 1=1.2u ad=30p as=60p pd=4u ps=23u

ms7 3 5 99 0 nmos w=15u 1=1.2u ad=60p as=60p pd=23u ps=23u

cs1500.5p

.ends

.nodeset v(5)=4.796 v(8)=0.531 v(9)=4.796 v(10)=0.531 v(11)=4.796 v(12)=0.531
+ v(13)=4.796 v(14)=0.531 v(15)=4.796 v(16)=0.531 v(17)=4.796 v(18)=0.531
+ v(19)=4.796 v(20)=0.531 v(21)=4.796 v(22)=0.531 v(23)=4.796 v(24)=0.531
+ v(25)=4.796 v(26)=0.531 v(27)=4.796

.width out=80

.model npn1 npn (is=5.0e-18 bf=86 br=10 cje=11f cjc=15f cjs=135f

+ tf=5p vaf=40 rb=50 re=25 rc=180 ikf=0.01)

.model nmos nmos (level=2 vto=0.58 kp=80u gamma=0.16 phi=0.58 lambda=0.04
+ ¢gso=2.3e-10 cgdo=2.3e-10 cgbo=1.0e-10 rsh=30 cj=1E-4 cjsw=3e-10

+ js=3e-9 tox=200e-10 nsub=1e15 nfs=2e10 xj=0.3e-6 1d=0.0e-6 uo=310

+ vmax=6¢e4)

.model pmos pmos (level=2 vto=-0.52 kp=27u gamma=0.27 phi=0.63 lambda=0.06
+ cgso=3.4e-10 cgdo=3.4e-10 cgbo=1.0e-10 rsh=120 cj=1.7e-4 cjsw=6.7¢-10
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+ js=le-9 tox=200e-10 nsub=3e15 nfs=2e10 xj=0.4¢-6 1d=0.0e-6 uo=150
+ vmax=8e4)

.emmodel emrule

.emstat bicmos.int 1.0e2 5.0e2 1.0e3 2.0e3

.tran 100p 20n
.plot tran v(27)
.end

Because the circuit has 21 identical inverter cells, we set up a subcircuit for the inverter stage. All
but one of the 21 inverter cells are represented by the subcircuit elements. To account for the
"stacked” Vcc power line, we inserted a dummy resistance rdummy1 in the first cell to represent
the connection. In the geometry file, the connection of rdummy1 is indicated to be metal-one
7.5um wide and 30um long and with a "stack" parameter of 21. The same procedure is applied to
the ground line of the first cell. The geometry file set up by the user in bicmos.int is:

rdummyl MFS 21 7.5 30.0

rdummy2 MFS 21 7.5 30.0

ql node 1 CO 2.0 node 2 CO 2.0 MF 2.0 10.0 node 5 CO 2.0 MF 2.0 10.0
g2 node 5 CO 2.0 MF 2.0 10.0 node 3 CO 2.0 MF 2.0 10.0 node 99 CO 2.0
m1 node 1 CO 2.0 MF 2.0 10.0 node 4 CO 2.0 MF 2.0 15.0 node 2 CO 2.0
m2 node 1 CO 2.0 MF 2.0 10.0 node 1 CO 2.0 node 2 CO 2.0

m3 node 2 CO 2.0 MF 2.0 10.0 node 4 CO 2.0 MF 2.0 10.0 node 6

m4 node 6 node 1 CO 2,0 node 99 CO 2.0 MF 2.0 10.0

m5 node 5 CO 2.0 MF 2.0 10.0 node 4 CO 2.0 MF 2.0 10.0 node 7

m6 node 7 node 1 CO 2.0 node 3 MF4.025.0C0O 2.0

m7 node 3 CO 2.0 MF 2.0 10.0 node 5 CO 2.0 MF 2.0 10.0 node 99 CO 2.0
cIMF2.010.0

The command line to invoke the simulator is:

>prebert bicmos | spice3c1 | postbert > bicmos.em
or using the "standalone” version of the simulator:

>preem bicmos | spice3c1 > bicmos.spcout

>postem -G bicmos.geo -R emrule bicmos.spcout > bicmos.em

The failure rate table calculated by the simulator in bicmos.em:

<Failure Rate (/hour) Table>

No Conn. at time 1.0e+02 1.0e+03 1.0e+04 1.0e+05
MFS0 rdummy1 to 98 2.1e-11 2.3e-08 24e-07 1.6e-07
MFS1 rdummy?2 to 99 1.4e-25 3.4e-18 4.5e-13 3.6e-10
C5 qlto$5 2.2e-33 6.4e-24 9.1e-17 6.4e-12
MF6 qlto5 6.6e-31 1.6e-22 2.0e-16 1.2e-12
MF15 mlto4 5.3e-36 1.6e-26 2.5¢-19 1.9e-14

Cl16 mlto2 2.8e-38 6.9¢-28 8.4e-20 5.1e-14
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MF27 m4 to 99 2.4e-36 8.0e-27 1.3e-19
MF29 m5to5 1.8e-37 1.0e-27 2.7e-20
Total Failure Rate(/h): 2.1e-11 2.3¢-08 2.4e-07

The worst electromigration hazard in the design is in the Vcc and ground lines. Since we have
only simulated one of the 21 stages. The failure rate at 10* hours (1.1 year) for the circuit is the
sum of the failure rates for the supply and ground lines and 21x of the total failure rate for each
cell:

Total Failure Rate = ZceyF; + Fyaq + Fyround
=21%x25x1016+24x 107 +4.5x 10713
=2.4x10"7=2.4 x 102 FIT @ 10* hours
Note that the failure rate of the Vcc line decreases after 10* hours. This is caused by use of the

lognormal distribution. The failure rate for a lognormal distribugon can first increase, reach a
maximum and decrease. Therefore, the failure statistics beyond 10” hours may be invalid.
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Figure 5.3 (a) 21-stage BiCMOS inverter chain. An example of "stacked" connection is shown.
The first segment of the power line in the first cell on the left carries current density J, and the
current density increases towards the Vcc source. The last segment of the power line carries 21X
current density. (b) the circuit of one inverter stage.

5.6.4 CMOS Logic Circuit Using Inverters, NOR and NAND Gates.

The circuit shown in Figure 5.4 is designed using a scmos process. The CIF file for the layout has
been generated (see Fig. 5.5) and is in file circ.cif. We will assess the reliability of the layout
design using the EM simulator. First, the SPICE deck is extracted from the CIF layout. The fol-
lowing commands are used to invoke the extractor which also produces the layout geometry
information:

>mextra -t scmos circ.cif
>sim2spice circ.sim

Input voltages, power supply voltages and ground nodes have to be added to complete the SPICE
deck (in circ.spice). The completed SPICE deck is in file circ.ospice. In order to trace the input
nodes and power buses, the extracted SPICE nodes (which are written to circ.spcnode by
sim2spice) are printed on top the original CIF layout file using cif2ps with the option -m:
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>cif2ps -m -t scmos circ.cif circ.spcnode | 1pr

The output is sent to a PostScript printer and the printout is shown in Figure 5.5. Polysilicon, dif-
fusion and well layers have one node number assigned to each electrically connected area. The
number is usually printed at the center lower edge of the layer. Node numbers on metal layers are
found at the comers, intersections or contacts where the extractor fractures the interconnect. At
contacts and vias, two node numbers are assigned, the node number for the layer on top of the
contact is printed at the upper right comer of the contact or via. The node number for the lower
layer is usually at the lower right.

The commands for the simulator are:
>prebert circ.ospice | spice3c1 | postbert > circ.em
or using the "standalone” version of the EM simulator:

>preem circ.ospice | spice3cl | postem -G circ.geo -R emrule > circ.em

The simulator prints a listing of the worst reliability hazards (the number of connections printed
is determined by the WorstList= card in the rule file) after the failure rate or cumulative percent
failure table. In the listing, the name of the connection (beginning with C,V, MF or MS for con-
tact, via, metal-one, metal-two respectively) is given with its location in CIF coordinates.

The following is the list of the worst 10% (WorstList= 0.1) of the connections from circ.em. The
connection name is followed by a dash and ranking number. The lines starting with DS and end-
ing with E can be saved to a file and printed out on top of the original CIF file using cif2ps. The
failure rate (/hour) of the connection is enclosed in brackets in the following line:

DS9411;
9 WORST_STAT;
94 C63-1 -1650 23700;

(5.70e-39)
94 C42-2 -1650 15750;
(5.40e-39)

94 C21-3 -1650 7800;
(5.30e-39)

94 C0-4 -1650 -175; -
(5.10¢-39)

94 C64-5 -450 23700;

( 1.40e-40)

94 C43-6 -450 15750;
(1.30e-40)

94 C22-7 -450 7800;
(1.30e-40)

94 C1-8 -450 -175;
(1.20e-40)

94 MF215-9-187 24900;
(8.90e-42)

94 MF173-10 187 16950;
(8.40e-42)

94 MF133-11 187 9000;
(8.10e-42)

94 MF93-12 187 1050;
(8.10e-42)

94 C70-13 1050 24675;
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(1.10e42)
94 C49-14 1050 16725;
(9.90e-43 )

94 C28-15 1050 8775;
(9.60e-43)

94 C7-16 1050 825;
(9.50e-43 )

94 MF202-17 2550 22237;
(5.60e-44 )

94 MF154-18 2550 14287;
(5.30e-44 )

94 MF120-19 2550 6337;
(5.20e-44 )

94 MF80-20 2550 -1612;
(5.00e-44 )

94 MF124-21 16050 6337;
(3.60e-44 )

94 MF206-22 16050 22237;
(3.40e-44 )

94 MF158-23 16050 14287;
(3.40e-44 )

DF;
C94;

This listing is cut to file circ4.worst and printed together with the CIF file (see Fig. 5.6) by:

>cif2ps -m -t scmos circ.cif circ.worst | 1pr
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Figure 5.4 CMOS logic circuit using inverters, NOR and NAND gates



= 8w

£ A Sl LA,

NI e 000

"
=

%

|
L e
Inw/

f
j’;,;,fﬁ‘,{[i”qm :|mn'.' [/
I

N

A B L VY
J ,ngu--vf;@,- i

L5 2 e
S “tii

w” lFf?.m11.'1:.'.'f.wﬂrrrrmm.wm.'.fm,

Figure 5.5 SPICE node numbers are plotted on top of the circ.cif file using cif2ps
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Figure 5.6 The worst 10% of the connections from the EM Simulator in circ.cif.
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VL. Bipolar Circuit Aging Simulator - (BiCAS)

Since the last release, a new module, BiCAS (Bipolar Circuit Aging Simulator) has been
developed. BiCAS, which is organized in the same manner as CAS [72], projects bipolar transis-
tor degradation and simulates circuit aging due to this degredation. To use the module, the user
needs to provide an input deck, which contains the circuit description, device models, and the
BiCAS commands. CAS, EM, and CORS commands may also be included in the same input
deck. Therefore, both bipolar and BiCMOS circuit aging can be simulated. BiCAS uses the reg-
ular bipolar junction transistor SPICE model parameters with the addition of a few degradation
parameters.

Section 6.1 of this manual describes the equations and models implemented in BiCAS. Section
6.2 describes the procedure for obtaining the degradation parameters. Section 6.3 details the for-
mat of the process files and aged process files. Section 6.4 gives an example of a BiCAS simula-
tion.

6.1 BIPOLAR CIRCUIT AGING MODEL

A model for BJT aging has been implemented in BiCAS. This aging can be modeled as an
increase in Ig (Alg) [76,77]. BiCAS can also generate "aged" BJT model cards, so that the opera-
tion of the aged circuit can be simulated by SPICE.

6.1.1 Device Degradation Model

As shown in [76,77], the bipolar degradation due to either periodic time-varying or constant
reverse-bias emitter-base stressing can be modeled by the following equation.

Alg = D(Ig/Ag)? e2Ved'Vs [ (# of cycles) .1 J 1 I¥P(r) dt] " 6.1)

It is important to keep in mind that Vgg in Equation (6.1) is the internal base-emitter voltage and
not the applied voltage. The parameters D and b change depending upon the level of the reverse
bias [76,77]. If the reverse bias puts the transistor in the pre-avalanche region, then b = 0.9-1.0.
If the transistor is in the heavy avalanche region (Vg > BVgpo), then b=n. To account for this
variation, Equation (6.1) can be rewritten as

Alg=18 [ (# of cycles) g !d (D)mIRn(t) dt "eaVer/V, (6.2)

where D' = D/AZ. By defining (Ag in pm?), we can reduce the number of parameters by one.

As in the CAS model [72], the variable Age is introduced for the SPICE analysis.
Alg(T) = g(Age(T)") (6.3)
with

Age(T) = Igh L(D’)V"I,g/n(t) dt (6.4)
t:

and
g(x) =x-e*V" (6.5)
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where T is the length of the SPICE analysis. g(x) is defined such that Al can be easily calculated
for different values of Vgg. Equation (6.4) is calculated for each bipolar device in the circuit. Ir
is calculated at each timestep by first calculating Vg from the SPICE node voltages and then
using a user provided reverse I-V table to interpolate the current corresponding to the reverse vol-
tage. If VR is greater than the largest voltage value in the table, then Iy is set to the current
corresponding to the largest VR value. If Vg is less than the smallest voltage value in the table,
then Iz =0. The interpolation is performed in a log-linear manner for the reverse current-voltage
values.

The age of each device at the user-specified time T, is then calculated as

Age(T,ge) = Age(T) 1.}59-] (6.6)

The list of ages for every bipolar device in the circuit is stored in an external file called "ageta-
bleBJT", which is used for the creation of aged model parameters.

The lifetime to reach a certain Al g, requested by the user is calculated as

Algr
1=T m 6.7

The user needs to specify the Vg at which Alj is to be calculated.

To calculate the aged model parameters deck, a number of aged parameter files are used as in the
CAS [71] module. From the calculated value of Age for each device, a new set of parameters is
calculated using either interpolation or regression, as specified by the user. It should be noted
that because the SPICE Gummel-Poon parameters are not size independent, the degradation
parameters need to be extracted for each device size. If size-independent capabilities are added to
the SPICE bipolar equations, then the degradation modeling methodology can be extended with
the addition of a few sizing parameters to provide a set of size-independent parameters.

It should be noted that all of the parameters need to be extracted in a consistent manner. For
example, D’ should be extracted using the same values for I, ng, the Early Vo]tage parameters,
Var and Vg, that are used in the SPICE decks. The easiest way to do this is to use Equation
(6.1) in the extraction of a and D’ while keeping in mind that Vpgg, is the internal base-emitter vol-
tage. Thus, Vg is not equal to ViIn(Ic/fls) if np#1, Vop# 00, or Vg #00; or if Ic is large
enough such that I begins to roll-off; or if the parasitic voltage drop across Rg and Rg becomes
significant.

6.1.2 Parameter Extraction

The extraction of the degradation parameters are based on the following equations :

Alg= Isgevs"j(ngv'r) 6.9)

Alg=D' It (6.10)

ISE=D’IS°[ * ofcycles)-lil 1%(t) dt] i (6.11)



-61-

Three parameters need to be set by the user. They are

VO: lower Vpg value for regression fitting for effective Isg and ng (default=0.2)

V1: upper Vgg value for regression fitting for effective Isg and ng

(default=ngV\In(10BrAIg sym/Is))

?: mu\l'eme)current at which D’ and b changes from the pre- to heavy- avalanche region
default=co

Six more degradation parameters need to be extracted from the stressed devices. They are

DO: value of D’ for Ig<I1 (default=0)

AO: a, reciprocal of the non-ideality factor ng (default=0.5)
BO: b, power dependence of Alg on Iy for Ig<I1 (default =0.5)
CO: n, power dependence of Alg on t (default=0.5)

D1: value of D’ for Ig>I1 (default=0)

B1: b, power dependence of Alg on Iy for Ig>11 (default =0.5)

The user also needs to make measurements for the reverse current (IgVy) table.

A. Measuring Ig

To measure Ig, apply a reverse bias to the emitter-base junction and measure l.p, which is the
reverse current Ig (see Figure 6.9).

B. Measuring AO

To measure AOQ,

1) measure I, of the device at two different forward Vi, (€.8. Vie; and Vieo).

2) DC stress the device for a certain time by applying a reverse bias to the emitter-base
Jjunction.

3) measure I, at Vie; and Vieo.

4) compute Alg from data collected in step 1 and 3.

5) plot In(Alg) vs Vy,. and measure the slope.

The slope is AO/VT. Note that Vr equals to kT/q. See Figure 6.10 and equation (6.9).

C. Measuring CO

To measure C0,

1) measure I, of the device at a certain Vi (€.8. Vie1).

2) stress the device for a certain amount time (e.g. t; min) by applying a reverse bias (VR) to
the emitter-base junction.

3) measure I, at Vie;.

4) stress the device again (e.g. to a total of t; min) using the same Vg.

5) measure I, at Vi,;.

6) compute Alg from data collected in step 1, 3, and 5.

7) plot In(Alg) vs In(t) and measure the slope.

The slope is CO. See Figure 6.11 and equation (6.10).
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D. Measuring BO and B1

To measure B0,
1) two devices are needed.
2) measure I, of the devices at a certain Vi (e.2. Vie).
3) DC stress one device using Vg, at the emitter-base junction, and the other using Vgs.
Both Vg, and VR, must be in the low stress region (e.g. VR1=4V, Vr=5V).
4) measure I, of the devices at V.. '
5) compute Alg from data collected in step 2 and 4, and look up the Ix’s corresponding to
the VR’s from the Ig Vj table.
6) plot In(Alg) vs In(Ir) and measure the slope.
The slope is BO. See Figure 6.12 and equation (6.10).

To measure B1, follow the same procedure used in measuring B0, but set VR’s so that is in the
high stress region (e.g. 7V and 8V).

E. Measuring DO and D1

To measure DO, follow the same procedure used in meauring AO, but set the reverse stress Vg in
the low stress region (e.g. 4V). The y-intercept is In(Isg) (See equation 6.9). Since the device is
being DC stressed, Isg of (6.11) becomes : :

Isg=D' I IR 1" 6.12)

Since we know, (1) Isg, (2) a, b, and n from A0, B0, and CO, and (3) Is and Ag from the spice
parameter extraction, we can calculate D’ for the low stress region (DO).

To measure D1, follow the same procedure used in meauring DO, but set the reverse stress VR so
that it is in the high stress region (e.g. 8V).

