

Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IMPLICIT MANIPULATION OF EQUIVALENCE

CLASSES USING BINARY DECISION DIAGRAMS

by

Bill Lin and A. Richard Newton

Memorandum No. UCB/ERL M91/13

28 January 1991

IMPLICIT MANIPULATION OF EQUIVALENCE

CLASSES USING BINARY DECISION DIAGRAMS

by

Bill Lin and A. Richard Newton

Memorandum No. UCB/ERL M91/13

28 January 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

IMPLICIT MANIPULATION OF EQUIVALENCE

CLASSES USING BINARY DECISION DIAGRAMS

by

Bill Lin and A. Richard Newton

Memorandum No. UCB/ERL M91/13

28 January 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Implicit Manipulation of Equivalence Classes
Using Binary Decision Diagrams *

Bill Lin A. Richard Newton

Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Abstract

We address the problem of manipulating equivalence classes implicitly. The relevance of this
fundamental concept is shown by giving examples of applications. A new boolean operator called
compatible projection is presented as a means for finding a compatible function corresponding
to a given relation. A fundamental property of the compatible projection operator is that the
function produced is canonical. In manipulating equivalence classes, the compatible projection
operation implicitly derives an encoding function that encodes the equivalence class information
symbolically. The main limitation is the size of the BDD representing the encoding function.

•This project was supported in part by NSF/DARPA under contract number MEP-8719546.

1 Introduction

Recently, it has become apparent that many problems in synthesis and verification are intimately

related in that they are often fundamentally dependent on the same set of basic logic manipula

tions. Efficient techniques developed in this area can be viewed as "core" technologies that can be

applied to a wide spectrum of applications in both arenas. Since many algorithms in synthesis and

verification make use of the same basic set of core computations extensively, new advances in this

area are extremely important.

One such core technology is the binary decision diagram (BDD) [3]. Although BDD's were orig

inally developed for symbolic simulation and verification, they have been found to be fundamental

in a wide varietyof applications [12,10]. In general, BDD'scan be used to solve problems involving

intensive boolean manipulations or computations. Another recent, and extremely important, core

technology is the concept of BDD-basedimplicit state enumeration developed by Coudert et al. [6].

The main idea is to use BDD's to perform symbolic breadth-first execution of an implicitly defined

state space. At each iteration, a large number of states is simultaneously traversed by performing

symbolic image and inverse image computations. This concept can be applied to solve many prob

lems requiring spatial or temporal analysis of some state space. These techniques are related to the

concept of characteristic function. Already, it has been applied to solve problems in verification

[4, 6] and synthesis [11]. In [11], implicit enumeration was applied to compute sequential don't care

conditions from a gate-level datum that can be used to minimize logic during synthesis.

While BDD's and implicit enumeration provide the basic machinery to manipulate functions

and relations efficiently, we do not have at our disposal analogous machinery for manipulating and

representing equivalence classes efficiently (other than straightforward truth table enumeration).

However, in many interesting applications, the ability to manipulate equivalence classes is in fact

the fundamental bottleneck. For example, when analyzing a subnetwork embedded in a hierar

chically defined boolean network, a number of output patterns may be considered equivalent with

respect to the primary outputs of the global network [2]. These equivalent output patterns may be

grouped together into equivalent classes for optimization. Using implicit enumeration techniques,

only pairwise equivalent relationships can be derived. However, we have no way of deriving or rep

resenting the equivalence classes other than quasi-exhaustive methods. Since the number of signals

through a cut of a boolean network is usually very large, this severely limits the analysis to only

small problems. A related problem is computation of communication complexity. The problem is

to compute information flow from one part of a network to the other given a 2-way partition of

primary inputs. It has important applications in logic synthesis [7] and functional decomposition

[8]. The only known technique to date is the use of a communication matrix [7], which degenerates

to an exhaustive analysis. Another interesting problem is the analysis of sequential circuits. BDD-

based algorithms exist for computing equivalent state pair information based on implicit backward

traversal [11]. This equivalence relation information can be used to advantage in a number of

important problems in synthesis and verification. For example, the equivalent states information

can be used to state minimize large finite state machines by merging equivalent states. However,

efficient techniques for manipulating equivalence classes are missing.

