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Control of a Class of Interconnected Nonlinear Dynamical

Systems:

The Platoon Problem

by

Shahab Eddin Sheikholeslam

Abstract

This dissertation presents a system-level study of control laws for a platoon of

non-identical vehicles on intelligent vehicle highway systems (IVHS); the platoon problem

arises as follows: the productivity of a lane of a freeway is />v, the number of vehicles per

hour, where p denotes the density and v denotes the speed. By law v is bounded; hence, to

increase the productivity of one lane we need to increase p. Our objective is to investigate

the possibility of using automatic control to reduce the distance between successive vehicles

in a lane. Then, motivated by this application, it is shown that decentralized control laws

can be designed for a general class of interconnected nonlinear dynamical systems.

Chapter 2 of this system study advances the art of automatic longitudinal control

for a platoon of vehicles on a straight lane of highwayin the sense that a) it considers longer

platoons composed of non-identical vehicles; b) it uses nonlinear models and nonlinear

control laws; c) the longitudinal control laws take advantage of communication possibilities

not available in the recent past. This study proposes decentralizedcontrol laws for a platoon

of closely-spaced non-identical vehicles traveling at high speeds along a straight lane of

highway. In addition, chapter 3 of this study proposes longitudinal control laws for the

platoon in the event of loss of communication between the lead vehicle and the other vehicles

in the platoon. Comparison with the full communication case shows that, in case of loss

of communication between the lead vehicle and the other vehicles, the performance of the

longitudinal control laws degrades; but, this degradation is not catastrophic.

In chapter 4, this study considers the problem of combinedlongitudinal and lateral

control of a platoon of non-identical vehicles and proposes nonlinear control laws for this

platoon of vehicles accelerating cm a curved lane of highway. These control laws are based



on nonlinear models of vehicles' combined longitudinal and lateral dynamics. Simulation

results show that the proposed control laws perform well, for roads with suitably large

radius of curvature, under nominal operation. One of the contributions of this dissertation

is the origination of preliminary study of combined longitudinal and lateral control laws for

a platoon of vehicles.

Motivated by the above application, in chapters 5 and 6 we address the problem

of decentralized control of a class of interconnected nonlinear dynamical systems. It is

shown that under general qualitative conditions imposed on the interconnected nonlinear

dynamical subsystems as in the platoon control problem, appropriate dynamical behavior

for the overall system can be achieved using only decentralized control. Furthermore, we

design decentralized adaptive control laws for this class of interconnected nonlinear dynam

ical systems; in fact, we have stated sufficient conditions on the inputs and the parameter

errors under which we can design suitable decentralizedcontrol laws for the interconnection

of nonlinear dynamical systems under consideration. From a control designer's view point,

the decentralization reduces the computation cost while increasing the reliability and the

flexibility of the system; furthermore, the adaptation improves the robustness of the system.

To implement the proposed control laws, a number of experiments should be per

formed; in addition, a number of studies have to be done to analyze the effects of dis

turbances (such as wind gusts, road irregularities, etc..) and modeling errors (in engine

dynamic model, tire dynamic model, etc..) on the performance of these control laws.

The contributions of this dissertation are twofold: from an application view point,

this study advances the art of automatic control of a platoon of closely-spaced vehicles

traveling at high speeds on an automated lane of a highway; from a theoretical view point,

this study originates techniques for analysis and design of decentralized control laws for a

general class of nonlinear dynamical systems.

Charles A. Desoer, Thesis Committee Chair
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Chapter 1

Introduction

This dissertation consists of two parts: in part I, we present a system-level study for
automatic control of a platoon of vehicles on intelligent vehicle highway systems (IVHS);
then, motivated by the control problem for a platoon of vehicles, in part II, we present a
theoretical investigation in the analysis and design of decentralized controllers for a class of

interconnected nonlinear dynamical systems.

Part I is organized as follows: in Chapter 2, we present a preliminary system
study ofa longitudinal control law for a platoon of non-identical vehicles using a simplified
nonlinear model for the vehicle dynamics. The study in this chapter advances the art

of automatic longitudinal control for a platoon of vehicles in the sense that it considers

longer platoons composed of non-identical vehicles; furthermore, the longitudinal control
laws presented in this chapter take advantage of communication possibilities not available

in the recent past. In Chapter 3, we consider the problem of longitudinal control of a
platoon of vehicles on a straight lane of highway and propose control laws in the event

of loss of communication between the lead vehicle and the other vehicles in the platoon.
The contribution of this chapter is to show that, in case of loss of communication between

the lead vehicle and the other vehicles, the performance of the longitudinal control laws
degrades; but, this degradation is not catastrophic. In Chapter 4, we present for the first
time combined longitudinal and lateral control laws for a platoon of non-identical vehicles

accelerating on a curved lane of highway. These controllaws are based on nonlinear models

of vehicles' combined longitudinal and lateral dynamics. Simulation results show that the

proposed control laws perform well, for roads with suitably large radius of curvature, under
nominal operation.



Part II is organized as follows: in Chapter 5, we consider the class of intercon

nected nonlinear dynamical systems suggested by the above platoon control problem. Under
general qualitative conditions imposed on the nonlinear dynamical subsystems in the inter
connection, we can obtain appropriate dynamical behavior for the overall system using only
decentralized control. Considering the class of interconnected nonlinear dynamical systems
suggested by the problem of combined longitudinal and lateral control of a platoon of ve
hicles on automated highways, in Chapter 6, we propose a decentralized indirect adaptive
control scheme for this class of interconnected nonlinear systems. Then, we state precise
conditions on the inputs, on the uncertain parameters, and on the dynamics ofthe nonlin
ear plants under which it is possible to attain the design objectives by using decentralized,
nonlinear, adaptive control laws. The methods used in the analysis of the proposed non
linear adaptive control laws in this chapter may be applied for studying other classes of
interconnected nonlinear dynamical systems.

Finally, in Chapter 7, we summarize the results ofprevious chapters and discuss
some directions for future research in improving the robustness of the proposed nonlinear
control laws.

Contributions of the thesis and relations to previous work

This dissertation makes two types ofcontributions: a) practical contributions in
advancing the art ofautomatic control ofa platoon ofclosely-spaced, non-identical vehicles
traveling at high speeds on a straight or curved lane ofa freeway; note that our control
laws are based on nonlinear models of vehicles' combined longitudinal and lateral dynamics;
b) motivated by the platoon control problem, we propose decentralized control laws for a
class of interconnected nonlinear dynamical systems; we demonstrate that under general
qualitative conditions imposed on the interconnected nonlinear dynamical subsystems under
consideration, appropriate dynamical behavior of the overall system can be achieved using
only decentralized control; furthermore, we propose decentralized, adaptive control laws for
this class ofinterconnected nonlinear dynamical systems to improve the robustness of the
system.

Much effort has been spent on various control laws for longitudinal control of a
platoon of vehicles [5],[6],[8],[12], [11],[16],[33] and lateral control of a vehicle [1],[30]. The
contributions of this dissertation in advancing the art of automatic control of a platoon of
vehicles traveling on a lane of freeway are as follows:



(1) We use simplified nonlinear models for the vehicle longitudinal dynamics. In contrast
toall the vehicle dynamics' models used in [49],[50],[5], and [6], our model includes two
nonlinearities: the aerodynamic drag; the velocity-dependent engine time constant.
Chiu, Stupp, and Brown used alinear engine/vehicle dynamics including alinearized
approximation to aerodynamic drag [6].

(2) We propose longitudinal control laws for a platoon of non-identical vehicles. Previous

studies assumed that a platoon consists ofidentical vehicles [49], [50],[11],[5],[6].

(3) Our analysis ofour longitudinal control laws establish that, through the appropriate
choice ofdesign parameters, deviations in the successive vehicle spacings decrease from
the front to the back of the platoon as a result of lead vehicle's acceleration from its

initial steady-state velocity to its final steady-state velocity; hence, our longitudinal
control laws prevent such slinky-type effect to propogate from the front to the end

of the platoon. Previous work never addressed this slinky-type effect. Furthermore,
simulation results show that our longitudinal control laws perform better than the

control laws proposed in [49],[50],[51],[5], [6] for longer platoons.

(4) Our longitudinal control law for the i-th vehicle in the platoon differs from the control
laws in the literature by using the lead vehicle's acceleration'm the i-th vehicle's control

law. This additional input is realistic because of the technological progress in inter-
vehicle communications. The addition of this input to the i-th vehicle's control law

provides another degree offreedom in design; this turns out tobe crucial in controlling
the slinky-effect. Shladover had used lead vehicle's velocity [49] and second order
time- derivative of the i-th vehicle's spacing error [50] in the i-th vehicle's control

laws. Caudill and Garrard used a proportional-plus-integral control on the relative

velocity error and proportional-integral-derivative control on the spacing error between
successive vehicles [5]; they did not use the lead vehicle's velocity and acceleration in

their longitudinal control laws. Chiu, Stupp, and Brown proposed control laws, for
each vehicle, which depend only on the state of that vehicle and the state of the
preceding vehicle [6].

(5) Our control laws are based on nonlinear models ofvehicles' combined longitudinal and
lateral dynamics. Previous studies separated the problem of longitudinal control of a

platoon of vehicles from the lateral control of each vehicle within the platoon: in the



case of longitudinal control of a platoon of vehicles, these studies proposed control

laws for a platoon of vehicles traveling on a straight lane of a highway [49],[50]; in

the case of lateral control of a vehicle, these studies proposed control laws based on

a linear model of vehicle's lateral dynamics with the assumption that the vehicle's

speed remains constant on a curved lane of highway [30]. These studies neglected the

nonlinear coupling between the lateral dynamics and the longitudinal dynamics. In

this dissertation, we demonstrate the performance of our nonlinear control laws for a

platoon of vehicles acceleratingon a lane of a highway whose center line is a sinusoid.

Motivated by the platoon control problem, we propose decentralized control laws for

a class of interconnected nonlinear dynamical systems. The contributions of this dissertation

in designing decentralized controllers for this class of interconnected dynamical systems are

as follows:

(1) We demonstrate that under general qualitative conditions imposed on the intercon

nected nonlinear dynamical subsystems under consideration, appropriate dynamical

behavior for the overall system can be achieved using only decentralized control.

(2) In the control of interconnected dynamical systems there are two important features:

a) the graph of the interconnection and b) the time-scale separation of dynamics (in

the present case, these time scales are that of the given dynamical subsystems and

that of the controllers). We show that, by designing decentralized controllers whose

dynamics are much faster than the dynamics of the subsystems, the deviations of each

dynamical subsystem's state (£* for k = 1,2,..., iV) from its respective equilibrium

state (£e) remain bounded for a slowly-varying input («); furthermore, if after some

time T, the vector input u(t) becomes constant, then the peak value of these deviations

monotonicallydecreases as k increases (i.e., no slinky-effect).

(3) We propose decentralized,nonlinear,adaptive control laws for this class of intercon

nected nonlinear dynamical systems; in fact, we show that under sufficiently slowly-

varying inputs (u), and sufficiently small parametererrors (fa for k = 1,2,..., N) in

each dynamical subsystem, if the state of each dynamical system is initially sufficiently

close to its corresponding equilibrium state, then the deviations of each dynamical sub

system's state (0t for k = 1,2,..., N) from its respectiveequilibrium state (£e) remain

bounded; furthermore, by suitable design of decentralized control laws, the peak de-



viation of each dynamical subsystem's state from its equilibrium state monotonically

decreases as k increases. Note that the control laws are decentralized and adaptive;

hence, a) the decentralization reduces the computation cost while increasing the reli

ability and the flexibility of the system; b) the adaptation improves the robustness of

the system.



Part I

Control of a Platoon of Vehicles

on Automated Highways



Chapter 2

Longitudinal Control of a Platoon

of Vehicles

This chapter presents a preliminary system study of a longitudinal control law

for a platoon of non-identical vehicles using a simplified non-linear model for the vehicle

dynamics. This study advances the art of automatic longitudinal control for a platoon of

vehicles in the sense that it considers longer platoons composed of non-identical vehicles;

furthermore, the longitudinal control laws presented in this study take advantage of com

munication possibilities not available in the recent past.

We assume that for i = 1,2,... vehicle i knows at all times vi and ai (the velocity and accel

eration of the lead vehicle) in addition to the distance between vehicle i and the preceding

vehicle, i - 1. A control law is developed and is tested on a simulation of a platoon of 16

vehicles where the lead vehicle increases its velocity at a rate of 3 m.sec~2; it is shown that

the distance between successive vehicles does not change by more than 0.12 m in spite of

variations in the masses of the vehicles (from the nominal), of communication delay and of

noise in measurements.

2.1 Introduction

Much effort has been spent on various control laws for longitudinal control of a platoon

of vehicles [5],[6],[8],[12], [11],[16],[33]. A more detailed discussion of previous work is to

be found in section 2.5.1. The contribution of this chapter is to establish the feasibility of

designing longitudinal control laws for a platoon of non-identicalvehicles, using a non-linear
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model to represent the vehicle dynamics and taking advantage of high-speed communication.
This system study does not examine various effects such as details of engine dy

namics, dynamics of tires, wind gusts, road irregularities, and fuel economy. A number
of studies are being pursued which take into account more realistic models for engine and
transmission dynamics [25];in addition, various measurement devices including ultrasonic
sensors, radar, and infrared sensors are being evaluated.

The basic concepts of this study are: using exact linearization methods [18] ,[28],[36]
to linearize and normalize the input-output behavior of each vehicle in the platoon; taking
advantage ofhigh-speed communication [59] to improve the longitudinal control ofaplatoon
of vehicles.

To examine the behavior of a platoon of vehicles caused by a change in the lead
vehicle's velocity, we ran simulations for platoons consisting of 16 non-identical vehicles.
For the nominal case, these simulations show that, by appropriate choice of control law
coefficients for each vehicle in the platoon, the deviations in vehicle spacings from their
respective steady-state values do not get magnified from the front to the end of the platoon.
An important feature of the design is that such deviations do not exhibit oscillatory time-
behavior and their time-variations are well within passengers' comfort limits [15].

2.2 Platoon Configuration

Figure 2.1 shows the assumed platoon configuration for aplatoon of 4vehicles. The
platoon is assumed to move from left to right in astraight line. The position of the i-th
vehicle's rear bumper with respect to afixed reference point 0 on the roadside is denoted by
Xi. The position of the lead vehicle's rear bumper with respect to the same fixed reference
point 0 is denoted by xh Each vehicle is assigned aslot of length Lalong the road. As
shown, Ai is the deviation of the i-th vehicle position from its assigned position. The
subscript i is used because Ai is measured by the sensors located in the i-th vehicle.

Given the platoon configuration in Figure 2.1, elementary geometry shows that:

for i = 2,3,...

Ai(0:=*i-i(t)-*i(t)-I. C2-1)

The corresponding kinematic equation for the lead vehicle and the first vehicle are

as follows:



Ai(<):=*i(t)-*i(0--k (2.2)

We assume that A, is measured in vehicle i and, together with its first and second

derivatives, is used in the i-th vehicle's control law. We assume that for each vehicle in

the platoon the lead vehicle's velocity («/) and acceleration (a/) are known.(This requires a
communication link from lead vehicle to each vehicle of the platoon.)

2.3 Vehicle Model

In this study we assume that the road surface is horizontal, there is no wind gust, and all
the vehicles travel in the same direction at all times. Figure 2.2 shows the simplified vehicle
model of the i-th vehicle in the platoon; the block (Kdi(xi)2)) specifies the force due to the

air resistance, where Kdi denotes pAiCdi/2, p denotes the specific mass of air, A{ denotes
the cross-sectional area ofthe i-th vehicle, and Cdi denotes the i-th vehicle's drag coefficient;
the constant dmi denotes the mechanical drag of the i-th vehicle (the value of dmi can be
estimated from coast-down tests on the vehicles); m,- denotes the i-th vehicle's mass; w,

denotes the throttle input to the i-th vehicle's engine; F{ denotes the force produced bythe
i-th vehicle's engine. The summing node at the bottom of Figure 2.2 represents Newton's
second law for the i-th vehicle, namely

miXi = Fi- Kdix2 - dmi. (2.3)

The engine dynamics is described by a nonlinear differential equation, namely,

^="Jo+^fe (2-4)
where rt(i,) denotes the i-th vehicle's engine time-constant when the i-th vehicle is traveling
with a speed equal to i,-.

The simple model used to describe the engine dynamics (2.4) has proven to be
useful for preliminary system-level studies in longitudinal control of a platoon of vehicles
I5L [6],[49],[50]. As a consequence, we do not use complex engine models which take into
account factors such as ambient temperature, engine temperature, altitude, condition of
spark plugs, transmission dynamics, etc...
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2.4 Exact Linearization of Vehicle Dynamics

In the following section we will use exact linearization methods [18, sec. 4.2, pages 156-

159], [28],[36] to linearize the input-output behavior ofeach vehicle in the platoon.

Analysis In the following we consider exclusively the simplified model (2.3) and
(2.4). From (2.3) we obtain

Fi = m^ + Kdix2 +dmi. (2.5)

Substituting the expression for F{ from (2.5) in (2.4) gives

Pi =-ZTTT ["W +Kdi*2 +dmi] +-^-. (2.6)

Differentiating both sides of (2.3) with respect to time and substituting the ex
pression for F{ from (2.6) we get

mi Ti(xi)

Linearizing state feedback The expression in (2.7) is of the form

x'i= bi(ii, Xi) + ai(xi)ui (2.8)

where

^.i,):--^**-^!.+ &*+£) (2.9)
and

miTi{Xi)

To linearize the i-th vehicle's nonlinear dynamics, we create an exogeneous input

Ci which is related to the i-th vehicle throttle input, ut-, by the following equation

Ui =a~(x~)^Ct " 6,^i'*•* ^2-n)
This equation describes a nonlinear state feedback applied to the i-th vehicle's dynamics
(2.8).

Substituting (2.11) into (2.8) gives a system of linear differential equations repre
senting the dynamics of the i-th vehicle after linearization by state feedback, namely, for
i = 1,2,...

771; mi

Ui

+ FT- (2-7)
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|«< = ii (2.12)
J*' =* (2-13)
|*« = c,. (2.14)

Note that the new input c,- appears in equation (2.11).

Remark The nonlinear state feedback law (2.11) has achieved two objectives:

1. It linearized the i-th vehicle dynamics;

2. It achieves closed-loop dynamics that are independent ofmt-, dmt-, Kdi, and Ti(ii); i.e.,
the resulting dynamics of the vehicles are independent of their particular characteris
tics.

Implementation Issues To compute the linearizing state feedback (2.11), we
need to be able tocompute thevalues ofthe functions &,(.,.) and ot(.). From (2.9) and (2.10),
this requires sensors to measure the velocity ofthe i-th vehicle (ii) and the acceleration of

the i-th vehicle (xt). At the present time, group discussions arebeing held [29] to determine
the most suitable sensor technology for measuring xt- and £,- in terms of the projected cost

and measurement accuracy. In addition, we need to be able to estimate the mass of the

i-th vehicle (mt) and the i-th vehicle's mechanical drag (dmi). An adaptive identifier for

estimating the mass of a vehicle is presented in [37]. (see Appendix) Estimates of the
mechanical drag can be obtained from coast-down tests done on the highway. We assume

that we know the data regarding engine time constant (thefunction r;(.)), and the vehicle's
aerodynamic characteristics (Kdi '= pAiCdi/2).

2.5 Platoon Dynamics

In the sequel we will use the linearized vehicle model given in (2.12)-(2.14) for analyzing
the platoon dynamics.

2.5.1 Proposed control law

Figure 2.3 shows the linearized model ofthe i-th vehicle withcontrol input c,-. We propose

the following linear control law for longitudinal control of vehicles: for the first linearized
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vehicle model the control law is

ci := cplAx(0 +cvlAi(t) +calA!(t) +kvl [vt(t) - vt(0-)] +kalat(t) (2-15)

where uKO-) denotes the steady-state value of the lead vehicle's velocity (t?/);
for linearized vehicle models 2,3,... the control law is

d := cpAt(0 +CvAi(t) +caAt(t) +kv [vi(t) - «,-(*)] +K[a,(t) - ai(t)\ (2.16)

where cpl,cvl,cal,kvl,kal,cp,cv,ca,kv, and ka are design constants. Note that the control
law for the first vehicle differs from the control law for all the other vehicles in the two
rightmost terms in (2.15). This is due to the fact that for the first vehicle v, -1* =Ai and
a, - ci! =Ai which are already apart of the first vehicle's control law; whereas, for vehicle
i (i =2,3,...) u/ - Ui =Ai -I- ••• +A,- and a/ - ^ =Ai +••• +A,-.

Comparison of our control law (2.16) for the i-th vehicle with the control laws in
the literature shows that using the lead vehicle's acceleration (a,) in the i-th vehicle's con
trol law is the new addition to the i-th vehicle's control laws considered in the literature.
This addition to the i-th vehicle's control law provides additional degrees of freedom in
designing the transfer functions relevant to the longitudinal control of aplatoon of vehicles.
It is intuitively clear that ifeach vehicle knew the lead vehicle's acceleration, platoon main
tains a tighter formation than if each vehicle only measured the distance between it and
the preceding vehicle. In contrast to all the vehicle dynamics' models used in the papers
discussed below, our model includes two nonlinearities: the aerodynamic drag; the velocity
dependent engine time constant. Shladover had used lead vehicle's velocity (vt) [49] and A,
[50] in the i-th vehicle's control law. Caudill and Garrard used aproportional-plus-integral
control on the relative velocity error and proportional-integral- derivative control on the
spacing error between successive vehicles [5]; they did not use the lead vehicle's velocity
(vt) and acceleration (a,) in their longitudinal control laws. Chiu, Stupp, and Brown used
alinear engine/vehicle dynamics including alinearized approximation to aerodynamic drag
[6]; in their approach to longitudinal control of aplatoon of vehicles operating under nom
inal conditions they essentially proposed control laws, for each vehicle, which depend only
on the state of that vehicle and the state of the preceding vehicle.
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2.5.2 Implementation Issues

Figure 2.4 shows the platoon configuration under the proposed control law for a platoon

of 4 vehicles: the lead vehicle's velocity (vi) and acceleration (a/) are transmitted to all
the vehicles within the platoon. In addition, sensors on each vehicle, say i, measure the

deviation of the i-th vehicle from its assigned position, namely A,-. Computation of the

first and the second order time derivatives of the i-th vehicle's deviation from its assigned
position,namely A,- and A,-, can be done in two different ways:

1. Communication ofthe (i- l)-st vehicle's velocity (xt_i) and acceleration (xt_i) to the
i-th vehicle. Obtaining the i-th vehicle's velocity (£,•) and acceleration (£,-) from the

sensors on thei-th vehicle, then the computer inthis vehicle estimates A,- (:= £,-_!—£,•)
and At- (:= xt_i —x,) for use in the i-th vehicle's control law.

2. Direct estimation of A,- and At- using the measured values for A,-.

The communication of the position,velocity, and acceleration information is uni

directional: from the lead vehicle to each vehicle in the platoon. Communication speed

and processing of the measured data should be fast compared to the time constants of

the vehicle dynamics.Preliminary studies in [59] suggest that such a requirement is feasible

with the present communication and data processing technology. Experiments are being

conducted to develop an infrared link operating at a rate of 80000 bits/sec which would

allow communicating roughly one packet of 100 bits per millisecond. It should be kept in

mind that safety considerations will require a communication system within the platoon
[14].