6.2 FORMAT OF PROCESS FILES AND AGED PROCESS FILES
6.2.1 Format of Process Files
A process file is specified by a .BJTPROC card. For example,
.BJTPROC BJT1 revivbjt FILENAME = bjt 0] '
bjt 01 is the process file. A bipolar process file contains a regular SPICE BJT model card in

-model format with the addition of a few degradation parameters. For example, bjt_ 0/ may con-
tain the following :

.model bjtl npn is=4.82e-16 bf=80 nf=1.02

+ vaf=65 ikf=550e-3 br=29.683 nr=1.0 var=1.522

+ isc=25.2e-17 nc=1.57 rb=9.8 irb=2.4e-3 rbm=2.45

+ re=0.48 rc=1.7 fc=.5 ise=0

+ ¢je=608f vje=0.805 mje=.5 cjc=476f xcjc=.28

+ vjc=0.554 mjc=.249 cjs=356f tr=800p

+ vjs=0.520 mjs=.391 t£=6.645p xtf=150 vtf=1.653 itf=1.452
+ D0=0.00234 20=0.5098 b0=0.43 c0=0.43
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The bold parameters are the degradation parameters.
6.2.2 Format of Aged Process Files
The aged process files are specified by a AGEPROCBJT card. For example,
-AGEPROCBIT bjt1 FILENAMES = bjt_0,bjt_1,bjt_2,bjt_3,bjt 4
bjt_0, bjt_1, bjt_2, bjt_3, bjt_4 are the aged process files.
The format of the first aged process file (bjz_0) is different from the rest (bjt_1, bjt_2, bjt 3,
bjt_4). The first line of bjt_0 must be a comment line. The 2nd line is the Age and Isg. The fol-

lowing lines are the regular SPICE parameters without the .model keyword. For example, bjt 0
may look like :

Fresh process file , stress time = 0s, AGE=0, Set Ise= 0, Ir=1mA
0 0

+npn

+ is=4.82e-16 bf=80 nf=1.02

+ vaf=65 ikf=550e-3 br=29.683 nr=1.0 var=1.522

+ ne=1.96

+ isc=25.2e-17 nc=1.57 rb=9.8 irb=2.4e-3 rbm=2.45

+1e=048 rc=7.7 fc=.5

+ cje=608f vje=0.805 mje=.5 cjc=476f xcjc=.28

+ vjc=0.554 mjc=.249 cjs=356f tr=800p

+ vjs=0.520 mjs=.391 tf=6.645p xtf=150 vtf=1.653 itf=1.452

+ D0=0.00234 20=0.5098 b0=0.43 c0=0.43

The italic line is the comment line. The bold line is the aged data line. The first term is the Age.
The second term is Isg. Note that only Isg is changing.

The rest of the process files (bjt_1I, bjt_2, bjt_3, bjt_4) have only two lines. The first line must be
a comment line. The second line must be the aged data line. For example, bjt_I may look like :

Aged process file #1, stress time = 1s, AGE=5.277¢-28, Ise=1.865e-12, Ir=ImA
5.277e-28 1.865e-12

Since only Isg changes, the rest of the SPICE parameters need not be repeated.

6.3 A DIFFERENTIAL PAIR EXAMPLE

The differential pair of the input comparator in flash analog-to-digital converters (ADCs) is a cir-
cuit subject to reverse stress signals. A typical emitter-coupled pair circuit is shown in Figure
6.1. From this circuit, the fresh BERT/SPICE input deck was written, and is shown in Figure 6.2.
The resulting BERT output is in Figure 6.3. Figure 6.4 shows the aged input deck. Note that all
aging and degradation commands have been removed by prebert in the aged input deck. Finally,
Figure 6.5 compares the SPICE output of the aged and fresh differential pair when the input is a
square pulse with a magnitude of 0.5V.



Fig. 6.1



Diff Pair for a flash ADC

* circuit description

vee 10 0 6v

vb2 2 0 Ov

iee 3 0 250e-6

vin 1 0 dc 0 pulse(0 0.5 10n 1n 1n 10n 22n)
'rl 10 4 4k

r2 10 5 4k

gl 41 3 0 bjtl

g2 5 2 3 0 bjtl

* gpice control card
.tran 0.5n 44n

.options vntol=le-11 abstol=le-19 chgtol=le-20 cptime=led4 pivtol-le-Zé
+ itl1=10000 it12=500 1t14=2000

* bert BJT control card e
.bjtproc bjtl revivbjt filename = bjt_01

.deltaib 100ua vbe=0.7

.agebjt 100y .

.agedib 10y vbe=0.7

.degsortbijt

.ageprocbjt bjtl filenames=bjt_0,bjt_1,bjt_2,bjt_3,bjt_4
.agemethodbjt interp linlog

.width out=80

.end

Fig. 6.2



Circuit: Diff Pair for a f£lash ADC
Circuit: Diff Pair for a flash ADC
Date: Thu Jun 13 14:12:43 PDT 1991
Total run time: 1.371 seconds.

Current data size = 326736,
Data limits: hard = 33554432, soft = 33554432,

Time since last call: 0.000 seconds.

DEVICE LIFETIME AT DELTA IB = 0.0001 AMPS:

>>>>>> TAU(ql) = 282400 YEARS (8.907e+l1l2 SEC.) <<<<<<

| DEGRADATION OF gl AT 3. 15576e+08 SEC. (10 YEARS):

- G e S e — — —_—— — —— - ——— - — - — — — — — - - - G S D D S T e M G e . - e -

|

| Transistor Name Lifetime Degradation Age

| (seconds) delta Ib

|

| Q2 3.516500e+12 1.818809e-06 5.166034e-27
| Q1 8. 907216e+12 1.219623e-06 2.039510e-27

delta Ib : change in Ib after 3.16e+08 sec
Lifetime : time needed for Ib to change by 1.00e-04 A

Fig. 6.3



Diff Pair for a flash ADC

* circuit description

vce 10 0 6v

vb2 2 0 Ov

iee 3 0 250e-6

vin 1 0 dc 0 pulse(0 0.5 10n 1n 1n 10n 22n)
rl 10 4 4k

r2 10 5 4k

ql 4130 B0

g2 52 3 0B1

* spice control card
.tran 0.5n 44n

.options vntol=le-11 abstol=le-19 chgtol=le-20 cptime=leq4 pivtol=le-29
+ 1t1l1=10000 it12=500 it14=2000 )

* bert BJT control card
.width out=80

.bjtproc BO revivbjt filename = AGEBJTO

.bjtproc Bl revivbjt filename = AGEBJT1
.end

Fig. 6.4
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7. Using Irsim with Bert

Bert now works with Irsim, a timing simulator. The use of Irsim rather than SPICE reduces
simulation time (especially important for large circuits), although accurate construction of circuit
waveforms is sacrificed. Our current efforts have been directed towards making IRSIM compati-
ble with both the CORS and EM modules. However, with the release of Bert 2.0, only the CORS
module can be run using Irsim. The process of running Bert with Irsim is very similar to the pro-
cess of running it with SPICE. The rest of this chapter will detail how to run BERT with Irsim.

7.1 HOW TO RUN PREBERT USING IRSIM

7.1.1 Running Prebert

Because of the differences between Irsim and SPICE, we needed to modify the way prebert is
invoked. BERT specific commands are stored in a separate file, the bertfile, rather than being
stored in the cmdfile from which they would have to be commented out by prebert before passing
to Irsim. The shell-script (Section 2.4) may be used to run BERT with Irsim, or the user may
execute prebert, Irsim and postbert manually in a sequential fashion.

To run prebert, type :
> prebert [-b bertfile] [-c cmdfile] [-n] <infile>

Option ¢ is mandatory, however option b is not.

bertfile The external BERT command file.

cmdfile The Irsim cmdfile (will be modified by prebert).

n The SPICE type, for spice only, will be ignored in an Irsim run.
infile the input circuit description.

7.1.2 What Prebert Returns When Using Irsim
Prebert will return five (5) files for Irsim.

bertsim  the modified sim format circuit description file (infile). The reason we need to
modify infile is to collect all the equivalent node names (declared in the '=’ state-
ments) into one single node name. If we don’t do that, Irsim will randomly use one
of the equivalent node names, which will cause trouble for postbert.

bert.emd the modified Irsim command file, which has trace (t) statements added in the begin-
ning to trace all transistor nodes that are not in the constant-node list. The model
linear statement is also added to the beginning of the file. The inputs statement is
inserted right before the first running command (i.e. s, ¢, R, or p) to print out the
value of all unchanged nodes.

infileref the cross reference file for the transistors in the sim file and their corresponding
names used in BERT. Note that the suffix of infile is stripped away (i.e. if infile is
adder .sim, adder .ref will be returned). Suppose we have the followings in infile :

nl1234567
P2345678
pabcdefg
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infile.ref will have :

n01234567
pl12345678
p2abcdefg

Note the transistor names with the numbers following the 'n’ and 'p’, they will be
used in BERT.

rawsub the rawsub file for BERT. If it is an Irsim run, it will contain the following :

irsim=1
emmodel =0
dbmodel = 1
Voh = 1.200000
Vol = 0.100000
vdd = 4.000000

vdd, Voh, and Vol are specified in infile.bert.

rawtddb the connection between prebert and postbert for CORS. Its format is identical to its
counterpart in a SPICE run.

7.1.3 Running Irsim

To understand how to run BERT using Irsim, one needs to know how Irsim is usually run by
itself. To run Irsim in batch mode, the user types in the following command line:

> irsim parafile simfile -cmdfile

parafile the parameter file which is technology dependent.
simfile the sim format circuit description file
cmdfile the Irsim command file, which describes the circuit inputs and clocking.

For more information on how Irsim is used, see Appendix I, the Irsim user’s guide. .

After passing the input file through prebert, the user should type in the following to execute
Irsim:

> irsim parafile bert.sim -bert.cmd > irsim.out

pardfile the parameter file which is technology dependent.
bert.sim generated by prebert.

bert.emd  generated by prebert.

irsim.out  output file from Irsim.

7.1.4 Running Postbert
After running through Irsim, type the followings to run postbert:

> postbert < irsim.out > post.out

irsim.out  output file from Irsim.
post.out output of BERT using Irsim.
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7.2 FORMAT OF THE BERTFILE

The bertfile contains BERT commands. Only CORS and some general commands are allowed in
bertfile at the present time.

7.2.1 CORS Commands Availiable for Irsim
More information on each of the commands may be found in Appendix A.

emodel Note that the SPICE version uses .emodel, but the Irsim version uses emodel.

ttf The options are the same as the SPICE version. Note that the SPICE version uses
.ttf, but the Irsim version uses ttf.
xeff The options are the same as the SPICE version. Note that the SPICE version uses

Xxeff, but the Irsim version uses xefT.

.altmodel The options are the same as the SPICE version. Note that the SPICE version uses
-altmodel, and the Irsim version ALSO uses .altmodel.

.model The options are the same as the SPICE version. Note that the SPICE version uses
.model, and the Irsim version ALSO uses .model.

eachprob The options are the same as the SPICE version. Note that the SPICE version uses
eachprob, but the Irsim version uses eachprob.

Isi The options are the same as the SPICE version. Note that the SPICE version uses
Jsi, but the Irsim version uses Isi.

burnin The options are the same as the SPICE version. Note that the SPICE version uses
Jburnin, but the Irsim version uses burnin.

.options  The options are the same as the SPICE version. Note that the SPICE version uses
.options, and the Irsim version ALSO uses .options. The point of putting a spice
.options card in an Irsim run is to provide TNOM for postbert calculation.

7.2.2 Additional Commands

The following commands were added to meet the specific requirements imposed by the Irsim
simulator. Just like the previous commands, these should be included in the bertfile. Each of
these commands specify the values for a parameter used by BERT. The user should assign these
parameters a value appropriate for the circuit’s operation.

(1) vdd
Usage:

Vdd = <voltage>

Specifies the power supply voltage. If omitted, vdd will be set to 5V. For example :
Vdd=4.5

specifies the supply voltage to be 4.5V.

(2) voh
Usage:

Voh = <voltage>

Specifies the high output voltage. If omited, voh will be set to vdd. It is an error to set voh higher
than vdd. For example :

Voh=4.0
Voh=5
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If the Vdd is set to 4.5V, then the first line will set the high output voltage to be 4.0V, and the
second line would cause an error to be flagged.

(3) vol
Usage:

Vol = <voltage>

Specifies the low output voltage. If omited, vol will be set to zero (0). For example :
Vol=0.3V

specifies the low output voltage to be 0.3V.

(4) consthi
Usage:

consthi = <nodenamel> <nodename2> <nodename3> ...

Specifies the nodes which will always have a high output value. One such node is the node con-
nected to the positive terminal of the power supply. For example :

consthi = vdd vgl vg2 vg3
consthi = vg4 vg5

If both consthi statements are in the .bert file, vdd, vgl, vg2, vg3, vg4, and vg5 will be set to high
for the BERT simulation.

Neither consthi nor constlo (see below) statements are necessary for successful execution of
CORS; however, their inclusion speeds the execution time.

(5) constlo
Usage:

constlo = <nodenamel> <nodename2> <nodename3> ...

Specifies the nodes which will always have a low output value. One of such nodes is the node
connected to the negative terminal of the power supply. For example :

constlo = vss vs1 vs2 vs3
consthi = vs4 vs5

If both constlo statements are in the .bert file, vss, vsl, vs2, vs3, vs4, and vs5 will be set to low
for BERT simulation.

(6) starttime
Usage:

starttime = <time>

Specifies the starting simulation time for bert calculations. If it is omitted, starttime will be set to
zero. For example :

starttime = 10n

sets the starting simulation time to be 10 ns.
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Because many nodes will be set to X (unknown state) until a (simulated) time when input vol-
tages have propagated all the way through the circuit, we suggest setting starttime to be greater
than the time for the initial signals to propagate through the circuit.

(7) endtime
Usage:

endtime = <time>

Specifies the ending simulation time for bert. For example :
endtime = 100n

sets the ending simulation time to be 100 ns.

(8) comments
Usage:

| comment line 1
* comment line 2
; comment line 3

If a line starts with the symbols |, *, or ; in the first column, it will be considered as a comment
line and ignored.
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Appendix A
Bert Command Summary

L. GENERAL BERT AND CAS COMMAND SUMMARY

The following new commands are for use specifically with CAS for substrate current, device
degradation analysis, and circuit aging. CAS includes a revised SCALE command set that elim-
inates some of the redundancy and adds more flexibility to the ones listed in [8]. Note that many
commands are similar to SPICE commands.

1.1 .AGEtime

Examples:
.AGE 10years
.AGE Sminutes

This command specifies the future time at which to calculate the aged model parameter files for
circuit simulation. The units for time can be in "y", "h", "m", or "s", corresponding to years,
hours, minutes, and seconds, with no space between the number and the unit. Letters following
the above four units of time are ignored. Thus 10years and 10y are interpreted identically.

1.2 .AGEDID time
AGEDGM time
AGEDVT time

Examples:
.AGEDID 10years
AGEDVT lyear

These commands specify the future time at which drain current degradation Al4y/14:0 (AGEDID),
transconductance degradation Agy/gmo (AGEGM), or threshold voltage shift AVy, (AGEDVT) is
desired. This is the converse of the lifetime commands DELTAID, DELTAGM, DELTAVT.
The format for time is identical to that of the .AGE command. Note that appropriate H, m, and n
values must be given, since parameter values will differ depending upon the actual degradation
specified (Alys/lys0, AZm/Emo,» OF AVy). Setting Hp and Hgq to O will disable the calculation for
that particular model.

Note that the three commands differ only in nomenclature. Any other quantity other than the
three mentioned above can be used as the degradation monitor, as long as the corresponding
values for H, m, and n are used. For instance, the H, m, n parameters can be extracted while
monitoring ARow/Roui0, in Which case using any of the three commands will give you the
AR ,w/Rourp Suffered up to the specified time.

1.3 .AGEMETHOD method <domain>

Examples:
.AGEMETHOD INTERP LINLOG
.AGEMETHOD LINLIN

This command specifies the method of numerical analysis used to calculate the aged parameter
set from the pre-stressed model parameters. The first argument specifies the method of the
regression analysis (LINLIN, LINLOG, or LOGLOG). The keyword INTERP should be placed
in this position if interpolation rather than regression is desired. The keyword INTERP can be
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followed by the method in which the interpolation will be performed (LINLIN, LINLOG, or
LOGLOG). The default is linear-log interpolation if nro AGEMETHOD command is present.

14 .AGEPROC mname FILENAMES=fnamel, fname2, fname3 < fname4,...>

Example:
.AGEPROC PC1 FILENAMES=DEQO, DE1, DE2, DE3

This command specifies the names of the pre-stressed model parameter files fname associated
with the model mname. The filenames should be ordered by increasing ages, with the fresh file
first. At least one fresh and one aged model parameter file must be present for linear-linear
analysis, while two aged model parameter files must be present for linear-log or log-log analysis.
Note that unlike the PROCESS statement, "FILENAMES" appears in plural form. The .PRO-
CESS command is still needed. The format of the aged model parameter files is identical to the
fresh model parameter files used in the PROCESS command.

1.5 .DEGPRINT trnnamel <trnname2 ...>

Example:
.DEGPRINT M1 M4 M6

This command restricts degradation information printout (such as that shown in Fig. 3.4.2) to
occur only for the specified transistors. Without this command, degradation information for all
the transistors in the circuit will be printed out.

16 .DEGSORT
Example:
.DEGSORT

This command requests a printout in tabular form all the transistors in the circuit listed from the
most degraded to least degraded. The corresponding device lifetime is given if one of the
.DELTA commands (e.g. .DELTAID) is present, the amount of device degradation is given if
one of the .AGE commands (e.g. .AGEDID) is present, and the age of each transistor is given if
the .AGE command is present.

1.7 .DELTAID value
DELTAGM value
DELTAVT value

Examples:
.DELTAID 0.05
.DELTAGM 0.1
.DELTAVT 10mV

These commands specify either drain current degradation Alyy/I450, transconductance degradation
Agm/gmo. or the threshold voltage shift AVy, at which the device lifetime is defined. Like the
AGEDID, AGEDGM, and AGEDVT commands, appropriate values of H, m, and n must be
specified depending on which of the three criteria is used to determine device lifetime. Again,
setting Ho = 0 and Hgq = 0 will disable the calculation for that particular model.

Note that the three commands differ only in nomenclature, as in the AGEDID-type of com-
mands. Any other quantity other than the three mentioned above can be used as the degradation
monitor, as long as the corresponding values for H, m, and n are used.
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1.8 .EXPCKT <subckt call> <all>
Example:

.expckt x1 x2 x3 x4 x5

.expckt all

If the all option is specfied, all subcircuit calls found in the deck will be expanded. Nested subckt
calls up to 20 layers in depth are supported. If the nesting of the subckts exceeds 20 layers, a
recursive subckt definition is assumed. A local device translation table "rawdevtab” will be gen-
erated for each expanded subckt call.

Restrictions

o No nested subckt definitions are allowed.

o No node number > 200000.

o No symbol '%’ in any device name

o Each subckt def must have less than 2000 local nodes.

o Each subckt def must have less than 2000 local devices.

e Each subckt def must have less than 512 formal nodes.

e Maximum depth of nested subckt call is 20.

e All local and formal nodes must be integers, like all modules of BERT.

1.9 JIDBADAC

Example:
ddbadac

The subroutine BadAC() of postbert.c in CAS takes up the most processor time in a CAS run.
Therefore, with this command the user can determine if he/she wants to run BadAC(). BadAC()
tells the users if bad AC waveforms are encountered. The default is NOT to run BadAC(). How-
ever, the user can force postbert to run BadAC() by including .idbadac in the input deck.

