Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PRESERVING DON’T CARE CONDITIONS
DURING RETIMING

by

Ellen M. Sentovich and Robert K. Brayton

Memorandum No. UCB/ERL M91/2

15 January 1991

PRESERVING DON'T CARE CONDITIONS
DURING RETIMING

by

Ellen M. Sentovich and Robert K. Brayton

Memorandum No. UCB/ERL M91/2

15 January 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

PRESERVING DON’T CARE CONDITIONS
DURING RETIMING

by

Ellen M. Sentovich and Robert K. Brayton

Memorandum No. UCB/ERL M91/2

15 January 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Preserving Don’t Care Conditions During Retiming

Ellen M. Sentovich and Robert K. Brayton
Department of Electrical Engineering and Computer Science
University of California, Berkeley, CA 94720

Abstract

The use of computed “don’t care™ conditions during combinational logic optimization has been shown to be effective
in producing smaller circuit implementations. Combinational optimization techniques can be applied in the same fashion to
the combinational logic blocks between registers in sequential circuits. Don't care conditions may be specified by the user,
computed from the structure of the circuit, or, in the case of sequential circuits, extracted from a given, corresponding state
transition graph (STG) of the sequential circuit. These conditions may be time-consuming to recompute, or impossible to
re-extract if the information is invalidated by a subsequent modification of the circuit. For this reason, it is important to be
able to preserve the don’t care information during the application of optimization algorithms. Retiming is a technique in
which the cycle time or the number of registers is minimized by determining optimal register positions while preserving the
behavior of the circuit. The structure of the logic is unchanged while the registers are moved, making it possible to preserve
the don't care information across a retiming operation. While not all the don’t care information can be retained, in this paper,
a method for preserving the maximal subset of the don't care conditions during retiming is proposed.

1 Introduction

Recently, sequential circuit optimization has emerged as an important problem in logic synthesis. The techniques used in
the more well-understood combinational logic synthesis domain can be applied directly to the combinational logic blocks
between registers in a sequential circuit. One such technique is the use of “don’t care” information during boolean function
simplification {1, 8]. Don’t care conditions can be specified externally by the user or computed from the structure of a multi-
level network which represents the circuit of interest. These conditions are stored as functions of the inputs and the internal
nodes of a combinational logic network, and used to simplify the two-level boolean functions at each node of the multi-level
network. The don’tcare functions associated with a multi-level network can be large and expensive to compute [7), making it
desirable to preserve the computed functions after a modification to the network has been made. In addition, the user-specified
don’t care conditions are impossible to recompute after a modification, and hence it is imperative that this type of don’t care
is preserved as much as possible. Recently, work has been done to characterize the effects that modifications to a network
representing a combinational logic circuit have on the don’t care functions that arise from the structure of the network, so that
their complete recomputation can be avoided whenever possible [5]. The problem of preserving don’t care functions during
the application of sequential optimization techniques has not been explored thus far.

Retiming [3, 4] is an operation on a sequential circuit that determines optimal positions for the registers within the circuit
such that the cycle time or number of registers is minimized. While the logic functions at each node in the network are
unchanged during retiming, the logic blocks, which are composed of interconnected logic nodes between registers and can be
thought of as individual combinational logic networks separated by registers, are modified as the register positions change.
The set of input and output signals to each block change as the registers at their boundaries are shifted. As a result, preserving
the don’t care information requires operations involving the inputs and outputs of the block: the don’t care functions within
the block must be re-expressed in terms of the new inputs to the block, and don’t care information for the new outputs must
be computed based on the don’t care information for the old outputs before the old outputs are shifted to a new block and
this information is lost. These two operations represent the minimum amount of computation that must be done to preserve
the existing don’t care information. While the don’t care information might not be complete for each node following these
operations (e.g., the new information at the outputs may need to be propagated back through the network), the complete set
of don’t care conditions can be computed from the preserved information in the block.

(b) Circuit Graph

Figure 1: Sequential Circuit Representation

In the sequel, a method is proposed for maximally preserving the don’t care information across a retiming operation. In
Section 2, some basic definitions are given involving sequential circuits and boolean functions. The formulation for preserving
the don’t cares is developed in Section 3, and the current directions for this work given in Section 4.

