
Copyright © 1991, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN EXPLORATORY STUDY OF AD HOC

QUERY LANGUAGES TO DATABASES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/112

12 December 1991

AN EXPLORATORY STUDY OF AD HOC

QUERY LANGUAGES TO DATABASES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/112

12 December 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN EXPLORATORY STUDY OF AD HOC

QUERY LANGUAGES TO DATABASES

by

John E. Bell and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/112

12 December 1991

ELECTRONICS RESEARCH LABORATORY

Collegeof Engineering
University of California, Berkeley

94720

This paper will be presented atthe IEEE 8th Int'l Conf. on Data Engineering, Feb. 3-7,1992, Phoenix, AZ

An Exploratory Study of Ad Hoc Query Languages to Databases

John E. Bell
Instructional Technology Program

University of California
Berkeley, CA 94720

Abstract

This paper describes an exploratory study performed to
compare three different interface stylesforadhoc query to
a database. Subjects with wide ranging computer
experience performed queries of varying difficulty using
either anartificial, a graphical, or a natural language
interface. Allthree interfaces were commercial products.
The study revealed strengths and weaknesses of each
interface and showed that interaction with the natural
language interface was qualitatively different than
interaction with either the graphical or artificial language
systems.

1. Introduction

Increasing computer power and decreasing costs are
causing radical changes in user interfaces. Graphical and
natural language interfaces are now practical alternatives
to alphanumeric interfaces. This paper describes an an
exploratory study that compared three different interface
styles for database query: 1) artificial language,
2)graphical language, and3) natural language.

Other researchers havecompared different interfaces to
query languages with varying success. Some have
compared various artificial languages (e.g., [1-4]), others
included natural language systems (e.g., [5-7]), and
others have studied various other query language interface
issues (e.g., [8-17]).

This paper describes an exploratory study comparing
full function query languages with fifty-five subjects
working on actual interfaces in a controlled environment.
Subjects ranged in computerexperiencefrom none at all
to experienced database users with programming
experience. The tasks included simple queries (e.g., single
table) to complex queries (e.g., multiple table and
aggregate counting). Subject performance was analyzed
across interfaces and across task types giving a rich and
broad picture of the usability of these interfaces.

Research supported in part by a grant from BP America and
by the National Science Foundation under grant MIP 87-
15557.

Lawrence A. Rowe
Computer Science Division-EECS

University of California
Berkeley, CA 94720

This study was an exploratory study because of the
lackof research regarding how these three interface styles
compare using actual systems. Concepts from case
studies were applied to gain an understanding of how
these different interfaces compare as a prerequisite to
finding the result of such a comparison. A case study,
likeethnographic research, allows us to relyon a variety
of means of observation, to discover what questions
shouldbe asked in a comparison of such interfaces, and to
recognize the complexity of comparing the use of these
interfaces by actual users [18]. The need to emphasize
qualitative aspects of research hasbeenrecognized as well
by other researchers in computerscience (e.g., [19] and
[20]).

This research stands out from the previous research
because: 1) it is the first to include a graphical interface
for database query, 2) it was performed in a relatively
controlled environment using actual products, and 3) it
emphasizes the qualitativedata to help us understand the
natureof the comparisonof these systems.

Theremainder of this paperdescribes the studyand the
results. Section 2 describes the sample database and the
three interfaces. Section 3 describes the details of the
experiment, including its design, the subjects involved,
and the treatment. Section 4 presents the quantitative
results and section 5 presents the qualitative results.
Section 6 describes a small expertsexperiment and those
results compared to the results presented in section 4.
Finally, section 7 contains our conclusions.

2. The experimental database and the
interfaces

The experimental database included information about
students, teachers, classes and activities for a high school.
Figure 1 shows an entity-relationship diagram for the
database. Entities are represented by boxes, and
relationships are representedby diamonds.

The high school database was chosen because it was
familiar to all subjectsand it is easy to understand. Also,
it has sufficient entities and relationships to allow a
varietyof simpleand complexquestions to be asked.

A fundamental problem encountered when comparing
different interfaces for the same task is to find a fair

method to present the task to the experimental subject.
Several different approaches have been used by other
researchers (e.g., [5], [6], and [9]). We chose a pictorial
representation of the tasks because it causes minimal bias
toward any of the interfaces, it can represent all of the
desired tasks, and it was readily understandable by
subjects. Note that the representation was not intended to
bea complete query language.

