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1. Introduction

There has been a great deal of interest recently in the relative power of on-line and off-line algo

rithms. An on-line algorithm receives a sequence ofrequests and must respond toeach request as soon asit

is received. An off-line algorithm may wait until all requests have been received before determining its

responses. One approach to evaluating anon-line algorithm is tocompare itsperformance with that of the

bestpossible off-line algorithm for the same problem. Thus, given a measure of "profit", theperformance

of an on-line algorithm can be measured by the worst-case ratioof its profit to thatof the optimal off-line

algorithm. This general approach has been applied in a number of contexts, including data structures

[SITa], bin packing [CoGaJo], graphcoloring [GyLe] and thek-server problem [MaMcSl]. Here we apply

it to bipartite matching and show that a simple randomized on-line algorithm achieves the best possible

performance.

2. Problem Statement

Let G(U,V £ ) be a bipartite graph on 2n vertices such that G contains a perfect matching. Let B be

an nx/i matrix representing the structure of GiJjyjE). The rows of B correspond to vertices in U (the

boys) and thecolumns to vertices in V (thegirls); each edge is represented by a 1 in theappropriate posi

tion. We consider the problem ofconstructing a large matching inG(JJy£) on-line. Assume that the girl

tResearch supported by NSF grant ^Research supported by §Research supported byan NSF PYIgrant
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that the size of the matching obtained is maximized. Alternatively, we can view the matching as being

constructed while the matrix is revealed column-by-column. As a convention we will assume that columns

are revealed in the order n,n-l, ••• 1.

The performance of arandomized algorithm A for thistaskis denoted hyp (A) andis defined to be:

p(A) = MIN MIN E[size of matching achieved by A ]
G order of girl vertices

where the expectation is taken over the internal coin flipsof A.

Remark: A greedy algorithm which always matches a girl if possible (to an arbitrarily chosen boyamong

theeligible ones), achieves a maximal matching - and therefore amatching of sizeat least —. On theother

hand an adversary can limit any deterministic algorithm to amatching of size •£: for example, by letting

the first — columns contain allones and the last — columns contain ones only in those rows which are

matched by the deterministic algorithm in the first ^- steps.

Many of the results in the literature of on-linealgorithms concern the performance of randomized on-line

algorithms against an adaptive on-line adversary [BeBoKaTaWi]. In the context of the present problem,

adaptiveness means that the adversary is permitted to specify the matrix column-by-column, and to take

into account, in specifying any given column, the decisions that the randomized algorithm has made in

response to the arrivals of earlier columns. The fact thatthe adversary is on-linemeansthat the adversary

must construct his own perfect matching column-by-column, choosing the row to be matched in each

column at the same time as he specifies the column. An adaptive on-line adversary can limit any random

ized on-line algorithm to a matching of expected size n/2+Oilogn) by choosing the matrix, and his own

perfect matching, as follows: for z=0 ion/2, there is a 1 in position jji-i if and only if row j doesnot lie

in the matching constructed so far by the algorithm, and also does not lie in the matching constructed so far

by the adversary; for his perfect matching, the adversary chooses a 1 in column n-i at random. For

i=n /2+1 to n, there is a 1 in position j jt -i if andonly if row;' does not lie in the matching constructed so
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far bythe adversary; inthis case also, the adversary chooses for his perfect matching arandom 1incolumn

n-i. To show that no randomized algorithm can achieve more than n/2+0(logn) on the average against

this adversary, we argue as follows. First, any non-greedy randomized algorithm can be replaced by a

greedy one that performs at least as well on the average. Secondly, for any greedy algorithm A, let T(A) be

the set of rows that are matched in columns n,n-l,...,n/2+l by both A and the adversary. Then the

expected cardinality of T(A) is 0 (logn), and the size of the matching produced by algorithm A does not

exceed n/2+\T(A) I.

