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Control of a Class of Interconnected Nonlinear Dynamical

Systems:
The Platoon Problem

by

Shahab Eddin Sheikholeslam

Abstract

This dissertation presents a system-level study of control laws for a platoon of
non-identical vehicles on intelligent vehicle highway systems (IVHS); the platoon problem
arises as follows: the productivity of a lane of a freeway is pv, the number of vehicles per
hour, where p denotes the density and v denotes the speed. By law v is bounded; hence, to
increase the productivity of one lane we need to increase p. Our objective is to investigate
the possibility of using automatic control to reduce the distance between successive vehicles
in a lane. Then, motivated by this abplication, it is shown that decentralized control laws
can be designed for a general class of interconnected nonlinear dynamical systems.

Chapter 2 of this system study advances the art of automatic longitudinal control
for a platoon of vehicles on a straight lane of highway in the sense that a) it considers longer
platoons composed of non-identical vehicles; b) it uses nonlinear models and nonlinear
control laws; c) the longitudinal control laws take advantage of communication possibilities
not available in the recent past. This study proposes decentralized control laws for a platoon
of closely-spaced non-identical vehicles traveling at high speeds along a straight lane of
highway. In addition, chapter 3 of this study proposes longitudinal control laws for the
platoon in the event of loss of communication between the lead vehicle and the other vehicles
in the platoon. Comparison with the full communication case shows that, in case of loss
of communication between the lead vehicle and the other vehicles, the performance of the
longitudinal control laws degrades; but, this degradation is not catastrophic.

In chapter 4, this study considers the problem of combined longitudinal and lateral
control of a platoon of non-identical vehicles and proposes nonlinear control laws for this

platoon of vehicles accelerating on a curved lane of highway. These control laws are based



on nonlinear models of vehicles’ combined longitudinal and lateral dynamics. Simulation
results show that the proposed control laws perform well, for roads with suitably large
radius of curvature, under nominal operation. One of the contributions of this dissertation
is the origination of preliminary study of combined longitudinal and lateral control laws for
a platoon of vehicles.

Motivated by the above application, in chapters 5 and 6 we address the problem
of decentralized control of a class of interconnected nonlinear dynamical systems. It is
shown that under general qualitative conditions imposed on the interconnected nonlinear
dynamical subsystems as in the platoon control problem, appropriate dynamical behavior
for the overall system can be achieved using only decentralized control. Furthermore, we
design decentralized adaptive control laws for this class of interconnected nonlinear dynam-
ical systems; in fact, we have stated sufficient conditions on the inputs and the parameter
errors under which we can design suitable decentralized control laws for the interconnection
of nonlinear dynamical systems under consideration. From a control designer’s view point,
the decentralization reduces the computation cost while increasing the reliability and the
flexibility of the system; furthermore, the adaptation improves the robustness of the system.

To implement the proposed control laws, a number of experiments should be per-
formed; in addition, a number of studies have to be done to analyze the effects of dis-
turbances (such as wind gusts, road irregularities, etc...) and modeling errors (in engine
dynamic model, tire dynamic model, etc...) on the performance of these control laws.

The contributions of this dissertation are twofold: from an application view point,
this study advances the art of automatic control of a platoon of closely-spaced vehicles
traveling at high speeds on an automated lane of a highway; from a theoretical view point,
this study originates techniques for analysis and design of decentralized control laws for a

general class of nonlinear dynamical systems.

Copcse—

Charles A. Desoer, Thesis Committee Chair
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Chapter 1

Introduction

This dissertation consists of two parts: in part I, we present a system-level study for
automatic control of a platoon of vehicles on intelligent vehicle highway systems (IVHS);
then, motivated by the control problem for a platoon of vehicles, in part II, we present a
theoretical investigation in the analysis and design of decentralized controllers for a class of
interconnected nonlinear dynamical systems.

Part I is organized as follows: in Chapter 2, we present a preliminary system
study of a longitudinal control law for a platoon of non-identical vehicles using a simplified
nonlinear model for the vehicle dynamics. The study in this chapter advances the art
of automatic longitudinal control for a platoon of vehicles in the sense that it considers
longer platoons composed of non-identical vehicles; furthermore, the longitudinal control
laws presented in this chapter take advantage of communication possibilities not available
in the recent past. In Chapter 3, we consider the problem of longitudinal control of a
platoon of vehicles on a straight lane of highway and propose control laws in the event
of loss of communication between the lead vehicle and the other vehicles in the platoon.
The contribution of this chapter is to show that, in case of loss of communication between
the lead vehicle and the other vehicles, the performance of the longitudinal control laws
degrades; but, this degradation is not catastrophic. In Chapter 4, we present for the first
time combined longitudinal and lateral control laws for a platoon of non-identical vehicles
accelerating on a curved lane of highway. These control laws are based on nonlinear models
of vehicles’ combined longitudinal and lateral dynamics. Simulation results show that the
proposed control laws perform well, for roads with suitably large radius of curvature, under

nominal operation.



Part II is organized as follows: in Chapter 5, we consider the class of intercon-
nected nonlinear dynamical systems suggested by the above platoon control problem. Under
general qualitative conditions imposed on the nonlinear dynamical subsystems in the inter-
connection, we can obtain appropriate dynamical behavior for the overall system using only
decentralized control. Considering the class of interconnected nonlinear dynamical systems
suggested by the problem of combined longitudinal and lateral control of a platoon of ve-
hicles on automated highways, in Chapter 6, we propose a decentralized indirect adaptive
control scheme for this class of interconnected nonlinear systems. Then, we state precise
conditions on the inputs, on the uncertain parameters, and on the dynamics of the nonlin-
ear plants under which it is possible to attain the design objectives by using decentralized,
nonlinear, adaptive control laws. The methods used in the analysis of the proposed non-
linear adaptive control laws in this chapter may be applied for studying other classes of
interconnected nonlinear dynamical systems.

Finally, in Chapter 7, we summarize the results of previous chapters and discuss
some directions for future research in improving the robustness of the proposed nonlinear
control laws. .

Contributions of the thesis and relations to previous work

This dissertation makes two types of contributions: a) practical contributions in
advancing the art of automatic control of a platoon of closely-spaced, non-identical vehicles
traveling at high speeds on a straight or curved lane of a freeway; note that our control
laws are based on nonlinear models of vehicles’ combined longitudinal and lateral dynamics;
b) motivated by the platoon control problem, we propose decentralized control laws for a
class of interconnected nonlinear dynamical systems; we demonstrate that under general
qualitative conditions imposed on the interconnected nonlinear dynamical subsystems under
consideration, appropriate dynamical behavior of the overall system can be achieved using
only decentralized control; furthermore, we propose decentralized, adaptive control laws for
this class of interconnected nonlinear dynamical systems to improve the robustness of the
system.

Much effort has been spent on various control laws for longitudinal control of a
platoon of vehicles [5],[6],[8],(12], [11],[16],[33] and lateral control of a vehicle [1],[30]. The
contributions of this dissertation in advancing the art of automatic control of a platoon of

vehicles traveling on a lane of freeway are as follows:



(1) We use simplified nonlinear models for the vehicle longitudinal dynamics. In contrast
to all the vehicle dynamics’ models used in [49],[50],[5], and [6], our model includes two
nonlinearities: the aerodynamic drag; the velocity-dependent engine time constant.
Chiu, Stupp, and Brown used a linear engine/vehicle dynamics including a linearized
approximation to aerodynamic drag [6].

(2) We propose longitudinal control laws for a platoon of non-identical vehicles. Previous
studies assumed that a platoon consists of identical vehicles [49], [50],[1 1],[5),[6].

(3) Our analysis of our longitudinal control laws establish that, through the appropriate
choice of design parameters, deviations in the successive vehicle spacings decrease from
the front to the back of the platoon as a result of lead vehicle’s acceleration from its
initial steady-state velocity to its final steady-state velocity; hence, our longitudinal
control laws prevent such slinky-type effect to propogate from the front to the end
of the platoon. Previous work never addressed this slinky-type effect. Furthermore,
simulation results show that our longitudinal control laws perform better than the

control laws proposed in [49],[50],[51],[5], (6] for longer platoons.

(4) Our longitudinal control law for the i-th vehicle in the platoon differs from the control
laws in the literature by using the lead vehicle’s acceleration in the i-th vehicle’s control
law. This additional input is realistic because of the technological progress in inter-
vehicle communications. The addition of this input to the i-th vehicle’s control law
provides another degree of freedom in design; this turns out to be crucial in controlling
the slinky-effect. Shladover had used lead vehicle’s velocity [49] and second order
time- derivative of the i-th vehicle’s spacing error [50] in the i-th vehicle’s control
laws. Caudill and Garrard used a proportional-plus-integral control on the relative
velocity error and proportional-integral-derivative control on the spacing error between
successive vehicles [5]; they did not use the lead vehicle’s velocity and acceleration in
their longitudinal control laws. Chiu, Stupp, and Brown proposed control laws, for
each vehicle, which depend only on the state of that vehicle and the state of the
preceding vehicle [6].

(5) Our control laws are based on nonlinear models of vehicles’ combined longitudinal and
lateral dynamics. Previous studies separated the problem of longitudinal control of a

platoon of vehicles from the lateral control of each vehicle within the platoon: in the



case of longitudinal control of a platoon of vehicles, these studies proposed control
laws for a platoon of vehicles traveling on a straight lane of a highway [49],[50]; in
the case of lateral control of a vehicle, these studies proposed control laws based on
a linear model of vehicle’s lateral dynamics with the assumption that the vehicle’s
speed remains constant on a curved lane of highway [30]). These studies neglected the
nonlinear coupling between the lateral dynamics and the longitudinal dynamics. In
this dissertation, we demonstrate the performance of our nonlinear control laws for a

platoon of vehicles accelerating on a lane of a highway whose center line is a sinusoid.

Motivated by the platoon control problem, we propose decentralized control laws for

a class of interconnected nonlinear dynamical systems. The contributions of this dissertation

in designing decentralized controllers for this class of interconnected dynamical systems are

as follows:

(1)

(2)

(3)

We demonstrate that under general qualitative conditions imposed on the intercon-
nected nonlinear dynamical subsystems under consideration, appropriate dynamical

behavior for the overall system can be achieved using only decentralized control.

In the control of interconnected dynamical systems there are two important features:
a) the graph of the interconnection and b) the time-scale separation of dynamics (in
the present case, these time scales are that of the given dynamical subsystems and
that of the controllers). We show that, by designing decentralized controllers whose
dynamics are much faster than the dynamics of the subsystems, the deviations of each
dynamical subsystem’s state ({x for £k = 1,2,...,N) from its respective equilibrium
state ({.) remain bounded for a slowly-varying input (u); furthermore, if after some
time T, the vector input u() becomes constant, then the peak value of these deviations

monotonically decreases as k increases (i.e., no slinky-effect).

We propose decentralized,nonlinear,adaptive control laws for this class of intercon-
nected nonlinear dynamical systems; in fact, we show that under sufficiently slowly-
varying inputs (u), and sufficiently small parameter errors (¢ for ¥ = 1,2,...,N) in
each dynamical subsystem, if the state of each dynamical system is initially sufficiently
close to its corresponding equilibrium state, then the deviations of each dynamical sub-
system’s state ((x for k = 1,2,..., N) from its respective equilibrium state ({.) remain

bounded; furthermore, by suitable design of decentralized control laws, the peak de-



viation of each dynamical subsystem’s state from its equilibrium state monotonically
decreases as k increases. Note that the control laws are decentralized and adaptive;
hence, a) the decentralization reduces the computation cost while increasing the reli-

ability and the flezibility of the system; b) the adaptation improves the robustness of

the system.
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on Automated Highways



Chapter 2

Longitudinal Control of a Platoon
of Vehicles

This chapter presents a preliminary system study of a longitudinal control law
for a platoon of non-identical vehicles using a simplified non-linear model for the vehicle
dynamics. This study advances the art of automatic longitudinal control for a platoon of
vehicles in the sense that it considers longer platoons composed of non-identical vehicles;
furthermore, the longitudinal control laws presented in this study take advantage of com-
munication possibilities not available in the recent past.

We assume that for i = 1,2,... vehicle i knows at all times v; and a; (the velocity and accel-
eration of the lead vehicle) in addition to the distance between vehicle i and the preceding
vehicle, 7 — 1. A control law is developed and is tested on a simulation of a platoon of 16
vehicles where the lead vehicle increases its velocity at a rate of 3 m.sec™?; it is shown that
the distance between successive vehicles does not change by more than 0.12 m in spite of
variations in the masses of the vehicles (from the nominal), of communication delay and of

noise in measurements.

2.1 Introduction

Much effort has been spent on various control laws for longitudinal control of a platoon
of vehicles [5],(6],[8],(12], [11],{16],(33]. A more detailed discussion of previous work is to
be found in section 2.5.1. The contribution of this chapter is to establish the feasibility of

designing longitudinal control laws for a platoon of non-identical vehicles, using a non-linear



model to represent the vehicle dynamics and taking advantage of high-speed communication.

This system study does not examine various effects such as details of engine dy-
namics, dynamics of tires, wind gusts, road irregularities, and fuel economy. A number
of studies are being pursued which take into account more realistic models for engine and
transmission dynamics [25};in addition, various measurement devices including ultrasonic
sensors, radar, and infrared sensors are being evaluated.

The basic concepts of this study are: using exact linearization methods [18],[28],[36]
to linearize and normalize the input-output behavior of each vehicle in the platoon; taking
advantage of high-speed communication [59] to improve the longitudinal control of a platoon
of vehicles.

To examine the behavior of a platoon of vehicles caused by a change in the lead
vehicle’s velocity, we ran simulations for platoons consisting of 16 non-identical vehicles.
For the nominal case, these simulations show that, by appropriate choice of control law
coefficients for each vehicle in the platoon, the deviations in vehicle spacings from their
respective steady-state values do not get magnified from the front to the end of the platoon.
An important feature of the design is that such deviations do not exhibit oscillatory time-

behavior and their time-variations are well within passengers’ comfort limits [15].

2.2 Platoon Configuration

Figure 2.1 shows the assumed platoon configuration for a platoon of 4 vehicles. The
platoon is assumed to move from left to right in a straight line. The position of the ¢-th
vehicle’s rear bumper with respect to a fixed reference point O on the roadside is denoted by
z;. The position of the lead vehicle’s rear bumper with respect to the same fixed reference
point O is denoted by z;. Each vehicle is assigned a slot of length L along the road. As
shown, A; is the deviation of the i-th vehicle position from its assigned position. The
subscript i is used because A; is measured by the sensors located in the i-th vehicle.

Given the platoon configuration in Figure 2.1, elementary geometry shows that:
for1=2,3,...
Ai(t) := zi1(t) — zit) - L. (2.1)

The corresponding kinematic equation for the lead vehicle and the first vehicle are

as follows:



Ay(t) := zi(t) — z4(2) - L. - (2.2)

We assume that A; is measured in vehicle ¢ and, together with its first and second
derivatives, is used in the i-th vehicle’s control law. We assume that for each vehicle in
the platoon the lead vehicle’s velocity (v;) and acceleration (a;) are known.(This requires a
communication link from lead vehicle to each vehicle of the platoon.)

2.3 Vehicle Model

In this study we assume that the road surface is horizontal, there is no wind gust, and all
the vehicles travel in the same direction at all times. Figure 2.2 shows the simplified vehicle
model of the i-th vehicle in the platoon; the block (Kgy;(#;)?)) specifies the force due to the
air resistance, where Ky; denotes pA;Cy;/2, p denotes the specific mass of air, A; denotes
the cross-sectional area of the i-th vehicle, and Cj; denotes the i-th vehicle’s drag coefficient;
the constant d,,; denotes the mechanical drag of the i-th vehicle (the value of d,,; can be
estimated from coast-down tests on the vehicles); m; denotes the i-th vehicle’s mass; u;
denotes the throttle input to the i-th vehicle’s engine; F; denotes the force produced by the
i-th vehicle’s engine. The summing node at the bottom of Figure 2.2 represents Newton’s

second law for the i-th vehicle, namely

mi; = F; — Kgi? — dpi. (2.3)

The engine dynamics is described by a nonlinear differential equation, namely,

F; u;
b=t T (24)

where 7;(Z;) denotes the i-th vehicle’s engine time-constant when the i-th vehicle is traveling
with a speed equal to z;.

The simple model used to describe the engine dynamics (2.4) has proven to be
useful for preliminary system-level studies in longitudinal control of a platoon of vehicles
(5], [6],[49],(50]. As a consequence, we do not use complex engine models which take into
account factors such as ambient temperature, engine temperature, altitude, condition of

spark plugs, transinission dynamics, etc...
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2.4 Exact Linearization of Vehicle Dynamics

In the following section we will use exact linearization methods [18, sec. 4.2, pages 156
159], [28],[36] to linearize the input-output behavior of each vehicle in the platoon.
Analysis In the following we consider exclusively the simplified model (2.3) and
(2.4). From (2.3) we obtain
F; = mii; + Kgiz? + dmi. (2.5)

Substituting the expression for F; from (2.5) in (2.4) gives

F‘i == [mszx + Kd;l‘ + dmt] +— (2-6)

1
Ti(it) ,(2,)
Differentiating both sides of (2.3) with respect to time and substituting the ex-
pression for F; from (2.6) we get

Kd;' . [ de 2 dmt Ug
Ti= —2——3;%; — -l- —_— —_, 2.7
! mg ! :( l) m,"r,-(:c,-) ( )
Linearizing state feedback The expression in (2.7) is of the form
&= bi(&i, £:) + ai(i)us (2.8)
where
- K . K dmi
bi(z;, %) := —27‘:‘%‘ i— ‘( )(l‘- —&432 i+t (2.9)
and
. 1
as(fc,) = m,‘rg(:i:,) (2.10)

To linearize the i-th vehicle’s nonlinear dynamics, we create an exogeneous input

¢i which is related to the i-th vehicle throttle input, u;, by the following equation

i= ﬁ[ci - bi(i, %)) (2.11)

This equation describes a nonlinear state feedback applied to the i-th vehicle’s dynamics
(2.8).

Substituting (2.11) into (2.8) gives a system of linear differential equations repre-

senting the dynamics of the i-th vehicle after linearization by state feedback, namely, for
1=1,2,...
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d .

EI{ = T (2'12)
d. .

E.’t; T (2'13)
4. - . (2.14)
at = % :

Note that the new input ¢; appears in equation (2.11).
Remark The nonlinear state feedback law (2.11) has achieved two objectives:

1. It linearized the i-th vehicle dynamics;

2. It achieves closed-loop dynamics that are independent of m;, d;, K4;, and 7i(Z;); i.e.,
the resulting dynamics of the vehicles are independent of their particular characteris-

tics.

Implementation Issues To compute the linearizing state feedback (2.11), we
need to be able to compute the values of the functions b;(.,.) and a;(.). From (2.9) and (2.10),
this requires sensors to measure the velocity of the i-th vehicle (;) and the acceleration of
the i-th vehicle (#;). At the present time, group discussions are being held [29] to determine
the most suitable sensor technology for measuring #; and &; in terms of the projected cost
and measurement accuracy. In addition, we need to be able to estimate the mass of the
i-th vehicle (m;) and the i-th vehicle’s mechanical drag (dp;). An adaptive identifier for
estimating the mass of a vehicle is presented in [37). (see Appendix) Estimates of the
mechanical drag can be obtained from coast-down tests done on the highway. We assume
that we know the data regarding engine time constant (the function 7;(.)), and the vehicle’s

aerodynamic characteristics (Kg; := pA;Cyi/2).

2.5 Platoon Dynamics

In the sequel we will use the linearized vehicle model given in (2.12)-(2.14) for analyzing
the platoon dynamics.
2.5.1 Proposed control law

Figure 2.3 shows the linearized model of the i-th vehicle with control input ¢;. We propose

the following linear control law for longitudinal control of vehicles: for the first linearized
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vehicle model the control law is

01 := 1 Ar(t) + cnda(t) + ca1Ba(t) + ku [01(2) — vi(0-)] + karai(?) (2.15)

where v;(0—) denotes the steady-state value of the lead vehicle’s velocity (v);

for linearized vehicle models 2,3,... the control law is

ci = cpAi(t) + cohi(t) + caBilt) + Ky [0i(2) — vi(2)] + Ka [ai(t) = ai(?)] (2.16)

where ¢p1, Cu15 Cal, ky1, ka1 Cps Cus Cas kv, and k, are design constants. Note that the control
law for the first vehicle differs from the control law for all the other vehicles in the two
rightmost terms in (2.15). This is due to the fact that for the first vehicle vy —v; = A, and
a—a; = A, which are already a part of the first vehicle’s control law; whereas, for vehicle
i(1=23,..)u—-v= Al+---+A,' and az—a;:&l-l-----l-&.

Comparison of our control law (2.16) for the i-th vehicle with the control laws in
the literature shows that using the lead vehicle’s acceleration () in the i-th vehicle’s con-
trol law is the new addition to the i-th vehicle’s control laws considered in the literature.
This addition to the i-th vehicle’s control law provides additional degrees of freedom in
designing the transfer functions relevant to the longitudinal control of a platoon of vehicles.
It is intuitively clear that if each vehicle knew the lead vehicle’s acceleration, platoon main-
tains a tighter formation than if each vehicle only measured the distance between it and
the preceding vehicle. In contrast to all the vehicle dynamics’ models used in the papers
discussed below, our model includes two nonlinearities: the aerodynamic drag; the velocity
dependent engine time constant. Shladover had used lead vehicle’s velocity (v;) [49] and A;
[50] in the i-th vehicle’s control law. Caudill and Garrard used a proportional-plus-integral
control on the relative velocity error and proportional-integral- derivative control on the
spacing error between successive vehicles [5); they did not use the lead vehicle’s velocity
(v7) and acceleration (a;) in their longitudinal control laws. Chiu, Stupp, and Brown used.
a linear engine/vehicle dynamics including a linearized approximation to aerodynamic drag
[6]; in their approach to longitudinal control of a platoon of vehicles operating under nom-
inal conditions they essentially proposed control laws, for each vehicle, which depend only
on the state of that vehicle and the state of the preceding vehicle.
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2.5.2 Implementation Issues

Figure 2.4 shows the platoon configuration under the proposed control law for a platoon
of 4 vehicles: the lead vehicle’s velocity (v;) and acceleration (a;) are transmitted to all
the vehicles within the platoon. In addition, sensors on each vehicle, say i, measure the
deviation of the i-th vehicle from its assigned position, namely A;. Computation of the
first and the second order time derivatives of the i-th vehicle’s deviation from its assigned

position,namely A; and A;, can be done in two different ways:

1. Communication of the (i —1)-st vehicle’s velocity (&;-;) and acceleration (;_;) to the
i-th vehicle. Obtaining the i-th vehicle’s velocity (2;) and acceleration (%;) from the
sensors on the i-th vehicle, then the computer in this vehicle estimates A; (:= Zi-1-%;)

and A; (:= %;—1 — &;) for use in the i-th vehicle’s control law.