2 Background

A sequential circuit is modeled by a directed graph where each vertex i represents either
a) a primary inputz; (i = 1,...,p)
b) a primary output z; (i = 1,...,p) or
¢) a variable y; and a representation F; of a logic function (i = 1,...,m).

An edge connects vertex < to vertex j if the function associated with vertex j, F; depends explicitly on the variable y;. Each
edge e has a nonnegative integer label w(e) representing the number of registers between the two logic gates itconnects. Each
cycle in the graph must contain at least one edge of strictly positive weight (this restriction is placed to model synchronous
circuits only, thereby avoiding asynchronous problems such as race conditions). A sequential circuit is shown in Figure 1(a),

with its graph in Figure 1(b). The terms circuit, network, and graph are used interchangeably whenever there is no ambiguity,
as are the terms node and vertex.

2.1 Retiming

Retiming is an operation on a sequential circuit whereby registers are moved across logic gates in order to minimize the clock
cycle or the number of registers while maintaining the behavior of the circuit. Retiming algorithms were first proposed by
Leiserson et al [3, 4]. The movement of registers can be quantified by an integer r(v) for each vertex v, which represents the
number of registers that are to be moved in the graph from each out-edge of vertex v to each of its in-edges. The resulting
edge weight for an edge from vertex u to vertex v is wy(e) = w(e) + r(v) — r(u).

A legal retiming is the assignment of an integer »(v) to each vertex such that the resulting edge weightsare all nonnegative.
A legal retiming has been proven to generate a circuit that is functionally equivalent to the original circuit (3]. The circuit
shown in Figure 1 can be retimed by selecting r(F3) = —1 and »(v) = 0 for all other vertices. The resulting retimed circuit
is shown in Figure 2.

In [4] the external interface to a synchronous circuit is modeled by a single node called the host node (va), to which all
inputs and outputs are connected. While any legal retiming may have r(vy) # 0 (implying a change in the external interface
which is not allowed), all legal retimings with r(vs) # 0 have equivalent legal retimings with »(v,) = 0. For example,

X F
1 >Cy‘

2 %
2

(a) Retimed Circuit

(b) Retimed Graph

Figure 2: Retimed Sequential Circuit

the graph in Figure 3(a) can be retimed to produce that of Figure 3(b) by either assigning ~(v,) = 1 and »(F,) = 0 or by
equivalently assigning r(vn) = 0 and r(F,) = —1. In this paper, a retiming is always assumed to be a legal retiming with
»(v) = 0 for all vertices v that represent I/O pins.

During a legal retiming, the registers move in a limited fashion. Lemma 1 in [4] asserts that w, (p) = w(p) + r(v) — r(u),
where p is a path from u to v in the circuit, and w(p) is the sum of the edge weights along that path. Since r(v) = 0 for all
I/O pins, the weight of each path from an input pin to an output pin is unchanged during retiming. Given a particular circuit
with its associated retiming, a register on a particular path can be mapped to a new position on that path in the retimed circuit
because the total path weight is unchanged during retiming. As a result, each register in the circuit can be thought of as having
moved backward (to some edge in its transitive fanin) or forward (to some edge in its transitive fanout). This classification
of the movement of registers during retiming is essential to the method for preserving don’t cares across retiming presented
in Section 3.

2.2 Don’t Care Sets

Three different types of don’t care sets have been introduced for multi-level logic optimization [1]:

External DC set is comprised of user-specified don’t care conditions, such as input combinations that never occur, or input
combinations that occur but are not important or have no effect on the outputs. In general, each output j may have a
differentexternal DC set, denoted by d;. A property of the external don’tcare set, not often explicitly stated but assumed
by logic optimization programs, is that each don’t care for each output must remain a don’t care independent of how
the other don’t cares at other outputs are used. This arises from the way this information is used in logic optimization.
A set of don’t care functions is called “compatible” if it has this independence property.