In this paper, we present new BDD-based techniques for manipulating equivalence classes im

plicitly. The techniques are intended to complement existing BDD and implicit enumeration tech

niques to provide a reservoir of logic manipulation machinery. These techniques are based on an

important new boolean operator called the compatible projection operator. The compatible pro

jection operator can be seen as a mechanism for selecting a compatible mapping corresponding to

a relation. The compatible projection operator has the remarkable property that, when applied

to a relation, it is guaranteed to produce a canonical function compatible with the relation. This

result is significant since in general there may be an astronomical number of compatible mappings.

In manipulating equivalence classes, the compatible projection operator is used to implicitly de

rive an encoding function that encodes the equivalence class information symbolically. We give

in this paper examples of applications where the techniques presented have been able to analyze

problems involvingover 1068 equivalence classes. Potentially much larger problems can be handled

with the real limitation on the ability to represent the function that encodes the equivalence class

information in BDD form.

2 Theoretical Groundwork

2.1 Binary Decision Diagrams

Binary decision diagram (BDD) is a directed acyclic graph (DAG) representation of boolean logic

[3] corresponding to a recursive Shannon decomposition. Each node is associated with a variable

and two fanout arcs: one corresponds to the function when the variable is set to 0, and the other

corresponds to when the variable is set to 1. At the leaves of the graph are two constant nodes

representing the constants 0 and 1. A variable ordering is imposed such that all transitive fanouts

of a node must have a higher ordering index, except for the constant nodes. Also, a variable may

not be repeated in a path. The BDD is said to be reduced if there are no isomorphic subgraphs.

This representation is canonical for a given variable ordering. Standard boolean operations like

intersection, union, and negation can be implemented very efficiently with BDD's. Boolean quanti

fiers such as the existential and universal operators can also be implemented with BDD's as follows.

The existential quantification (also called smoothing) of the boolean formula / with respect to a

boolean variable x is

(3»)/ = /. + h,

where fx is the usual cofactor operation as defined in [3]. Similarly, the universal operator (also

called the consensusoperator) can be computed as

(V«)/ ^ hh-

The advantage of BDD's over other canonical representations (such as a truth table) is that they

are usually much more compact and efficient polynomial time algorithms exist to manipulate them.

2.2 Relations and Classes

A relation is a subset over the cartesian product of some, possibly non-boolean, finite domains

1Z C D\ x D2 x ... x Dn. The cardinality of a finite set D is denoted by #2} or \D\. In the

remainder of the paper, we will assume the domains are over boolean values. Non-boolean domains

(i.e. symbolic relations [10]) can be easily handled by using a homomorphic encoding function

£ : D —*• B* which maps one-to-one each element of D to a unique boolean vector of length fc,

where B is the set {0,1} and k > flog2 #J9l. Hence, no generality is loss. For most applications

considered, the choice of encodings and code lengths are usually pre-determined. For the sake of

exposition, it is often convenient to speak in terms of a binary relation, which is a subclass over

some cartesian product Br x Bn, denoted as Tl C Br x B". In general, Br and Bn could themselves

be cartesian products of some smaller boolean spaces. Henceforth, unless otherwise noted, we will

use relation and binary relation interchangeably.

Definition 2.1 The projection o/x G Br under relation Tt C Br x Bn, is defined as {y G

Bn I (x,y) G 1Z} and is denoted by ft(x). Thus 7£(x) CBn is a set corresponding to the possible

mappings o/x. 7£(x) = {y G Bn | (x,y) € It) is called the equivalence class o/x.

Definition 2.2 A relationll C Bn X Bn is an equivalence relation on Bn providedlZ satisfies

the follovring three properties:

1. reflexive: (x,x) G 72,Vx G Bn;

2. symmetric: (x,y) G 71 => (y,x) G 71;

3. transitive: [(x,y) G 7^ and (y,z) G^] =$• (x,z) G7£;

x is equivalent to y under 71, written x ~ y, i/(x,y) G7£. 2%e equivalence class containing the

element x is aiso denoted as [x] = {y | (x,y) G 7Z}.

An important property of an equivalence relation 71 (~) on Bn is that 72. induces a partition t

on Bn into disjoint non-vacuous subsets ?r(Bn) = {5i, 52,..., 5g}, each of which is an equivalence

class, such that following are satisfied:

1. S{ •£• 0, for each i;

2. U5, = B";

3. Si n Sj = 0, Vi # i;

The set {5,- | 1 < i < q} is said to be a partition of Bn.