2.5.3 First vehicle dynamics

Initial Conditions Throughout the study of the platoon dynamics we assume

the following: for all t < 0, the platoon is in steady-state; for t < 0, £,-(*) = ii(t) = v0,
Ai(t) = At(t) = Ai(t) = 0. Let wi denote the increment of velocity of the lead vehicle from

its steady-state value (vq). Thus wt(t) := vi(t) - v0.

The linear control law (2.15) applied to the linearized model results in the differ

ential equation (2.18) relating Ai to u>/: differentiating both sides of (2.2) three times with

respect to the time variable and using the expression for x'i from (2.14) weobtain
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Ai (t) =*, (0 - ci(0- (2.17)

Substituting (2.15) in (2.17) we obtain

Ai (t) =xi (t) - [cpiAi(t) + cvlAi(t) + c.iAiC*) + ArvitOf(<) + fcala/(t)]. (2.18)

Taking Laplace transforms we obtain

{s3 +cais2 +cvis +cpi} Ai(s)
={«2 - kais - fcvl} ltf,(s) (2.19)

where we use the symbol " *" to distinguish Laplace transforms from the corresponding
time-domain functions.

Thus:

**•*« =.3/"^"^) • (2.20)S3 + CaiS2 + CyxS + Cpi V J

Equation (2.20) is the first basic design equation. From (2.20), we note that the

addition ofthe lead vehicle's acceleration (a/) to the control law for the first vehicle (2.15)
allows us to independently select all the zeros and all the poles of h&lWt by choosing the
design parameters cai,cvi,cpi,fcal, and kvX. It is crucial to note that the selection of zeros
and poles are independent of one another.

2.5.4 Second vehicle dynamics

The linear control law (2.16) applied to the linearized model results in the differential

equation (2.22) relating A2 to Ai and iu/.

From (2.14) we obtain

A2 (t) = c1(t)-c2(t). (2.21)

Substituting in (2.21) the control laws for the first and thesecond vehicles, namely
(2.15) and (2.16), we obtain
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A2 (t) = (fipiAi(t) +ciAi(t)+c.iAi(t) +kvlwt(t) + kalat(t))

- (CpA2(t) +CvA2(0 +CoA2(0)

- (kvHt) - v2(t)] +ka[at(t) - 02(0]). (2.22)

Taking Laplace transforms we obtain

{s3 +(ca -r ka)s2 +(Cy +**)* +cp} A2(«)
={(c0i - &o)*2 +(c„i - &„)$ +cpl} Ai(s)

+ {fcais + *vi}t&/(*) (2.23)

Thus:

l , x (Cal ~ fcq)32 + (Cvi - &„)$ + Cpi
*'Al ^ *3 +(Cfl +*a)52 +(Cv +fc^ +Cp • (2.24)

From (2.23), we note that in addition to the transfer function from Ai to A2
there is a transfer function from w\ to A2; it differs from &AaAl by its numerator which is
kais + kvi.

2.5.5 i-th vehicle dynamics (i = 3,4,...)

The linear control law (2.16) applied to the linearized model results in the differential

equation (2.26) relating A,- to A,-_i.

From (2.14) we obtain

Ai (*) = Ci.^t) - a(t). (2.25)

Substituting the expressions for the proposed linear control laws for the (i- l)-st
and the i-th vehicles from (2.16) in (2.25) we obtain

Ai(t) = CpAi-jW +CvAi-jW +CaAi-it*)

+ kv[vt(t) - vi-^t)] + ka[at(t) - a-.i(t)]

- CpAi(t) - cwAi(t) - caAt(t)

- kv[vt(t) - vi(t)] - ka[ai(t) - ai(t)]. (2.26)
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Taking Laplace transforms we obtain

{s3 +(c. +ka)s2 +(cv +kv)s +cp] Ai(s)
= {cas2 +cvs +cp} Ai_! (5). (2.27)

From (2.27), we obtain for i = 3,4,

,2

Let

X(«) := 53 +(c0 +fca)$2 +(cv +fc„)s +Cp. (2.29)

Equation (2.28) is the second basic design equation. From (2.28), we note that

the addition of the lead vehicle's acceleration (a/) to the control law for the i-th vehicle

(for i = 3,4,...) (2.16) allows us to independently select the poles ofg(s) (by choosing the
appropriate design parameters (ca + ka), (cv+kv), and cp) and the zeros ofg(s) (by choosing
the appropriate ca and c„).

Furthermore, let us set cai = ca + ka, cvi = cv + kv, and cpi = cp; then equation
(2.20) shows that hAlWl(s) has the same poles as g(s), and equation (2.24) shows that
^a2Ai(s) has the same poles as £(s); in other words, with these choices g(s), h&lWl(s), and
h&2Ai (s) have x(s) as denominator polynomial.

2.5.6 Design considerations

We use the block diagram in Figure 2.5 for analyzing the platoon. Some consideration of

Figure 2.5 suggests themain design objectives for the longitudinal control law: from (2.19),
(2.23), and (2.27), we have for i = 2,3,...

t-2hAiwt = (g(s)) 'aw«»m+*" tk'13

1. Since the perturbations in At- due to changes (wi) in the lead vehicle's velocity from

its steady-state value should not get magnified from one vehicle to the next as one

goes down the platoon, we require that \g(ju>)\ < 1 for all u > 0 and w *-+ \g(ju)\ to
be a strictly decreasing function of u for u> > 0.

(2.30)



17

2. Since theinverse Laplace transform of[#(s)]2 isthe convolution ofthe impulse response
of g(s) with itself (i.e.,(g *g)(t)), to avoid oscillatory behavior down the platoon it is

desirable to have g(t) > 0 for all t.

The design parameters have been chosen to satisfy these two requirements.

2.6 Simulation Results

To examine the behavior of a platoon of non-identical vehicles under the above control

laws, we ran simulations for platoons consisting of 3 different types of vehicles using the

System Build software package within MATRDCx. We ran simulations for platoons of 4 and

16 vehicles. In all the simulations conducted, all the vehicles were assumed to be initially

traveling at the steady-state velocity of vo = 17.9 m.sec'1 (i.e., 40 m.p.h.). Beginning at

time t = 0 sec, the lead vehicle's velocity was increased from its steady-state value of 17.9

m.sec~l until it reached its final value of 29.9 m.sec~l (i.e., 67 m.p.h.).

Figure 2.6 shows the lead vehicle's velocity as a function of time: the curve vi(t)

corresponds to a maximum jerk of 2.0 m.sec~3 and peak acceleration of 3.0 m.sec~2 (i.e.,
roughly 0.3y).

Simulations were run on a platoon of vehicles assuming different types of physical

uncertainties

• Nominal system. Having exact knowledge of all the relevant parameters for applying

exact linearization method (2.9)-(2.11) for all of the vehicles within the platoon; as

suming no communication delays in transmitting the lead vehicle's velocity (v/) and

acceleration (a/); assuming no communication delays in using A,- in the i-th vehicle's

control law (2.15)-(2.16) for i = 1,2,...; assuming no noise in the measurement of At-

fori = 1,2,....

• Control laws not conditioned on vehicle loading. Allowing variations in the i-th vehi

cle's mass (mt) due to passengers' mass and luggage. The value of the mass parameter

used for applying exact linearization method (2.9)-(2.11) is the vehicle's curb mass.

All the assumptions regarding communication delays and measurement noise are iden

tical to the nominal system. Note that for vehicles with larger variations in vehicle's

mass, one could use a push button device by which the driver punches in the number

of vehicle occupants; but this is not assumed here.
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• Control laws not conditioned on vehicle loading, including communication delays.
Allowing variations in the i-th vehicle's mass (m,) due to passengers' mass and lug
gage. The value of the mass parameter used for applying exact linearization method

(2.9)-(2.11) is the vehicle's curb mass. We assume a constant communication delay
in transmitting the lead vehicle's velocity (v/) and acceleration (a/) between any two
successive vehicles following the lead vehicle; aconstant communication delay in using
A,-, A,-, and Ai in the i-th vehicle's control law (2.15)-(2.16) for i = 1,2,...; and no
noise in the measurement of At- for i = 1,2,....

• Control laws not conditioned on vehicle loading, including communication delays and
noisy measurement. Allowing variations in the i-th vehicle's mass (mt) due to pas
sengers' mass and luggage. The value of the mass parameter used for applying exact
linearization method (2.9)-(2.11) is the vehicle's curb mass. We assume a constant

communication delay in transmitting the lead vehicle's velocity (v/) and acceleration

(at) between any two successive vehicles following the lead vehicle; a constant com

munication delay in using At, A„ and A,- in the i-th vehicle's control law (2.15)-(2.16)
for i = 1,2,...; and additive Gaussian noise in the measurement ofA,- for i = 1,2,....

The following types of vehicles with their relevant parameters were used in the
simulations

• Daihatsu Charade CLS- curb mass= 916 kg (i.e., 2015 lbs.); cross-sectional area (A)=
1.9 m2; drag coefficient (Cd)= 0.35 (i.e., Kd = 0.44 kg.m'1); engine time constant
(r)= 0.2 sec.

• Buick Regal Custom- curb mass= 1464 kg (i.e., 3220 lbs.); cross-sectional area (A)=
2.2 m2; drag coefficient (Cd)= 0.35 (i.e., Kd = 0.49 kg.m'1); engine time constant
(r)= 0.25 sec.

• BMW 750iL- curb mass= 1925 kg (i.e., 4235 lbs.); cross-sectional area (A)= 2.25 m2;
drag coefficient (Cd)= 0.35 (i.e., Kd = 0.51 kg.m-1); engine time constant (r)= 0.2
sec.

The order in which the above vehicles followed the lead vehicle was as follows:

Daihatsu Charade CLS followed by Buick Regal Custom followed by BMW 750iL followed
by Daihatsu Charade CLS and so on.
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The number of passengers in each vehicle and their respective masses were as

• Daihatsu Charade CLS- 3 passengers each with a mass of 91 kg

• Buick Regal Custom- 2 passengers each with a mass of 64 kg

• BMW 750iL- 4 passengers with the following masses (in kg): 45,45,91,59.

The following values were chosen for the relevant parameters in the simulation:

cal = 15, cvi = 74,cpi = 120,fcol = -3.03, kvl = -0.05

ca = 5,c„ = 49,cp = 120, ka = 10,kv = 25.

Using the above values for the parameters, we obtain

? , , _ (s +3.01)(s + 0.017)
hAlwM-(s +4)(s +5)(s+6)

j , x_ s(1.97s3 + 18.65s2 +43.75s - 1.25)
A2U" [(s +4)(* +5)(s +6)]2

., x 5(« + 4.9)2g(s) = ^
(s + 4)(s + 5)(s + 6)'

Note that the above design parameters were selected so as to satisfy the design
considerations discussed in section 2.5.6.

2.6.1 Nominal system

Figure 2.7 shows the deviations of the first, second, third, fifth, ninth, thirteenth, and

fifteenth vehicles from their pre-assigned positions due to the lead vehicle's velocity profile
shown in Figure 2.6.

Figure 2.8 shows the lead,first, second, third, fifth, ninth, thirteenth, and fifteenth

vehicle's acceleration profiles due to the lead vehicle's velocity profile shown in Figure 2.6
for the nominal system.

Simulation results show that the deviations ofthevehicles from their pre-assigned
positions do not exceed 0.08 m (i.e., less than 4 inches) and decrease to values which are

less than 0.01 m. The acceleration profiles of the vehicles in the platoon are within the

range of acceptable comfort limits and are almost identical to the lead vehicle's acceleration
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(a/). Note that the spacing deviation ofthefirst vehicle (Ai) is so much worse than all the
other such deviations. This is partly due to the filtering effect from Ai to A2,A3,... (as
seen from the block diagram in Figure 2.5).

2.6.2 Control laws not conditioned on vehicle loading

Differences between the actual vehicle mass and the curb mass values assumed in deriving
the controlgains range from 8% to 23%. Figures 2.9and 2.10 show the simulation results in

this case: the deviations of the vehicles from their pre-assigned positions do not exceed 0.11

m (i.e., 4 inches) and decrease to values which are less than 0.01 m. Such deviations do not

exhibit any oscillatory behavior. The acceleration profiles ofthe vehicles in the platoon are
within the range of acceptable comfort limits and are almost identical to the lead vehicle's

acceleration (a/).

If this study were not a preliminary system study but aimed at a detailed control

system design, we would use a) a much more elaborate model for the vehicle dynamics
which would include, in particular, the dynamics of tires, transmission, engine, etc., b)
a model for the actuator dynamics including at least saturation and time constants. We

would also develop a detailed design for the controller. In particular, we would incorporate a
robustness analysis for the mass perturbations and use constrained optimization algorithms
[31] to compute the maximum allowable mass perturbations.

Our objective in this preliminary system study is toestablish that the performance
of the longitudinal control laws, in the case of differences between the actual vehicle mass

and the curb mass values, is acceptable. To improve the robustness of the control laws with

respect to the mass parameter, we propose a mass identifier in section 2.8.

2.6.3 Control laws not conditioned on vehicle loading, including commu
nication delays

To evaluate the performance ofthe proposed control laws allowing variations in vehicles'
masses as before and including communication delays, we chose the delay in communicat
ing the lead vehicle's velocity (v/) and acceleration (at) to the first vehicle in the platoon
to be 20 msec; we chose the delay in communicating the lead vehicle's velocity (v/) and
acceleration (a/) between any two successive vehicles in the platoon to be 6 msec;we chose
the communication delay in using A, A, and A to be 6 msec. Recalling that the infrared
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link can transmit roughly one packet per millisecond, a delay of20 msec corresponds to
the loss of20 consecutive packets. Similarly, a delay of6 msec corresponds to the loss of6
consecutive packets. Under the present state of the art in communication technology, the
above number of lost consecutive packets are quite high;hence, the above communication
delays are quite stiff.

Figures 2.11 and 2.12 show the simulation results for the control laws not condi

tioned on vehicle loading and including the above communication delays: the deviations

of the vehicles from their pre-assigned positions do not exceed 0.11 m (i.e., 4 inches) and
decrease to values which are less than 0.01 m, but are noticeably worse than in the case

without communication delays. The acceleration profiles of the vehicles in the platoon are
within the range of acceptable comfort limits and are almost identical to the lead vehicle's

acceleration (a/).

2.6.4 Control laws not conditioned on vehicle loading, including commu
nication delays and measurement noise

To evaluate the performance of the proposed control laws allowing variations in vehicles'

masses and including communication delays as before with measurement noise, we chose

the value of At used in the i-th vehicle's control law (2.15)- (2.16) to be the sum of the
actual measured value of A,- delayed by 6 msec and some Gaussian noise with zero mean

and standard deviation (a) of 0.05 m. Noting that the distance between two successive

vehicles is assumed to be 1 m in this application, such measurement noise is quite stiff:

most of the noise samples are within 3 times the standard deviation which corresponds to

0.15 m (or 15% error in measuring successive vehicle spacings).

Figures 2.13 and 2.14 show the simulation results for this case: the deviations

of the vehicles from their pre-assigned positions do not exceed 0.11 m (i.e., 4 inches) and
decrease to values which are less than 0.01 m. The acceleration profiles of the vehicles in

the platoon are within the range of acceptable comfort limits and are almost identical to

the lead vehicle's acceleration (at). Note that the non-smooth variations in A and farea

result of injecting uncorrelated samples of noise at intervals of 3 msec whereas the linear

controller's time constant is on the order of1/6 sec;thus, the system does not have enough
time to react smoothly to such fast varying inputs.
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2.7 Conclusion

We have shown that it is feasible to design longitudinal control laws for a platoon of
closely-spaced non-identical vehicles traveling at high speeds along a straight lane ofhigh
way. These control laws take advantage of high-speed communication capabilities not avail
able in the recent past.

We have shown that for the nominal case through the appropriate choice of design

parameters, deviations in the successive vehicle spacings do not get magnified from the front
to the back ofaplatoon ofnon-identical vehicles as aresult oflead vehicle's acceleration from
its initial steady-state velocity(v0) toits final steady-state velocity; however, such deviations
are noticeably worse with delays in communication. Furthermore, for the nominal case, the
deviations in the successive vehicle spacings do not exhibit any oscillatory time-behavior.

Simulation results show that the exact linearization method used performs well in

the presence of variations in the vehicle's mass (from 8% to 23%), including communication
delays and measurement noise; the magnitude of the successive vehicle spacings is well
within 0.12 m for a platoon of 16 vehicles and the acceleration profiles ofthe vehicles in the
platoon are within the range of acceptable comfort limits.

This preliminary study is by no means complete because it does not examine
various effects such as details of engine dynamics, transmission dynamics, dynamics of
tires, wind gusts, road profile, etc... A number of studies are being pursued to address
issues like longitudinal control ofa platoon ofvehicles on curved lanes, appropriate sensor
technologies, and detailed models for engine dynamics and tire forces.

2.8 Appendix: A Reduced Order Observer-Based Identifier

for Identifying the Mass of a Vehicle

In this section, we present an identifier for identifying the mass of a vehicle using a
nonlinear model for the vehicle dynamics. Taking advantage of the specific model for
the vehicle dynamics, a reduced order observer-based identifier is proposed and tested on
simulations of three different types of vehicles with various passenger and luggage loadings.

These simulation results show that the proposed identifier accurately identifies the mass 3

seconds after the vehicle has accelerated from its steady-state velocity.

The mass identifier proposed will beauseful option as part ofeach vehicle's control system
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for control of a platoon of vehicles on automated highways.

2.8.1 Mass Identifier

The mass identifier is very similar to the observer-based identifier proposed in [54, sec.
2.1, page 3].

Notation In the sequel we will adopt the following notations:

%i '= (xi,ii,Xi)T, where vT denotes the transpose ofthe vector v.
Vehicle Model In the following we consider exclusively the simplified model

(2.3) and (2.4). We write the engine/vehicle dynamics of the i-th vehicle as follows: (for
i=l,2,...)

*i = foi(xi) +e^[fu(xi) + gi(xi)ui] (2.31)

where

foi(xi):= foi(xi,Xi,Xi) =(xi,x{, 7t-t)T, (2.32)
Ti[Xi)

fii(xi):= fii(xi,ii,Xi) =(0,0,-^-4riT-2^iiiii)r, (2.33)
Ti{Xi) Ti(Xi)

gi(xi) := gi(xu ii, x\) = (0,0, -77^)T, (2.34)
Ti\Xi)

and 0* := •£-. Note that 0* is the unknown parameter.

We assume that /<k(-)» /i,(-)> and #(•) are known functions and that we can

measure the velocity (xt) and the acceleration (*,-) of the i-th vehicle.

Regressor From the right hand side of(2.31), we denote the regressor to be the
expression in the bracket as follows:

Wi(xi, Ui) := fu(xi) + gi(xi)ui. (2.35)

Observer Since the first two components of fu(-) and #(•) are zero, we propose
a reduced order observer based on the third component ofthe regressor (2.35) as follows:

Denote the third component of the regressor (t»,-) by w3i. From (2.33) and (2.34)
we note that

«*<*•Ui) =["S) "«k) ~2Kiiii^ +[7k)W (2-36)
Denoting the observer's state by (x,,0i)r, we propose the following reduced order

observer-based identifier

d a
—Xi = -a(xi - Xi) + fozi(xi) + w3i(xi, Ui)9i
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d_^ _ _ W3i(Xj,Ui)
dt ' l + u;|t(fi,Ui)
ah ™3iV*i,u>i) /?. .. >. /0„x
—Ji = ~P, , ..2/- _.\(xi-Xi) (2.37)

where /o3i(£i) := -T./^.\ (i.e., the third component of /o,), a > 0, and p > 0.

The choice of the positive constants a and p depends on the particular model.

The stability of the observer is established by standard Lyapunov arguments [54, sec. 2.1,

theorem 2.1, page 4]. The convergence of the parameter estimate (0,) to the true value (0*)

is established by standard sufficiently richness condition on the regressor (w^i) [35].

Note that in (2.37) we have used a normalized parameter update law. In this

application, normalization of the regressor 103,- provides desirable parameter convergence

for the identifier and does not exhibit any bursting phenomenon as seen in the update law

with no normalization of the regressor 103,-.

2.8.2 Simulation Results

To examine the performance of the mass identifier, simulations were run for three differ

ent types of vehicles with various passenger and luggage loadings using the System Build

software package within MATRIXx. In all the simulations conducted, vehicles were as

sumed to be initially traveling at the steady-state velocity of 11 m.sec'1 (i.e., 25 m.p.h.).

Beginning at time t = 0 sec, the vehicle's velocity was increased from its steady-state value

of 11 m.sec'1 until it reached its final value. Each vehicle's acceleration increased linearly

during the first second of the manuever until it reached its peak value.

The following types of vehicles with their relevant parameters were used in the

simulations

• Daihatsu Charade CLS- curb mass= 2015 lbs. (i.e., 916 kg); cross-sectional area (A)=

1.9 m2; drag coefficient (Cd)= 0.35 (i.e., Kd = 0.44 kg.m'1); engine time constant

(r)= 0.2 sec.

• Buick Regal Custom- curb mass= 3220 /6s. (i.e., 1464 kg); cross-sectional area (A)=

2.2 m2; drag coefficient (Cj)= 0.35 (i.e., Kd = 0.49 kg.m'1); engine time constant

(r)= 0.25 sec.

• BMW 750iL- curb mass= 4000 /6s. (i.e., 1820 kg); cross-sectional area (A)= 2.25 to2;

drag coefficient (Cd)= 0.35 (i.e., Kd = 0.51 kg.m'1); engine time constant (r)= 0.2

sec.
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Each vehicle's respective mass with passenger and luggage loading were as follows:

• Daihatsu Charade CLS- 1136 kg

• Buick Regal Custom- 1613 kg

• BMW 750iL- 2222 kg.

The values of the parameters o and p were chosen as follows:

<t = 10

p = 16.

Figures 2.15, 2.16, and 2.17 show the performance of the mass identifier for the three

different types of vehicles with the above passenger and luggage loadings.

These simulation results show that the mass identifier accurately identifies each

vehicle's respective mass three seconds after the start of each vehicle's acceleration. In

addition to the mass estimate (mass in kg) for each vehicle, we have plotted each vehicle's

respective engine input (wt- in N), identifier error (ct- := I,- - x{ in m.sec'2), and rate of
change of the parameter estimate (0,- in kg'1.sec'1). Note that in each case the identifier

error (et) and the rate of change of the parameter estimate (0t) converge to values close to
zero within three seconds of the start of the respective vehicle's acceleration.

2.8.3 Summary

We have proposed a mass identifier for identifying the mass of a vehicle. The identifier

consists of a normalized parameter update law. Simulation results for three different types
of vehicles with various passenger and luggage loadings show that the identifier accurately
estimates the mass of each respective vehicle three seconds after the start of each respective
vehicle's acceleration.

The mass identifier can be used as a useful option as part of each vehicle's control

system for control of a platoon of vehicles on automated highways.
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Figure 2.7: Ai, A2,A3,A5,A9,A13, and A15 vs. t: nominal system
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Chapter 3

Longitudinal Control of a Platoon

of Vehicles with no

Communication of Lead Vehicle

Information

This chapter considers the problem of longitudinal control of a platoon of auto
motive vehicles on a straight lane of a highway and proposes control laws in the event of

loss ofcommunication between the lead vehicle and the other vehicles in a platoon. After
discussing the main design objectives for the proposed control laws, we obtain longitudinal
control laws for a platoon of vehicles which do not use any communication from the lead

vehicle to the other vehicles in the platoon. Comparison between these control laws and the

control laws, in chapter 2, which use such a communication link to transmit lead-vehicle

information to the other vehicles in a platoon shows that, in case of loss of communication
between the lead vehicle and the other vehicles, the performance ofthe longitudinal control
laws degrades; but, this degradation is not catastrophic.