Figure 1: ER diagram of high school database.

Figure 2 shows an example. The task represented in
thefigure is to find the firstand last names andsalary of
teacher number 101.1 The icon represents the entity, in
this case a teacher, and the captions represent the
attributes. Attributes with values are restrictions and
attributes without values specify the information to be
retrieved. Subjects could refer to a sheet showing these
icons and their meaning during the experiment. During
the experiment, subjects appeared to have little trouble
understanding thepictures, though in a fewinstances they
misread a picture (e.g., not noting that "101" was
specified by the teacher number).

Ibacher Number: 101
First Name:
Last Name:

Salary:

Figure 2: An example of pictorial task presentation.

Figure 3 shows a task description for a two table
query. The task is to list all courses taught by each
teacher. Notice that the join is not specificallystated but

1The actual representation used in the study was slightly
differentbut the difference did not affectunderstanding by the
subjects. For more details, see [Bell, 1990 #53].

is implied because it uses attributes from different entities
(i.e., teachers and section). The remainder of this section
shows how this query can be entered into the three
interfaces.

Teacher Name:

Department Code:
Course Number:

X
Period:

Figure 3: Task: List all courses taught by each teacher.

2.1. SQL

The first interface was an artificial language (AL)
interface called isql that used SQL [21]. SQL uses
English keywords (e.g., select, from, and where) to make
it more readable and easier to remember. SQL is claimed
to be user friendly because it is a non-procedural
language. An SQL query that solves the sample task is:

select teachers.tfname, teachers.tlname,
sections.dcode, sections.cnumber, sections.speriod

from teachers, sections
where teachers.tnumber - sections.tnumber

2.2. Simplify

The second interface was a graphical language (GL)
called Simplify developed by Sun Microsystems [22].
Earlier versions of Simplify were developed at Xerox
PARC [23]. Simplify is essentially a graphical interface
to an SQL processor. A query constructed in Simplify is
translated into an SQL query which is then run.
Consequently, Simplifyand SQL users specify the same
commands but in different ways.

Figure 4 shows a Simplify window that contains the
query for the sample task. The query is created by the
following steps:

• Click on entity buttons for the tables in the query
(i.e., teachers and sections). The entity boxes in the
qualification window are displayed when the entity
is selected.

• Click on the attributes in the entity boxes that are
to be included in the query. Selected attributes are
indicated by check marks (•) and are automatically
entered into the output format window.

• Click on tnumber in teachers, select "Create a join"
in a pop-up menu, and click on tnumber in
sections. This specifies the join between teachers
and sections. A line joining these two attributes is
displayed.

The query is then executed by choosing "Execute
query" in a pop-up menu. The query result is displayed in
another window.

Entity
Buttons

GraphQuery Editor

4=H

-GDEK

Rendu List

^
I 1 1 I 1 1 f '•!"

KM

- 1 iTl fl 11 !••• IllJlM., ||M»^IW >Li •| I
OH.1Q «t.w) tvw™o r ",IMI W»"«l |

/

Qualification
Window

Output
' Format
Window

Figure 4: A sample Simplify screen/

2.3. DataTalker

The third interface was a natural language interface
(NL),called DataTalker, developed by Natural Language,
Inc. [24]. It allows users to specify a query by entering
plainEnglish on a keyboard.

One solution to the sampletask is the following:

Show the courses taught by each teacher

It is important to realize that this is only one solution
among many that the user can enter to request this
information. For example, another way to ask for this
information is:

List the teachers and their courses

Oneobjectiveof a naturallanguageinterfaceis to allowa
variety of questions to access the same data.

All interfacesused the Ingres DBMS to store data. The
SQLinterface used in the experiment was the isql full
screen editor supplied with Ingres 5.0. The Simplify
interface used was version 1.0 (beta) released in May
1989. The DataTalker interface used was version 3.0
released in March 1989.The experiment was performed
on a Sun 3 computer. The same database was used for all
subjects.