2. Direct estimation of A; and A; using the measured values for A;.

The communication of the position,velocity, and acceleration information is uni-
directional: from the lead vehicle to each vehicle in the platoon. Communication speed
and processing of the measured data should be fast compared to the time constants of
the vehicle dynamics.Preliminary studies in [59] suggest that such a requirement is feasible
with the present communication and data processing technology. Experiments are being
conducted to develop an infrared link operating at a rate of 80000 bits/sec which would
allow communicating roughly one packet of 100 bits per millisecond. It should be kept in
mind that safety considerations will require a communication system within the platoon
(14].

2.5.3 First vehicle dynamics

Initial Conditions Throughout the study of the platoon dynamics we assume
the following: for all ¢ < 0, the platoon is in steady-state; for ¢ < 0, ;(t) = #(t) = vo,
Ai(t) = Ai(t) = Ai(t) = 0. Let w; denote the increment of velocity of the lead vehicle from
its steady-state value (vp). Thus w;(t) := v(t) — vo.

The linear control law (2.15) applied to the linearized model results in the differ-
ential equation (2.18) relating A, to w;: differentiating both sides of (2.2) three times with

respect to the time variable and using the expression for #; from (2.14) we obtain
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Ay (1) =% () - a(t). (2.17)

Substituting (2.15) in (2.17) we obtain

&1 (t) =:'£1 (t) -_ [CplAl(t) + CulAl(t) + Culél(t) + k.,lwz(t) + kala[(t)]. (2.18)

Taking Laplace transforms we obtain

{33 + ca18? + cp18 + c,,l} Al(s)
= {32 = ka18 — k.,l} wy(s) (2.19)

where we use the symbol “~” to distinguish Laplace transforms from the corresponding
time-domain functions.
Thus:

8% — ka1s — ky1
83+ ca18? + c1s + ¢p

Equation (2.20) is the first basic design equation. From (2.20), we note that the

ha,w(s) = (2.20)

addition of the lead vehicle’s acceleration (a;) to the control law for the first vehicle (2.15)
allows us to independently select all the zeros and all the poles of sz,w, by choosing the
design parameters Cq1,Cy1,Cp1,Ka1, and kyy. It is crucial to note that the selection of zeros

and poles are independent of one another.

2.5.4 Second vehicle dynamics

The linear control law (2.16) applied to the linearized model results in the differential
equation (2.22) relating A to A; and wy.
From (2.14) we obtain

Az (1) = er(t) = e2(2). (2.21)

Substituting in (2.21) the control laws for the first and the second vehicles, namely
(2.15) and (2.16), we obtain



15

Az (t) = (cmAs(t)+ cnd(t) + ca1A1(2) + kv wi(t) + ka1ai(t))
= (epla(t) + ch2(t) + ca&2(t))
= (ko[wi(t) = v2(2)] + ka[ai(t) — az(2))). (2.22)

Taking Laplace transforms we obtain

{33 + (ca + "7::.)~92 + (Cv + ku)s + cp} A2(3)
= {(ca1 ~ ka)s® + (o1 = ko)s + e } Aa(s)
+ {ka13 + ky1 } 1(3) (2.23)
Thus:
(cal - ka)32 + (Cvl — ku)s + cp1
8+ (catka)s®+(cotk)s+e,
From (2.23), we note that in addition to the transfer function from A; to A,

there is a transfer function from w; to Aj; it differs from izA, A, by its numerator which is
kuls + kul-

ha,a,(s) = (2.24)

2.5.5 :-th vehicle dynamics (: = 3,4,...)

The linear control law (2.16) applied to the linearized model results in the differential
equation (2.26) relating A; to A;_;.
From (2.14) we obtain

Ai () = ci-1(t) — ci(t). (2.25)

Substituting the expressions for the proposed linear control laws for the (1—1)-st
and the i-th vehicles from (2.16) in (2.25) we obtain

Ai (1) = cpAina(t) + cohisa(t) + cadioy (2)
+ ko) = vio1(2)] + kalai(t) - ai-1(2)]
= cpAi(t) = coAi(t) - e Ai(2)
= ko[oi(t) — vi(?)] = ka[ai(t) - ai(2)). (2.26)
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Taking Laplace transforms we obtain

{83 + (ca + ko)s? + (¢ + ky)s + c,,} A.-(.s)
= {cas2 + cys + c,,} Ai_1(3). (2.27)

From (2.27), we obtain for i = 3,4, ...

8?4+ cys+¢p
$3 + (ca + k¢)32 + (cv + kv)s + Cp.

g(s) = i"A.‘A.‘_l (8) = (228)

Let
x(8) 1= 8% + (ca + ka)s® + (cy + ku)s + ¢, (2-29)

Equation (2.28) is the second basic design equation. From (2.28), we note that
the addition of the lead vehicle’s acceleration (a;) to the control law for the i-th vehicle
(for 7 = 3,4,...) (2.16) allows us to independently select the poles of §(s) (by choosing the
appropriate design parameters (¢, +ka), (cy+k,), and ¢,) and the zeros of §(s) (by choosing
the appropriate ¢, and c,).

Furthermore, let us set ¢, = ¢4 + k4, €y1 = ¢y + ky, and Cp1 = Cp; then equation
(2.20) shows that ha,,,(s) has the same poles as §(s), and equation (2.24) shows that
ha,a,(s) has the same poles as 4(s); in other words, with these choices §(s), ha,w,(s), and

ha,a,(s) have x(s) as denominator polynomial.

2.5.6 Design considerations

We use the block diagram in Figure 2.5 for analyzing the platoon. Some consideration of

Figure 2.5 suggests the main design objectives for the longitudinal control law: from (2.19),
(2.23), and (2.27), we have for i = 2,3,...

(2.30)

o = (0(6))? [haym(@)a(e) + Bt Fase].

x(s)
1. Since the perturbations in A; due to changes (w;) in the lead vehicle’s velocity from
its steady-state value should not get magnified from one vehicle to the next as one
goes down the platoon, we require that |§(jw)| < 1 for all w > 0 and w — |§(jw)| to

be a strictly decreasing function of w for w > 0.
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2. Since the inverse Laplace transform of [5}(.9)]2 is the convolution of the impulse response
of §(s) with itself (i.e.,(g * g)(t)), to avoid oscillatory behavior down the platoon it is
desirable to have g(t) > 0 for all ¢.

The design parameters have been chosen to satisfy these two requirements.

2.6 Simulation Results

To examine the behavior of a platoon of non-identical vehicles under the above control
laws, we ran simulations for platoons consisting of 3 different types of vehicles using the
System Build software package within MATRIXx. We ran simulations for platoons of 4 and
16 vehicles. In all the simulations conducted, all the vehicles were assumed to be initially
traveling at the steady-state velocity of vp = 17.9 m.sec™? (i.e., 40 m.p.h.). Beginning at
time ¢ = 0 sec, the lead vehicle’s velocity was increased from its steady-state value of 17.9
m.sec™! until it reached its final value of 29.9 m.sec™! (i.e., 67 m.p.h.). '

Figure 2.6 shows the lead vehicle’s velocity as a function of time: the curve v(t)
corresponds to a maximum jerk of 2.0 m.sec™2 and peak acceleration of 3.0 m.sec™?2 (i.e.,
roughly 0.3g).

Simulations were run on a platoon of vehicles assuming different types of physical

uncertainties

¢ Nominal system. Having exact knowledge of all the relevant parameters for applying
exact linearization method (2.9)-(2.11) for all of the vehicles within the platoon; as-
suming no communication delays in transmitting the lead vehicle’s velocity (v;) and
acceleration (a;); assuming no communication delays in using A; in the i-th vehicle’s
control law (2.15)-(2.16) for ¢ = 1,2,..; assuming no noise in the measurement of A;

fori=1,2,...

¢ Control laws not conditioned on vehicle loading. Allowing variations in the i-th vehi-
cle’s mass (m;) due to passengers’ mass and luggage. The value of the mass parameter
used for applying exact linearization method (2.9)-(2.11) is the vehicle’s curb mass.
All the assumptions regarding communication delays and measurement noise are iden-
tical to the nominal system. Note that for vehicles with larger variations in vehicle’s
mass, one could use a push button device by which the driver punches in the number

of vehicle occupants; but this is not assumed here.
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¢ Control laws not conditioned on vehicle loading, including communication delays.
Allowing variations in the i-th vehicle’s mass (m;) due to passengers’ mass and lug-
gage. The value of the mass parameter used for applying exact linearization method
(2.9)-(2.11) is the vehicle’s curb mass. We assume a constant communication delay
in transmitting the lead vehicle’s velocity (v;) and acceleration (ar) between any two
successive vehicles following the lead vehicle; a constant communication delay in using
A;, A, and A; in the i-th vehicle’s control law (2.15)-(2.16) for i = 1,2,...; and no

noise in the measurement of A; for i = 1,2,...

¢ Control laws not conditioned on vehicle loading, including communication delays and
noisy measurement. Allowing variations in the i-th vehicle’s mass (m;) due to pas-
sengers’ mass and luggage. The value of the mass parameter used for applying exact
linearization method (2.9)-(2.11) is the vehicle’s curb mass. We assume a constant
communication delay in transmitting the lead vehicle’s velocity (v;) and acceleration
(a;) between any two successive vehicles following the lead vehicle; a constant com-
munication delay in using A;, A;, and A; in the i-th vehicle’s control law (2.15)-(2.16)

fori=1,2,..,; and additive Gaussian noise in the measurement of A;fori=1,2,...

The following types of vehicles with their relevant parameters were used in the

simulations

e Dajhatsu Charade CLS- curb mass= 916 kg (i.e., 2015 /bs.); cross-sectional area (A)=
1.9 m?; drag coefficient (C4)= 0.35 (i.e., Kg = 0.44 kg.m™1); engine time constant
(7)= 0.2 sec.

* Buick Regal Custom- curb mass= 1464 kg (i.e., 3220 Ibs.); cross-sectional area (A)=
2.2 m?; drag coefficient (Cy4)= 0.35 (i.e., K4 = 0.49 kg.m™); engine time constant
(7)= 0.25 sec.

* BMW 750iL- curb mass= 1925 kg (i.e., 4235 lbs.); cross-sectional area (A)= 2.25 m2;
drag coefficient (Cg)= 0.35 (i.e., K4 = 0.51 kg.m™); engine time constant (r)= 0.2
sec.

The order in which the above vehicles followed the lead vehicle was as follows:
Daihatsu Charade CLS followed by Buick Regal Custom followed by BMW 750iL followed
by Daihatsu Charade CLS and so on.
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The number of passengers in each vehicle and their respective masses were as
follows:

e Daihatsu Charade CLS- 3 passengers each with a mass of 91 kg
¢ Buick Regal Custom- 2 passengers each with a mass of 64 kg

* BMW 750iL- 4 passengers with the following masses (in kg): 45,45,91, 59.

The following values were chosen for the relevant parameters in the simulation:
Cq1 = 15, Cy1 = 74, Cp1 = 120, kal = -3.03, kvl = —0.05
Ca = 3,¢y = 49,¢, = 120, k; = 10, k, = 25.

Using the above values for the parameters, we obtain

. _ (s+3.01)(s +0.017)
hayw(s) = (s+4)(s+5)(s+6)
) _ 8(1.97s% + 18.655% + 43.75s — 1.25)
hAgw[(s) = [(S + 4)(3 + 5)(8 + 6)]2
1) = )
g\s) = (s+4)(s+5)(s+6)

Note that the above design parameters were selected so as to satisfy the design

considerations discussed in section 2.5.6.

2.6.1 Nominal system

Figure 2.7 shows the deviations of the first, second, third, fifth, ninth, thirteenth, and
fifteenth vehicles from their pre-assigned positions due to the lead vehicle’s velocity profile
shown in Figure 2.6.

Figure 2.8 shows the lead first, second, third, fifth, ninth, thirteenth, and fifteenth
vehicle’s acceleration profiles due to the lead vehicle’s velocity profile shown in Figure 2.6
for the nominal system.

Simulation results show that the deviations of the vehicles from their pre-assigned
positions do not exceed 0.08 m (i.e., less than 4 inches) and decrease to values which are
less than 0.01 m. The acceleration profiles of the vehicles in the platoon are within the

range of acceptable comfort limits and are almost identical to the lead vehicle’s acceleration
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(ar). Note that the spacing deviation of the first vehicle (A;) is 50 much worse than all the
other such deviations. This is partly due to the filtering effect from A, to Az, Aj,... (as
seen from the block diagram in Figure 2.5).

2.6.2 Control laws not conditioned on vehicle loading

Differences between the actual vehicle mass and the curb mass values assumed in deriving
the control gains range from 8% to 23%. Figures 2.9 and 2.10 show the simulation results in
this case: the deviations of the vehicles from their pre-assigned positions do not exceed 0.11
m (i.e., 4 inches) and decrease to values which are less than 0.01 m. Such deviations do not
exhibit any oscillatory behavior. The acceleration profiles of the vehicles in the platoon are
within the range of acceptable comfort limits and are almost identical to the lead vehicle’s
acceleration (a;).

If this study were not a preliminary system study but aimed at a detailed control
system design, we would use a) a much more elaborate model for the vehicle dynamics
which would include, in particular, the dynamics of tires, transmission, engine, etc..., b)
a model for the actuator dynamics including at least saturation and time constants. We
would also develop a detailed design for the controller. In particular, we would incorporate a
robustness analysis for the mass perturbations and use constrained optimization algorithms
(31] to compute the maximum allowable mass perturbations.

Our objective in this preliminary system study is to establish that the performance
of the longitudinal control laws, in the case of differences between the actual vehicle mass
and the curb mass values, is acceptable. To improve the robustness of the control laws with

respect to the mass parameter, we propose a mass identifier in section 2.8.

2.6.3 Control laws not conditioned on vehicle loading, including commu-

nication delays 4

To evaluate the performance of the proposed control laws allowing variations in vehicles’
masses as before and including communication delays, we chose the delay in communicat-
ing the lead vehicle’s velocity (v;) and acceleration (q;) to the first vehicle in the platoon
to be 20 msec; we chose the delay in communicating the lead vehicle’s velocity (v) and
acceleration (a;) between any two successive vehicles in the platoon to be 6 msec;we chose

the communication delay in using A,A, and A to be 6 msec. Recalling that the infrared
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link can transmit roughly one packet per millisecond, a delay of 20 msec corresponds to
the loss of 20 consecutive packets. Similarly, a delay of 6 msec corresponds to the loss of 6
consecutive packets. Under the present state of the art in communication technology, the
above number of lost consecutive packets are quite high;hence, the above communication
delays are quite stiff.

‘ Figures 2.11 and 2.12 show the simulation results for the control laws not condi-
tioned on vehicle loading and including the above communication delays: the deviations
of the vehicles from their pre-assigned positions do not exceed 0.11 m (i.e., 4 inches) and
decrease to values which are less than 0.01 m, but are noticeably worse than in the case
without communication delays. The acceleration profiles of the vehicles in the platoon are
within the range of acceptable comfort limits and are almost identical to the lead vehicle’s

acceleration (a;).

2.6.4 Control laws not conditioned on vehicle loading, including commu-

nication delays and measurement noise

To evaluate the performance of the proposed control laws allowing variations in vehicles’
masses and including communication delays as before with measurement noise, we chose
the value of A; used in the i-th vehicle’s control law (2.15)- (2.16) to be the sum of the
actual measured value of A; delayed by 6 msec and some Gaussian noise with zero mean
and standard deviation (o) of 0.05 m. Noting that the distance between two successive
vehicles is assumed to be 1 m in this application, such measurement noise is quite stiff:
most of the noise samples are within 3 times the standard deviation which corresponds to
0.15 m (or 15% error in measuring successive vehicle spacings).

Figures 2.13 and 2.14 show the simulation results for this case: the deviations
of the vehicles from their pre-assigned positions do not exceed 0.11 m (i.e., 4 inches) and
decrease to values which are less than 0.01 m. The acceleration profiles of the vehicles in
the platoon are within the range of acceptable comfort limits and are almost identical to
the lead vehicle’s acceleration (a;). Note that the non-smooth variations in A and # are a
result of injecting uncorrelated samples of noise at intervals of 3 msec whereas the linear
controller’s time constant is on the order of 1/6 sec;thus, the system does not have enough

time to react smoothly to such fast varying inputs.
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2.7 Conclusion

We have shown that it is feasible to design longitudinal control laws for a platoon of
closely-spaced non-identical vehicles traveling at high speeds along a straight lane of high-
way. These control laws take advantage of high-speed communication capabilities not avail-
able in the recent past.

We have shown that for the nominal case through the appropriate choice of design
parameters, deviations in the successive vehicle spacings do not get magnified from the front
to the back of a platoon of non-identical vehicles as a result of lead vehicle’s acceleration from
its initial steady-state velocity(vp) to its final steady-state velocity; however, such deviations
are noticeably worse with delays in communication. Furthermore, for the nominal case, the
deviations in the successive vehicle spacings do not exhibit any oscillatory time-behavior.

Simulation results show that the exact linearization method used performs well in
the presence of variations in the vehicle’s mass (from 8% to 23%), including communication
delays and measurement noise; the magnitude of the successive vehicle spacings is well
within 0.12 m for a platoon of 16 vehicles and the acceleration profiles of the vehicles in the
platoon are within the range of acceptable comfort limits.

This preliminary study is by no means complete because it does not examine
various effects such as details of engine dynamics, transmission dynamics, dynamics of
tires, wind gusts, road profile, etc... A number of studies are being pursued to address
issues like longitudinal control of a platoon of vehicles on curved lanes, appropriate sensor

technologies, and detailed models for engine dynamics and tire forces.

2.8 Appendix: A Reduced Order Observer-Based Identifier
for Identifying the Mass of a Vehicle

In this section, we present an identifier for identifying the mass of a vehicle using a
nonlinear model for the vehicle dynamics. Taking advantage of the specific model for
the vehicle dynamics, a reduced order observer-based identifier is proposed and tested on
simulations of three different types of vehicles with various passenger and luggage loadings.
These simulation results show that the proposed identifier accurately identifies the mass 3
seconds after the vehicle has accelerated from its steady-state velocity.

The mass identifier proposed will be a useful option as part of each vehicle’s control system
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for control of a platoon of vehicles on automated highways.

2.8.1 Mass Identifier

The mass identifier is very similar to the observer-based identifier proposed in [54, sec.
2.1, page 3].
Notation In the sequel we will adopt the following notations:
Z; := (i, i, %;)T, where v7 denotes the transpose of the vector v.
Vehicle Model In the following we consider exclusively the simplified model
(2.3) and (2.4). We write the engine/vehicle dynamics of the i-th vehicle as follows: (for
1=1,2,...)

Zi = foi(Z:) + 67 [1:(:) + 9i(Fi)wi) (2.31)
where
Joi(Zi) = foi(zs, £i, &) 2(%5‘.,_%;‘)){ (2.32)
(@) = fl,-(:c.-,i.-,:'é,-)v=(0,0,—§:§§ r:i(w.) WK ui:5:)T,  (2.33)
9i(Zi) = gilmi, 4i, &) =(0’0’T(1i'5)7" (2.34)

and 67 := _-. Note that 6] is the unknown parameter.

We assume that foi(-), f1i(-), and gi(-) are known functions and that we can
measure the velocity (£;) and the acceleration (%;) of the i-th vehicle.

Regressor From the right hand side of (2.31), we denote the regressor to be the

expression in the bracket as follows:

wt(xu u;) = flx(z.)+g;(z.)u: (2.35)

Observer Since the first two components of f;(-) and gi(+) are zero, we propose
a reduced order observer based on the third component of the regressor (2.35) as follows:
Denote the third component of the regressor (w;) by wa;. From (2.33) and (2.34)

we note that

wai(Fiy ) = [-Tz‘,) - ;m — 2K ;%84 + | G ’)]u.

Denoting the observer’s state by (z,-,e,-) , we propose the following reduced order

(2.36)

observer-based identifier

d I3 & ™ - - -
75 = —0(Zi — %;) + foai(%:) + wai(F5, us)b;
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d 5 _ w3i( L, ui) 2 .
dto, = 1T oi(z.a) wg,-(:i:’,-,u,-)(z‘ %) (2.37)

where fo3i(Z;) := —T—"a‘—) (i.e., the third component of fy;), o > 0, and p > 0.

The choice of the positive constants ¢ and p depends on the particular model.
The stability of the observer is established by standard Lyapunov arguments [54, sec. 2.1,
theorem 2.1, page 4]. The convergence of the parameter estimate (6;) to the true value (67)
is established by standard sufficiently richness condition on the regressor (ws;) [35].

Note that in (2.37) we have used a normalized parameter update law. In this
application, normalization of the regressor ws; provides desirable parameter convergence
for the identifier and does not exhibit any bursting phenomenon as seen in the update law

with no normalization of the regressor ws;.

2.8.2 Simulation Results

To examine the performance of the mass identifier, simulations were run for three differ-
ent types of vehicles with various passenger and luggage loadings using the System Build
software package within MATRIXx. In all the simulations conducted, vehicles were as-
sumed to be initially traveling at the steady-state velocity of 11 m.sec™! (i.e., 25 m.p.h.).
Beginning at time ¢ = 0 sec, the vehicle’s velocity was increased from its steady-state value
of 11 m.sec™! until it reached its final value. Each vehicle’s acceleration increased linearly
during the first second of the manuever until it reached its peak value.

The following types of vehicles with their relevant parameters were used in the

simulations

o Daihatsu Charade CLS- curb mass= 2015 lbs. (i.e., 916 kg); cross-sectional area (A)=
1.9 m?; drag coefficient (C4)= 0.35 (i.e., K4 = 0.44 kg.m™'); engine time constant
(7)= 0.2 sec.

¢ Buick Regal Custom- curb mass= 3220 lbs. (i.e., 1464 kg); cross-sectional area (A)=
2.2 m?; drag coefficient (Cy)= 0.35 (i.e., K4 = 0.49 kg.m™!); engine time constant
(7)= 0.25 sec.

e BMW 750iL- curb mass= 4000 Ibs. (i.e., 1820 kg); cross-sectional area (A)= 2.25 m?;
drag coefficient (Cy4)= 0.35 (i.e., K4 = 0.51 kg.m™!); engine time constant ()= 0.2
sec.
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Each vehicle’s respective mass with passenger and luggage loading were as follows:

¢ Daihatsu Charade CLS- 1136 kg
o Buick Regal Custom- 1613 kg

¢ BMW 750iL- 2222 kg.
The values of the parameters o and p were chosen as follows:

c = 10
p = 16.

Figures 2.15, 2.16, and 2.17 show the performance of the mass identifier for the three
different types of vehicles with the above passenger and luggage loadings.

These simulation results show that the mass identifier accurately identifies each
vehicle’s respective mass three seconds after the start of each vehicle’s acceleration. In
addition to the mass estimate (mass in kg) for each vehicle, we have plotted each vehicle’s
respective engine input (u; in N), identifier error (e; := $; — #; in m.sec™2), and rate of
change of the parameter estimate (5; in kg~'.sec™!). Note that in each case the identifier
error (e;) and the rate of change of the parameter estimate (é.) converge to values close to

zero within three seconds of the start of the respective vehicle’s acceleration.