3.1 Introduction

Traffic congestion is a global problem. One method to increase traffic flow is to decrease

inter-vehicular spacings, thus forming a platoon of vehicles traveling at high speed. One
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way to achieve this objective is to automatically control the dynamics of vehicles within a

platoon. The concept of automatically-controlled platoon of vehicles with the corresponding
sensor, actuator, and communication requirements are discussed in [51],[48, and references

therein]. Much work has been done in the study oflongitudinal control ofa platoon ofvehi
cles on automated guideway transit systems [5],[6],[11],[12] [16],[33],[49],[51]. The problem
oflongitudinal control of longer platoons of non-identical vehicles was presented in chapter
2, [47] and [41]. A platoon consists ofa lead vehicle followed by vehicles 1,2,..., N.

In chapter 2, longitudinal control laws for each vehicle in the platoon, say the
i-th vehicle, use the lead vehicle's velocity (vi) and acceleration (a/) in addition to the

preceding vehicle's velocity (v,_i), acceleration (a,_i), and the distance between vehicle

i and the preceding vehicle, i - 1. In these papers, the lead vehicle's velocity (vi) and
acceleration (a/) are transmitted to each vehicle in the platoon via a communication link.

From a system point of view, an important question is: what is the loss of performance

if communication from the lead vehicle to the other vehicles is lost? The purpose of this

chapter is to evaluate the performance of longitudinal control laws with no communication
of lead vehicle information.

The organization ofthis chapter is as follows: in section 3.2, after giving a brief re
view ofvehicle model and exact linearization and normalization ofvehicle dynamics [47],[41],
we propose a longitudinal control law which uses no lead vehicle information and present

the resulting platoon dynamics; in section 3.3, we present design considerations for the

proposed control laws; in section 3.4, we present the simulation results for a platoon of

vehicles under these control laws and compare the performance of these laws with those

which require communication of lead vehicle information [47],[41]; in section 3.5, we discuss
some of the trade-offs involved in using the proposed control laws.

3.2 Proposed control laws and Platoon dynamics

In this section, we review the vehicle model and the exact linearization ofvehicles' longi
tudinal dynamics [47],[41]. Then, we propose longitudinal control laws which do not require
communication of the lead vehicle's velocity (vi) and acceleration (a/) to each vehicle in the

platoon. Using the proposed control laws, we obtain a block diagram for analyzing the
platoon dynamics.

We consider a platoon of N vehicles following a lead vehicle on a straight lane of
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highway [47],[41] (see Figure 3.1): each vehicle in the platoon is assigned a slot of length
L; the abscissa of the rear bumper of the i-th vehicle with respect to a fixed point 0 on

the road is denoted by X;; for i = 1,2,..., N, A, denotes the deviation of the i-th vehicle's

position from its assigned position. Hence, we have

Ai := xi - x\ —L

and for i = 2,3,. ..,N,

A; := x,-_i —Xi —L.

Vehicle model[47],[41] The longitudinal dynamics of the i-th vehicle in the

platoon is modelled as follows: (for i = l,2,...,N)

Ti(Xi) Ti(Xi)

mi'ii = Fi- Kdii2 - dmi (3-2)

where Fi denotes the driving force produced by the i-th vehicle's engine; m,- denotes the

mass of the i-th vehicle; r;(-) denotes the engine time lag for the i-th vehicle; u; denotes

the throttle command input to the i-th vehicle's engine; Kdi denotes the aerodynamic drag

coefficient for the i-th vehicle; and dmi denotes the i-th vehicle's mechanical drag. Equation

(3.1) represents the i-th vehicle's engine dynamics and equation (3.2) represents Newton's
second law applied to the i-th vehicle modelled as a particle of mass m,-.

This simple model used to describe the engine dynamics (3.1) has proved to be

useful for preliminary system-level studies in longitudinal control of a platoon of vehicles

[5], [6],[49],[51].

Exact linearization ofvehicle longitudinal dynamics [47],[41] In the sequel,

we use exact linearization methods [18], [36] to linearize and normalize the input-output

behavior of each vehicle in the platoon. Differentiating both sides of (3.2) with respect to

time andsubstituting the expression for Fi in terms ofi» and x\ from equations (3.1)- (3.2)

we obtain: (for i = 1,2,..., N)

x\= bi(ii, x\) + ai(ii)ui (3.3)

where

bAxi,Xi) r-r^ Ui + xi + - —-—XiXi {<&A)
tv y Ti(xi) L mi mi J mi
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and

1ai(xi) = ttt. (3.5)miTi(xi) v J

We propose the following control law: (for i = 1,2,..., N)

w,'(i*' *•)= Trrd-W*" *•') +c«l (3-6)**i\Xi)

where c, is an exogenous input to the i-th vehicle dynamics.

Substituting the expression for ut from (3.6) into (3.3) we obtain: (for i = 1,2,..., JV)

x'i= c{. (3.7)

Note that the control law (3.6) has achieved two objectives: a) it has Unearized
the input-ouput behavior ofthe i-th vehicle's dynamics, and b) it has resulted in dynamics,
for each vehicle, which are independent of the vehicle's particular characteristics (e.g., mass
of the vehicle, engine time lag, etc.).

Control laws We propose the following linear control laws for the linearized

vehicle model (3.7): for the first linearized vehicle model the control law is

C! := epA1(t) + cvAl(t) + eaLi(t) + kv[vi(t)"Vi(0-)]

+ *««/(*) (3.8)

where t>/(0-) denotes the steady-state value of the lead vehicle's velocity (vi);
for the i-th linearized vehicle model (i = 2,3,..., N) the control law is

Ci := cpAi(t) + cvAi(t) + caAi(t) + kv K_i(<) - t>;_i(0-)]

+ kaai^(t) (3.9)

where vt_i(0-) denotes the steady-state value of the (i - l)-th vehicle's velocity and
cP,cv,ca,kv, and ka are design constants. Figure 3.2 shows the linearized model of the

i-th vehicle with the proposed control laws c,-.

Note that the control law (3.8) for the first vehicle uses the lead vehicle's velocity

(vi) and acceleration (a/); these quantities are obtained in the first vehicle by measuring
Ai, Ai, i\, x\ and using the relations vi = i\ + A\ and c/ = x\ + Ai.
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Platoon Dynamics Let wi(t) denote the deviation of the lead vehicle's velocity

from its steady-state value at time t (i.e., wi(t) := vi(t)- v/(0-)). Then, using the proposed

control laws (3.8)-(3.9) for the linearized vehicle models, we obtain the block diagram in

Figure 3.3 where:
S ^ KqS Ky

S* + CaS2 + cvs + c

and for i = 2,3,..., N,

k,-M := .3 1, .2. ,.. (3-10)

(ca + ka)s2 + (cv + kv)s + cp
s3+ cas2 + c„s+ cp

g(s) := hA%A._,(s) = i . _ , ^ v-. (3.11)

In (3.10) and (3.11) we have used the symbol "*" to distinguish Laplace transforms from

the corresponding time-domain functions. Thus, hab(') denotes the transfer function from

b to a.

In the next section, we use the block diagram in Figure 3.3 to analyze the platoon dynamics.

3.3 Design of the proposed control laws

In this section, we discuss the main design objectives for the longitudinal control laws

and propose a design suitable for this preliminary system study.

Design Considerations Some consideration of Figure 3.3 suggests the main

design objectives for the longitudinal control laws:

1. Stability requires that h&lWl and g have all their poles in the open left half-plane of

the s-plane.

2. /iAiu/j should be designed so that the deviation of the first vehicle from its assigned

position (i.e., Ai) remains small as a result of a change in the velocity of the lead

vehicle(tu/); in addition, it is desirable to have the deviation of the i-th vehicle (for

i = 1,2,.. .,N) asymptotically approach zero (i.e.,A,(<) —• 0 as t —• oo), at the end

of a maneuver.

3. Since the magnitude of At- (for i = l,2,...,iV) due to changes (wi) in the lead vehicle's

velocity from its steady-state value should not increase from one vehicle to the next

as one goes down the platoon, we require that |£(jo;)| < 1 for all w > 0, (to avoid a

slinky-type effect).
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4. Since the inverse Laplace transform of [g(s)]2 is the convolution of the impulse response
of g(s) with itself (le.,(g *g)(t)), to avoid oscillatory behavior down the platoon it is
desirable to have g(t) > 0 for all t > 0.

From Figure 3.3 we note that for i = 1,2,..., N

A,(s) = &A1«,(*)te(«)],"'1i&i(*). (3.12)

Suppose the lead vehicle reaches its final steady-state value at time tf. We can
write: for t > 0,

Mt) = [vi(tf) ~ vi(0-)] +15,(0 (3.13)

where wi(t) = 0 for all t > tf.

Taking Laplace transforms of both sides of (3.13) we obtain

- / x »/(*/) - »f(0-) - , .wi(s) = Kj;iK—'- + wi(s). (3.14)

Substituting (3.14) into (3.12) and using the final value theorem, we obtain (for
i = l,2,...,N)

lim Ai(t) = ]imsh£klWl(s)[g(s)]i'1 vi(tf) - tn(Q-) .
+ wi(s) (3.15)

Since g(0) = 1from (3.11) and ^/(0) = $ wt(t) dt < oo, from (3.15) we obtain
(fori = l,2,...,JV)

thm Ai(t) =AAlW|(0) [*,(*/) - v{(0-)]. (3.16)

We choose kv = 0 so that from (3.10) and (3.16) we obtain /im^^A,-^) = 0 for
i=l,2,...,JV.

Design of h&lWl and g Having chosen kv = 0, we still need todesign parameters
ka,ca, cv, and cp. We choose the design vector (q) as follows

q:=[a,P,p,ka]T (3.17)

where

ca = —a — p

cv = ap + fi

cP = -Pp. (3.18)
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From (3.10),(3.11), and (3.18) we write the design transfer functions as follows:

**-(*'g) =(s2-Llkp)(s-p) (3-19)
d(s , = (-a - p+ ka)s2 +(ap +(5)s - 0p

KiH) (s2-as +l3)(s-p)
(3.20)

From (3.19)-(3.20) we note that

shAlWl(s,q)-rg(s,q) = l (3.21)

for all s e C and for all q e R4; hence, we cannot design hAlWl(s,q) and g(s,q) indepen
dently. Thus, we choose target transfer functions

**""« =(s +4)(/+25)(, +6) (3'22)
t , 5s2 + 495 + 120

*•"-« = (4 +4)(. +5)(. +6) (3-23)
which are based on the design considerations above and on our work in [47],[41]. Next, we
formulate a design strategy based on steepest descent ideas.

We propose to obtain a q* suitable for our problem by considering the following
optimization problem:

mm f(q) (3.24)

where R% := {q €R4\hAlWl(s,q) and g(s,q) stable transfer functions }and
n

/°(?) == E^[lU-.(to,«)l'-lWt«u*)l:
Jk=l

+ E «* [|^(M, q)\2 - \gtarget(juk)\2] . .
k=l

(3.25)

Equation (3.25) represents aweighted quadratic cost function with w% and wjj (for
k = 1,2,...,n) denoting the appropriate weights and n chosen appropriately to include
all frequencies of interest: since most of the energy of wi(-) is between 0 rad.sec'1 and 3
rad.sec'1, w% and w9k (for u;* between these frequencies) were chosen to be much larger
than the corresponding weights (w% and w9k) for frequencies between 3 rad.sec'1 and 6
rad.sec'1; to decrease the effect ofhigher frequency signals on the designed control laws,
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wk an<* ^k (*°r uk greater than 6 rad.sec'1) were chosen large enough so that the magni
tude of the frequency response of the designed transfer functions closely approximated the

corresponding magnitude of the frequency response of the target transfer functions.

The constrained optimization problem (3.24)-(3.25) does not take into account all

the design considerations appropriate for ourproblem: in the course ofthedescent procedure

we take into account these additional engineering considerations by adjusting the weighting
factors. If this study were not a preliminary study but aimed at a detailed control system

design, we would use a) a much more elaborate model for the vehicle dynamics which would

include, in particular, the dynamics oftires, transmission, engine, etc., b) a model for the

actuator dynamics including at least saturation and time constants. We would also develop

a detailed design for the controller. In particular, we would incorporate a number ofdesign
constraints due to actuator saturation limits, regions of stability of the transfer functions in

the open left-half plane, regions of constraints for the zero locations of the design transfer

functions, etc... In such controller design, we would use constrained optimization algorithms

and semi-infinite optimization methods discussed in [31, algorithm 6.3 with Armijo stepsize

rule (6.31a)-(6.31b),pp.81-2].

Our objective in this preliminary study is to establish that, in case of loss of

communication between the lead vehicle and the other vehicles, the performance of the

longitudinal control laws degardes; but, this degradation is acceptable. To accomplish this

objective, we a) use simple nonlinear vehicle/engine dynamics, b) formulate some of the

system-level design considerations into a cost function, and c) obtain a suitable design by
using a descent-type algorithm, (see e.g., [31, and references therein])

Using the above approach, we obtain the following final design transfer functions:

; , x _ s2 + 5.15s
final{S) ~ (s +1.71)(s +4.93)(s +10.92) (3*26)

( v _ 12.42s2 + 80.96s+ 91.99 , ,
9final{S) " (s +1.71)(s +4.93)(s +10.92); (3'27)

the corresponding values of the design variables are

[cp, cv, ca, kv, ka] = [91.99,80.96,17.56,0, -5.15]. (3.28)

Denote AtmtiaK*) •= h^iWl(s,q0) and &mtta/(*) := g(s,Qo) where q0 is the initial

design vector q0 = [-9,20,-6,-3]T. Figures 3.4 and 3.6 show the magnitudes of fre
quency response of w •-• hinitiai(ju), u *-* hfinaitiu), u i-> htgTget(ju), u *-+ ginitial(ju),
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<*> •-• g/inai(ju), and w »-»• gtarget(ju). The corresponding impulse responses are shown in

Figures 3.5 and 3.7.

3.4 Simulation Results

To examine the performance of (3.8)-(3.9) with the design constants (3.28), we ran sim

ulations for platoons consisting of 3 different types of vehicles. Within each platoon, 15

vehicles (N = 15) followed a lead vehicle. In all the simulations conducted, all the vehi

cles are assumed to be initially traveling at the steady-state velocity of t?o = 17.9 m.sec'1
(i.e., 40 m.p.h.). Beginning at time t = 0 sec, the lead vehicle's velocity increases from its

steady-state value of 17.9 m.sec'1 until it reaches its final value of 21.9 m.sec'1 (i.e., 50

m.p.h.): the maximum jerk and the peak acceleration values, corresponding to this velocity

time-profile, were 0.5 m.sec'3 and 1 m.sec'2, respectively (see Figures 3.8 and 3.9).

Figures 3.10 and 3.11 show the simulation results for the nominal case:

• the deviations of the vehicles from their assigned positions (i.e., A; for i = 1,2,..., 15)

are less than 0.0.8 m.

• These deviations decrease to zero reasonably fast and do not exhibit too much oscil

latory behavior.

• The peak values of these deviations increase from one vehicle to the next as one goes

down the platoon. This is due to the fact that \gjinai(j^)\ > 1 for w between 0

rad.sec'1 and 6 rad.sec'1.

• The acceleration curves show that the peak magnitude of vehicle accelerations increase

from one vehicle to the next as one goes down the platoon. The peak values of these

accelerations remain within 1.5 m.sec'2.

In comparison to chapter 2, [47],[41], the peak value of the lead vehicle's accel

eration (at) is 1 m.sec'2; whereas, in chapter 2,[47],[41], this peak value was 3 m.sec'2:
the maneuver considered here was chosen to be gentler because otherwise the acceleration

demands on the tail vehicle of the platoon were excessive.

In contrast to chapter 2, the deviations of the vehicles from their assigned positions

(i.e., Ai for i = 1,2,...,15) increase from one vehicle to the next under the control laws
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(3.8)- (3.9); however, the peak values ofthese deviations are within acceptable performance
limits and these deviations do not exhibit too much oscillatory behavior.

Since under the control laws (3.8)- (3.9), the i-th vehicle in the platoon (for
i = 2,3,..., 15) does not require the lead vehicle's velocity (v/) and acceleration (a/) for
computing its control input (a), the longitudinal control scheme presented here does not

necessitate the need for acommunication system; hence, the implementation ofthis longitu
dinal control scheme is less expensive than the one presented in chapter 2. The performance
of the longitudinal control scheme in chapter 2,[47],[41] degrades slightly due to communi
cation delays in transmitting the lead vehicle information; in contrast, control laws (3.8)-
(3.9) do not depend on transmission of the lead vehicle information to each vehicle in the
platoon.

The exact linearization method is based on exact knowledge of vehicle / engine
parameters. We ran simulations to evaluate the robustness of the control laws (3.8)-(3.9)
with the design constants (3.28); namely, robustness with respect to each vehicle's mass
variations and measurement noise. The mass variations ranged from 8% to 23% of each
vehicle's mass. The value of A{ (for i = 1,2,..., 15) used in the i-the vehicle's control laws
(3.8)-(3.9) was the sum of the actual measured value of A, and some Gaussian noise with
zero mean and standard deviation (a) of0.05 m. Based on these simulations, the deviations
of the vehicles from their respective positions were larger than the respective deviations in
the nominal case; however, such deviations were within acceptable performance limits.

3.5 Conclusion

In contrast to previous work in chapter 2, [47],[41] this chapter considers longitudinal
control laws for a platoon of vehicles which do not use any communication of lead vehicle
information.

Comparison with the full communication case, presented in chapter 2, [47],[41],
shows that using control laws (3.8)-(3.9): the deviations in vehicle spacings from their
assigned positions increase from one vehicle to the next as one goes down the platoon;
furthermore, the acceleration demands on the tail vehicle of the platoon are much larger
than the respective demands under the control laws in chapter 2,[47],[41]. On the other
hand, the longitudinal control scheme presented here does not require communication of
lead vehicle information; hence, it is less expensive than the corresponding scheme in chapter
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2,[47],[41] and cannot suffer from any degradation due to communication delays.
At present system designers are inclined to view the communication system within

the platoon to be indispensable for safety, entrainment and detrainment maneuvers. This

study shows that in case the communication breaks down, the control laws proposed in
this chapter can be used as an alternative means to control the longitudinal dynamics of a
platoon of vehicles.



51

x3 x2 X\ xi

\ lead vehicle

/

A*3 I kl !

direction of motion

Figure 3.1: A platoon of vehicles on a straight lane of highway
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Figure 3.2: Linearized model of the i-th vehicle with control input c{,i = l,2,...,N
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Figure 3.9: lead vehicle's acceleration time-profile: ai(t) vs. t.
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Figure 3.11: x\,x2,x3,x^,x9,x\3, and x\5 vs. t: nominal case



Chapter 4

Combined Longitudinal and

Lateral Control of a Platoon of

Vehicles

60

4.1 Introduction

In recent years, anumber ofstudies have been done on intelligent vehicle highway systems
(IVHS) [41],[46], [13],[30],[51]. One direction of such studies is to investigate the feasibility
of using automatic control techniques to increase the throughput of vehicles in a lane ofa
highway: more precisely, thegoal is to use automatic control to reduce the distance between
successive vehicles.

This chapter considers the problem ofcombined longitudinal and lateral control of

a platoon of vehicles onautomated highways. A platoon consists of N non-identical vehicles
following alead vehicle. Previous studies separated the problem oflongitudinal control of
a platoon ofvehicles from the lateral control ofeach vehicle within the platoon: in the case
of longitudinal control of a platoon of vehicles, these studies showed that suitable control
laws, as in chapter 2, can be designed for aplatoon of 16 vehicles traveling on astraight lane
ofahighway [41],[46],[47]; in the case of lateral control of avehicle, these studies proposed
control laws based on a linear model of vehicle's lateral dynamics with the assumption
that the vehicle's speed remains constant on a curved lane of highway [30]. In the present
system-level study, we propose nonlinear control laws for a platoon of non-identical vehicles
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accelerating on a curved lane of highway. These control laws are based on nonlinear models

of vehicles' combined longitudinal and lateral dynamics.

The organization of thechapter is as follows: section 4.2 summarizes the notation;
in section 4.3, we derive the kinematic equations for the i-th vehicle (i = 1,2,...,JV) in a
platoon; in section 4.4, we describe the dynamic equations representing the i-th vehicle's
engine and steering actuator dynamics (for i = 1,2,..., N) and then derive the equations of

motion for the i-th vehicle's center of mass; in section 4.5,using both the kinematic and the

dynamic equations for the i-th vehicle, we propose a lateral control law for this vehicle and

longitudinal control laws for the platoon; the implementation issues regarding the needed
sensors, estimators, guidance system, and communication link are discussed in section 4.6;

in section 4.7, we show the simulation results for a platoon of 5 vehicles following a lead
vehicle, accelerating on a curved lane of a highway, under the proposed control laws; and
finally, in section 4.8, we conclude the chapter by giving a plan for further improving the
robustness of the proposed control laws under parameter uncertainties.

4.2 Notation

Figures 4.1, 4.2, 4.3, and 4.4 show the relevant quantities for the lateral dynamics of the

i-th vehicle in a platoon, the longitudinal dynamics for the (i - l)-th and the i-th vehicles

in a platoon, the body frame of the i-th vehicle in a platoon, and the bicycle model for the

i-th vehicle in a platoon, (for i = 1,2,..., N), respectively:

• (O, x, y) a fixed inertial frame in the plane.

• C lane center (a smooth curve in the plane).

• eFi,esi,ezi unit vectors along the longitudinal axisof the i-th vehicle, the transversal

axis of the i-th vehicle, and the vertical axis through the i-th vehicle's center of mass;

(eFn es{, ezi) form adextral orthonormal coordinate frame on the i-thvehicle's body.

• Ci,?d i-th vehicle's center of mass, the vector from O to ct-. (see Figure 4.1)

• di,?di i-th vehicle's reference point on C, the vector from 0 to d;. (see Figure 4.1)

• t(di),n(di) unit tangent vector at the point rft- on C, unit inward normal at the point
di on C.
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• €i,€di the angle between the Ox-axis and the i-th vehicle's longitudinal axis, the
angle between the Ox-axis and f(d,). ~"

• Aijgt lateral deviation of the i-th vehicle's center of mass from the lane center.

• Ai,Bi the midpoint on the i-th vehicle's front bumper, the midpoint on the i-th
vehicle's rear bumper.

• n-i,t the vector from Ai to Bi-\. (see Figure 4.2)

• 0,_i,,- the angle between the Ox-axis and fi-i.t-

• Adesired the desired length of vector fi_it,\

• A,--iti deviation of the length of vector ff_1|t- from its desired value Admired-

• iFiilm the distance between the i-th vehicle's center of mass and its front axle, the
distance between the i-th vehicle's center ofmass and its rear axle, (see Figure 4.3)

• iFiJm the distance between the i-th vehicle's center of mass and its front bumper
(point Ai), the distance between the i-th vehicle's center ofmass and its rear bumper
(point Bi). (see Figure 4.3)

• mt- mass of the i-th vehicle.