2.3 Compatible Functions and Mappings

The relationship between functions and relations can be stated as follows:

Definition 2.3 A multi-output boolean function f : Br -» Bn is a compatible mapping of

fc C Br x Bn f/Vx G Br, 3y G ^(x) A y = f(x). This is denoted byi^Tl.

Definition 2.4 Two functions i\ and i2 are compatible with respect to the boolean relation 71 if

and only iffi<7l/\f2-<7l.

In general, there are many possible compatible functions corresponding to a relation. In fact, a

function is a special case of a relation. A function f : Br —* Bn can be written as a relation

^CBrxBn and computed as follows:

t = n (».e/0 (i)
i=l

where /i... /„ corresponds to the individual output functions of the multi-output function f. When

/i... /„ correspond to the next state functions of a finite state machine, then the characteristic

function F is also referred to as the transition relation. Similarly, a binary relation T C B r x Bn

determines a unique function f : Br —• Bn if Vx G Br, #-7r(x) = 1, meaning x has a unique

projection. Such a relation can be easily converted to a multiple output function as follows:

/.• = (3y)(^-!«) (2)

where y = {yi,..., yn} are the variables of the range. Here, T is a characteristic function in terms

of x = {zi,...,£r} and y = {yi,...,yn} variables. Whenever convenient, we shall think of a

function as a relation defined by Equation 1. Likewise, a binary relation can be interpreted as a

set of functions if the first component of the relation is interpreted as the domain and the second

component the range.

3 Symbolic Class Manipulation

3.1 The Problem

Many problems are fundamentally dependent on the ability to manipulate equivalence classes effi

ciently. To illustrate the problem, we will use the analysis of hierarchically defined boolean networks

as an example application where the problem of equivalence classes arises. Consider the simple ex

ample shown in figure 1 (borrowed from [2]). It is a cascaded network of an adder followed by

a comparator. From the point of view of the comparator, two output patterns of the adder are

deemed equivalent if they yield the same output at the comparator. For example, the output pat

terns 001 and 010 are equivalent. The set of equivalent output patterns represents an equivalence

class. For this simple example, we can in fact determined that the output patterns of the adder

(2/02/12/2) fall into the following equivalence classes:

equivalence class 1: {000,001,010}

equivalence class 2: {011,100}

equivalence class 3: {101,110,111}

The problem arises when the number of variables becomes too large. In general, the number of

equivalence classes along a cut of a network can be exponential in the number of variables in the

cut. In practice, the number of variables n is often very large in many problem instances, thus

making explicit manipulation techniques prohibitive.

Using BDD's and the concept of characteristic functions, we can easily compute an equivalence

relation E C Bn x Bn corresponding to the set of all equivalent pairs of output patterns. Let

zl zO

t •
COMPARATOR

it n

y2 yi yO

ADDER

rm
al aO bl bO

Figure 1: Cascaded Adder to Comparator Example.

A : Bm -* Bn be the head subnetwork and let C : Bn -• Br be the tail subnetwork. The

equivalence relation E at the output of subnetwork A can be implicitly computed as follows:

i7(u,v) = (3y)(C(u,y).C(v,y)).

This relation E is referred to as the cross-observabilityrelation [5]. Continuing with the example

shown in figure 1, the relation E is a characteristic function representing the following equivalent

pairs:

{000,000} {000,001} {000,010}

{001,000} {001,001} {001,010}

{010,000} {010,001} {010,010}

{011,011} {011,100}

{100,011} {100,100}

{101,101} {101,110} {101,111}

{110,101} {110,110} {110,111}

{111,101} {111,110} {111,111}

y2yly0 zlzO

While basic machinery exists for computing this pairwiserelation (viz. BDD's and characteristic

functions), we do not have at our disposal analogous machinery for computing and representing

the equivalence classes efficiently (other than straightforward truth table enumeration). Therefore,

we need to develop the missing machinery for symbolically manipulating equivalence classes. To

manipulate equivalence classes symbolically, we implicitly derive an encoding function that encodes

each equivalence class to a unique member in the equivalence class. Consider the following problem

to be solved:

Problem 3.1 : Let 71 C D x S be a one-to-many relation, where i?CBr and S C Bn. Compute

a compatible function /CDxS such that the following properties are satisfied:

1. Vx G D, #:F(x) = 1 and ^(x) G 7Z(x);

2. 7^(u) = 7l(v) implies ^"(u) = ^"(v).