3. The experiment

The experimental design is shown in figure 5.
Subjectswere assigned to one of four groups (the vertical
axis) based on prior experience and were randomly
assigned to one of three treatments (the horizontal axis).
Each subject worked through two phases: a learning
phase and a performance phase. The learning phase was
composed of task levels that covered seven types of
queries as shown in figure 6. The performance phase

^The entity boxes in figure 4 are shown side-by-side to
enhance readability.

included queries to test how well the user learned to use
the interface to which they were assigned during the
experiment

Novice

End-User

Programmer

Database User

If 1» n
51 dl £J

Figure 5: Experimental design.

Level Description

LI One table, no restrictions

L2 One table, one restriction

L3 One table, two restrictions

L4 One table, one or two restrictions, sorting

L5 One table,no restrictions, aggregation counting

L6 Two table join

L7 Three table join

Figure 6: Learning phase task level definitions.

Group Definition

Novice < 10 hours of computer experience ever

End User experience with applications, no
programming experience

Programmer programming, no database experience

Database
User

knowledgeable in SQL or QUEL

Figure 7: Subject group definitions.

Most of the 55 subjects were volunteers drawn from
students at the University of California at Berkeley. The
subjects were classified according to prior computer
experience as shown in figure 7.

There were fifteen subjects in each user group except
for database users. Since the database users knew SQL,
none of them were assigned to the AL condition.
Consequently, only ten database users were included in
the study.

Subjects were randomly assigned to one of the three
treatments: AL, GL, or NL. Everything was identical
about the three treatments except for the interface used
and the content of the help materials provided during the
learning phase. Each subject spent about two hours
working with the assigned interface.

Each subject was given a brief introduction to the
experiment, the high school database, and the pictorial
task presentation method. The only information they
were given regarding the database was the set of icons
used in query pictures along with a brief explanation of
each icon. The ER diagram in figure 1 was not made
available to the subjects.

3.1. Learning phase

Subjects then worked through the learning phase based
on the following procedure. Subjects were given a task
beginning at level 1 which they were to perform. If they
could not solve the task, help was provided in the form of
written advice. Help was broken down into the four levels
shown in figure 8. After completing the task, another
task of similar difficulty was given. These tasks were
given until a task could be solved without help at which
point subjects were advanced to the next level. A
minimum of two tasks per level was required even if
subjects could complete the first task without help.

Level Description

Hint A two sentence description of the essence of
the solution.

Example A query used to solve a similar task.

Explained
Example

The steps followed to generate the example
query.

Answer A query that would solve the current task.

Figure 8: Help level descriptions.

3.2. Performance phase

After completing all levels, subjects moved to the
performance phase of the experiment The performance
phase was the same as above except that no help was
given. Subjects were allowed to work until they were
successfulor until they were making no progress toward
the solution. The performance phase tasks are shown in
figure 9.

Tasks 6 and 7 were included to see if subjects were
able to extend their knowledge of the interfaces to
situations that had not been explicitly taught.

4. User performance results

The quantitative results of the performance phase of
the study are briefly presented in this section. Two
metrics were examined: success and average time to task
completion. Success is defined as completing a given
task in a level. This metric assessed how well subjects
could perform a variety of tasks after the training they
received in the learning phase. The second metric was the

average time required to complete each task. The average
is considered only when tasks were successfully
completed by at least half of the subjects. This metric
assessed how much work was required of subjects to
complete tasks in the performance phase.

Perf.

Task

Description Learning
Level

1 One table, no restrictions LI

2 One table, two restrictions L2&L3

3 One table, aggregate counting L5

4 Three table join L7

5 Two table join, one restriction,
sorting

L4&L6

6 Non-existence none

7 Self-referential join none

Figure 9: Performance phase task level definitions.

Note that because this study was an exploratory study
these data are not statistically significant. We wanted to
understand the qualities of the comparison between these
interfaces before we attempted to achieve statistically
significant quantitative results. The qualitative results, as
presented in Section 5, are thus the more important and
informative results of this study. The quantitative results
are presented here for completeness. Throughout this
section, we present our interpretation of the quantitative
results based on our qualitative observations. These
interpretations, however, are based on observations of
individual cases and thus should not be considered as

conclusions based on statistically significant numbers.