• Izi moment of inertia of the i-th vehicle about the vertical axis through its center
of mass.

• CFuCm sum of the front tires' cornering stiffnesses for the i-th vehicle, sum of the
rear tires' cornering stiffnesses for the i-th vehicle in (N/rad).

• Ti i-th vehicle's engine time lag.

• Fei driving force produced by the i-th vehicle's engine along the longitudinal axis of
the i-th vehicle, (see Figure 4.4)

• Fpi,FRi force exerted by the road on the front tires of the i-th vehicle, force exerted
by the road on the rear tires of the i-th vehicle, (see Figure 4.4)
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• VFi,vsi component ofthe velocity ofthe center ofmass ofthe i-th vehicle along its
> longitudinal axis, component of the velocity of the center of mass of the i-th vehicle

along its transversal axis.

• api,asi component oftheacceleration ofthe center ofmass ofthe i-th vehicle along
epi, component ofthe acceleration ofthe center ofmass ofthe i-thvehicle along £5,.

• Ui throttle command input to the i-th vehicle's engine.

• 6Fi,ticommand,i i-th vehicle's front steering angle, i-th vehicle's steering angle com
mand input.

• dmi i-th vehicle's mechanical drag.

• Kdi i-th vehicle's aerodynamic drag coefficient.

• Tai i-th vehicle's steering actuator time constant.

• Sdi arc length traversed by the i-th vehicle's reference point on the lane center £.

• R—\ where pis radius of curvature of lane center line.

• ert_iti, e$i-iti unit vector along fv-i,i, unit vector normal to 7\_ift- and in thedirection
ofincreasing $i-iti (i.e., counter-clockwise direction).

• Ci exogenous input to the i-th vehicle's longitudinal dynamics.

4.3 Kinematics

In this section, we summarize the derivation of kinematic equations for the i-th vehicle
(i = 1,2,..., N) in a platoon.

Figure 4.1 shows the relevant quantities for the lateral dynamics ofthe i-th vehicle
in a platoon (i = 1,2,..., N).

Definition [reference point rfj- Given the location of the i-th vehicle's center of mass

(fd), we draw the osculating circle to £ centered at point ct; this circle is tangent to the
road at a reference point, called d{. Thus, by definition of dt, (rCT- - fdi) is parallel to n(di).
A,,/at denotes the radius of the osculating circle. Hence,

A,-,/ot := (fd - fdi)• n(di). (4.1)
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Writing the Frenet formulas for n(di) and t(di), we get

n(di) = -K(sdi)sdit(di) (4.2)

t(di) = K(sdi)sdin(di). (4.3)

Noting that f(dt) = e«ftn(rft), from (4.3) we get

Ui = n(sdi)sdi- (4.4)

Taking derivatives of both sides of (4.1) with respect to t, we get

Aitigt = (fd - fdi) •it(di) + (fd - fdi) •k(di). (4.5)

By definition of t(d{), fdi is parallel to t(di). Hence, fdi •n(di) = 0 in (4.5).
Furthermore, (r„- - fdt) is parallel to n(di). Hence, using (4.2) in the right hand side of
(4.5), we get

A,-,/a* = fd •n(di). (4.6)

Exhibiting the components of the velocity, see Figure 4.1, fa- := vpi^Fi +vsiis»
so from (4.6) we get

Aijgt = vFi sm(€i - €d,) + vSi cos(€i - €A-). (4.7)

Taking derivatives of both sides of (4.6) with respect to t,we get

A;,/,,* = fd •n(d{) +fd •k(di). (4.8)

Noting that fd := apiepi +aSiesu r„ := vpi€Fi + vsiisi, and using (4.2), we get

A,vo« = (api + K(sdi)sdiVsi) sin(ct- - €&)

+ (fl5* - n(sdi)sdiVFi) cos(ct- - €dt). (4.9)

Using (4.4), we can simplify this expression to

A,vo< = (<tFi +vsitdi) sin(ct- - cdi) + (aSi - vFi€di) cos(€t- - cdi). (4.10)

Comparing the expression for At-,/ot obtained by differentiating both sides of(4.7),
with respect to t, with the expression in the right hand side of(4.10) we get

VFi = api + vsiii (4.11)

vsi = aSi-vpi€i. (4.12)
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Differentiating both sides of (4.10) with respect to t, we get after some straight
forward calculations

Ai,/ot = (aFi + vsiiji + vsiidi) sin(ef- - edi)

+ ^Fi + Vsi€di)(€i - €di) COS(€i - €di)

+ (asi ~ VFikdi - VFi€di) COS(€i - Cdi)

- (asi - vpiCdi)(ti - idi) sin(€t- - c*). (4.13)

In section 4.5,we use the kinematic equation (4.13) and propose a lateral control

law for the i-th vehicle.

Figures 4.2 and 4.3 show the relevant quantities for the longitudinal dynamics of

the (i - l)-th and the i-th vehicles in a platoon (for i = 1,2,.. .,N). From Figure 4.2 and
by definition of Ai_i>t-, we have

A,-i,,- := 7\_it,- •en-i,; - Adesired; (4.14)

and by definition of crt_ift- and e«_i,i (see Figure 4.2), we have

Crt-l,i = ^t-l,tC«-l,» (4.15)

cw-1,1 = -0,-i,,ert-i,t- (4.16)

Differentiating both sides of (4.14) with respect to t, we get

A,_i,,- = ff_1|t •ert_i|t- + f;_lfl- •ert_i|t-. (4.17)

By definition, f;_ltt- is parallel to ert_i,i. Hence, using the expression for eri-u
from (4.15), we get

Ti-u -eri-u = 0. (4.18)

Let v*Ai, VBi denote the velocity vectors of points Ai, Bi, respectively. Then, for

i = 1,2,..., N, we have

n-i.i = VBi-i - vAi. (4.19)

By definition of eFi and esi (see Figure 4.1), we have

€Fi = tiisi (4.20)

esi = -titpi. (4.21)
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Rom Figures 4.2 and 4.3, we note that

?Ai - fa = iFi^Fi

*« - *Bi = iRiiFi.

(4.22)

(4.23)

Differentiating both sides of (4.22), (4.23) with respect to t, using the expression
for epi from (4.20), and noting that fd := vFieFi +vsi&si, we get

v*Ai = vFieFi + (vSi + lFi€i)esi

VBi = vpiipi + (vSi - iRityesi.

(4.24)

(4.25)

Substituting the expressions for vBi-i, vAi from (4.24)-(4.25) in (4.19) and using
(4.18), we can simplify (4.17) to

A,-ift = vF,_i cos(0t-_!,t- - €,_!) +(vsi-i - ffli-iei-i) sm(0i-u - *i-i)

- vFi cos(0i-u - a) - (vSi +iFi€i) sm(9i.u - a). (4.26)

Successively differentiating both sides of (4.26) with respect to t and using the
expressions for vF,-_i, vSi-u VFi, and vSi from (4.11)-(4.12), we get

A,--i,t- = [api-i +//u-ic?.i +(vsi-i - («-i€i-i)4-if.-] cos(0t_ltt- - e^)
-(aFi - Ipitf) - (v$i +Wi)0t-i,*] cos(0j_1|t- - a)
asi-i - 7/H-i€i-i - »Ft-i^-i,t| sin(^t_iti - e«-i)

Ai-u =

+

+

+

+

+

+

+

+

+

+

+ [-(a5t +/Fi?i) +i>M-i,»] sin(^_lft- - €i).

(aF,-i - asi-iii..! +3/jk-i€.-i€,-i) +20l_1,t(a5,_i - /»-i*-i)] cos(0t_lit- - e^)
0|-l,.(t>S,-l - J*,-l€,-l) - ^?_iftVFt-l] COs(^_i|t- - €,-_!)
-(aFi - a5i€,- - 3/FiCtC.) - 20t_1|t(as,- +/>,€,)] cos(0,_lfl- - et)
-^•-l,t(«Si +If&) +«?-lfi*Fi] C08(ft-ifl- - €()
asi-i +aFt-i€,-i +Im-iti-i - lm-i c,_i] sin(^_1>l- - €,_!)
-2^i-i,i(oFi-i +/rs-i€?_i)] sin(0t-_ltl- - £,•_!)
-ft-i,t»Ft-i - $i-u(vSi-i ~hi-iti-i)] sin(^.1|i - et_x)
-(aSi +aF,€i - />,€? +fF* €,-) +29i.u(aFi - /«€?)] sin(0t_1>t- - e<)
Oi-UVFi +#-,t-(»5t +W,-)! sin(ft_i; - €,-). f4.98^

-(asi +aF,€t- - iFi?f + fFl- €,-) +20t_lft(aFi -

%-uVFi +d,t(v5t +W.)] sinW-i,,- - €,•).
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In section 4.5, we use the kinematic equation (4.28) and propose longitudinal
control laws for a platoon of vehicles.

4.4 Dynamics

In this section, we describe the dynamic equations representing the i-th vehicle's engine
and steering actuator dynamics (for i = 1,2,..., N); then, we derive the equations ofmotion
for the i-th vehicle's center of mass. These dynamic equations axe suitable for a system-level
study of the combined longitudinal and lateral dynamics of a platoon of vehicles, traveling
on a curved lane of a highway, with sufficiently large radius of curvature, under nominal
operation.

In this system-level study, we model each vehicle in the platoon as a rigid body.
We write Newton's second law for the i-th vehicle's center ofmass and the dynamics ofthe
angular momentum of the i-th vehicle about the vertical axis through its center ofmass.
The external forces acting on the i-th vehicle are driving force produced by the i-th vehicle's
engine, drag forces due to aerodynamic and mechanical drags, and tire forces exerted by
the road on the i-th vehicle's tires.

Engine dynamics We use a nonlinear differential equation to represent the i-th vehicle's
engine dynamics

&=- , F" , + , Ui ,. (4.29)Ti(VFi,VSi) Ti(vFi,Vsi) K }
The simple model used to describe the engine dynamics is useful for preliminary

system-level studies in longitudinal control of a platoon of vehicles [41],[51]. As a con
sequence, we do not use complex engine models which take into account factors such as

ambient temperature, engine temperature, altitude, condition ofspark plugs, transmission
dynamics, etc... (for a more detailed model of engine dynamics refer to [13]).
Steering actuator dynamics The steering actuator used is modelled as a first order lag

i Opi vcommand^ .6Fi = -— + . 4.30
'at 'at

Equations of motion for the i-th vehicle (i = 1,2,...,N) Writing Newton's second
law for the i-th vehicle's center ofmass, we get

™>ifd = Fd + Fdrg9li + /tires,,- (4.31)



where

Fd

fdrag,i

*tiresti

= ^eteFi

= * aerodynamic,i T * mechanical,i

= -KdiVpiipi - dmiipi

= Fpi + FRi.
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(4.32)

(4.33)

(4.34)

Note that (4.31) does not include the effect of wind gusts nor the slope of the
highway.

We use a bicycle model (also called half-car model) to represent the lateral dy
namics of the i-th vehicle [1],[24],[30] (see Figure 4.4): magnitude of the force exerted by
the road on a tire is modelled as proportional to the angle between the tire patch and the
direction of the velocity vector of the tire [34]; the constant of proportionality is called the
tire's cornering stiffness; the direction of the force exerted by the road on atire is orthog
onal to the axis ofthe tire patch, (see Figure 4.4) In this study, we consider only vehicles
with front-wheel steering. For the i-th vehicle, aFi denotes the angle between front tire
patches and the direction ofthe velocity vector ofthe front tires; similarly, aRi denotes the
angle between rear tire patches and the direction ofthe velocity vector ofthe rear tires; vFi
denotes the velocity vector ofthe front tires; and vRi denotes the velocity vector ofthe rear
tires. Using these definitions, we have

\FFi\ = CpiCtpi

\?Ri\ = CRiCCRi.

Projecting FFi, F& on the eFi, eSi -axes, we get

Ffi = CFiQFi sin ^Fi^Ft - Cpictpi cos Spiisi

FRi = -CRiCtRiesi.

From Figure 4.4, we note

rpi - fd = /FtCFt-

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

Differentiating both sides of (4.39) with respect to t, substituting the expression
for eFi from (4.20), and noting fd := vFieFi +vSiesi, we get

VFi := r*Fi = vpiipi + (vSi + lFiti)esi. (4.40)
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Similarly, we get

VRi := fRi = 1>Ft€Fi + (vsi - lRi€i)eSi. (4.41)

From (4.40), (4.41), and Figure 4.4, we note

aFi = arctan(— —) - 6Fi (4.42)
Vfi v '

am = arctan^51 ~ ***'). (4.43)
vFi v *

Substituting the expressions for Fd (equation (4.32)), /*«,,,- (equation (4.33)),
and Ftire3ti (equations (4.34), (4.37), (4.38), (4.42), (4.43)), and noting that fd := aFieFi +
asiisi, we get

miapi = (Fd - KdivFi-dmi) + CFi

miasi = —Cpi

arctan(''5'+W') - SFi
VFi

smSpi (4.44)

VFi
cos 6Fi - Cm arctan(^—*—). (4.45)

VFi

Considering the rate of change of the angular momentum of the i-th vehicle about

the vertical axis through its center of mass (i.e., the ezi-axis), we get

Izit&Zi = fd + fdrgg,i + ffireu (4.46)

where fei denotes the torque produced by the driving force ofthe i-th vehicle's engine (Fd)
about the ezi- axis; fdrag,i denotes the torque produced by the i-th vehicle's drag forces
(-Fdrao.i) about the ezt-axis; and ftireaii denotes the torque produced by the external forces
on the i-th vehicle's tires (FureSii).

We assume that Fdragti is applied to the i-th vehicle's center of mass (a) and that
the supporting line of Fd goes through a, hence

?d = Tdrgg,i = 0. (4.47)

Hence, from (4.46), (4.47), and Figure 4.4, we note

Iz&ezi ••= TtiTeSti := fpi + fm (4.48)

where fFi denotes the torque produced by the external forces on the i-th vehicle's front

tires (Fpi); and TRi denotes the torque produced by the external forces on the i-th vehicle's

rear tires (FRi). Hence, we have

rpi = Ipiipi x Fpi (4.49)

TRi = -iRiipi x FRi. (4.50)
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In (4.49)-(4.50), we have used x to denote cross-product of two vectors in R3.
Using the expressions for FFi, FRi (equations (4.37)-(4.38)), aF„ aRi (equations (4.42)-
(4.43)), and noting that izi := eFi x es» we get

rpi = -CFilFi [axctan(Vsi +/w*) - 6Fi
L vFi

cos 6Fi eZi (4.51)

TRi = Cflt/fliarctan(t;5t~ Ri€i) iZi. (4.52)
VFi

Substituting the expressions for fFi, fRi from (4.51)-(4.52) into (4.48), we get

Izih =-CFilpi [arctan(^illfHi) _sFt] cos Sp. +c t aretanC*5''"**1'*'). (4.53)
L uFi J VFi

Equations (4.29), (4.30), (4.44), (4.45), and (4.53) represent the combined longitu
dinal and lateral dynamics: the control inputs are «,-, throttle command input to the i-th
vehicle's engine, and Scommandj, i-th vehicle's steering command input. In the next section,
we use these equations to propose control laws for a platoon ofvehicles accelerating on a
curved lane of a highway.

4.5 Control laws

Given a platoon of N vehicles following a lead vehicle on a curved lane ofa highway,
we would like to design control laws which, at all times, maintain a close-spacing between
successive vehicles in the platoon and keep all the vehicles close to the center of this lane.

More precisely, for i = 1,2,..., N, we wish to design control laws for the throttle input to
the i-th vehicle's engine, uiy and the steering command input, 6^^^, such that when the
lead vehicle accelerates (or decelerates), over some interval say [0,T], then a) Ai_1)t(t) -♦ 0
as t -»- oo, b) Aijat(t) -• 0 as t -• oo, and c) mait|Aif/at(t)| and roaxt|A,'_ift-(t)| are small.

To achieve these control objectives, we use the kinematic equations (4.13) and the
dynamic equations (4.29), (4.30), (4.44), (4.45), and (4.53) to design a lateral control law
for the i-th vehicle (i = 1,2,...,N); furthermore, we use the kinematic equation (4.28)
and the dynamic equations (4.29), (4.30), (4.44), (4.45), and (4.53) to design longitudinal
control laws for the platoon.

Lateral control law for the i-th vehicle (i =1,2,..., AT) Substituting the expressions
for dFi and aSi, obtained by differentiating both sides of (4.44) and (4.45), into (4.13) and



rearranging terms, we get

Fd - 2K&A-, - \Fd-2KdiVPivpi , . . _,_ . 1 . ,
At,/at - < — -I- VsiCdi + VsiCdi >Sm(€t- - Cdi)

+{[£jMctan(^M)+vFi^,] (* -<„•)} sin(£, -«,)
. f ff., - ^.t>k - rfmi . . 1,. . ,1 ,

IL ™i VS'(ii ~ I°° ' ~^
. / C» («Si - tRi(i)VFi - (fSt - <fljC,-)PFi ) , ,

+ {-VFt^di - VFifdi} COS(€t- - €rfi)

. f <?Ft fei +/FiCtQvF.i- (VSi +lFi€j)VFi , CFii 1 ,c ,\ rm vFi +(vSi +lFiei)2 +—««J«('« +«-€*).
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(4.54)

Substituting the expression for 6Fi from (4.30) into (4.54) and approximating

(Lat 1) sin(ci - edi) « 0, cos(€, - €di) « 1,

(Lat 2) sin(^Fi +e, - €di) » 0, cos(^Fi +«, - edi) » 1,

we get

^ei ~ •yq'iVFi ~ dmi
m*

+ V5tCdi f*. i,\ CRi (VSi " lRi€i)VFi - (VSi - lRi€j)vpi
\*t - *dt) — 5—71 i ^"\9VFi + (vSi - Wi)2

- VpiCdi - VFi€di
_ fe (t>5i + lFi'Ci)VFi ~ (VSi + lFitj)VFi

m 4i + (v« + /f,€,)2
^Ft r Cfj c

^ _ °Fi T 0commana>,-.
m,'Taj miT0i

(4.55)

Using (4.55) we propose the following lateral control law bcommgnd^i for the i-th

t'r"J \Fd - KdiVpj - dmi , 1 |
?f7 I" [ m +VSi€di\ <« "€^j
iTgj [Crj (VSi - lRi€i)vFj - (vSj - lRi€i)vFi . . .1
fc Im.- * +(**-/**)» +"««* +*««* j
iT-qj fCfj fet +hih)VFi ~ (VSi +hi^VFi CFi 1

CFf 1mi 4t. +(vSi +W,)2 +m.-r„- wJ
, mjTaif x A a 1

"(i^T l~C£.'«rtA,'«/a« " CA,/atA*Vot - CA,/atAi,/at j-

vehicle:

+

+

T7lt-

CFi

C'Fi

771;

(4.56)
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where c^laVc^M, and c&jgt are design constants chosen so as to make s3 + c^lats2 +
cA,/ats + cA,/at a Hurwitz polynomial giving rise to appropriate time constants.

Similar tocomputed-torque control laws in robotics, control law (4.56) cancels the
nonlinearities in (4.55) due to road geometry, engine dynamics, and longitudinal and lateral
dynamics: substituting the expression for Scommgndj from (4.56) into (4.55), we get

Ai,/ot« -C£)/oAvat - CA,/aA\/at - cAiiatAigt. (4.57)

Hence, the closed-loop dynamics of(4.55) under control law (4.56) is exponentially
stable.

To implement this control law, we need to either estimate or measure the nonlin

earities in (4.55). At the present time, some ofthese measurements are done by sensors and
we propose to estimate the others by appropriate estimators, (refer to the next section for
a discussion on implementation issues.)

Approximations (Lat 1) and (Lat 2) have proved useful in simplifying the lateral
dynamics, for roads with large radius ofcurvature, under nominal operation.
Longitudinal control laws for a platoon of vehicles In this system-level study,
we have assumed that longitudinal dynamics of a platoon of closely-spaced vehicles on a
road with suitably large radius ofcurvature is approximately the same as the longitudinal
dynamics of this platoon on a straight road. More specifically, we have made the following
approximations:

(Long 1) cos(0t_lti - ct_a) « 1 for i = 1,2,..., N;

(Long 2) sin(0t-_lti - c,-i) * 0 for i = 1,2,..., N;

(Long 3) cos(dt_1|i - €i) « 1 for i = 1,2,..., N;

(Long 4) sin(0i_lti - ««) « 0 for i = 1,2,..., N;

(Long 5) €i«0fori = 0,l,...,AT;

(Long 6) 0t_lt, « 0 for i = 1,2,...,N;

(Long 7) 0i_u « 0 for i = 1,2,..., N;

(Long 8) sinSFi « 0 for i = 1,2,..., N.
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Under the approximations (Long l)-(Long 7), equation (4.28) reduces to:

A,-i,»« dFi-i - aFi (4.58)

for the t-th vehicle (t = 1,2,..., N) in the platoon.

From (4.44) and (Long 8) we get, for t = 1,2,..., JV,

mtaFt « Fei - KdivFi - dmi. (4.59)

Differentiating both sides of (4.59) with respect to t, substituting the expressions

for Fti from (4.59) and F« from (4.29), and noting that under assumption (Long 5) equation
(4.11) reduces to vFi « aFiy we get, for i = 1,2,..., N,

Tmapi * -2KdivFiaFi - ——— \miaFi +Kdiv2Fi +dmi] +-—^ -. (4.60)
Ti{VFi,VSi) L rt J Ti(vFi,VSi)

Based on (4.60), we use the following nonlinear control law for the t-th vehicle in

the platoon (t = 1,2,..., N)

*i =mm(.«, vs<) k +2^^£i +—-L- lFi +*«&+*2i] \ (4.61)
( mi Ti(vFiivsi) [ mi mtJJ v '

where for t = 1,2,..., N, ct- isan exogenous input to thet-th vehicle's longitudinal dynamics.

Substituting theexpression for U{ from (4.61) into (4.60) we get, for t = 1,2,..., N,

*Fi « Ci. (4.62)

Similar to our previous work on longitudinal control of a platoon of vehicles on a

straight lane of a highway in chapter 2, [41],[47], we propose the following control laws ct-
(t= 1,2,...,#):

ci := CpxAo.i +Cv\ Ao.i +CoiAo.i +kvX [vF0 - vfo(0-)] +Araiajro (4.63)

for the first vehicle, and

%:= cpA,_1|t- +cvA,-_ltt- + caAt_i|t- + kv [vF0 - vFi] + ka [aFo - ojri] (4.64)

for the t-th vehicle (t = 2,3,...,iV"). In (4.63), A0,i denotes the deviation of the first
vehicle's position from its desired value ArfMtre(f.

In (4.63) and (4.64), constants cpUcvi,caUkvU kai,cp,cv,ca,kv, and ka are chosen
based on design considerations for longitudinal control ofa platoon (see chapter 2, [41],[47]
for a thorough discussion).

In the next section, we discuss some of the implementation issues for using longi
tudinal control laws (4.61), with ct- as in (4.63)- (4.64).
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4.6 Implementation issues

In this section, we discuss sensors, estimators, the guidance system, and the commu
nication link needed to implement the lateral control law (4.56) and longitudinal control
laws (4.61), (4.63)-(4.64). In addition, we briefly discuss some alternative methods for
implementing these control laws.