1.10 JSUBWIDTH = colwidth

Example:
JSUBWIDTH =90

This command controls the width of the substrate current output printout in SPICE2. This is
independent of the usual WIDTH command. Permissible values for colwidth range from 80 to
200. The default value is 80.

1.11 PMOSDEG mname <keywordl=value> <keyword2=value> ...

Example:
PMOSDEG PMOSMODEL G1=0.6 UPS=1E-5 HG0=2E3 MG0=1.6 WG=0.9

This command specifies the gate current degradation parameters for the PMOS devices. mname
is the model name that this parameter set is associated with. The following parameter keywords
are recognized:

1)  GI: constant coefficient for Iga. (default = 0.8).

2)  UPS: sensitivity of ¢y, to the Eo, %3 term (default = 4x1075 V13¢m23),

3) ECRITPO: Constant term of Ecyyp, (default = Ecgio Of Isup).

4) ECRITPG: Vg, dependence of Ecgyp (default = Ecrgg 0f Isyp).

5) ECRITPB: Vy, dependence of Ecyiyp, (default = Erip, Of Isyp).

6) LCGO: Constant term of 1.5 / \ft; (default = 19 of Isy,).
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7)  LCGI: Bias sensitivity term of 1, / Viox (default = 1y of Igyy).

8) LCG2: Bias sensitivity term of 1.5 / \/a (default = 15 of Isyp).

9) LCG3: Bias sensitivity term of 1, / Vi, (default = 13 of Igyp).

10) LCG4: Bias sensitivity term of Lg / Vi, (default = 1.4 of Is,b).

11) LCGS: Bias sensitivity term of 1.5 / \f& (default = 1.5 of Igyp).

12) LCGS: Bias sensitivity term of 1o / Vioy (default = Lo of Igy).

13) LCG?T: Bias sensitivity term of g / Viox (default = L7 of Isyp).

14) HGO: intercept parameter of the lifetime versus Igq. plot (default = 10%).
15) HGGD: Vgg4-sensitivity term for H (default = 0).

16) MGO: slope parameter of the lifetime versus Igae plot (default = 1.5).
17) . MGGD: Vg4-sensitivity term for mg (default = 0).

18) WG: weighting coefficient for Iyq.-based degradation.

19) VFBG: Flat-band voltage for PMOS gate current calculation.

The default value for WG is 1 if the PMOSDEG command is present, O if not. See Section 3.2
for the model description.

1.12 .PRINTIGATE or .PLOTIGATE

PRINTIGATE MXXXX <MYYYY ... MZZZZ> <ALL>

PRINTIGATE SXXXX <SYYYY ... SZZZZ> <ALL>

PLOTIGATE MXXXX <MYYYY ... MZZZZ> <ALL> <(MIN,MAX)>

JPLOTIGATE SXXXX <SYYYY ... SZZZZ> <ALL> <(MIN,MAX)>

Examples: .
JPLOTISUB S1 S4 (0,7E-6)
PRINTISUB M1 M4 ALL

These commands are used to either print or plot out the gate current of the specified PMOS
transistors. SXXX is the transistor denotation for the BSIM1 model in SPICE2, while MXXX is
that for non-BSIM1 models in SPICE2 and all models in SPICE3. Note that the format is similar
to the normal .PRINT and .PLOT commands in SPICE, except that the TRAN keyword is
unnecessary. MIN and MAX specify the minimum and maximum values for the plot. The key-
word ALL is used if a printout or plotout of the total gate current of all the PMOS transistors in
the circuit is desired.

1.13 .PRINTISUB or .PLOTISUB

PRINTISUB MXXXX <MYYYY ... MZZZZ> <ALL>

JPRINTISUB SXXXX <SYYYY ... SZZZZ> <ALL>

PLOTISUB MXXXX <MYYYY ... MZZZZ> <ALL><(MIN.MAX)>

JPLOTISUB SXXXX <SYYYY ... SZZZZ> <ALL> <(MIN,MAX)>
Examples:

PLOTISUB S1 $4 (0,7E-6)
JPRINTISUB M1 M4 ALL

These commands are used to either print or plot out the substrate current of the specified transis-
tors. SXXX is the transistor denotation for the BSIM1 model in SPICE2, while MXXX is that for
non-BSIM1 models in SPICE2 and all models in SPICE3. Note that the format is similar to the
normal .PRINT and .PLOT commands in SPICE, except that the TRAN keyword is unneces-
sary. MIN and MAX specify the minimum and maximum values for the plot. The keyword ALL
is used if a printout or plotout of the total substrate current of all the NMOS and PMOS transis-
tors in the circuit is desired. This is useful to determine whether, for instance, the substrate bias
generator used is adequate for the circuit.
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1.14 .PROCESS mname FILENAME=fname
Examples:
JPROCESS PC1 FILENAME=TRN
JPROCESS MK1 FILENAME=NMOS5

This command specifies the model name mname and the corresponding model parameter
filename fname which contains all the device parameters. This configuration is identical to that
already implemented for the BSIM1 model in SPICE2, but is new for the other models and
SPICE3. It is important to realize that MODEL commands are no longer necessary in the input
deck, but that a PROCESS command is now mandatory. All model parameter filenames should
be in capital letters if SPICE2 used.

For SPICE Level 1, 2, or 3 models, the model parameter file format contains MODEL com-
mands with the model parameters in the usual SPICE .MODEL format. The only restrictions are
that the I and degradation parameters must be on separate lines from the drain current parame-
ters, and only one model per file is allowed. For the SPICE Level 4 (BSIM1) model, the model
parameter file is the file created by the BSIM1 extraction program (see [8] and Fig. A1).

The following provides information conceming the format of these model parameter files.

Additional SPICE Level 1, 2, 3 Parameters:

The following shows the additional parameters and their keywords that can be added to the
.MODEL parameter declarations.

Name parameter units default
43 ECRITO Constant term of Eg V/ecm 1.0E4
44 ECRITG Vg dependence of Ecy; 1/cm 0.0
45 ECRITB Vysdependence of Ec; 1/cm 0.0
46 LCO Constant term of 1o/Vtgx pm!?2 1.0E-7
47 LC1 Bias-sensitivity term of 1/l pm!2-v 0.0
48 LC2 Bias-sensitivity term of IW\II“ pm!2-y-! 0.0
49 LC3 Bias-sensitivity term of 1./ ‘/L,,‘ pum!2 0.0
50 LC4 Bias-sensitivity term of 1./ \,(“ pum!2-v 0.0
51 LCS Bias-sensitivity term of 1./ \’fu pm!2-v2 0.0
52 LC6 Bias-sensitivity term of 1./ \’[“ pm!?2 ‘ 0.0
53 LC7 Bias-sensitivity term of 1o/Vtox pm!2-v : 0.0
54 HO Degradation plot intercept (Hy) Asec/(mV :+)1 1.0E4
S5 HGD Degradation plot intercept (Hgq) Asec/mV ™) 00
56 NNO Slope of degradation parameter (ng) 0.5
57 NNGD Slope of degradation parameter (ngg) V-1 0.0
59 MO Slope of degradation plot (mg) 35
59 MGD Slope of degradation plot (mgg) v-1 0.0
60 AGE Device Age Asec/m 0.0

*For the parameters HO and HGD, the unit "x" is the unit used for the degradation monitor (e.g.
"x" would be volts if AVy, is monitored).

BSIM1 Process File Modifications (SPICE3 Level 4):

Fig. Al shows the modified format of the BSIM1 parameter process file. The format is identical
to the previous format except five rows have been added below the substrate current parameters.
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Rows 35 through 37 contain the coefficients of the H, n, and m degradation parameters. The first
column of Row 38 is the Age of the process file. This should be set to zero for a fresh process
file. Columns two and three of Rows 38 and 39 are the minimum and maximum channel lengths
and widths of the devices that were measured. For the single device case, set Ly, = Lax and
Whin = Whax. All entries labeled "DUM" are dummy positions used as placeholders by the pro-
gram.

The BSIM1 parameter extraction program includes a row of zeroes for Row 35, but no other rows
are present. The user must add the extra rows manually and enter the appropriate values. As
mentioned previously, the BSIM1 extraction program does not do DC stressing measurements;
the degradation parameters must be obtained separately.

1.15 .TRAN tstep tstop < tstart >
Examples:

.TRAN INS 100NS

.TRAN SNS 1000NS 2NS

Since this simulator system is designed to calculate transient substrate currents, the SPICE
.TRAN command should always be included whenever BERT is used. In order for the degrada-
tion calculations to be meaningful, the difference between tstop and tstart should be equal to a
multiple of the period of the input signal.

1.16 General form for MOSFETS :

SXXXX nd ng ns nb mname < W=value > < L=value > ...etc.

MXXXX nd ng ns nb mname < W=value > < L=value > ...etc.
Examples:

S11234PC1_NMI1_DU1 W=20U L=1U

M11234PC1_NMI1_DU1 W=20U L=1U

M2 12 34 MODP W=5U L=10U AD=100P AS=100P PD=40U PS=40U

To describe a MOSFET, the user should use SXXXX for the BSIM1 model in SPICE2, or
MXXXX for all other models in SPICE2 and for all models in SPICE3. mname is the model
name which should always be given. The format for the model name for the BSIM1 model is
pname_mt_dt, where pname is the process name, mt is the MOSFET type, and dt is the
source/drain junction type. The possible choices for mt are NM1 through NM5 for NMOSFET,
and PM1 through PMS5 for PMOSFETs. DU1 to DUS3 are the three available diffusion types. For
users who are not familiar with SPICE commands, please consult the SPICE manual. For users
who wish to leam more about the BSIM1 model implemented in SPICE or about the BSIM1
parameter extraction program, please refer to [8].

One other note about transistor names. BERT-CAS treats transistors labeled as M1 and S1 as
having identical names. Thus, use transistor names that differ from the second character onwards
(e.g. M1 and S2).

II. CORS COMMAND SUMMARY

2.1 .TTF <G=G3p0> <TAU=7300> <EB=E> <DELTA= 8> <QUICK> <tjp ... t§p>
Examples:

TTF

.TTF G=300 TAU=10p QUICK

.TTF 3600 86400 2.59Meg 5.18Meg 7.77Meg 31.54Meg 63.07Meg .315G
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The .TTF card must be present for CORS to be invoked by BERT. If it is not in the input deck,
all other CORS commands will be ignored. G and TAU, which characterize time dependent
dielectric breakdown for a particular technology, are obtained by conducting an intrinsic oxide
breakdown study (instructions are included with Figure A2). EB and DELTA, which characterize
the temperature acceleration of oxide breakdown, are obtained by conducting a study of the tem-
perature dependence of breakdown (instructions are included with Figure A3). The inclusion of
the QUICK option indicates that user wants the "quick" algorithm used (detailed in Sections 4.1.4
and 4.1.5) which decreases the CORS run-time with some loss of accuracy. tgp through tfp are
the operating times for which the failure statistics will be generated. If the user wishes to specify
the values of tgp, he/she must specify all eight values. All parameter except tdp . . . t§p will be
ignored if the . EMODEL card is present in the input deck.

name parameter  units default
G Gaoo MV/ecm 350
TAU T300 sec 1.0E-11
EB Ep eV 28
DELTA & eV .0167
QUICK - - not quick
- tip sec 1 month
- tgp sec 3 months
- t8p sec 6 months
- tdp sec 1 year

- tdp sec 2 years

- t8p sec 5 years

- tip sec 10 years
- t8p sec 20 years

%2 .XElFF MNAME FILENAME-=areadata <DIFFEDGE=diffdata> <OXEDGE=foxdata>
xamples:

XEFF POLYCAP FILENAME=DEFDATA

XEFF NMOS1 FILENAME=MOSDATA DIFFEDGE=DRAINDATA OXEDGE=0XDATA

MNAME is the model name listed on a .MODEL (SPICE) or .ALTMODEL (CORS) card for a
MOSFET or capacitor. There must be one .XEFF card for each MOSFET model name defined in
the input deck. Each capacitor which the user wishes included in the breakdown projections will
be associated with a model name which must also be found in a . XEFF card. The file named after
keyword FILENAME should contain defect density (cm2 ) data appropriate for devices
described by MNAME. The file named after keyword DIFFEDGE should contain defect density
(cm™) data for the diffusion (source/drain) edges of a MOSFET or for the width-wise edges of a
capacitor. The file named after keyword OXEDGE should contain defect density (cm™!) data for
the field oxide edges of a MOSFET or the length-wise edges of a capacitor. All data files should
have been formated by program DEFECT.

2.3 Capacitors

General form:
SPICE 2 or 3:
CXXXXXXX N+ N- VALUE <IC=INCOND> <TBDMODEL=MNAME L=length W=width>

SPICE 3 only:
CXXXXXXX N+ N- MNAME L=length <W=width> <IC=INCOND> <TBDMODEL=MNAME>

Examples:
C1 40 1.4P TBDMODEL=CMODEL L=10U W=50U
CABC 10 3 CAPMOD L=10U W=50U IC=5V TBDMODEL=CAPMOD



-81-

A capacitor is included in the dielectric breakdown calculations only if the TBDMODEL key-
word is included on the card which defines the capacitor. If the first capacitor card format illus-
trated above is used, then an .ALTMODEL card which defines MNAME must be included in the
deck. Capacitor breakdown statistics can not be calculated for IRSIM runs.

2.4 MOSFETs

If the Level 1, 2 or 3 SPICE MOSFET model is being used, then no changes need be made to
accommodate CORS. If the Level 4 model (BSIM) is being used, then an .ALTMODEL card
must be created for each model (or "process") name which appears on a MOSFET definition card.

2.5 ALTMODEL MNAME TYPE <parameters>

Examples:
.ALTMODEL NM1 NMOS VTO=.7 GAMMA=.4 TOX=20N PHI=.6 TPG=1
.ALTMODEL CAP1 C TOX=12.5N

MNAME is a model name which is also found on one or more MOSFET or capacitor definition
cards. TYPE is the type of device, NMOS, PMOS or C (capacitor).

name parameter units  default
VvTO zero-bias threshold voltage V 1.0
TOX oxide thickness meter  1.0e-7
GAMMA  bulk threshold parameter v 0.0
PHI surface potential \% 6
TPG type of gate material: - 1

+1 opposite of substrate
-1 same as substrate
0 Al gate

2.6 .EACHPROB <NUM, ALL>
Examples:
.EACHPROB ALL
.EACHPROB 10

The .EACHPROB card appends to the CORS output a listing of the failure probability for each of
the NUM devices most likely to fail. These individual failure probabilities are calculated for an
operating time of tgp (default 10 years). :

2.7 LSI <numl> <num2> <num3>
Example:
LSI256K IM

The .LSI card may be used to print out failure probabilities for large circuits which are con-
structed of cells identical to the circuit described in the input deck. The arguments (up to three)
specify the number of cells in the large circuit(s).

2.8 .BURNIN <TIME=burntime> <TEMP=burntemp> Example:
.BURNIN TIME=14400 TEMP=150

The presence of a .BURNIN card indicates that the user wishes to have the effects of bumn-in
simulated. The user may not request CAS or BiCAS analysis along with burn-in. All other CORS
commands are compatible with CAS and BiCAS commands. TIME is the duration of the bum-in
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trial, it has units of seconds. TEMP is the temperature (C°) during the bum-in trial.

To simulate bum-in, CORS must be run in a two-pass mode. During the first pass, the user
should adjust the power supply voltage values defined in the input deck to the values used during
bume-in. If the user typically performs burn-in using different signal waveforms from those dur-
ing normal operation, the burn-in waveforms should be defined in the input deck during the first
pass. During the second pass, the power supply voltage values defined in the input deck should
be set to their normal operating values and signal waveforms should be those expected under nor-
mal conditions. Except for voltage source cards, the input deck should be identical during both
Simulator passes. Output is only generated after the second pass. Two temporary files are created
during the first pass and not erased until the completion of the second pass; these are named
rawtddb and rawbum.

2.8 .OPTIONS OPT1=optval OPT2=0ptval . . .
Example:
.OPTIONS TNOM=55

Simulation of circuit reliability at a given ambient temperature can be specified by using the
SPICE .OPTIONS card as illustrated above. TNOM has units of C°.

29 . EMODEL
Example:
.EMODEL

The .EMODEL card instructs CORS to use the "E model" for time-dependent dielectric break-
down (described in Section 4.1.6) rather than the default "% model."

III. EM COMMAND SUMMARY

The following commands are inserted in the SPICE input deck to request EM analysis. Only one
command can appear in each line.

3.1 EMMODEL filename

Example:
.EMMODEL emrulefile
This command tells the simulator that reliability parameters are in emrulefile.

3.2 EMSTAT filename hour [hour...]

Example:

.EMSTAT bicmos.int 100.0 1.0e3 2e4
This command specifies the failure rates are to be calculated at times: 100 hours, 1000 hours and
20000 hours. The geometry file which contains the length and width of interconnects, number of
contact and via openings that the user set up (by hand) is bicmos.int.

3.3 .EMSTATX filename hour [hour...]
Example:
EMSTATX fulladder.geo 200.0

This command specifies the failure rates are to be calculated at times: 200 hours. The geometry
file extracted from the layout by the extractor is fulladder.geo.

Either one of EMSTAT or .EMSTATX, but not both is needed if user requests failure rate cal-
culation for a circuit layout.
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3.4 RELIABILITY PARAMETERS IN THE EM RULE FILE

The simulator needs as input the necessary reliability parameters to perform electromigration
analysis. The parameters are given in a file (which will be referred to as the EM design rule file).
There are two types of parameters: numerical and logical. The parameter name must be typed in
full. '

e Logical parameters are entered without assignment. It is set true if it appears. Example:
PRINTCURRENT
o Numerical parameters are assigned values by following the name of the parameter immediately
by an equal sign, and the value. The value must also immediately follow the equal sign. There
can be no blank space in between. Example:
LENGTH=1.2e4
e Comments can be entered by entering * in the first column of the comment line. Entries in that
line will not be read by the simulator. Example:
*This is a comment line

3.4.1 LOGICAL PARAMETERS IN THE EM RULE FILE

3.4.1a PRINTCURRENT

Request simulator to print out the current in each connection.

3.4.1b SKIPLAYOUTCUR

Normally, the simulator generates the layout advisory table containing the width and length of
the interconnects, the safety factor of the contacts and vias for specified current values. This
option requests the simulator not to generate this table.

3.4.1c SKIPLAYOUTGEO

Nommally, the simulator generates the layout advisory table containing the width and length of
each interconnect in the circuit, and the safety factor of contacts and vias at every connection of
the circuit to meet the reliability specifications. This option requests the simulator not to generate
this table.

3.4.1d SKIPFAILRATE
3.4.1¢ SKIPFAILPERCENT

The simulator will not print out the cumulative percent failure table (if SKIPFAILPERCENT is
specified) or the failure rate table (if SKIPFAILRATE is specified). The default is both tables
will be printed if either the EMSTAT or EMSTATX card is found in the SPICE input deck.
34.1fMETALI1

The reliability parameters that follow are for metal-one.

34.1g METAL2

The reliability parameters that follow are for metal-two.