Satisfiability DC set (SDC) arises because variables at the intermediate vertices of the graph are not independent of the
primary inputs, and represents all the inconsistent conditions in the network. The SDC is given by the following
equation:

SDC = i(yi #F)= i(ﬂ.‘Fi + 4% F)

=1 i=1

Observability DC set (ODC) is defined for each vertex . It is derived by looking at the fanout of the variable y; and
seeing how specifically y; is used. In [6), two sets based on observability don’t care conditions were defined: MSPF’s
(maximum sets of permissible functions), which include for each node the on-set of the node function and the largest
possible set of observability don’t cares for that node, and CSPF’s (compatible sets of permissible functions), which
include the on-set of the node function and a maximal set of compatible observability don’t cares for that node, which

0
(a)
r(vh)=1,r(F1)=0
retime or
TV =0,r(Fy)=-1
0

1
(b)

Figure 3: Any legal retiming can be specified with r(vy) = 0

means that the don’t cares can be used simultaneously in simplifying all the nodes without the need for recomputing
the don’t cares at any other nodes. These ideas were extended in [8], applied to general multi-level networks, and
algorithms for computing a maximal set of CSPF’s were given. Beginning at the outputs with the external don’tcares

and working towards the inputs, CSPF’s are computed at each node and can be used in the simplification of that node
simultaneously with simplifying other nodes.

2.3 Smoothing, Consensus and Observability

The smoothing operator S for a boolean function f is defined as follows:

Sz.f = fz + fz

where f; is the function f evaluated at ¢ = 1 (which is the cofactor of f with respect to z, and is sometimes denoted f |,_,),
and f; is the function f evaluated at z = 0 (the cofactor of f with respect to). The smoothing operator can be interpreted
as producing a function that is 1 when f is 1 for either value of z; that is, S f is a function that is 1 whenever there exists a
value of = such that f is true (i.e., it is the existential quantifier). It is the minimum set containing f and independent of z.
Smoothing a function f with respect to a set of inputs I = {z, y, z} is denoted Sz S, S, f or simply, S f.

The consensus operator C for a boolean function f is defined as follows:

czf =fz 'fé

The consensus operator can be interpreted as producing a function that is 1 when £ is 1 for both values of = (i.e., it is the
universal quantifier). It represents the maximum set contained by f and independent of z. Taking the consensus of a function
f with respect to a set of inputs I = {=, y, z} is denoted C.C,C; f or simply, C; f.

An input signal z to a particular gate f is said to be observable at f if %1;- = 1, where

6f

E:

That is, the signal x is observable at f if setting to 1 gives a different result at f than setting z t0 0.

fs@fé

(a) Original Circuit

X2

(b) Retimed Circuit

Figure 4: Logic Block View of a Sequential Circuit

3 Preserving Don’t Cares after Retiming

A sequential circuit can be viewed as a set of combinational logic blocks separated by registers. The inputs to each block
are primary inputs of the circuit and some register outputs, and the outputs of each block are primary outputs of the circuit
and some register inputs. The don’t care function for each node in a particular block, if it has been computed, is expressed
in terms of the inputs to the block and internal logic nodes within the block. The logic block view of the sequential circuit
in Figure 1(a) is shown in Figure 4(a). The block C| has as inputs the primary inputs z, and z,, and outputs the signals y,
and y, which are register inputs. The don’t care functions for the nodes in block C; will depend on z,, z2, and the internally
generated signals y; and y,.

After the circuit is retimed, the registers acting as boundaries of the block may have been moved forward or backward
(the new position of a register in a retimed circuit is on an edge in the transitive fanin or the transitive fanout of the original
register position, see Section 2 for an explanation). As a result, the block has different inputs and outputs, and the don’t care
functions within the block must be updated to reflect this change.

