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STABILITY ANALYSIS OF
GENERALIZED CELLULAR NEURAL NETWORKS ¢

Cuneyt Guzelis and LeonO.Chua 77

ABSTRACT

A rather general class of neural networks, called generalized Cellular Neural Networks (CNNs), is
introduced. The new model covers most of the known neural network architectures including Cellular ‘
Neural Networks, Hopfield Networks and Multi-layer Perceptrons. Several sets of conditions, ensuring
the input-output stability and global asymptotic stability of generalized CNNs, have been obtained. The
conditions for the stability of individual cells are checked in the frequency domain, while the stability of
the overall network is analyzed in terms of the stability of the individual cells and the connectivity
characteristics. The results on the global asymptotic stability are useful for the design of a generalized
CNN such that the orbit of each state converges to a globally asymptotically stable equilibrium point
which depends only on the input and not on the initial state. Such a network defines an algebraic map
from the space of external inputs to the space of steady-state values of the outputs, and hence, can accom-

plish cognitive and computational tasks.

f This work is supported in part by Istanbul Technical University, the office of the Naval Research
under grant no. NOO014-89-J1402, and the National Science Foundation under grant no. MIP-8912639.

11 C. Guzelis is with the Faculty of Electrical-Electronics Engineering, Istanbul Technical University,
Maslak 80626, TURKEY.

L. O. Chua is with the Department of Electrical Engineering and Computer Sciences, University of Cali-

fornia, Berkeley, CA 94720.



L INTRODUCTION

In the past three decades, a number of neural network architectures has been developed. The archi-
tectures have been inspired both by the principles goveming biological neural systems and the well-
established theories of engineering and fundamental sciences. Most of the widely applied neural networks
fall into two main classes: 1) Memoryless Neural Networks [5], and 2) Dynamical Neural Networks [1],
(3], [4), [6). From a circuit theoretical point of view, the Memoryless Neural Networks are nonlinear
resistive circuits, while the Dynamical Neural Networks are nonlinear R-L-C circuits. A Memoryless
Neural Network defines a nonlinear transformation from the space of input signals into the space of out-
put signals. Such networks have been successfully used in pattern recognition and several problems
which can be defined as a nonlinear transformation between two spaces. As in Hopfield Network (HN) [4]
and Cellular Neural Network (CNN) [1], the Dynamical Neural Networks have been usually designed as
dynamical systems where the inputs are set to some constant values, and each trajectory approaches one
of the stable equi}ibrium points depending upon the initial state. Some useful applications of these net-
works includes image processing, pattern recognition and optimization.

This paper presents a new neural network architecture, called generalized Cellular Neural Network
(CNN), which is a generalization of CNN introduced in [1]. The generalized CNN includes, as special
cases, some important Memoryless Networks, such as Multilayer Perceptrons (MPs), and Dynamical Net-
works, such as HN and CNN. A generalized CNN is an interconnection of many subcnrcmts called cells,
each of which is an arbitrary order dynamical circuit and is connected only to its nearest neighbors. High
order generalized CNNs are capable of more functions than the neural networks made up of simple R-C
op amp cells.

The development of generalized CNN has been influenced by the following facts: i) Neurobiologi-
cal studies have demonstrated that neurons exhibit quite complicated dynamical behaviours [6], and
therefore should be considered as an analog microprocessor rather than as a simple processing element; ii)
The set of differential-difference equations (1)-(4), describing the generalized CNN, defines a rather gen-
eral class of nonlinear equations. Indeed, most of the equations governing nonlinear circuits and systems

fall into this important class [11], [19]; and a partial linearization of nonlinear differential equations hav-
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ing the state equation form also yields such a class of nonlinear equations [7]. Moreover, any system
defined by this class of nonlinear equations can be considered as a feedback control system for which
many comprehensive results have been obtained in the literature [7]-[9]; and iii) The generalized CNN
covers many important neural network architectures as special cases. For instance, the MP is a 0 th order
generalized CNN while the HN and the CNN are 1 st order generalized CNNs. Consequently, a general-
ized CNN is capable of performing any task that these special networks can perform, while it offers more
capability than these networks.

In the design of a Dynamical Neural Network, it is always of interest to study the stability properties
of the network. The vast majority of the stability studies in neural networks [1]-[4], [12], [14]-[15] has
been devoted to finding the conditions which ensure that each trajectory of the net\york converges to an
equilibrium point depending on the initial conditions. These completely stable neural networks have been
used as computing and/or cognitive machines. Here, the external inputs are set to some constant values,
the' input data is fed via initial conditions, and the outputs take their steady-state values at an equilibrium
point that depends on the initial condition. Such neural networks can accomplish many tasks, such as pat-
tern recognition and image processing [1], [3]-[(4], [13].