The second property states that if u and v in D have the same equivalence class, then the encoding

function generated should produce the same output mapping.

Continuing with the above example, a solution to problem 3.1 would produce the following encoding

function:

U2U\Uq

{000,001,010}

{011,100}

{101,110,111}

V2V\Vq U2U\Uq

{000,001,010} {000,001,010} 000

{011,100} {011,100} 011

{101,110,111} {101,110,111} 101

Note that each element in the range of the encoding function uniquely corresponds to an equivalence

class of the equivalence relation. To derive the above encoding function, we propose a new BDD

boolean operator called the compatible projection operator. This is described next.

v2v\Vq

3.2 The Compatible Projection Operator

To derive a compatible function that uniquely encodes each equivalence class, we choose a criterion

that uniquely orders the elements in the co-domain (output space) such that among the output

choicesfor each x G S (i.e. 7£(x)), the element lowest in the order is selected. This can be performed

by using a distance metric to determine a total ordering on the choices.

Definition 3.1 Let Bn be a n-dimensional boolean space and y\ -< y2 •< ... •< yn be an ordering of

its variables. The distance between two vertices a GBn and /? G Bn is as defined in [6, 14]:

<*(«,/?)=£ I<*<-AI 2"-»'

Using the distance operator, we can define an ordering on the vertices of a boolean space relative

to some reference vertex.

Lemma 3.1 Given a variable ordering y\ -< y2 -<...-< yn, and a reference vertex a G Bn, the

distance from a to each vertex a G Bn corresponds to a non-negative injective integer mapping

d:Bn-+Z+.

Proof: It follows from definition that d(a, o) is a non-negative integer Vo- G Bn. Now suppose

the mapping is not injective. It implies that there exists o\ G Bn and 0*2 G Bn, G\ ^ 0*2, such that

d{oiiCr\) = d(a,0*2). This is a contradiction. •

Lemma 3.2 Let Bn be a n-dimensional boolean space. Given a variable ordering y\ <y2 < ...<

yn, and a reference vertex a G Bn, the distance operator d(a^a) induces a unique ordering on the

vertices in Bn, denoted as &\ < a2-< ...< o2n.

Proof: The ordering of o*,- G Bn corresponds exactly to the ordering of integer values mapped

from d. D

From the foregoing lemmas, we can uniquely determine an ordering on the vertices of an arbitrary

sizeboolean space based solelyon the variableordering and a reference vertex in the boolean space.

The reference vertex can be any point in Bn. Depending on the application, this reference vertex

is often naturally determined. For example, in state minimization (c.f. section 4), the reset state

of the machine is used. Another useful reference vertex is the all O's vector. This result can be

generalized to arbitrary sets of boolean vectors.

Theorem 3.3 LetSCB" be a subset of a n-dimensional boolean space. Given a variable ordering

y\ < 2fc -< ••• -< Vn, and a reference vertex a GBn, the distance operator d(a,o) induces a unique

total ordering on the vertices in S.

Proof: Follows from lemmas 3.1 and 3.2. D

Note that the reference vertex a need not be in the set S. This permits us to define a consistent

ordering on any subsets. Using the same reference vertex, the relative ordering between subsets is

also well defined. Using the distance metric, we can now defined a selection operator that can be

used to select a unique member from a set.

Definition 3.2 Define

X(a, S) = argmin d(a,a)

to be the closest interpretation of a in S.

Example 3.1 : Suppose S = {111,010,101}. Let a = 000 be the reference vertex. The corre

sponding distances are d(000, 111) = 7, d(000,010) = 2, and d(000,101) = 5, which corresponds

to the ordering 010 •< 101 -< 111. The closest interpretation is ±(a, S) = 010. If the reference

vertex is instead a = 110. Then the ordering is 111 -< 101 ~< 010 and the closest interpretation is

_L(a,E) = 111.

We can now define the compatible projection operator.

