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1 Introduction

Electron cyclotron resonance (ECR) sources have been applied to plasma etching and depo

sition of thin films in the past several years. As the use of ECR reactors has become more

widespread, much research has focused on operating characteristics, which has revealed op

erating behavior not yet fully understood. One general configuration for plasma heating is

to transmit the microwave power through a window into the microwave heating chamber, in

which there is a decreasing magnetic field, with Uce(z) > <*> at the window, where u>ce is the

local cyclotron radian frequency and uj is the applied radian frequency. Within the plasma

chamber, the fundamental components of the wave, for propagation parallel to the magnetic

field Bo and with a plasma present, are the right hand polarized (RHP) wave and left hand

polarized (LHP) wave. For significant plasma density, the LHP wave is usually cutoff, while

the RHP wave propagates and can be absorbed on a "magnetic beach" in the neighborhood

of the cyclotron resonance uJce(zres) = w. The absorption of the RHP wave has application to

many physical problems. It was studied by Budden [1] in connection with wave propagation

and absorption in the ionosphere, and by Stix [3] in connection with the heating of fusion

plasmas.

We briefly review the Budden theory of wave absorption. We begin with the wave equa

tion for the electric field in one dimension for an RHP wave with collisional losses:
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where u^z) = e£(z)/m, u;2(z) = e2np(z)/me0 is the square of the plasma frequency, j/(z) is

the collision frequency, and Ajo = w/c is the free spacewavenumber. If up and v are constants

independent of-z, then linearizing cJce about the resonance point we obtain
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where we have normalized zby s = ko(z —zres) and a = BQ~X (dB Idz) Sr^, where Bo is B at

resonance. This corresponds to the form investigated by Budden
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with rj —w2/uca and 7 = i//ca. The dielectric function has a pole and a zero, with the

pole, in the absence of collisions, occurring at 3 = 0 (z —zre8) and the zero at s = —77. In

the'approximation of (3) Budden obtained solutions for waves traveling in either direction.

For a wave traveling into a decreasing magnetic field (the magnetic beach) he calculates the

transmission (tunneling) and reflection factors

— «-?*nT = e"* (4)



R = 0 (5)

where T =| Etrana/Efwd I and R =| Ereft/Efwd |. Since there is no reflected wave, the ratio

of absorbed to forward power is given by

P^/Pf** = 1- T2 = 1- e—». (6)

For a wave traveling into an increasing magnetic field the solution gives both transmission

and reflection

T = e"*'"7 (7.)

R = l-e"1"*. (8)

Since T2 + R2 < 1 there is absorption in this case also. When the normalized distance r?

between the pole and the zero is large compared to a wavelength far from resonance, no

tunneling occurs and the reflection or absorption of the wave is determined by whether it

encounters the pole or the zero first. When the pole-zero separation is small compared to a

free space wavelength, significant tunneling occurs.

Considering the wave incident on a magnetic beach, the Budden theory predicts that

most of the power will be absorbed for r? > 1. Using the definition of 77 in (3) and taking a



typical case for which A0 = 27r/fc0 « of"1, we find that 77 = 1 corresponds to w2/w2 « 1/27T.

Thus we expect the power to be absorbed at a density significantly below the critical density

ujp = u;.

Clearly, the Budden theory is too idealized for application to a physical system in a

number of respects. The reflections in a plasma chamber generate interference of waves

that can significantly affect the absorption. The variation of axial plasma density causes

initial upstream power reflection not included in the Budden theory. The collisionality is

strongly locally enhanced by nonlinear absorption of power in the resonance zone. These

effects can be taken into account in a one-dimensional model by numerical integration of the

fundamental equation (1). Boundary conditions may be imposed at each end of the chamber,

with reflections modeled by a movable short at the chamber end (E-field null) and linearly

polarized waves injected at the microwave source end (left-and right-hand polarized waves

of equal magnitude and phase at the entrance window).

In addition, the waves are not propagating parallel to the magnetic field due to a nonzero

transverse separation constant in a finite diameter cylindrical ECR chamber. This couples

the fundamental RHP and LHP waves together, as well as with their extraordinary and

ordinary wave counterparts for propagation perpendicular to B. Once the RHP wave is

significantly absorbed, the density rises such that for the usual power inputs ljp > w. For

this condition it has been shown [2, 4] that mode conversion at u)p = u for a small but finite



transverse separation constant can give significant absorption of the LHP wave, which can

lead to an additional increase in density by up to a factor of two for an incident linearly

polarized wave, with a relatively small fraction of incident power being reflected. In this

work we concentrate on the effects of an incident RHP wave alone, by considering only

propagation parallel to B.