2.8.3 Summary

We have proposed a mass identifier for identifying the mass of a vehicle. The identifier
consists of a normalized parameter update law. Simulation results for three different types
of vehicles with various passenger and luggage loadings show that the identifier accurately
estimates the mass of each respective vehicle three seconds after the start of each respective
vehicle’s acceleration.

The mass identifier can be used as a useful option as part of each vehicle’s control

system for control of a platoon of vehicles on automated highways.
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Figure 2.4: Platoon Configuration under the proposed control law for a platoon of 4 vehicles
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Chapter 3

Longitudinal Control of a Platoon
of Vehicles with no

Communication of Lead Vehicle

Information

This chapter considers the problem of longitudinal control of a platoon of auto-
motive vehicles on a straight lane of a highway and proposes control laws in the event of
loss of communication between the lead vehicle and the other vehicles in a platoon. After
discussing the main design objectives for the proposed control laws, we obtain longitudinal
control laws for a platoon of vehicles which do not use any communication from the lead
vehicle to the other vehicles in the platoon. Comparison between these control laws and the
control laws, in chapter 2, which use such a commurﬁcation link to transmit lead-vehicle
information to the other vehicles in a platoon shows that, in case of loss of communication
between the lead vehicle and the other vehicles, the performance of the longitudinal control

laws degrades; but, this degradation is not catastrophic.

3.1 Introduction

Traffic congestion is a global problem. One method to increase traffic flow is to decrease

inter-vehicular spacings, thus forming a platoon of vehicles traveling at high speed. One
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way to achieve this objective is to automatically control the dynamics of vehicles within a
platoon. The concept of automatically-controlled platoon of vehicles with the corresponding
sensor, actuator, and communication requirements are discussed in [51],(48, and references
therein]. Much work has been done in the study of longitudinal control of a platoon of vehi-
cles on automated guideway transit systems [5),(6],[11],{12] [16],[33],{49],[51]. The problem
of longitudinal control of longer platoons of non-identical vehicles was presented in chapter
2, [47] and [41]. A platoon consists of a lead vehicle followed by vehicles 1,2, ..., N.

In chapter 2, longitudinal control laws for each vehicle in the platoon, say the
i-th vehicle, use the lead vehicle’s velocity (v;) and acceleration (q;) in addition to the
preceding vehicle’s velocity (v;-;), acceleration (a;-;), and the distance between vehicle
¢ and the preceding vehicle, i — 1. In these papers, the lead vehicle’s velocity (v;) and
acceleration (a;) are transmitted to each vehicle in the platoon via a communication link.
From a system point of view, an important question is: what is the loss of performance
if communication from the lead vehicle to the other vehicles is lost? The purpose of this
chapter is to evaluate the performance of longitudinal control laws with no communication
of lead vehicle information.

The organization of this chapter is as follows: in section 3.2, after giving a brief re-
view of vehicle model and exact linearization and normalization of vehicle dynamics [47],[41],
we propose a longitudinal control law which uses no lead vehicle information and present
the resulting platoon dynamics; in section 3.3, we present design considerations for the
proposed control laws; in section 3.4, we present the simulation results for a platoon of
vehicles under these control laws and compare the performance of these laws with those
which require communication of lead vehicle information [47),[41]; in section 3.5, we discuss

some of the trade-offs involved in using the proposed control laws.

3.2 Proposed control laws and Platoon dynamics

In this section, we review the vehicle model and the exact linearization of vehicles’ longi-
tudinal dynamics [47),[41]. Then, we propose longitudinal control laws which do not require
communication of the lead vehicle’s velocity (v;) and acceleration (a;) to each vehicle in the
platoon. Using the proposed control laws, we obtain a block diagram for analyzing the
platoon dynamics.

We consider a platoon of N vehicles following a lead vehicle on a straight lane of
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highway [47],{41] (see Figure 3.1): each vehicle in the platoon is assigned a slot of length
L; the abscissa of the rear bumper of the i-th vehicle with respect to a fixed point O on
the road is denoted by z;; for i = 1,2,..., N, A; denotes the deviation of the i-th vehicle’s

position from its assigned position. Hence, we have
Al = -TI - L

and fori = 2,3,..., N,

A;i=xi-1—2; — L.

Vehicle model[47),[41] The longitudinal dynamics of the i-th vehicle in the

platoon is modelled as follows: (for i = 1,2,...,N)

. F; Uu;
F; ————t = 3.1
T.‘(a:,') 1','(2:,') ( )
miE; = Fj— Kd,':i:? —dmi (3.2)

where F; denotes the driving force produced by the i-th vehicle’s engine; m; denotes the
mass of the i-th vehicle; 7;(-) denotes the engine time lag for the i-th vehicle; u; denotes
the throttle command input to the i-th vehicle’s engine; Kg4; denotes the aerodynamic drag
coefficient for the i-th vehicle; and d,,; denotes the i-th vehicle’s mechanical drag. Equation
(3.1) represents the i-th vehicle’s engine dynamics and equation (3.2) represents Newton’s
second law applied to the i-th vehicle modelled as a particle of mass m;.

This simple model used to describe the engine dynamics (3.1) has proved to be
useful for preliminary system-level studies in longitudinal control of a platoon of vehicles
(5], [6],(49],(51].

Exact linearization of vehicle longitudinal dynamics [47],[41] In the sequel,
we use exact linearization methods [18], [36] to linearize and normalize the input-output
behavior of each vehicle in the platoon. Differentiating both sides of (3.2) with respect to
time and substituting the expression for F; in terms of #; and #; from equations (3.1)- (3.2)
we obtain: (fori=1,2,...,N)

;= bi(2i, ;) + ai(&:)u; (3.3)
where
a2 1 ﬂ 2 dmi] 2ch'~'--.
bi(z;, ;) = @) [:c.+ i + ; ——mi ;% (3.4)
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and
. 1
at(zt) - miTi(ii). (3'5)
We propose the following control law: (for i = 1,2,..., N)
- 1 -
ui(Z;, %) = m[—b,(z., %)+ a) | (3.6)

where ¢; is an exogenous input to the i-th vehicle dynamics.

Substituting the expression for u; from (3.6) into (3.3) we obtain: (fori =1,2,...,N)
Ii=¢;. 3.7

Note that the control law (3.6) has achieved two objectives: a) it has linearized
the input-ouput behavior of the i-th vehicle’s dynamics, and b) it has resulted in dynamics,
for each vehicle, which are independent of the vehicle’s particular characteristics (e.g., mass
of the vehicle, engine time lag, etc...).

Control laws We propose the following linear control laws for the linearized

vehicle model (3.7): for the first linearized vehicle model the control law is

c1 = A1) + Ay (2) + caBi(2) + Ky [v1(2) - vi(0-)]
+ kaal(t) (38)

where v;(0—) denotes the steady-state value of the lead vehicle’s velocity (m);

for the i-th linearized vehicle model (i = 2,3,...,N) the control law is

¢ = cpAi(t) + c,Ai(t) + cali(t) + [vi—1(t) = vi—1(0-)]
+  keaioi(2) (3.9)

where v;_;(0—) denotes the steady-state value of the (i — 1)-th vehicle’s velocity and .
CpsCus Cay ky, and k, are design constants. Figure 3.2 shows the linearized model of the
t-th vehicle with the proposed control laws ;.

Note that the control law (3.8) for the first vehicle uses the lead vehicle’s velocity
(u) and acceleration (a;); these quantities are obtained in the first vehicle by measuring

AI, A,, 1, £; and using the relations v; = z; + A, and a; = i+ A;.
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Platoon Dynamics Let wi(t) denote the deviation of the lead vehicle’s velocity
from its steady-state value at time ¢ (i.e., wi(t) := vj(t) — v;(0-)). Then, using the proposed
control laws (3.8)-(3.9) for the linearized vehicle models, we obtain the block diagram in

Figure 3.3 where:
82 —kgs—k,
B4 c?testo

hayw(s) = (3.10)

and for i = 2,3,..., N,

(ca + ka)s® + (cu + ky)s+ ¢p

B4 +eysto, (3.11)

§(s) = i"A.‘Ai-n(s) =

In (3.10) and (3.11) we have used the symbol “"” to distinguish Laplace transforms from
the corresponding time-domain functions. Thus, hgy(-) denotes the transfer function from
b to a.

In the next section, we use the block diagram in Figure 3.3 to analyze the platoon dynamics.

3.3 Design of the proposed control laws

In this section, we discuss the main design objectives for the longitudinal control laws
and propose a design suitable for this preliminary system study.
Design Considerations Some consideration of Figure 3.3 suggests the main

design objectives for the longitudinal control laws:

1. Stability requires that sz,w, and § have all their poles in the open left half-plane of
the s-plane.

2. ha,w, should be designed so that the deviation of the first vehicle from its assigned
position (i.e., A;) remains small as a result of a change in the velocity of the lead
vehicle(w;); in addition, it is desirable to have the deviation of the i-th vehicle (for
i=1,2,...,N) asymptotically approach zero (i.e.,A;(t) — 0 as t — 00), at the end

of a maneuver.

3. Since the magnitude of A; (fori = 1,2,...,N) due to changes (w;) in the lead vehicle’s
velocity from its steady-state value should not increase from one vehicle to the next
as one goes down the platoon, we require that |§(jw)| < 1 for all w > 0, (to avoid a

slinky-type effect).
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4. Since the inverse Laplace transform of [§(s)]? is the convolution of the impulse response
of §(s) with itself (i.e.,(g * g)(t)), to avoid oscillatory behavior down the platoon it is
desirable to have g(t) > 0 for all t > 0.

From Figure 3.3 we note that fori = 1,2,...,N
Ai(s) = ha,uw(s)[§(s)~ (). (3.12)

Suppose the lead vehicle reaches its final steady-state value at time ¢ ;- We can

write: for t > 0,
wi(t) = [(ts) — w(0-)] + wi(2) (3.13)
where @(t) = 0 for all ¢ > ;.
Taking Laplace transforms of both sides of (3.13) we obtain

i(s) = w + @i(s). (3.14)

Substituting (3.14) into (3.12) and using the final value theorem, we obtain’ (for
t=1,2,...,N)

Jim 84(0) = lim sha, (o M) L g sas)

Since §(0) = 1 from (3.11) and @;(0) = f,’ @i(t) dt < oo, from (3.15) we obtain

(fori=1,2,...,N) .

m A1) = hayu(0) [u(ty) - w(0-)). (3.16)

We choose k, = 0 so that from (3.10) and (3.16) we obtain lim,_.,A(t) = 0 for
t=1,2,...,N.

Design of szlw‘ and § Having chosen k, = 0, we still need to design parameters

kasca, €y, and c,. We choose the design vector (g) as follows

q:= [C!, ﬁ’pa ka]T (317)
where

Cc = —a-—-p

¢ = ap+p

¢ = —Pp. (3.18)
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From (3.10),(3.11), and (3.18) we write the design transfer functions as follows:

. 82~ kgs
hAlwl(3, 9) = (32 —as+ ﬁ)(s - p) (3.19)
(za-p+k)s’ +(ap+B)s— Bp

(s2-as+B)(s-p)

Il

§(s,q)
(3.20)

From (3.19)-(3.20) we note that
sha,w(s,9) + §(s,q) = 1 (3.21)

for all s € C and for all ¢ € R*; hence, we cannot design izmw,(s, g) and §(s,q) indepen-

dently. Thus, we choose target transfer functions

- 82

htarget(s) (S+4)(8+5)(8 +6) (322)
. 552 + 49s + 120

gtarget(s) = (3+4)(8+5)(3+6) (3.23)

which are based on the design considerations above and on our work in [47],[41]. Next, we
formulate a design strategy based on steepest descent ideas.
We propose to obtain a ¢* suitable for our problem by considering the following
optimization problem:
min 3.24
i3 £°0) (3:24)

where R} := {q € R“lizAm (s,q) and §(s, q) stable transfer functions } and

P@) = 3 0 [Ihayen(Gonsa)l? = [haarge(ien)?]
k=1

+ 20 o [18Gwnk @) = ldtarger(iwn)?] .
k=1

(3.25)

Equation (3.25) represents a weighted quadratic cost function with w} and wi (for
k = 1,2,...,n) denoting the appropriate weights and n chosen appropriately to include
all frequencies of interest: since most of the energy of wy(-) is between 0 rad.sec~! and 3
rad.sec™}, wi‘ and wi (for wi between these frequencies) were chosen to be much larger
than the corresponding. weights (w} and w}) for frequencies between 3 rad.sec™! and 6

rad.sec™!; to decrease the effect of higher frequency signals on the designed control laws,
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wl and w] (for wy greater than 6 rad.sec™!) were chosen large enough so that the magni-
tude of the frequency response of the designed transfer functions closely approximated the
corresponding magnitude of the frequency response of the target transfer functions.

The constrained optimization problem (3.24)-(3.25) does not take into account all
the design considerations appropriate for our problem: in the course of the descent procedure
we take into account these additional engineering considerations by adjusting the weighting
factors. If this study were not a preliminary study but aimed at a detailed control system
design, we would use a) a much more elaborate model for the vehicle dynamics which would
include, in particular, the dynamics of tires, transmission, engine, etc..., b) a model for the
actuator dynamics including at least saturation and time constants. We would also develop
a detailed design for the controller. In particular, we would incorporate a number of design
constraints due to actuator saturation limits, regions of stability of the transfer functions in
the open left-half plane, regions of constraints for the zero locations of the design transfer
functions, etc... In such controller design, we would use constrained optimization algorithms
and semi-infinite optimization methods discussed in [31, algorithm 6.3 with Armijo step size
rule (6.312)-(6.31b),pp.81-2].

Our objective in this preliminary study is to establish that, in case of loss of
communication between the lead vehicle and the other vehicles, the performance of the
longitudinal control laws degardes; but, this degradation is acceptable. To accomplish this
objective, we a) use simple nonlinear vehicle/engine dynamics, b) formulate some of the
system-level design considerations into a cost function, and c) obtain a suitable design by
using a descent-type algorithm. (see e.g., [31, and references therein])

Using the above approach, we obtain the following final design transfer functions:

. s2 +5.15s
hfinai(s) (s + 1.71)(s + 4.93)(s + 10.92) (3.26)
) 12.425% + 80.96s + 91.99
§inai(s) = (s + 1.71)(s + 4.93)(s + 10.92)’ (3:27)
the corresponding values of the design variables are
[eps €us €as kv, ka] = [91.99,80.96, 17.56,0, —5.15). (3.28)

Denote hinitial(s) := ha,uw, (s, q0) and Ginitial(8) := §(s,q0) where go is the initial
design vector go = [—9,20,—6,—-3]T. Figures 3.4 and 3.6 show the magnitudes of fre-

quency response of w = Rinitial(jw), @ = Rfina(jw), w — htarget(jw), W = Ginitiat(Fw),



48

w = §final(jw), and w — Garget(jw). The corresponding impulse responses are shown in
Figures 3.5 and 3.7.

3.4 Simulation Results

To examine the performance of (3.8)-(3.9) with the design constants (3.28), we ran sim-
ulations for platoons consisting of 3 different types of vehicles. Within each platoon, 15
vehicles (N = 15) followed a lead vehicle. In all the simulations conducted, all the vehi-
cles are assumed to be initially traveling at the steady-state velocity of vo = 17.9 m.sec™!
(i.e., 40 m.p.h.). Beginning at time ¢t = 0 sec, the lead vehicle’s velocity increases from its
steady-state value of 17.9 m.sec™! until it reaches its final value of 21.9 m.sec™! (i.e., 50
m.p.h.): the maximum jerk and the peak acceleration values, corresponding to this velocity
time-profile, were 0.5 m.sec™3 and 1 m.sec™?, respectively (see Figures 3.8 and 3.9).

Figures 3.10 and 3.11 show the simulation results for the nominal case:

o the deviations of the vehicles from their assigned positions (i.e., A; fori = 1,2,...,15)

are less than 0.08 m.

o These deviations decrease to zero reasonably fast and do not exhibit too much oscil-

latory behavior.

o The peak values of these deviations increase from one vehicle to the next as one goes
down the platoon. This is due to the fact that |§sinai(jw)| 2 1 for w between 0

rad.sec™! and 6 rad.sec™!.

o The acceleration curves show that the peak magnitude of vehicle accelerations increase
from one vehicle to the next as one goes down the platoon. The peak values of these

accelerations remain within 1.5 m.sec™2.

In comparison to chapter 2, [47),[41], the peak value of the lead vehicle’s accel-
eration (g;) is 1 m.sec™2; whereas, in chapter 2,[47],[41], this peak value was 3 m.sec™2:
the maneuver considered here was chosen to be gentler because otherwise the acceleration
demands on the tail vehicle of the platoon were excessive.

In contrast to chapter 2, the deviations of the vehicles from their assigned positions

(ie., A; for i = 1,2,...,15) increase from one vehicle to the next under the control laws
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(3.8)- (3.9); however, the peak values of these deviations are within acceptable performance
limits and these deviations do not exhibit too much oscillatory behavior.

Since under the control laws (3.8)- (3.9), the i-th vehicle in the platoon (for
t=2,3,...,15) does not require the lead vehicle’s velocity (v;) and acceleration (a1) for
computing its control input (c;), the longitudinal control scheme presented here does not
necessitate the need for a communication system; hence, the impleméhtation of this longitu-
dinal control scheme is less expensive than the one presented in chapter 2. The performance
of the longitudinal control scheme in chapter 2,(47],(41] degrades slightly due to communi-
cation delays in transmitting the lead vehicle information; in contrast, control laws (3.8)-
(3.9) do not depend on transmission of the lead vehicle information to each vehicle in the
platoon.

The exact linearization method is based on exact knowledge of vehicle / engine
parameters. We ran simulations to evaluate the robustness of the control laws (3.8)-(3.9)
with the design constants (3.28); namely, robustness with respect to each vehicle’s mass
variations and measurement noise. The mass variations ranged from 8% to 23% of each
vehicle’s mass. The value of A; (for i = 1,2,...,15) used in the i-the vehicle’s control laws
(3.8)-(3.9) was the sum of the actual measured value of A; and some Gaussian noise with
zero mean and standard deviation () of 0.05 m. Based on these simulations, the deviations
of the vehicles from their respective positions were larger than the respective deviations in

the nominal case; however, such deviations were within acceptable performance limits.

3.5 Conclusion

In contrast to previous work in chapter 2, [47],[41] this chapter considers longitudinal
control laws for a platoon of vehicles which do not use any communication of lead vehicle
information.

Comparison with the full communication case, presented in chapter 2, [47],[41],
shows that using control laws (3.8)-(3.9): the deviations in vehicle spacings from their
assigned positions increase from ome vehicle to the next as one goes down the platoon:
furthermore, the acceleration demands on the tail vehicle of the platoon are much larger
than the respective demands under the control laws in chapter 2,[47),[41). On the other
hand, the longitudinal control scheme presented here does not require communication of

lead vehicle information; hence, it is less expensive than the corresponding scheme in chapter
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2,[47],(41] and cannot suffer from any degradation due to communication delays.

At present system designers are inclined to view the communication system within
the platoon to be indispensable for safety, entrainment and detrainment maneuvers. This
study shows that in case the communication breaks down, the control laws proposed in
this chapter can be used as an alternative means to control the longitudinal dynamics of a

platoon of vehicles.
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Chapter 4

Combined Longitudinal and

Lateral Control of a Platoon of
Vehicles

4.1 Introduction

In recent years, a number of studies have been done on intelligent vehicle highway systems
(IVHS) [41],{46], [13],[30),[51]. One direction of such studies is to investigate the feasibility
of using automatic control techniques to increase the throughput of vehicles in a lane of a
highway: more precisely, the goal is to use automatic control to reduce the distance between
successive vehicles.

This chapter considers the problem of combined longitudinal and lateral control of
a platoon of vehicles on automated highways. A platoon consists of N non-identical vehicles
following a lead vehicle. Previous studies separated the problem of longitudinal control of
a platoon of vehicles from the lateral control of each vehicle within the platoon: in the case
of longitudinal control of a platoon of vehicles, these studies showed that suitable control
laws, as in chapter 2, can be designed for a platoon of 16 vehicles traveling on a straight lane
of a highway [41],[46],{47]; in the case of lateral control of a vehicle, these studies proposed
control laws based on a linear model of vehicle’s lateral dynamics with the assumption
that the vehicle’s speed remains constant on a curved lane of highway [30]. In the present

system-level study, we propose nonlinear control laws for a platoon of non-identical vehicles
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accelerating on a curved lane of highway. These control laws are based on nonlinear models
of vehicles’ combined longitudinal a.rld lateral dynamics.

The organization of the chapter is as follows: section 4.2 summarizes the notation;
in section 4.3, we derive the kinematic equations for the i-th vehicle (1=1,2,...,N)ina
platoon; in section 4.4, we describe the dynamic equations representing the i-th vehicle’s
engine and steering actuator dynamics (for i = 1,2,..., N) and then aerive the equations of
motion for the i-th vehicle’s center of mass; in section 4.5, using both the kinematic and the
dynamic equations for the i-th vehicle, we propose a lateral control law for this vehicle and
longitudinal control laws for the platoon; the implementation issues regarding the needed
sensors, estimators, guidance system, and communication link are discussed in section 4.6;
in section 4.7, we show the simulation results for a platoon of 5 vehicles following a lead
vehicle, accelerating on a curved lane of a highway, under the proposed control laws; and
finally, in section 4.8, we conclude the chapter by giving a plan for further improving the

robustness of the proposed control laws under parameter uncertainties.

4.2 Notation

Figures 4.1, 4.2, 4.3, and 4.4 show the relevant quantities for the lateral dynamics of the
i-th vehicle in a platoon, the longitudinal dynamics for the (i — 1)-th and the i-th vehicles
in a platoon, the body frame of the i-th vehicle in a platoon, and the bicycle model for the

i-th vehicle in a platoon, (for i = 1,2,..., N), respectively:
* (O,z,y) a fixed inertial frame in the plane.
e L lane center (a smooth curve in the plane).

® éFi,€si,€z; unit vectors along the longitudinal axis of the i-th vehicle, the transversal
axis of the i-th vehicle, and the vertical axis through the i-th vehicle’s center of mass;

(éFi, €si,€z;) form a dextral orthonormal coordinate frame on the i-th vehicle’s body.
® c;,7ei t-th vehicle’s center of mass, the vector from O to ;. (see Figure 4.1)
e d;,7g; i-th vehicle’s reference point on £, the vector from O to d;. (see Figure 4.1)

o (d;),Ai(d;) unit tangent vector at the point d; on £, unit inward normal at the point
d; on L.
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e;,edf the angle between the Oz-axis and the i-th vehicle’s longitudinal axis, the
angle between the Oz-axis and #{d;). R

A;lar lateral deviation of the i-th vehicle’s center of mass from the lane center.

A;i,Bi; the midpoint on the i-th vehicle’s front bumper, the midpoint on the :-th

vehicle’s rear bumper.