4.1. Trained tasks

The first metric examined for the trained tasks was the

success rate. The number of tasks completed successfully
out of all of the trained tasks is shown by user group and
by interface in figure 10. Five tasks (i.e., levels 1 thru 5)
were given to each of the five subjects in each user
group, so the maximum possible value in each cell is 25.
This table shows that the skills and experience of
programmers and database users had a strong positive
effect on their performance. This advantage was most
pronounced on SQL and Simplify. This table also shows
that the knowledge that end users had, as compared to
novices, was most important when learning DataTalker.
Finally, this table shows the overall strength of Simplify
for trained tasks.

Though certain patterns are very clear from this data
(e.g., end users on SQL and Simplify did no better than
novices on those systems, while end users on DataTalker
did much better than novices on that system), a Chi-

Square analysis doesnotyield anysignificant differences
overall. Future research which includes more subjects is
needed in order to determine if there are significant
differences in this table.

cm SQL

Interfar.es

Simplify DataTalker

Novices 11 11 7

End Users 10 11 12

Programmers 21 24 16

DB Users • 24 20

Figure 10: Number of successful tasks by user group for
trained tasks.

Figure 11shows.the success metric in greater detail. It
contains a breakdown of figure 10 by task levels. The
vertical axis shows the number of successful tasks, and
the horizontal axis shows the task level.

Novices

End User*

It]3
a- 11 ut

— !•

> a 9 4 "%

Programmers

I I I II I,
I Ivll |:
I iilvll li;

Database Users

4" _

"

~

a-

i- U
-

•

N
i a 3 4 (

SQL

Simplify

DataTalker

Figure 11: Number of successful tasks by usergroup and task
level for trained tasks

The second level caused problems for all subjects
using DataTalker. This task involved multiple
restrictions which in and of themselves may be hard for
natural language. The problems may also have arisen,
however, due to difficulty related to the specific task
involved. This pattern is explained in more detail in
Section 5.1.

Novices on all systems performed roughly the same.
Thisresult is surprising in that novices usingDataTalker
were no more successful on these tasks overall than

novices using either SQL or Simplify in spite of the
expectedbenefits of natural language interfaces.

End users did approximately the same on all systems
except for the fifth level. This level involved a two table
join which had a more complex interaction than was
found in the three table join of level 4. Because users of
DataTalker did not have to deal with this complexity, 3
of the5 subjects using DataTalker wereable to complete
this task. In contrast, this complexity resulted in no SQL
or Simplify users being successful.

Overall, the success rates on these tasks were very
similar across these interfaces with theexception of level
2 for all subjects, and of level 5 for end users.

The second metric examined was the average time
needed tocomplete each task, including the time used by
subjects to read the pictorial representation of the task.
The resultsare shown in figure 12.

End users took about the same amount of time on all
systems. Note, however, that while novices were just as
fast as end users on Simplify and DataTalker, end users
onSQLwere much faster than novices on SQL.

Database users took about the same amount of time
on Simplify and DataTalker. However, database users on
DataTalker were faster than programmers on DataTalker.
This result is surprising because the benefits of natural
language interfaces are expectedto be greater for the less
experienced, andyethere, theextraknowledge andskill of
database users made the interface apparently more
powerful.

We collected and analyzed this data on the time to
complete a query because we thought one or more
interfaces mightrequire less time for a user to express a
query. We hypothesized that the time would be less if the
time to plan a solution or to execute the plan was
shorter. This experiment did not reveal many large time
differences so further experimentation and analysis is
required toevaluate ourhypothesis.

Novlcea Programmers

End Users Database U sens
° •

* •
* •

jt

i- 1*1 1 H n —H». In
BR H MR ^ff

i i 9 4 S 3 3 4 S

SQL
Simplify
DataTalke

Figure 12: Average time (in minutes) for trained tasks.

4.2. Untrained tasks

The first untrained task was a non-existence query.
None of the subjects using SQL or Simplify was
successful on this task. DataTalker subjects, however, did
extremely well. All five of the programmers and database
users and three of the five novices as well as end users

were successful. We were not surprised by the Simplify
result because the system is incapable of performing this
task. However, we were surprised by the SQL result.
This query was a clear winner for the natural language
interface.