We need sensors to measure both velocity components vFi and vs» both accelera
tion components aFi and aSi, the yaw rate e„ the front steering angle 6Fi, the lateral devi
ation At-,/at, and the deviation of the t-th vehicle's position from its desired value (At_itt).
Using the measured values ofvFi, vSi, aFii a5t-, and €<, we can use (4.11)-(4.12) to estimate
the values ofvFi and v5t-. We assume that we know the vehicle's mass mt-, the drag coef
ficient Kdi, the mechanical drag dmi, the moment of inertia about the e^-axis (Iz%\ the
distances lFii lRi, fo, and lRi (see Figure 4.3), and the t-th vehicle's engine time-lag as a
function ofits speed (rt(-)). We assume the steering actuator's time-lag (rai) is known. By
integrating the measured value of€,- and knowing the initial values ofthe t-th vehicle's yaw
angle (ct(0-)), we can estimate €,-. We can estimate the value of€,• by two different methods:
a) by appropriately averaging the finite differences of the measured values of e,-, and b) by
computing the expression for ?,• from (4.53). Similarly, by appropriately averaging the finite
differences of the measured values of AiM and At_lti, we can estimate At-,/at, AtVot, At_lit-,
and A;_ltt. We need parameter identifiers to estimate the t-th vehicle's cornering stiffnesses
{Cf% and Cm). Using (4.44), we can estimate the values of the driving force produced by
the t-th vehicle's engine (Fei).

We assume that each vehicle in the platoon has a road map

fd =fad), (4.65)

where fd denotes the (x, y)-coordinates of apoint on the lane center and $•) is a param
eterization of the lane-center line £ as a function ofarc length $d. Given this road map
(4.65), we can obtain unit tangent and unit normal vectors (f and n, respectively) at any
point on £ as functions of arc length. We can also compute the radius of curvature at

any point. Given the location ofthe t-th vehicle's center ofmass (f„), the initial value of
sdi(0-), the measured values of €,-, vFi, and vSi (or alternatively, the measured values of
aFi and a5t), and the measured values of A,tjat and its time derivatives, we can estimate
sdi. (See Appendix.) Thus, we can compute the values of cA-, €*, and ?*•.
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Components of the velocity of the center of mass of the lead vehicle (vpo) and
acceleration (apo), used in the t-th vehicle's longitudinal control laws (4.63)-(4.64), are
transmitted to the t-th vehicle via a communication link [48]. At the present time, system
designers view such a communication link indispensable for safety, merging, and demerging
maneuvers [14]. For a discussion on longitudinal control laws on a straight lane which do
not use a communication link refer to [46].

4.7 Simulation Results

To check the performance of the proposed control laws, we ran simulations for a platoon
of 5 vehicles following a lead vehicle (i.e., N = 5) consisting of three different types of
vehicles. In all simulations conducted, all the vehicles were initially traveling at a speed of
20 m/s (i.e., about 45 m.p.h.) ona straight lane ofhighway; lateral deviation ofall vehicles'
center of masses from the lane center Cwas zero (i.e., for t = 1,2,...,5, At,/Ot(0-) = 0
) and all vehicles were traveling at their allotted slot on the lane (i.e., for t = 1,2,...,5,
At-i,,(0-) = 0 ).

Lane description Figure 4.5 shows the lane center C(acurve in R2 specified by the map
x *-> y(x)) and its derivatives as functions of x. The lane center consists of three sections:

the beginning and the end sections are straight and the middle section is a slalom curve.
More specifically, the lane center Cis described as Mows (SI units throughout)

y(x) = <

0 x<20

[2 - 2cos(f§ - ft] [tanh(^fi)]3 20 <x<290
[2 - 2cos(i| - ft] [tanh(^)]3 290 <x<560 (4'66)

0 x > 560,

hence this choice of£ is atleast three times continuously differentiable. (See also Figure 4.5.)
Hence, the lateralcontrol law (4.56) does notcontain any discontinuities due to non-smooth

road geometry. In addition, from the plots ofy"(>) and y'(-) in Figure 4.5, we note that the
radius of curvature of C is larger than 250 m.

Vehicle parameters In all simulations, the platoon consisted of three different types
of vehicles: the lead vehicle, the first, and the fourth vehicles were of the same type; the
second and thefifth vehicles were ofthe same type. Table 4.1 shows thevehicle parameters
used in the simulations: some of the parameters of the lead vehicle, the first vehicle, and



vehicle t 0 1 2 3 4 5

curb mass (kg) 1175 1175 1760 1550 1175 1760

passengers' and
luggage mass (kg) 270 270 200 250 270 200

mi (kg) 1445 1445 1960 1800 1445 1960

Ti(s) 0.2 0.2 0.25 0.2 0.2 0.25

Kdi (kg/m) 0.44 0.44 0.49 0.51 0.44 0.49

dmi (N) 352 352 392 408 352 392

Fei(0-) (N) 528 528 588 612 528 588

CFi (N/rad) 135200 135200 90000 84000 135200 90000

CRi (N/rad) 135200 135200 80000 84000 135200 80000

hi (kg.m2) 2094 2094 2820 3100 2094 2820

lFi (m) 1.54 1.54 1.97 1.82 1.54 1.97

lRi (m) 2.46 2.46 2.03 2.18 2.46 2.03

lFi (m) 0.88 0.88 1.37 1.15 0.88 1.37

lRi (m) 1.79 1.79 1.43 1.51 1.79 1.43

Table 4.1: Vehicle parameters used in simulations
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the fourth vehicle correspond to a vehicle in [56]; some ofthe parameters ofthe second and

the fifth vehicles correspond to a vehicle in [24]; some of the parameters of the third vehicle
correspond to a vehicle in [30],

The steering actuator's time lag was 30 ms for all the vehicles, (i.e., for t =
1,2,...,5, rai = 0.030 s)

Controller parameters In all simulations, the lateral controller parameters in (4.56)
were chosen as follows: cAM = 30, cLlat = 300, and cAM = 1000. Under this choice
ofparameters, the closed-loop dynamics ofAt-,/ot, for t = 1,2,. ..,5, were governed by the
transfer function . ,*0^.

The longitudinal parameters in (4.63)-(4.64) were chosen as follows: cai = 15,
Cvi = 74, Cj,! = 120, kai = -3.03, kvl = -0.05, c = 5,c, = 49, cp = 120, ka = 10,
and kv = 25. This choice of parameters was suggested to us by our previous studies in
longitudinal control ofa platoon of vehicles on a straight lane ofa highway, (see chapter 2,
[41],[47])

Maneuver description When the lead vehicle arrives at the curved section of the lane

shown in Figure 4.5, its throttle command input increases linearly from its initial value of
528 N, at a rate of 736 N/s, until it reaches its maximum value of2000 N after 2 seconds;
then, it remains constant at 2000 N for 7 seconds; finally, the throttle input decreases
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linearly, at a rate of -736 N/s, until it reaches its final value of 528 N in 2 seconds; see

Figure 4.6. During the first 11 seconds, the lead vehicle accelerates until its speed reaches

the maximum value of 28.5 m/s (i.e., about 64 m.p.h.). During this part of themaneuver,
the magnitude of acceleration of the lead vehicle is less than 1 m/s2 and its jerk is less
than 0.5 m/s3. After reaching its maximum speed in the first 11 seconds, the lead vehicle
gradually decelerates due to aerodynamic drag and mechanical drag.

Figure 4.7 shows the longitudinal and transversal components of the t-th vehicle's

acceleration, in this maneuver, for t =1,2,...,5. As shown in Figure 4.7, the longitudinal
components of the t-th vehicle's acceleration (aFi, for t = 1,2,...,5) closely follow the
longitudinal component of the lead vehicle's acceleration (ofo); moreover, the transversal
components of the t-th vehicle's acceleration (aSi, for t = 1,2,...,5) closely resemble the
transversal component of the lead vehicle's acceleration (aSo) delayed in time. Both the
longitudinal and transversal components of the t-th vehicle's acceleration, for t =1,2,..., 5
are within acceptable comfort limits.

Figure 4.8 shows the yaw angle 6, and c* (for t = 1,5) in this maneuver. Under
the above control laws, the value of e, closely follows €di, for t = 1,2,..., 5. The difference
between t, and edi depends on the t-th vehicle's parameters (e.g., moment ofinertia of the
t-th vehicle about ezt-axis, IZi, tires' cornering stiffnesses, CFi and Cm, etc..) For all the
vehicles in this study, maxt\ci(t) - edi(t)\ < 0.032 rad.

Lateral deviation ofthe t-th vehicle's center ofmass from the lane center (At-,/0<,
for i = 1,2,..., 5) is shown in Figure 4.9. For this maneuver, the magnitude of the lat
eral deviation of the t-th vehicle, for t = 1,2,...,5, was much less than 0.01 m (i.e.,
maxt\AiM(t)\ < 0.01 m, for t = 1,2,...,5).

Figure 4.10 shows the longitudinal deviation ofthe t-th vehicle from its assigned
slot (A,-_it,-, for t =1,2,..., 5): this magnitude is less than 0.1 m(i.e., maxt\At_1(J(t)| <0.1
m, for t = 1,2,...,5). Note that, for t > 2, maxt\Ai-iti(t)\ gets larger as one goes down
the platoon. We believe that this drift in magnitude of At_lt; is mainly due to numerical
errors in successively integrating Ai-i,i to obtain A,-_if,\

Based on these simulations, we conclude that the proposed combined longitudinal
and lateral control laws perform well for roads with suitably large radius of curvature under
nominal operation.
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4.8 Conclusions

We have considered the problem ofcombined longitudinal and lateral control ofaplatoon
ofvehicles accelerating on acurved lane ofahighway. Based on nonlinear models ofvehicles'
combined longitudinal and lateral dynamics, we have proposed lateral control laws for each
vehicle in the platoon and longitudinal control laws for a platoon of vehicles. For the t-th
vehicle in the platoon (t = 1,2,..., N), we proposed a nonlinear lateral control law which

cancels the nonlinearities due to road geometry, engine dynamics, and longitudinal and
lateral dynamics, and results in a closed-loop dynamics for At-,/ot which is exponentially
stable with appropriate time constants. In the case of longitudinal control of a platoon of
vehicles, we assumed that longitudinal dynamics ofa platoon of closely-spaced vehicles on
aroad with suitably large radius ofcurvature is approximately the same as the longitudinal
dynamics of this platoon on a straight road. Thus, we proposed longitudinal control laws
similar to the longitudinal control laws for a platoon of vehicles on a straight lane of a
highway as in chapter 2,[41],[47].

Simulation results show that the proposed control laws perform well, for roads
with suitably large radius of curvature, under nominal operation. More specifically, these
simulations show that when the lead vehicle accelerates from 20 m/s to 28 m/s, at a
maximum rate of 1 m/s2, the magnitude of the lateral deviation of each vehicle in the
platoon remains well below 0.01 m; furthermore, the magnitude ofthe longitudinal deviation
of each vehicle from its assigned slot is less than 0.1 m.

The performance shown in Figures 4.7, 4.8, 4.9, and 4.10 is based on the assump
tion that the following measurements are available in the t-th vehicle: vFi, vsi, aFi, asi, e,,
A,-,/at, and Ai_lfi. Hence, the longitudinal and lateral control laws for each vehicle in the

platoon are decentralized in. that these control laws use local measurements on each vehicle
to compute the control input for the vehicle.

4.9 Appendix

In this section, we present three different methods for computing the arc length traversed
by point d{ on C (for t = 1,2,...,JV). Then, we describe the required measurements for
applying each method.

Problem Consider the t-th vehicle in a platoon (t = 1,2,...,JV). For any fixed time t,
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the location of the t-th vehicle's center of mass (c») is specified by rCT(t). (See Figure 4.1)

The center lane is a curve £ specified by the road map

fd = $(sd), (4.67)

where sd is the arc length. Given fd(t), wedraw the osculating circle to £ centered at point

c,-; this circle is tangent to £ at a well-defined point a\ which we call reference point. We

want to estimate Sdi (i.e., the arc length traversed by the point di on £).

Methods for estimating Sdi By definition of di, the function s •-• \\fd(t) - $(s)\\2 is
minimized at s = sdi (i.e., \\fd(t) - $(sdi)\\2 = mtn,||f«(t) - #(s)||2). Thus, we have

~II^W-<?(^)||2 =0. (4.68)

From (4.68), we get

/<(*,**') = 0, (4.69)

where s •-»• /,(*, s) := f(s) • ?d(t) - <£(s)].
Method 1 Solve (4.69), say by Newton-Raphson. Equation (4.69) implicitly defines

Sdi'. in order to estimate Sdi from (4.69), we need to know fd(t) (i.e., the location of the

t-th vehicle's center of mass with respect to a fixed inertial reference frame, (0,x,y) in

Figure 4.1) and the map (4.67).

Method 2 Differentiating both sides of (4.69) with respect to t, we get

Dxfi(t, Sdi) + D2fi(t, sdi)sdi = 0 (4.70)

where Dkfi denotes derivative of ft with respect to the fc-th variable (k = 1,2).

Computing the expressions for Difi(t,Sdi) and D2fi(t,Sdi), and using (4.70), we get

5 _ VFj(t) COs(€j(t) - €di(Sdi)) - VSj(t) Sm(€j(t) - €&(<&•))
di" l-K(sdi)AiM(t) • (4J1)

To obtain Sdi by integrating (4.71), we need to measure vFi(t), vsi(t), €i(t), and

A,-,/a<(0> an<lto know the initial condition s<k(0-).

Method 3 Differentiating both sides of (4.70) with respect to t, we get

D\fi(t, sdi) +1DxD2fi(t, Sdi) +D\fi(t, Sdi)s2di + D2fi(t, sdi)sdi =0. (4.72)

Computing theexpressions for D\fi(t, sdi), DiD2fi(t, sdi), Dlfi(t, sdi), and D2fi(t, sdi),
and using (4.72), we get

~ . _ aFi(t)cos(€j(t) - €dj(sdi)) - aSi(t)sm(€i(t) - €#(*#))
1 - K(Sdi)Ai,lat(t)
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. 2K(s<K)At-,/at(t)i(K + K'M&iMMsli . .
l-K(sdi)AiM(t) ' ^I6)

To obtain Sdi by integrating (4.73), we need to measure aFi(t), asi(t), €,(*),

Aitiat(t), and At-,/a<(t), and to know the initial conditions s<k(0-), idt(O-).

Practical considerations Using (4.71) or (4.73), we can estimate Sdi given appropriate

sensors on board the t-th vehicle, a road map, and appropriate sensors on the road; how

ever, using (4.69), we need to estimate the location of the t-th vehicle's center of mass with

respect to a fixed inertial frame. The estimates of Sdi obtained from numerically integrating

the expressions in (4.71) or (4.73), are sensitive to measurement noise and errors in initial

conditions. Hence, we need to update the value of Sdi at appropriate intervals of time when

using (4.71) or (4.73).
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lane center JL.

Figure 4.1: relevant quantities for the lateral dynamics of the t-th vehicle.
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O

Figure 4.2: relevant quantities for the longitudinal dynamics of the (t - l)-th and the t-th

vehicles in a platoon: t = 1,2,..., N.
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Figure 4.3: The body frame of the t-th vehicle.



84

*Ri

O

Figure 4.4: Bicycle model for the t-th vehicle in a platoon: t = 1,2,..., N.
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Figure 4.5: plot of the lane center Cand its derivatives: y(-)> £'(*)> £"(*)> ^d £'"(•) vs. a;.
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Figure 4.8: yaw angle ofthe t-th vehicle and the corresponding angle on the lane center: et
vs. t and «•<&• vs. t, for t = 1,5; the solid curve represents €i.
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Part II

Decentralized Control of a Class

of Interconnected Nonlinear

Dynamical Systems
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Chapter 5

Control of Interconnected

Nonlinear Dynamical Systems:the

platoon problem

The problem in this chapter is motivated by the highway automation project
described in chapters 2, 3, and 4. The overall system consists of Nvehicles,(the platoon);
each vehicle is driven by the same input u and the state of the fc-th vehicle affects the

dynamics of the (k + l)-th vehicle; furthermore, the dynamics of each vehicle is affected
by its (local) state-feedback controller. Under very general conditions, it is shown that
for sufficiently slowly varying inputs, decentralized controllers can be designed so that the
platoon maintains its cohesion.

5.1 Introduction

In previous chapters, using asimplified model of vehicle dynamics we studied the platoon
control problem: a decentralized control law has been developed for this model and the
platoon performance evaluated. Certain specific properties of the model greatly simplified
the decentralized controller design. The platoon concept with the assumed pattern leads to
aspecial interconnection ofdynamical subsystems each one representing avehicle.

The purpose ofthis chapter is todemonstrate that under general qualitative condi
tions imposed on the nonlinear dynamical subsystems interconnected as above, it is possible
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to obtain appropriate dynamical behavior for the overall system using only decentralized
control.

The study of interconnections of dynamical systems has a long history usually
under the heading of "Large Scale Systems". Some of the main results are to be found in

[26] and [58]. The treatise in [21] on singular perturbations is an excellent reference on the
concepts and techniques associated with the notions of slow and fast dynamics. From a

system design point ofview these studies show that two aspects are very important: a) the
graph ofthe interconnection [58] and b) the time-scale separation ofdynamics [21].

The system under study has a special interconnection which is dictated by the
platoon concept: the system consists of N nonlinear subsystems, each one representing a
vehicle. To maintain the cohesion ofthe platoon, the lead vehicle's velocity and acceleration
is transmitted toeach vehicle ofthe platoon, and vehicle kmeasures the distance A* between
it and the preceding vehicle. As an approximation we may view the dynamics ofthe sensors
and actuators and that of the engine as fast with respect to that ofthe vehicle. Weshow that

by suitable design of each controller in each vehicle it is possible to achieve the following:
given that the platoon is operating in the steady state at constant velocity, v, at t = t0,
and that the lead vehicle accelerates to reach a constant velocity vi at some later time T,
decentralized control laws can be designed so that for all k> 1, Ak(t) is bounded on [t0, oo)
and, for some a < 1, ||Afc(.)|U <o||Afc-l(.)||00 +||&(.)||oo where fa(t) - 0exponentially
as t -• oo at a rate controlled by the choice ofthe control laws; here H.Hoo denotes the sup
norm over [T, oo).

5.2 Problem motivation

Consider a"platoon" ofN+1vehicles traveling in the same lane ofa straight stretch of
highway and following closely one another. Initially, all vehicles travel at the same constant

velocity, say v. The lead vehicle is labelled "/", the next one is labelled "1", and the last
one "AT": xk denotes the abscissa of the rear bumper of the ib-th vehicle and x\ that of the
lead vehicle; each vehicle is alloted a slot oflength L; let A* be defined by

.A* := xk-i - (xk + I);

A* measures the deviation in the assigned distance between vehicle k - 1 and
vehicle k.



94

Each vehicle is equipped with sensors that measure ik,Xk, Ajb, A*, and A* as well

as &i and x/ (the last two measurements are obtained by a communication link). Using

a nonlinear first order model of the engine, equation (2.4), and Newton's law, equation

(2.3), for the fc-th vehicle we obtain the following dynamical model in terms of the state

C* := (Ajfc,x* - v,ik) and the engine input uk, (say, the throttle input)

C* = A(C*. Ofe-i) + 9k(Ck)uk (5.1)

for ib > 2, [41],[42].

As shown, for example in chapter 2, it turns out that these equations have such a

form that a suitable nonlinear control will lead to the following equation for the fc-th vehicle

a = /(a,G-i,«) (5.2)

for k = 2,3,...,N, where u(t) = (xi(t),xi(t)), the velocity and acceleration of the lead

vehicle.

Note that in (5.2), the function /(.,.,.) depends only on the state of the ib-th and

(k - l)-th vehicle and the "input" u: the dependence on the vehicle characteristics (mass

mjt, cross section Ak, aerodynamic coefficient C*, and engine characteristic r(ik) have been

eliminated by the nonlinear feedback law [41]); hence, f(.,.,.) does not depend on ib for

k > 2. For the first vehicle, the control law leads to an equation of the form

Ci = /i(Ci,«). (5.3)

The above discussion suggests the following problem: suppose the platoon of N + 1

vehicles is initialized as above and suppose that at t = to the lead vehicle accelerates

from the velocity v to some other constant velocity, say «i, which it reaches at some time

T. Is it possible to choose a decentralized controller in each vehicle such that, for such

increases in velocity, for k = 1,2,...,N, Ajt(.) is bounded, Ak(t) —> 0 as t -*• oo and, for

t' sufficiently large, maxt>T+?\Ak(t)\ is a decreasing function of A:? This is a new control

problem in that not only are the Afc's required to go to zero but also, for t' sufficiently large,

fhk := maxt>T+t'\Ak(t)\ is such that k h+ m* is a decreasing function of k.
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5.3 Problem formulation

With the above application in mind, we formulate the platoon problem in amore general
setting as follows: we are given an interconnection of nonlinear time-invariant dynamical
systems described by the following differential equations:

Ci = /i(Ci,tt)

C2 = /(C2,Cl,«)

C3 = /(6,C2,«)

Cat = /(Gv,Cn-i,«) (5*4)

where the exogeneous control u belongs to an open set U C Rm and for k =
1,2,..., N, C* belongs toan open set Py C Rn; /1 and / are C2 functions oftheir arguments;
& includes xjk,xjt, and Xk as components.

Consider the situation where all vehicles travel at the same constant velocity, say

v (i.e., ik = v) and are at their assigned positions (i.e., A* =0 for k= 1,2,...,N). Call
u0 the corresponding input tt0 =(M): then by the nature ofthe vehicle dynamics we have
/i(Ce,w0) =0, and /(Ce,Ce,«o) =0, where the equilibrium state (e is a function ofu0. We
assume that, by clever design of the control law within each vehicle, the dynamical system
(5.4) has awhole set of such equilibrium points for appropriate values of u0 and that about
each such equilibrium of (5.4) there is a suitable basin of attraction.

Theorem 5.1 considers a special case of (5.4) and gives precise conditions under which a
slowly varying input u will cause Cto vary slowly and remain within the basin ofattrac
tion of the corresponding equilibrium point. Theorem 5.2 considers the interconnection of
nonlinear dynamical systems described by (5.4) and gives precise conditions under which
the deviations of C* (k = 1,2,..., N) from the equilibrium state Ce remain bounded for a
slowly varying input w; furthermore, if after some time T, u(t) becomes constant, then the
peak value of these deviations decreases as k increases.

Consider some dynamical system described as follows:
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C= /(C,CP,t*) (5.5)

where Cand CP belong to Pu, an open set of Rn, and ubelongs to U, an open set
of Rm\ f is a C2 function.

Definition A point Co in Pu is called a sink of (5.5) corresponding to the
constant state-input Cpo in Pu and constant input w0 in U if f((o,(po,w0) = 0 and
Rea[Dif(Co,Cpo,Wo)] < 0; where Dif(.,.,.) denotes the Jacobian matrix of /(.,.,.) with
respect to the first variable and <r[.] denotes the spectrum of a matrix.

It is well known that if Co is a sink corresponding to (Cpo> u>o), then there is a ball
B(C0ir), centered on Co, such that for all C(<o) € £(Co,r), the solution of C= /(C,CpO>«>o)
is bounded and decays exponentially to Co (see e.g. [57],[10]).

We also assume that by suitable design of the control law in (5.5) we may move
the spectrum of Dif((e, (e,u) further into the left halfplane.