In contrast with the Dynamical Neural Networks mentioned above, one can design a Dynamical
Neural Network where the input data is fed via extemnal inputs, and each trajectory converges to a unique
equilibrium point that depends only on the input and not on the initial state. Such a globally asymptoti-
cally stable neural network has been presented in [10]. The neural network, designed in this way, defines
an algebraic transformation from the space of inputs into the space of steady-state outputs. Therefore, it
can perform computational and cognitive tasks. In this paper, we present several sets of sufficient condi-
tions for global asymptotic stability, and also for input-output stability of generalized CNN. The global
asymptotic stability results are useful for the design of a generalized CNN where the output reaches its
steady-state value depending only on the given constant input and not on the initial state. The input-
output stability results can be used for determining the boundedness of the outputs of a generalized CNN

with constant inputs, as well as for a generalized CNN with time-varying inputs.

The organization of this paper is as follows. In section II, we describe the connection topology of
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the generalized CNN, the circuit structure of the cells, and the building blocks of generalized CNN. In
section III, a set of sufficient conditions for the global asymptotic stability and input-output stability of
the individual cells, is given and it is shown by some concrete examples that the dynamical behaviours of
the cells are much richer than those of simple cells of common neural networks. The stability results
presented in section III are based on the circle criterion of control theory, and they will be exploited, in
section IV, to develop the conditions for the whole generalized CNN. Section IV presents some results
on the existence, uniqueness and boundedness of the trajectories of generalized CNN, and two types of
conditions ensuring the input-output stability and global asymptotic stability of a rather general class of
generalized CNN. The first type of conditions are applied to the whole generalized CNN and do not
exploit the stability of the individual cells. The second type of conditions are in terms of the connection
topology, the connection weights and the frequency domain transfer function of the linear subcircuit of
individual cells. The conditions can be checked only in the frequency domain and verified by a kind of

Nyquist graphical test.

II. GENERALIZED CNN

In this section, a rather general class of neural networks, called generalized Cellular Neural Net-
works , is presented. A generalized CNN is a large-scale nonlinear circuit composed of a large number of
subcircuits, called cells. Each cell is an arbitrary order dynamical circuit and is connected only to its

nearest neighbors (the term nearest will be clarified in Definition 1).
Connection Topology :

Arowof N, cells is called a 1-dimensional single-layer generalized CNN and denoted by m.
An N;xNy array of cells is called a 2-dimensional single layer generalized CNN, and denoted by I .
Similarly, an n-dimensional single-layer generalized CNN, II* ,isan NxN3--:XN, array of cells;
here each N; is an integer number. An n-dimensional m-layer generalized CNN, Qp , is built-up
from a collection of m single-layer generalized CNNs IT¢ , ke { 12,...m } ,in such a way that the
cells in each layer IIf are connected to the nearest neighbors in the other layers IIff , j#k . Bythe

existence of a connection between two cells, we mean that the output of one of the cells is fed into the
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other. If each of these two cells is fed by the output of the other, the connection is called bilateral; other-
wise, it is unilateral. In our illustrations, a link without an orientation will denote a connection which may
be unilateral or bilateral, while a link with an orientation will denote a unilateral connection. A bilateral

connection will be denoted by two oriented links.

A 2-dimensional 3-layer generalized CNN, Q# , is shown in Figure 1. The layer II¢, I1Z,and
respectively Il isa 3x3, 4x3 , and respectively 3X5 array of cells. As in the generalized CNN of
Figure 1, the size (N;’s) and the connection topology may, in general, differ from one layer to
another. Moreover, a layer may be rectangular array of cells, i.e., N; # N, . For simplicity, however,
unless otherwise stated, we will assume that the size of each layer is the same, i.e. , N = N; forall

je{12..,ne and ke {12,..m} ,wherethe superscript & index the layers. Note that a typi-
cal cell ( say, the hatched cell in TT# ) in Figure 1 is connected not only to its nearest neighbors in the
same layer, but also to the nearest neighbors in the upper ( except the uppermost layer ) and the lower (
except the lowermost layer ) layers. For the sake of generality, we allow the "size" of the neighborhcod
in each layer to be arbitrary, including the entire layer. Moreover, in the most general case, each cell of
each layer may be connected to the cells in more than 2 layers. Using future technologies, such as optical

systems, such interconnections are feasible.