34.1hMETAL3

The reliability parameters that follow are for metal-three.

34.1i CONTACT

The reliability parameters that follow are for metal-one contact to diffusion.
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3.4.1j VIA or VIA1
The reliability parameters that follow are for metal-one to metal-two vias.
3.4.1k VIA2

The reliability parameters that follow are for metal-two to metal-three vias.

3.4.2 NUMERICAL PARAMETERS IN THE EM RULE FILE

3.4.2a NCURRENT=ncurrent currentl current2 ... currentn
Example:
NCURRENT=4 1.0e-4 2.0e-4 1.0e-3 2.0e-3

ncurrent is the number of current values the simulator uses to generate the current layout

advisory table. currentl..currentn are given in Amperes. There must be exactly ncurrent fields

go(l)lgwing ncurrent and they must all be in one line. The default is ncurrent=3 .50e-3 1.00e-3
00e-3.

3.4.2b AC_DEFINE=ac_define
Example:™
AC_DEFINE=0.1

ac_define is used as a criterion for pure AC waveforms. The simulator will treat a current
waveform as a pure AC if the average current is less than or equal to ac_define X the average of
the absolute current. This parameter is important because quite often the transient analysis in
SPICE does not result in pure AC waveforms when charging and discharging of a capacitor node.
This happens when the time duration requested in the .TRAN card does not cover one period
under steady-state operation. Usually a value of 0.1-0.2 is reasonable. To obtain steady-state
waveforms, user is advised to set up SPICE to run for more than one cycle of the waveform. The
default is AC_define=0.0

3.4.2¢c MINJCURRENT=minJcurrent
Example:
MINJCURRENT=1.0e3

In order to save computation nme, when the current density in the interconnect, contact or via is
below minJcurrent (in A/cm?), the simulator will skip failure calculation and print J <MinJ in
the output. The default is MinJCurrent=1e2.

3.4.2d WORSTLIST=WorstList
Example: WORSTLIST=0.5

The simulator will print out worst WorstList fraction of the connections in the failure
rate/cumulative percent failure tables. In the example, half (50%) of the worst connections will be
printed. The default is WorstList=1.0.

3.4.2e NWIDTH=nwidth widthl width2 ... widthn
Example:
NWIDTH=30.8 1.2 2.0

nwidth is the number of widths the simulator will use to generate the layout advisory table for
interconnects. widthl..widthn are given in um. There must be exactly nwidth fields following
nwidth, and they must all be in one line. The default is NWidth=4 1.0 2.0 4.0 10.0.

3.4.2f NCV=ncvy NI N2 ... Nn
Example:
NCV=41.02.03.04.0
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ncv tells the the simulator that the user wishes a layout advisory table for contacts and vias con-
taining ncv columns for N1..Nn openings. In each column a safety factor is generated for the
number of contact or via openings (in parallel) at that connection. There must be exactly ncv
fields following ncv and they must all be in one line. The example shown above will request the
simulator to calculate the safety factor for connections having: one contact/via, two contact/via,
three contact/via and four contact/via openings. The default is NCV=2 1.0 2.0.

3.4.2g SPEC_TIME=spec_time
Example:
SPEC_TIME=1.0e6

spec_time is the number of operating hours when the failure rate is spec_failrate defined by
SPEC_FAILRATE-=. spec_time is in hours. The simulator will generate a layout advisory to
meet this spec. The default is Spec_Time=1.0e4.

3.4.2h SPEC_FAILRATE=spec_failrate
Example:
SPEC_FAILRATE=1.0e-3

spec_failrate (in 1/hour) is the failure rate at spec_time (hours) defined in SPEC_TIME. Note
that 1 FIT = 0.1% percent (1073) failures per million (10%) device hours is equal to a
SPEC_FAILRATE of 107%. The simulator will generate a layout advisory to meet this spec.
The default is Spec_Failrate=1.0e-9.

3.4.2i TOP=T,,
Example:
TOP=25

The circuit operates at temperature a T, (in °C). The accelerated testing data entered by the user
will be extrapolated to this temperature. The default is Top=25.0.

3.4.3 PARAMETERS SPECIFYING LINES AND CONTACTS/VIAS

The following parameters apply to metal-one, metal-two, metal-three, metal-one to diffusion con-
tact and metal-to-metal via. To associate the parameters to one of the connection types, one of the
logical parameters: METAL1, METAL2, METAL3, CONTACT, VIA and VIA2 must be set
before any of the following appears. Items (a) to (n) must be given to complete the parameter set
for each connection type. The simulator will skip any connection type with an incomplete param-
eter set. :

3.4.3a ADC=Apc
3.4.3b AAC=A,c
3.4.3c M=m

3.4.3d TDATA=T4a1
3.4.3¢ EA=E,

These are the parameters in Eq.(5.1). Note that the user will have to enter the experimentally
determined values of Apc and Aac (both are in units of hours x (A/cm2)?). These values are
obtained from experiments at temperature Tyy, (in °C). E, is the activation energy for Apc and

Axc

3.4.3f THICK=thickness
3.4.3g WIDTH=width
3.4.3h LENGTH=length

These parameters specify the thickness, width and length (all in um) of the interconnects used in
the electromigration lifetime experiment to extract Apc, Aac and m.
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3.4.3i AREA=area
3.4.3j NCHAIN=nchain

The first parameter specifies the area (in um?2) of each contact or via in the chain test structure
used in lifetime experiment to extract Apc, Aac and m. nchain is the number of contacts or vias
in series in the test structure. The default value is nchain=1.0.

3.4.3k LOGMEDIAN=MTF
3.4.31LOGSIGMA=0

These parameters select either the lognormal distribution with median MTF (in hours) or the log-
normal standard deviation ©. The MTF is the experimental median-time-to-failure at temperature

Tdam.

3.4.3m WEIBULL A=0
3.4.3n WEIBULL _B=§

These parameters select the Weibull distribution and specify the parameters o. and B. The failure
data is collected at a temperature Tq,,. The Weibull cumulative distribution function is described
by:

Fi)=1 -exp(—% 1h) (5.4)
where t is in hours. |

34.30 WIDTH_A=A,,
3.4.3p WIDTH_B=B,,
3.4.3g WIDTH_C=C,

These parameters specify the width dependence of the time-to-failure for interconnect (see
Appendix E for an example). The parameters A, B,,, Cy, are defined by Egs.(5.3a) and (5.3b.)
for W= B,

TTF(W) = Ay, X (W-B,)2 + Dy, (5.3a)
for W< By,:

TTF(W) =C,, X (W-By)? + Dy, (5.3b)
Dy, is found using the previously entered experimental time-to-failure and width. W is in pum.

Note that by setting, A, =C,, =0, TTF will be a constant, independent of width. The default
values are Width_A=0.0 Width_B=0.0 Width_C=0.0.

IV. BIPOLAR DEGRADATION COMMAND SUMMARY

4.1 AGEBJT time

Examples:
.AGEBIT 10years
.AGEBIJT Shours

This command specifies the future time at which to calculate the aged bipolar model parameter
files for circuit simulation. The units for time can be in "y","h","m", or "s", corresponding to
years, hours, minutes, and seconds, with no space between the number and the unit. Letters fol-
lowing the above four units of time are ignored. Thus 10minutes and 10m are interpreted identi-
cally.
4.2 .AGEDIB time < VBE= vbevalue>
Example:

.AGEDIB lyear VBE=0.8

This command specifies the future time at which base current degradation is desired. The
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vbevalue value is used to calculate Alg at time. If VBE=vbevalue is not specified, then a default
value of 0.6 V is used. If vbevalue's are specified for both AGEDIB and DELTAIB, then the
second vbevalue will be used for both AGEDIB and DELTAIB computation.

4.3 .AGEMETHODBJT method <domain>
Example:
.AGEMETHODBIJT INTERP LINLOG
.AGEMETHODBIJT LINLIN

This command specifies the method of numerical analysis used to calculate the aged parameters
from the pre-stressed model parameters. The first argument specifies the method of the regression
analysis (LINLIN, LINLOG, or LOGLOG). The keyword INTERP should be placed in this posi-
tion if interpolation rather than regression is desired. The keyword INTERP can be followed by
the method in which the inpterpolation will be performed (LINLIN, LINLOG, or LOGLOG). The
default is linear-log interpolation if no AGEMETHODBJT card is found.

4.4 AGEPROCBJT mname FILENAMES= fnamel fname2 fname3 < fname4,...>
Example:
.AGEPROCBIJT NPN1 FILENAMES=NBJTO,NBJT1,NBJT2,NBJT3

This command specifies the names of the pre-stressed model parameter files fname associated
with the model mname. The filenames should be ordered by increasing ages, with the fresh file
first. At least one fresh and one aged model parameter file must be present for linear-linear
analysis, while two aged model parameter files must be present for linear-log or log-log analysis.
Note that unlike the .BJTPROC statement, " FILENAMES " appears in plural form. The
BJTPROC command is still needed.

4.5 .BJTPROC mname fnamel FILENAME=fname2
Example:
.BJTPROC NPN1 IRDATA FILENAME=TRN

This command specifies the model name mname, the reverse I-V data file fnamel, and the
corresponding model parameter filename frame2 which contains all the bipolar device parame-
ters. It should be noted that .BJTPROC and the information stored in fname2 are in lieu of the
SPICE MODEL card.

Jfnamel should contain two columns, the left one being the reverse voltage and the right one the
corresponding reverse current. The values for reverse voltage should be in increasing order, with
the lowest value listed on the first line. There should not be any additional lines such as com-
ments in fnamel. If VR is greater than the largest value in fnamel, then IR is set to the value
corresponding to the largest Vg value in fnamel (the value on the last line). If Vg is smaller than
the smallest value in fnamel, then Iy is set to 0. Because the stress parameters are size depen-
dent, the bipolar model does not recognize the area scaling parameter that is optional in the nor-
mal bipolar transistor line corresponding to QXXXX. The area scaling factor should be omitted,
and SPICE decks provided for each device geometry.

The following shows the keywords for the bipolar degradation parameters:

I1: reverse current at which D' and b change from pre- to heavy- avalanche region
(default=oco)

DO: value of D’ for Ir<I1 (default=0)

AQ: a, reciprocal of the non-ideality factor (default=0.5)

BO: b, power dependence of Alg on Iy for Ig<I1 (default =0.5)

CO0: n, power dependence of Alg on t (default=0.5)

D1: value of D’ for Ig>I1 (default=0)

B1: b, power dependence of Alg on I for Ig>11 (default =0.5)

VO: lower Vg value for regression fitting for effective Isg and ng (default=0.2)

V1: upper Vgg value for regression fitting for effective Isg and ng
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(default=ngV,In(10BrAlg sum/ls))
AGE: device age (default=0)

4.6 DEGPRINTBJT trnnamel <trnname2...>
Example:
.DEGPRINTBIT Q1 Q5 Q11

This command restricts the degradation information printout to only the specified bipolar transis-
tors. Without this command, degradation information for all the bipolar transistors in the circuit
will be printed out.

4.7 . DEGSORTBJT
Example:
.DEGSORTBIJT

This command requests a printout in tabular form of all the transistors in the circuit listed from
the most degraded to the least degraded. The corresponding device lifetime is given if the .DEL-
TAIB command is present, the amount of device degradation is given if the AGEDIB command
is present, and the age of each transistor is given if the AGEBJT command is present.

4.8 .DELTAIB value <VBE=vbevalue>
Example:
.DELTAIB 1uA VBE=0.8

This command specifies the base current degradation, Alg, at which the device lifetime is defined.
Like the AGEDIB command, the vbevalue value is used in the calculation. If VBE=vbevalue is
not specified, then a default value of 0.6 V is used. If vbevalue’s are specified for both AGEDIB
and DELTAIB, then the second vbevalue will be used for both AGEDIB and DELTAIB compu-
tation.

49 PLOTIREV QXXX <QYYY...0ZZZ><(MIN MAX)>
Example:
PLOTIREV Q1 Q4 (0,5E-6)

This command is used to plot the reverse current of the specified bipolar transistors. MIN and
MAX specify the minimum and maximum values for the plot.

4.10 .PRINTIREV OXXX <QYYY...QZ72Z>
Example:
PRINTIREV Q2 Q6

This command is used to print the reverse current of the specified bipolar transistors.

4.11 QXXXX nc nb ne ns mname
Example:

Q11234 NPN1

Q212 3NPN2

mname (defined in .BJTPROC) is the model name which should always be given. The substrate
node ns is optional. If as is not specified, GND is assumed.
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Ecio (ECRITO)
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E.is (ECRITB)

L sens. factor

Vs (LVFB)
¢s1 (LPHD)
Ky (LK1)

Ka (LK2)

Na (LETA)

5, (OL)

Uuzn (LUO)
Uiz LUID)
Bzm (LX2MZ)
Mg (LX2E)
Np (LX3E)
Uga) (LX2U0)
Uiy (LX2U1)
Hs; (LMS)
Bsp (LX2MS)
Hspy (LX3MS)
Uip (LX3U1)
Ty, (TEMP)
CGS0
DUM1

LNO

LNB

LND

Es (LECRITO)
Eig (LECRITG)
Ecssy (LECRITB)

La (LLCO)
Ly (LLCY)
la LLC2)
Ly (LLC3)
log (LLC4)
kg (LLCS)
Lq (LLC6)
ln LLCY)
H,4 (HGD)
l'l" (NNGD)
mqs (MGD)
Lin (LMIN)
Lpux (LMAX)

W sens. factor
Vize (WVFB)
K;» (WKI1)
Now (WETA)

DUM3

DUM4

DUMS

Weta (WMIN)
Wear (WMAX)

*: Asec/(m x""). where x is the unit used for the degradation monitor.

% Asec/m

Units of basic parameter

Fig. A1 The modified BSIM1 model parameter file format to be used with BERT.
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The tgp in the above equation is measured for some arbitrary breakdown fest yield. Ey4 was plotted
(above) for several researchers’ data and consistent results were found. Solving (4) and (5) for Eyq, one
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8=.0167¢V and Ey=.28¢V are obtained from the linear fit shown in the above figure. These are believed

to be valid for all oxides at tem
provide CORS with difTerent values of § and E,.

Fig. A3

peratures 25-150° C, However, the user may repeat this experiment ant
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Appendix B

Bert Error Messages

The following list contains the error messages of the pre- and post-processor of BERT and the
BERT shell script including the routine name in which they occur. Error codes in the *Cxx:’ for-
mat are CAS errors; those in the *Bxx:’ format are BERT shell script errors. Furthermore, for
CAS, two-digit codes represent pre-processing errors while three-digit codes represent post-
processing errors. Error codes for CORS, the electromigration simulator, and BiCAS are in the
format *Txx:," "TEMxx:,” and 'Bixx:’, respectively. Furthermore, Error codes from the subcircuit
expansion module are in the format ’EXxx:’

CAS Pre-processor Errors:
prebert.c:

Main:
C93: No transistor is listed in input deck!

ArgU:
CO1: No input file specified!
C02: Cannot open <input filename> !
CO03: Specified option not valid!
CO04: Incorrect option or file specification!
C87: Missing filename after -b !
C88: Missing filename after -c !
C89: You must must have an external BERT cmd file to run bert-irsim !

PreFilter:
CO0S: Missing .process command in the input deck!
CO06: Missing .ageproc command in the input deck!
CO07: Missing .age command in the input deck!

FindIsub:
CO08: Invalid .printisub or .plotisub command!
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FindIgate:
C09: Invalid .printigate or .plotigate command!

GetDelta:
C10: No lifetime criteria given for the .deltavt command!
C11: No lifetime criteria given for the .deltaid command!
C12: No lifetime criteria given for the .deltagm command!

GetAge:
C13: No future time given for the .age command!
C14: Incorrect format for the future time given in the .age command!

AgeDeg:
C15: No future time given for the <command> command!
C16: Incorrect format for the future time given in the <command> command!

FindProc:
C17: Cannot open rawinpl file!
C18: Insufficient memory space. Reduce the number of model parameter files!
C19: Incorrect .process command format!
C20: Too many model parameter files!
C21: No model parameter file(s) specified!
C22: Missing or incorrect model parameter filename specified!

CreateInpFile:
C23: Insufficient memory space. Too many transistors!
C24: Cannot open the <model name> rawmodel file !

FindIsublgateOut:
C25: Invalid .printisub, .plotisub, .printigate, or .plotigate command!

SubstituteLine:
C26: No transistor model name specified!

procsub.c:

Proc2ModSub:
C27: Insufficient memory space!
C28: Cannot open model parameter file <model parameter filename>'!
C29: Error in reading model parameter file!
C30: Dlegal header line in model parameter file!
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CreateRawprocess:
C31: Insufficient memory space!
C32: Illegal header line in process file!
C33: Parameters for BSIM1 model missing in model parameter file!

ChkModel:
C34: Cannot open model parameter file <model parameter filename>!
C35: Cannot write into temporary model parameter file <model parameter filename>!
C36: No MOS model parameters in the <process filename> model parameter file!

getdata:
C37: Premature end of file reading BSIM1 model parameter file!

premisc.c:

OpenlnpFile:
C38: Cannot open rawinpl file!

OpenRaw:
C39: Cannot open rawsub file!

getvalue:
C40: Insufficient memory space in reading in BSIM1 parameters!
C41: Premature end of file reading BSIM1 model parameter file!

age.c:

MemAlloc:
C42: Insufficient memory space!

GetAgecards:
C43: Insufficient memory space!
C44: Incorrect .ageproc command format!
C45: Insufficient memory space. Too many model parameter files!

GetDevAge:
C46: Cannot open agetable!
C47: Insufficient memory space!
C48: Insufficient memory space. Too many aged transistors!
C91: No aged transistor data. Check agetable file!
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ReadAgePar:
C49: Insufficient memory space!
C50: Incorrect .process command format!
C51: Cannot open model parameter file <model parameter filename>!
C52: Cannot open .ageproc model parameter file <model parameter filename>!
C53: Illegal header line in model parameter file <model parameter filename>'!
C54: Mixture of SPICE and BSIM models in same .ageproc command not allowed!

BSIMGetParm:
CSS: Insufficient memory space!
C56: Illegal header line in model parameter file <model parameter filename>'!

SPICEGetParm:
C58: Invalid model name declared in model parameter file!
C59: Invalid model type declared in model parameter file!

ParmExt:
C60: Not enough pre-stressed model parameter files for model <model name>!
C61: Not enough pre-stressed model parameter files for model <model name>!

GenlnpDeck:
C62: Insufficient memory space!

bsimext.c:

GetWLparm:
C63: Insufficient memory space. Too many model parameter files!

BSRegress:
C64: Not enough pre-stressed model parameter files!

PreRegress:
C65: Unable to do log-log regression to find aged parameters!

BSInterp:
C66: Insufficient memory space!

Prelnterp:
C67: Pre-stressed model parameter files not ordered from least to most aged!
C68: Method of interpolation not specified!
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leastsq2:
C69: Least square approximation failed due to bad parameter data!

leastsq2_2vars:
C70: Least square approximation failed due to bad parameter data!

leastsq3b:
C71: Least squares approximation reduction failed due to small pivot!

spext.c:

SPICERegress:
C72: Insufficient memory space!
C73: Not enough pre-stressed model parameter files!