Ti-1, the vector from A; to B;_;. (see Figure 4.2)

0;~1,; the angle between the Oz-axis and Tim1,i-

Adesired  the desired length of vector Ti1,i-

A;_1; deviation of the length of vector 7i-1,i from its desired value Agegired-

IriJdpi the distance between the i-th vehicle’s center of mass and its front axle, the

distance between the i-th vehicle’s center of mass and its rear axle. (see Figure 4.3)

IFipi the distance between the i-th vehicle’s center of mass and its front bumper
(point A;), the distance between the i-th vehicle’s center of mass and its rear bumper
(point B;). (see Figure 4.3)

m; mass of the ¢-th vehicle.

Iz; moment of inertia of the i-th vehicle about the vertical axis through its center

of mass.

Cri,Cri sum of the front tires’ cornering stiffnesses for the i-th vehicle, sum of the
g

rear tires’ cornering stiffnesses for the i-th vehicle in (N/rad).
7 i-th vehicle’s engine time lag.

Fe; driving force produced by the i-th vehicle’s engine along the longitudinal axis of
the ¢-th vehicle. (see Figure 4.4)

fp,-,fng force exerted by the road on the front tires of the i-th vehicle, force exerted
by the road on the rear tires of the i-th vehicle. (see Figure 4.4)
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® vpi,vs; component of the velocity of the center of mass of the i-th vehicle along its
» longitudinal axis, component of the velocity of the center of mass of the i-th vehicle

along its transversal axis.

® arjas; component of the acceleration of the center of mass of the i-th vehicle along

éri, component of the acceleration of the center of mass of the i-th vehicle along ég;.

¢ u; throttle command input to the i-th vehicle’s engine.

® 6Fis0command,i i-th vehicle’s front steering angle, i-th vehicle’s steering angle com-
mand input.

® dp; i-th vehicle’s mechanical drag.
e Kg; i-th vehicle’s aerodynamic drag coefficient.
® 74 t-th vehicle’s steering actuator time constant.

® 33 arc length traversed by the i-th vehicle’s reference point on the lane center L.

* K= % where p is radius of curvature of lane center line.

® éri-1,, €pi—1,; unit vector along 7;_; ;, unit vector normal to Ti-1,; and in the direction

of increasing 6;_; ; (i.e., counter-clockwise direction).

¢ ¢; exogenous input to the i-th vehicle’s longitudinal dynamics.

4.3 Kinematics

In this section, wé summarize the derivation of kinematic equations for the i-th vehicle
(:=1,2,...,N) in a platoon.
Figure 4.1 shows the relevant quantities for the lateral dynamics of the i-th vehicle
in a platoon (¢ =1,2,...,N).
Definition [reference point d;}- Given the location of the i-th vehicle’s center of mass
(i), we draw the osculating circle to £ centered at point ¢;; this circle is tangent to the
road at a reference point, called d;. Thus, by definition of d;, (Tei = Tai) is parallel to i(d;).

A 1q¢ denotes the radius of the osculating circle. Hence,

Aot = (T — Tai) - 7(d;). (4.1)
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Writing the Frenet formulas for #(d;) and i"(d.-), we get

i(d;) = —r(sg)dailld;) (4.2)
0d) = s(sa)daiii(ds). (4.3)

Noting that i’(d;) = €g;71(d;), from (4.3) we get
€ai = K(84i)3ai- (4.4)
Taking derivatives of both sides of (4.1) with respect to t, we get
Ditat = (T — Fai) - 7(ds) + (Foi = Fs) - (dy). (4.5)

By definition of #(d;), 7y is parallel to #(d;). Hence, fy - ii(d;) = 0 in (4.5).
Furthermore, (7 — fy;) is parallel to 7i(d;). Hence, using (4.2) in the right hand side of
(4.5), we get

Aot = 7 - i(ds). (4.6)
Exhibiting the components of the velocity, see Figure 4.1, 7 := vFi€Fi + vsiés;,
so from (4.6) we get

Aijat = vFisin(€; — €4i) + vs; cos(€; — €g;). (4.7
Taking derivatives of both sides of (4.6) with respect to t,we get
Aitar = Foi - A(dy) + T - 7(ds). (4.8)
Noting that Foi 1= aFi€F; + Gsiés;, Te 1= VFi€F; + vsiési, and using (4.2), we get
Aigar = (aFi + K(34:)3aivs:) sin(e; — €g7)
+  (asi — K(34i)3aivFi) cos(e; — €aq). (4.9)

Using (4.4), we can simplify this expression to

Aitat = (ari + vsiési) sin(€; — ez;) + (asi — vFiéa;) cos(e; — €gq). (4.10)

Comparing the expression for ZS,-,M obtained by differentiating both sides of (4.7),
with respect to t, with the expression in the right hand side of (4.10) we get

UFi = aF; + vsi€; (4.11)

Usi = as; — VFi€;. (4.12)
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Differentiating both sides of (4.10) with respect to t, we get after some straight-
forward calculations

Aijat = (6Fi+ siéai + vsiéa;) sin(e; — ;)
+  (ari + vaiédi)(é — é4;) cos(e; — €g;)
+ (@si — vriéai — vFi€y;) cos(€; — €ai)
— (asi — vFi€di)(& — €qi) sin(e; — €g;). (4.13)

In section 4.5, we use the kinematic equation (4.13) and propose a lateral control
law for the i-th vehicle.
" Figures 4.2 and 4.3 show the relevant quantities for the longitudinal dynamics of

the (i — 1)-th and the i-th vehicles in a platoon (for i = 1,2,...,N). From Figure 4.2 and
by definition of A;_; ;, we have

Aioyi = Tic1,i* €ric1,i — Ddesired; (4.14)

and by definition of é.;_1; and épi_;; (see Figure 4.2), we have

bric1i = Oioyiépioyi (4.15)

éoim1i = —bi1iéricaic (4.16)
Differentiating both sides of (4.14) with respect to t, we get
Aio1 = Fic1* bric1 + Fimri* dric1ie (4.17)

By definition, 7, is parallel to é,_;;. Hence, using the expression for é,,'_l,.-
from (4.15), we get
fio1i* érie1i = 0. (4.18)
Let 94, Up; denote the velocity vectors of points A;, B;, respectively. Then, for
1=1,2,...,N, we have
Ticta = UBic1 — Paic (4.19)

By definition of ér; and és; (see Figure 4.1), we have

éri = &iési (4.20)

€si = —éiép;. (4.21)
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From Figures 4.2 and 4.3, we note that
Tpi— T = ip,'ép,' (4.22)
Fi—fBi = lpiér;. (4.23)

Differentiating both sides of (4.22), (4.23) with respect to t, using the expression

for ép; from (4.20), and noting that Foi 1= VFi€F; + vsiés;, we get

Tai = vriépi + (vsi + IFiéi)és; (4.24)
i = vpiépi + (vsi — lpi€i)és;. (4.25)

Substituting the expressions for #i;—1, 4; from (4.24)-(4.25) in (4.19) and using

(4.18), we can simplify (4.17) to

Aic1i = vpig c08(6;-1,i = €i-1) + (vsi—1 — IRi—1éi=1) sin(f;_1 s — €i—1)
= vpicos(Bim1i — €) — (vsi + Ipi&) sin(f;y ; — €;). (4.26)

Successively differentiating both sides of (4.26) with respect to t and using the

expressions for ¥p;_1, Vsi~1, OF;, and vs; from (4.11)-(4.12), we get

Ai-1,

Aicyi = iaFc'—l +1Ri-1€81 + (vsic1 = IRic1éi )é:'-l,i] cos(6;—1, — €-1)
+ T—(am — ipié?) - (vsi + iFeéi)és-l,i] cos(6;-1,; — €)
+ :as.'-l —Ipic1€io1 - vFi-léi—l.i] sin(fi—1, — €-1)
+ [~(asi +Iri&s) + vn'é.'-l,i] sin(fi-1, - €). (4.27)

:(dFt'-l = @sic1éi-1 + 3lRim1éi-1€01) + 26,1 i(asiog — 73{-1?.'-1)] cos(fi-1,; — €i-1)
+ :5:'-1,;'(05.'-1 — lpi—16i21) - é?-l,.'”Fi-l] cos(fi-1,i — €-1)
+ :-(én' — asié; — 3IFi&i€) — 201 4(asi + iFi'G'i)] cos(f;-1,; — €;)
+ [~bicrg(osi + IFiéi) + é?_l,;vre] cos(6;-1, — &)
+ TdS:'-l +ari1éic + i1 &y - Tpiy 'é'e-ll sin(0i—1, — €-1)
+ [—2éi—1,i(aFi-l + iae-lé?_l)] sin(;-1,i — €i-1)
+ [- fi—1,iVFi-1 — 03, i(vsic1 - iRi-léi—l)] sin(fi-1, — €i-1)
+ :—(dse + apié — Ipié) + Ipi €) + 20;_1 4(api - 71-‘&?)] sin(fi—1,i — &)
+ :55-1,;05'.‘ + 67y i(vsi + I-Fiéi)] sin(0;-1,; — €). (4.28)
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In section 4.5, we use the kinematic equation (4.28) and propose longitudinal

control laws for a platoon of vehicles.

4.4 Dynamics

In this section, we describe the dynamic equations representing the i-th vehicle’s engine
and steering actuator dynamics (fori = 1,2,...,N ); then, we derive the equations of motion
for the i-th vehicle’s center of mass. These dynamic equations are suitable for a system-level
study of the combined longjtudinal and lateral dynamics of a platoon of vehicles, traveling
on a curved lane of a highway, with sufficiently large radius of curvature, under nominal
operation.

In this system-level study, we model each vehicle in the platoon as a rigid body.
We write Newton’s second law for the i-th vehicle’s center of mass and the dynamics of the
angular momentum of the i-th vehicle about the vertical axis through its center of mass.
The external forces acting on the i-th vehicle are driving force produced by the i-th vehicle’s
engine, drag forces due to aerodynamic and mechanical drags, and tire forces exerted by
the road on the i-th vehicle’s tires.
Engine dynamics We use a nonlinear differential equation to represent the i-th vehicle’s

engine dynamics
Fei u;

Ti(oriyvsi) | TiloF vsi)
The simple model used to describe the engine dynamics is useful for preliminary

(4.29)

system-level studies in longitudinal control of a platoon of vehicles [41],(51]. As a con-
sequence, we do not use complex engine models which take into account factors such as
ambient temperature, engine temperature, altitude, condition of spark plugs, transmission
dynamics, etc... (for a more detailed model of engine dynamics refer to (13]).

Steering actuator dynamics The steering actuator used is modelled as a first order lag

517‘ — —6_F'f' + 5command.i .

ai Tai

(4.30)

Equations of motion for the i-th vehicle (i = 1,2,...,N) Writing Newton’s second

law for the i-th vehicle’s center of mass, we get

miFe = Foj + Firagi + Fiires,i (4.31)
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where
Fy := Fuép (4.32)
f drags = faerodynamic.i + fmechaniccl,i
= '-Kd,‘v%'iéﬁ'i — dmiéF; (4.33)
Firesi = Fri+ Fri. (4.34)

Note that (4.31) does not include the effect of wind gusts nor the slope of the
highway.

We use a bicycle model (also called half-car model) to represent the lateral dy-
namics of the i-th vehicle [1],[24],(30] (see Figure 4.4): magnitude of the force exerted by
the road on a tire is modelled as proportional to the angle between the tire patch and the
direction of the velocity vector of the tire [34]; the constant of proportionality is called the
tire’s cornering stiffness; the direction of the force exerted by the road on a tire is orthog-
onal to the axis of the tire patch. (see Figure 4.4) In this study, we consider only vehicles
with front-wheel steering. For the i-th vehicle, ar; denotes the angle between front tire
patches and the direction of the velocity vector of the front tires; similarly, ag; denotes the
angle between rear tire patches and the direction of the velocity vector of the rear tires; 7 p;
denotes the velocity vector of the front tires; and 7p; denotes the velocity vector of the rear

tires. Using these definitions, we have

|Fril = Crieri (4.35)
|Fril = Crieg;. (4.36)

Projecting F.F;, fm on the ép;, ég; -axes, we get
Fr = CriaF;isin dp;ép; — Criap; cos 6piés; (4.37)
Fri = —-Criapiési. (4.38)
From Figure 4.4, we note
Fi — Tei = IFiéFi. (4.39)

Differentiating both sides of (4.39) with respect to t, substituting the expression
for ég; from (4.20), and noting 1""c,- = vFi€F;i + vsiési, we get

BFi 1= TFi = vpibp; + (vsi + lpiéi)és;. (4.40)
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Similarly, we get
R := FRi = vFiép; + (vsi — lpi€i)és;. (4.41)

From (4.40), (4.41), and Figure 4.4, we note

vs; + IF: €

ap; = arctan( ) = 6Fi (4.42)

lRtet )

ap; = a.rctan( vF'
) ]

(4.43)

Substituting the expressions for F; (equation (4.32)), Firagi (equation (4.33)),
and Fiire,,i (equations (4.34), (4.37), (4.38), (4.42), (4.43)), and noting that 7; := apép; +
as;ési, we get

lpié
miap; = (Fu— Kgvd; — mi) + CFi [arcta.n(s—'-:F#) JF.] sin §p; (4.44)
mias; = —Cri [arcta.n(i%) 5}:‘.] cos 8x; — Cy arctan( -2 "*“') (4.45)

Considering the rate of change of the angular momentum of the i-th vehicle about
the vertical axis through its center of mass (i.e., the éz;-axis), we get
12i€izi = Tei + Tarag,i + Thires,i (4.46)

where 7; denotes the torque produced by the driving force of the i-th vehicle’s engine (f‘,,-)
about the éz;- axis; Tyrqq,; denotes the torque produced by the i-th vehicle’s drag forces
(Fd,.ag i) about the éz;-axis; and 7 Ttires,i denotes the torque produced by the external forces
on the i-th vehicle’s tires (Fg,,.,, i)

We assume that Fd,,,y,,- is applied to the i-th vehicle’s center of mass (c;) and that
the supporting line of Fi; goes through ¢;, hence

Tei = Fdrag,i =0. (4.47)
Hence, from (4.46), (4.47), and Figure 4.4, we note
1zi€:€zi := Tires,i == TFi + Thi (4.48)
where 7r; denotes the torque produced by the external forces on the i-th vehicle’s front
tires (fp,-); and Tg; denotes the torque produced by the external forces on the i-th vehicle’s
rear tires (fm). Hence, we have
Fri = lpitp; x Fp; (4.49)

TR = —IR,'éF.'XfR,'. (4.50)
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In (4.49)-(4.50), we have used x to denote cross-product of two vectors in R3.
Using the expressions for Fr;, Fr; (equations (4.37)-(4.38)), ari, ar; (equations (4.42)-
(4.43)), and noting that éz; := ép; x és;, we get

. I .6
Tri = —CrilF; [arctan(%ﬁﬁ)—&r;] cosdp; €z; (4.51)
]
TRi = CRilRiarCtm(EJ%) €zi. (4.52)
| ]

Substituting the expressions for i, 7r; from (4.51)-(4.52) into (4.48), we get

vs; + Ipié;

— lRi€;
VF; .

)-§6 Fg] cos §F; + Crilp; arctan( Usi "
F

Izi& = —CrilF; [arcta.n(
3

). (4.53)

Equations (4.29), (4.30), (4.44), (4.45), and (4.53) represent the combined longitu-
dinal and lateral dynamics: the control inputs are u;, throttle command input to the i-th
vehicle’s engine, and 8.ommand,i, i-th vehicle’s steering command input. In the next section,
we use these equations to propose control laws for a platoon of vehicles accelerating on a

curved lane of a highway.

4.5 Control laws

Given a platoon of N vehicles following a lead vehicle on a curved lane of a highway,
~we would like to design control laws which, at all times, maintain a close-spacing between
successive vehicles in the platoon and keep all the vehicles close to the center of this lane.
More precisely, for i = 1,2,..., N, we wish to design control laws for the throttle input to
the ¢-th vehicle’s engine, u;, and the steering command input, Scommand,i, such that when the
lead vehicle accelerates (or decelerates), over some interval say [0,T], then a) A;_; 4(t) = 0
ast — 00, b) Aijar(t) = 0 as t — oo, and c) maze|A;104(t)] and mazs|A;_; ()| are small.
To achieve these control objectives, we use the kinematic equations (4.13) and the
dynamic equations (4.29), (4.30), (4.44), (4.45), and (4.53) to design a lateral control law
for the i-th vehicle (i = 1,2,...,N); furthermore, we use the kinematic equation (4.28)
and the dynamic equations (4.29), (4.30), (4.44), (4.45), and (4.53) to design longitudinal
control laws for the platoon.
Lateral control law for the i-th vehicle (i = 1,2,...,N ) Substituting the expressions
for ap; and as;, obtained by differentiating both sides of (4.44) and (4.45), into (4.13) and
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rearranging terms, we get
Fi - 2K gvpiv
Aitat = { diVFiVFy

+ Vsi€ai + vs.ed:} sin(€; — €4;)

+ { [— arctan(23 — “Ri% ) + ”Fsed:] (& - ed:)} sin(e; — €g4;)
+ { [Fe. Kd.vp. dmi L vs,e,g,] (& - ed,)} cos(€; — €4;)
C (vSs lRi€; )”Ft - (vS: lRte‘l)th ) .
+ { m; vk, + (vsi — lRi€;)? cos(e; — eai)
+  {~9ri€si — vFiés;} cos(e; — eg;)
3 l 1%t
+ { [a.r tan (‘US :-FF & ) 6Ft] (6Ft +é - fds)} 8ln(6Fa +¢€ - edt)
CF: (9si + IFi&)vri - (vsi + IFiéi)ori | Cri; L
¥ {_ m;i vk + (vsi + IFi&)? ¥ g OFi f cos(OFi + € - eai)

(4.54)
Substituting the expression for §F; from (4.30) into (4.54) and approximating

(Lat 1) sin(e; — €di) = 0, cos(e; — €)= 1,

(Lat 2) sin(8F; + € — €4;) = 0, cos(bF; + € — €)= 1,

we get
| Fei = Kaivk; — dmg N P CRri (Vsi — Iri€;)vri — (vsi — lpié;)oF;
Ailat = + vsiéai| (& — éai) — 3 AT
m; m; vE; + (vsi — lRi€;)
bpitai — vpita Cri (9si + IFi&)vri — (vsi + lpiéi)or;
— pié — vpits — .
s ! m; vk, + (vsi + Upié;)?
Cr; Cr;
- : 6Fi + : 6command,t
MyTas MTas

(4.55)

Using (4.55) we propose the following lateral control law Ocommand,i for the i-th
vehicle:

MTe; Fo.— Kyvd —d.: . o
bcommand,i = C: . { - [ o SR T vs.'ed.'] (& - €di)}
Fi m;
MiTai | Cri (9si — Ipi€i)vri — (vsi — lpi€i)ors | . . .
+ Cri { m; v%‘ o ('vSi it )2 + VFi€di + vEi€g;
miTai | CFi (9si + lpiéi)vri — (vsi + lpiéi)or | Cri
+ ) ) Y ERY + ——0Fi
: Cri mg vg; + ('vS: + Iths') M;iTai
M;Tei . .
+ C:p.‘t {—05,,u,Ae,m = €4 tgtDiat — cA,latAi.lat} (4.56)
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where €3 ;441CA 1q¢» a0d €A tat are design constants chosen so as to make s3 + c;”uts2 +
€A 1at3 T €A lat @ Hurwitz polynomial giving rise to appropriate time constants.

Similar to computed-torque control laws in robotics, control law (4.56) cancels the
nonlinearities in (4.55) due to road geometry, engine dynamics, and longitudinal and lateral

dynamics: substituting the expression for 6command,i from (4.56) into (4.55), we get
Aijar™ -ca,,a,&,zat - CA'lagAi.lat - ca,latAlat- (4.57)

Hence, the closed-loop dynamics of (4.55) under control law (4.56) is exponentially
stable.

To implement this control law, we need to either estimate or measure the nonlin-
earities in (4.55). At the present time, some of these measurements are done by sensors and
we propose to estimate the others by appropriate estimators. (refer to the next section for
a discussion on implementation issues.)

Approximations (Lat 1) and (Lat 2) have proved useful in simplifying the lateral
dynamics, for roads with large radius of curvature, under nominal operation.
Longitudinal control laws for a platoon of vehicles In this system-level study,
we have assumed that longitudinal dynamics of a platoon of closely-spaced vehicles on a
road with suitably large radius of curvature is approximately the same as the longitudinal

dynamics of this platoon on a straight road. More specifically, we have made the following
approximations:

(Long 1) cos(fi—1i—€i—q)~1fori=1,2,...,N;
(Long 2) sin(f;i—1,; — €-1)~0fori=1,2,. ..y N;
(Long 3) cos(fi—1—¢)~1fori=1,2,...,N;
(Long 4) sink(o,-_l',- -¢)~0fori=1,2,...,N;
(Long 58) é=~0fori=0,1,...,N;

(Long 8) 6;_;,~0fori=1,2,...,N;

(Long 7) 6;1i~0fori=1,2,...,N;

(Long 8) sinép; ~0fori=1,2,...,N.
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Under the approximations (Long 1)-(Long 7), equation (4.28) reduces to:
Ai-1i% iy — Gy (4.58)

for the i-th vehicle (i = 1,2,...,N) in the platoon.
From (4.44) and (Long 8) we get, fori = 1,2,..., N,

miap; = Fo; — Kd,-v},- — dm;. . (4.59)

Differentiating both sides of (4.59) with respect to t, substituting the expressions
for F,; from (4.59) and F,; from (4.29), and noting that under assumption (Long 5) equation
(4.11) reduces to vp; = ap;, we get fori=1,2,...,N,

miar; X —2Kgivriap; — [m.an + K4iv}; + dm.] + (4.60)

:(”Fn si) Ts(an vsi) |
Based on (4.60), we use the following nonlinear control law for the i-th vehicle in
the platooﬁ (i=1,2,...,N)

. . Kavriar; 1 Kgivk:  dp;

Ui = mimi(vFi, vsi) { & + 22T ap; + —2Fi  Tmi (4.61)
i 7i(vFi, vsi) m; m;

where fori = 1,2,..., N, & is an exogenous input to the i-th vehicle’s longitudinal dynamics.

Substituting the expression for u; from (4.61) into (4.60) we get, fori = 1,2,..., N,
ar; = &;. (4.62)

Similar to our previous work on longitudinal control of a platoon of vehicles on a
straight lane of a highway in chapter 2, [41],[47], we propose the following control laws &
(i=1,2,...,N):

& := €180, + cn1ho, + ca1loa + Eut [UFo — vFo(0=)] + Eararo (4.63)
for the first vehide; and

& 1= epAinni + eyhinyi + caBisyi + Ky [vp0 — VR3] + Ko [aFo — aFi] (4.64)
for the i-th vehicle (¢ = 2,3,...,N). In (4.63), Ao, denotes the deviation of the first

vehicle’s position from its desired value Ag.sireq.

In (4.63) and (4.64), constants cp1,€41,€a1,k01, ka1,Cp,CysCa ky, and k, are chosen
based on design considerations for longitudinal control of a platoon (see chapter 2, [41],[47]
for a thorough discussion).

In the next section, we discuss some of the implementation issues for using longi-
tudinal control laws (4.61), with ¢; as in (4.63)- (4.64).
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4.6 Implementation issues

In this section, we discuss sensors, estimators, the guidance system, and the commu-
nication link needed to implement the lateral control law (4.56) and longitudinal control
laws (4.61), (4.63)-(4.64). In addition, we briefly discuss some alternative methods for
implementing these control laws.