Figure 1

A special class of layered generalized CNN is feedforward generalized CNN, I3 , inwhich the
output of the cells in a layer IIf is fed only into the cells in the next layer I1f,; . The cells within the
same layer are connected to their nearest neighbors as before. A generalization of a feedforward general-
ized CNN is a cascade [2], ®7 , where the output of the cells in a layer IT# is fed not only into the
cells in the next layer IIf. , but also into the cells in the succeeding layers IIf with

je (k+2,k+3,..., m} . Note that the connections between layers in a cascade are all unilateral
whereas the connections within a layer may not be. A generalized CNN is called recurrent, if it has a

bilateral connection and/or a loop consisting of similarly directed unilateral connections.
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Figure 2a, 2b and 2c shows a feedforward generalized CNN T4 , a cascade ®4 of cells, and a

recurrent generalized CNN, respectively.

Figure 2

A cell in the k th layer of an n-dimensional m-layer generalized CNN will be denoted by
Cii,....ix Where ije {12,..N;} forall je{12..,n} and ke {12..m } . For brevity,
let us define i=(iy,i2,..in k) and thenset C;, ...;, = C;. Sometimes we will still write
Cii,x and C;; ratherthan C; particularly when n=2 and 2 =1 , respectively. Definition 1
below describes what we niean by a nearest neighbor of a cell.
Definition 1 : Foracell C; in the k th layer of an n-dimensional m-layer generalized CNN Q7 and
ametric 7 diy(e;e) and a positive integer number r; , the nearest neighborhood B;; inthe !

th layer is defined by

By = (Cil deg (i30) Smy iz i=(ly.. 0d) s e {12,..05)
for all je(12,..,n}}
where dig (i i) is the distance between the vectors of integer numbers (iy,i,...,in.k Y and
({1 .. ..iy,0 )T . Different metrics may be chosen for di; . The set of nearest-neighbors of a cell

C, is the union of all nearest-neigborhoods B;; in the different layers and is denoted by

=\1)B|'1 . O

Since each cell is connected only to its nearest neighbors, the connection topology depends on the
choice of r and the distance function d only. Note that the nearest neighborhood of a cell may be an

empty set in one extreme case, or it may contain all cells of the generalized CNN as in the Hopfield

T We define a metric du(o ®) in the usual sense; namely, a di;(®;®) is areal-valued func-
tion such that the following axioms are satisfied: i) d (1i; l) = dg(i3i)_ forall i i)
Qk.[(l 1)<d“(1 l)-l-ko(l 1) for all i, l, 1—(11,12,.. z,,l)

[.2.,N'}forall je{l,Z,,n}.m) dey(i,i) >0 forall i#1i and
ko(l l)-d



Network [4], in the other extreme case.

In general, we can choose different » and d for each cell, layer and/or pair of layers. This,
however, causes a nonuniform connection topology which is not desirable for a neural network architec-
ture. In this paper, we assign the same r and d for any two cells within the same layer k and index
themas ryy; and dp; .Weuse ryx and dix to denote connections within the same layer (intra-
level connections), and ry; and di; with & #!/ for connections between two different layers
(extra-level connections). Three different kinds of intra-level connections for a 2-dimensional general-
ized CNN are shown in Figure 3. Here, the cell located at the center is connected to the cells belonging to
its nearest neighborhood determined by r and 4 . In Figure 3a, the metric is defined by

desxCindaksiiak ) =iy = {i] + iz — i3] , consequently, its nearest neighborhood consists of only
4 neighbor cells. In Figure 3b, the metric is defined by
dex(ivdokiiiank ) = max {|iy — {i], liz — i3]} , and the nearest neighborhood in this case con-
sists of all 8 neighbor cells. Finally, in Figure 3c, the metric is defined by
di kCirigdsitiak ) = liy = {1| + |iz = {3| , and the nearest neighborhood in this case consists of 12

neighbor cells.

Figure 3

As in the generalized CNN of Figure 1, and in the Multi-layer Perceptron [5], any two successive
layers in a neural network may be fully-connected. However, we can create many different extra-level
connection topologies based on the choice of r and d . Two special exampies are shown in Figure 4.
For both examples, the cell at the center of the lower layer is connected to the 1-nearest neighbors in the
upper layer but with two different kinds of neigborhood defined by different metrics: the metric in Figure
4a is defined by dix1(i.k s k+1 ) =]i; - {1l + 1 , whereas that in Figure 4b is defined by

digrt(ikii k+1) = max {|iy - §1],1) .