The Ranking Algorithm:

We shall analyze the performance of the following randomized on-line matching algorithm, which

we shall refer to as the RANKING algorithm:

Initialization: Pick a random permutation of the boy vertices - thereby assigning to each boy a random

priority or ranking.

Matching Phase: As eachgirlarrives, match herto theeligible boy (if any)of highestrank.

Remark: At first sight it might appear more natural to analyze the algorithm RANDOM, which picks a

boy at random from among the eligible boys each time a girl arrives. However, RANDOM performs

nearly as poorly as a deterministic greedy algorithm;

it achieves a matching of expected size only —+0(logn) on the following matrix: £i;=l if /=;' or if

—<j<n and \<i<nlly and0 otherwise.RANDOM performs poorlyin thisexamplebecauseit concentrates

too much effort on the dense upper halfof the matrix for the first ^- moves, thereby missing out on the cru-

cialedges in the sparse lower halfof the matrix. RANKING has animplicit self-correcting mechanism that

tends to favor those currently eligible boys whohave been eligible least oftenin the past. It is this feature

of RANKING that allows it to perform well even on graphs where local density considerations are
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misleading.

2. Analysis of the Ranking Algorithm

The Duality Principle:

After the initialization phaseof RANKING, there is anordering onboth theboyandgirlvertices (the

preselected ordering on girls and therandomly chosen ordering on theboys). At this point there is a sym

metry between the boyvertices andthegirl vertices: theperformance ofRANKING remains unchanged if

weinterchange theroles of theboys andgirls by letting theboys arrive according to their ranking andpick

ing the highest ranked eligible girl.

Lemma 1: For any fixed orderings of the boy and girl vertices, the matching pickedduring the matching

phaseofRANKING remains unchanged if therolesof theboyand girlvertices are interchanged.

Proof: The proofis by induction on the number of boysandgirls. Letb be the highest rankedboy,andg,

the highest ranked girl that b has an edge to. Now, if the matching is found from the boys* side, b will be

matched to g in the first step. Also, if the matching is found from the girls' side, the first time that b is eli

gible to be matched is when g arrives; clearly, they are matched at that time. The lemma follows by

removingb and g from the graph, and applying the inductionhypothesis to the remaining graph.

Henceforth we shall regard the columns as ordered from 1 to n with column n having highest rank

and column 1 lowest, and the rows as arriving in random order. As each row arrives it is matched to the

highest ranking available eligible column. Viewing rows asarriving in random ordergives usa newnotion

of time which is crucial to our analysis of the algorithm. Let o(l) • •• o(n) be an ordering of the rows.

By time t we mean the instant ofthe tA row arrival, Le. o(/).

We next give a technical lemma that will be useful at several points. Consider a variant of RANKING



which, as each boy arrives, eithermatches him to the highest ranking eligible girl, or else refusesto match

him at all, even though one or more eligible girls may be available. The rule that determines whether this

algorithm refuses may be quite arbitrary.

Lemma 2: For any fixed orderingof the boys and rankingof the girls,the set of girls matched by RANK

ING is a supersetof the set matchedby any refusal algorithm.

Proof: By induction on L By the induction hypothesis, the setof girls eligible to be matchedat time t+1 by

the refusal algorithm forms a superset of thoseeligible to RANKING. Now, sinceboth algorithms use the

sameranking on the girls, if the refusal algorithm chooses to match a girlwho is alsoeligible forRANK

ING, then RANKING must match her too. Thus, in all cases, the set of girls matched by RANKING

remains a superset of the set matched by the refusal algorithm.

Next, we prove thatwe canassumewJ.o.g. thatthe adjacency matrix B of the graph is upper-triangular.

Lemma 3: The expected size of the matching produced by RANKING is minimum for some upper-

triangular matrix.