SPICEInterp:
C74: Insufficient memory space!

SPGenAgeParm:
C75: Cannot write aged model parameter files in present directory!

preirsim.c:

FindConstNode: (Also in Writerawtddb, WritelrsimTran, FindXeff)
C90: Cannot open <filename> for reading !

FindXeff:
C92: No .XEFF card in input deck!

CAS Post-processor errors:
postbert.c:

main:
C101:Could not create 'rawout’ file!
C102:Cannot open rawout1 file!

ErrorCheck:
C103:Cannot open rawsub file!

SubAnalysis: _
C104:Cannot open agetable!
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C105:Insufficient memory space!

AddSubParam:
C107:Insufficient memory space. Too many model parameter files!
C108:BSIM1 interconnect model parameters could not be found!
C109: .END command is missing from the input file!
C146:No process files listed in input deck!

MemAlloc:
C110:Timestep too small in reading voltage values!
Cl111:Insufficient memory space. Too many timesteps!

ReadVoltage:
C112:Voltage printout for substrate current analysis not found!
C113:Division by zero in reading voltages!
C114:Timesteps too small in reading voltages!

FindInfo:
C115:Invalid spice type specification!
C116:The .tran card missing!

readpar.c:

ObtainTrans:
C117:Insufficient memory. Too many Isub- or Igate-requested transistors!
C118:Insufficient memory space. Too many transistors!
C147:No transistor is listed in rawsub file!

ObtainModelCards:
C119:Cannot open rwmd<x> file!
C120:Insufficient memory!
C121:Insufficient memory. Too many model parameter files!
C148:No process files listed in input deck!
C149:No MOSFET models listed in input deck!

ObtainPMOSDegParam:
C143:Insufficient memory space!

mos.C:

BSIMIlevaluate:
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C126:Phi is negative in BSIM1 (Level 4) model!

C127:Phi = 0 in BSIM1 (Level 4) model!

C128:Vdd = 0 in BSIM1 (Level 4) model!
C129:Non-positive mobility given in BSIM1 (Level 4) model!

BSIM1setup:
C122:Division by zero in BSIM1 parameter calculation!

SPICEsetup:
C123:Nsub < Ni!
C124:Effective channel length less than zero!

degcalc.c:

BSIMDeltaVth:
" C130:Degradation of transistor m<xx> tco large!

output.c:

PlotSubCurrent:
C131:Insufficient memory space. Too many timesteps!
C132:Timestep too small to plot substrate current!
C133:Substrate current tco large to plot!

PrintSubCurrent:
C134:Insufficient memory space. Too many timesteps!
C135:Timestep too small to print substrate current!

PlotGateCurrent:
C136:Insufficient memory space. Too many timesteps!
C137.Timestep too small to plot gate current!
C138:Gate current too large to plot!

PrintGateCurrent:
C139:Insufficient memory space. Too many timesteps!
C140:Timestep too small to print gate current!

postmisc.c:

OpenRaw:
C141:Cannot open the rawsub file!
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OpenFile:
C142:Empty <filename> file!

bsim2.c:

BSIM2setup:
C144.BSIM2 MOSFET m<transistor name>, model <process name>: Effective channel
length <= 0!
C145:BSIM2 MOSFET mc<transistor name>, model <process name>: Effective channel
width <= 0!

BERT Shell Script Errors:
ageconv.c:

main;
BO1: Cannot open agetable!
B02: Cannot open rawagetable!
B03: Cannot create rawtempage file!

agefilt.c:

main:
B04: Cannot open SPICE input file!
BO0S: Cannot create SPICE input file!
B06: Temporary file is missing!
B07: Cannot open temporary file!
B20: Not enough memory!

convinp.c:

main:
BO08: Cannot open input file!
B09: Cannot open inpdeck file!
B10: Cannot create intermediate file!
B11: Not enough memory!
B12: Improper age given in .age command!
B23: Input file has no transistor!

ChangeModelName:
B13: Model parameter file not found!
B14: Cannot write into directory!
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B25: Not enough memory!

PrintFreshProcess:
B24: Not enough memory!

Copyproc.c:

main:
B15: Cannot open input file!
B16: Cannot create intermediate file!
B17: Not enough memory!
B18: Premature end-of-file in input deck!

delproc.c:

main:
B19: Cannot open 'rawpfile’!

mainmisc.c:

NextWord:
B21: Not enough memory!

NextWord2:
B22: Not enough memory!

CORS Pre-processor Errors:

TO1:  Cannot open rawtddb file!
tddb.c
This error usually occurs when the user who wishes to do a burn-in simulation accidently
deletes file rawtddb between the first and second CORS runs.

T02:  Cannot open rawtddb file!

tddb.c

User’s computer will not allow CORS to open a new file for writing.
TO3:  Cannot open rawinp2 file!

tddb.c

User’s computer will not allow CORS to open a new file for writing.
T04:  Not enough time-to-breakdown values on .TTF card!

tddb.c
CORS requires that zero or eight time-to-breakdown values be specified on a .TTF card.

TO5:  Bumin card formated incorrectly.
tddb.c
CORS found a keyword on a .BURNIN card that was neither TIME nor TEMP.
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T11:

T12:

T13:

T14:

T15:
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T17:

Ti8:

T19:

T20:
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No .TRAN card. Cannot do tddb analysis!

tddb.c

CORS did not find a .TRAN card in the input deck. This SPICE command must be
specified for CORS or CAS to run.

Insufficient memory space. Reduce the number of MOS models!

tddb.c

User’s file system ran out of memory during execution of pre-processor. The user
should try to free additional memory space. Simulation of a smaller circuit may be
feasible.

Not enough arguments on a .XEFF card!
tddb.c

Not enough arguments on a .XEFF card!
tddb.c

XEFF card formated incorrectly!
tddb.c
CORS did not find keyword FILENAME in its expected position.

XEFF card formated incorrectly!
tddb.c
CORS did not find a user provided file name after keyword FILENAME.

XEFF card formated incorrectly!
tddb.c
CORS did not find a "=" after keyword FILENAME.

XEFF card formated incorrectly!
tddb.c
CORS did not find a user provided file name after keyword FILENAME.

Insufficient memory space. Reduce the number of transistors.
tddb.c
See TO7.

No model name specified on a MOSFET definition card!
tddb.c

Capacitor card in deck not formated correctly.

tddb.c

Some capacitor definition card does not contain the minimum number of parameters
required by SPICE.

Capacitor card in deck not formated correctly.
tddb.c
Keyword TBDMODEL may be spelled incorrectly.

Insufficient memory space. Reduce # of tddb capacitors.
tddb.c
See TO7.

Missing a .altmodel/.model card for model <cap model name>
tddb.c

A tddb data file can not be found!

tddb.c

CORS can not find a file which was named on .XEFF card. Spelling errors are a com-
mon cause of this problem or the user may have the file stored in a directory different
from the one CORS is searching.
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T21: A tddb data file can not be found!
tddb.c
See T20.

T22: A tddb data file can not be found!
tddb.c
See T20.

T23: Insufficient memory space. Reduce the number of transistors.
tddb.c
See TO7.

T24: Insufficient memory space. Reduce the number of capacitors.
tddb.c
See TO7.

T25:  Missing an .XEFF card for model <mos model name>
tddb.c
T26: Missing a .altmodel/.model card for model <mos model name>
tddb.c
T27:  Missing an .XEFF card for model <cap model name>
tddb.c
T28: Insufficient memory space.
tddb.c

T29: Insufficient memory space.
tddb.c

T30: Not enough memory for timebd !
preirsim.c

T31:  Not enough memory for Isinum!
preirsim.c

T32:  Incorrect format of STARTTIME card !
preirsim.c

T33: Incorrect format of ENDTIME card !
preirsim.c

T34: Missing '=" in CONSTHI card !
preirsim.c

T35: Missing '="in CONSTLO card !
preirsim.c

T36: Not enough memory for tmpconst !
preirsim.c

T37: Missing '=’ in Vol card !
preirsim.c

T38: Missing =’ in Voh card !
preirsim.c

T39: Missing "=’ in Vdd card !
preirsim.c

T40: ENDTIME card not found, Run abort !
preirsim.c



T41:

T42:

T43:

T44:

T45:

T46:

T47:
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Node <node name> in both CONSTHI and CONSTLO card !
preirsim.c

Cannot open rawsub for writing !

preirsim.c

The .XEFF card for <transistor type> type transistor not found !
preirsim.c

Illegal type name for IRSIM run !

preirsim.c

Cannot open <filename> !

preirsim.c

Cannot open <filename> for writing !

preirsim.c

No .XEFF card was found in rawinpl file !

tddb.c

CORS Post-processor Errors:

T101:

T102:

T103:

T104:

T105:

T106:

T107:

T108:

Can not open file rawtddb!

postddb.c

User may have deleted file rawtddb between execution of pre- and post-processor or
maybe never ran the pre-processor.

Insufficient memory space. Reduce the number of transistors.

postddb.c

User’s file system ran out of memory during execution of post-processor. The user
should try to free additional memory space. Simulation of a smaller circuit may be
feasible.

Insufficient memory space. Reduce the number of models.
postddb.c
See T102.

Insufficient memory space. Reduce the number of capacitors.
postddb.c
See T102.

Insufficient memory space. Reduce the number of MOS devices.
postddb.c
See T102.

Cannot open file rawbumn!!!

postddb.c

There are two causes of this error. The user may have deleted file rawburn between runs
1 and 2 of a bum-in simulation. Alternately, CORS may have detected a rawtddb file
from a previous failed run (this file is automatically deleted after successful runs).
CORS now assumes it is doing pass 2 of a bum-in simulation. The solution is to delete
all the raw**** files and retry CORS.

Rawtddb not formated correctly!
postddb.c

Cannot open file rawbum for writing.
postddb.c
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User’s computer will not allow CORS to open a new file for writing.

Can not open rawout] file!
postddb.c
CORS can not find file rawout] which should have been created in postbert.c (CAS).

Can not create rawout? file.
postddb.c
See T108.

Can not create outtddb file.
postddb.c
See T108.

Voltage node printout for tddb analysis not found

postddb.c

Header in SPICE output can not be located. User may be using a version of SPICE other
than those CORS was developed for.

Division by zero in reading times.

postddb.c

Step size specified on . TRAN card is so small that a divide-by-zero error is anticipated.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Voltage node printout for tddb analysis not found.
postddb.c
See T112.

Can not open a defect density data file!
postddb.c
See T113.

Timesteps too small in reading voltages.
postddb.c :

Try a larger step-size on .TRAN card.

Voltage printout for TDDB analysis not found.
postddb.c

See T112.

Voltage printout for TDDB analysis not found.
postddb.c
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See T112,

Voltage printout for TDDB analysis not found.
postddb.c
See T112.

Can not open a defect density data file!
postddb.c
See T113.

Voltage node printout for tddb analysis not found.
postddb.c
See T112.

Can not open a defect density data file!
postddb.c
See T113.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Insufficient memory space. Reduce the number of timesteps.
postddb.c
See T102.

Voltage node printout for tddb analysis not found.
postddb.c
See T112.

Could not find model name.
postddb.c

Could not find model name.
postddb.c

Can not open a defect density data file!

postddb.c
CORS can not find one of the file names originally listed on a .XEFF card with keyword
FILENAME.

Can not open a defect density data file!

postddb.c

CORS can not find one of the filenames originally listed on a .XEFF card with keyword
DIFFEDGE.

Can not open a defect density data file!

postddb.c
CORS can not find one of the filenames originally listed on a .XEFF card with keyword
OXEDGE.

Can not open file rawoutl for reading.
postddb.c

Can not open file rawout2 for writing.
postddb.c
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Can not open file <sim filename>
postddb.c

Insufficient memory space. Try reducing number of devices.
postddb.c

Insufficient memory space. Try reducing number of devices.
postddb.c

Insufficient memory space. Try reducing number of devices.
postddb.c

Insufficient memory space. Try reducing number of devices.
postddb.c

Insufficient memory space. Try reducing number of devices.
postddb.c

Insufficient memory space. Try reducing number of devices.
postddb.c

For duration of simulation, drain value is 'X’ for transistor <transistor name>
postddb.c

For duration of simulation, gate value is 'X" for transistor <transistor name>
postddb.c

For duration of simulation, source value is "X’ for transistor <transistor name>
postddb.c

For all times less than endtime, gate value is 'X’ for transistor <transistor name>
postddb.c

For all times less than endtime, drain value is *X’ for transistor <transistor name>
postddb.c

For all times less than endtime, source value is *X’ for transistor <transistor name>
postddb.c

The number of .XEFF card is 0. Check rawtddb file.
postddb.c

Insufficient memory space.
postddb.c

N-R calcs for tddb did not converge.

nrcalcs.c

CORS solves for Xeff iteratively, using Newton-Raphson’s method. The calculations
had not converged.

N-R calcs for tddb did not converge.

nrcalcs.c

CORS solves for Xeff iteratively, using Newton-Raphson’s method. The calculations
had not converged.

N-R calcs for tddb did not converge.

nrcalcs.c

CORS solves for Xeff iteratively, using Newton-Raphson’s method. The calculations
had not converged.

N-R calcs for tddb did not converge.
nrcalcs.c
CORS solves for Xeff iteratively, using Newton-Raphson’s method. The calculations
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had not converged.

N-R calcs for tddb did not converge.

nrcalcs.c

CORS solves for Xeff iteratively, using Newton-Raphson’s method. The calculations
had not converged.

N-R calcs for tddb did not converge.

nrcalcs.c

CORS solves for Xeff iteratively, using Newton-Raphson’s method. The calculations
had not converged.

Cannot open rawout1 file!

consort.c

Consort.c could not open the rawout1 file which contains the output of the Irsim Simula-
tor

Cannot create tmp file!
consort.c
A temporary file used by consort.c could not be opened.

Cannot open tmp file!
consort.c
Consort.c could not open a tmp file that was previously created.

Cannot create filterout file!

consort.c

Consort.c could not create the filterout file which passes its results to the main postbert
routine. method. The calculations had not converged after 100 iterations.

Cannot find node: <nodename>.
consort.c
Consort.c has tried to look up a node name that doesn't exist.

EM Pre-processor Errors:

EMO00:
EMO1:

EM10:

EM20:

EM30:

EM31:

EMA40:

EM41:

Subcircuit Error

Could not open input file in EMPreFilter
Input file is not available to prebert

Could not open input file
Could not open input file in EMSetup

Could not open user set up geometry file
Could not open user set up geometry file when .EMSTAT is specified

Spice Deck error at element xxx
User has set up SPICE deck incorrectly at element xxx

Exceeding MAXXNODE at element xxx

Pre-processor can not handle a subcircuit card with more than MAXXNODE, recompile
with higher value of MAXXNODE

Could not write to temporary geometry file

Pre-processor fails to open a temporary geometry file for writing

Could not read geometry file
Pre-processor fails to open a temporary geometry file for reading
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EMSO0: Error in user set up geometry file at element xxx
User makes an error in setting up the geometry file at element xxx

EM60: Node not found in node file

EM61: Could not open rulefile

EM62: There is no interconnect file

EM63: Could not open interconnect file
EM64: Must have input file in command line
EMG65: Error in command line option

EM66: Insufficient memory space

EM Post-processor Errors:

EM101: Could not open EM design rule file
Could not open design rule file in EMPost
EM102: Could not open geometry file
Could not open geometry file in EMPost
EM103: Could not open input file
Could not open input file in EMPost
EM104: Could not write to temporary output file
Could not write to temporary output file in EMPost.

EM105: Could not write to simulator output file
Could not write to simulator output file in EMPost

EM106: Could not write to ciffile

Could not write to ciffile file in EMPost
EM107: Could not write to rate statfile

Could not write to rate statfile in EMPost

EM108: Could not write to percent statfile
Could not write to percent statfile in EMPost

EM109: Could not write to current table file
Could not write to current table file in EMPost

EM120: Exceeding MAXXNODE at element
Post-processor can not handle a subcircuit card with more than MAXXNODE, recompile
with higher value of MAXXNODE

EM130: Node x not found in geometry file (LookUpNode)
This is unusual because the geometry file is set up by the pre-processor. Check to see if
the geometry file is the right one.

EM140: Error in EM design rule file in line x at field y
User has made an error in EM design rule file in line x at field y.

EM141: No one complete parameters set in EM design rule file
No one complete parameter set is found in the rule file

EM142: Error in EM design rule file. Inconsistency between the definition of the m and Adc
field(s)
Check the emrule file for an inconsistency between the definition of the m and Adc
field(s)
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EM150: Node x not found in geometry file (Failstat)

This is unusual because the geometry file is set up by the pre-processor. Check to see if
the geometry file is the right one.

EMI151: Error in geometry file at xxx (Failstat)

This is unusual because the geometry file is set up by the pre-processor. Check to see if
the geometry file is the right one.

EM160: Error in command line

EM161: Error in command line option T
EM162: Error in command line option
EM163: Node not found in geometry file
EM164: Insufficient memory space

BiCAS Pre-processor Errors:

BiO1:

Bi02:

Bi03:

Bi04:

Bi05:

Bi06:

Bi07:

Bi08:

Bi09:

Bil0:

Bill:

Cannot open rawbijt file!

This error happens when there is not enough disk space for writing a new file or some
other disk I/O problems.

Cannot open rawinp2 file!

This error happens when there is not enough disk space for writing a new file or some
other disk I/O problems.

Incorrect format for the future time given in the .agebjt command!
Wrong format of age given in .agebjt card.

No future time given for the .agebjt command!

BERT cannot find the the time argument in the .agebjt card. Maybe cause by a missing
"+H

No future time given for the AGEDIB command!

BERT cannot find the the time argument in the .agedib card. Maybe cause by a missing
" +"

Incorrect format for the future time in the AGEDIB command!

Wrong format of age given in .agedib card.

Invalid .printirev or .plotirev command!

The argument of .printirev or .plotirev has to be the names of bipolar transistors starting
With a NQ" or llq"‘

Missing .ageprocbjt command in the input deck!

When the file agetableBJT is found in the current directory, BERT assume this is a pre-
bert run to age the transistors and generate the aged input deck impdeck. An
AGEPROCBIJT card is required to age the transistor. This error may be caused by
some left-over agetableBJT from previous BERT run.

Cannot open rawinpl file!
This error may be caused by the disk 1/0 error.

Insufficient memory space. Reduce the number of model parameter files!
Not enough memory (RAM) for parameters. Simulation of a smaller circuit should be
feasible.

Incorrect .bjtproc command format!
The first argument should be the process name. The second argument should be the



Bil2:

Bil3;

Bil4:

Bil5:

Bil6:

Bil7:

Bil8:

Bil9:

Bi20:

Bi21:

Bi22:

Bi23:

Bi24:

Bi25:

Bi26:

-107 -

reverse current file. The third (last) argument should be the process/parameter file name.
For example : .BITPROC proc_name rev_file filename=proc_file.