If the registers at the outputs of the block have been moved forward, the block contains new internal nodes and outputs,
and the don’t care functions for these new nodes should be updated before the nodes are simplified. These new nodes bring
with them don’t care functions from their previous block which should be updated to include don’t care information from the
current block. For example, if the circuit represented in Figure 4(a) is retimed to produce that in Figure 4(b) in which the
two registers have been moved forward across block C;, the node F; becomes a new node of block C). It has a don’t care
function from block C'; which can be augmented by propagating don’t care information forward from the nodes in block C.
If the registers at the outputs have been moved backward, internal nodes within the block become new outputs, and don’t
care information from the old outputs in addition to don’t cares based on structural information between the old outputs and
new outputs must be passed to the new outputs before the old outputs become part of a different logic block. If the circuit
represented in Figure 4(b) is retimed to produce that in Figure 4(a), the register is moved back across node F3 and the block
C) has new outputs, signals y; and y,. Don’t care information from node F; should be propagated back to nodes F; and F,
before node F; becomes a part of block C: and block C) loses access to that information.

If the registers at the inputs of a block are moved, the don’t care functions at each node within the block must be re-
expressed in terms of the new input signals. In addition, the don’t care functions for the nodes that change blocks must be
updated. If the registers at the inputs to a block are moved backward, new nodes become part of the block, and the don’t care
functions for these nodes should be updated before they are simplified. These new nodes have don’t care functions that are
based on information from the previous block; the functions should be augmented with information from the current block.
Similarly, if the registers at the inputs are moved forward, some nodes are shifted out of the block. Don't care information for
these nodes should be computed based on information from the current block before the nodes are shifted to the next block.

Thus, there are two operations needed for updating the don’t care information in a block: re-expressing the don’t care
functions in the block in terms of the new inputs, and propagating don’t care functions between nodes within a block.

retime

Figure 5: Inputs change as the register moves backward

retime

Figure 6: Inputs change as the registers move forward

3.1 Re-expressing Don’t Care Functions

If the registers at the inputs to a particular block are moved, the don’t care functions within that block must be re-expressed
in terms of the new inputs so these functions can be used in a meaningful way by the node simplification algorithm. This
function re-expression operation can be divided into two cases: one in which the registers are moved backward, and one in
which the registers are moved forward.

If the registers are moved backward, the old inputs become internal nodes. The node simplification algorithm may allow
the don’t care functions to be expressed in terms of internal nodes, in which case no modification is necessary. (In MIS [2],
the SDC is used in tandem with the ODC and external don’t cares during node simplification, so there is no need to express the
don’tcares in terms of inputs to the logic block.) If the node simplification algorithm requires that the don’t cares be functions
of the primary inputs, some modification must be made. When the registers move backward, the old inputs are functions of
the new inputs and the don’t care functions can be re-expressed by collapsing the logic between the old and new inputs. This
operation is illustrated by the circuit represented in Figure 5. The don’t care function for node F, is expressed as dp, =).
If node F, is retimed to move the register to its inputs, #(F) = 1, then the don’t care function at node F3, dr, = §i, can be
re-expressed as dp, = ab = a + b.

The case in which the registers at the inputs are moved forward requires more consideration. The don’t care functions
must be re-expressed in terms of the new inputs, which are functions of the old inputs. For example, in the circuit represented
in Figure 6, node Fj is retimed to move the registers from its inputs to its output, (#,) = —1. The function dr, must be
expressed in terms of y, rather than a and b, since a and b are no longer inputs to the block containing F5.

This re-expression problem can be formulated in a more general way (see Figure 7). Given a function f, with inputs
S ={s1,9,...,8m}and T = {t;,13,..., 1}, and a set of functions represented by the signals Y = {y1,¥2,- . ., ¥p}, which
are each functions of S, the problem is to express f as a function of the signals in Y and T, that is:

Given: f(S,T) and Y (S)
Determine: frew (Y, T)

t
t, 2

Figure 7: Re-expressing a Function

y

N f IR EAR
0 0/o0o o0 o1
o 1|1 o 1]1
1 0|1 0 1]o
1 1]0 1 1]o0

S Sy St %

Figure 8: Example: Re-expressing f in terms of ¥y, y2, ¥3

In relation to retiming, the signals in S represent all the register outputs for the registers that have been moved forward while
the signals in T represent primary inputs to the block or register outputs for registers that have not been moved or have been
moved backward. The signals in Y represent the new positions of the registers that have been moved forward.