Proof: Let B be any matrix. Renumber the rows ofB so that a perfect matching sits on the main diagonal

(i.e. Bd = 1 for /</<n). This renumbering has no effect on the performanceof RANKING, since the rows

arrive in a random order. Let B' be the matrix obtained when all entries of B bebw the main diagonal are

replaced by 0 (Le. B'ij - Bi} if i<j and 0 if i>j). NowRANKING onB' maybe viewed asa refusal algo

rithm on B. Thus, by lemma 2, the expected size of matching obtained by rankingon 2?' is at most as large

ason£. •

Remark: We conjecture that in fact the expected size of matching achieved by RANKING is minimized

by the complete upper-triangular matrix. However, we do not know how to prove this directly. We shall

show a performance guarantee for RANKING that ismatched towithin low order terms by itsperformance

on the complete upper-triangular matrix, thusproving indirectly that this is theworstcase(to within lower

order terms). Proving the conjecture will yield the stronger result that RANKING has the best performance
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guarantee.

Henceforth we will assume that B is upper-triangular, with diagonal entries 1, corresponding to the

unique perfect matching in the graph. Consider the symmetricdifference of this perfect matching with the

maximal matching M produced by RANKING. If \M I =/i/2, each connected component of the sym

metric difference is an augmenting path is of length 3, and no diagonalentries are picked. In this case, for

each i, either row i or column i is matched, but not both. On the other hand, whenever many diagonal ele

ments are chosen or many long augmenting paths occur, there will correspondinglybe a large number of

indices i such that row i and column i are both matched. The idea behind our proof is that, under a random

ordering of the rows, RANKING is likely to yield a large numberof such indices, and hence a largematch

ing.This last implicationis made precisein the following lemma.

Lemma 4: Let B be an nxn upper triangularmatrix with diagonal entries 1. Let M be any matching in

the associated graph such that for each i either row i or column i is matched, and let D={i: row i and

column/ are both matched in M}. Then \M\-—-—

Proof: For each i, either row i or column / is matched, i.e. covered by some edge in Af. ID 1= number of

i such that both row i and column i are covered. Now, the number of vertices covered by M is n+ID I

and the number of edges in Af is —-—.

Corollary: E[\M\] = n/2+V2E[\D\].

H

We will tower-bound £[IAfl] by lower-bounding E[\D\]= I Pr [column i and row i both get
1=1

matched], where the probability is over random row arrivals.

For the purpose of analyzing the performance of RANKING, it isuseful toconsider a modification - the

algorithm EARLY - which refuses to match row i if it arrives after column i has already been matched.

Notice that onthe complete upper-triangular matrix algorithm EARLY isidentical toRANKING.
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Lemma 5: For every ordering of the rows,RANKING produces at leastas large a matching as thatpro

duced by algorithm EARLY.

Proof: This follows from Lemma 2, since EARLY is a refusal algorithm.

We will lower-bound E [ID I] for algorithmEARLY. Algorithm EARLY has the property that row i gets

matched if and only if column i is not already matched whenrow / arrives. In particular, if in someorder

ing column i gets matched at time t and row i arrived at time <J then row i must also get matched

(because, in particular, column i wasavailable for rowi). Index i enters thesetD in precisely thisway.

Definition: Leta beapermutation of the rows, and let a*0 bethe sequence obtained bydeleting i from its

original position in a andmovingit to the lastposition. If EARLY does not match column i under o\ then

defineW(o4) =0. Otherwise, defineW(p4) to be the time atwhichcolumni gets matched underthe per

mutation a0*; if column i remains unmatched under o<,) then define W(ov) =n. Now, define

w}=Pr[W{o4) = t]

n

where a is a random permutation of the rows. Clearly, Pr [column i gets matched] = £ w/. The next
i«=i

lemma shows what fraction of this probability corresponds to the favorable event that column i and row i

both get matched.

Lemma 6: Let W(aJ) = t and t<n. Obtain permutation & from o*'' by moving row i into the /* posi

tion. Then, under o\ EARLY will match row / as well as column i by time f+1, if ;'</, and will not

match row i at all if j>t.