In Section 2 we present the numerical solution of a propagating wave of more general

axial variation which can be compared with the analytic results. More realistic situations

are then treated, including the effects of downstream reflections. In Section 3 we investigate

the relationship between linear and nonlinear absorption to construct an effective collision

frequency veff(z) localized in the nonlinear resonance zone. This is used, together with

a model density distribution, to determine field patterns and absorption. In Section 4,

we describe simple ECR equilibrium dynamics, self-consistently treating the system power

balance including energy gain by electrons in the resonance zone and energy losses to the

walls. In Section 5, we present our conclusions.



2 Spatially Varying Wave Equation

We use the basic wave equation for a RHP wave propagating in an unbounded plasma with

axially varying magnetic field and plasma density to obtain the complete wave solution

for the propagating wave. From the resulting field solution the power and power derivative

(absorption) are also obtained. The basic wave equation (1) with spatially varying coefficients

is solved numerically by separating into real and imaginary parts. Defining G = dE/ds and

taking E = Er + iE[ and G = Gr + iG/, we obtain four first-order ordinary differential

equations:

dER/ds = GR (9)

dEi/ds = G/ (10)

dGR/ds = (n2)7£7 - (n2)RER (11)

dGi/da = -(n2)R£7 - (n2)^ (12)

First weconsider the normalized propagation constant n = k/k0 obtained by linearization

of B about resonance at constant density, as given in (3), to obtain



s2 + 72

Far from the resonance zone we can use the analytic solution, obtained by Budden [1], for

the field, after propagation through resonance from the high magnetic field side:

E=exp{is +*|log |5|+i|log2 - ^-}. (15)

Equation (15) can be expanded in terms of real and imaginary parts of E and its derivative

G to obtain

ER =exp{-^}cos{s +|log|2s|} (16)
Ei =exp{-^}sin{3 +|log|25|} (17)

Gr - ~{1+]h}El (18)
Gi - {1+jh]ER (19)

Equations (9)-(14) can be solved numerically, together with (16)-(19). The numerical

integration scheme is a standard fourth-order Runge-Kutta algorithm with an intelligently

varying step size according to error tolerance requirements. The results for the transmission

coefficient versus density are compared with the analytic result from (4) for v <C w where the

analytic results are accurate, in Fig. 1, giving excellent agreement. We thus have confidence



to apply the numerical technique to obtain the variation of the field and transmitted power

as a function of z, and to extend the method to general variations of np(z), B(z), and v{z).

Keeping in mind that ljp = w for np = 7.4 x 1010 cm"3 at a typical microwave frequency of

/ = (jj/2tt = 2.45 GHz and that v = 109s~l is quite large compared to the typical background

collisionality in a normal ECR processing discharge (1/ = 5.3 x 107 s"1 at p = 10 mTorr), we

plot the magnitude of the power as a function of normalized z with np as a parameter at

v = 109 s_1, and with v as a parameter at np = 1010 cm"3 in Fig. 2a and b, respectively.

The results clearly show that at high density or high collisionality, the transmitted power

falls well before reaching the resonance position. As we shall see in Section 3, this result is

consistent with a nonlinear calculation of power absorption at ECR resonance.

The field variation through the resonance region depends not oidy on the power absorp

tion but also on the variation of the local wave impedance. This field has been calculated

analytically by Stix [3] for the simplified case of a single pole (no zero) for vanishingly small

collisionality. In Fig. 3 we compare the numerical results with the analytic calculation,

in the neighborhood of the resonance, with collisionality as a parameter. As expected, we

find excellent agreement for low collisionality but increasing deviation as the collisionality is

increased.

We now consider a more realistic magnetic field and plasma profile, and the effect of wave

solutions in which there are reflections and therefore RHP waves traveling in both directions



are present. Starting again with the wave equation (1) we choose a model in which

uJce(z) = w(l + tanh (az)) (20)

«pW = wJo(l +tanh(a*)) (21)

"(2) - Trims? (?2)
where as before, a = Bq~x(dBIdz)Zret. The density variation through the resonance zone

follows the magnetic field strength variation, consistent with particles streaming along field

lines. The axial profile of the collisionality parameter has been chosen to be a Lorentzian,

which is large near the resonance zone, to correspond to the nonlinear absorption, with vm

and the scale length (Az) obtained from the nonlinear absorption calculation in Section 3.