In general, a function f,., which behaves identically to the function f may not exist because the information carried
by the signals in S may not be completely captured by the signals in Y, i.e., there is not, in general, a one-to-one mapping
from the information carried by the signals S to the information carried by the signals Y. The construction of fp., for re-
expressing the don’t care function f involves retaining the maximal amount of information from f and including information
obtained from the SDC set for the signalsin Y as a function of S. Let SDCy be the SDC for the signals in Y':

SDCy =yi-fpu+ih - fu+w - fpu+h - fut+. ...t - fo, 8- fy,

Then f,w is constructed as follows:
fnew =CS (f+SDCY) (l)

The consensus produces the maximal subset of f + SDCy that is independent of S. The conditionson Y thatset fr.y, to 1
are those that set f + SDCy to 1 for all values of S. This conservative approach to constructing fp.., may result in the loss
of some don’t care conditions as the next example illustrates. Note that the loss of the don’t care conditions is inherent to the
problem; the loss is due to the fact that the signals in S carry more information than the signals in Y, and is not due to some
limitation of this method for re-expressing the functions.

An example of this computation is given in in Figure 8, where the functionality of the circuit is given by a truth table. The
goal is to represent f in terms of y;, Y2, and y; rather than s, and s,. In this example, yy = sy @ 52, ¥2 = 8152, Y3 = 51 + 32,
and f = 3,. fnew is computed from Equation 1 as

fnew =nntihih+i

Some of the conditions in f,.,, arise from the SDC alone, and correspond to combinations of the Y values that can never
occur: Yi1Y2, 1 %293, %1%283, and y1527%3. One condition arises from the function f: 7, 9,%s. Finally, note that the condition

Given: d Y, ,d Y, ,dyp

d¢ =77

Y4 Y
Y5 P
Figure 9: Propagating Don’t Cares Forward

Y152y is not included in f,..,. This condition evaluates to 1 in f for one assignment of values to S, but evaluates to 0 in
f for another assignment of values to S, where both assignments produce the same assignment for Y. When f is a don’t
care function, the conservative approach is taken which includes assignments to Y in f,.,, only if such assignments are don’t
cares in f for all corresponding assignments to S.

3.2 Propagating Don’t Care Functions

As theregisters are moved during a retiming operation, the structure of the logic blocks change, causing some nodes to become
partof a new block. Such nodes may not have don’t care functions associated with them, in which case these functions should
be computed based on the other don’t care functions in the block before the nodes are moved to other blocks. Once they are
in their new blocks, the don’t care functions should be augmented with don’t care information from the new blocks. This is
done by propagating don’t care information either forward or backward within the block to the nodes of interest.

3.2.1 Propagating Don’t Cares Backward

Techniques for propagating don’t care information backward, that is, from a node to its fanin nodes, have been developed in
[8]. In the algorithm described in that paper, the computation begins with external don’t care information expressed for the
outputs, and propagates that information, along with observability don’t care information extracted during the computation,
backward to the primary inputs. In (8], two formulae were given: one for propagating don’t cares from the output of a node
to each of its inputs, and another for computing the don’t cares of the node based on the don’t cares of all of its fanout nodes.
Those formulae were proven to generate maximal compatible observability don’t cares. It is important that these functions
are compatible, so that they can be used simultaneously during node simplification.

The same computation as that given in [8] can be used to propagate don’t care information backward after retiming,
Furthermore, the fact that they are maximal and compatible implies that after retiming, the don’t cares obtained can still be
simultaneously used during node simplification, and that after retiming, the maximal don’t care set with respect to the don’t
cares given for the unretimed circuit and such that the don’t cares are still compatible, has been retained.

3.2.2 Propagating Don’t Cares Forward

The problem of propagating don’t care information forward is illustrated in Figure 9. In that network, f is a function of
Y1,¥2...,Yp. The don’t care functions are known for the functions »; and denoted dy;, and the task is to compute an
appropriate don’t care function for f.