Too many model parameter files!
You have more than 100000 parameters files. The upper limit is 100000 files

No model parameter file(s) specified!
You may have forgot to put in .bjtproc cards.

Missing or incorrect model parameter filename specified!
BERT cannot match each transistor to their specified process file.

Insufficient memory space. Too many transistors!
Not enough memory (RAM) to store transistor data. Simulation of a smaller circuit
should be feasible.

Cannot open the rwmdn rawmodel file!
BERT cannot find the rwmadhn file in the current directory. n is an integer. rwmdn con-
tains the information from the process file.

Incorrect BJT card format !

Your bipolar transistor statement is in the wrong format. It should look like:
Q11234 bjtl

The bulk node (4) can be omitted.

Bipolar process PROC_NAME not defined !
BERT cannot find the process PROC_NAME in your .bjtproc statements.

Cannot open model parameter file PROC_FILENAME!
PROC_FILENAME does not exist in your current directory.

Cannot write into temporary model parameter file rwmdn!

n is an integer. This error happens when there are disk 1/O error, such as not enough
disk space.

NON-Spice model parameters in the specified model parameter file!

One or more of your process files specified in .BJTPROC cards have missed a .model
keyword.

No current given for the DELTAIB command!

BERT cannot find the current argument in the .DELTAIB card.

Incorrect format of current in DELTAIB command!
BERT doesn’t recognize the floating point format of the current argument in the .DEL-
TAIB card.

Non BJT transistor in . DEGPRINTBIJT card!

BERT finds devices other than bipolar transistors in the .DEGPRINTBJT card. Maybe
a typo.

Empty process file!

One or more of your process files is empty or only contain comment.

Insufficient memory space!
Memory allocation for malloc or calloc has failed.

BiCAS Post-processor Errors:

Bi100: Cannot open agetableBJT!

This error happens when your disk is full or there is writing problem on your disk.
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Insufficient memory space!
Not enough memory (RAM) to run postbert. Simulation of a smaller circuit should be
feasible.

Timestep too small in reading voltage values!

This error happens when your SPICE timestep is smaller than 10-38 sec, which is highly
unlikely.

Insufficient memory space. Too many timesteps!

Not enough memory to hold SPICE output. The user should increase the size of
timestep and/or simulate a smaller circuit.

Voltage printout for reverse current analysis not found!
BERT cannot find the SPICE voltage output for the reverse current analysis.

Insufficient memory. Too many Irev requested transistors!

Not enough memory (RAM) to compute all reverse current. The user can either reduce
the size of the circuit, increase the timestep size, or reduce the number of I, requested.
The goal is to free up more memory.

Insufficient memory space. Too many transistors!

Not enough memory (RAM). The user can either reduce the size of the circuit, increase
the timestep size, or reduce the number of I, requested. The goal is to free up more
memory.

Cannot open rwmdn file!
n is a integer. BERT cannot find the required rwmdn parameter file. They may have
been accidentally removed. You can run prebert again to generate the rwmdn file.

Timestep too small to plot reverse current!
This error happens when your SPICE timestep is smaller than 10-38 sec, which is highly
unlikely. You can increase the timestep size to avoid this error.

Reverse current too large to plot!

This error happens when the computed Iy is larger than 1035 Amp, which is highly
unlikely.

Timestep too small to print reverse current!

This error happens when your SPICE timestep is smaller than 10-38 sec, which is highly
unlikely. You can increase the timestep size to avoid this error.

Cannot open the rawbijt file!

BERT cannot find rawbijt in the current directory. rawbjt may have been accidentally
removed. You can run prebert again to generate rawbijt.

Cannot open reverse current file : REV_FILE !!

BERT cannot find REV_FILE in the current directory. You may have misspelled the
REV_FILE name, or REV FILE has been accidentally deleted.

Subcircuit Pre-processor Errors:

EXO01: Cannot open file rawinp1 for reading !!
EX02: Missing .end card in file rawinp1 !!
EX03: Not enough memory !!

EXO04: Term is longer than 30 !

EXO05: Missing subckt name in .subckt card !!
EXO06: Recursive subckt call found !!

EXO07: Missing .ends card !!
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EXO08: Incorrect subckt call format !!

EX09: Too many args after .ends !!

EX10: Mismatch subckt name in .ends card !!

EX11: Cannot open file rawinp2 for writing !!

EX12: Incorrect number of arg in subckt call <subckt call name> !!
EX13: More than 2000 local node in subckt def !!

EX14: More than 2000 local device in subckt def !!

EX1S5: Incorrect number of node in <dev name> !!

EX16: Incorrect number of device in <dev name> !!

EX17: Unknown subckt def <subckt def name> found !!

EX18: Cannot open output file !!

EX19: Empty input file <filename> !!

EX20: Cannot open file <filename> !!

EX21: Cannot open file for reading/writing/appending !!

If you are missing a .ends card, you may get EX07 or EX10. If you get EXI7 and you are sure
that you have defined that subckt definition, you may have misspelled the key word .subckt.



-110-

Appendix C
CORS Simulations

This section provides the user with examples of the various kinds of studies which may per-
formed with CORS. All simulations were performed for CMOS circuits operating at 5.5V and
125C, unless otherwise stated.

Figure C1 shows simulated reliability of 10K gate array after bum-in. (Each cell in the gate array
is identical to the one described by the input deck listed in Example 4.6.) Power supply voltage
during bumn-in was 7 volts. These studies are useful for balancing conflicting goals such as cost,
avoidance of hot electron degradation and reduction of field failures due to oxide breakdown in
choosing the bum-in condition for a product.

CORS has an option for printing out the breakdown probability for individual devices. This is
illustrated in Figure C2.

Figure C3 shows the effect of operating temperature on the reliability of a SRAM cell array. The
results shown are for a circuit in which every memory cell is undergoing continuous read opera-
tions. Previous simulations were performed for a SRAM cell in the idle state as well as one
undergoing continuous precharge and read operations. Both cells have nearly identical failure
statistics. The simulator showed that under each of these conditions the same two transistors in
the SRAM cell dominate circuit breakdown. The oxide field across those two transistors does not
change appreciably during a read operation.

Figure C4 shows the dramatic effect of oxide quality on the expected circuit lifetime of a 10K
gate array (the input deck for this simulation was similar to the one listed in Example 4.6). Fig-
ure CS shows that the inclusion of edge defects can change the predicted lifetime depending on
the relative density and severity of the edge defects (circuit simulated was the same as in Figure
C4). If the reader is unfamiliar with the variable X, plotted in Figure CS, he/she can find a dis-
cussion of it in Section 4.1.
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Appendix D

Lognormal Distribution and
Length Dependence Model

The following example illustrates the delima in choosing a lognormal distribution while using the
length dependence model. The experimental data (indicated by closed circles) for a long test line
(2x10%w) is given in Figure D. The failure probability for this line can be described by a lognor-
mal distribution function F(t) with 6=1.0 and MTF=1000. From this data, the simulator can con-
struct a failure distribution for a line half the length of the test line, i.e. at any time t the 1x10%
line has a failure probability G,(t) equal to:

G =1-[1-F(@))*

For example at time t = 1000, the failure probability for this line is 0.29. Similarly, the failure dis-
tribution of lines 1/3 of the long test line G3(t) can be constructed. In general, for a line that is 1/x
of the long test line, G,(t) is:

Gx()=1-[1-F@®)'&

Figure E shows the plot of G(t), G3(t), Gs(t) and Gjo(t) on lognormal paper. We can see that as
the lines become shorter, the extrapolated failure distribution deviates more from the lognormal
function.



-113-

Length Model
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Figure D. The failure data from the 4.5 cm long interconnect is assumed to be lognormally distri-
buted. The plot shows deviation from the lognormal distribution when failure statistics for shorter
lines are calculated from the length dependence model. The calculated MTF versus length is plot-

ted in the inset.
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Appendix E

Width Dependence Parameters

The simulator accepts three parameters defining the dependence of interconnect time-to-failure
on width: Ay, By, and C;, which are entered using WIDTH_A, WIDTH_B and WIDTH_C in
the rule file. By, is the linewidth where the test data shows an increase in TTF. The parameters are
defined by Eqgs.(5.3a) and (5.3b) as shown in section 3.4.3(0,p,q) of Appendix A. The equations

are repeated as follows:-
for W2 B,

TTF(W) = A,, X (W-B,,)? + Dy,
for W < B,
TTF(W) =C,, X (W-B,)?+D,,
We will demonstrate the extraction of the three parameters:
From the fit shown in Figure E, the width dependence is:-
for W> 1.0
MTF(W) =6.25 X (W-1.0)2+7.5
and for W < 1.0
MTF( W) =40.0 x (W-1.02 + 7.5
where Ay, =6.25, By, = 1.0, C,, =40.0, and D, = 7.5.
The parameters are entered in the rule file as shown below:
metall length=4.5e4 width=1.0 thick=0.5

log_median=7.5 log_sigma=1.0
width_a=6.25 width_b=1.0 width_c=40.0

(5.3a)

(5.3b)
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Width Dependence
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Appendix F
CIF Layer Names in the Layout Extractor

The technologies known to mextra are: nMOS ("nmos"), MOSIS P well CMOS/Bulk, also
known as CBPM ("cmos-pw" or "cmos-p"), MOSIS Scalable CMOS/Bulk N-well, also known as
SCN ("cmos-nw" or "cmos-n"), MOSIS Scalable CMOS/Bulk P-well, also known as SCP
("cmos-s" or "scmos"), and MOSIS Scalable CMOS/Bulk Generic, also known as SCG ("cmos-
g"). The CIF layer names for each technology are listed in the two tables below:

Technology
nmos CMOSs-p/Cmos-pw CMOs-N/CMOs-nw
cif layer mextra/cif2ps cif layer mextra/cif2ps cif layer mextra/cif2ps
intemal names internal names internal names
NM METAL CwW WELL CWN WELL
NP POLY CM METAL CMS METAL2
ND DIFF CM2 METAL?2 CMF METAL
NC CuT CP POLY CPG POLY
NB BURIED CP2 POLY2 CAA DIFF
NI ION CD DIFF CVA CUT2
NG GLASS CcC CUT CCA CUT
cC2 CUT2 CSP CION
CS CION CSN GLASS
CG GLASS COG GLASS
XP GLASS
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Technology

CMOS-S/SCMOos CmMOs-g isocmos
cif layer mextra/cif2ps cif layer mextra/cif2ps cif layer mextra/cif2ps
internal names internal names internal names
CWP WELL CWN WELL CPW WELL
CMS METAL2 CMS METAL2 CM METAL
CMF METAL CMF METAL CM2 METAL2
CPG POLY CPG POLY CP POLY
CAA DIFF CAA DIFF CP2 NOP
CVA CUuT2 CVA CuT2 CD - DIFF
CCA CUT CCA CUT CC CUT
CCP CUT CCP CUT CC2 CUT2
CSP CION CSP CION CPP CION
COG GLASS CWP GLASS CNP NOP
XP GLASS CSN GLASS CG GLASS
COG GLASS CS GLASS
XP GLASS
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Appendix G

Setting up an Alternative Technology
for the Layout Extractor

The mask names that mextra uses in generating geometry information for the electromigration
simulator are: METAL for metal-one, METAL2 for metal-two, CUT for metal-one to poly or
diffusion contact, CUT2 for metal-one and metal-two via. To determine whether a transistor is
PMOS or NMOS in a CMOS process, mextra uses: POLY for polysilicon, DIFF for diffusion
(both p+ and n+), and WELL for either p-well or n-well. A PMOS transistor for example can be
found when a polysilicon line (POLY) is found adjacent to the diffusion (DIFF) in the n-well
(WELL) in a n-well CMOS process. For a NMOS process, the mask ION will be checked to see
if the transistor has been subjected to a depletion implant. Buried contacts are found from
BURIED mask.

User can create a set of new CIF layer names by using the -L ciflayerfile option in both mextra
and cif2ps. The format for ciflayerfile is:

(1) wellohmic type
Example:

wellohmic P
type is one of N, P or 0 for n-well, p-well or nmos process.
(2) internal_layer_name cif layer_name
Example:
METAL CM5
The cif_layer_name is associated with a mextra/cif2ps internal_layer_name.

One example of ciflayerfile is:
wellohmic N

WELL CW1

POLY CP2

DIFF CD3

CUT CC4

METAL CM5

CUT2 CV6

METAL2 CM7

GLASS CSN

GLASS COG

GLASS XP

Note that intemnal layers GLASS and NOP are dummy layers in mextra and cif2ps.
The command line:

>cif2ps -L cifnames fulladder.cif | 1pr

will use the CIF layer names defined in cifnames to plot fulladder.cif.
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Technology defined by user:

TecMolggy name

WellOhmic

WELL

METAL

METAL?2

POLY

POLY2

DIFF

CUT

CUT2

BURIED

ION

CION

GLASS

GLASS

GLASS




-120-

Appendix H

Manual Pages for mextra, sim2spice and cif2ps

The following manual pages for mextra, sim2spice and cif2ps are available on line.
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NAME
mextra, valtbs — Manhattan circuit extractor for VLSI simulation

SYNOPSIS
mextra [-t tech) [-g) [~d temp_dir] [-c cadrc_line) [~f cadrc_file] [-u scale} [-O) [-o] W] [-w)
basename

valtbs basename.tbs

DESCRIPTION
Mextra will read the file basename.cif and create a circuit description. From this circuit description various
clectrical checks can be done on your circuit. The circuit description is directly compatible with esim,
powest, and erc. There are translation programs to convert mextra output to acceptable spice input (sce
sim2spice, pspice and spepp ).

Mextra creates several new files, basenameJog, basename.al, basename sim and basename nodes. It also
creates basename.tbs (if -w option is used) or basename.ohm (if no -w option). After mextra finishes it is
a good idea to read the .log file. This contains general information about the extraction. It has a count of the
number of transistors and the number of nodes, and it contains messages about possible ezrors. The .al file
is a list of aliases which can be used by esim. The .tbs file is a list of transistors in the .sim file that contains
the substrate/well node name for each transistor (as the 5th field - see sim file description below). This file
canbeusedtomanuallycwatespiceinputfoxanalogdrcnits,suchassmseamps.mdtocw
substrate/well connectivity (see valtbs below). The .ohm file is used by ohmics. The .nodes file is a list of
node names and their CIF locations listed in CIF format. It can be read by cifplot to make a plot showing
the circuit with the named nodes superimposed. The form of this cifplot command is:

cifplot basename .nodes basename cif
The sim file is the circuit description for use with simulation programs and electrical rule checkers.

Names

Mextra uses the CIF label construct to implement node names and attributes. The form of the CIF label
command is as follows:

94 name x y [layer];
This command attaches the label to the mask geometry on the specified layer crossing the point (x, y). If
no layer is present then any geometry crossing the point is given the label.

Mextra interprets these labels as node names. These names are used to describe the extracted circuit.
When no name is given to a node, a number is assigned to the node. A label may contain any ASCII char-
acter except space, tab, newline, double quote, comma, semi-colon, and parenthesis. To avoid conflict with
extractor generated names, names should not be numbers or end in *#a° where n is a number.

A problem arises when two nodes are given the same name although they are not connected electrically.
Sometimes we want these nodes to have the same names, other times we don’t. This frequently happens
when a name is specified in a cell which is repeated many times. For instance, if we define a shift register
cell with the input marked "SR.in’ then when we create an 8 bit shift register we could have 8 nodes names
*SR.n’. If this happens it would appear as though all 8 of the shift register cells were shorted together. To
resolve this the extractor recognizes three different types of names: local, global, and unspecified. Any
time a local name appears on more than one node it is appended with a unique suffix of the form #n’
where n is a number. The numbers are assigned in scanline order and starting at 0. In the shift register
example, the names would be *SR.in#0’ through *SR.in#7". Global names do not have suffixes appended
to them. Thus unconnected nodes with global names will appear connected after extraction. (The -g
causes the extractor to append unique suffixes to unconnected nodes with the same global name.) Names
are made local by ending them with a sharp sign, "#’. Names are global if they end with an exclamation
mark, °I’. These terminating characters are not considered part of the name, however. Names which do .
not end with these characters are considered unspecified. Unspecified names are treated similar to locals.
Multiple occurrences are appended with unique suffixes. By convention, unspecified names signify the
designer’s intention that this name is a local name, but is connected to only one node. It is illegal to have a
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name that is declared two different types. The extractor will complain if this is so and make the name
local. .

It makes no difference to the extractor if the same name is attached to the same node several times. How-
ever, if more than one name is given to a node then the extractor must choose which name it will use.
Whenever two names are given to the same node the extractor will assign the name with the highest type
priority, global being the highest, unspecified next, local lowest. If the names are the same type then the
extractor takes the shortest name. At the end of the Jog file the extractor lists nodes with more than one
name attached. These lines start with an equal sign and are readable by esim so that it will understand
these aliases,

Attributes

In addition to naming nodes mextra allows you to sttach attributes to nodes. There are two types of attri-
butes, node attributes, and transistor attributes. A node attribute is attached to a node using the CIF 94
construct, in the same way that a node name is attached. The node attribute must end in an at-sign, ‘@".
More than one attribute may be attached to a node. Mextra does not interpret these attributes other than to
eliminate duplicates. For each attribute attached to a node there appears a line in the .sim file in the follow-
ing form:

A node attribute

Node is the node name, and attribute is the attribute attached to that node with the at-sign removed.

Transistor attributes can be attached to the gate, source, or drain of a transistor. Transistor attributes must
end in a dollar sign, '$’. To attach an atribute to a transistor gate the label must be placed inside the
transistor gate region. To attach an attribute to a source or drain of a transistor the label must be placed on
the source or drain edge of a transistor. Transistor attributes are recorded in the transistor record in the
sim file.

Transistors
For each transistor found by the exractor a line is added to the .sim file. The form of the line is:

type gate source drain length widthx y
g=attributes s=attributes d=attributes

Type can be one of three characters, "¢’ for enhancement, *d’ for depletion, or *u’® for unusual implant. (
Unusual implant refers to transistors which are only partially in an implanted area. It will be necessary to
write a filter to replace these transistors with the appropriate model in terms of enhacement and depletion
transistors.) Gate, source, and drain are the gate, source, and drain nodes of the transistors. Length and
width are the channel length and width in CIF units. X and y are the x and y coordinates of the bottom left
comer of the transistor. Anributes is a comma seperated list of attributes. If no attribute is present for the
gate, source, or drain, the g=, s=, or d= ficlds may be omitted.

The extractor guesses the length and width of a transistor by knowing the area, perimeter, and length of dif-
fusion terminals. For rectangular transistors and butting transistors the reported length and width is accu-
rate. For transistors with comers or for unusually shaped transistors the length and width is not as accurate.