The new values of (n2)R and (n2)7 in (9)-(12) are

/ 2x _ , , ptanh(x*)(l +tanh(x3)) ,OQ.
(n,R - l+ tanh2 (Xs) +*2(s) (23)

(n)l " " tanh2(x5) +<r2(.) (24)

where /» = i*#)/w2, x = «c/cj, and <r(s) = i/(s)/w.

Initial conditions are found by taking tanh (xs) to its limit, either -1 for negative 5 or

+1 for positive 3, and then finding the real and imaginary parts of the dielectric constant.
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For large negative 5 the factor 1 + tanh (\s) goes to zero, and the solution is a simple

uniform plane wave propagating in the vacuum (wp = 0). For large positive s, (oj2 = 20;^),

the dielectric function has both real and imaginary parts, and the solution is a uniform plane

wave with a spatially decaying exponential factor. The initial conditions for integrating from

negative s to positive s are therefore

Er = coss (25)

Ei - sins (26)

Gr = -sins =-Ei (27)

Gi = coss = ERl (28)

and the initial conditions for integrating from positive s to negative s are

Er = exp{n/s} cos{nfls} (29)

Ei = —exp{?i/s} sin{nfls} (30)

Gr = uiEr + tirEi (31)

Gi = niEi-nRER (32)

where
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and

ur = nocos <f> (33)

n/ = n0sin</> (34)

* - 1+1^W (35)
1 ./ -2w2i/ \

<£ .= -tan1 £ •^ 2 V9w3-T-u;i/2-6a;2cj>/ (36)

This second set of initial conditions is complicated by the non-zero plasma frequency up. If

ujp is set to zero in the above expressions for n and 0, the second set of initial conditions

reduces to a simple form comparable to the first set.

Because of the interest in effects caused by various reflections in an ECR system, the

calculation was performed with a short at a variable position beyond the resonance zone

(past the zero). First, the usual calculation was made for RHP waves traveling nrthe left

and right directions under the same conditions. Then the two solutions were matched at

the short position by requiring that the transverse electric field go to zero at that point. To

accomplish this, one of the solutions was scaled by a complex constant factor (magnitude

and phase shift) so that the two solutions would add to zero at the short position. The sum

12



of the two solutions then yields a single profile for a wave entering the system, passing the

pole and then the zero, reflecting from the short, and then returning through the resonance

zone. This was done over a half-wavelength range of short positions to see the effects of

moving the short position on absorption. If such a short is placed in a position which results

in a field null at the resonance zone, the reduced field strength at the resonance results in

lower absorption.

The magnitude of the electric field is plotted versus s = k^z, for three different short

positions, in Figs. 4a-c. The calculations in these figures use values of a = 10.8 m"1,

Wpo = 1.5 x 1010 rad/sec, vm = 4.01 x 108 sec"1, and Az = 0.495 cm. In each of these three

figures, waves enter from the right, pass through the resonance zone at s = 0, continue to

the left where they reflect off the short, and return through the resonance zone moving back

to the right. The short position is past the left edge of the scale in each of the three figures,

but the sharp field nulls which result from it are visible in the left half of each figure. The

density and axial magnetic field strength follow a hyperbolic tangent shape [see Eqs. (20)
m

and (21)], starting at low values on the left side, increasing through the resonance zone, and

leveling off at high values on the right side of the figures. It is important to note that due to

the change in density from low to high in going from the left side to the right side, waves of

equal power will have a larger electric field magnitude on the left, where the density is low,

than on the right, where the density is much higher. Since

13



P<x E2/Zp ;ZT = yfcj7p, (37)

and

ep =e0fl+ , "> X (38)
* \ uj(ujce - u) J

for fixed power P we find £? oc ep1^4. The dielectric function is larger where the density is

higher, so the electric field strength is smaller by the above relation.

In the progression from Fig. 4a to Fig. 4c, the short position moves toward the left

in small steps, so = —15.3, —15.8, and —16.1, respectively. The positions of the field

nulls, where the left-traveling and right-traveling waves most strongly cancel each other, are

determined by the position of the reflecting short, where the field is zero. The field nulls

occur at half-wavelength steps away from the short, and as the short position moves, the

field nulls move with it. Hence the electric field minimum near the resonance zone moves

toward the-left from Fig. 4a to Fig. 4c. In Fig. 4a the electric field strength is larger on the

right side, indicating that absorption is taking place in the resonance zone. In Fig. 4b, the

short has moved to the left, in turn moving the electric field minimum closer to the resonance

zone. Absorption still takes place, but the electric field strength is larger on the left than on

the right, due to the dielectric effect discussed above. This progression continues into Fig.