Proof: If j>t then column i will get matchedunder& at time t, beforerow i arrives, so row i will not get

matched. If j<t then thei* column is eligible when row i arrives; therefore EARLY matches row i. Run

ning EARLY on a*0 for t steps can beregarded as arefusal algorithm ona run for t+1 steps. So by lemma

2, the columns matched under a by time t+1 form asuper-set of the columns matched under a*0 by time t;

hence column i gets matched under a by time t+1.
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x> t iLemma 7: Prfrow i and column i both get matched] = £ — h>/.
1=1 n

Proof: Firstly, notice that if W(oy) = n, then row i must have arrived at or before the time when column

i got matched in o\ and hence row i must alsohave gottenmatched. Considerany time f,l^f <n, and con

sider the orderings such thatW(p4) = t. Say thattwo such orderings a andn are equivalent if a*1' =7C(,).

Clearly, each equivalence class hasn orderings, androw i falls in one of the first t positions in / of these.

The proof follows by Lemma 6. D

Let w, = £ wf. ByLemma 6,E[ID I]= £ —w,. Wewill now lower-bound E[ID I]bylower-bounding
i=i 1=1 n

the righthand side. We first present an easyboundestablishing thattheexpectedsize of the matching is at

least (2-V~2)n.

Lemma8: If column i gets matched attime t under a then under a^ column i either remains unmatched,

or gets matched at some time £/-l.

Proof: The algorithm under o*() for the first t-1 steps can beregarded as arefusal algorithm for our algo

rithm run on a for t steps. Now the lemma follows by applying lemma 2.

Definition: Let mt - Pr [some column is matched at time /].

Corollary: £ w. £ £ m..
tit *sr+l

Lemma 9: EARLY produces amatching of size atleast (2-V~2)n onan nxn upper- triangular matrix.

Proof: Let an be the size of matching produced. Then, by Lemmas 3 and 6,

cw^+̂ LAit
2 2n t=i

Since m, <\ and £ wt = an, we see by the corollary to lemma 7 that £ twt is minimized by setting
1=1 »=i

mi =W2= ••• swa.sl, wjss/rti+tf^ and w,=m,+i, />1. Substituting the resulting bound into the

above inequality yields ct> 2-V~2. D
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In Lemma 9, we have made the pessimistic assumption that mt = 1 for l^f<an, which wouldmean

that the firstan rows to arrive all get matched. Thisis, ofcourse, not thecase,since,evenearly in thepro

cess, a row may arrive after its column is already matched Thus the mt 's, and hence also the wt 's, are

spread outin time. Lemma 10makes this observation more precise.

Lemma 10: For all t, m, = 1 Xw*-
n.,,

Proof: Let m\ = Pr [row i occurs at time t and gets matched].

* 1Then clearly m, = £ ml. Now, Pr [row i occurs at time t and does not get matched] = — I wj. i.e. pick
i=i n i<t

a permutation a such that W(<tf) </, and move row i into the t'k place. Therefore, m/= £ wj.
r n n /<»

The lemma follows by summing over i. •

Let an be the expected size of matching produced byEARLY. We needto lower-bound £ twt sub

ject to:

(i). £ wt = an
»=i

(ii). mt = 1 £ w,, and
n *<r

(iii). £ ws < £ mx.
tit " xSr+l

The solution is much simpler if condition (iii) is replaced by condition (iii') below:

(iii)' £ ws < £ m,
tit tit

Also, we will drop condition (ii) for t = n (this does not affect the validity of our bound). Lemma 11 estab

lishes that replacing (iii) by condition (iii)' does not change the desired lower-bound by much. Lemma 12

asserts that, subject to (i), (ii) and (iii)', £ twt is minimized by picking the w$ 's greedily, i.e. by making

each Wi 4=12, • • • in turn as large as possible.

Lemma 11: Let w = (wj ,w2, •• • wH ) be any solution to conditions (i), (ii), and (iii). Then there is a
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solutionx = (xi jc2. '•'**) to conditions (i), (ii)and (iii)* such that theLx normof(w -x) is at most2.