We need sensors to measure both velocity components vr; and vg;, both accelera-
tion components ar; and as;, the yaw rate é;, the front steering angle §F;, the lateral devi-
ation A;q¢, and the deviation of the i-th vehicle’s position from its desired value (A;_;;).
Using the measured values of vr;, vs;, ar;, as;, and ¢;, we can use (4.11)-(4.12) to estimate
the values of 9r; and vs;. We assume that we know the vehicle’s mass m;, the drag coef-
ficient Kg;, the mechanical drag d;, the moment of inertia about the ézi-axis (Iz;), the

distances Ip;, lgi, ip;, and Ip; (see Figure 4.3), and the i-th vehicle’s engine time-lag as a
v' function of its speed (7;(-)). We assume the steering actuator’s time-lag (7,;) is known. By
integrating the measured value of ¢; and knowing the initial values of the i-th vehicle’s yaw
angle (¢;(0-)), we can estimate ¢;. We can estimate the value of €; by two different methods:
a) by appropriately averaging the finite differences of the measured values of €, and b) by
computing the expression for ¢ from (4.53). Similarly, by appropriately averaging the finite
differences of the measured values of A; et and A;_ ;, we can estimate A.-,m, A,’Jog, A;-l,;,
and A,‘_l',‘. We need parameter identifiers to estimate the i-th vehicle’s cornering stiffnesses
(Cri and Cr;). Using (4.44), we can estimate the values of the driving force produced by
the i-th vehicle’s engine (Fy;).

We assume that each vehicle in the platoon has a road map

Fa= §(sq), (4.65)

where 7z denotes the (z,y)-coordinates of a point on the lane center and #(-) is a param-
eterization of the lane-center line £ as a function of arc length sy. Given this road map
(4.65), we can obtain unit tangent and unit normal vectors (¥ and i, respectively) at any
point on £ as functions of arc length. We can also compute the radius of curvature at
any point. Given the location of the i-th vehicle’s center of mass (Tei), the initial value of
84i(0-), the measured values of ;.-, VFi, and vg; (or alternatively, the measured values of
ar; and as;), and the measured values of A; 1ot and its time derivatives, we can estimate

Sd¢i- (See Appendix.) Thus, we can compute the values of ey, é4;, and é.
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Components of the velocity of the center of mass of the lead vehicle (vro) and
acceleration (aro), used in the i-th vehicle’s longitudinal control laws (4.63)-(4.64), are
transmitted to the i-th vehicle via a communication link [48]. At the present time, system
designers view such a communication link indispensable for safety, merging, and demerging
maneuvers [14]. For a discussion on longitudinal control laws on a straight lane which do

not use a communication link refer to [46).

4.7 Simulation Results

To check the performance of the proposed control laws, we ran simulations for a platoon

of 5 vehicles following a lead vehicle (i.e., N = 5) consisting of three different types of
vehicles. In all simulations conducted, all the vehicles were initially traveling at a speed of
20 m/s (i.e., about 45 m.p.h.) on a straight lane of highway; lateral deviation of all vehicles’
center of masses from the lane center £ was zero (i.e., for i = 1,2,.. -39y Bija(0-) = 0
) and all vehicles were traveling at their allotted slot on the lane (ie., for i = 1,2,...,5,
Ai—1(0-)=0).
Lane description Figure 4.5 shows the lane center £ (a curve in R? specified by the map
z — §(z)) and its derivatives as functions of z. The lane center consists of three sections:
the beginning and the end sections are straight and the middle section is a slalom curve,
More specifically, the lane center £ is described as follows (SI units throughout)

(

0 z< 20
[2 - 2c05(58 - %) [tanh(252)]° 20 < = < 290
[2- 2c08(35 - )] [tanh(2%52)]° 290 < 2 < 560
0 z > 560,

§(z) = 4 (4.66)

\

hence this choice of £ is at least three times continuously differentiable. (See also Figure 4.5.)
Hence, the lateral control law (4.56) does not contain any discontinuities due to non-smooth
road geometry. In addition, from the plots of §"(-) and #(-) in Figure 4.5, we note that the
radius of curvature of £ is larger than 250 m.

Vehicle parameters In all simulations, the platoon consisted of three different types
of vehicles: the lead vehicle, the first, and the fourth vehicles were of the same type; the
second and the fifth vehicles were of the same type. Table 4.1 shows the vehicle parameters

used in the simulations: some of the parameters of the lead vehicle, the first vehicle, and
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»vehjclea' 0 1 2 3 4 5

curb mass (kg) 1175 | 1175 | 1760 | 1550 | 1175 | 1760
passengers’ and
luggage mass (kg) | 270 270 200 | 250 270 200
m; (kg) 1445 | 1445 | 1960 | 1800 | 1445 | 1960 |
7; (3) 0.2 02 | 025 [ 0.2 02 | 0.25 |
Ky (kg/m) 044 | 044 [ 049 | 051 | 044 | 049 |
dmi (N) 352 352 | 392 | 408 | 352 [ 392
F.;(0-) (N) 528 528 | 588 | 612 | 528 | 588
Cri (N/rad) 135200 | 135200 | 90000 | 84000 | 135200 | 90000
Cri (N/rad) 135200 | 135200 | 80000 | 84000 | 135200 | 80000
Iz; (kg.m?) 2094 | 2094 | 2820 | 3100 | 2094 | 2820
IF; (m) 154 | 154 | 1.97 | 1.82 | 154 | 1.97
lgi (m) 246 | 246 | 203 | 218 | 246 | 2.03

[ iF: (m) 088 | 0.88 [ 1.37 | 1.15 | 0.88 | 1.37

[ g (m) 1.79 | 1.79 | 143 [ 151 | 1.79 | 1.43

Table 4.1: Vehicle parameters used: in simulations

the fourth vehicle correspond to a vehicle in [56}; some of the parameters of the second and
the fifth vehicles correspond to a vehicle in [24]; some of the parameters of the third vehicle
correspond to a vehicle in [30].

The steering actuator’s time lag was 30 ms for all the vehicles. (i.e., for i =
L2,...,5, 75i = 0.030 s)
Controller parameters In all simulations, the lateral controller parameters in (4.56)
were chosen as follows: €z lat = 30, €A tat = 300, and ca e = 1000. Under this choice
of parameters, the closed-loop dynamics of A jq¢, for i = 1,2,...,5, were governed by the
transfer function +110) .

The longitudinal parameters in (4.63)-(4.64) were chosen as follows: ¢ = 15,
Co1 = 74, ¢ = 120, kay = —3.03, k1 = -0.05, ¢, = 5, ¢, = 49, ¢, = 120, k, = 10,
and k, = 25. This choice of parameters was suggested to us by our previous studies in
longitudinal control of a platoon of vehicles on a straight lane of a highway. (see chapter 2,
[41],[47])
Maneuver description When the lead vehicle arrives at the curved section of the lane
shown in Figure 4.5, its throttle command input increases linearly from its initial value of
528 N, at a rate of 736 N/s, until it reaches its maximum value of 2000 N after 2 seconds;

then, it remains constant at 2000 N for 7 seconds; finally, the throttle input decreases
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linearly, at a rate of —736 N/s, until it reaches its final value of 528 N in 2 seconds; see
Figure 4.6. During the first 11 seconds, the lead vehicle accelerates until its speed reaches
the maximum value of 28.5 m/s (i.e., about 64 m.p.h.). During this part of the maneuver,
the magnitude of acceleration of the lead vehicle is less than 1 m/s? and its jerk is less
than 0.5 m/s3. After reaching its maximum speed in the first 11 seconds, the lead vehicle
gradually decelerates due to aerodynamic drag and mechanical drag.

Figure 4.7 shows the longitudinal and transversal components of the i-th vehicle’s
acceleration, in this maneuver, for i = 1,2,...,5. As shown in Figure 4.7, the longitudinal
components of the i-th vehicle’s acceleration (af;, for i = 1,2, «++y9) closely follow the
longitudinal component of the lead vehicle’s acceleration (aro); moreover, the transversal
components of the i-th vehicle’s acceleration (asg;, for i = 1,2,.. .,3) closely resemble the
transversal component of the lead vehicle’s acceleration (aso) delayed in time. Both the
longitudinal and transversal components of the i-th vehicle’s acceleration, fori = 1,2,..., 5,
are within acceptable comfort limits.

Figure 4.8 shows the yaw angle ¢; and ¢4 (for i = 1,5) in this maneuver. Under
the above control laws, the value of ¢; closely follows eg;, for i = 1,2,...,5. The difference
between ¢; and ¢4; depends on the i-th vehicle’s parameters (e.g., moment of inertia of the
i-th vehicle about éz;-axis, Iz;, tires’ cornering stiffnesses, Cr; and Cp;, etc...) For all the
vehicles in this study, maz;|e;(t) — €4i(t)| < 0.032 rad.

Lateral deviation of the i-th vehicle’s center of mass from the lane center (Aitat,
for ¢ = 1,2,...,5) is shown in Figure 4.9. For this maneuver, the magnitude of the lat-
eral deviation of the i-th vehicle, for i = 1,2,...,5, was much less than 0.01 m (i.e.,
maz|A;1a:(t)] £0.01m, fori=1,2,.. " 5).

Figure 4.10 shows the longitudinal deviation of the i-th vehicle from its assigned
slot (Ai_y,4, fori =1,2,...,5): this magnitude is less than 0.1 m (i.e., maze|A;_14(2)] € 0.1
m, for i = 1,2,...,5). Note that, for i > 2, maz|A;_1,i(t)| gets larger as one goes down
the platoon. We believe that this drift in magnitude of A;_;; is mainly due to numerical
errors in successively integrating &'-1,; to obtain A;_; ;.

Based on these simulations, we conclude that the proposed combined longitudinal
and lateral control laws perform well for roads with suitably large radius of curvature under

nominal operation.
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4.8 Conclusions

We have considered the problem of combined longitudinal and lateral control of a platoon
of vehicles accelerating on a curved lane of a highway. Based on nonlinear models of vehicles’
combined longitudinal and lateral dynamics, we have proposed lateral control laws for each
vehicle in the platoon and longitudinal control laws for a platoon of vehicles. For the i-th
vehicle in the platoon (i = 1,2,...,N ), we proposed a nonlinear lateral control law which
cancels the nonlinearities due to road geometry, engine dynamics, and longitudinal and
lateral dynamics, and results in a closed-loop dynamics for A; 1ot which is exponentially
stable with appropriate time constants. In the case of longitudinal control of a platoon of
vehicles, we assumed that longitudinal dynamics of a platoon of closely-spaced vehicles on
a road with suitably large radius of curvature is approximately the same as the longitudinal
dynamics of this platoon on a straight road. Thus, we proposed longitudinal control laws
similar to the longitudinal control laws for a platoon of vehicles on a straight lane of a
highway as in chapter 2,[41],[47].

Simulation results show that the proposed control laws perform well, for roads
with suitably large radius of curvature, under nominal operation. More specifically, these
simulations show that when the lead vehicle accelerates from 20 m/s to 28 m/s, at a
maximum rate of 1 m/s?, the magnitude of the lateral deviation of each vehicle in the
platoon remains well below 0.01 m; furthermore, the magnitude of the longitudinal deviation
of each vehicle from its assigned slot is less than 0.1 m.

The performance shown in Figures 4.7, 4.8, 4.9, and 4.10 is based on the assump-
tion that the following measurements are available in the i-th vehicle: UFi, USi, GF;, GS;, &,
Ailat, and A;_;;. Hence, the longitudinal and lateral control laws for each vehicle in the
platoon are decentralized in that these control laws use local measurements on each vehicle
to compute the control input for the vehicle.

4.9 Appendix

In this section, we present three different methods for computing the arc length traversed
by point d; on £ (for i = 1,2,...,N). Then, we describe the required measurements for
applying each method.

Problem Consider the i-th vehicle in a platoon (1=1,2,...,N). For any fixed time t,
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the location of the i-th vehicle’s center of mass (c;) is specified by 75(t). (See Figure 4.1)

The center lane is a curve £ specified by the road map

72 = @(sa), (4.67)
where sq4 is the arc length. Given 7(t), we draw the osculating circle to £ centered at point
ci; this circle is tangent to £ at a well-defined point d; which we call reference point. We
want to estimate sg; (i.e., the arc length traversed by the point d; on £).

Methods for estimating s4 By definition of d;, the function s — ||75(t) — &(3)]|? is
minimized at s = s (i.e., ||Fs(2) — #(sai)||? = min,||7ui(t) — ¢()|[?). Thus, we have

d. . -

7 17e(®) = é(sai)lI* = 0. (4.68)

From (4.68), we get
fi(t,84) =0, (4.69)

where § — f(t,3) := #{(3) - [Fc;(t) - 5(5)]
Method 1 Solve (4.69), say by Newton-Raphson. Equation (4.69) implicitly defines
Sqi: in order to estimate sq; from (4.69), we need to know 74(t) (i.e., the location of the
i-th vehicle’s center of mass with respect to a fixed inertial reference frame, (0, z,y) in

Figure 4.1) and the map (4.67).
Method 2 Differentiating both sides of (4.69) with respect to t, we get

D fi(t, 84) + D2 fi(t, 84i)34i = 0 (4.70)

where Dy f; denotes derivative of f; with respect to the k-th variable (k = 1,2).
Computing the expressions for D fi(2,34:) and D, fi(2, 34;), and using (4.70), we get

5. = PFi(t) cos(ei(t) = eai(sai)) — vsi(t) sin(es(t) — eai(sas)
di = 1 — K(84i)As1a2(t) .

To obtain s4; by integrating (4.71), we need to measure vg;(t), vsi(t), €(t), and
A 1ax(t), and to know the initial condition s4(0-).
Method 3 Differentiating both sides of (4.70) with respect to t, we get

(4.71)

D3 fi(2, $4i) + 2D1 D2 fi(t, 4:) + D3 fi(t, 34i)3%; + Dafi(t, 4i)34; = 0. (4.72)

Computing the expressions for D} fi(t, s4:), D1 D2 fi(t, 4:), D3 fi(t, 84i), and D3 fi(t, sas),
and using (4.72), we get

ari(t) cos(e;(t) — €di(84i)) — asi(t) sin(e.-(t) — €gi(84i))

84i 1 — k(84i)Aitat(t)
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25(34i)Aitat(t)ai + K'(8ai) Ditar(t)53;
1 — K(84i)Aiar(t)
To obtain sg4; by integrating (4.73), we need to measure api(t), asi(t), €(t),
A; 1a(t), and A.-,m(t), and to know the initial conditions s4;(0-), 34;(0-).

Practical considerations Using (4.71) or (4.73), we can estimate sy; given appropriate

+

(4.73)

sensors on board the i-th vehicle, a road map, and appropriate sensors on the road; how-
ever, using (4.69), we need to estimate the location of the i-th vehicle’s center of mass with
respect to a fixed inertial fra;ne. The estimates of sy; obtained from numerically integrating
the expressions in (4.71) or (4.73), are sensitive to measurement noise and errors in initial
conditions. Hence, we need to update the value of s4; at appropriate intervals of time when
using (4.71) or (4.73).
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Figure 4.1: relevant quantities for the lateral dynamics of the i-th vehicle.
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o)

Figure 4.2: relevant quantities for the longitudinal dynamics of the (i — 1)-th and the i-th

vehicles in a platoon: : =1,2,...,N.
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Figure 4.3: The body frame of the i-th vehicle.
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Figure 4.4: Bicycle model for the i-th vehicle in a platoon: i =1,2,...,N.
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Figure 4.6: the lead vehicle’s throttle input: ug vs. ¢.
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Chapter 5

Control of Interconnected
Nonlinear Dynamical Systems:the

platoon problem

The problem in this chapter is motivated by the highway automation project
described in chapters 2, 3, and 4. The overall system consists of N vehicles,(the platoon);
each vehicle is driven by the same input u and the state of the k-th vehicle affects the
dynamics of the (k + 1)-th vehicle; furthermore, the dynamics of each vehicle is affected
by its (local) state-feedback controller. Under very general conditions, it is shown that
for sufficiently slowly varying inputs, decentralized controllers can be designed so that the

platoon maintains its cohesion.

5.1 Introduction

In previous chapters, using a simplified model of vehicle dynamics we studied the platoon
control problem: a decentralized control law has been developed for this model and the
platoon performance evaluated. Certain specific properties of the model greatly simplified
the decentralized controller design. The platoon concept with the assumed pattern leads to
a special interconnection of dynamical subsystems each one representing a vehicle.

The purpose of this chapter is to demonstrate that under general qualitative condi-

tions imposed on the nonlinear dynamical subsystems interconnected as above, it is possible
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to obtain appropriate dynamical behavior for the overall system using only decentralized
control.

The study of interconnections of dynamical systems has a long history usually
under the heading of “Large Scale Systems”. Some of the main results are to be found in
(26] and [58]. The treatise in [21] on singular perturbations is an excellent reference on the
concepts and techniques associated with the notions of slow and fast dynamics. From a
system design point of view these studies show that two aspects are very important: a) the
graph of the interconnection [58] and b) the time-scale separation of dynamics [21].

The system under study has a special interconnection which is dictated by the
platoon concept: the system consists of N nonlinear subsystems, each one representing a
vehicle. To maintain the cohesion of the platoon, the lead vehicle’s velocity and acceleration
is transmitted to each vehicle of the platoon, and vehicle k measures the distance Ay between
it and the preceding vehicle. As an approximation we may view the dynamics of the sensors
and actuators and that of the engine as fast with respect to that of the vehicle. We show that
by suitable design of each controller in each vehicle it is possible to achieve the following:
given that the platoon is operating in the steady state at constant velocity, v, at ¢t = 1,
and that the lead vehicle accelerates to reach a constant velocity v; at some later time T,
decentralized control laws can be designed so that for all k > 1, A(t) is bounded on [t0, 00)
and, for some @ < 1, [|Ax()lloo < |}Ak=1(-)|loo + ||#%(-)l]co Where #x(t) — 0 exponentially
as t — oo at a rate controlled by the choice of the control laws; here ||.|| denotes the sup

norm over [T, o).

5.2 Problem motivation

Consider a ”platoon” of N + 1 vehicles traveling in the same lane of a straight stretch of
highway and following closely one another. Initially, all vehicles travel at the same constant
velocity, say v. The lead vehicle is labelled ”I”, the next one is labelled ”1”, and the last
one "N”: z; denotes the abscissa of the rear bumper of the k-th vehicle and z; that of the
lead vehicle; each vehicle is alloted a slot of length L; let Ay be defined by

Agi=zpy — (2 + L);

Ag measures the deviation in the assigned distance between vehicle k — 1 and
vehicle k.
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Each vehicle is equipped with sensors that measure &, £, Ag, Ak, and Ay as well
as ; and %; (the last two measurements are obtained by a communication link). Using
a nonlinear first order model of the engine, equation (2.4), and Newton’s law, equation
(2.3), for the k-th vehicle we obtain the following dynamical model in terms of the state
Ck := (Ak, Zx — v, %) and the engine input ui, (say, the throttle input)

Ck = fi(Cry Cre1) + gr(Cr)ur (5.1)
for k > 2, [41),[42].

As shown, for example in chapter 2, it turns out that these equations have such a

form that a suitable nonlinear control will lead to the following equation for the k-th vehicle

Ck = £(Cer Cr-1, ) (5.2)

for k = 2,3,..., N, where u(t) = (i(t),#(t)), the velocity and acceleration of the lead
vehicle.

Note that in (5.2), the function f(.,.,.) depends only on the state of the k-th and
(k — 1)-th vehicle and the “input” u: the dependence on the vehicle characteristics (mass
my, cross section Ag, aerodynamic coefficient Cy, and engine characteristic 7(z;) have been
eliminated by the nonlinear feedback law [41]); hence, f(.,.,.) does not depend on k for

k > 2. For the first vehicle, the control law leads to an equation of the form

1 = filGiyu). (5.3)

The above discussion suggests the following problem: suppose the platoon of N + 1
vehicles is initialized as above and suppose that at ¢ = #; the lead vehicle accelerates
from the velocity v to some other constant velocity, say v, which it reaches at some time
T. Is it possible to choose a decentralized controller in each vehicle such that, for such
increases in velocity, for £ = 1,2,...,N, Ag(.) is bounded, Ag(t) — 0 as ¢ — oo and, for
¢ sufficiently large, maz,>74¢|Ax(t)| is 2 decreasing function of k? This is a new control
problem in that not only are the Ax’s required to go to zero but also, for ¢ sufficiently large,

My 1= maT>T4e| Ak(t)] is such that k — 77y is a decreasing function of k.



95

5.3 Problem formulation

With the above application in mind, we formulate the platoon problem in a more general
setting as follows: we are given an interconnection of nonlinear time-invariant dynamical

systems described by the following differential equations:

G = Al

G = f((G,u)
G = f(Gsan)
(v = F(N,CN-1,1) (5-4)

where the exogeneous control u belongs to an open set U C R™ and for k =
1,2,..., N, (x belongs to an open set Py C R™; fi and f are C? functions of their arguments;
(x includes zg,Zx, and Z; as components.

Consider the situation where all vehicles travel at the same constant velocity, say
v (i.e., £x = v) and are at their assigned positions (i.e., Ax =0 for k = 1,2,...,N). Call
ug the corresponding input up = (v,0): then by the nature of the vehicle dynamics we have
fi(Cesuo) = 0, and f(Ce,s e o) = 0, where the equilibrium state (. is a function of up. We
assume that, by clever design of the control law within each vehicle, the dynamical system
(5.4) has a whole set of such equilibrium points for appropriate values of up and that about

each such equilibrium of (5.4) there is a suitable basin of attraction.

Theorem 5.1 considers a special case of (5.4) and gives precise conditions under which a
slowly varying input u will cause ¢ to vary slowly and remain within the basin of attrac-
tion of the corresponding equilibrium point. Theorem 5.2 considers the interconnection of
nonlinear dynamical systems described by (5.4) and gives precise conditions under which
the deviations of (x (k = 1,2,...,N) from the equilibrium state ¢ remain bounded for a
slowly varying input u; furthermore, if after some time T', u(t) becomes constant, then the

peak value of these deviations decreases as k increases.

Consider some dynamical system described as follows:
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(= (¢, Gy u) (5.5)

where ¢ and ¢, belong to Py, an open set of R*, and u belongs to U, an open set
of R™; f is a C? function.

Definition A point (o in Py is called a sink of (5.5) corresponding to the
constant state-input (po in Py and constant input wp in U if f(€o0yCpoywo) = 0 and
Rea[ D f(Co, (p0, w0)] < 0; where D, f(.,.,.) denotes the Jacobian matrix of f(.y.,.) with
respect to the first variable and o[.] denotes the spectrum of a matrix.

It is well known that if (o is a sink corresponding to ((p0, wo), then there is a ball
B(o; ), centered on (o, such that for all {(¢,) € B((o,r), the solution of { = F(€, Cpo, wo)
is bounded and decays exponentially to (o (see e.g. [57},[10]).