The second untrained task was a self-referential join
query. Only one subject, a databaseuser using Simplify,
was able to perform this task. Hence, Simplify is capable
of performing self-referential joins, but most subjects
were unable to discover how to do it. Furthermore, no

SQL subjects were successful because self-referential
joins in SQL are hard to figure out if you've never done
one before. No DataTalker subjects were able to perform
the self-referential join. This result does not mean that
DataTalker cannot solve the task but that no one was able
to discover how to do it. We were somewhat surprised by
these results since we thought more subjects would get
this query. This result suggests that subjects did not
really understand the self-join concept and/or the way
joinsare specified in the threeinterfaces. Furtherstudy of
this issue is needed.

The timing data on the untrained tasks did not reveal
any obvious patterns.

5. Qualitative results

In an exploratory study, qualitative data is a rich
source of information which helps the researcher
understand more about the object of study. Subject
comments both during and after the experiment, common
mistakes and usage patterns, and experimenter
observations all provided insight concerning what was
easy and hard about each of these interfaces for the
different types of tasks in this study. This section
contains a discussion of the qualitative results as they
relate to the following topics: 1) single and multiple
restriction tasks, 2) join tasks, 3) counting tasks, 4)
unknowingly getting the wrong answer, 5) compounded
uncertainty, and 6) the natural language connection.

5.1. Single and multiple restrictions

The transition from single to multiple restrictions
results in dramatically different performance on each of
the three interfaces. In Simplify, multiple restrictions are
specified by repeatedly forming single restrictions.
Consequently, subjects did as well with multiple
restrictions as with single restrictions. SQL was a little
harder since subjects had to include the 'and' operator.
DataTalker was much harder on multiple restrictions than
on single restrictions partly because of the many possible
ways that multiple restrictions can be stated in English.
These statements also were more complex and led to
greater user difficulty.

5.2. Joins

Both SQL and Simplify required users to understand
the concept of forming joins by setting the join terms to

be equal. This process was complex, largely due to
figuring out which join terms should be used for each
task. Simplify was slightly easier to do on two table
joins because the graphical representation was simpler
than the SQL syntax, allowing subjects to focus more on
the question of which terms to include than on how to
express the join.

Specifying joinswasan area in which DataTalker was
clearly superior because users did not have to specify
joins at all. Allpotential joins in thedatabase had to be
described to DataTalker in the connection process. When
users asked a question that involved attributes in separate
tables, DataTalker automatically included the join terms
between the tables. Subjects who used DataTalker were
unaware thatjoinsever tookplace. In fact, somesubjects
thought that some of the two table join tasks had been
given before since they were so much like the earlier
tasks in other respects.

This power of DataTalker is similar to the universal
relation interface as described by Maier, et al. [25]. SQL
also provides a similar though more limitedfunctionality
with views which was not included in this experiment.

5.3. Counting

Counting was a very simple concept for subjects to
understand, but it met with varying difficulty in each of
the interfaces. Programmers had an especially hard time
learning counting in SQL. They could not see the logic
in the new commands. Consequently, they refused to
believe it had been designed as it appeared. Once they
learned how it worked, however, they were able to
perform counting tasks relatively quickly. In contrast, end
users using SQL did not have this difficulty with
counting. Subjects had little trouble in Simplify. A
construct that was similar to SQL was used, but it was
easier to use in Simplify. In DataTalker, most subjects
had almost no trouble at all. An obvious way of stating
these tasks in English worked very reliably.

5.4. Unknowingly getting wrong answer

We expected to find that subjects using DataTalker
would unknowingly get the wrong answer more often
than when using SQL or Simplify. However, this
behavior happened with about the same frequency on all
systems. In general, the wrong answer occurred unnoticed
only at the fringes of a subject's knowledge of the
database and the interface they were using.

5.5. Compounded uncertainty

Each part of a query that was uncertain in the user's
mind dramatically increased the difficulty of completing

the query. Several combinations had to be tried before
finding anappropriate way towrite each part of the query.
This compounded uncertainty was most apparent in
DataTalker because of thetremendous variation possible.
Compounded uncertainty was the least common in
Simplify because of the immediate feedback.