14



4c, where the field null is very close to exact resonance, and the electric field strength on the

left is even larger.

The field pattern on the right in each figure can be understood as a wave moving to the

left which has the same strength in each of the three figures, and a weaker wave moving to

the right. The strength of this right-traveling wave increases from Fig. 4a to Fig. 4c as less

power is absorbed, resulting in more power being reflected back toward the source on the

right. It can be seen that the average value of the field strength on the right is constant

through the three figures, but that the voltage standing wave ratio (VSWR) is increasing

from Fig. 4a to Fig. 4c, indicating that a higher percentage of power is being reflected

as the field null moves closer to resonance. Thus, with a field null near the resonance,' the

absorption decreases significantly.

To see this effect more clearly, the corresponding percent power absorbed is plotted versus

short position in Fig. 5. It is seen that the absorption is strong over most short positions, but

that it dips sharply over narrow, spatially periodic ranges of short positions. This behavior is

explained by the occurrence of field nulls at half-wavelength intervals from the short position,

as was seen in Figs. 4a-c. The corresponding points for each of Figs. 4a-c are noted in Fig.

5, showing that the percent power absorbed in Fig. 4c is half of that in Fig. 4a, a large

change in absorption over a small change in short position. It should also be noted that if

the short position is held fixed but thedensity is varied, field nulls will change position. This

15



is due to the variation of the wavelength with density.

A second type of reflection in an ECR system arises from the transition from the mi

crowave window into the plasma. A relatively sharp rise in plasma density near the window

can cause a significant fraction of the incoming power to be reflected before it enters the

plasma. At low pressures this effect can be modeled as a plane wave reflection at a planar

boundary between two regions of differing dielectric constants. To see the general effect we

consider a plane wave in a vacuum region (dielectric constant e = eo) normally incident on

a region of finite density and corresponding dielectric constant. The resulting transmission

coefficient at the window is

where

J-w —+trana/*inc — . __ *2 (3°)
(y/€r + l)

€r =e/€Q =1+ / U" . (40)

is the relative dielectric constant for the RHP wave and lj2w = e2nw/eom is the square of

the plasma frequency just beyond the window. Multiplying the transmission coefficient by

the Budden power absorption factor (6), we obtain a composite ratio Pabs/Pinc of absorbed

power to incident power. Defining a parameter K that is independent of the absolute density,

16



K= Ca -f. (41)
(ucew - u) u\\

where u^ is the plasma frequency at the resonance, we obtain a family of curves Pabs/Pinc

versus 77 for various values of A, which are plotted on a logarithmic scale in Fig. 6. The

maximum of absorption is broad and lies near 77 = 1 for-a practical range of values of the

parameter K. From Fig. 6 it can be seen that the fractional power absorbed falls toward

small densities due to the Budden factor. For a given A' the fraction of power absorbed falls

again toward higher densities as less power reaches the resonance zone due to the reflection

at the window.

An alternative situation at higher pressures is a gradual rise in plasma density from the

window to the central density. A density profile that can model this situation is

n(z) =22 [l +tanh (|)] , (42)

where the parameter L is the scale length of the profile. Such a "transition layer" has been

analyzed by Ginzburg [2], with the transmission coefficient given by

trans

sinh'(s[VrTT-l])
/•tine — 1 . . 0 /—r i _ TTisinh2 (5 [vT+T +1

where 5 = 7T2Z/A, Ais the free space wavelength and
)

17

(43)



w?
r = - (44)

Cj(u>ce —CJ)

where cj^ = e2nu,/eom, and nw is the density just beyond the window. Equation (43) can

be used along with (6) to determine the variation of Paba/Pinc with density, for the gradual

transition, with L/X as a parameter, giving similar results to those shown in Fig. 6.