Theorem 5.1 Suppose that Pu C Rn is open and convex, and U C Rm is open; let
/ : Pu x Pu x U -*> Rn be a C2 function such that

Mu := {(Ce, Cp, u) €Pu xPu xU\ Ce is asink of (5.5) corresponding to (CP, u)\

has a non-empty interior. Let Qv be a compact, connected subset ofAft;, with a non-empty
interior Qv. Let u:[t0, oo) - U, with u(t0) = uq, Cp : [t0, oo) - Pu, and Ce : [to, oo) - Pu
be three given C1 functions such that (&(*). Cp(*)> *•(*)) € Qu for all *> *<>. Let C(.) be the
solution of (5.5) with the ((p(.),u(.)) defined above and with initial condition C(*o).

Then, for any p > 0, there exist 60 > 0, 6U > 0, ty > 0 independent of t0,
such that for all «(.),CP(.), and Ce(.) as defined above and satisfying |C(*o) - Ce(<o)| ^ *o,
maxt>t0 \u(t)\ < Su and maxt>to |CP(*)| < 6C we have:

0 ICW " Ce(*)l < P for all t > to,

ii) if, in addition, p is sufficiently small, then for all t > t0, CM belongs to the basin of
attraction of the sink CeW with respect to (CP(*)> WW)-

There are two methods for proving this theorem: 1) estimation inthetime domain
(see [19], with improvements [39]); 2) using Lyapunov functions (the existence follows from
lemma 2of Hoppensteadt [17], the technique is detailed by Khalil and Kokotovic [20]).
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Since Qu is compact, from i) of theorem 5.1, there exists a compact set Zu such that for

all t > t0, C(t) 6 Zv.

5.4 Main result

We consider now the composite dynamical system described by (5.4). Let / satisfy the

assumptions of theorem 5.1; consider some slowly varying u(t) and the corresponding CeM-

With respect to the first equation of (5.4):

Ci = /i(Ci,tt), (5.6)

we assume that j\ : Pu x U —• Rn is a C2 function such that

Mv := {(Ce,«) € Pu x U\ Ce is a sink of (5.6) corresponding to u}

has a non-empty interior. Let Qu be a compact, connected subset of My, with a non-empty

interior Qv. Let u : [to, oo) -»- U and Ce • [<o, oo) -• Pu be two given C1 functions such that

(Ce(0*tt(0)€Qfrfaralli>to.
Consider (5.6). It is a well known result (e.g. [19],[20]) that given these assump

tions on /i, for any p > 0, there exist 6% > 0 and £j > 0 such that if |ft(*o) - Ce(<o)| < ^o

and maxt>t0\u(t)\ < 6* then for all t > t0, ft(<) € Zu and |ftW - Cc(*)| < P-

Lemma 5.1 Consider the nonlinear dynamical system described by (5.4) keeping in mind

the above considerations. Under the conditions stated above, by suitable design of the

control laws, if p is chosen sufficiently small, then for k = 1,2,...,N: 1) for all t > to,

Cjk(t) € Zu, and 2) for all t > t0, maxt>t0\(k(t)\ < Re

proof We use induction.

Writing the Taylor expansion of (5.6) about (Ce,«) and noting that /i(Ce,«) = 0

we obtain

Cl = ffl(Ce,«,Cl)(Cl-Ce) (5.7)

where #i(Ce, u, ft) := /q1 I>i/i[Ce + A(ft - Ce), u]d\] note that Hi(.,.,.) is continuous.
Since for all t > t0, (CeM, w(<),ftW) € Qu x ZV, a compact set, and H^.,.,.) is

continuous, there exists a constant, h\ > 0, such that

^ = ma«f>l0|jri(CeW,tt(*).Ci('))l- (5-8)
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From (5.7) and (5.8) we obtain

™a*t>tolCi(OI<>ii/> (5.9)

hence,

ff/^^thenmaz^JCiWI^C- (5.10)
Induction step We use the notations of theorem 5.1. Assume that for some

k > 1, |0+i(*o) - Ce(*o)| < *o, maxt>t0\u(t)\ < 6U, and for all t > t0, (k(t) € Zu and
™axt>to\£k(t)\ <*>0 we ^til show that for all t>t0, 0+i(*) 6 Zu and maar^jOfc+iMI < Re

consider the following dynamical system

O+i=/(O+i»O.«0- (5.11)

Since the assumptions of theorem 5.1 are satisfied for (5.11), we have for all t > t0,

O+i(0 <E Zu and |O+i(0 - 0(*)l < P-

Writing the Taylor expansion of (5.11) about (0,0, «0 and noting that /(Ce,Ce,«) = 0 we
obtain

0+1 = / A/[Ce +A(a+1 - Ce), Ce +A(0 - Ce), u]dX (0+1 " Ce)
JO

+ / 02/10 +A(0+1 - Ce), 0+A(0 " Ce), u]dX (0 " Ce). (5.12)
«/0

Here !?*/(.,.,.) denotes the Frechet derivative of/(.,.,.) with respect to its ib-th argument.
We can write (5.12) as follows

6 =Gi(0,«,0,0+i)(0+i - 0) +G2(0,tt,0,0+i)(0 - 0) (5-13)

where Gi(0,«,0,0+i) and G^CcUjCj^O+i) denote the first and the second integrals in
the right hand side of (5.12), respectively.

_ I** PQuV := {(Ce, w)|(0, CP,«) €Qu}- Now, for all t>t0, (0(t), u(t), 0(t), 0+iM) €
PquV x Zu x Zu := Yv, a compact set; Gi(.,.,.,.) € C1, and G2(.,.,.,.) 6 C1. Hence
G\(.,.,.,.) and G2(.,.,.,.) are bounded on Yu, say by g\ > 0 and g2 > 0, respectively.

Using these bounds and (5.13), and noting that by the induction hypothesis for
all t > t0, \Ck(t) - 0(01 < P we obtain

maxt>t0\£k+i(t)\ < (gi +g2)p (5.14)
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hence,

Up~ ^+^2"then max'̂ K*+1 Wl ^ *C- (5.15)
From (5.10) and (5.15) we note that for ib = 1,2,...,AT, if p < minl^ -&-1

r ~ 1*1 ' 91+92)
then maxt>t0\Ck(t)\ < £<• g

Again, let / satisfy the assumptions of theorem 5.1; consider some slowly varying
ti(0 and the corresponding 0(0- Let for *>2, dk(t) +0(0=0(0 and assume dk(t0) =0
for all k.

Theorem 5.2 Under these conditions,

1. if (a) pis sufficiently small so that lemma 5.1 holds, (b) for some sufficiently small
Su > 0 as in the statement of theorem 5.1, maxt>to \u(t)\ < 6U, and (c) for some
sufficiently small 6C > 0as in the statement of theorem 5.1, maxt>to|0(0l < 6C,
then, by suitable design of control laws, there exist some constants a and (3 such that
0 < a < 1, 0 < /? < oo, and for Jb > 2,

H4+i||oo<a||4||oo +/?||0l|oo (5.16)
hence, for large k,

II^IU^Tr^llCJU +OCo*-1); (5.17)
i.e., there is a uniform bound on ||0 - CelU;

2. if, in addition, after some time T, u(t) and (consequently) 0(0 become constant, then
by local control law design, we can obtain

IM*+illoo<a||d*||oo + ||*ft||oo (5.18)

where, as in (5.16), a < 1; here <j>k(t) -> 0exponentially as t - oo, and H.^ denotes
the sup norm on [T, oo).

In other words, in case of achange in uin the lead vehicle from the initial steady-
state value tio to the final steady-state value uh the peak disturbances down the platoon,
i.e., d2(.),d3(.),... decrease as kincreases (after sufficiently long time).

Proof(theorem 5.2, part 1) Adding and subtracting I>i/(0, Ce, «)4+i to the
right hand side of(5.12) and noting that 0+1 = 6 + ife+i we obtain

dk+i =i4(0<fc+i +R(t)dk+i + B(t)dk - 6 (5.19)
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where

^(0:=A/(O(0,Ce(0>*i(0) (5.20)

R(t) := jf {I?i/[O(0 +A4+i(0,0(0+A<f*(0,u(t)] - A/(OW. Ce(0, «(0)}<** (5.21)
and

B(t) := jf D2/[O(0 +A4+i(0,Ce(0 +A4(t), u(t)]d\. (5.22)
Let $(t, r) bethestate transition matrix ofz = 4(t)z. Then from (5.19) we obtain

dk+i(t) = $(t,t0)dk+i(to)

+ r $(t, r)[B(r)4(r) - CeMJdr; (5.23)
here the first term in the right hand side of (5.23) is zero since dk+i(to) = 0.

Note that for all t > t0, (0(0* u(0) € Pqv,u, a compact set, and Dif(.,.,.) is
continuous; hence,

A(.) is bounded on [to, oo). (5.24)

Since <r[A(t)] = <r[D1/(Cc(t),Ce(0,w(0)]is a continuous function of its entries and

for all t > t0, (O(0,Ce(0>w(0) € Qu with 0(0 Deing a sink of (5.11) corresponding to
(0(0? u(0)» there exists a constant p. < 0 such that

for all t > t0 , Rea[A(t)] < p. (5.25)

From (5.24) and (5.25) we note [57, Cor.41 and Thm.6,sec.5.6 with Thm.27,sec.5.3]
or [3, Thm. 2, sec.32] that there exists a constant €> 0 such that if |ji(t)| <c then

for some k > 1 and some n>0 and for all t >s > t0 , \$(t,s)\ < kexp[-n(t - s)]. (5.26)

Differentiating the right hand side of (5.20) with respect to t and using the chain
rule we obtain

A(t) = {AA/(C(<), Ce(0, *(0) +^Dxf((e(t), 0(0,«(0)} 0(0
+ D3Dxf((e(t), (e(t),u(t))ii(t). (5.27)

Since DxDxf(.,., .),D2Dif(.,.,.), and DzDxf(.,.,.) are continuous and for all t >

*o, (O(0» Ce(0» «(0) € Qc,acompact set, DxDxf(.,., .),D2Dxf(.,.,.), and DzDxf(.,.,.) are
bounded on Qv. Let

ai:=mo«{|i>1i?1/(0,0.tf) +̂ 2i?i/(0,0.«)l : (0.0, «0 €Qc/}
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and

a2:= max {\D3Dxf(<;e,(e,u)\ : (0,0, u) €Qv}-
If maxt>t0\u(t)\ < 6U < ^ and maxt>to|0(t)| < *C ^ 2^ then from (5-27) we

obtain |A(t)| < e and (5.26) is satisfied.

Now, from lemma 5.1, for all t > t0, (O(0ttt(0>O(0>O+i(0) € ^» a c°mpact

set, and B(.,.,.,.) is continuous; hence, there exists a constant b > 0 such that

6 = maxt>t0|B(t)|. (5.28)

Similarly, #(.,.,.,.) is continuous and bounded on Yu\ hence, by compactness, for

some constant 7 > 0 we have

7 = maxt>t0 \R(t)\. (5.29)

From (5.23),(5.26),(5.28), and (5.29) we obtain

\dk+i(t)\ < [ hexp[-n(t-T)]\dk+x(T)\dT
Jto

+ /* kexp[-n(t - T)][b\dk(r)\ +|0(r)|](fr. (5.30)
Jto

Applying a form of Gronwall lemma to (5.30), [23, Corollary 1.9.1],we obtain

l*+i(0l < /'***ti<i-n +h)(t - T)){b\dk(T)\ +\Ur)\]dr
JtQ

< fk exp[(-n +*7)(t - r)]dr[6||d*||oo +IIOII00]. (5.31)
Jt0

By suitable design of the control law, we can increase n sufficiently beyond £7 so

that 0 <a := ~4~ < 1; let /? := -*=-. Then, from (5.31), for all t >t0,

|4+l(0l<«ll4||oo + /3||Ce||oo (5.32)

hence,

l|rffc+illoo<a||4||oo + /?||0lloo. (5-33)

By recurrence, noting that a < 1, we see that for all k > 2,

Halloo <T^HlCelloo +0(ak-1). (5.34)
1 — a
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Proof(theorem 5.2, part 2) From (5.19) we note that for t>T,

dM(t) = $(t,T)dM(T)

+ /' *(t,T)R(T)dk+X(T)dT
Jt

+ jT *(t, T)[B(T)dk(T) -Ur)]dr. (5.35)
Hence, noting that for t > T,O(0 = °> from (5-35), (5.26),(5.28), and (5.29) we

obtain

14+1(01 < kexp[-n(t-T))\dk+x(T)\
rt .

+ / k-r exp[-rj(t - T)]\dk+x(r)\dT

+ J'kbexp^^t-T^ldk^dr. (5.36)
Applying a form of Gronwall lemma [23, Corollary 1.9.1] to (5.36) and using the

previously defined a, we obtain for all t > T,

14+iMI < ~kexp[(-n + k<r)(t-T))\dk+x(T)\

+ fkbexpK-n +hKt-TWkWdT (5.37)
< kexp[(-r} + h)(t-T)]\dM(T)\

+ a||4||oo. (5-38)

By design, n > £7 can be increased so that a := -&- < 1and we have |djt+i(t)| <

a||djk||oo + Halloo where <f>k(t) -* 0 exponentially as t -• 00, and H-Hoo denotes the sup norm

on[T,oo). •
Conclusion These theorems establish that, under some general qualitative con

ditions on the dynamics of vehicle models, decentralized controllers (using only vi,ai,Ak,

and the vehicle state) can achieve the design goals of the platoon concept: N vehicles trav

eling down the highway at high speed and maintaining tight formation. Simulations based

on simple vehicle models and decentralized controllers in chapters 2 and 3 support these

conclusions.
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Chapter 6

Indirect Adaptive Control of a

Class of Interconnected Nonlinear

Dynamical Systems

In this chapter, we consider the class of interconnected nonlinear dynamical sys
tems suggested by the problem oflongitudinal and lateral control of a platoon of vehicles on

automated highways. After describing the physical setting from which the control problem
arises, we propose a local indirect adaptive control scheme for this class of interconnected

nonlinear systems. Then, we state precise conditions on the inputs, on the uncertain pa
rameters, and on the dynamics of the nonlinear plants under which it is possible to attain

the design objectives by using local, nonlinear, adaptive control laws.

6.1 Introduction

Motivated by the highway automation project presented in chapters 2, 3, and 4, we

propose local adaptive nonlinearcontrol laws which are suitable for a classof interconnected

nonlinear dynamical systems. These control laws have two main advantages: a) since they
use local measurements of the relevant signals, the computational and measurement costs

are reduced while the reliability and the flexibility of the control system as a whole are

increased; b) since they are adaptive by design, the robustness of the control system with

respect to uncertain parameters is increased. The purpose of this chapter is to state precise
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conditions on the inputs, on theuncertain parameters, and on the dynamics ofthe nonlinear
plants under which we can design suitable local control laws for a class of interconnected
nonlinear systems.

The organization of the chapter is as follows: in section 6.2, we describe the physi
cal setting from which the control problem arises; motivated by the application discussed in
section 6.2, in section 6.3, we propose an indirect adaptive control scheme for a general class
ofinterconnected nonlinear dynamical systems; insection 6.4, we stateprecise conditions on
the inputs and parameter errors, under which we can apply the adaptive control scheme in
section 6.3 to design suitable control laws for the class ofinterconnected nonlinear systems

under consideration; finally, in section 6.5, we provide concluding remarks regarding the
proposed control scheme. The proofs of the theorems together with the proof of stability
of proposed identifiers are included in the appendix at the end of the chapter.

6.2 Problem Description

In this section, using the dynamic equations in chapters 2and 4representing the longitu
dinal and lateral dynamics ofa platoon ofvehicles, we motivate the form ofthe equations
representing the dynamics of the class ofinterconnected nonlinear dynamical systems under
study.

6.2.1 Longitudinal Dynamics of a Platoon

Longitudinal dynamics ofa platoon of non-identicalvehicles using simple nonlinearengine
models were reported in chapter 2; these studies considered only a straight highway.

For the fc-th vehicle (k = 2,3,..., JV), the form ofthe differential equations rep
resenting the k-th vehicle's longitudinal dynamics is as follows: (suppressing the explicit
dependence on t),

O = A(OiO-i) + 9k((k)uk (6.1)

where O € R3, O-i € R3, fk:R3xR3^ R3, gk:R3-+ R3, and uk € R; the components
of Ci are A* (the headway), vFk (the velocity of the center of mass of the Jb-th vehicle

along its longitudinal body axis), and aFk (the acceleration ofthe center ofmass ofthe fc-th

vehicle along its longitudinal body axis); uk denotes the throttle input to the ib-th vehicle's
engine. Equation (6.1) is derived from equations (2.3)-(2.4).
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To explicitly show the dependence of the fc-th vehicle's longitudinal dynamics

(k = 2,3,...,N) on the k-ih vehicle's characteristics (e.g., engine time constant, mass of

the vehicle, drag coefficient, and mechanical drag), we write (6.1) as

6 =W*(0,0-i,tt*)*I (6.2)

where 0J is a column vector of the known parameters of the ib-th vehicle and Wk(.,.,.) is

a matrix function of appropriate dimensions. For the first vehicle (Jb = 1), equation (6.2)

takes the form

(i = Wx((x,ux,u)ei (6.3)

where ux denotes the throttle input; u denotes the vector (vFi,aFi); 0\* denotes a column

vector of the known parameters of the first vehicle; and Wx(.,.,.) is a matrix function with

appropriate dimensions.

6.2.2 Lateral Dynamics of a Vehicle

In chapter 4, we have used a nonlinear model to represent the lateral vehicle dynamics

(equations (4.7), (4.9), (4.11), (4.12), (4.44), (4.45), and (4.53))

t = W(t, 6, "road)** (6.4)

where f € R6, 6 € R, uroad € R2; the components of f are the lateral deviation of the

vehicle's center of mass from the lane center (Aiat) and its time-derivative (Aiat), the com

ponents of the velocity of the vehicle's center of mass along its longitudinal and transversal

axes (vF and vs, respectively), and the vehicle's yaw angle (c) and its time-derivative (e); S

denotes the steering angle command input; uroad denotes the input to the vehicle's lateral

dynamics due to the road geometry; 9* denotes a column vector of the known parame

ters for the vehicle's lateral dynamics (these parameters depend on the vehicle's mass, the

vehicle tires' cornering stiffnesses, the moment of inertia of the vehicle about the vertical

axis through its center of mass, etc.); and W(.,.,.) is a matrix function of appropriate

dimensions.

6.2.3 Control Laws

Note that the differential equations representing the longitudinal dynamics of one vehicle

(6.2)-(6.3) and those representing the lateral dynamics of one vehicle (6.4) depend linearly
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on the parameters. If these parameters are known, we can design suitable control laws

for the longitudinal control of a platoon of vehicles ([41],[47]) and the lateral control of

each vehicle ([43]): in the case of the longitudinal control of a platoon, we can design local

nonlinear control laws t*i = ux((x,u,0l) and U* = u~k((k,(k-uu,$l) (for k = 2,3, ...,N)

such that the differential equations (6.2)-(6.3), under these control laws, have the following

form

Ci =/i(Ci,«) (6.5)

for k = 2,3,...,N,

0 = /(0,0-i,«). (6.6)

Figure 6.1 shows the interconnection of nonlinear systems with no parameter un

certainties (6.5)-(6.6). From (6.6) we note that (for k = 2,3,...,N) the control laws

uk = Ufc(O,O-iiU>0£) have resulted in longitudinal dynamics for the fc-th vehicle which

are independent of its particular characteristics. We have shown that it is possible to design

the above control laws ([45],[44],[40]) so that in the case of a sufficiently slow change in the

lead vehicle's velocity (vFi) from its steady-state value: a) for k = 1,2,...,JV, t •-+ Afc(t)

is bounded, b) for k = 1,2,...,JV, Ak(t) -> 0 as t -* oo, and c) for k = 2,Z,...,N, the

peak deviation of the fc-th vehicle from its assigned position monotonically decreases as k

increases.

In the case of the lateral control of a vehicle, we can design nonlinear control laws

6 = 6(£, uroad, 0*) such that the differential equations (6.4), under these control laws, have

the form

f=/K,tw). (6.7)

Subsequently, applying the results from [45],[44],[40] to (6.7), under sufficiently

slowly-varying uroad and by the suitable design of lateral control laws 6 = 6(£, uroad, 6*) we

have: a) t >-• A/ot(t) is bounded, and b) A/0*(t) -• 0 as t -* oo.

In the discussion above, the control laws depended on the exact knowledge of the

parameters in the differential equations describing the longitudinal or the lateral dynam

ics. In the next section, we take a more realistic point of view and propose local indirect

adaptive control laws when the parameters are not known exactly. Motivated by the above

application, we propose an indirect adaptive control scheme for the class of interconnected

nonlinear dynamical systems depicted in Figure 6.1. In fact, in section 6.4, we will show

that under sufficiently small parameter errors and sufficiently slowly-varying inputs, we can
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design suitable control laws such that: a) for k = 1,2,...,TV, t •-+ At(t) is bounded, b)
for ib = 1,2,. ..,N, Ajb(t) -• 0 as t -• oo, c) for k = 2,3,...,N, the peak deviation of

the ib-th vehicle from its assigned position due to a change in the lead vehicle's velocity

monotonically decreases as k increases, d) for k = 1,2,...,N, t ^ A^iatW 18 bounded

(Afc,/ot(0 denotes the lateral deviation of the k-ih vehicle's center of mass from the center

of the lane), and e) Afc,/at(0 -+ 0 as i -* oo.

6.3 Problem Formulation

Throughout the chapter we suppress the explicit dependence on t; |z|, |W| denote the

max norm of vector x and the corresponding induced max norm of matrix W.

Motivated by the above discussion, we consider the following nonlinear, time-

invariant differential equations representing a class of interconnected nonhnear dynamical

systems:

Ci = Wx((x,ux,u)0*x

C2 = W2((2,Cx,u2)9m2

Ca = W3(C3,C2,u3)0;

Or = Wn(Cn,Cn-uun)B*n (6.8)

where the exogenous input u belongs to an open set U C Rm (u = (vFi,aFi) in the lon

gitudinal control problem above and u = uroad in the lateral control problem above); for
k = l,2,...,N,Ck belongs to an open and convex set Pu C Rn, the control input to the

ib-th dynamical system Uk belongs to an open set Ux C Rq, the parameter vector of the fc-th

dynamical system 9% belongs to Rp, and Wfc(.,.,.) is an n x p matrix function.

Notethat the differential equations representing the fc-th dynamical systemin (6.8)

depend linearly on the parameters. If these parameters are known, we assume that we can

design suitable local nonlinear control laws ux = ux((x,u,9x) and Uk = ttjfe(Cfc>0-i?w>^ik)
(for ib = 2,3,.. .,N) such that, under these control laws, the closed loop dynamics of the

interconnection of nonhnear dynamical systems has the following form:

Ci = /i(Ci.«)

6 = /(C2,Ci>*0
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<3 = /(0,0,«)

Gv = /(Or,Or-i,i»). (6.9)

Note that, for k = 2,3, ...,AT, these control laws have resulted in dynamics for

the Ar-th dynamical system which are independent ofits particular characteristics (i.e., the
function /(.,.,.) in (6.9) does not depend on k, for ib > 2). Thus, we make the following
assumption:

Assumption [certainty equivalence condition] ([55],[22],[35]): We assume that we

can design control laws Uk (k = 1,2,.. .,N) with t*i : Pu x U x R? -+ R*, and for ib =

2,3, .*.., N, uk : Pu x Pu x U x Rp -• R* such that under these control laws:

Wi(Ci,«i(Ci,M),tO* = /i(Ci,tO

and for k > 2,

Wk(Ck,Ck^uk(Ck,Ck-uu,9))9 = /(0,0-i,i»)

for all u € U, for all 0 € Pu (k = 1,2,...,N), and for all 0 € RP.