5.6. Natural language connection

Ogden has noted that the quality of the connection
must be considered when evaluating natural language
interfaces [26]. It is unreasonable to expect that actual
users will be able to develop as consistently good
connections as the authors of a natural language system.
Wespent several weeks working on theknowledge base.
Then, a pilot study was run with several users to debug
the experimental design and the connection. Problem
areas were discussed with NLI and the changes they
suggested weremade. Nonetheless, not all problems were
fixed. More research is needed in order to understand what
impact theconnection has on userperformance.

6. Experts experiment

A briefexperiment with twoexpertson each interface
was also performed to serve as a benchmark to compare
with the performance of subjects in the performance
phase. This experiment was performed in exactly the
same manner as the other experiment. On all systems,
experts didbetter than the bestnon-experts (programmers
and database users) butnotbya wide margin. Theexperts
were often faster and more successful though notalways.

As was expected, in SQL experts did much better than
non-experts on the untrained tasks, andSimplify experts
did not do much better than non-experts on any task.
SQL requires greater knowledge of complex features
while most of Simplify's features are visible in its
graphical interface. DataTalker experts did no better
overall than non-experts. This result was surprising but
is reasonable because every connection in DataTalker is a
new interface which may not draw on more general
expertise.

7. Conclusions

The following conclusions can be drawn from this
experiment.

First, no interface was best. It comes as no surprise
that noneof these interfacesoutperforms the others in all
cases. Each does better under certain conditions.
Furthermore, eachinterface canbe improved.

Second, interaction with DataTalker is different than
with SQL and Simplify. The performance of subjects
who used DataTalker was very different than the

performance of subjects whoused SQLor Simplify. This
result shows that an implicit goal of natural language
interfaces, thatis, to change thestyleof human-computer
interaction, has been achieved in DataTalker. The
difficulty of tasks in DataTalker is largely independent of
the difficulty in more formal languages.

This result also shows the significance of the
performance of subjects using DataTalker. Using a
radicallydifferent style of interface, DataTalker's overall
performance is comparable to the performance of more
established interfaces.

Third, user experience affects performance differently
on each interface. No one doubts the fact that in general
the more experience users have the better they will do.
What is surprising is the way experience affects
performance on each system. In particular, performance
on DataTalker was greatly affected by computer and
database experience. It is often assumed that natural
language interfaces will be best for those with less
computer expertise, but it appears that such expertise is
still an important asset to users of today's natural
language interfaces.

Another surprise is that Simplify was strongest for
programmers. The general expectation is that graphical
interfaces arebetter for those with lessexperience. In this
study,however, the complexity of the graphical interface
preventedthat from happening.

As our conclusions state, these results apply
specifically to the interfaces tested. However, to the
extent that other query interfaces are like these interfaces,
similar patterns can be expected to occur [27]. For
example, for other graphical languages that follow a
model similar to Simplify (e.g., VQL from Sybase [28]),
and for other natural language interfaces that have a
similar coverage ofEnglish and allow a similar dialog as
in DataTalker, strengths and weaknesses like those seen
here canbe expected to occur. Actual experimentation is
needed, however, to explore the similarity of other
interfaces to these systems, and consequently, the
applicability of these results.

Many other topics for research in the comparison of
interfaces for ad hoc database query also remain. A
focused study on eachof the usergroups, especially end-
users, needs to be performed in order to determine a
specific and reliable comparison of the three interface
styles. Research should also be performed which focuses
more on the qualitative aspects such as evaluating user
strategywhenworkingwith natural languageinterfacesor
developing a modelof user knowledgeand behaviorwhen
working withquery interfacesin general.Researchshould
also consider other interfaces such as NLMenu which is a
menu-based interface to a natural language system [29].
Finally, similar research should be performed as

enhancements are made to these interfaces in order to

determinehow user performance is affected.

References

1. Reisner, P., R.F. Boyce, and D.D. Chamberlin.
Human factors evaluation of two database query
languages - Square and Sequel, in National
Computer Conference. 1975. Anaheim, CA: AFIPS.

2. Greenblatt, D. and J. Waxman, A study of three
database query languages, in Databases: Improving
Usability and Responsiveness, B. Shneiderman,
Editor. 1978, Academic Press, Inc.: New York. p.
77-97.