We emphasize that the preceding simple calculations arenot meant to give absorptions for

actual devices, but rather to highlight the interaction between the tendency towardincreased

ECR absorption at the higher densities and the counter-tendency of increased reflections at

the vacuum-plasma interface. In an actual device the complete matching problem, including

other discontinuities, must be considered.
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3 Nonlinear Absorption and Effective Collisionality

Near Resonance

Nonlinear Absorption. Electrons may enter the resonance zone from either the high field or

low field side. The average energy gain of a single electron traversing the resonance zone is

shown in Appendix A to be

^-MsW (45)
where E is the RHP electric field amplitude in the resonance zone (assumed constant), te is

the effective time spent in the resonance zone,

te = (2w/uxua)* , (46)

and uz is the parallel velocity at resonance, assumed constant over the resonance zone. An

effective zone width can then be defined as

Az= uzte = (2iruz/ua)1/2. (47)

The power per unit area is found by integrating (45) over the flux of electrons incident

on the zone:

19



Pnl =/ Sguzf(ug)duz, (48)

where / is the electron velocity distribution. Using (45) in (48) yields

1E2 2iru}2Pnl =i§-^, (49)
2 Zq ujca

where Z0 = (/*o/eo) is the free space impedance. A similar result, for uz turning in the

resonance zone, has been obtained by Jaeger et al [7], giving slightly different scaling.

CoUisional Absorption. We note that (49) is independent of uz. This suggests that we

can examine the uz —• 0 limit in considering the effects of electron collisions. Adding a

coUisional (friction) term to the force equation, letting E = 9£e {(x —jy)Ee?ut}, and solving

for the transverse velocity amplitudes, we obtain

2eE l"xO +Wyo = - ., y (50)

where vm is the electron momentum transfer frequency. The power absorbed per electron is

Pecr =-Be {-efW^o - etfjotilo} . (51)

Substituting (50) in (51) with £x0 = E, Eyo = -j£7, we find

20



ftE\2 i/r

\rn) vl +^-Uce)'PECR = m(^) o , ,m ,. (52)

To obtain the total heating power, we average (52) over the distribution of electrons near

the resonance zone. Using the linear expansion near resonance

in (52), we obtain

ujceiz) = cj(1 + az), (53)

\E2

rn v*+ uPcPz*
Pecr = _ .., , . . 2 (54)

m

Multiplying (54) by n dz and integrating from z = —z0 to z = z0, we obtain

Pecr = tan'^cjazo/i/m). (55)

The total power absorbed is obtained by letting z0 —• oo such that tan"1 -* x/2 and (55)

reduces to (49). We see that the power absorbed is independent of um for constant electric

field, and the nonlinear and coUisional power absorption correspond. However, recognizing

that most power is absorbed near the resonance zone, if we insert zQ = Az, from (47), in

(55) we find that for i/m << waAz almost all of the power is absorbed in the resonance zone.

21



Thus at low collisionality, the correspotween the coUisional and the nonlinear power

absorption remains.

Effective Collisionality. We wish t coUisional formalism when the collisionality

is, in fact, described by an effective ccquency from the nonlinear processes, rather

than from real collisions. To do this the ansatz that half of the total power is

absorbed in the resonant zone Az, sthere is an effective vm in that region given,

from (55), by

<(Az) (56)

where (Az) is an effective zone width averaging (47) over a Maxwellian

(A*) =(06 (-£-)' • (57)

Substituting (57) in (56) we obtaiutive coUisionality at exact resonance

2a2kT\* , x
vm '——- (58

771 J

Taking typical values ofu = 2ir x 2.43 and T = 5 eV we find i/m = 4.01 x 108 s"1,

and from (57), (Az) = 0.495 cm. We <that (58) can be written as vm = 4.44(<e)~l,

where (re) is the effective time spent iice, a physically appeaHug result.



In order to make the collision frequency local, we also add a shape factor such that the

collisionality falls off to half of its peak value over the range ±(Az)/2

„(z) = VJ1 (59)
V' l +4z2/(Az)2 V '

We have used this form in (22) as the effective collision frequency for our numerical calcula

tions presented in Figs. 4 and 5.

Comparison of Linear and Nonlinear Absorption. The nonlinear power absorption P/vl

in (49) can be compared with the Hnear absorption Pi in the weak absorption limit by

expanding (6) for small 77 to obtain

El u2Paba =*£-*- (60)

where we have substituted Eq/Zq for Pfwd, where E0 is the incident electric field. Comparing

(49) and (60), we see that in the weak absorption limit the results agree if E/E0 = 1, thus

verifying the accuracy of the linear analysis.