It is possible to design a transistor with three or more diffusion terminals. The extractor considers these as
funny transistors. They are entered in the sim file in the form:

frype gate nodel node? ... nodeN xloc

The ' is followed by the type : ‘e’ °d’ or "u’. Nodel ... nodeN are the diffusion terminal nodes. As with
any circuit with *u’ transistors, any circuit with *f* transistors must be run through a filter replacing each of
the funny transistors with the appropriate model in terms of enhancement and depletion transistors.
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Capacitance

The .sim file also has information about caparitance in the circuit. The lines containing capacitance infor-
mation are of the form:

C nodel node2 cap-value
cap-value is the capacitance betweens a node and substrate is in femto-farads. Capacitance values below a
certain threshold are not reported. The default threshold is 50 femto-farads.

Transiswrcapacitaneesmnotincludadsincemostofthemlsthatvgakontpedmﬁlecalmﬂmﬂwm
from the width and length information.

The capacitance for each layer is calculated separately. The reported node capacitance is the total of the
layer capacitances of the node, The layer capacitance is calculated by taking the area of a node on that
layer and multiplying it by a constant. This is added to the product of the perimeter and a constant. The
default constants are given below. Area constants are in femto-farads per square micron. Perimeter con-
stants are femto-farads per micron.

Layer Area Perimeter
metal 0.03 0.0
metal2 0.015 00
poly 0.05 0.0
diff 0.10 0.1
poly/diff 0.40 0.0

Poly/diffusion capacitance is calculated similar to layer capacitance. The area is multiplied by constant
and this is added to the perimeter multiplied by a constant. Pely/diffusion capacitance is not threshold,
however. .

The —o and the -O options are complementary. The —o option is the default. It supresses the calculation
of capacitance, and instead, gives for each node in the circuit the area and perimeter of that node on the dif-
fusion, poly, and metal layers. (The -O option causes the calculation of capacitance.) The lines containing
this information look like this:

N node diffArea diffPerim polyArea polyPerim metalArea metalPerim

Node is the node name. x y is the position of a point on the node. Currently this is always ‘0 0°. DiffArea
through metalPerim are the area and perimeter of the diffusion, poly, and metal layers in user defined units.
(In addtion the —o [default] option causes transistors with only one terminal to be recorded in the sim file
as a transistor with source connected to drain.)

If the network is being extracted from the .cif file we suggest the node capacitance not be computed
by mextra. Rather the —o [default] option should be used. This puts the burden of computing node capci-
tance on the programs presim and sim2spice. We feel this is advantageous because presim and sim2spice
are filter programs linked directly o the type of simulation that is to be done. This will hopefully reduce
some of the confusion associated with calibration, - :

Normally, mextra ignores connectivity through wells and substrate. If this connectivity is desired to give
base connections of transistors, the -w option can be used. This allows one to check for proper connections
of substrate and to detect shorts through wells and/or substrate. Since wells and substrate are highly resis-
tive, it is desirable to detect what are, essentially, breaks in signals that travel through wells and substrate.
This check should be part of the final check of a circuit before submission and should not be used for simu-
lation, since, for instance, cmos-pw input pad circuitry is connected through a well. TO REITERATE:
designs to be submitted should be simulated/compared using the —w and then reextracted normally and
resimulated/compared to check for possible breaks in power/ground and other signals.

Changing Default Values
As part of its start up procedure mextra tries to read two files. It reads “cad/.cadrc and then searches
through the list of (colon separated) directories defined in environment variable CADRC until it finds a

«adrc file. This file is also read. If environment variable CADRC is not defined, mextra tries instead to
read the .cadrc file in the home directory. Mextra reads these files to set up constants to be changed
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without recompiling. The keywords for mextra are contained within the mextra environment of the .cadrc
file. Declaration of environments in the .cadre file are described in .cadrc(5). Cadre lines may also be
included on the command line by entering them as double ‘quoted strings after the "-c" option. An entire
cadre file may also be read by including the option *-f <file>" on the command line, where the string <file>
is the name of the cadre file.

The temporary directory used may be set using the "-d" option. The string following this option is the tem-
porary directory that will be used by mextra. The default is “fusr/tmp”.

By default, mextra reports locations in CIF coordinates. A more convenient form of units may be specified
cither in the .cadrc file or on the command line. The form of the line in the cadre file is:

- units scale
where scale is in centi-microns. The user may type in the chosen value for the scale directly.
To set units on the command line use the —u option.
mextra —u scale basename

The parameters used to compute node capacitance may be changed by including the following commands
in your .cadrc file.

areatocap layer value
perimtocap layer value

value is atto-farads per square micron for area, and atto-farads per micron for perimeter. layer may be
"poly", "diff", "metal", "metal2", or "poly/diff".
To set the capacitor values to those given in Mead and Conway the following lines would appear in the
«adre file:

areatocap poly 40

areatocap diff 100

areatocap metal 30

areatocap poly/diff 400

perimtocap poly 0

perimtocap diff 0

perimtocap diff 0

perimtocap metal 0

perimtocap poly/diff 0
The threshold for reporting capacitance may be set in the .cadrc file with the following line.,

capthreshold value
A negative value sets the threshold to infinity.

Mextra knows of the technologies, RMOS ("nmos™), MOSIS P well CMOS/Bulk (3.0 micron), also known
as CBPM ("cmos-pw"), MOSIS Scalable CMOS/Bulk N-well, also known as SCN ("cmos-nw"), MOSIS
Scalable CMOS/Bulk P-well, also known as SCP ("cmos-s”), and MOSIS Scalable CMOS/Bulk Generic,
also known as SCG ("cmos-g"). The technology can also be set by use of the "-t <tech>" option; the string
<tech> is the technology. Nmos is assumed by default. To set an alternate technology, include a line simi-
lar to the following in your .cadre file with the appropriate string:

tech cmos-pw

Valtbs is a simple sed script that extracts all transistor records from the .tbs file except for *p° transistors
whose base is connected to Vdd, vdd, or VDD, and except for "¢’ transistors whose base is connected to
Gnd, gnd, or GND. Input files are named explicitly on the command line or via standard input. Output is
on standard out.

=/.cadrc
basename.cif
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basename.al
basename.log
basename.nodes
basename.sim
basename.ohm
basename.tbs

SEE ALSO

powest(1.visi), pspice(l.visi), spcpp(l.visi), sim2spice(l.visi), spice(l.vis)), dre(l.visi), erc(l.visi),
valtbs(1.vlsi), caesar(cadl), cadrc(cads)

AUTHOR

Dan Fitzpatrick (UCB)

MODIFICATIONS

BUGS

Wayne E. Winder (Northwest LIS, University of Washington)

Accepts manhattan simple CIF only, use cifplot —O to convert complicated CIF. For unusually shaped
transistors the UW/NW modified mextra should be used, otherwise values will be quite inaccurate. The
modified mextra will either yield accurate values or a "reasonable” guess, depending on the complexity of
the unusual transistor. The modified mextra will tell you when the output values are only best estimates.
The length/width ratio for unusually shaped transistors may be inaccurate. This is true for snake transis-
tors. Attributes for funny transistors are not recorded. Node attributes are ignored unless the —o switch is

present.
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NAME

Ww-mumﬁom sim format to spice format

SYNOPSIS

sim2spice [—d defs] file.sim

DESCRIPTION

Sim2spice reads a file in sim format and creates a new file in spice format. The file contains just a list of
transistors and capacitors, the user must add the transistor models and simulation information. The new file
is appended with the tag spice. One other file is created, which is a list of sim node names and their
corresponding spice node numbers. This file is tagged .names.

Defs is a file of definitions. A definition can be used to set up equivelences between sim node names and
spice node numbers. The form of this type of definition is:
, set sim_name spice_number [tech)

The tech field is optional. In NMOS, a special node, ‘BULK’, is used to represent the substrate node. For
CMOS, two special nodes, "NMOS" and "PMOS’, represent the substrate nodes for the 'n’ and 'p’ transis-
tors, repectively. For example, for NMOS the sim node ‘GND’ corresponds to spice node 0, ‘Vdd’
corresponds to spice node 1, and ‘BULK" corresponds to spice node 2. The defs file for this set up would
look like this:

set GND 0 nmos

set Vdd 2 nmos

set BULK 3 nmos
A definition also allows you to set a correspondence between sim transistor types and and spice transistor
types. The form of this definition is:

def sim_trans spice_trans (tech)
Again, the tech field is optional. For NMOS these definitions would look as follows:

def ¢ ENMOS nmos

def d DNMOS nmos
Definitions may also be placed in the *.cadrc’ file, but the definitions in the defs file overrides those in the
*.cadrc’ file.

SEE ALSO

ext2sim(1), magic(1), spice(1), cadre(S), exi(5), sim(S)

AUTHOR

BUGS

Dan Fitzpatrick
CMOS fixes by Neil Soiffer

The only pre-defined technologies are nmos, cmos-pw, and cmos (the same as cmos-pw). Only one
definition file is allowed.

20 January 1990 54



CIF2PS (LOCAL) UNIX Programmer’s Manual CIF2PS (LOCAL)

NAME

cif2ps - CIF to PostScript output

SYNOPSIS

cif2ps [-w width] {-h height) [t technology] [-L ciflayernames) [-0 output.ps) inputl .cif inpul2.cif ...

DESCRIPTION

cif2ps takes a CIF file that has been produced by Magic or EGS graphics editor and creates a PostScript file
that can be sent to the PostScript printer of choice. The code was written with the CIF layer names hard
coded in. The technologies known are: nMOS ("rmos~), MOSIS P well CMOS/Bulk, also known as CBPM
("cmos-pw™), MOSIS Scalable CMOS/Bulk N-well, also known as SCN ("cmos-nw"), MOSIS Scalable
CMOS/Bulk P-well, also known as SCP ("cmos-s"), and MOSIS Scalable CMOS/Bulk Generic, also
known as SCG ("cmos-g").

Normally (without the -m option), upon invoking cif2ps, the program waits for user to enter the symbol
number to be plotted. Entering invalid number will cause the program to list the valid symbol numbers. To
terminate the input loop, enter a blank line,

Cif2ps options are :

-w specify width of plot (in pages, default is 1)

=h specify height of plot (in pages, default is 1)

Cif2ps will rescale a user-specific dimension if neccesary to avoid producing blank pages. The largest

dimesion allowed is 5 pages by 5 pages (25 pages of output).

-t specify techpology.

-m specify that plots are to be superimposed. This is useful for plotting node numbers generated from
layout extractor onto the cif file, cif2ps will not wait for user input and will proceed and plot all
symbols in one page.

-0 specify the output file, otherwise cif2ps writes to standard output.
-L specify that the CIF layer names are defined in the file ciflayernames.
magic

AUTHOR

FILES

NOTES

Arthur Simoneau wrote the version "cifp’.

Marc Lesure modified °cifp’ to produce °cif2ps’.

Boon-Khim Liew added -m, -0 and -1 options, support for other technologies and ability to draw polygons,
wires,

ciflayernames, input.cif and output.ps

PostScript is a trademark of Adobe Systems, Inc.
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Irsim Documentation

The following documents describe Irsim.
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NAME

irsim - An event-driven logic-level simulator for MOS circuits
SYNOPSIS

irsim [-s] prm_file sim_file ... [+hist_file] [-cmd_file ...]
DESCRIPTION

IRSIM is an event-driven logic-level simulator for MOS (both
N and P) transistor circuits. Two simulation models are
available:

switch
Each transistor is modeled as a voltage-controlled
switch. Useful for initializing or determining the
functionality of the network.

linear
Each transistor is modeled as a resistor in series with
a voltage-controlled switch; each node has a capaci-
tance. Node values and transition times are computed
from the resulting RC network, using Chorng-Yeoung
Chu’s model. Chris Terman’s original model is not sup-
ported any more.

If the -s switch is specified, 2 or more transistors of the
same type connected in series, with no other connections to
their common source/drain will be stacked into a compound
transistor with multiple gates.

The prm_file is the electrical parameters file that config-
ure the devices to be simulated. It defines the capacitance
of the various layers, transistor resistances, threshold
voltages, etc... (see presim(l)).

If prm_file does not specify an absolute path then IRSIM
will search for the prm_file as follows (in that order):

1) ./<prm_file> (in the current directory).
2) ~cad/lib/<prm _file>
3) ~/cad/lib/<prm_file>.prm

If ~cad/ does not exist, IRSIM will try to use directory
/projects/cad. The default search directory (~cad) can be
overriden by setting the environment variable CAD_HOME to
the appropriate directory prior to running IRSIM (i.e.
setenv CAD_HOME /usr/beta/mycad).

IRSIM first processes the files named on the command line,
then (assuming the exit command has not been processed)
accepts commands from the user, executing each command
before reading the next.

File names NOT beginning with a ‘-’ are assumed to be sim
files (see sim(5)), note that this version does not require
to run the sim files through presim. These files are read
and added to the network database. There is only a single
name space for nodes, so references to node "A" in different
network files all refer to the same node. While this
feature allows one to modularize a large circuit into
several network files, care must be taken to ensure that no
unwanted node merges happen due to an unfortunate clash in
names.

File names prefaced with a /-’ are assumed to be command
files: text files which contain command lines to be pro-



cessed in the normal fashion.

These files are processed

line by line; when an end-of-file is encountered, processing
continues with the next file. After all the command files
have been processed, and if an "exit" command has not ter-
minated the simulation run, IRSIM will accept further com-
mands from the user, prompting for each one like so:

irsim>

The hist_file is the name of a filé created with the dumph

command (see below).
the network to the state saved in that file.

If it is present, IRSIM will initilize
This file is

different from the ones created with the ">" command since
it saves the state of every node for all times, including

any pending events.

This version supports changes to the network through the

update command.

Also, the capability to incrementally re-

simulate the network up to the current time is provided by

the isim command.

COMMAND SUMMARY

@ filename

? wnode...

! wnode...

< filename

> filename

<< filename

| comment...
activity from [toO]
ana wnode...
analyzer wnode...

assert wnode [m] val

back [time]

c [n]

changes from [to]
clock [node [val]]
clear

d [(wnode]...

debug [debug_level..]

decay [n]

display [arg]...
dumph filename...
exit [status]
flush [time]

h wnode...
has_coords

inputs

ires [n])

isim [filename]

1 wnode...
logfile [filename]
model [name]

P .
path wnode...
print comment...
printp

printx

q

R [n]

readh filename
report [level]

s [n]

stepsize [n]

take commands from command file

print info about node’s source/drain connections
print info about node’s gate connections
restore network state from file

write current network state to file

same as "<" but restores inputs too

comment line

graph circuit activity in time interval
display nodes in analyzer window

display nodes in analyzer window

assert that wnode equals val

move back to time

simulate for n clock cycles (default:1l)

print nodes that changed in time interval
define value sequence for clock node

clear analyzer window (remove signals)

print display list or specified node(s)

set debug level (default: off)

set charge decay time (0 =>-no decay)

control what gets displayed when

write net history to file

return to system

flush out history up to time (default:now)
make node logic high (1) input

print YES if transistor coordinates are available
print current list of input nodes

set incremental resolution to n ns
incrementally resimulate changes form filename
make node logic low (0) input

start/stop log file

set simulation model to name

step clock one simulation step (phase)

display critical path for last transition of a node
print specified text

print a list of all pending events

print all undefined (X) nodes

terminate input from current stream

simulate for n cycles (default:longest sequence)
read history from filename

set/reset reporting of decay events

simulate for n ns. (default: stepsize)

set simulation step size to n ns.



set vector value assign value to vector

setlog[fileloff] log net changes to file (off -> no log)
setpath set search path for cmd files

stats print event statistics

t [-]wnode... start/stop tracing of specified nodes

tcap print list of shorted transistors

time [command] print resource utilization summary

u wnode... make node undefined (X) input

unitdelay [n] force transitions to take n ns. (0 disables)
update filename read net changes from file

V [node [value...]] define sequence of inputs for a node
vector label node... define bit vector

w [~]wnode... add/delete nodes from display 1list
wnet [filename] write network to file

x wnode... remove node from input lists
Xdisplay[host:n] set/show X display (for analyzer)

COMMAND DESCRIPTIONS
Commands have the following simple syntax:
cmd argl arg2 ... argn <newline>

where cmd specifies the command to be performed and the argi
are arguments to that command. The arguments are separated
by spaces (or tabs) and the command is terminated by a <new-
line>.

If cmd is not one of the built-in commands documented below,
IRSIM appends ".cmd" to the command name and tries to open
that file as a command file (see "@" command). Thus the
command "foo" has the same effect as "@ foo.cmd".

Notation:

indicates zero or more repetitions
{ ] enclosed arguments are optional
node name of node or vector in network

wnode

name of node or vector in network, can include ‘*’
wildcard which matches any sequence of zero or more
characters. The pair of characters ‘{’ and '}’ denote
iteration over the limits enclosed by it, for example:
name{1:10} will expand into namel, name2 ... namel0. A
3rd optional argument sets the stride, for example:
name{1:10:2} will expand into namel, name3, ... name7,

name9.

| comment...
Lines beginning with vertical bar are treated as com-
ments and ignored -- useful for comments or temporarily

disabling certain commands in a command file.

Most commands take one or more node names as arguments.
Whenever a node name is acceptible in a command line, one
can also use the name of a bit vector. 1In this case, the
command will be applied to each node of the vector (the "t"
and "d" treat vectors specially, see below).

vector label node...
Define a bit vector named "label" which includes the
specified nodes. If you redefine a bit vector, any



special attributes of the old vector (e.g., being on
the display or trace list) are lost. Wild cards are
not accepted in the list of node names since you would
have no control over the order in which matching nodes
would appear in the vector.

The simulator performs most commands silently. To find out
what’s happened you can use one of the following commands to
examine the state of the network and/or the simulator.

set vector value
Assign value to vector. For example, the following
sequence of commands:

vector BUS bit.l bit.2 bit.3
set BUS 01x

The first command will define BUS to be a vector com-
posed of nodes bit.l, bit.2, and bit.3. The second com-
mand will assign the following values:

bit.1 = 0
bit.2 = 1
bit.3 = X

Value can be any sequence of (0,1,h,8,1,L,x,X}, and
must be of the same length as the bit vector itself.

d [wnode]...
Display. Without arguments displays the values all
nodes and bit vectors currently on the display list
(see w command). With arguments, only displays the
nodes or bit vectors specified. See also the "display"
command if you wish to have the display list printed
out automatically at the end of certain simulation com-
mands.

w [-]wnode...
Watch/unwatch one or more nodes. Whenever a "d" com-
mand is given, each watched node will displayed like
so:

nodel=0 node2=X

To remove a node from the watched list, preface its
name with a ‘-’. If wnode is the name of a bit vector,
the values of the nodes which make up the vector will
be displayed as follows:

label=010100

where the first 0 is the value of first node in the
list, the first 1 the value of the second node, etc.

assert wnode [mask] value
Assert that the boolean value of the node or vector
wnode is value. If the comparison fails, an error mes-
sage is printed. If mask is given then only those bits
corresponding to zero bits in mask take part in the
comparison, any character other than 0 will skip that
bit. The format of the error message is the following:

(tty, 3): assertion failed on ‘name’ 10X10 (1010X)

Where name is the name of the vector, followed by the
actual value and the expected value enclosed in



parenthesis. If a mask is specified, then bits that
were not compared are printed as '-

ana wnode...
This is a shorthand for the analyzer command (described

below) .

analyzer wnode...
Add the specified node(s)/vector(s) to the analyzer
display list (see irsim-analyzer(3) for a detailed
explanation). 1If the analyzer window does not exist,
it will be created. If no arguments are given and the
analyzer window already exists, nothing happens.