Figure 4



Circuit Structure of a Cell :

The connection topology of a generalized CNN has been described above. Now, we present a circuit
structure for a cell. Each cell C; is, in general, an ¢ th order nonlinear dynamical circuit such that the
circuit topology, elements and/or element values may differ from one cell to another. The cells, con-

sidered in this paper, consists of three basic units as shown in Figure 5.

Figure 5

The first unit, which is a multi-input, single-output, linear, resistive circuit, forms a weighted sum of
external inputs and the outputs of the neighbor cells. The output of the first unit, e; , is fed into the
second unit. The second unit is a single-input ( ¢; ), single-output (&;), ¢;—order linear dynamical circuit.
The only nonlinear part of the cell is the third unit which receives &; and pass it through a nonlinearity

fi(®) . Such a cell is described by the following system of equations:

Xi(t) = Aj-xi(t) + by-ey(r) 1

Eit) = of “xi(t) + hy-eit) @
yi2) = fi€iz) 3)
eit) = ie&[ wiiyie-typ + iezﬁ{ z)j - uit—oi) + I (C))

where AjeR"; b ,qeR'; b, wj, zj, Ui, Gi, Ij €R are al constants;

X@®:R>R"; e®, x(9 and y@:R—>R are functions of time t; X = %" ;

fi(® :R-R is a nonlinear function; Y = ( p[Cpe By} is the set of integers indexing the neighbor
cells; here p = (P12 ... Pass) 5 and i = (iniz ... ink), 1= (i1i2...,0d) with
pj.ij,ij€(12..N;} foral je{12,..n)} and s,k,) e {12,...m} . Each cell has two
different kinds of external inputs: uy(t) and /; . The controlling input u; associated with the cell

C; is also applied through the weights z;; to the neighbor cells while the constant input /; is fed
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only into the cell C; . The delay times T, and ©;f in (4) are introduced here to obtain a more real-
istic model. T, and, respectively, o;; reflects the propagation time needed fora cell, C; , to receive
the feedback signals yj(z) and, respectively, the controlling input signals uj(t) from the neighbor
cells. The coefficients w;; and z;; in (4) weights the delayed signals yi(¢t—7p) and uir—oyy) ,
respectively. For more generality, we can allow yi(t) , yi(t — T » Yi¢ — % » Yit = 9

aswell as ug(t) » Uit — OfY) » Uit — OF) w it — Of asinputs to Unit Iin Figure 5. How-
ever, such a model can be transformed into the model described by the equations in (1)-(4) by adding vir-

tual cells.
Special Case I : Cellular Neural Networks

The generalized CNN given by (1)-(4) is a generalization of CNN introduced in [1]. A one layer

CNN is obtained as a special case of generalized CNN when the following assumptions are made:
(A1) : The network is a 2-dimensional array of cells;

(A2) : The linear dynamical subcircuit of each cell isoforder 1 ( ¢; = 1 );

(A3) : All delay times are zero ( 7§ = 635 = 0) ;

(A4) : The nonlinear function is the same for all cells and is a continuous piecewise-linear function

defined by

F@& =4 (&+1]-l&-1]) Q)
here |e| denotes the absolute value function given by |&| =& for & >0, = £ for § <0,
and =0 for § =0 ;

(AS) : byj=¢ =1, h; =0 and A; isanegative scalar;
(A6) : A;j=-A < 0 and, respectively, /; =/ is the same for all cells; and

(A7) : Each cell is connected to the cells in its nearest neighborhood defined by the following metric:

d(iniz;i,iz) = max { |iy=i1],iz—i3] } . (6)

Under the above assumptions (A1)-(A7), the system of equations in (1)-(4) can be rewritten as follows:
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x"u"z(t) =-A .x"h‘.z(t) + ¢ Z Y wi,.i,;ﬁ,f, .yl’ulp:(t) + s z Y z‘.x-"z:{h{:' u"h"z(t) +1 (7)

4142 € Hiha €

Vi) = 2 (i@ +1] = Ix @ -11 ®

Special Case II : Hopfield Network

CNN is not the only important subclass of generalized CNN given by (1)-(4). generalized CNN
covers quite a large class of neural networks including many well-known neural network architectures
such as HN [4] and MP [5]. HN is a 2-dimensional, single-layer generalized CNN where each cell is con-
nected to every other cell. If we assume (A8)-(A10) given below, in addition to the (A1)-(A3) and (A6),
the generalized CNN in (1)-(4) reduces into the HN. The additional assumptions are:

(A8) : Each nonlinearity is a sigmoidal function, i.e., f(®)=sgmie) : R - (-1,1) is continuously
differentiable, strictly increasing (i.c., %‘%ﬁ >0 ), &-fit) >0 foral & =0, and
f@)=0;

(A9) : wiy =0 and u(t) =0 forall i;

(A10) : The network is fully connected. This means the neighborhcod of any cell contains all cells in

the network. Such a neighborhood can be obtained by choosing r = 1 and d (i, i) = 0.