For stronger absorption, the power absorbed saturates, as described by (6). For con

sistency in this case the resonant field must also decrease. For the high collisionality case

v = 109 s"1 plotted in Fig. 2a, we see that this is exactly what happens; the power flow at

resonance for high absorption (np = 1010 cm"3) is Pr « Q.3Pjwd. However, from Fig. 3 it is

23



seen that this decrease in Pr is a function of the collisionality, with the large decreases only

occurring for large v (y ~ lj). This has led us to consider an effective high collisionality in

the neighborhood of the resonance itself, given by (59).

For higher absorption, using the prescription for localized power absorption, we can also

find the power flow and the electric field at resonance. Equating the nonlinear and linear

power absorption from (49) and (6)

zT-H1- ) . (61)
we can solve for the ratio of the effective electric field at resonance Eeff to the incident

electric field E0y

We can compare Eeff to the actual field at resonance, which might reasonably approxi

mate the value of the effective constant field that would be used in a nonlinear calculation.

This is done in Fig. 7 with the x's the values of Etff calculated from (62) and the o's

the values of the electric field at resonance. The correspondence is within a factor of two

over much of the range, but fails at very high densities where the power is essentially aU

absorbed before resonance. In this region it would be necessary to redefine (Az) and vm

24



self-consistently with the decay of the field. However the assumption that the electric field is

a constant over the region of nonlinear absorption, which is used in the nonlinear calculation,

is inappropriate in this high density regime, so the* usefulness of such a calculation is not

clear.

4 Equilibrium Power Balance

To obtain a fully self-consistent equilibrium, the density must be obtained from power balance

in a particular physical system. A complete calculation would necessarily involve both the

RHP and LHP waves, reflections at discontinuities, and effects of the transverse boundaries.

Such a complete treatment is beyond the scope of our investigation of the RHP absorp

tion. Nevertheless, it is instructive to make a power balance calculation to understand the

qualitative features of the equilibrium.

Consider a given absorbed power Paba per unit area. This power is lost through various

channels, including electron and ion kinetic energy loss to the walls, excitation energy, elastic

scattering coUisional losses inside the plasma, and losses due to ionization, all of which

balance the input power at the equilibrium ion density. The power balance equation is

Paba = 2niUitSL (63)
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where n,-ti,- is the mean ion flux at the two end walls of the ECR discharge and eSi is the

effective energy lost per electron-ion pair created within the region. Ei (in volts) is the

sum of the coUisional electron energy lost through the channels Usted above and the kinetic

energy lost by electrons and ions at the end walls. Si is generally a function of the electron

temperature through the cross sections for coUisional excitation and ionization processes and

because the electron and ion kinetic energies are functions of Te. For a typical processing

discharge in argon with electron temperatures near 5 eV, the energy loss Si is typically of

order 70 eV [5]. The characteristic ion loss velocity can be estimated to be the Bohm velocity

u< *UB =vw) • (64)

Assuming all the power is in the RHP wave, we plot (6) and (63) to obtain a graph as

shown in Fig. 8. Both functions are shown as normalized to Pfwd, which leaves (6) as a single

exponential curve, and (63) as a straight line whose slope depends on P/Wd. Three such "load

lines" are plotted, along with the corresponding values of the forward power. The equilibrium

density and power are given by the intersection of the two curves. Similarly, equating (6) and

(63) results in anexpression for forward power as a function of the corresponding equilibrium

density:
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where C = 2ute£i, and Bnp = X7/. Equation (65) gives, for a given density, the forward

power required to sustain that density in an equilibrium situation. Since (65) gives a finite

Pjwd = Pm = C/B at zero density, the implication is that this minimum input power is

required for a steady-state plasma equilibrium to exist. This is plotted as the leftmost load

Une, which lies just tangent to the exponential curve at zero density.

From (65) and (39), for the reflection at the window, we can obtain a series of normaHzed

plots of density versus incident power for various values of the parameter K in (41). This is

equivalent to sweeping the forward power through a range of values, and so moving the load

line in Fig. 8 across the exponential absorption curve, and plotting the series of intersecting

points. When K = 0, there is no reflection at the window, and the forward power equals

the incident power. This is the top curve in Fig. 9, which displays the normalized density

parameter 77 versus the normalized incident power P,nc j'P* on logarithmic axes. The power

P* is the minimum power to sustain an equilibrium plasma:

P* = 2uiSnJca€om/Tre. (66)

Fig. 9 shows that as incident power is increased, the density first rises exponentiaUv, and