Definition Z.Z LetTl C D x V be a binary relation, where D C Br and S C Bn. Let a G Bn

a reference vertex. The compatible projection, or simply c-projection, of 71 relative to a,

denoted as projection(7£, a), is the compatible function F defined as follows:

^={(x,y)|(x,y)G7e and y = _L(a,7e(x))}

The compatible projection operation can be computed very efficiently with BDD's. The character

istic function T can be converted to multi-output form using equation 2. For greater generality,

we treat 7£CBrxBnasa characteristic function over the cartesian space Br x B". We let a be

a cube in Br XBn (i.e. a = ot\<x2.. .ar+„) where a,- = {0,1, *}. If a,- = *, then the corresponding

variable x,- is considered part of the domain, and the range otherwise. The set of literals a,- ^ *

defines a reference vertex in the range. In this case, a cannot be NULL. The algorithm is given in

Figure 2.

Lemma 3.4 Ifa = l, then 7Z = projection(7£, a). If 71 = 1, then J7 = 71•a.

These represent interesting special cases that can be easily computed. We now give some theoretical

results pertaining to this operator.

3.3 Main Results

The compatible projection operator indeed implements a solution to problem 3.1.

Lemma 3.5 The compatible projection operator satisfies all the properties outlined in problem 3.1.

10

function projection(r,a) {

if (a = NULL) return error;

if (a = 1 or r = 0) return r;

if (r = 1) return r •a;

let a,- = literaljDfJopvar(a);

let y = support(a);

if (3y.rQ. = 1) return a,- projection(ra,.,aa.);

else if (3y.rai = 0) return 7*7- projectionfr^rjao,.);

else return a,- projection(ra.,aa|.)

+ a-- projection^- 3y.ra„a04);

}

Figure 2: The Compatible Projection Algorithm.

Proof: The -L(a,7£(x)) operator by definition selectsexactly one y mapping from 7£(x) for every

x. This satisfies the first condition. The J_ operator also guarantees that the mapping with the

lowest cost, according to the distance metric relative to a, will be chosen. This implies that if u

and v have the same output choices, the lowest cost choice is both cases will be the same. D

This in fact leads to the following fundamental theorem.

Theorem 3.6 (Canonical Compatible Mapping Theorem) Given 71 C Br X Bn, a £ Bn,

and a variable ordering y\ •< y2 -<...-< yn on Bn, the compatible mapping T —projection(7£,a)

is canonical.

Proof: Follows from the above arguments. •

This result is significant since it tells us that a unique mapping can always be derived. Moreover,

if 71 is an equivalence relation, we can show that the new function T indeed encodes all members

of the same equivalence class to a unique member in the equivalence class.

Theorem 3.7 (Equivalence Class Theorem) Let 71 C Bn XBn be an equivalence relation on

Bn. Let 7r(Bn) = {Si, 52,..., Sq} be the partition of disjoint equivalence classes induced by 7Z, and

11

let T —projection(7£, a) be the compatible projection of 71. Then

VS.- G 7r(Bn),Vu,v G S,-,.F(u) = :F(v)

Proof Sketch: This is due to the fact that if u and v belong to the same equivalence class in

Bn, then they will exactly the same set of possible mappings. Since the lowest cost mapping will

be selected in both cases, they will have the mapping in T. •

The significance of this result is that the function produced by the compatible projection operator

uniquely encodes each equivalence class.

4 An Example Application

We illustrate in this section the technique of symbolic class manipulation on the problem of exact

state minimization. In practice, large sequential circuits are generally not state minimal. This

is especially true when the sequential circuits are automatically compiled from high-level descrip

tions. Another common source of non-minimal state machines arises from synthesizing interacting

networks of finite state machines. It is well know that these finite state machines typically con

tain a large number of equivalent states. When considered as a whole, the cartesian product of

the component state spaces typically result in state explosion. One approach to simplifying the

machine is to perform state minimization. There are well known techniques and algorithm for

solving this problem when a state transition graph model can be extracted [9]. The complexity of

this algorithm is 0(Q \og2 Q) where Q is the number of states. However, Q is exponential in the

number of state registers in the worst case. Hence, known algorithms such as those in [9] are not

applicable for a large class of problems. For example, in the machine mkey(see section 5), obtained

from the data encryption standard chip (des) [15], there are over 1068 states. We emphasize that

the true complexity of the state space strongly depends on the actual structure of the sequential

circuit rather than the number of registers.