A don’t care condition for f arises for a particular variable assignment in the network if that assignment produces the
value 0(1) for f, while the same assignment, modified in such a way that the new assignment is in the don’t care set, produces
the value 1(0) for f. Anexample is illustrated in Figure 10. Suppose the don’t care function at ys is dy; = ¥172. In that case,
the cube y;%2y3y4 is a don’t care for f: y1F2y3ys results in ys = 0, yg = 1, and f = 0, and since y, %, is a don’t care for ys,
the value 1 can be assigned to ys in which case f = 1.

Y Yo Yy Vs

Figure 10: Example: Propagating Don’t Care Functions Forward

The don’t care function for a node is computed based on the the don’t care functions at its inputs and the observability
of the inputs. Therefore, the following definition of an observable set will aid in developing a formula for propagating don’t
cares forward.

Definition 1 Let f be a Boolean functionof n input variablesinthesetY = y1,¥2,...,yn.andlety' = [y1,v2,...,yn) € B®
be some assignment of values to the input variables (f(y') € B). Let G be a subset of Y, G C Y, g' an assignment to the
variables in G, H be the complement of G, H = Y — G, and h an assignment to the variables in H. G is an observable
set with respect to f if and only if

3¢ g, W st. f(g', 1) £ £(g,h¥)

hK is the condition under which the set is observable. The following Lemma makes use of Definition 1.

Lemmal GivenY =y, v2,...,Yn, the set gf input variables for a function f, and G, a subset of Y, G is an observable set
at f under the conditions given by Sgf - Sg f.

Proof. By definition, Sg f gives the conditions under which there exists an assignment to the variables in G such that f = 1,

i.e. it gives the conditions, hist 3 gl, f(gl, hi) = 1. Similarly, S¢ f gives the conditions under which there exists an
assignment to the variables in G such that f = 0. The product of the two smoothing terms gives the conditions on the
variables not in G such that there exists an assignment to the variables in G that sets f to 1, and another assignment to the
variables in G that sets f to 0. By definition, each condition in Sg f - Sg f is a condition under which G is an observable set
at f. o
In fact, it can be shown that the observability condition given in Section 2 applied to several inputs of the function f also
generates conditions under which a set is observable, and is a subset of the conditions given by Lemma 1.

Corollary 1 Let Y be a set of elements, Y = {y1,%2,...,Yn}, in which each element y; represents a boolean variable in the
Sunction f. Then

Sef-Sef2 ol @)
6y16y2- - - 6yn
and hence W%I-JT generates conditions under which the set Y is observable.
Proof. See Appendix. o

The don’t care conditions can be moved forward across a node according to the following theorem.

Theorem 1 Given a Boolean function f, with n inputs,Y = w1,%2,...,¥n, €ach with associated don’t care conditions,
D = dy,,dy,,...,dy,, the maximal don’t care function for f based only on the don’t care conditions at the inputs, d s, can

be expressed as

df = E H dy | (Saf - Scf) (3)

GCY \geq

Proof. The proof has two parts: first it must be shown that all the conditions produced by Equation 3 are don’tcare conditions
for f, and second, that this set of don’tcares is maximal. For the first part, note that each term in the summation of Equation 3
is comprised of the intersection of don’t care conditions that are common to a subset of input signals with the conditions under
which that subset is an observable set with respect to f. Each of the resulting conditions can be considered a don’t care for
f because 1) the don’t care condition at the set of inputs, [] gec 9y allows any assignment of values to those inputs, and 2)
the observability set condition Sg f - Sg f guarantees that there exists two assignments to g, one thatresults in f = 1 and the
other that results in f = 0. To prove that the set of don’t cares produced is maximal, suppose there is a don’t care condition
don f thatis not included in Equation 3. d must arise from one or more of the input don’t cares d.,, since that is the only
don’t care information given about the circuit for this problem (the function f may be embedded in a larger circuit giving
rise to don’tcares based on this structure, but these need not be considered for the problem of simply propagating don’t cares
forward). d also must be observable at the output f in order to be a don’tcare for f. Finally, regardless of which input(s) the
don’t care condition arises from, it will be transferred to f provided it is both observable and contained in some subset of the
inputs. Therefore, d must be contained by d;. o