27



then rises nearly linearly, when the percent absorption is high. However, as the density at

the window is increased (increasing K) the rate of increase in density with incident power is

slowed due to reflection at the window.
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5 Conclusions

ECR microwave power absorption depends not only on the local density within the chamber,

but also on the field strength at the resonance position. We have shown that the placement

of a field nuU near resonance can reduce absorption strongly. Such a field null could arise

somewhat unpredictably due to various reflections inside the chamber. Since the wavelength

is dependent on the local density of the plasma, interference nuUs could also vary with the

density, which is in turn dependent on the strength of absorption. These interdependencies

make deterministic predictions difficult. This effect can be mitigated by designing an ECR

system with a resonance zone which is larger than a typical field null or by designing the

chamber to minimize reflections.

In general, absorption increases with increasing density, but if the density near the win

dow where power enters the chamber is large and rises sharply, significant power can be

reflected before entering the plasma. Because of these two competing effects, there is a

broad maximum near the density parameter 77 = 1 at which power is optimaUy absorbed by

the system. This is seen in the family of curves displayed in Fig. 6.

We have shown that the nonlinear power absorption by an electron in the resonance zone

and the coUisional heating power can be brought into correspondence with each other at low

absorption. At higher absorption this correspondence can stiU be approximately acliieved
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by choosing an axial variation of the effective coUisional momentum transfer frequency that

has a pronounced maximum near resonance. The resulting decay of the electric field in the

neighborhood of the resonance achieves this approximate correspondence.

We have introduced an equilibrium model in which the power loss is proportional to the

density. Thus at low densities in which the ratio of absorbed to incident power is related

linearly to the density there is a minimum power required for a steady-state plasma to exist,

given in (66).

The theoretical results that we have obtained agree qualitatively with some heretofore

puzzling experimental observations [8]. The downstream standing waves at low density

(weak absorption), which disappear at higher density (strong absorption), correspond ap

proximately to the experimental observations. The sharp drop in density (and therefore

power absorption), at a particular value of input power, qualitatively agrees with the pre

diction embodied in Fig. 8. However, the value of density at which this occurs is not in

quantitative agreement with the experimental observation [8]. Also, the residual persisting

low density plasma at lower input power, observed experimentally, is not explained, although

some hint of an explanation may be found in the complex interaction between density and in

ternal reflections. The effect of transverse wave numbers and the consequent coupling of the

RHP and LHP waves may also be important and indicates an area for further investigations.
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A Nonlinear and CoUisional Power Absorption

The transverse energy gained by an electron in one pass through a resonance zone can be

calculated either for constant velocity in the zone [6] or for turning within the zone [7].

Although both types of trajectories occur for a coUisional plasma with an isotropic velocity

distribution, the results for the constant parallel velocity are characteristic and we will outline

the derivation here. The complex force equation for the transverse velocity can be written

in the form

^-iu,ce(^)Up =--£^>^ (67)
at 77i

where E is the amplitude of the RHP wave with E = 3fce {(x - jifiEeJ"1}. We expand the

magnetic field near resonance as

uee(z) = u(l + az) (68)

where z is the distance from exact resonance. We approximate z(t) as uzi, where uz is the

parallel velocity at resonance. Using (68) and substituting uT = uro exp (jut) into (67) we

obtain

— jLjau2tur0 = E. (69)
at m
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Integrating (69) from t = —T to t = T, we obtain

iir0(r)e->*<T> =ur0(-r)e-*<-T> -teE/m) f dti*r*V\ (70)

where

B(t) =uautt2/2. (71)

In the limit T > (2tt/wau:)1/2, the integral in (70) is

/ rffe-W) =(ir/uauz)1/2(l - j). (72)

Inserting (72) into (70), multiplying (70) by its complex conjugate, and averaging over the

initial "random" phase 9(—T), we obtain

\uro(T)\2 = |uro(-T)|2 + (eE/m)2(27r/uauz). (73)

The energy gain per pass is thus

1 (tE\ 2

where te is the effective time in resonance

32



te = (2ir/Ljauz)1/2. (75)

The effective resonance width is

Az= uzte = (2iruz/coa)1/2. (76)

We can understand the form of te as foUows: an electron passing through the zone coherently

gains energy for a time te such that

[w - Uce(uzte)] te « 27T (77)

Inserting (68) into the preceding equation and solving for tei we obtain (75).
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