Proof: By conditions (ii) and (iii) we have £ w, £ /+1 £ (t+l-*)w, ...(v). x is obtained from w by
*s» n *s

k t+1

moving one unit from the lowest possible indices to w_. Pick £ such that £ w.- £ 1 and £ w, > 1. Set
i=i i=i

k

Xi = 0 for l<i<k, xk+i = w*+1 - (1- £ wf ) and x* = w-+1. The remaining indices of x are the same as

those of w. Clearly if w satisfies (v), then x satisfies(iv), and the Lt normof (iv - x) is at most 2.

Lemma 12: Subject to conditions (i), (ii) and (iii)* £ twt is minimizedby picking w,- 's greedily.
i=i

-?

ifl)*we have:Proof: By conditions (ii) and (i

(iv) £ w, £ t £ (t-s) ws
sit n t<t

Suppose for contradiction that the w,- 's thatminimize £ twt are not picked greedily according to condi

tions (i) and (iv). Lew be the last time such thatw, is notas large as possible. Let the deficiencyin w, be e.

Increase w, by e, decreasewt+i by e(l+l/n), and increase wH by e/n. The new w,- *ssatisfy (i) and (iv), and

have a smaller £ twt. Contradiction. •
r=l

Remark: The greedy solution resulting from condition (iv) iswt =(1— )r_1.
n

Theorem 1: The performance of algorithm EARLY is n (1—}¥o (n )
e

Proof: By Lemma 10 and 11, it is sufficient to pick w(- 's greedily subject to conditions (i), (ii) and (iii)*.

This yields

Wr=(l-I)'-,,forf=l,2,...:r
n

T

where T is such that £ wt = an. Substituting forwt andsolving forT yields T£ -n ln(l-a).
r=i

Let(1—) =6. Then, Gr =1-a. Now,
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«=i 1=1 (1-0)

n2(aKl-a)ln(l-a))

Substituting thisintoourlower-bound of n12 + E[ IDI] onthesizeof thematching yields:

n 1 T
an£-J + -^- £ nv,

2 2n 1=1

*f+y(a+(l-a)ln(l-a))

This gives (a-1) £ (l-a)ln(/-a)

Thus c£(l-—). D
e

Remark: A simple consequence of ourproofis that,ifRANKING is applied toa nxn matrix B for which

the size of the maximummatchingis m<n, then the expected size of the matching producedby RANKING

is at least (1—)m + o (m ).
e

3. Bounding the Performance of Any On-Line Algorithm

In this section we will show that RANKING is optimal,up to lower order terms.

Theorem 2: The performance of any on-line bipartite matchingalgorithm is < n (1—) + o(n).
e

Let T be the nxn complete upper-triangular matrix. As before, we assume that the columns of T

arrive in theorder n»n-l,..., 1. BythekA column arrival we mean thearrival ofcolumn number n-k+l.

Consider the algorithm RANDOM, which matcheseach column to a randomly chosen eligible row.

Definition: Let T be the nxn completeupper-triangular matrix. Witheverypermutation non{l, • • • n}

associate a problem instance (7*,jr), where the adjacency matrix is obtained by permuting the rows of T

under tc, and thecolumns arrive in theorder n,n-l, ••• 1. LetP denote theuniform probability distribu

tion over these n! instances.
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Lemma 13: Let A be a deterministic on-line algorithm that is 'greedy' in the sense that it never leaves a

column unmatched if there is an eligible row. Then, the expected size of matching produced by A when

given an instance (T,ri) from P is the same as the expected size of matchingproducedby RANDOM on T.

Proof: The lemma follows from the two claims listed below, which may be proved by a straightforward

induction on time:

1. ForalgorithmA on (T,jc), as well as for RANDOM on 7, if therearek eligible rows at time t, then they

areequally likely to be any set ofk rows from among the firstn -f+1 rows of T.

2. For each k, the probability that there are k eligible rows at time t is the same for RANDOM run on T as

it is for A run on (T,n). D

Lemma 14: The performance of any on-line matching algorithm is upperbounded by the expected size of

matching produced by the algorithm RANDOM on the complete upper-triangular matrix.