Equation 3 can only be applied when the given don’t cares at the inputs are CSPF’s. The reason for this is that the don’t
cares at the inputs are used simultaneously in the computation of Equation 3. When using MSPF’s, the don’t care functions
can only be used one at a time, and the remaining don’t care functions must be updated after using a particular don't care
function during simplification. For example, suppose f = y3,. the CSPF calculation would yield dy, = #,, dy, = 0¥,
while the MSPF calculation would yield dy, = §2, dy, = #;. Applying Equation 3 using CSPF’s produces d; = 0, while
using MSPF’s produces dy = §;9 (which is erroneous because there is no condition in either the specification or the structure
that indicates that 3 7, should be a don’t care for f).

Considering all inputs together, note that

Syf-Syf = 1lif fZlandf#0
= 0if f=lorf=0

This illustrates the one case in which some don’t care information is lost when applying Equation 3. Consider a function
f which is identically 1 (or identically 0), and suppose that it has a don’t care function, d ¢, which has been computed by
propagating CSPF’s backward from the output nodes to that node. The CSPF’s for the inputs to node f will all contain the
functiond;. If the don’t care information at the inputs is now propagated forward to the output f, this don’t care information
will be lost. Equation 3 produces 0 whenever f is 0 or 1 (because there is no assignment that sets f to the opposite value). As a
result, don’t care information can be lost when f is a constant function, but this information is also not important for a constant
function since the node simplification algorithm should be able to detect that it is a constant, and simplify it accordingly.

For the circuit in Figure 10,

dy = dy (Sysf ' Sy!f) + dy, (Syef 2 Syef-) + dy,dy, (Syssysf . Sys‘sye-f)
= ui92 (Sys (Wsve) - Sys (Fs +)
= N
= Y123V

4 Conclusions

A method has been proposed for preserving a maximal set of don’t care conditions across a retiming operation on a sequential
circuit. Thus far, the problem of preserving such conditions across retiming has not been addressed in the literature, and hence
has been identified as a new problem. In addition, it is important that the proposed don’t care sets are maximal since these
don’t cares are beneficial in subsequent synthesis algorithms, and since some don’t care conditions cannot be recomputed
once they are lost.

10

The methods given are currently being implemented and tested, and a suitable method for evaluating these techniques is
being investigated. Certainly, better results will be obtained for retaining don’t care information and using it during subsequent
operations than not retaining it; simply generating a table of benchmark circuits with resulting literal counts would not provide
any insight into the applicability of these methods. A more appropriate investigation would involve determining how much
of the don’t care set is lost after retiming, and how much this lost portion can affect the final implementation. These issues,
as well as further exploration of the sources of sequential don’t cares, are being investigated.

As a by-product of the technique proposed in this paper, a method was discovered for moving don’t care conditions
forward in a network (methods for moving them backward are already known, and given in, e.g., [8]). As a result, don’t
care conditions may be specified for any portion of a sequential circuit, and propagated both forward and backward to other
parts of the circuit. Don’t cares can be moved across latches by adjusting the don’t care conditions appropriately (i.e., given
don’t cares on latch outputs that are functions of other latch outputs and primary inputs, such conditions can be transferred
to the latch inputs after taking the consensus of the don’t care functions with respect to the primary inputs; the consensus
will produce the maximal subset of the don’t care function that is independent of the primary inputs). One issue that is
being explored is the relationship of the don’t cares produced by simply sweeping through the network and computing the
observability don’t cares, and those produced by sweeping both backward and forward through the network. In both cases,
some external don’t cares may be given for some parts of the network.

Some work has been done on computing the new initial state of a retimed circuit [9]. This work is based on extracting
a portion of the state transition graph for a sequential circuit to determine a single state that is equivalent to the initial state
in the unretimed circuit. The techniques proposed in this paper can be extended slightly to recompute the initial state. In
particular, an initial state, or a set of initial states, is expressed in terms of the latch outputs in the circuit (similar to the don’t
care functions, which are expressed in terms of the latch outputs and the primary inputs). The techniques presented in this
paper can be extended to generate a new set of initial states given the initial states for the unretimed circuit.