Using the machinery developed in the previous section, we have developed an exact algorithm

that can feasibly state minimize finite state machines of such sizes. For synthesis, a state minimized

machine will often lead to a more efficient realization and fewer state registers to implement, which

would also ease the testing problem. For verification, the ability to implicitly compute a reduced

machine is also extremely important since design properties can often be checked on the reduced

machine, but potentially much more efficiently since the state space may be drastically reduced.

12

in

Figure 3: Product Machine for Equivalence Analysis.

Also, there may be specific verification queries that can only be checked or are more naturally

checked on the reduced machine. The state minimization technique can also be used to simplify

the BDD representation of the transition relation. Before describing the procedure, we first give

some basic working definitions.

A finite state machine M is a 6-tuple (E,Q,C?,£,A,go), where S is the input alphabet, Q is a

finite set of states, O is the output alphabet, and go G Q is the initial state of the machine (in

general, the initial condition may be a set). An alphabet is a set of symbols. For the sake of

simplicity, we will assume an alphabet is defined overa finite n-dimensional boolean space {0, l}n

where each vertex (minterm) uniquely represents a symbol in the alphabet: eg. Q = {0,1}n,

S = {0, l}r, and O = {0, l}m. As explained earlier, non-boolean domains can be easily handled by

applying an encoding function f : D —• Bfc which maps one-to-one each element of D to a unique

boolean vector in {0,1}*.

The outline of the exact state minimization algorithm is as follows:

1. Given a finite state machine M, first compute the equivalence relation EC B"xBn cor

responding to the set of all equivalent state pairs. Two states g,- and qj are equivalent if

and only if (g,-, g^) G E. The relation E is computed by first building a product machine

M* = M\ ® M2, as shown in figure 3. The set of equivalent state pairs E C Bn x Bn can

then be efficientlycomputed using the BDD-based symbolictraversal algorithms described in

2. The relation E is a one-to-many mapping that maps each state q G Bn to any one of its

13

equivalent state [g]. We use the compatible projection operator to find a compatible function

S C Bn x Bn that maps all equivalent states to the same state (the function S can be

converted to a function form 5 : Bn —• B" viz equation 2). The function 5 is effectively an

encoding function that re-encodes all equivalent state codes to a unique code.

3. Modify the transition relation using the function S.

In the first step, the relation J? is an equivalence relation represented in BDD form. Depending

on the example, there may be a very large number of equivalent state pairs. Referring to again

the example mkey, there are over 10130 equivalent state pairs. The algorithms described in [11]

were able to feasibly compute all equivalent state pairs with reasonable CPU time. The efficiency

is dependent on the regularity of the underlying structure. Fortunately, a large number of circuits

belong to this class. We refer the interested reader to [11] for the details on how the equivalent

state pairs are computed.

In the second step, the function S can be computed as follows:

5 = projection(E, g0) (3)

By default, the reset state go is used as the reference vertex. This guarantees the reset state code

is retained (i.e. all states equivalent to the reset state will be re-assigned the reset state code).

However, this is not a necessary condition. The reduced set of states can be computed as follows:

Q = set of reduced states = (3u)5 (4)

where u denotes the set of variables corresponding to the first component of 5. This corresponds

effectively to the range of 5. The number of elements in the set Q corresponds to the number of

reduced states:

#Q = number of reduced states (5)

It also corresponds exactly to the number of equivalence classes in E. Using 5, the transition

relation of the finite state machine can be simplified as follows:

Definition 4.1 The next state transition relation for a finite state machine M isT C B r x Bn x Bn

such that (i, x, y) G T if and only if the state y can be reached in exactly one state transition from

state x when input i is applied.

14

The transition relation implicitly defines the finite state machine. Here, i denotes the primary input

variables, x the present state variables, and y the next state variables. We can then compute the

state minimized transition relation as follows:

Tmin(z,u, v) = (3y)[(3x)[r(i,x,y). 5(x,u)] •5(y, v)]

In the above equation, we explicitly stated the variable names in the parentheses for each relation

to illustrate the correspondence. The state minimized transition relation Tmin can be re-expressed

in terms of the x and y variables by variable substitution.