Proof: Let E [R (Ttn)] denote the expected size of matchingproduced by the given randomized on-line

algorithm,and let E [A(P)] denote the expected size of matching produced by a deterministic algorithm A

when given an input from distribution P. By Yao*s lemma [Ya],

min{E [R (Tjz))} Smax{E [A(P)1/.
JC A

where the maximum is over all deterministic algorithms. W.l.o.g. the best deterministic algorithm is

greedy (by simulating A, and matching the current column to the row matched by A, if the row is avail

able, and to an arbitrary eligible row otherwise). The proof follows from Lemma 13. D

Lemma 16: The expected size of matching produced by algorithmRANDOM on T is n (1—) + o(n).
e

Proof: The proof rests on the following crucial observation made in Lemma 13: given that there are /

rows still eligible at the*rt arrival column, they are equally likely to beanysetof / rows from among the

firstn-Jfc+lrowsofr.

Let the random variable x«(f) represent the number of rows stilleligibleafter t columns have been

processed. Let Ax„ =x* (f+1) - x„ (f). Then Ax, = is-2 if the diagonal entry in the f+1* column was eli-
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gible but was not matched, and -1 otherwise. Using the fact that the set ofeligible rows israndomly chosen

from among the first n-t:

prA . . xH(t) xm(t)-l M xH(t)-l
E[ArJ =-1- — (!) =-1- —3~.

n—/ x„ n—t

l*LJm(t>*m(!yi-

*<0
Therefore E [Ay,] = -1-

n-t

This suggests that with high probability, the random variable y„(/) should be closely approximated by the

solution of the differential equation:

<ty* = ym(t)
dt n-t '

with the initial condition yn(0)=n-1.

This is rigorously justified by [Ku] Theorem 4.7, page 58. Applied to our particular case, this theorem

yields the following conclusion: let YH(t)be the solution to the above differential equation. Then for every

5>0the

KmP{sup\YH(t}-yH(t)\>5n}=0
*-»— tin

I, ^^1 mm f

Solving the differential equation, we find that YH(t)=(n-t)( i-ln—-). Let t* be the value of t for
n n

which yH(t) becomes 0.Equivalentiy, t* is within one of the size of the matching produced by the algo

rithm RANDOM. From Kurtz's theorem we have that with probability tending to 1asn tends to infinity,

Yn('*)<3ft •Substituting into the solution ofthe differential equation we find after some manipulations that

this inequality implies the following:

Since for every 5, this inequality holds with probability tending to one, we can conclude that the expected

size ofmatching produced is n(1—) + o(n ).
e
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Remark: 1) There is an interestingalternative description of the behavior of Algorithm RANDOM on T.

In this description, the algorithm begins by specifying a random permutation o^=(a(l), a(2),..., a(n)) of

{1,2,..., nj. Then, as each column n-i arrives, RANDOM matches that column with row x, where x is the

first element of a which has not previously been matched and is less than or equal to n-i. It is easy to see

that this is a faithful description of RANDOM, and as a consequence, the following two random variables

have the same distribution:

(i) the size of the matchingproduced by RANDOM on T;

(ii) the length of the longest subsequence ofa random permutation such that, for allk, the k* element of

the subsequence is greater than or equal to k. Thus, as a byproduct of Lemma 13 we obtain the interesting

combinatorial result that the expectation of this latter random variable is n (1—)+o (n).
e

2). It is easy to show that the expected size of matching produced by RANDOM and RANKING is the

same on T. So, proving the conjecture that T is the worstmatrix for RANKING togetherwithLemmas 13

and 14 will show that RANKING is the best possible on-line bipartite matching algorithm.

4. Open Questions:

1.Is the complete upper-triangular matrix the worst-case input for RANKING?

2. IsRANKING anoptimal on-line matching algorithm inthe non-bipartite case?
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