Xdisplay [host:display]
You must be able to connect to an X-server to start the
analyzer. If you haven’t set up the DISPLAY environ-
-ment variable properly, the analyzer command may fail.
If this is the case you can use the Xdisplay command to
set it from within the simulator. With no arguments,
the name of the current X-server will be printed.

clear
Removes all nodes and vectors from the analyzer window.
This command is most useful in command scripts for
switching between different signals being displayed on
the analyzer.

"?2" and "!" allow the user to go both backwards and forwards
through the network. This is a useful debugging aid.

? wnode...
Prints a synopsis of the named nodes including their
current values and the state of all transistors that
affect the value of these nodes. This is the most
common way of wandering through the network in search
of what went wrong.
The output from the command ? out looks like

out=0 (v1=0.3 vh=0.8) (0.100 pf) is computed from:
n-channel phi2=0 out=0 in=0 [1.0e+04, 1.3e+04, 8.7e+03]
pulled down by (a=1 b=1) [1.0e+04, 1.3e+04, 8.8e+03]
pulled up [4.0e+04, 7.4e+04, 4.0e+04]

The first line gives the node’s name and current value,
its low and high logic thresholds, user-specifed low-
to-high and high-to-low propagation delays if present,
and its capacitance if nonzero. Succeeding lines list
the transistor whose sources or drains connect to this
node: the transistor type ("pulled down" is an n-
channel transistor connected to gnd, “pulled up" is a
depletion pullup or p-channel transistor connected to
vdd), the values of the gate, source, and drain nodes,
and the modeling resistances. Simple chains of
transistors with the same implant type are collapsed by
the -s option into a single transistor with a "com-
pound" gate; compound gates appear as a parenthesized
list of nodes (e.g., the pulldown shown above). The
three resistance values -- static, dynamic high,
dynamic low -- are given in Kilo-ohms.

Finally, any pending events for a node are listed after
the electrical information.

! wnode..
For each node in the argument list, print a list of



transistors controlled by that node.

tcap
Prints a list of all transistors with their
source/drain shorted together or whose source/drain are
connected to the power supplies. These transistors
will have no effect on the simulation other than their
gate capacitance load. Although transistors connected
across the power supplies are real design errors, the
simulator does not complain about them.

Any node can be made an input -- the simulator will not
change an input node’s value until it is released. Usually
on specific nodes —- inputs to the circuit -- are manipu-
lated using the commands below, but you can fool with a sub-
circuit by forcing values on internal nodes just as easily.

h wnode...
Force each node on the argument list to be a high (1)
input. Overrides previous input commands if necessary.

1 wnode...
Like "h" except forces nodes to be a low (0) input.

u wnode...
Like "h" except forces nodes to be a undefined (X)
input.

x wnode...
Removes nodes from whatever input list they happen to
be on. The next simulation step will determine the
correct node value from the surrounding circuit. This
is the default state of most nodes. Note that this
does not force nodes to have an "X" value -- it simply
removes them from the input lists.

inputs
prints the high, low, and undefined input lists.

It is possible to define a sequence of values for a node,
and then cycle the circuit as many times as necessary to
input each value and simulate the network. A similar
mechanism is used to define the sequence of values each
clock node goes through during a single cycle.

Each value is a list of characters (with no intervening
blanks) chosen from the following:

1, h, H logic high (1)

0, 1, L logic low (0)

u, U undefined (X)

X, X remove node from input lists

Presumably the length of the character list is the same as
the size of the node/vector to which it will be assigned.
Blanks (spaces and tabs) are used to separate values in a
sequence. The sequence is used one value at a time, left to
right. If more values are needed than supplied by the
sequence, IRSIM just restarts the sequence again.

V [node [value...]] .
Define a vector of inputs for a node. After each cycle
of an "R" command, the node is set to the next value

specified in the sequence.



With no arguments, clears all input sequences (does not
affect clock sequences however). With one argument,
"node", clears any input sequences for that
node/vector.

clock [node ([value...]]
Define a phase of the clock. Each cycle, each node
specified by a clock command must run through its
respective values. For example,

clock phil 1 0 0 0O
clock phi2 0 0 1 0

defines a simple 4-phase clock using nodes phil and
phi2. Alternatively one could have issued the following
commands:

vector clk phil phi2
clock clk 10 00 01 0O

With no arguments, clears all clock sequences. With
one argument, "node", clears any clock sequences for
that node/vector.

After input values have been established, their effect can
be propagated through the network with the following com-
mands. The basic simulated time unit is 0.1lns; all event
times are quantized into basic time units. A simulation
step continues until stepsize ns. have elapsed, and any
events scheduled for that interval are processed. It is
possible to build circuits which oscillate -- if the period
of oscillation is zero, the simulation command will not
return. If this seéms to be the case, you can hit <ctrl-C>
to return to the command interpreter. Note that if you do
this while input is being taken from a file, the simulator
will bring you to the top level interpreter, aborting all
pending input from any command files.

When using the linear model (see the "model" command) tran-
sition times are estimated using an RC time constant calcu-
lated from the surrounding circuit. When using the switch
model, transitions are scheduled with unit delay. These
calculations can be overridden for a node by setting its
tplh and tphl parameters which will then be used to deter-
mine the time for a transition.

s [n]
Simulation step. Propogates new values for the inputs
through the network, returns when n (default: stepsize)
ns. have passed. If n is specified, it will tem-
porarily override the stepsize value. Unlike previous
versions, this value is NOT remembered as the default
value for the stepsize parameter. If the display mode
is "“automatic", the current display list is printed out
on the completion of this command (see “display" com-
mand) .

¢ [n] .
Cycle n times (default: 1) through the clock, as
defined by the "clock" command. Each phase of the
clock lasts stepsize ns. If the display mode is
"automatic", the current display list is printed out on
the completion of this command (see "display" command).

p Step the clock through one phase (or simulation step).



R [n]

back

path

For example, if the clock is defined as above

clock phil 1000
clock phi2 0010

then "p" will set phil to 1 and phi2 to 0, and then
propagate the effects for one simulation step. The
next time "p" is issued, phil and phi2 will both be set
to 0, and the effects propagated, and so on. If the
"c" command is issued after "p" has been used, the
effect will be to step through the next 4 phases from
where the "p" command left off.

Run the simulator through n cycles (see the "c" com-
mand). If n is not present make the run as long as the
longest sequence. If display mode is automatic (see
"display" command) the display is printed at the end of

‘each cycle. Each "R" command starts over at the begin-

ning of the sequence defined for each node.

time

Move back to the specified time. This command restores
Circuit state as of "time", effectively undoing any
changes in between. Note that you can not move past
any previously flushed out history (see flush command
below) as the history mechanism is used to restore the
network state. This command can be useful to undo a
mistake in the input vectors or to re-simulate the cir-
cuit with a different debug level.

wnode..

display critical path(s) for last transition of the
specified node(s). The critical path transistions are
reported using the following format:

node => value @ time (delta)

where node is the name of the node, value is the value
to which the node transitioned, time is the time at
which the transistion occurred, and delta is the delay
through the node since the last transition. For exam-
ple:

critical path for last transition of Hit_vl:
phil-> 1 @ 2900.0ns , node was an input
PC_driver-> 0 @ 2900.4ns (0.4ns)
PC_ b _ql-> 1 @ 2904.0ns (3.6ns)
tagDone_b vl1-> 0 @ 2912.8ns (8.8ns)
tagDonel vl-> 1 @ 2915.3ns (2.5ns)
tagDonel b vl1-> 0 @ 2916.0ns (0.7ns)
tagDone_ vl-> 1 @ 2918.4ns (2.4ns)
tagCmp_b_vl-> 0 @ 2922.1ns (3.7ns)
tagCmp_ vl-> 1 @ 2923.0ns (0.9ns)
Vbit_b_vl-> 0 @ 2923.2ns (0.2ns)
Hit_v1-> 1 @ 2923.5ns (0.3ns)

activity from time [to_time]

print histogram showing amount of circuit activity in
the specified time inteval. Actually only shows number
of nodes which had their most recent transition in the
interval.

changes from time [to_time]

print 1list of nodes which last changed value in the
specified time interval.



printp
print list of all pending events sorted in time. The
node associated with each event and the scheduled time
is printed.

printx
print a list of all nodes with undefined (X) values.

Using the trace command, it is possible to get more detail
about what’s happening to a particular node. Much of what
is said below is described in much more detail in "Logic-
level Simulation for VLSI Circuits" by Chris Terman, avail-
able from Kluwer Academic Press. When a node is traced, the
simulator reports each change in the node’s value:

[event #100] node out.l: 0 -> 1 @ 407.6ns

The event index is incremented for each event that is pro-
cessed. The transition is reported as

0ld value -> new value @ report time

Note that since the time the event is processed may differ
from the event’s report time, the report time for successive
events may not be strictly increasing.

Depending on the debug level (see the "debug" command) each
calculation of a traced node’s value is reported:

[event #99] node clk: 0 -> 1 @ 400.2ns

final_value( Load ) V=[0.00, 0.04] => 0

..compute_tau( Load )
{Rmin=2.2K Rdom=2.2K Rmax=2.2K} {Ca=0.06 Cd=0.17}
tauA=0.1 tauD=0.4 ns

[event #99: clk->1] transition for Load: 1 -> 0 (tau=0.5ns, delay=0.6ns)

In this example, a calculation for node lLoad is reported.
The calculation was caused by event 99 in which node clk
went to 1. When using the linear model (as in this example)
the report shows

current value -> final value

The second line displays information regarding the final
value (or dc) analysis for node "Load"; the minimun and max-
imum voltages as well as the final logical value (0 in this
case) .

The next three lines display timing analysis information
used to estimate the delays. The meaning of the variables
displayed can be found Chu’s thesis: "Improved Models for
Switch-Level Simulation".

When the final value is reported as "D", the node is not
connected to an input and may be scheduled to decay from its
current value to X at some Iater time (see the "decay" com-
mand) .

"tau" is the calculated transition time constant, "delta" is
when any consequences of the event will be computed; the
difference in the two times is how IRSIM accounts for the
shape of the transition waveform on subsequent stages (see.
reference given above for more details). The middle lines
of the report indicate the Thevenin and capacitance parame-
ters of the surrounding networks, i.e., the parameters on

0



which the transition calculations are based.

debug [ev dc tau taup tw spk] [off] [all]
Set debugging level. Useful for debugging simulator
and/or circuit at various levels of the computation.
The meaning of the various debug levels is as follows:

ev display event enqueueing and dequeueing.

dc display dc calculation information.

tau display time constant (timing) calculation.

taup display second time constant (timing) calculation.
tw display network parameters for each stage of

the tree walk, this applies to dc, tau, and
taup. This level of debugging detail is usu-
ally needed only when debugging the simulator.

spk displays spike analysis information.

all This is a shorthand for specifying all of the
above.

off This turns off all debugging information.

If a debug switch is on then during a simulation step,
each time a watched node is encounted in some event,
that fact is indicated to the user along with some
event info. If a node keeps appearing in this prinout,
chances are that its value is oscillating. Vice versa,
if your circuit never settles (ie., it oscillates) ,
you can use the "debug" and "t" commands to find the
node(s) that are causing the problem.

Without any arguments, the debug command prints the
current debug level.

t [-)wnode...
set trace flag for node. Enables the various printouts
described above. Prefacing the node name with ’-'
clear its trace flag. If “"wnode" is the name of a vec-
tor, whenever any node of that vector changes value,
the current time and the values of all traced vectors
is printed. This feature is useful for watching the
relative arrival times of values at nodes in an output
vector.

System interface commands:

> filename
Write current state of each node into specified file.
Useful for making a breakpoint in your simulation run.
Only stores values so isn’t really useful to "dump" a
run for later use, i.e., the current input lists, pend-
ing events, etc. are NOT saved in the state file.

< filename '
Read from specified file, reinitializing the value of
each node as directed. Note that network must already
exist and be identical to the network used to create
the dump file with the ">" command. These state saving
commands are really provided so that complicated ini-
tializing sequences need only be simulated once.



<< filename
Same as "<" command, except that this command will
restore the input status of the nodes as well. It does
not, however, restore pending events.

dumph [filename]
Write the history of the simulation to the specified
file, that is; all transistions since time = 0. The
resulting file is a machine-independent binary file,
and contains all the required information to continue
simulation at the time the dump takes place. If the
filename isn’t specified, it will be constructed by
taking the name of the sim file (from the command line)
and appending ".hist" to it.

readh filename
Read the specified history-dump file into the current
network. This command will restore the state of the
circuit to that of the dump file, overwriting the
current state.

flush [time]
If memory consumption due to history maintanance
becomes prohibitive, this command can be used to free
the memory consumed by the history up to the time
specified. With no arguments, all history up to the
current point in the simulation is freed. Flushing out
the history may invalidate an incremental simulation
and the portions flushed will no longer appear in the
analyzer window.

setpath [path...]
Set the search-path for command files. Path should be
a sequence of directories to be searched for ".cmd"
files, "." meaning the current directory. For eaxmple:

setpath . /usr/me/rsim/cmds /cad/lib/cmds

With no arguments, it will print the current search-
path. 1Initially this is just ".%.

print text...
Simply prints the text on the user’s console. Useful
for keeping user posted of progress through a long com-
mand file.

logfile [filename]
Create a logfile with the specified name, closing
current log file if any; if no argument, just close
current logfile. All output which appears on user’s
console will also be placed in the logfile. Output to
the logfile is cleverly formatted so that logfiles
themselves can serve as command files.

setlog [filename | off]
Record all net changes, as well as resulting error mes-
sages, to the specified file (see "update"™ command).
Net changes are always appended to the log-file,
preceding each sequence of changes by the current date.
If the argument is off then net-changes will not be
logged. With no arguments, the name of the current
log-file is printed.

The default is to always record net changes; if no
filename is specified (using the “setlog" command) the
default filename irsim changes.log will be used. The



wnet

time

exit

log-files are formatted so that log-files may them-
selves be used as net-change files.

[filename]

Write the current network to the specified file. 1If
the filename isn’t specified, it will be constructed by
taking the name of the sim file (from the command line)
and appending ".inet" to it. The resulting file can be
used in a future simulation run, as if it were a sim
file. The file produced is a machine independent
binary file, which is typically about 1/3 the size of
the sim file and about 8 times faster to load.

[command])

With no argument, a summary of time used by the simula-
tor is printed. If arguments are given the specified
command is timed and a time summary is printed when the
command completes. The format of the time summary is
Uu Ss E P% M, where:

U => User time in seconds

S => System time in seconds

E => Elapsed time, minutes:seconds

P => Percentage of CPU time (((U + S)/E) * 100)
M => Median text, data, and stack size use

Terminate current input stream. If this is typed at
top level, the simulator will exit back to the system;
otherwise, input reverts to the previous input stream.

[n]
Exit to system, n is the reported status (default: 0).

Simulator parameters are set with the following commands.
With no arguments, each of the commands simply prints the
current value of the parameter.

decay [n]

Set decay parameter to n ns. (default: 0). If non-
zero, it tells the number of ns. it takes for charge on
a node to decay to X. A value of 0 implies no decay at
all. You cannot specify this parameters separately for
each node, but this turns out not to be a problem. See
"report" command.

display [-])[cmdfile] [automatic]

set/reset the display modes, which are

cmdfile commands executed from command files are
displayed to user before executing. The
default is cmdfile = OFF.

automatic print out current display list (see "d"
command) after completion of "s% or "c"
command. The default is automatic = ON.

Prefacing the previous commands with a "-" turns off
that display option.

model [name]

Set simulation model to one of the following:

switch
Model transistors as voltage controlled switches.
This model uses interval logic levels, without
accounting for transistor resistances, so circuits



with fighting transistors may not be accuratelly
modelled. Delays may not reflect the true speed of
the circuit as well.

linear .
Model transistors as a resistor in series with a
voltage controlled switch. This model uses a
single-time-constant computed from the resulting RC
network and uses a two-time-constant model to analyze
charge sharing and spikes.

The default is the linear model. You can change the

simulation model at any time -- even with events pend-
ing -- as only new calculations are affected. Without
arguments, this command prints the current model name.

report [level]
When level is nonzero, report all nodes which are set
to X because of charge decay, regardless on whether
they are being traced. Setting level to zero disables
reporting, but not the decay itself (see "decay" com-
. mand) .

stepsize [n]
Specify duration of simulation step or clock phase. n
is specified in ns. (nanoseconds). Floating point
numbers with up to 1 digit past the decimal point are
allowed. Further decimals are trucated (i.e. 10.299 ==
10.2).

unitdelay [n] :
When nonzero, force all transitions to take n ns. Set-
ting the parameter to zero disables this feature. The
resolution is the same as for the "stepsize" command.

stats
Print event statitistics, as follows:

changes = 26077

punts (cns) = 208 (34)

punts = 0.79%, cons_punted = 16.35%
nevents = 28012; evaluations = 27972

Where changes is the total number of transistions
recorded, punts is the number of punted events, (cns)
is the number of consecutive punted events (a punted
event that punted another event). The penultimate line
shows the percentage of punted events with respect to
the total number of events, and the percentage of con-
secutive punted events with respect to the number of
punted events. The last line shows the total number of
events (nevents) and the number of net evaluations.

Incremental simulation commands:

Irsim supports incremental changes to the network and
resimulation of the resulting network. This is done incre-
mentally so that only the nodes affected by the changes,
either directly or indirectly, are re-evaluated.

update filename
Read net-change tokens from the specified file. The
following net-change commands are available:

add type gate source drain length width [area])

‘o



delete type gate source drain length width [area]

move type gate source drain length width [area]l] g s d
cap node value

N node metal-area poly-area diff-area diff-perim
M node M2A M2P MA MP PA PP DA DP PDA PDP

thresh node low high
Delay node tplh tphl

For a detailed dscription of this file see netchange(5) .
Note that this is an experimental interface and is
likely to change in the future.

Note that this command doesn’t resimulate the circuit
so that it may leave the network in an inconsistent
state. Usually this command will be followed by an
isim command (see below), if that is not the case then
it’s up to the user to initilize the state of the cir-
cuit. This command exists only for historical reasons
and will probably disappear in the future. 1It’s use is
discouraged. )

']

isim [filename])
Read net-change tokens from the specified file (see
netchange(5)) and incrementally resimulate the circuit
up to the current simulation time (not supported yet).

ires n
The incremental algorithm keeps track of nodes deviat-
ing from their past behavior as recorded in the network
history. During resimulation, a node is considered to
deviate from its history if it’s new state is found to
be different within n ns of its previous state. This
command allows for changing the incremental resolution.
With no arguments, it will print the current resolu-
tion. The default resolution is 0 ns.

SEE ALSO

presim(l) (now obsolete)

rsim(l)

irsim-analyzer (3)

sim(5)

netchange (5)

———————
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