6.3.1 Interconnection of the Nonlinear Dynamical Systems with Param

eter Uncertainty

In case the parameters 01 in (6.8) are unknown , we use estimates of the parameters

(denoted by 9k for k = 1,2,..., N) for computing the control input to the ib-th dynamical
system: for the first dynamical system,

«i = «i(Ci»Mi) (6.10)

and for A: = 2,3,...,JV,

Uk = uk(Ck,Ck-uu,9k). (6.11)

Substituting the expressions for Uk from (6.10)-(6.11) into (6.8) we obtain

6 = Wi(0,*i(0,Mi),fO*l

C2 = W2(C2,Cl,U2(C2,Cl,M2))02

C3 = W3((3,(2,u3((3,(2,u,93))9Z

Gv = Wn((n,(N-X,un((n,(n_x,u,0n))0*n. (6.12)
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Adding and subtracting Wx((x, ux(Cx, u,0X), u)0x to the right hand side of the first

equation in (6.12) and noting the certainty equivalence condition for the first dynamical
system, we obtain

Ci =/i(Ci,«0 + Wi(6,tTi(Ci, Mi),*)^-^). (6.13)

Similarly, adding and subtracting W*(C*,Cfc-i,«*(a,0-i,M*))4 to the right
hand side of the fc-th equation (k = 2,3,...,N) in (6.12) and noting the certainty equiva
lence condition for the k-th. dynamical system, we obtain (for k= 2,Z,...,N)

Ck = /(O»O-i.«0 +Wk((k,Ck-uUk(Ck,(k-uu,0k))(0mk - 0k). (6.14)

Denote the parameter error by <f>k := 0k -0*k (k = 1,2,...,N). Then from (6.13)-
(6.14) we note

Ci = /i(Ci,tO-^i(Ci,«i(Ci,Mi),u)&

6 = /(C2,Cl,«)-^2(C2,Cl,W2(C2,Cl,tt^2))02
6 = f((3,<2,u)-W3((3,(2,U3(C3,(2,U,03))fo

Or = f((N,(iN-uu)-WN((:N,(N_uuN(CN^N_uu,0N))<l>N. (6.15)

Figure 6.2 shows the interconnection of nonhnear dynamical systems with param
eter uncertainties described by (6.15). Note that, for ib = 1,2,..., N, the local control laws

Uk in (6.10)-(6.11) have resulted in closed loop dynamics for the ib-th dynamical system
which differs from the respective closed loop dynamics in (6.9) in that the dynamics of the
fc-th dynamical system in (6.15) are affected by nonlinear perturbations Wkfa.

6.3.2 Indirect Adaptive Control of the Interconnection

In this subsection, we propose local indirect adaptive control laws ([55, and references
therein]) for the interconnection of nonhnear dynamical systems in (6.8). The control laws
for the *-th dynamical system in (6.8) (k = 1,2,...,N) use parameter estimates, 0k, ob
tained from an identifier for the fc-th dynamical system, to compute the control input to
the A;-th dynamical system in (6.8).

Identifier Structure: We propose a standard identifier structure for nonhnear systems
with dynamics which depend linearly on the unknown parameters ([55],[22],[4],[32]): let
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A € Rnxn be a Hurwitz matrix and let Q € Rnxn be a given symmetric, positive definite

matrix; let P € Rn*n denote the symmetric positive definite matrix solution of the Lya-

punov equation ATP + PA = —Q\ for the first dynamical system in (6.8) the identifier

is:

Ci = A((x-h) + Wx(Cx,ux,u)0x

hx = -wf(o,tti,tt)P(0-Ci); (6-16)

for the ib-th dynamical system (k = 2,3,..., N) in (6.8) the identifier is:

£k = A(6-0) +WWO.O-i.«*A
ik = -Wf(0,0-i,«ik)i,(0-0). (6.17)

We assume that for ib = 1,2,..., N, Wk is bounded. Then, using a standard Lya-

punov argument, we can show that for k = 1,2,...,N, <j>k € I<» and (0 _ O)(0 -* 0 as
t —oo. Furthermore, if Wk (for ib = 1,2,..., N) is sufiiciently rich (see [35, page 72]), then
^(t) -• 0 as t -»• oo (i.e., parameter convergence is established as in [27]). The proof of
stability of the proposed identifiers is given in the Appendix.

Indirect Adaptive Control Laws: We propose the control laws (6.10)-(6.11) for the
interconnection of nonhnear dynamical systems in (6.8). These control laws use the pa

rameter estimates, 0k (for k = 1,2,...,N), obtained from the above identifiers to compute

the control input to the ib-th dynamical system in (6.8). As shown in subsection 6.3.1, the
resulting closed loop dynamics oftheinterconnection ofnonhnear dynamical systems under
these control laws has the form given in (6.15). Figures 6.3 and 6.4 show the diagrams of

the indirect adaptive control of the fc-th dynamical system in (6.8).
The question arises as to how parameter errors fa, for k = 1,2,..., N, will affect

the closed loop performance of the interconnection of dynamical systems (6.15). In the
next section, we give precise conditions on the inputs, u, and parameter errors, <f>k, for

ib = 1,2,...,N, under which we can design suitable control laws, Uk, for k = 1,2,...,JV,

for the interconnection of nonhnear dynamical systems (6.8).

6.4 Main Results

In this section, we state two theorems regarding the closed loop performance of the
interconnection of dynamical systems (6.15). Theorem 6.1 considers a single dynamical
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system in (6.15) (e.g., the first dynamical system in (6.15)) and states precise conditions

on the inputs, ti, and the parameter errors, <j>x, under which we can design suitable control

laws. Theorem 6.2 considers the interconnection of dynamical systems (6.15) and states
precise conditions on the inputs, u, and the parameter errors, <f>k, for ib = 1,2,..., N, under

which we can design suitable local control laws for each dynamical subsystem in (6.15).

6.4.1 Stability of a nonlinear dynamical system with slowly- varying in
puts and small parameter errors

We start with a crucial definition.

Definition [sink] ([10]) Consider a dynamical system described as follows:

Ci=/i(Ci,«) (6.18)

where u € U, open in Rm, and Ci € Pu, open in Rn, and fx is C2.

Apoint C? in Pu is called a sink of (6.18) corresponding to the constant input w0 in Uif
/i(C?, f>o) = 0and Rea [Dxfx(<$, w0)] < 0; where Dxfx(.,.) denotes the Jacobian matrix of
/i(.,.) with respect to thefirst variable and <r[J denotes the spectrum ofa matrix.

It is well known that if C? is a sink corresponding to w0, then there is a ball

B(C^,r), centered on C°, such that for all Ci(t0) € B($,r), the solution of Ci = /i(&,u>o)
is bounded and decays exponentially to C? (see e.g., [57],[10]). By suitable design of the
control laws, we assume that we can move the spectrum of Dxfx(($,wo) further into the
left half plane.

Theorem 6.1 Consider the dynamical system described as follows:

Ci = /i(0.tt)- ^i(O,ifi(O,tt,$i),tO01. (6-19)

Suppose that Pu is an open and convex subset ofRn; U is an open subset ofRm;
and, Ux is an open subset ofRq. We assume that fx :Pu xU -• Rn is a C2 function such
that

Mu := {(Ce,u) 6 Pu x U\Ce is a sink of(6.18) corresponding to u}

has a non-empty arcwise-connected interior Qv. Let Qv be compact. Let u : [t0,oo) -• U
and d : [to, oo) ^ Pu be two given C1 functions such that (Ce(0> u(0) € Qu for QU t > to-
Let Ci(.) be the solution of (6.19) with the u(.) defined above and with initial condition
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Ci(t<>). Let fa e Rp.

We assume that Wx : Pu x Ux x U -* Rnxp is an nxp matrix which is bounded, more

precisely, for some 0 < bwX < oo andfor all (C,u,«) € Pu x Ux X U, we have

\Wx(C,u,u)\<bwX.

Let Pqv := {q € Pu\(q,u) € Q]j}- Let Zu be a compact set with interior Zy such that
Pq\ C Zy C Zy C Pu- (Such a Zu exists because Pqi is a compact subset of the open set

Then, for any p > 0, there exist $J := 6l(p,fx,Qly) > 0, *J := 6l(p,fx,Qy) > 0,

and Sfa := b<t>x(p,h,Q}j) > 0 su°h *^a* for a^w(«) and Ce(«) <& defined above and satisfying
lG(*o) - 0(*o)| < So, maxt>t0\u(t)\ < £j, and maxt>to|<^i(t)| < 6^ we have:

(i) for all t> t0, Ci(t) € ZUf

(ii) for all t > t0f |O(0 - 0(01 < P> and

(iii) if p is sufficiently small, then for all t > to, Ci(0 belongs to the basin of attraction of

the sink Ce(0 w^ respect to u(t).

Comments-

(i) If the parameters of the first dynamical system in (6.8) are known (i.e., fa = 0) then

(6.19) will reduce to (6.18). In this case, there are two methods for proving the above

theorem: l)estimation in the time domain (see [19], with improvements [39]); 2)using

Lyapunov functions (the existence follows from lemma 6.2 of [17], the technique is de

tailed by Khalil and Kokotovic [20].). For completeness, we give the proofof Theorem

6.1 when <f>x is not identically zero. We use a method similar to that in [19] and [39].

(ii) Applying the results of Theorem 6.1 to the longitudinal and lateral control problems

discussed in section 6.2, we note that: in the case of longitudinal control of the first

vehicle in the platoon, we can design suitable control laws such that under sufficiently

slow changes in the lead vehicle's velocity, vFi, and sufficiently small parameter errors

for the first vehicle, ^i, * •—• Ai(t) is bounded, and Ax(t) —• 0 as t —• oo; in the case of

lateral control of each vehicle in the platoon, we can design suitable control laws such

that under sufficiently slow changes in the road curvature and slope and sufficiently

small parameter errors for each vehicle, for k = 1,2,..., N, t •-• A*t/0t(t) is bounded,

and Akjat(t) —*• 0 as t -• oo.
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(iii) The proofofTheorem 6.1 consists ofthree main steps: 1)writing theTaylor expansion

of /i(Ci»«) about (Ce, u) in the right hand side of (6.19) and deriving a linear time-
varying differential equation representing the dynamics of(0 - Ce); 2) using a special
form of Bellman-Gronwall lemma (see [9, Ch.IJemma Inconsequence 1]) to bound
ICi(0 ~ 0(01? aad 3) showing that under suitable design of control laws, together
with sufficiently slowly-varying inputs, u, and small parameter errors, <j>x, the bound
on |Ci(t) - 0(01 holds for all t > t0.

The proof of Theorem 6.1 is in the Appendix.

6.4.2 Control of an interconnection of nonlinear dynamical systems with
slowly-varying inputs and small parameter errors

In this subsection, we consider the interconnection of nonlinear dynamical systems (6.15).
Let u : [t0,oo) -* U and Ce : [*o,oo) -• Pu be two given C1 functions such that for all

t > to, 0(0 is a sink of 0 = /i(0, ti(0) corresponding to u(t) and the same 0(0 is a sink
of 0 = f((k, 0(0. «(0) (for k= 2,3,..., N) corresponding to (0(0* «(0)-

By suitable design of the control laws, there exists a p < 0such that for all t > t0,
Rea [Dxf(Qe(t), 0(t), u(t))] <p<0. Thus, there exists an I > 0 such that if

\diDif(Mt),Ce(t),u(t))\ < I then for some k > 1, some fj > 0, and for all t > s > t0,
|$(t,5)| < ke-W-'), (here *(.,.) denotes the state transition matrix of
i = -Di/(O(0.O(0.«(0W([3],[57]).

Furthermore, we assume that for all t > t0, (0(0.0(0^(0) belongs to a compact set and
/ is a C2 function. Thus, there exists a finite number 6> 0 such that

maxt>t0\D2f(Ce(t), 0(t)>«(0)1 = h furthermore, by suitable design of control laws, the size
of 6 can be reduced.

Let dk := 0 - 0 (for k= 1,2,..., N) where 0(.) is the solution of the differential equations
representing the fc-th dynamical system in (6.15) with initial condition 0(<o).

Theorem 6.2 Consider the interconnection of nonlinear dynamical systems (6.15). Sup
pose that Pu is an open and convex subset ofRn; U is an open subset ofRm; and Ux is an
open subset ofR". We assume that fx :Pu xU -* Rn is a C2 function such that

Mb := {(?»«) €Pu XU\q is asink o/0 =/i(0,ti) corresponding to u\
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has a non-empty interior. We assume that f : Pu x Pu x U -+ Rn is a C2 function such
that

Mu '= \(q,(e,u) ePuxPuxU\qisa sink ofQ=/(C,0,«) corresponding to (0>«)}

has a non-empty interior (in the relative topology of Mu). Let Qy and Qy be compact,

arcwise-connected subsets of My and My , respectively. Let Qy and Qy have non-empty

interiors Qy and Qu, respectively. Let u : [to,oo) -* U and Ce : [to,oo) -• Pu be two given

Cl functions such that for all t > t0, (O(0» «(0) € Qu and (O(0»O(0»tf(0) € Qu- Let
0(0 (for k = 1,2,...,N) be the solution to the k-th equation in (6.15) with the u(.) defined

above and with initial condition 0 (*(>)• F°r ^ = 1»2,..., JV, let fa € Rp.

We assume that Wx : Pu x Ux X U -+ Rnxp is an n x p matrix which is bounded, more

precisely, for some 0 < 6^1 < oo and for all (C,tT,tt) € Pu x Ux x U, we have

\Wx((,u,u)\<bwX.

Furthermore, we assume that for k = 2,3,...,N,Wk : Pu x Pu xU -* RnXp is annxp

matrix which is bounded, more precisely, for some 0 < bw < oo and for all ((, CP, u) €

Pu x Pu x U, we have

\Wk(C,Cp,u)\<bw.

Let PQiv := {q e Pu\(q,u) € Qv} and PQu := {q € Pu\(q,(e,u) 6 Qu}- Let Zv be a com
pact set such that Pqi \JPqv C Zy C Zu CPu- (Such a Zu exists because ~Pq\ \JPqv is
a compact subset of the open set Pu.)

We assume that by suitable design of control laws we can increase the value of f) so that it

is much larger than the values ofk and b.(fj,k, and b were defined before the statement of

Theorem 6.2.)

Then, there exists a po := po(f,Qu,Zu) > 0 such that for any 0 < p < po, there

exists 61 := 6l(p,fx,Qy) > 0, 60 := k(p,f,Qu,Zu) > 0, 6U := Su(p,fi,f,Qb,Qu) > 0,
h := h(Pif>Qu,Zv) > 0, and 6+ := l^p, fx, f,Qv,Qu,Zu) > 0 such that for all u(.) and
Ce(.) as defined above and satisfying:

(a) |Ci(*o)-0(tb)|<4o,

(b) for k = 2,3,..., N, |0(to) - O(*o)| < *o,

(c) maxt>to\u(t)\ <6U,
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(d) maxima*{|<fr(t)|,...,|0N(t)|} < fy,

(e) maxt>to|0(OI<£o

we have :

(i) for allk=l,2,...,N, for all t > t0, 0(0 € ZUt

(ii) ll<*i(Ollco < P, and with dk := 0 - 0

(iii) if, in addition, for all k = 1,2,..., N, dk(t0) = 0, then there exist constants 0 < a :=

<*(f,Qu) < 1, 0<fa := Pt(f,Qu) < oo, and0 </3C := j3c(f,Qv) < oo sucA t/iat /or
* > i, ||4+i(0lloo <a||4(0llco +M\4>k(-)\\*> +A:IIO(0lloo.

Comments-

(i) Applying the results of Theorem 6.2 to the longitudinal control problem of aplatoon of
vehicles discussed in section 6.2, we note that we can design suitable control laws such
that in the case ofa sufficiently slow change in the lead vehicle's velocity, vFi, from
its steady-state value and under sufficiently small parameter errors we have: 1) for
k = 1,2,...,N, t ~ Ak(t) is bounded, 2) for * =2,3,...,N, Ak(t) - 0 as t - oo,
and 3) for A; = 2,3,...,N, the peak deviation of the ib-th vehicle position from its
assigned position monotonically decreases as ib increases.

(ii) The proof of Theorem 6.2 consists of three main steps: 1) writing the Taylor expansion
of/(0» O-i»*0 about (Ce, Ce, u) in the right hand side of the ib-th differential equation
in (6.15) and deriving a hnear time-varying differential equation representing the
dynamics of dk := 0 - Ce', 2) using aspecial form of Bellman-Gronwall lemma (see
[9, Ch.I4emma 1.6, consequence 1]) to bound \dk(t)\; 3) using an induction argument
on k to show that, under suitable design of the control laws together with sufficiently
slowly-varying inputs, u, and small parameter errors, fa, for ib = 1,2,...,JV, the
bound on \dk(t)\ holds for all t > t0.

(iii) The above theorems establish sufficient conditions on the inputs, u, and the parame
ter errors, fa, for k = 1,2,..., JV, under which we can design suitable local nonlinear
adaptive control laws for the general class of interconnected nonhnear dynamical sys
tems (6.8), shown in Figure 6.2.

The proofof Theorem 6.2 is in the Appendix.
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6.5 Conclusion

In this chapter, we have initiated a theoretical investigation in local adaptive control laws
for a class ofinterconnected nonlinear dynamical systems. More precisely, we have stated
sufficient conditions on the inputs and the parameter errors under which we can design
suitable local control laws for the interconnection of nonlinear dynamical systems under

consideration. The class ofinterconnected nonhnear dynamical systems has been suggested
by the problem of longitudinal and lateral control of a platoon of vehicles on automated

highways.

This study makes both theoretical and practical contributions to the design of

control laws for interconnected nonhnear dynamical systems. From a theoretical point,

it shows that, for a class of interconnected nonhnear dynamical systems, it is possible

to attain the design objectives by using local, nonlinear, adaptive control laws. From a

control designer's view point, the local nature of the proposed control laws reduces the

computational costs while increasing the rehabihty and the flexibihty of the controlsystem

as a whole; furthermore, the adaptive nature of these control laws increases the robustness

of the control system with respect to uncertain parameters.

6.6 Appendix

Stability of Identifiers: For k = 1,2,...,N, let e* := O - 0- Then from (6.8),
(6.16), and (6.17) we obtain: for the first dynamical system in (6.8)

ci = Aex + Wx((x,ux,u)fa

fa = -Wf(0,m,tOPei; (6.20)

for the fc-th dynamical system (k = 2,3,..., N) in (6.8)

ejfe = Aek+ Wk((k,O-i, Uk)fa

4>k = -Wf(0,0-i,«»*)^cfc. (6.21)

We assume that for k = 1,2,...,N, Wk is bounded. Then, as in [35, sec. 2.4],

using a standard Lyapunov argument with Vk(ek,fa) := ejfPe* + 4%fa (k = 1,2,...,N),

we can show that for k = 1,2,...,N, fa € I<x>, c* € ^fl^oo, and ek € £«>. The last two

relations imply ek(t) -*• 0 as t -• oo. Furthermore, if Wk (k = l,2,...,iV) is sufficiently
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rich (see [35, page 72]), then fa(t) -+ 0 as t -+ oo (i.e., parameter convergence is estabhshed
as in [27]). •

Proof of Theorem 6.1:

[Step 1- Analysis] Tosimphfy notation, we let WX(0X) := Wx(Cx,ux(Cx,u,0x),u)m (6.19).
Writing the Taylor expansion of /i(0,u) about (0,ti) in the right hand side of (6.19) and
noting that /i(0,u) = 0 we obtain

6 =/ Dxh [0 +A(0 - 0), u] dX(Ci - 0) " Wx(0x)fa. (6.22)
JO

Differentiating both sides of /i(0,u) = 0 with respect to time and using chain
rule we get

A/i(O,«0O +D2fx(Ce,u)ii = 0. (6.23)

Since Rea[Dxfx((e,u)] < 0, Dxfx((e,u) is invertible and from (6.23) we get

6 =- Pi/i(0,u)]'1 2?2/i(0, u)ii. (6.24)

Subtracting (6.24) from (6.22) we get

6-0 = / Dxfx [0 +A(0 - 0), u] d\((x - 0)
+ [Difittcu)]'1 D2fx((e,u)u- Wx(0x)fa. (6.25)

Adding and subtracting Dxfx((e, w)(0 - Ce) to the right hand side of(6.25) we get

6-6 = A/i(Ce,<0(0-0)

+ I {A/l[Ce +A(0-Ce),w]-A/l(0,tt)}dA(0-Ce)
+ [Dxfx(Ce,u)Yl D2fx(Ct,u)u-Wx(0x)fa. (6.26)

To simplify the notation, we let

A(t) := A((e(t), u(t)) := Dxfx(Ce(t), u(t)), (6.27)

R(t) := £(0(0,^(0,0(0)

:= I {A/i[Ce(0 +A(O(t)-Ce(0),«(0]-^i/i(O(0,«(t))}dA, (6.28)
B(t) := B((e(t), u(t)) := [Dxfx((e(t), u^))]'1 D2fx(Q(t), u(t)), (6.29)

Wx(t) := Wx(0x(t)). (6.30)
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Using (6.27)-(6.30), we can write (6.26) as Mows

6 - 6 =A(t)((x - 0)+R(t)((x - 0)+B(t)u - Wx(t)fa. (6.31)

Solving (6.31) we get

(0-OXO = *(Mo)(0-Ce)(*o)

+ / *(t,s){R(s)((x-Ce)(s) +B(s)u(s)-Wx(s)fa(s)}ds (6.32)
Jto

where $(t, to) denotes the state transition matrix of y = A(t)y.

Since ((e(t),u(t)) € Qu, Qu 1S compact, and Dxfx(.,.) is continuous (fx € C2),

A(.) is bounded on [to, oo). (6.33)

Since <r[A(.,.)] is a continuous function of its entries, (0(0»tt(0) € Qu, Qu ls
compact, and Ce(0 is a sink of (6.18) corresponding to u(t), for all t > to,

there exists a p < 0 such that Rea[A(t)] < p < 0. (6-34)

Note that by suitable design of control laws, we can move the spectrum of

Dxfx(Ce(t),u(t)) further into the left half plane for all t > t0.

From (6.33)-(6.34) and using the results in [3, Thm.2, sec. 32] we know that there exists

an € > 0 such that

if |A(t)| < €then for some k > 1and some n> 0 and for all t > s > t0, |$(t,s)| < ibc_T,(<"a).

(6.35)

Differentiating both sides of (6.27) with respect to time and using chain rule we
get

get

where

^(0 =£i/i(0(0, "(0)6(0 +D2Dxfx((e(t), u(t))ii(t). (6.36)

Substituting the expression for 6(0 fr°m (6.24) into (6.36) and noting (6.29) we

A(t) = E((e(t),u(t))u(t) (6.37)

£(O(0» "(0) := -D2xfx((e(t), u(t))B(t) +D2Dxfx(Ut), u(t)). (6.38)

Since ((e(t),u(t)) e Qu, Qv is compact, E(.,.) is continuous (fx € C2), E(.,.) is
bounded on Qy. Let a := maxQi \E(Ce,u)\ with a < oo. Thus if

maxt>t0\u(t)\ < B'u := - (6.39)
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then |A(t)| < € and (6.35) is satisfied.