We also assume that by suitable design of the control law in (5.5) we may move
the spectrum of D f((, (., ©) further into the left half plane.

Theorem 5.1 Suppose that Py C R™ is open and convex, and U C R™ is open; let
f:Pyx Py xU — R" be a C? function such that

My = {(fe,c,,, u) € Py x Py x U| (. is a sink of (5.5) corresponding to ((p,u)}

has a non-empty interior. Let Qy; be a compact, connected subset of My, with a non-empty
interior Qu. Let u : [to, 00) — U, with u(tp) = uy, (p : [to,0) = Py, and (. : [to,00) = Py
be three given C? functions such that ((t), (x(2), u(t)) € Qu for all ¢ > t,. Let ¢(.) be the
solution of (5.5) with the ((y(.), u(.)) defined above and with initial condition ((to).

Then, for any p > 0, there exist § > 0, 6, > 0, d¢ > 0 independent of t,,
such that for all u(.),(;(.), and (.(.) as defined above and satisfying |{(to) — f,(to)I < &,
maXe>y, |4(t)| < &, and mMaXe>t, |fp(t)l < é¢ we have:

i) 1() = Ce(t)] < p for all ¢ > 1o,
ii) if, in addition, p is sufficiently small, then for all t > o, ¢(t) belongs to the basin of
attraction of the sink {.(t) with respect to (¢p(t), u(t)).

There are two methods for proving this theorem: 1) estimation in the time domain
(see [19], with improvements [39]); 2) using Lyapunov functions (the existence follows from
lemma 2 of Hoppensteadt [17), the technique is detailed by Khalil and Kokotovic [20]).
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Since Qy is compact, from i) of theorem 5.1, there exists a compact set Zy such that for
all t > to, C(t) € Zy.

5.4 Main result

We consider now the composite dynamical system described by (5.4). Let f satisfy the
assumptions of theorem 5.1; consider some slowly varying u(t) and the corresponding (.(t).
With respect to the first equation of (5.4):

1 = fiGon), (5.6)
we assume that f; : Py x U — R" is a C? function such that
M} = {(Ce,u) € Py x U| (. is a sink of (5.6) corresponding to u}

has a non-empty interior. Let Z)-}, be a compact, connected subset of M};, with a non-empty
interior Q};. Let u : [to,00) — U and (. : [to,00) — Py be two given C? functions such that
(Ce(t),u(t)) € Qf for all t > to.

Consider (5.6). It is a well known result (e.g. [19],[20]) that given these assump-
tions on fi, for any p > 0, there exist 6§ > 0 and &} > 0 such that if |(1(t0) — C.(t0)] < &
and mazeye, |(t)| < 63 then for all ¢ > to, (1(t) € Zy and |(1(2) — C(2)] < p.

Lemma 5.1 Consider the nonlinear dynamical system described by (5.4) keeping in mind
the above considerations. Under the conditions stated above, by suitable design of the
control laws, if p is chosen sufficiently small, then for k = 1,2,...,N: 1) for all ¢ > o,
Ck(t) € Zy, and 2) for all t > to, maxtztolfk(t)l < é.

Proof We use induction.

Writing the Taylor expansion of (5.6) about ({., ) and noting that fi((.,u) =0
we obtain

é1 = H1(Cert, 0)(C1 = Ce) (5.7)

where Hy(Ce,u,G1) = fy D1falCe + MC1 — ), u)d); note that Hy(.,.,.) is continuous.
Since for all t > tp, ((.(2), u(t),1(2)) € 'Q-}J X Zy, a compact set, and Hy(.,.,.)is

continuous, there exists a constant, h; > 0, such that

h'l = mathtol'Hl(Ce(t)a u(t)a Cl(t))l‘ (5'8)
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From (5.7) and (5.8) we obtain
mazesg|Gi(2)] < hyp (5.9)
hence,
Ifp< %— then maztzgolél(t)l <é&. .- (5.10)
1

Induction step We use the notations of theorem 5.1. Assume that for some
k > 1, [¢k+1(t0) = Ce(2o0)| < bo, mazi>e,|u(t)| < 6y, and for all t > ¢y, (x(t) € Zy and
maz,ztolfk(t)l < §¢; we will show that for all t > ¢, (k+1(2) € Zy and maztztolc'k“(t)l < é.

Consider the following dynamical system

Crar = F(Cre1, Chrv). (5.11)

Since the assumptions of theorem 5.1 are satisfied for (5.11), we have for all ¢ > t,

Ce+1(2) € Zy and |Ceya(2) - Ce(2)] < .
Writing the Taylor expansion of (5.11) about ((., (., %) and noting that f((.,(.,u) = 0 we

obtain

. 1
Cht1 = /o D1 f[Ce + M1 = Ce)s e + A(Ck — Ce), uldA (a1 — )
+ ‘/01 D2f[<e + ’\(Ck+1 - Ce)v Ce + )‘(Ck - (e)a “]dA ((I: - Ce) (5°12)

Here Dy f(.,.,.) denotes the Frechet derivative of f(.,.,.) with respect to its k-th argument.
We can write (5.12) as follows

Gk = G1(Ges Gy Cha1)(Ghat = Ce) + (et G Goaa ) (G = Ce) (5.13)

where Gy (e, 4, (i, Ck41) and Ga(Ce, ¥, (i, Ck+1) denote the first and the second integrals in
the right hand side of (5.12), respectively.

Let Poy,u := {(Ce, v)(Ces Gy v) € Qu}. Now, for all ¢ > to, ((e(t), u(t), Ci(t), Ch1(t)) €
Pouu X Zu x Zy := Yy, a compact set; Gy(.,.,.,.) € C?, and G2(.y.5-,.) € C'. Hence
Gi(.y++.) and Go(.,.,.,.) are bounded on Yy, say by g; > 0 and g, > 0, respectively.

Using these bounds and (5.13), and noting that by the induction hypothesis for
all ¢ > to, |Ck(t) — ¢e()| < p we obtain

maz 3 |Ces1()] < (91 + g2)p (5.14)
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hence,
I p < —% then mazesiy Cena(t)] < b. (5.15)
91+ g2 =
From (5.10) and (5.15) we note that for k = 1,2,...,N,if p < min {%,ﬁ‘g—z}
then maztztolék(t)l < é. |

Again, let f satisfy the assumptions of theorem 5.1; consider some slowly varying
u(t) and the corresponding (.(t). Let for k > 2, di(t) + Ce(t) = (x(t) and assume di(to) = 0
for all k.

Theorem 5.2 Under these conditions,

1. if (a) p is sufficiently small so that lemma 5.1 holds, (b) for some sufficiently small
6y > 0 as in the statement of theorem 5.1, maze>e|u(t)| < b4, and (c) for some
sufficiently small §; > 0 as in the statement of theorem 5.1, mazgztolc',(t)l < &,
then, by suitable design of control laws, there exist some constants a and 3 such that
0<a<1,0<f< o0, and for k> 2,

desallo < @ldello + Bl (5.16)
hence, for large k,
delle < T2~ 11l + 01, (5.17)

i.e., there is a uniform bound on ||¢; - Celloos

2. if, in addition, after some time T, u(t) and (consequently) (,(t) become constant, then

by local control law design, we can obtain

lldk+1lleo < alldilloo + |Illoo (5.18)

where, as in (5.16), a < 1; here ¢i(t) — 0 exponentially as ¢ — 00, and ||.||co denotes

the sup norm on [T, 00).

In other words, in case of a change in u in the lead vehicle from the initial steady-
state value up to the final steady-state value u f» the peak disturbances down the platoon,
Le., da(.),d3(.),. .. decrease as k increases (after sufficiently long time).

Proof(theorem 5.2, part 1) Adding and subtracting D, F(CesCey u)diyy to the
right hand side of (5.12) and noting that (34, = {, + di41 we obtain

dit1 = A(t)dipr + R(8)disr + B(t)dy - (. (5-19)



100

where
A(2) == Dy f(Ce(2), C(2), u(2)) (5.20)
RO = [ (DI + Mduna(0), G0+ Ma(t),u(0)~ DaF(G(0, G, wD} &) (521)
and
B(t)i= [ DaflGu(t) + Adraa(8),Celt) + Ada(t), w(0}d. (522)
Let ®(t,7) be the state transition matrix of 2 = A(t)z. Then from (5.19) we obtain

dra(t) = <I>(tt,to)dk+1(to)
+ [@(t,r)a(r)dk+l(r)dr

+ [ 8 DIBEKT) - (el (5.23)

here the first term in the right hand side of (5.23) is zero since di41(2p) = 0.
Note that for all t > to, ({(2),u(t)) € ?QU:U’ a compact set, and D, f(.,.,.) is
continuous; hence,
A(.) is bounded on [to, o). (5.24)

Since o[A(t)] = o[D1£(C.(2), Ce(t), u(t))] is a continuous function of its entries and
for all ¢ > g, ((e(t),Ce(t),u(t)) € Qu with (.(t) being a sink of (5.11) corresponding to
(Ce(t),u(?)), there exists a constant u < 0 such that

for all ¢t > tp , Rea[A(t)] < p. (5.25)

From (5.24) and (5.25) we note [57, Cor.41 and Thm.6,sec.5.6 with Thm.27,sec.5.3]
or [3, Thm. 2, sec.32] that there exists a constant € > 0 such that if |A(t)| < € then

for some k£ > 1 and some > 0 and for all £ > s > ¢, , 18(t, )| < kezp[-n(t — s)]. (5.26)

Differentiating the right hand side of (5.20) with respect to ¢ and using the chain
rule we obtain

A(t) = {Dlle(Cc(t)’ Ce(t)v u(t)) + D2D1 f(Ce(t)v Ce(t)’ u(t))} C.e(t)
+ D3le(Cc(t)’ Ce(t)v u(t))ﬁ(t)' (5'27)

Since DDy f(.,.,.),D2D1f(.,.,.), and D3D; f(.,.,.) are continuous and for all ¢t >
to, (Ce(t), Ce(2), u(t)) € Qy, a compact set, DyDyf(.,.,.),D2D1f(.,.,.),and D3 D, f(.,.,.) are
bounded on Qy. Let

ay := mazx {l-DIDIf(Ccv Ces u) + D2 D1 (e Ces ")I : (Cea Ces u) € -Q-U}
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and
a2 := maz {|DsD1f(CerGer8)| & (GesGerw) €Qur} -

If mazeye,|u(t)] < bu < T and mazg>to|Ce(t)| < b < 35 55 then from (5.27) we
obtain |A(t)| < € and (5.26) is satisfied.
Now, from lemma 5.1, for all ¢ > to, (Cc(2), u(t), k(2), (k+1(t)) € Yv, a compact

set, and B(.,.,.,.) is continuous; hence, there exists a constant b > 0 such that
b = maz>e|B(t)]. (5.28)

Similarly, R(.,.,.,.) is continuous and bounded on Yy; hence, by compactness, for

some constant ¥ > 0 we have
7 = mazye | R(2)] (5.29)
From (5.23),(5.26),(5.28), and (5.29) we obtain

()] < / Fy ezpl—n(t - 7)]ldrsa(7)ldr

+ [ F espi-n(e = nlildu(r)] + Ke(rler (5.30)

Applying a form of Gronwall lemma to (5.30), [23, Corollary 1.9.1], we obtain

t_ - .
el < [ epl(=n+kn)(e = rbldr)] + Ke(r)lhir
0
t. . .
< [ keopl-n+ Bt - Dlerplldello + Gellcl. (53D)
0
By suitable design of the control law, we can increase 7 sufficiently beyond k7 so
that 0 < =2 < 1;let B:= Then, from (5.31), for all ¢ > ¢,
ldk41(2)] < elldilloo + Bllelloo (5.32)
hence,
lldk+1lloo < @lldrlloo + BlICellco- (5.33)

By recurrence, noting that a < 1, we see that for all k > 2,

lldklleo < T==[ICelleo + O(™). (5.34)

"1
|
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Proof(theorem 5.2, part 2) From (5.19) we note that fort > T,

diy1(t) = 9(t,T)des1(T)
+ /T (2, 7)R(r)dpsa(r)dr

+ [ et IBr)r) - e (5:35)

Hence, noting that for ¢t > T,(.(t) = 0, from (5.35), (5.26),(5.28), and (5.29) we

obtain

ldini () < & fz‘P[—ﬂ(t = D)lldr+1(T)|
+ [y esplon(t = r)ldin(r)ldr

+ /T‘ kb ezp{-n(t - 7)]|dn(r)|dr. (5.36)

Applying a form of Gronwall lemma [23, Corollary 1.9.1] to (5.36) and using the
previously defined a, we obtain for all t > T,

dear() < F ezpl(=n+En)(t = DlldesaT)
+ [ R eapl(-n-+ Fy)(t - rldn(rldr (5.37)
< kezpl(—n+ Fr)(t = T)ldesa(T)|
+  af|di/]eo. (5.38)

By design, 7 > kv can be increased so that o := "—f‘,’; < 1 and we have |dg41(2)] <
a||dk||oo + ||#k||c Where ¢x(t) — 0 exponentially as t — 00, and ||.||o denotes the sup norm
on [T, o0). |

Conclusion These theorems establish that, under some general qualitative con-
ditions on the dynamics of vehicle models, decentralized controllers (using only v;,a;,Ak,
and the vehicle state) can achieve the design goals of the platoon concept: N vehicles trav-
eling down the highway at high speed and maintaining tight formation. Simulations based
on simple vehicle models and decentralized controllers in chapters 2 and 3 support these

conclusions.
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Chapter 6

Indirect Adaptive Control of a
Class of Interconnected Nonlinear

Dynamical Systems

In this chapter, we consider the class of interconnected nonlinear dynamical sys-
tems suggested by the problem of longitudinal and lateral control of a platoon of vehicles on
automated highways. After describing the physical setting from which the control problem
arises, we propose a local indirect adaptive control scheme for this class of interconnected
nonlinear systems. Then, we state precise conditions on the inputs, on the uncertain pa-
rameters, and on the dynamics of the nonlinear plants under which it is possible to attain

the design objectives by using local, nonlinear, adaptive control laws.

6.1 Introduction

Motivated by the highway automation project presented in chapters 2, 3, and 4, we
propose local adaptive nonlinear control laws which are suitable for a class of interconnected
nonlinear dynamical systems. These control laws have two main advantages: a) since they
use local measurements of the relevant signals, the computational and measurement costs
are reduced while the reliability and the flexibility of the control system as a whole are
increased; b) since they are adaptive by design, the robustness of the control system with

respect to uncertain parameters is increased. The purpose of this chapter is to state precise
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conditions on the inputs, on the uncertain parameters, and on the dynamics of the nonlinear
plants under which we can design suitable local control laws for a class of interconnected
- nonlinear systems.

The organization of the chapter is as follows: in section 6.2, we describe the physi-
cal setting from which the control problem arises; motivated by the application discussed in
section 6.2, in section 6.3, we propose an indirect adaptive control scheme for a general class
of interconnected nonlinear dynamical systems; in section 6.4, we state precise conditions on
the inputs and parameter errors, under which we can apply the adaptive control scheme in
section 6.3 to design suitable control laws for the class of interconnected nonlinear systems
under consideration; finally, in section 6.5, we provide concluding remarks regarding the
proposed control scheme. The proofs of the theorems together with the proof of stability
of proposed identifiers are included in the appendix at the end of the chapter.

6.2 Problem Description

In this section, using the dynamic equations in chapters 2 and 4 representing the longitu-
dinal and lateral dynamics of a platoon of vehicles, we motivate the form of the equations
representing the dynamics of the class of interconnected nonlinear dynamical systems under

study.

6.2.1 Longitudinal Dynamics of a Platoon

Longitudinal dynamics of a platoon of non-identical vehicles using simple nonlinearengine
models were reported in chapter 2; these studies considered only a straight highway.
For the k-th vehicle (k = 2,3,...,N), the form of the differential equations rep-
resenting the k-th vehicle’s longitudinal dynamics is as follows: (suppressing the explicit
dependence on t),

Gk = Fe(Crr o) + gr(Cr)un (6.1)

where (x € R®, (k-1 € R®, fi : R® x R® — R®, g : R® - R3, and u;, € R; the components
of (i are Ag (the headway), vpy (the velocity of the center of mass of the k-th vehicle
along its longitudinal body axis), and ary (the acceleration of the center of mass of the k-th
vehicle along its longitudinal body axis); ux denotes the throttle input to the k-th vehicle’s
engine. Equation (6.1) is derived from equations (2.3)-(2.4).
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To explicitly show the dependence of the k-th vehicle’s longitudinal dynamics
(k=2,3,...,N) on the k-th vehicle’s characteristics (e.g., engine time constant, mass of

the vehicle, drag coefficient, and mechanical drag), we write (6.1) as

Gk = Wi(Crr Ci1, uk)B (6.2)

where 6} is a column vector of the known parameters of the k-th vehicle and Wg(.,.,.) is
a matrix function of appropriate dimensions. For the first vehicle (k¥ = 1), equation (6.2)
takes the form

&1 = Wa(Ga, ua, w)65 (6.3)

where u; denotes the throttle input; u denotes the vector (vry,ar); 6 denotes a column
vector of the known parameters of the first vehicle; and W(.,.,.) is a matrix function with

appropriate dimensions.

6.2.2 Lateral Dynamics of a Vehicle

In chapter 4, we have used a nonlinear model to represent the lateral vehicle dynamics
(equations (4.7), (4.9), (4.11), (4.12), (4.44), (4.45), and (4.53))

é = W(f) 6’ uroad)é‘ (6.4)

where £ € R®, 6§ € R, uroad € R?; the components of £ are the lateral deviation of the
vehicle’s center of mass from the lane center (Ay,;) and its time-derivative (AM), the com-
ponents of the velocity of the vehicle’s center of mass along its longitudinal and transversal
axes (vr and vs, respectively), and the vehicle’s yaw angle (¢) and its time-derivative (¢); é
denotes the steering angle command input; %,0,4 denotes the input to the vehicle’s lateral
dynamics due to the road geometry; §* denotes a column vector of the known parame-
ters for the vehicle’s lateral dynamics (these parameters depend on the vehicle’s mass, the
vehicle tires’ cornering stiffnesses, the moment of inertia of the vehicle about the vertical
axis through its center of mass, etc...); and W(.,.,.) is a matrix function of appropriate

dimensions.

6.2.3 Control Laws .

Note that the differential equations representing the longitudinal dynamics of one vehicle
(6.2)-(6.3) and those representing the lateral dynamics of one vehicle (6.4) depend linearly
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on the parameters. If these parameters are known, we can design suitable control laws
for the longitudinal control of a platoon of vehicles ([41],[47]) and the lateral control of
each vehicle ([43]): in the case of the longitudinal control of a platoon, we can design local
nonlinear control laws u; = %;((1,4,60}) and ux = Ti(Ck,y (k-1,4,0;) (for k = 2,3,...,N)
such that the differential equations (6.2)-(6.3), under these control laws, have the following
form
& = filG,w) (6.5)
for k=2,3,...,N,
Gk = f(Crs Ghm150). (6.6)

Figure 6.1 shows the interconnection of nonlinear systems with no parameter un-
certainties (6.5)-(6.6). From (6.6) we note that (for k¥ = 2,3,...,N) the control laws
uk = Tk(Ck> k-1, u,0;) have resulted in longitudinal dynamics for the k-th vehicle which
are independent of its particular characteristics. We have shown that it is possible to design
the above control laws ([45],[44],[40]) so that in the case of a sufficiently slow change in the
lead vehicle’s velocity (vr;) from its steady-state value: a) for k = 1,2,...,N, t = A(?)
is bounded, b) for k = 1,2,...,N, Ax(t) = 0 as t — o0, and c) for k = 2,3,..., N, the
peak deviation of the k-th vehicle from its assigned position monotonically decreases as k
increases.

In the case of the lateral control of a vehicle, we can design nonlinear control laws
6 = 8(€, Uroads 5‘) such that the differential equations (6.4), under these control laws, have

the form
é = f(fa Uroad)- (6.7)

Subsequently, applying the results from [45],(44],[40] to (6.7), under sufficiently
slowly-varying u,044 and by the suitable design of lateral control laws & = §(£, Uroqa, 8*) We
have: a) ¢ + Ajqe(t) is bounded, and b) Ajae(t) — 0 as t — oo.

In the discussion above, the control laws depended on the exact knowledge of the
parameters in the differential equations describing the longitudinal or the lateral dynam-
ics. In the next section, we take a more realistic point of view and propose local indirect
adaptive control laws when the parameters are not known exactly. Motivated by the above
application, we propose an indirect adaptive control scheme for the class of interconnected
nonlinear dynamical systems depicted in Figure 6.1. In fact, in section 6.4, we will show

that under sufficiently small parameter errors and sufficiently slowly-varying inputs, we can
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design suitable control laws such that: a) for k = 1,2,...,N, t — Ax(t) is bounded, b)
for k = 1,2,...,N, Ax(t) = 0 as t — oo, c) for k = 2,3,..., N, the peak deviation of
the k-th vehicle from its assigned position due to a change in the lead vehicle’s velocity
monotonically decreases as k increases, d) for k = 1,2,...,N, t = A a(t) is bounded
(A jat(t) denotes the lateral deviation of the k-th vehicle’s center of mass from the center
of the lane), and e) Ag iq¢(t) — 0 as t — oo.

6.3 Problem Formulation

Throughout the chapter we suppress the explicit dependence on ¢; |z|, [W| denote the
max norm of vector z and the corresponding induced max norm of matrix W.

Motivated by the above discussion, we consider the following nomnlinear, time-

invariant differential equations representing a class of interconnected nonlinear dynamical

systems:

él = Wl(Clv Ui, u)o;
(2 W2 (2, €1, u2)63
(s = Wi, (2 ua)b3

(N = Wn(CN,Cv-1,un)BN (6.8)

where the exogenous input u belongs to an open set U C R™ (u = (vri,apt) in the lon-
gitudinal control problem above and % = g4 in the lateral control problem above); for
k=1,2,...,N, (x belongs to an open and convex set Py C R™, the control input to the
k-th dynamical system uj belongs to an open set Uy C R?, the parameter vector of the k-th
dynamical system 6} belongs to R?, and Wi(.,.,.) is an » X p matrix function.

Note that the differential equations representing the k-th dynamical system in (6.8)
depend linearly on the parameters. If these parameters are known, we assume that we can
design suitable local nonlinear control laws u; = ({1, u,07) and ux = T (Cky Cr—1, 1, 0%)
(for k = 2,3,...,N) such that, under these control laws, the closed loop dynamics of the

interconnection of nonlinear dynamical systems has the following form:

G = filGu)
o= flGGu)
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o= f(C3Carn)

(v F(¢nyCN-1, 1) (6.9)

Note that, for k& = 2,3,..., N, these control laws have resulted in dynamics for

the k-th dynamical system which are independent of its particular characteristics (i.e., the
function f(.,.,.) in (6.9) does not depend on k, for k > 2). Thus, we make the following
assumption:

Assumption [certainty equivalence condition] ([55],[22],[35]): We assume that we
can design control laws % (k = 1,2,...,N) with %@ : Py x U x R — RY, and for k =
2,3,...,N, % : Py x Py x U x RP = R7 such that under these control laws:
Wl((l’ﬁl((.h u, 0), u)e = fl(Cla u)
and for k > 2,
Wi(Cky Co—15 Tk(Cks Ck-1,4,0))0 = f(Cky o1, )
forall ue U, for all (¢ € Py (k=1,2,...,N), and for all § € RP.