5 Preliminary Results

In this section, we present some preliminary results on the concept of symbolic class manipulation

described in this paper. We demonstrate the capabilities of the proposed techniquesby applying the

techniques to the problem of state minimization for large sequential circuits. The algorithm makes

use of the the compatible projection operator described in this paper, which we have efficiently

implemented in BDD's. All experimental results presented were measured on a IBM RS6000

workstation and the CPU times presented are quoted in seconds.

The benchmarks used were obtained from various industrial and university sources in the form

of a gate-level description. The experiments were designed to show the limitation of conventional

explicit manipulation methods and expose the need for symbolic manipulation techniques. The

examples s208 and s298 were obtained from the iscAS sequential benchmark set. The example

tic corresponds to a traffic light controller. The examples vit3 and viterbi are control circuits

obtained from the VITERBI speech recognition processor chip [13]. The example key is derived from

a control circuit that implements the key encryption algorithm in the data encryption standard

(des) chip [15]. It contains a large number of data registers. The examples mkey and tkey were

derived from key by considering a subset of outputs (namely the control outputs). These examples

vary in complexity with the largest one having 228 latches and over 10** states. Since BDD's are

used, number of registers is no longer the bottleneck. We emphasize that the "real" complexity of

the circuit is actually dependent on the structure and regularity of the problem.

Our experiment for symbolic class manipulation, using state minimization as a test application,

was done as follows. We begin with each benchmark sequential circuit starting at the gate netlist

level. For each example, we first computed the set of all equivalent state pairs using the BDD-

based computation algorithms described in [11]. The algorithms described in [11] are guaranteed

15

circuit i/o/lits(fac) set size eq. pairs eq. classes regs. lower CPU1 CPU2

s208 11/21/166 256 3310 40 8 6 0.45 0.19

s298 3/6/244 16384 510000 8060 14 13 35.88 15.83

tic 3/5/324 1020 25400 254 10 8 5.41 1.43

vit3 11/4/880 512 18400 15 9 4 5.08 0.13

viterbi 11/34/1372 4100 10700 3120 12 12 17.50 0.48

mkey 258/10/3676 4.31e+68 l.lle+130 1.68e+07 228 24 146.16 17.21

tkey 258/20/3686 4.31e+68 1.06e+124 1.76e+13 228 44 177.83 21.87

key 258/193/3865 4.31e+68 4.31e+68 4.31e+68 228 228 517.85 24.67

Table 1: State Minimization Results

i/o/lits(fac): number of primary inputs and outputs, and literals in factored form

set size: number of states in the initial machine

eq. pairs: number of equivalent state pairs

eq. classes: number of equivalence classes and states after state minimization

regs.: initial number of registers

lower: lower bound on minimum code length for re-encoding reduced machine

CPUl: CPU time for computing the set of equivalent state pairs

CPU2: CPU time for performing state minimization

CPU times reported in seconds on an IBM RS6000 Workstation

16

to find all possible equivalent state pairs. These algorithms were implemented using Berkeley's

BDD package [1] and implicit enumeration package [14]. The set of equivalent state pairs, which

corresponds to an equivalence relation, is represented as a characteristic function in BDD form.

An encoding function that encodes the equivalent states is then derived implicitly using the

compatible projection operator, as described in sections 3.2 and 4. The transition functions of

the reduced machine were accordingly constructed. The number of reduced states after state

minimization is usually much less than the number of states in the initial form. Thus, the reduced

states can potentially be re-encoded with significantly fewer number of state registers.

Table 1 shows the result of the above experiment. Some basic statistics for each benchmark

circuit is shown in the second column. The total number of states for each example is indicated

under the column labeled set size. We quote here the sum of both reachable and unreachable

states. This is because we consider both reachable and unreachable states when deciding state

equivalence. This is more general, but equivalent states analysis for the reachable subset is a trivial

extension. The largest examples are mkey, tkey, and key, each of which has 4.31 x 1068 possible

states. The number of equivalent state pairs computed for each example is indicated under the

column labeled eq. pairs. For the example mkey, there were over 10130 equivalent state pairs.

Using the compatible projection operator, we were able to implicitly compute the number of

equivalence classes corresponding to the equivalence relation and merge all equivalent states in the

finite state machine. The column labeled eq. classes indicates the number of equivalence classes

for each finite state machine example. This is also the number of states after state minimization.