[Step 2- Topology] Let Wy := Qy x Zy; Wy is compact. Since fx £ C2, the

integrand in (6.28) is C1, so R(.,.,.) is C1 on Wy. If, in (6.28), 0(0 = O(0»then R(f) = 0.

By assumption, 0(0 € Pqi C Zy, hence by uniform continuity of R(.,.,.) on Wy, we
conclude that, for any c > 0, there exists a 6' := 6f(c) > 0 such that for all t > to,

if 0(0 € Zu and |0(t) - 0(01 < *' then \R(t)\ < c. (6.40)

From (6.32),(6.35), and (6.40) we note that if a) maxt>to\u(t)\ < S'u, b) for all

t > to, 0(0 € Zu, and c) for all t > t0, |0(0 " 0(01 ^ 6'then for all « > t0,

10(0-0(01 < ke-'^Mto) - Ut0)\

+ */V"«-) [|S(«)||4(«)| +|Wi(j)||*(«)|]*
+ kc f e"^-*) |0(0 - (e(s)\ds. (6.41)

•/to

Using Bellman-Gronwall inequality [9, Ch.I^emma I.6,consequencel] if a),b), and

c) are satisfied we obtain, for all t > to,

ICi(«)-«*)l < *e(-,+M('-,o)ICi(*o) - C«(«o)l
+ A/'e<-"+*':)('-')[|JB(S)||«(a)H-|W1(S)||̂ W|]d3. (6.42)

Jto

Let d denote thedistance between Pqi and dZu (boundary ofZu). Since Pqi is
a proper subset of Zu, d > 0. Let 6 := maxqi \B(£e,u)\, where B(.,.) is defined in (6.29).

Since Qv is compact, B(.,.) is continuous (fx € C2 and (6.33)- (6.34) hold), 6 < oo. Choose

c > 0 such that -n + fcc < 0. Choose £' := tf'(c) > 0 such that (6.40) is satisfied. Let

6 := min {6r(c), d} and choose constants /,r,7„, and 7^ such that 0 < / < 1, 0 < r < 1, 0<

7« <1, 0<7* <1. and 7u +7* <1- Denote 6% := iff, 6* := rotn {*;, -7«("t?+fecA;)6(1"r)/g},
ana 0^1 .- 7^ ^

Lemma 6.1 If0,6^6^ and 6^ are chosen as above and */O(*o)>u(0> and fa(.) are such

that |Ci(^o) —Ce(*o)| < ^0, ™>axt>t0\u(t)\ < 0j, and maxt>tQ\fa(t)\ < 6<f>x then the hypotheses
a),b), and c) required for (6.41) and (642) are satisfied.

Proof of Lemma 6.1: Since maxt>t0|«(t)| < 6J < 6'u, a) is satisfied.

Next we show that c) is satisfied:

for all t > t0, |0(0 - 0(01 < *'• (6-43)
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Suppose (6.43) is false. Then there exists a t2 € (t0, oo) such that

16(0 ~ 0(01 < *' for all t 6 [t0,t2) and |0(t2) - 0(t2)| = 6'. (6.44)

Claim:

for all t € [t0, t2], 0(0 € Zv. (6.45)

Suppose (6.45) is false. Then there exists a t3 6 (to,t2) such that

for all t € [t0,<3],0(0 € Zu and (x(tz) € dZv. (6.46)

From (6.44) and (6.46) we note that for all t 6 [to,h] the hypotheses of(6.42) are
satisfied. Thus, from (6.42) we get, for all t € [to,t3),

10(0-0(01 < Mo + MWi +W*]-
-(-i? + kc)

< Wr+ (7ll + 7,)(l-r)tf

< IS. (6.47)

By continuity of (0(.) - 0(0) and (6.47) we get |0(t3) - 0(*s)| < 16 < 6 < d
which is in contradiction to (6.46) in that 0(*3) € dZu but |0(t3) - 0(*3)| < d. Hence,
(6.45) is true and claim is proved. Thus, from (6.44) and (6.45) we note that for all

t € [t0, t2] the hypotheses of(6.42) are satisfied. Hence, from (6.42) we get, for all t € [to, t2],
10(0 - 0(01 ^ W- h particular, |0(t2) - 0(*2)| < 16 < 6 < 6' which contradicts (6.44).
Hence, (6.43) is true and c) is satisfied.

Finally, to complete the proof of Lemma 6.1 we will show that:

for all t>t0,0(0 €Z&. (6.48)

Suppose (6.48) is false. Then there exists a tx € (to, oo) such that

for all t € [t0,tx),0(0 € Zy and 0(*i) € dZv. (6.49)

So from (6.43) and (6.49) we note that for all t G[to,tx) the hypotheses of (6.42)
are satisifed. Thus, from (6.42) we get, for all t € [t0,ti), |0(t) - 0(01 < '*• By continuity

of(0(0 ~ O(0)» we obtam |0(<i) - 0(<i)l <l6<6<d which contradicts (6.49) in that
0(*i) € dZu. Hence, (6.48) is true and b) is satisfied. This completes the proof of Lemma
6.1.
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Theorem 6.1 (part (i)): Under the hypotheses of Lemma 6.1, (6.48) holds.
Hence, Part (i) of Theorem 6.1 follows from (6.48).

Theorem 6.1 (part (ii)): Given p> 0, choose c > 0,6% > 0,6* > 0,6^ > 0, and
0 < / < min {1, f} so that hypotheses of Lemma 6.1 are satisfied. Then, using (6.42) we
get, for all t € [t0,oo), |0(t) - 0(01 < ^ < p.

Theorem 6.1 (part (iii)): If p< £(let r =1and 0< I< 1), then 6% = f < £.
Hence, |0(t0) - 0(*o)| < f Since r = 1, 6* = 6^ =0and for all t > t0, it(t) = fa(t) = 0.
Hence, from (6.42) we get, for all t > t0, |0(0 - 0(01 < *e<-*+fa)(«-«o) and |0(t) - 0(01 <
6 < d. (i.e., for all t > t0, Ci(0 belongs to the basin of attraction of the sink 0(0 with
respect to u(t)). H

Proof of Theorem 6.2: The proof is broken into several steps.
[Step 1- Preliminary Analysis]- Consider the ib-th equation in (6.15) (A: > 2):

6 =/(O, O-i.«) - Wk(0k)fa (6.50)

where we abuse notation and write Wk(h) to denote Wk((k,(k-i,uk((k,(k-i,u,0k)).
Writing the Taylor expansion of /(0,0-i,u) about (0,0, w) and noting /(0,0i«) = 0,
from (6.50), we obtain

O = / Dxf [0 +Xdk, 0+>idk.x, u]d\ dk
jo

+ / D2f[(e +\dk,(e +\dk-x,u]d\ dk-X
Jo

- Wk(0k)fa. (6.51)

Subtracting 0 from both sides of (6.51) and noting dk := (k - Ce, we get

dk = f Dxf[(e +\dk,(e +\dk-x,u]d\ dk
Jo

+ / t>2f [Ce +A4,0 +Adjfe-1, U] dX dk-X
JO

- Wk(0k)fa-L (6.52)

Adding and subtracting Dxf((e,(e,u)dk to the right hand side of (6.52) we get

dk = A(t)dk +R(t)dk +B(t)dk-X - Wk(t)fa - 0 (6.53)

where

^(0 := A(0(0.0(0.«(0)

:= £i/(O(0,O(0X0), (6.54)
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R(t) := £(O(0,O(0,«(0,O(0,O-i(0)

:= Jo {Dxf [0(0 +A*w,0(0 +A4-i(0,"(01 - i>i/(OW. CM. «M» <**,
(6.55)

B(t) := %e(t), 0(0, «(0.0(0,0-i(0)

:= / 02/[O(O +Arfft(O,O(O +Arf*-i(O,tt(O]^f (6.56)
jo

Wk(t) := Wk(0k(t)). (6.57)

From (6.53) we get

djfc(t) = *(t,t0)dk(t0)

+ f*(t,s)R(s)dk(s)ds
+ I *(t,s)B(s)dk-X(s)ds

Jto

- jf $(t, s) [Wk(s)fa(s) +OW] da (6.58)
where $(.,.) is the state transition matrix of z = A(t)z.

Since for all t > t0, (0(0,0(0,^(0) € Qc/, Qc; is compact, Dxf(.,.,.) is continuous (/ €
C2), a[i4(.,.,.)j is continuous, and by design a[i(.,.,.)] CC-, we conclude that there
exists a/2 <0such that for all t >t0, Rea [i(t)l </i <0. Thus, there exists an
€ := €(/, Qu) > 0 such that

if |j4(t)| < e then for some k := k(f,Qu) > 1and some q := fj(f,Qu) >0

and for all t >5>t0, |*(*, s)\ < ke'^-'K (6.59)

Differentiating the right hand side of (6.54) with respect to time and using chain
rule we get

A(t) = {D2f((e(t), 0(0, u(t)) +D2Dxf((e(t), o(0, «(0)} 0(0
+ 030i/(O(O.O(O.tt(O)ft(O- (6.60)

Since for all t > t0, (0(0,0(0, «(*)) € Qj/, Qyis compact, £>?/(.,,.), D2Dxf(.,.,.),
and DzDxf'(.,.,.) are continuous (/ € C2), there exist constants ax > 0 and a2 > 0 such
that

O! := maxt>t0 \D2f((e(t), 0(t),W(t)) +D2Dxf((e(t), 0(0, "(0)1
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and

a2 := roa**>,olA>A/(0(0,0(0,«(0)|.

Hence, if maxt>to|0(t)| <%:= 6'c(f,Qv) := ^ and mast>to|u(t)| < ft := 6'u(f,Qv) :=
2J; then |A(t)| < I and the conclusion of (6.59) is true. From (6.55)-(6.56) we note
that when dk(t) = dk-X(t) = 0 (i.e., O(0 = O-i(0 = 0(0). *(0 = 0 and B(t) =
02/(0(0.0(0, «(0).

Let Wu := QuxZuxZu. From (6.55)-(6.56) we note that since R(.,.,.,.,.) and B(.,.,.,.,.)
are continuous (/ € C2) on Wv (a compact set), R(.,.,.,., .)and B(.,.,.,.,.) are uniformly
continuous on Wv. Thus, given c>0, there exists a6' := 6'(c, /, Qv, Zu) > 0 such that for
all t > t0,

if (O(0.O-i(0) €ZuxZu and \(dk(t),dk-X(t)\ < i'

then \R(t)\ <cand |P(t) - £>2/(0(t), 0(0,«(0)l <*• (6.61)

Since for all t > t0, (0(0,0(0,^(0) € Qy (a compact set) and D2f(.,.,.) is
continuous (/ € C2), there exists aconstant 6:= b(f,Qv) such that
6:= max<>t0|I>2/(Ce(t),0(0,w(t))|. Thus, from (6.61) we get for t >t0,

if(O(0.O-i(0) eZuxZu and |(«fc(0,<fc-i(0)l <# then |#(t)| <cand |5(t)| <6+c.
(6.62)

Summarizing to this point, if 1) maxt>to\u(t)\ <6'u, 2) roaxt>,0|0(t)| <~6'0 3)
for all t >t0, (O(0»O-i(0) € ^ x Zc/, and 4) far all t >f0, |(4(0,4-i(0)l <6' then
from (6.58), (6.59), and (6.62) we get: for all t > t0,

14(01 < ke'^^\dk(to)\

+ kc I e-W-*>|<ffc(0|«k
'to

+ kIt0 e~*{t~S) ^+~c)\dk-^\ +1^(011^(01 +10(01] ds. (6.63)
Applying a form ofBellman-Gronwall inequahty [9] to (6.63) we get

14(01 < *e<-*+*2>(<-<°)|4(t0)|

+ ~kJt0 e(""+*C")('",) [(* +OI4-i«l +1^(011^(01+10(01] ds. (6.64)
[Step 2- Topology]- Let d := d(f,Qu,Zv) denote the distance between PQu

and dZu. Then d > 0 because PQt, is a proper subset of Zu. Choose c := c(f, Qu) > 0
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such that -fj + kc < 0. Given this c, choose 6' := 6'(c, f, Qu, Zu) > 0such that (6.61) and
(6.62) are tnie. Let 6:= 6(c,f,Qu,Zv) := mtn{|,d} >0. Choose constants /", f, %%,
and 7P such that 0 < / < 1, 0 < f < 1, 7< > 0, 7* > 0, 7, > 0, and 7< + 7* + 7, < 1.
Let 6'0 := 60(c,f,Qu,Zu) := f, *? := 6'{(c,f,Qu,Zu) := mtn{^,-7cM+T"f)/1},
%:= ^(c,f,Qu,Zu) := -^l=S±*gG=£fl and

Lemma 6.2 let c, £0, 6'u, 6%, 6^, and p0 be defined as above. Let p be any real number

with 0<p<p0. //O(*o), «(.)»0(.)» **(•)» and O-i(-) are such that |O(t0) - 0(*o)| < *o/
maxt>t0\u(t)\ < 6'u; mazt>to|0(OI <*"'' maxt>to\<f>k(t)\ < fy for all t > t0, O-i(t) € Zu
and |0-i(0-0(01 ^ Pthen the hypotheses l)-4) required for (6.63) and (6.64) are satisfied.

Proofof Lemma 6.2: Since maa:t>to|u(t)| < 6'u and maar^tg |O(0l ^ *< - *C'
hypotheses 1) and 2) required for (6.63) and (6.64) are satisfied.

Next we show that

for all t > t0, |O(0 - 0(01 < *'• (6.65)

Suppose (6.65) is false: Then thereexists a t2 € (to, 00) such that

for all t € [t0, t2), |0(t) - 0(01 < *' **<* IO(*2> - 0(*2)| = *'. (6.66)

Claim:

for all t € [t0, t2], 0(0 6 Zv. (6.67)

Suppose (6.67) is false. Then there exists a t3 € (h,t2) such that

for all t 6 [t0, t3), 0(0 € Zv and 0(<a) € dZv. (6.68)

From (6.66) and (6.68) we note that for all t 6 [to,tz] the hypotheses of(6.63) and
(6.64) are satisfied. Thus, from (6.64) we get, for all t € [to,t3),

14(01 < £ft +*[(6 +Qp +ft,% +ft| , } -
-(-n + kc)

< isf + (% + ^ +^)(i-f)U

< IS. (6.69)
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By continuity of dk(.) and (6.69) we get |<fjfe(*3)| <16 <6 <d which is a contradic

tion to (6.68) in that 0(*3) € dZv but |0(t3)- 0('s)| < d. Hence, (6.67) is true and the
claim is proved. Thus, from (6.66) and (6.67) we note that for all t € [t0,t2] the hypotheses
of(6.64) are satisfied. Thus, from (6.64) we get, for all t € [to,t2], |djb(t)| < Bin particular,
|0(*2) - 0(*2)| < 16 <6< ^ which contradicts (6.66). Hence, (6.65) is true and since for
all t > t0, |4-i(0l < P< Po < y, hypothesis 4) required for (6.63) and (6.64) is satisfied.
Finally, to complete the proof of Lemma 6.2, we will show that:

forallt>to,0(0€Z&. (6.70)

Suppose (6.70) is false. Then, there exists a tx G(t0, oo) such that

for all t € [tb,*i),O(0 GZ% and 0(*i) GdZv. (6.71)

So from (6.71) we note that for all t € [t0, tx) the hypotheses of (6.64) are satisfied.
Thus, from (6.64) we get, for all t G[t0,ti), \dk(t)\ < 16. By continuity of <**(.), we obtain
\dk(tx)\ <16 <6 <d which contradicts (6.71) in that 0(*i) GdZv. Hence, (6.70) is true
and hypothesis 3) required for (6.63) and (6.64) is satisfied. This completes the proof of
Lemma 6.2.

[Step 3- Choosing Bounds]- Let 60, 6'u, 6'{, $J, and p0 be as defined before.
For any 0 < p< p0, choose *£ := 6l(p,fx,Qy) >0, 61 := 6l(p,fx,Q\j) > 0, and 641
6<t>i(p,fi,Qh) > 0 as in the statement of Theorem 6.1; choose 60 := 60(p,f,Qu,Zu)
mf7l{p'I(4^i)^o}, K:= Up,fi,f,Qu,Qv) := minfax}, 6C := 6c(pJ,Qu,Zu)
min [p, 6'l\, and 6+ := ^(p, fx, f, QJ,, Qy, Zy) := min [p, 64u 6$.

[Step 4- Theorem 6.2, part (i)]- We use induction to prove part (i).
Initial Case k= 1: Since |0(*o)-0(*o)| <%, maxt>to\u(t)\ <6U< ^audmas^J^t)! <
h <huby Theorem 6.1, we have for all t >t0, 0(0 GZy, and |d(t) - Ce(0l <P-
Induction Step: Assume that for all i = 1,2,...,k, for all t > t0, C.(0 G Zy, and
10(0 - 0(01 <P- We will show that for all t > t0, O+i(0 GZy, and |O+i(0 - 0(01 <P-
Since |0+i(*o) - 0(*o)l < 60 < S'0; maxt>to\u(t)\ < 6U < S'u; maxt>to|0(t)| <6( < ££';
maxt>t0\fa+x(t)\ < 6+ < fy for all t > t0, 0(0 GZy and |0(t) - 0(01 < P, by Lemma
6.2, we have for t > t0, O+i(0 GZu and applying the inequality (6.64) todk+x(.) we get

l«fc+i(0l < ~kio +~k\(b +c)p +bJt +6A / * .
1 -(-rj + kc)



< kp + fc(6 +c)p +kbwp +kp
-(-fj+kc)

'k(2 + b+ c+ bw)
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( -.i>\ r> (6.72)-(-1 + kc) J v J

By design of the control laws, we can increase fj so that fj is sufficiently larger than
6and kand ^l+^lf^ <1. Hence, from (6.72) with this choice of fj we get |d*+1(t)| <p
and part (i) of Theorem 6.2 is proved.

[Step 5- Theorem 6.2, part (ii)]- From the proof of the initial case A: = 1 in

part (i) ofTheorem 6.2, we note that maxt>to|0(0 - 0(01 := ™>axt>tQ\dx(t)\ < p. Thus,
part (ii) of Theorem 6.2 is proved.

[Step 6- Theorem 6.2, part (iii)]- Similar to the argument of the induction
step in part (i)ofTheorem 6.2, for k> 2,Lemma 6.2 holds. Hence, applying theinequality
(6.64) to 4+i(.) assuming that 4+i(*o) = 0, we get, for t > t0,

i^wi *zSyfeiw-)"-+1(^««-)«-+iHn^llt(0lu (6-73)
Denoting a := a(f,Qy) := -Mg_ ft := ^(f,Qv) := z^f), and ft :=

Pdf,Qu) := .(4+fc)' fr°m (6.73) we get

H4+i(.)||oo <a|M*(.)IU +^IIWOIIco +ftllOMIIoo. (6.74)

By suitable design of the control laws we can increase fj so that a < 1. This
completes the proof of Theorem 6.2. •
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Gv = /(Cn,Cn-i,«)
Cn-i 0

6 = /(o.o.*) tx

0 = /i(0,«)-i-

Figure 6.1: The interconnection ofnonhnear dynamical systems with no parameter uncer
tainties

1 '

Ov = /(Gv,Cn-i,u)-

W0v(Cn, Cn-i, uN(0N))(j>N
Or-

. .

<t>N

0

u

6 = /(o,o,«)-

W2(0.0,«2(*2))*i

02

6 = /i(o,tt)-

Wi(Ci,«i(^i),«)<Ai

fa

Figure 6.2: The interconnection of nonhnear dynamical systems with parameter uncer
tainties; each dynamical system is locally controlled by an indirect adaptive controller.
For brevity, we have used ux(0x) := wi(0,Mi) and for k = 2,3,...,N, uk(0k) :=
ujfc(0,0-i,Mife)-
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Figure 6.3: Indirect adaptive control of the first dynamical system
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u

| Controller k Plant k

0

Uk - Uk((k,Ck-l,U,0k)
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£k = Wk(Ck,<;k-i,Uk)0mk 0
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Ck = MCk - 0) +Wk(Ck,Ck-i,Uk)6k

fc = -Wf(0.0-i,«*)i,(0-0)
O-i

1 *

Figure 6.4: Indirect adaptive control of the k-th. dynamical system (k = 2,3,..., N)
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Chapter 7

Conclusion

In this dissertation we have studied the problem of controlling a platoon of closely-spaced

non-identical vehicles traveling at high speeds on automated highways. We have proposed

decentralized nonlinear control laws, for each vehicle in the platoon, which maintain close

spacing between successive vehicles and keep all the vehicles in the platoon close to the

lane center. The longitudinal control laws take advantage of communication possibilities

not available in the recent past.

Motivated by this platoon control problem, we carried out a feasibility study for

designing local controllers for a class of interconnected nonlinear dynamical systems. We

have given precise conditions on inputs to the dynamical subsystems and the dynamical

behavior of the subsystems in the interconnection which allow such local controller design.

Furthermore, we have proposed a local, nonlinear, adaptive control scheme for this class of

interconnected nonhnear dynamical systems.

These studies make both practical and theoretical contributions to the design of

control laws for interconnected nonhnear dynamical systems. From a control designer's

view point, the local nature of the proposed control laws reduces the computational costs

while increasing the rehabihty and the flexibihty of the control system as a whole. From a

theoretical point, these studies show that, for a class of interconnected nonhnear dynamical

systems, it is possible to attain the design objectives by using local, nonlinear, adaptive

control laws; furthermore, the adaptive nature of these control laws increases the robustness

of the control system with respect to uncertain parameters.

Much work remains to implement longitudinal and lateral control laws for a pla

toon of vehicles. In addition to work on sensors (accelerometers, velocity sensors, etc.),
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actuators, communication system, road tests, safety considerations, and socio-economic

studies, a number of systems engineering concepts have to be addressed: studies are needed

for analyzing and controlling platoons of vehicles on a network of highways. The control

system hierarchy from the regulation level of controlling one platoon on one lane to the

network level of controlling the flow of traffic on several highways has to be studied. At

this time, a major obstacle for higher level control of platoons is the lack of good models
for describing the flow of traffic.

At the regulation level, we have initiated a system-level study for controlling a
platoon of vehicles traveling on a lane of highway. For the proposed combined longitudinal

and lateral control laws, we have an additional problem that needs to be addressed: investi

gate the use of adaptive control methods to improve the robustness of these controllaws to

unknown parameters; in addition, we need to check the robustness of these control laws to

measurement noise and communication delays. Furthermore, we need to incorporate more

realistic engine models, tire dynamics, wind gusts, road irregularities, etc...

From the theoretical stand point, we have originated methods for analysis and
design ofdecentralized adaptive controllers for aclass ofinterconnected nonlinear dynamical
systems. Future research can improve on these methods and apply them to other classes

ofinterconnected nonhnear systems. Furthermore, theoretical research is needed to design
fault-tolerant controllers which can reconfigure themselves in case offailures. Investigating
the possibility ofusing decentralized controls for improved fault-tolerance will yield benefit
in a number of applications where safety and rehabihty are major cost factors.
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