3. Boyle, J.M., K.F. Bury, and RJ. Evey. Two studies
evaluating learning and use of QBE and SQL. in
Proceedings of the Human Factors Society 27th
Annual Meeting. 1983. Santa Monica, CA: Human
Factors Society.

4. Zloof, M.M. Query by Example, in National
Computer Conference. 1975. Anaheim, CA: AFTPS.

5. Shneiderman, B., Improving the human factors
aspect ofdata base interactions. ACM TODS, 1978.
3(4): p. 417-439.

6. Small, D.W. and L.J. Weldon, An experimental
comparison ofnatural andstructured query languages.
Human Factors, 1983. 25: p. 253-263.

7. Jarke, M., et al., A field evaluation of natural
language for data retrieval IEEE TSE, 1985. SE-
11(1): p. 97-114.

8. Thomas,J.C. and J.C. Gould.Apsychological study
of query by example, in National Computer
Conference. 1975. Anaheim, CA: AFIPS.

9. Ogden,W.C. and S.R. Brooks,Query Languagesfor
the Casual User: Exploring the Middle Ground
between Formal and Natural Languages. CHT83,
1983.: p. 161-165.

10. Fink, P.K., A.H. Sigmon, and A.W. Biermann,
Computer controlvia limitednatural language. IEEE
Transactions on Systems, Man, and Cybernetics,
1985. 15: p. 54-68.

11. Ogden, W.C. and A. Sorknes. What do users say to
their natural language interfaced in Proceedings of
Interact '87 - 2nd IFIP conference on Human-
Computer Interaction. 1987. Amsterdam: Elsevier
Science.

12. Krause, J., Natural language access to information
systems. An evaluation study of its acceptance by
end users. Information Systems, 1980. 5: p. 297-
319.

13. Damerau, F.J., Operating statistics for the
transformational question answering system.
American Journal of Computational Linguistics,
1981. 7: p. 30-42.

14. Welty, C. and D.W. Stemple, Human Factors
Comparison of a Procedural and a Nonprocedural
Query Language. ACM TODS, 1981. 6: p. 626-
649.

15. Lochovsky, G.H., Data base management system
user performance. 1978, University of Toronto,
Canada:

16. Brosey, M. and B. Shneiderman, Two experimental
comparisons ofrelational and hierarchical database
models. International Journal of Man-Machine

Studies, 1978. 10: p. 625-637.
17. Bierman, A.W., B.W. Ballard, and A.H. Sigmon, An

experimental study of natural language
programming. International Journal of Man-Machine
Studies, 1983.18: p. 71-87.

18. Wolcott, H.F., Ethnographic research in education,
in Complementarymethodsfor research in education,
R.M. Jaeger, Editor. 1988, American Educational
Research Association: Washington, DC.

19. Moher, T.G., Estimating the distribution of software
complexity within a program. CHI '85 Proceedings,
1985.: p. 61-64.

20. Soloway, E., K. Ehrlich, and J.B. Black. Beyond
Numbers: Don't Ask 'How Many'..Ask 'Why', in
Proceedings of the Conference on HumanFactors in
Computing Systems. 1983. Boston, MA:

21. Using INGRES Through Form and Menus. 1989,
Relational Technology, Inc.:

22. SunSimplify™ 2.0 Reference Manual. 1989, Sun
Microsystems, Inc.:

23. Cattell, R.G.G., An Entity-based Database User
Interface. ACM SIGMOD, 1980.: p. 144-150.

24. Natural Language™Database Retrieval System User
Manual. 1988, Natural Language Incorporated:

25. Maier, D., et al. Toward logical data independence:A
relational query language without relations, in ACM
SIGMOD Conference. 1982.

26. Ogden, W.C, UsingNatural LanguageInterfaces, in
Handbook of Human-Computer Interaction, M.
Helander, Editor. 1988, Elsevier Science Publishers:
p. 281-299.

27. Cornfield, J. and J.W. Tukey, Average values of
mean squares in factorials. Annals of Mathematical
Statistics, 1956. 27: p. 907-949.

28. VQL. 1989, Sybase, Inc.:
29. Tennant, H.R., K.M. Ross, and C.W. Thompson.

Usable natural language interfaces through menu
based natural language understanding, in CHI 1983
Conference on Human Factors in Computer
Systems. 1983. Boston, MA: North-Holland.