In the complete paper, an outline for the algorithm for applying these methods will be given. Conclusions will be drawn
about the trade-offs between retiming existing don’t care conditions and completely recomputing the don’t cares, as well as
about the limitations of retiming don’t cares in-terms of losing some don’t care conditions.

References

(1] Karen A. Bartlett, Robert K. Brayton, Gary D. Hachtel, Reily M. Jacoby, Christopher R. Morrison, Richard L. Rudell,
Alberto Sangiovanni-Vincentelli, and Albert R. Wang. Multilevel Logic Minimization Using Implicit Don’t Cares. [EEE
Transactions on Computer-Aided Design, 7(6):723-740, June 1988.

[2] Robert K. Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Albert R. Wang. MIS: A Multiple-Level Logic
Optimization System. /[EEE Transactions on Computer-Aided Design, CAD-6(6):1062-1081, November 1987.

(3] C.E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems. Journal of VLSI and Computer Systems, 1(1):41-67,
Spring 1983.

[4] C. E. Leiserson and J. B. Saxe. Retiming Synchronous Circuitry. In TM 372, MITILCS, 545 Technology Square, Cam-
bridge, Massachusetts 02139, October 1988.

(5] Patrick McGeer and Robert K. Brayton. Consistency and Observability Invariance in Multi-Level Logic Synthesis. In
Proceedings of the International Conference on Computer-Aided Design, pages 426-429, November 1989.

[6] S.Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The Transduction Method - Design of Logic Networks Based
on Permissible Functions. In /EEE Transactions on Computers, October 1989.

[7] Alexander Saldanha, Albert Wang, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. Multi-Level Logic Sim-
plification using Don’t Cares and Filters. In Proceedings of the Design Automation Conference, pages 277-282, 1989.

(8] Hamid Savoj and Robert K. Brayton. The Use of Observability and External Don’t Cares for the Simplification of Multi-
Level Networks. In Proceedings of the Design Automation Conference, pages 297-301, 1990.

(9] Herve Touati and Robert Brayton. Computing the Initial States of Retimed Circuits. Unpublished Manuscript.

11

Appendix

Theorem 2 Let Y be a set of elements, Y = {y1,2,...,Yn}, in which each element y; represents a boolean variable in the
function f. Then
nf

Syf-Syf —m ™ ————— 4
vf-Svf2 T S . (4)
Proof. The proof is constructed using induction on the number of elements in the set Y. Forn = 1,
Sy, f - Sylf = (f!ll + fﬂl) (fyl +fﬂ|)
= fﬂ,fy. + fyxf!h
6f
- fu®fy
= flhf!h +fy|fﬂ|
Soforn=1,8,,f-S,f = }yL,. Next assume Equation 4 is true for n — 1 elements. That is, assume
6"'lf
Sy—y . f - Sy-y D —m———
vounf Svoyf 2 6Y16%2 + - 6Yn_1
To prove Equation 4 is true for » elements, we first smooth with respect to yn:
(250 ()
Sy, (Sy- - Sy - 28 —_—
Yn Y an Y Unf = “Yn 6y]6y2"’6yn-1
Using the fact that Sy f - Sy g 2 Sy (f - g) results in
an-lf
. . ») —_—
S!In (SY—yaf) Syn (Sy‘ynf) 2 Syn (SY-ﬂnf SY-yuf) = Syn (6y16y2‘ . '6yn—l)
Finally, using the factthaty + z D y @ z,
6n-lf) (5n—1f)
Sy (Sy- - Sy (Sy- o2 |} +|—m—m——
yn (SY-yof) - Syn (Sy—y.f) 2 (5y15!l2"'5yn-1 va \OU1OY2---byn_1/ ;.
6n-1f) (6n-1f)
——— @ ————
(6yn6yz~~-6yn-1 va \SWby2---byn_1/,.
) (-l f)
6yn \6016Y2 - - - 6Yn—1
Syf-Syf 2 _&fF
YT = 5y bva
O

12