6.3.1 Interconnection of the Nonlinear Dynamical Systems with Param-
eter Uncertainty

In case the parameters 6; in (6.8) are unknown , we use estimates of the parameters
(denoted by 6 for k = 1,2,...,N ) for computing the control input to the k-th dynamical
system: for the first dynamical system,

uy = @(Gr,u, 6:) (6.10)

and for k= 2,3,...,N,
uk = Th(Cry k1, 8, O1). (6.11)
Substituting the expressions for u from (6.10)-(6.11) into (6.8) we obtain

G = WilG,@(6,u,6),u)6;

G o= WalCay G, Ta(Cay Gry 1, 6))65
(s = Ws(CayCaTa(ay Cay u, 03))63
éN = WN(CN$ CN—hiN(CNaCN-hu’ éN))ol;V' (6'12)
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Adding and subtracting W1 (¢, %1(Gi, u, él), u)él to the right hand side of the first
equation in (6.12) and noting the certainty equivalence condition for the first dynamical

system, we obtain

C.l = fl((lau) + Wl((lyﬂl(Chu’ él), u)(ol‘, - él)' (6'13)

Similarly, adding and subtracting Wk(Ck,Ck-x,ﬂk(Ck,Ck-l,ﬂ,ék))ék to the right
hand side of the k-th equation (k = 2,3,...,N) in (6.12) and noting the certainty equiva-
lence condition for the k-th dynamical system, we obtain (for £ =2,3,...,N)

e = F(Chy Chm1y ) + Wi(Ch Gty TGy Comr, 2, 6:))(6; ~ b1). (6.14)

Denote the parameter error by ¢ := 6 — 6t (k=1,2,...,N). Then from (6.13)-
(6.14) we note

G H(Gyu) = Wi(GL (G, u, 61), u)én
G o= f(C2rGryu) — WalCa, G Ta(Cay C1, 1, 62))2
G = fl(CsyCoru) — Wa((a, G Ts(Cay Gy 2, S

&N = f(CNa CN—I’ u) - WN(CN'; (N—l’ﬁN(CNa CN—lv u, éN))¢N° (6'15)

Figure 6.2 shows the interconnection of nonlinear dynamical systems with param-
eter uncertainties described by (6.15). Note that, for k = 1,2,..., N, the local control laws
i in (6.10)-(6.11) have resulted in closed loop dynamics for the k-th dynamical system
which differs from the respective closed loop dynamics in (6.9) in that the dynamics of the
k-th dynamical system in (6.15) are affected by nonlinear perturbations Wy¢.

6.3.2 Indirect Adaptive Control of the Interconnection

In this subsection, we propose local indirect adaptive control laws ([55, and references
therein]) for the interconnection of nonlinear dynamical systems in (6.8). The control laws
for the k-th dynamical system in (6.8) (k = 1,2,...,N ) use parameter estimates, 8%, ob-
tained from an identifier for the k-th dynamical system, to compute the control input to
the k-th dynamical system in (6.8).

Identifier Structure: We propose a standard identifier structure for nonlinear systems
with dynamics which depend linearly on the unknown parameters ([55],[22],[4],[32]): let
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A € R™*" be a Hurwitz matrix and let @ € R"*" be a given symmetric, positive definite
matrix; let P € R**" denote the symmetric positive definite matrix solution of the Lya-
punov equation ATP + PA = —@Q); for the first dynamical system in (6.8) the identifier
is: |

G = A6 - Q) + Wa(Cry v, w)hs
b = -W{(G,u,v)P(G-G) (6.16)

for the k-th dyna.mical system (k = 2,3,...,N) in (6.8) the identifier is:

$e = A(Gk = ) + WilChy Ceo10 uk)B
0 = —WF(CrsCr1,uk)P(Cr — Ck)- (6.17)

We assume that for k = 1,2,..., N, Wi is bounded. Then, using a standard Lya-

punov argﬁment, we can show that for k = 1,2,...,N, ¢ € L, and (fk - (x)(t) = 0 as
t — 0o. Furthermore, if Wy (for k = 1,2,..., N) is sufficiently rich (see [35, page 72]), then
¢x(t) — 0 as t — oo (i.e., parameter convergence is established as in [27]). The proof of
stability of the proposed identifiers is given in the Appendix.
Indirect Adaptive Control Laws: We propose the control laws (6.10)-(6.11) for the
interconnection of nonlinear dynamical systems in (6.8). These control laws use the pa-
rameter estimates, f (for k = 1,2,..., N), obtained from the above identifiers to compute
the control input to the k-th dynamical system in (6.8). As shown in subsection 6.3.1, the
resulting closed loop dynamics of the interconnection of nonlinear dynamical systems under
these control laws has the form given in (6.15). Figures 6.3 and 6.4 show the diagrams of
the indirect adaptive control of the k-th dynamical system in (6.8).

The question arises as to how parameter errors ¢, for k = 1,2,..., N, will affect
the closed loop performance of the interconnection of dynamical systems (6.15). In the
next section, we give precise conditions on the inputs, u, and parameter errors, ¢, for
k =1,2,...,N, under which we can design suitable control laws, i, for k = 1,2,. .., N,

for the interconnection of nonlinear dynamical systems (6.8).

6.4 Main Results

In this section, we state two theorems regarding the closed loop performance of the

interconnection of dynamical systems (6.15). Theorem 6.1 considers a single dynamical
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system in (6.15) (e.g., the first dynamical system in (6.15)) and states precise conditions
on the inputs, u, and the parameter errors, ¢;, under which we can design suitable control
laws. Theorem 6.2 considers the interconnection of dynamical systems (6.15) and states
precise conditions on the inputs, u, and the parameter errors, ¢, for k = 1,2,..., N, under

which we can design suitable local control laws for each dynamical subsystem in (6.15).

6.4.1 Stability of a nonlinear dynamical system with slowly- varying in-
puts and small parameter errors

We start with a crucial definition.

Definition [sink] ([19]) Consider a dynamical system described as follows:

& = A6, n) (6.18)

where u € U, open in R™, and (; € Py, open in R*, and f; is C2.

A point ({ in Py is called a sink of (6.18) corresponding to the constant input wg in U if
f1(¢?,wo) = 0 and Reo [ D1 £1(¢?, wo)] < 0; where D fi(., .) denotes the Jacobian matrix of
f1(.,.) with respect to the first variable and o[.) denotes the spectrum of a matrix.

It is well known that if C{’ is a sink corresponding to wg, then there is a ball
B((?,), centered on (P, such that for all (;(to) € B(¢?, ), the solution of (; = f,((1, wo)
is bounded and decays exponentially to ¢ (see e.g., [57],[10]). By suitable design of the
control laws, we assume that we can move the spectrum of D, f1(¢?, wo) further into the
left half plane.

Theorem 8.1  Consider the dynamical system described as follows:

& = A6, v) = WalG, T (Gryu, 61), 1) (6.19)

Suppose that Py is an open and convez subset of R™; U is an open subset of R™;
and, Uy is an open subset of R?. We assume that f; : Py x U — R™ is a C2 function such
that

M} := {(Ceyu) € Py X U|(. is a sink of (6.18) corresponding to u}

has a non-empty arcwise-connected interior Q};. Let -Q?, be compact. Let u : [tg,00) — U
and (. : [to,00) — Py be two given C! functions such that (Ce(?),u(2)) € -Qf%, for allt > to.
Let (1(.) be the solution of (6.19) with the u(.) defined above and with initial condition
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Gi(to). Let ¢y € RP.
We assume that Wy : Py x Uy x U — R™*? is an n X p matriz which is bounded, more

precisely, for some 0 < by,; < 00 and for all ((,%,u) € Py x Uy x U, we have
'WI(C’.'T, u)l < bwl°

Let P}, := {q€ Pyl(q,u) € Q};}. Let Zy be a compact set with interior Z such that
'I_’Q% C Z{ C Zy C Py. (Such a Zy ezists because qu is a compact subset of the open set
Py.)

Then, for any p > 0, there ezist 8 := &}(p, f1,Q}) > 0, 62 := &1(p, /1,Q}) > 0,
and 8y, := 84,(p, f1,QL) > 0 such that for all u(.) and (.(.) as defined above and satisfying
1¢1(20) — Ce(to)| < 83, mazieo|u(t)| < 6L, and maz s, |1(t)] < 8¢, we have:

(i) for allt > 1o, (i(t) € Zy,
(ii) for allt > to, |G1(2) — Ce(t)l < p, and

(iii) if p is sufficiently small, then for all t > ty, (1(t) belongs to the basin of attraction of
the sink (.(t) with respect to u(t).

Comments-

(i) U the parameters of the first dynamical system in (6.8) are known (i.e., ¢, = 0) then
(6.19) will reduce to (6.18). In this case, there are two methods for proving the above
theorem: 1)estimation in the time domain (see [19], with improvements [39]); 2)using
Lyapunov functions (the existence follows from lemma 6.2 of [17], the technique is de-
tailed by Khalil and Kokotovic [20].). For completeness, we give the proof of Theorem
6.1 when ¢, is not identically zero. We use a method similar to that in [19] and [39)].

(ii) Applying the results of Theorem 6.1 to the longitudinal and lateral control problems
discussed in section 6.2, we note that: in the case of longitudinal control of the first
vehicle in the platoon, we can design suitable control laws such that under sufficiently
slow changes in the lead vehicle’s velocity, vry, and sufficiently small parameter errors
for the first vehicle, ¢,,t — A;(t) is bounded, and A;(t) — 0 as t — oo; in the case of
lateral control of each vehicle in the platoon, we can design suitable control laws such
that under sufficiently slow changes in the road curvature and slope and sufficiently
small parameter errors for each vehicle, for k = 1,2,..., N, t — Ay q:(t) is bounded,

and Ag q¢(t) — 0 as t — oo.
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(iii) The proof of Theorem 6.1 consists of three main steps: 1) writing the Taylor expansion
of f1(¢1,u) about ({.,) in the right hand side of (6.19) and deriving a linear time-
varying differential equation representing the dynamics of ({; — (.); 2) using a special
form of Bellman-Gronwall lemma (see [9, Ch.I,lemma I.6,consequence 1]) to bound
[¢1(t) = Ce(2)I; and 3) showing that under suitable design of control laws, together

with sufficiently slowly-varying inputs, u, and small parameter errors, ¢, the bound
on |¢1(2) — e(2)| holds for all t > ¢o.

The proof of Theorem 6.1 is in the Appendix.

6.4.2 Control of an interconnection of nonlinear dynamical systems with

slowly-varying inputs and small parameter errors

In this subsection, we consider the interconnection of nonlinear dynamical systems (6.15).
Let u : [to,00) — U and (. : [tg,00) — Py be two given C! functions such that for all
t > to, (.(t) is a sink of 4"1 = f1(¢1,u(t)) corresponding to u(t) and the same (1) is a sink
of (x = f(CrrCe(2), u(t)) (for k = 2,3,..., N) corresponding to ((.(2), u(t)).

By suitable design of the control laws, there exists a i < 0 such that for all ¢ > ¢,
Rea [D1 f(e(t),Ce(t), u(t))] < & < 0. Thus, there exists an € > 0 such that if
I%le(ce(t),(,(t),u(t))l < € then for some k > 1, some 7 > 0, and for all £ > s > ¢,
|®(2, s)| < ke=7(t=2), (here &(.,.) denotes the state transition matrix of
£ = Dyf(G(1), C(8), u(®))2) (31157).
Furthermore, we assume that for all ¢ > ¢, (Ce(t), Ce(t), u(t)) belongs to a compact set and
f is a C? function. Thus, there exists a finite number > 0 such that
maz iy, D2 f(Ce(2), Ce(t), u(t))| = b; furthermore, by suitable design of control laws, the size
of b can be reduced.
Let dy := (x— (. (for k = 1,2,...,N) where Ck(.) is the solution of the differential equations
representing the k-th dynamical system in (6.15) with initial condition ((fo).

Theorem 6.2 Consider the interconnection of nonlinear dynamical systems (6.15). Sup-
pose that Py is an open and convez subset of R*; U is an open subset of R™; and U, is an

open subset of R1. We assume that f, : Py x U — R" is a C? function such that

M} = {(q, u) € Py x Ulq is a sink of (; = f1(61,u) corresponding to u}
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has a non-empty interior. We assume that f : Py x Py x U — R® is a C? function such
that

My = {(q, eyu) € Py X Py x Ulq is a sink of ( = f(¢,¢eyu) corresponding to ((,,u)}

has a non-empty interior (in the relative topology of My). Let Qy; and Qy be compact,
arcwise-connected subsets of M}, and My , respectively. Let -Q-:; and Qy have non-empty
interiors Q}; and Qu, respectively. Let u : [ty,00) = U and (. : [tg,00) — Py be two given
C! functions such that for all t > to, (((),u(t)) € @} and (((t),Ce(t), u(t)) € Qu. Let
Ck(.) (for k =1,2,...,N) be the solution to the k-th equation in (6.15) with the u(.) defined
above and with initial condition (i(to). For k =1,2,...,N, let ¢, € RP.

We assume that Wy : Py x Uy x U — R" P i3 an n X p matriz which is bounded, more

precisely, for some 0 < b, < oo and for all ((,%,u) € Py x Uy x U, we have
IWI(Ca ﬁ) "')I S bwl-

Furthermore, we assume that for k =2,3,.... N, W, : Py x Py xU = R**P isann xp
matriz which is bounded, more precisely, for some 0 < b,, < oo and for all ({,(,,u) €
Py x Py x U, we have

IWk(Cs C;” u)l < bw-
Let Py := {q € Py|(g,u) € Q} and Po, := {g € Pyl(q,(, ) € Qu}. Let Zy be a com-
pact set such that Pgy UPq, C Z§ C Zy C Py. (Such a Zy ezists because Pgy UPqy, is
a compact subset of the open set Py.)
We assume that by suitable design of control laws we can increase the value of # so that it

is much larger than the values of k and b.(7,k, and b were defined before the statement of
Theorem 6.2.)

Then, there ezists a po := po(f,Qu,2Zy) > 0 such that for any 0 < p < po, there
ezists 8§ := 8§(p, £1,QY) > 0, bo := &o(p, £,Qu, Zu) > 0, b, := 8u(p, f1, £,Q},Qu) > 0,
b¢ := 3((;), £,Qu, Zy) > 0, and 8y := b4(p, f1, f, QY»Qu, Zy) > 0 such that for all u(.) and
Ce(.) as defined above and satisfying:

(2) [G1(to) — Ce(to)l < 88,
(b) fork=2,3,...,N, |C(to) — Ce(to)] < o,

(c) mazy>y|u(t)| < by,
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(d) mazeyiomaz {|$1(2)],-..,|on(1)[} < By,

(e) mazgztomc(t)l < 5(’
we have :

(i) for allk=1,2,...,N, for allt > to, (i(t) € Zy,
(ii) |ldi(leo < p, and with dy := (i — ¢,

(iii) if, in addition, for allk = 1,2,...,N, dk(io) = 0, then there ezist constants 0 < o :=
o(f,Qu) < 1,0 < By := B4(f,Qu) < 00, and 0 < B := B¢(f,Qu) < oo such that for
k21, lldit1( oo < elldi(loo + Bollbr(-)lloo + BellCe(-)lloo-

Comments-

(i) Applying the results of Theorem 6.2 to the longitudinal control problem of a platoon of
vehicles discussed in section 6.2, we note that we can design suitable control laws such
that in the case of a sufficiently slow change in the lead vehicle’s velocity, vgy, from
its steady-state value and under sufficiently small parameter errors we have: 1) for
k= 1,2,...,N,.t — A(t) is bounded, 2) for k = 2,3,..., N, Ar(t) > 0ast — oo,
and 3) for k = 2,3,..., N, the peak deviation of the k-th vehicle position from its

assigned position monotonically decreases as k increases.

(ii) The proof of Theorem 6.2 consists of three main steps: 1) writing the Taylor expansion
of f(Ck,Ck-1,%) about (., (., u) in the right hand side of the k-th differential equation
in (6.15) and deriving a linear time-varying differential equation representing the
dynamics of di := (x — (.; 2) using a special form of Bellman-Gronwall lemma (see
[9, Ch.Llemma L6, consequence 1]) to bound |di(2)|; 3) using an induction argument
on k to show that, under suitable design of the control laws together with sufficiently
slowly-varying inputs, u, and small parameter errors, ¢, for k = 1,2,..., N, the
bound on |dk(t)| holds for all ¢ > ¢,.

(iii) The above theorems establish sufficient conditions on the inputs, u, and the parame-
ter errors, ¢, for k = 1,2,..., N, under which we can design suitable local nonlinear
adaptive control laws for the general class of interconnected nonlinear dynamical sys-

tems (6.8), shown in Figure 6.2.

The proof of Theorem 6.2 is in the Appendix.
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6.5 Conclusion

In this chapter, we have initiated a theoretical investigation in local adaptive control laws
for a class of interconnected nonlinear dynamical systems. More precisely, we have stated
sufficient conditions on the inputs and the parameter errors under which we can design
suitable local control laws for the interconnection of nonlinear dynamical systems under
consideration. The class of interconnected nonlinear dynamical systems has been suggested
by the problem of longitudinal and lateral control of a platoon of vehicles on automated
highways.

This study makes both theoretical and practical contributions to the design of
control laws for interconnected nonlinear dynamical systems. From a theoretical point,
it shows that, for a class of interconnected nonlinear dynamical systems, it is possible
to attain the design objectives by using local, nonlinear, adaptive control laws. From a
control designer’s view point, the local nature of the proposed control laws reduces the
computational costs while increasing the reliability and the flexibility of the control system
as a whole; furthermore, the adaptive nature of these control laws increases the robustness

of the control system with respect to uncertain parameters.

6.6 Appendix

Stability of Identifiers: For k = 1,2,...,N, let e; := (x — (;. Then from (6.8),
(6.16), and (6.17) we obtain: for the first dynamical system in (6.8)

€& = Aer + Wi (G,u,u)h
é1 -WT(¢1,u1,u)Pe; (6.20)

for the k-th dynamical system (k = 2,3,...,N) in (6.8)

éx = Aegp+ Wi(Cr,Ck-1,uk )Pk
¢ = —WZI(Ck,Chm1,ur)Per. (6.21)

We assume that for k¥ = 1,2,...,N, W; is bounded. Then, as in [35, sec. 2.4],
using a standard Lyapunov argument with Vi(ek, ¢x) := ef Pex + ¢T % (k = 1,2,...,N),
we can show that for k =1,2,...,N, ¢ € Lo, €k € L2() Loo, and éx € Loo. The last two
relations imply ex(t) — 0 as t — oo. Furthermore, if W (k = 1,2,...,N) is sufficiently
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rich (see [35, page 72]), then ¢i(t) — 0 as t — oo (i.e., parameter convergence is established
as in [27]). |
Proof of Theorem 6.1:

[Step 1- Analysis] To simplify notation, we let Wl(él) = Wi(G, @ (G u, 51),11) in (6.19).
Writing the Taylor expansion of f,((1,u) about ((.,u) in the right hand side of (6.19) and
noting that f;({,,%) = 0 we obtain

b= _/0l D1filGe + A6t = Ce) ] dA(G1 = ) — Wi (6y)éhn. (6.22)

Differentiating both sides of f1({.,u) = 0 with respect to time and using chain
rule we get

D1 fi(Ces u)Ce + Dafy(Ce, w)ic = 0. (6.23)
Since Reo[D, fi(Ce,u)] < 0, Dy f1((.,u) is invertible and from (6.23) we get

Ge = = [D1fi(Cer v)] ™! D fo(Cer u)ie (6.24)
Subtracting (6.24) from (6.22) we get
GG = [ DiAil+ MG -G uldrG - )
+ [D1fi(Ces )™} D2fi(Cer u)is — Wi (61) 1. (6.25)
Adding and subtracting D fi(Ce, u)(¢1 - ) to the right hand side of (6.25) we get

él - ée = Dllfl(Ce»u)(Cl - Ce)
+ /0 {D1fi [ + M1 =€), 4] = Dy fi(Cor )} ANG = C2)
+  [D1fi(Cer )]t Dafi(Ce, u)is — Wi (6 )by (6.26)

To simplify the notation, we let

A(t) == A(Ce(2), u(t)) := Dy A1(Ce(2), u(?)), (6.27)

R(t) :

R(ICe(t), u(t)v Cl(t))
/o {D1fi [Ge(®) + Ma(2) = Ce(®)), u()] = D1 fi(Ge(t), u(2))} dA,  (6.28)

B(t) := B(Ce(t), u(t)) := [D1f(Ce(t), u(t))] ™" D2 falCe(t), u(?)), (6.29)
Wi(2) := Wy (61(2)). (6.30)
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Using (6.27)-(6.30), we can write (6.26) as follows

G = e = AM(G - C) + R()(G - C) + B(t)i — Wi(t)h. (6.31)
Solving (6.31) we get
(G -C)t) = @(tto)(¢1 - Ce)(to)
+ [ 20,9 {RO)G - C)6) + Bo)ite) - Walo)h(ads (6:32)
where ®(2,1) denotes the state transition matrix of § = A(t)y.
Since ((.(t), u(t)) € @y, Qu is compact, and D f;(.,.) is continuous (f; € C?),
A(.) is bounded on [to, 00). (6.33)

Since o [A(.,.)] is a continuous function of its entries, ((.(t),u(t)) € Q-;;, Qu is

compact, and (.(t) is a sink of (6.18) corresponding to u(t), for all ¢ > t,,
there exists a u < 0 such that Reo[A(?)] < u < 0. (6.34)

Note that by suitable design of control laws, we can move the spectrum of
D1 f1(€e(t), u(t)) further into the left half plane for all ¢ > .
From (6.33)-(6.34) and using the results in [3, Thm.2, sec. 32] we know that there exists
an € > 0 such that

if |A(t)| < € then for some k > 1 and some 5 > 0 and for all ¢ > s > to, |B(%, s)| < ke~"¢=2).
(6.35)
Differentiating both sides of (6.27) with respect to time and using chain rule we

get
A(t) = Df1(Ge(t), 8(t))e(t) + DaDy fo(Cel(t), u(t))i(t). (6.36)
Substituting the expression for {.(t) from (6.24) into (6.36) and noting (6.29) we
get
A(t) = E(C(1), u()i(t) (6.37)
where

E(Ge(t), u(t)) := = D3 f1(Ce(?), u(t)) B(2) + D2D1fi(Ge(2), u(t))- (6.38)

Since (Ce(t),u(t)) € 'Q};, -Q-(lj is compact, E(.,.) is continuous (f; € C?), E(.,.)is
bounded on Q};. Let a := maz g |E((e, u)| with a < co. Thus if

mazest|(t)] < 68 = 2 (6.39)
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then |A(t)| < € and (6.35) is satisfied.