For example, the machine mkey was state minimized from 4.31 x 1068 states to only 1.68 x 107

states. It should be noted that the number of equivalence classes can be in general be the same as

number of states (i.e. no equivalent states), which is exponential in the number of state variables.

Hence, explicit counting of equivalence classes is usually not possible. The relationship between

the number of equivalence classes and the number of states is dependent on the specific example.

Because the number of state patterns after state minimization may be considerably less, it is

possible to encode the reduced states with fewer number of state registers. We give in the column

labeled regs. the number of state registers for each example before state minimization. The lower

bounds on the number of registers to re-encode the reduced state spaces are given under the column

labeled lower. For example, the minimum code length to re-encode the reduced machine tkey is

44 registers, but the original register count was 228.

The CPU times for computing the equivalencerelation using the algorithms described in [11,14]

17

are indicated in the column labeled CPU1, and the CPU times for computing the equivalence

classes (using compatible projection) and performing state reduction are indicated in the last col

umn labeled CPU2. In all cases, the CPU time required for performing symbolic class manipu

lation is relatively modest. In fact, the CPU time for computing the equivalence relation strictly

dominates the overall CPU time of the state minimization process.

6 Conclusion

In this paper, we have provided new core machinery for symbolically manipulating equivalence

relations and classes efficiently. We have shown the relevance of this fundamental concept by

giving examples of applications. We have described the compatible projection operator as a means

for finding a compatible function corresponding to a given relation. A fundamental property of

the compatible projection operator is that the function produced is canonical. In manipulating

equivalence classes, the compatible projection operation implicitly derives an encoding function

that encodes the equivalence class information symbolically. Experimental results demonstrate the

practical importance of the proposed methods. Since we "encode" the equivalence classes with

only log2 N number of variables, where N is the number of equivalence classes, the BDD function

that represents the encoding of the equivalence classes is often very compact. Hence, very large

problem sizes can be handled. The main limitation is the size of the BDD representing the encoding

function. Empirically, we have not found this to be a bottleneck on the problems tested.

References

[1] K.L. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a bdd package. In

Design Automation Conference, June 1990.

[2] R.K. Brayton and F. Somenzi. Minimizationof boolean relations. In International Conference

on Computer-Aided Design, November 1989.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions

on Computers, C-35(8):677-691, August 1986.

[4] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L Dill. Sequential circuit verification using

symbolic model checking. In Design Automation Conference, June 1990.

18

[5] E. Cerny and C. Mauras. Tautology checkingusing cross-controllabilityand cross-observability

relations. In International Conference on Computer-Aided Design, November 1990.

[6] O. Coudert, C. Berthet, and J.C. Madre. Verification of sequential machines using function

vectors. In L.J.M. Claesen, editor, Formal VLSI Correctness Verification. Elsevier Science

Publishers B.V., North Holland Press, 1990.

[7] T. Hwang, R.M. Owens, and M.J. Irwin. Exploiting communication complexity for multi-level

logic synthesis. IEEE Transactions on Computer-Aided Design, 9(10):1017-1027, October

1990.

[8] R.M. Karp. Function decomposition and switching circuit design. Journal of Society of In

dustrial Applied Mathematics, 11(2), June 1963.

[9] Z. Kohavi. Switching and Finite Automata Theory. McGraw Hill, 1978.

[10] B. Lin and F. Somenzi. Minimization of symbolic relations. In International Conference on

Computer-Aided Design, November 1990.

[11] B. Lin, H. J. Touati, and A. R. Newton. Don't care rmnimization of multi-level sequential

logic networks. In International Conference on Computer-Aided Design, November 1990.

[12] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The transduction method: Designof

logic networks based on permissible functions. IEEE Transactions on Computer-Aided Design,

10(10):1404-1424, October 1989.

[13] A. Stolzle. A VLSI wordprocessing subsystem for a real time large vocabulary continuois

speech recognition system. In MS Thesis, September 1989.

[14] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Implicit state

enumeration of finite state machines using bdd's. In International Conference on Computer-

Aided Design, November 1990.

[15] National Bureau of Standards U.S. Department of Commerce. Data encryption standard. In

Federal Information Processing Standards Publication (FIPS PUB 46), January 1977.

19

	Copyright notice1991
	ERL-91-13