[Step 2- Topology] Let W}, := Qu X Zy; W}, is compact. Since f; € C?, the
integrand in (6.28) is C?, so R(.,.,.)is C! on W}. If, in (6.28), (1(t) = {.(t), then R(2) = 0.
By assumption, {.(t) € P% C Zy, hence by uniform continuity of R(.,.,.) on W}, we
conclude that, for any ¢ > 0, there exists a ' := &’(c) > 0 such that for all ¢ > ¢,

if (1(t) € Zu and |G1(2) = Ce(2)] < & then |R(2)| < c. (6.40)

From (6.32),(6.35), and (6.40) we note that if a) maz¢e|u(t)] < &5, b) for all
t 2 1o, (1(t) € Zy, and c) for all t > g, [(1(2) — ((2)] < &' then for all t > ¢,

Ga(8) = Ce(®)] < ke'j“"”lcl(to) — Ce(to)|
+ K [o e="=2) [|B(s)|[a(s)] + [Wi(s)ll(s)[] ds

A

+ ke /t e=(t-9¢,(s) = Co(s)|ds. (6.41)

0
Using Bellman-Gronwall inequality [9, Ch.Ilemma I.6,consequencel] if a),b), and
c) are satisfied we obtain, for all ¢ > ¢g,

1Gi(t) = Ce(B)] < ke(’t"*""("‘”lcl(to)-Ce(to)l
+ k /to =N [|B(s)las)] + [Wa(s)l|da(s)l]ds.  (6.42)

Let d denote the distance between Pg; and 9Zy (boundary of Zy). Since Pgy is
a proper subset of Zy, d > 0. Let b := mazgy | B(, u)|, where BY(.,.) is defined in (6.29).
Since Q{, is compact, B(.,.) is continuous (f; € C? and (6.33)- (6.34) hold), b < co. Choose
¢ > 0 such that —n + kc < 0. Choose §' := §(c) > 0 such that (6.40) is satisfied. Let
6 := min {§(c),d} and choose constants l,r,y,, and 74 such that 0 <1< 1,0<r<1,0<
74 <1,0< 74 < 1,and 7, + 74 < 1. Denote 6} := ¥, 6} := min {6,", —-yu‘-'—"'*—k%);(l;')ﬁ},
and 6y := —7¢(L""‘°M.

l‘bwl

Lemma 6.1 Ifc,§,63,61, and 64 are chosen as above and if (;(to),u(.), and $,(.) are such
that |(1(t0) — Ce(to)] < 83, maze>y,|u(t)] < 62, and maziye,|¢1(t)| < 841 then the hypotheses
a),b), and c) required for (6.41) and (6.42) are satisfied.

Proof of Lemma 6.1: Since maz;>,|u(t)| < 61 < 67, a) is satisfied.

Next we show that c) is satisfied:

for all ¢ > to, [C1(2) — (e(t)| < 6. (6.43)
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Suppose (6.43) is false. Then there exists a t; € (to, o) such that

|1(2) = Ce()] < & for all ¢ € [to, t2) and |(1(22) — Co(22)] = 6. (6.44)

Claim:
forallt e [to,tz],(l(t) € Zy. (6.45)

Suppose (6.45) is false. Then there exists a t3 € (o, t2) such that
for all ¢ € [to, 3], (1(t) € Zy and (3(13) € 82y. (6.46)

From (6.44) and (6.46) we note that for all ¢ € [to, 3] the hypotheses of (6.42) are
satisfied. Thus, from (6.42) we get, for all t € [to, t3),

1
1G(8) = Ce(®)] < Kkég + K[bs, + bmﬁa]-——_(_n ko)
< lor+(ru+76)1-r)6
< 16 (6.47)

By continuity of (¢1(.) — c(.)) and (6.47) we get |[(1(t3) — (e(t3)| < 6 < 6 < d
which is in contradiction to (6.46) in that {i(t3) € 82y but |(1(t3) — (e(t3)] < d. Hence,
(6.45) is true and claim is proved. Thus, from (6.44) and (6.45) we note that for all
t € [to, 2] the hypotheses of (6.42) are satisfied. Hence, from (6.42) we get, for all ¢ € [to, 2],
|€1(2) = Ce(t)| < 16. In particular, |¢;(22) — Co(22)| < 16 < § < & which contradicts (6.44).
Hence, (6.43) is true and c) is satisfied.

Finally, to complete the proof of Lemma 6.1 we will show that:
for all ¢ > to, (1(2) € Z8. (6.48)
Suppose (6.48) is false. Then there exists a t; € (to,00) such that
for all £ € [to, t1),(1(t) € Z§ and G1(ty) € 82y. (6.49)

So from (6.43) and (6.49) we note that for all ¢ € [to,;) the hypotheses of (6.42)
are satisifed. Thus, from (6.42) we get, for all ¢ € [to, 1), |¢1(t) = Ce(2)] < 16. By continuity
of (¢1(.) — ¢e(.)), we obtain |(3(t1) — o(t1)| < 16 < § < d which contradicts (6.49) in that
(1(t1) € 0Zy. Hence, (6.48) is true and b) is satisfied. This completes the proof of Lemma
6.1.
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Theorem 6.1 (part (i)): Under the hypotheses of Lemma 6.1, (6.48) holds.
Hence, Part (i) of Theorem 6.1 follows from (6.48).

Theorem 6.1 (part (ii)): Given p > 0, choose ¢ > 0,63 > 0,61 > 0,64; > 0, and
0 <! < min{1,%} so that hypotheses of Lemma 6.1 are satisfied. Then, using (6.42) we
get, for all t € [tg,00), |¢1(2) = C.(2)| < 16 < p.

Theorem 6.1 (part (iii)): Hp<f(letr=1and0<i< 1), then 6§ = ¥ < £.
Hence, [¢1(t0) — (.(t0)| < %. Since r = 1, 6} = §5; = 0 and for all ¢t > to, &(t) = ¢1(t) = 0.
Hence, from (6.42) we get, for all ¢ > ty, |(1(t) — .(2)] < Sel~Hke)t=t) and |¢y(2) - Ce(t)| <
6 < d. (ie., for all ¢ > o, (;(t) belongs to the basin of attraction of the sink e(t) with
respect to u(t)). |
Proof of Theorem 6.2: The proof is broken into several steps.
[Step 1- Preliminary Analysis])- Consider the k-th equation in (6.15) (k > 2):

$k = £(Cks Chmr, 1) — Wi(6) (6.50)

where we abuse notation and write Wk(ék) to denote Wi((k, Cr~1, Tr(Cky Cr—1, u,ék)).

Writing the Taylor expansion of f((,(k—1,u) about (Ces Ce» u) and noting f(Ce,Ce,u) = 0,
from (6.50), we obtain

G = [ DSl MaGet Mics,u]dA dy
+ /o 1 Daf [(e + Adk, (e + Adi—1,u]d di—y
= Wi(0k)dx. (6.51)
Subtracting ée from both sides of (6.51) and noting dj := (i — (., we get
di = [ Daflte+ Myt Mica, il dy
4 [ Dafle+ May G+ Mica, dh doy
— Wi(6k)ox - C.. (6.52)
Adding and subtracting D; f((e, (e, u)dj to the right hand side of (6.52) we get
di = A(t)dx + R(t)de + B(t)dr_1 — Wi(t)pe — L. (6.53)
where
A®) = A(G(1), Co(1), u(t))
D1 f(Ce(2), Ce(2), u(2)), (6.54)
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R(t) = -R(ICe(t)’ Ce(t)s u(t)s Ck(t)’ Ck-l(t))
A {le [Ce(t) + )‘dk(t)a Ce(t) + ’\dk—l(t)a "(t)] - le((e(t)a Ce(t)’ u(t))} dAa
(6.55)

B(r)

ﬁ(fe(t)a Ce(t)v u(t)’ Ck(t)v Ck—l(t))
/0 Daf [Ce(t) + Adi(2), Ce(t) + Adaa(t), u(t)] d, (6.56)

Wi(t) := Wi(6(2)). (6.57)
From (6.53) we get

di(t) = &(t,t0)dk(to)
t
+ / &(t, s) R(s)dx(s)ds

+ [ (1, 8) B(s)ds-1(s)ds
= [ 80.0) [Pr(s)onte) + Ceo)] ds (6:58)

where &(.,.) is the state transition matrix of 3 = A(t)z.

Since for all ¢ > to, ((e(t),(e(t), u(t)) € Qu, Qu is compact, D; f(.,.,.) is continuous (fe
C?), o [/i(.,.,.)] is continuous, and by design o [A'(.,., )] C(j'_, we conclude that there
exists a i < 0 such that for all ¢t > ty, Reo [fi(t)] < B < 0. Thus, there exists an
€:= & f,Qu) > 0 such that

if M(t)l < & then for some k := k(f,Qu) > 1 and some :=7(f,Qu) >0
and for all ¢ > s > to, |B(2, s)| < ke~7(t-2),  (6.59)

Differentiating the right hand side of (6.54) with respect to time and using chain
rule we get

A) = {DIFC(2), G0),u(0) + DaDy F(Gelt), Glt), (1)} et
+ DDy f(Ge(t), Celt), u(t)i). (6.60)

Since for all ¢ 2 to, (Ce(t), Ce(t)a u(t)) € -Q-Ua 60 is compact, D%f(" ) ')9 D2D1f('7 * ~),
and D3D f(.,.,.) are continuous (f € C?), there exist constants a; > 0 and a; > 0 such

that
a3 := mazexto| DY F(Ce()s Ge(t), u(t)) + DDy £(Ce(t), Co(t), u(2))]
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and

@z := MaZeyto| D3Dr f(Ce(t), Ce(t), u(t)).
Hence, if n'fa:ctztolée(t)l < 52 = Sé(f,QU) = % and mazey, |u(t)| < 8, := 8.(f,Qu) :=
'zi—; then |A(t)] < € and the conclusion of (6.59) is true. From (6.55)-(6.56) we note
that when di(t) = di-1(2) = 0 (ie, (i(t) = Ge1(t) = (o(?)), R() = 0 and B(t) =
D2 f(Ce(2), Ce(2), u(2))-
Let Wy := Qu X Zy x Zy. From (6.55)-(6.56) we note that since R(.,.,.,.,.) and B(iyeyy.y.
are continuous (f € C?) on Wy (a compact set), R(.,.,.,.,.)and B(.\.yere .) are uniformly
continuous on Wy. Thus, given ¢ > 0, there exists a §' ;= §’ (¢, f,Qu, Zy) > 0 such that for
all t > 1,

if (Gk(2), Ck-1(2)) € Zu x Zy and |(di(t), dx-y(2)] < &'
then |R(t)| < & and |B(t) - Daf(C(t), ((t), u(t))] < & (6.61)

Since for all ¢ > to, ((e(t),(e(2),u(t)) € Qy (a compact set) and D,f(.,.,.) is
continuous (f € C?), there exists a constant b := b(f,Qu) such that
bi= mazexty| D2 f(Ce(t), Ce(t), u(t))]. Thus, from (6.61) we get for ¢ > tq,

if (Ck(2), Gk-1(1)) € Zu x Zy and |(di(t), dx-1(2))| < & then |R(t)| < & and |B(t)| < b+ &.

(6.62)

Summarizing to this point, if 1) mazeyg |u(t)] < 8, 2) mazese,|Ce(t)] < 8, 3)

for all ¢ > o, (Ck(?), Ck-1(2)) € Zu X Zy, and  4) for all ¢ > to, |(di(t), dg-1(t))| < §' then
from (6.58), (6.59), and (6.62) we get: for all £ > t,,

()] < ke~ (t=%)|dy(10)|
- t
+ ke / €= 7(6=9)|d, (s)|ds

o

-t - .
+ F [ 0[G4 s (0) + PN + [l do. (6:63)
0
Applying a form of Bellman-Gronwall inequality [9] to (6.63) we get

d(t)] < Rel=T+RE=t) |4, 1))
~ rt _. 7 - .
+ k| T[4 Dldia(s)] + Wa(o)lIguls)| + Ieels)l] ds. (6.64)

to

[Step 2- Topology]- Let d := d(f,Qu, Zy) denote the distance between Pg,
and 8Zy. Then d > 0 because Pg,, is a proper subset of Zy. Choose & := éf,Qu) >0
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such that —fj + k¢ < 0. Given this &, choose § := 5’(6, f,Qu,2Zy) > 0 such that (6.61) and
(6.62) are true. Let § := 5((‘:, f,Qu,2Zy) := min{%i,ci} > 0. Choose constants I, 7, Ter Ty
and ¥, such that 0 <1< 1,0<7< 1,9 >0,7>0,%,>0,and 5 + 74+ 7, < 1.

Let &y := 85(¢, f,Qu, Zv) := 1:%3, }' = 32’(6,f,Qu,Zu) = min {3’,—’/((—"—)-(—)—"-"".‘1 1-7 ig},
3; = 3;(6, f,Qu,Zy) := —%Iji%)iﬁ)l——&, and

po = pol,Qu, Z0) 1= min { §, —7,=540=AT |

Lemma 6.2 Let ¢, .6, 8, .2’, ~«'t’ and po be defined as above. Let p be any real number
with 0 < p < po. If (k(to), u(.),Ce(.), ¢x(.), and (k—1(.) are such that ¢k(20) = Ce(to)] < 86;
maz,>s,|u(t)] < 5;; mazt2t°|ée(t)| < -2’; maze>e, |dr(t)] < 5;; Jorallt > to, Ce-1(t) € Zy
and |(k-1(t)—(e(t)] < p then the hypotheses 1)-4) required for (6.68) and (6.64) are satisfied.

Proof of Lemma 6.2: Since maz;>¢|i(t)| < &, and maa:‘ztolfe(t)l < 52’ <&,
hypotheses 1) and 2) required for (6.63) and (6.64) are satisfied.

Next we show that

for all ¢ > to, |k(t) - C(2)] < &' (6.65)
Suppose (6.65) is false: Then there exists a 23 € (fg, ) such that
for all ¢ € [to, t2), [Ck(t) = C.(2)] < 8 and |Ck(t2) — Ce(t2)] = &'. (6.66)

Claim:
for all ¢ € [to, 2], (k(2) € Zy. (6.67)

Suppose (6.67) is false. Then there exists a t3 € (Zo,t2) such that
for all t € [to,13),(x(t) € Zy and C(ts) € 0Zy. (6.68)

From (6.66) and (6.68) we note that for all ¢ € [to, t3] the hypotheses of (6.63) and
(6.64) are satisfied. Thus, from (6.64) we get, for all ¢ € [to,t3),

T . = 1
di(t)] < kéy+k|(b+é byby + 67| —————
@) < k8 +E B+ +bu} + 5] Yy

IA

167 + (3 + 9 + 7¢)(1 - 7)i6
1é. (6.69)

IA
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By continuity of di(.) and (6.69) we get |dx(t3)] < 16 < § < d which is a contradic-
tion to (6.68) in that (x(t3) € 2y but |Ck(t3) — (c(t3)] < d. Hence, (6.67) is true and the
claim is proved. Thus, from (6.66) and (6.67) we note that for all ¢ € [to, ?;] the hypotheses
of (6.64) are satisfied. Thus, from (6.64) we get, for all t € [to, t2], |dx(t)| < i5.In particular,
ICk(t2) ~ Ce(t2)| < 16 < 6 < % which contradicts (6.66). Hence, (6.65) is true and since for
all t > g, |dk-1(t)] < p < po < 5;—', hypothesis 4) required for (6.63) and (6.64) is satisfied.

Finally, to complete the proof of Lemma 6.2, we will show that:
for all ¢ > to,(k(t) € 29 (6.70)
Suppose (6.70) is false. Then, there exists a ¢; € (0, 00) such that
for all ¢ € [to, 1), k() € Z and (i(th) € 8Zy. (6.71)

So from (6.71) we note that for all ¢ € [to, ;) the hypotheses of (6.64) are satisfied.
Thus, from (6.64) we get, for all ¢ € [to,t,), |di(t)] < 15. By continuity of di(.), we obtain
|dk(t1)] < 16 < § < d which contradicts (6.71) in that (x(t,) € 0Zy. Hence, (6.70) is true
and hypothesis 3) required for (6.63) and (6.64) is satisfied. This completes the proof of
Lemma 6.2.

[Step 3- Choosing Bounds]- Let &b, 8, 6.,’;’, 3;, and pp be as defined before.
For any 0 < p < po, choose 65 := 6}(p, f1,Q}) > 0, 81 := §1(p, f1,Qf) > 0, and 64 :=
641(p, f1,Q}) > 0 as in the statement of Theorem 6.1; choose §p := Eo(p, f,Qu, Zy) :
min {P, ey F .6}, 8u := bu(p, f1, £,QY, Qu) := min {55,31'.}, 8¢ = b(p, £,Qu, Zy) :
min {p, 32’}, and &y := 8y(p, 1, f, QY,Qu, Zy) := min {p, 6¢1,3;}.

[Step 4- Theorem 8.2, part (i)]- We use induction to prove part (i).
Initial Case k = 1: Since |y(to)—(e(to)| < 8, mazrpy|i(t)] < 8 < 61, and mazeny, |61 (2)] <
84 < 641, by Theorem 6.1, we have for all ¢ > ¢, G1(t) € Zy, and |Gi(2) - C.(2)] < p.
Induction Step: Assume that for all i = 1,2,...,k, for all ¢ 2 to, G(t) € Zy, and
|6:(2) = ¢e(t)] < p. We will show that for all £ > #o, Ci41(t) € Zy, and |Crya(t) ~ Co(t)] < p.
Since [e41(to) = Ce(to)] < b < 8 mazyglift)] < 8y < Bl mazes|C(t)] < & < 8
MaTzt|Gk1(2)] < 8¢ < 8 for all t > to, (k(t) € Zy and |(u(t) = Co(t)] < p, by Lemma
6.2, we have for ¢ > %o, (k+1(t) € Zy and applying the inequality (6.64) to dr41(.) we get

1
—(—1 + k&)

lder () < kbo+k [(B+)p+ budy + 5]
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ke + k(b + &)p + kbup + kp
— (=i + ké)
[l’c(z +h+ée+ bw)]
~(-i+ke) |7

(6.72)

By design of the control laws, we can increase #j so that 7 7 is sufficiently larger than
b and k and —(""("A.i?.)ﬁ < 1. Hence, from (6.72) with this choice of 7} we get |d41(2)| < p
and part (i) of Theorem 6.2 is proved.

[Step 5- Theorem 6.2, part (ii)]- From the proof of the initial case k = 1 in
part (i) of Theorem 6.2, we note that maze>,|¢1(2) — (o(2)] := Mazs>e,|di(t)] < p. Thus,
part (ii) of Theorem 6.2 is proved.

" [Step 6- Theorem 6.2, part (iii)]- Similar to the argument of the induction
step in part (i) of Theorem 6.2, for ¥ > 2, Lemma 6.2 holds. Hence, applying the inequality

(6.64) to dr41(.) assuming that di41(2) = 0, we get, for ¢ > o,

-.

k(b + &) kby,
|dk+1(2)] < —_(_“EE)H ()Iloo+———( —— )“¢k( Nloo + ——( — )Ilce( Moo (6.73)

Denoting a := o(f,Qu) = <5, s = Be(f,Qu) = —Bure, and ¢ =
Be(f,Qu) = _(_—g_‘_,-cé—), from (6.73) we get

ldk+1()lleo < elldi(loo + BsllPr(loo + BellCe(-loo- (6.74)

By suitable design of the control laws we can increase # so that & < 1. This

completes the proof of Theorem 6.2. |
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u

(v = f(CNyCN-1, 1) '_C'N-l""@{ & = f(C2y Cry0) b G = filGiyu) Y

Figure 6.1: The interconnection of nonlinear dynamical systems with no parameter uncer-

tainties
u
{v= f(CN’CN-la““)- v G 2= f(Cz,Cl,‘lf)- o | &= AlG,w)-
WN((Ny Cn-1, BN (ON))EN W2(C2, 1, %2(02)) 62 W1i(¢1, T (61), u)
A . L

Figure 6.2: The interconnection of nonlinear dynamical systems with parameter uncer-
tainties; each dynamical system is locally controlled by an indirect adaptive controller.
For brevity, we have used ﬁl(él) = il(cl,u,él) and for £ = 2,3,...,N, ﬂk(ék) =
W (Cky Ch—1, 4, B).
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Figure 6.4: Indirect adaptive control of the k-th dynamical system (k = 2,3,...,N)
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Chapter 7

Conclusion

In this dissertation we have studied the problem of controlling a platoon of closely-spaced
‘non-identical vehicles traveling at high speeds on automated highways. We have proposed
decentralized nonlinear control laws, for each vehicle in the platoon, which maintain close
spacing between successive vehicles and keep all the vehicles in the platoon close to the
lane center. The longitudinal control laws take advantage of communication possibilities
not available in the recent past.

Motivated by this platoon control problem, we carried out a feasibility study for
designing local controllers for a class of interconnected nonlinear dynamical systems. We
have given precise conditions on inputs to the dynamical subsystems and the dynamical
behavior of the subsystems in the interconnection which allow such local controller design:
Furthermore, we have proposed a local, nonlinear, adaptive control scheme for this class of
interconnected nonlinear dynamical systems.

These studies make both practical and theoretical contributions to the design of
control laws for interconnected nonlinear dynamical systems. From a control designer’s
view point, the local nature of the proposed control laws reduces the computational costs
while increasing the reliability and the flexibility of the control system as a whole. From a
theoretical point, these studies show that, for a class of interconnected nonlinear dynamical
systems, it is possible to attain the design objectives by using local, nonlinear, adaptive
control laws; furthermore, the adaptive nature of these control laws increases the robustness
of the control system with respect to uncertain parameters.

Much work remains to implement longitudinal and lateral control laws for a pla-

toon of vehicles. In addition to work on sensors (accelerometers, velocity sensors, etc...),
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actuators, communication system, road tests, safety considerations, and socio-economic
studies, a number of systems engineering concepts have to be addressed: studies are needed
for analyzing and controlling platoons of vehicles on a network of highways. The control
system hierarchy from the regulation level of controlling one platoon on one lane to the
network level of controlling the flow of traffic on several highways has to be studied. At
this time, a major obstacle for higher level control of platoons is the lack of good models
for describing the flow of traffic.

At the regulation level, we have initiated a system-level study for controlling a
platoon of vehicles traveling on a lane of highway. For the proposed combined longitudinal
and lateral control laws, we have an additional problem that needs to be addressed: investi-
gate the use of adaptive control methods to improve the robustness of these control laws to
unknown parameters; in addition, we need to check the robustness of these control laws to
measurement noise and communication delays. Furthermore, we need to incorporate more
realistic engine models, tire dynamics, wind gusts, road irregularities, etc...

From the theoretical stand point, we have originated methods for analysis and
design of decentralized adaptive controllers for a class of interconnected nonlinear dynamical
systems. Future research can improve on these methods and apply them to other classes
of interconnected nonlinear systems. Furthermore, theoretical research is needed to design
fault-tolerant controllers which can reconfigure themselves in case of failures. Investigating
the possibility of using decentralized controls for improved fault-tolerance will yield benefit

in a number of applications where safety and reliability are major cost factors.
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