The system of equations defining HN can be written, as in (9)-(10), by using a single index i for
eachcell. i = i;+N,-i, denotes a possible transformation from the double index (i1,iz) to i .

The resulting system of equations are given as follows:
Xi(t) = A; - xi() + ;11 JWipyet) + I ©)
forall i

Yi(x;(2)) = sgm;(x;(t)) (10)

Special Ca;se III : Muliti-layer Perceptron

The MP can also be obtained as a special case of generalized CNN if we assume (A11)-(A16)

together with (A3). The additional assumptions are :
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(A11) : The network has m layers ( typically m 3 ) each of which is a 1-dimensional array of cells;
(A12) : The cells do not contain a dynamical part,i.e., ¢ =0 ;

(A13) : &(t) = eir) ,ie, Ay=1;

(A14) : The nonlinearity is a signum function defined as (&) = sgn@€) =1 for § >0, = -1
for & <0 ,and =0 for § =0 ;

(A15) : There is no intra-level connection. This connection topology can be obtained by choosing a suit-
able metric such as du(i.i‘) =1 ,and assuming rxx =0 .

(A16) : Every two successive layers are fully interconnected, i.e., each cell in a layer is connected to
every cell in the next layer.

With these assumptions, our generalized CNN reduces to an MP. which can be characterized by the fol-

lowing nonlinear algebraic equations :

Yik(t) = sgn(& () ¢3))
Eix(t). = €ix(t) (12)
e t) = fozh ¢ B “upy () + Iiy (13)
e['k(t) = " %} N wi.k:f,k—l ')’F,k-l(‘) + I,'k for all k e { 2,3....,”1 } . (14)

Here, the subscript (i,k) corresponds to the i thcell inthe k£ thlayer.

As can be seen from (13)-(14), each cell in the first layer is fed by the external inputs only and the
cells in another layer are fed by only the outputs of the cells in the previous layer. Each cell forms a
weighted sum of its inputs, adds a threshold /; x and passes the result through the nonlinearity such that
the output is either +1 or -1 except for zero total input (i.e., ¢;x = 0).

Special Case IV : Space-invariant generalized CNN

An important subclass of CNN can be characterized simply by a CNN cloning template [1]. As

shown in [1] this subclass is especially useful for image proccessing applications. A space-invariant
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generalized CNN can also be characterized by a generalized CNN cloning template where the space-
invariant property is defined as follows.

Definition 2 : A layer of a generalized CNN, say the & th layer, has the space invariant property if each
cell Ci,...,i,x inthe k thlayerhas the same interconnection pattern, i.e., the nearest neigborhood of
each cell, By , is defined by the same r;; and the same metric dj, , and the connection weights

wyj and z;; are invariant under a coordinate transformation; namely,

Wii = Wigqiq - Zif = Ziqjq for all q

where, i = (ipiz,...,0nk), i = ({i2....0k) and q = (q1.92,....4,0) with §; , i

and ¢; € {12,..,N; ]} forall je{12..n}.

If all layers of a generalized CNN have the space invariant property, then the generalized CNN is

said to be space invariant. O

Note that the cells on the boundaries of the layers always fail the condition in Definition 2 and they
should be considered separately. However, one can obtain a uniform structure by adding virtual cells

beyond the boundaries [13].

Observe that, for a space invariant generalized CNN, a set of coefficients specifying the connection
weights associated with any non-boundary cell is sufficient to express all other coefficients. Conse-
quently, it is convenient to express the coefficients of w;; and z;; as the elements of the sets W,
and Z, defined as:

Wi (i—i) = wii

Zi(-i) = z if

where, the center elements W;(0,0.,...,0) ( respectively, Z;(0,0,...,0) ) denote the coefficients which

weights the self output ( respectively, self input ) of any cell in the k th layer. Similarly, all other ele-

ments W,(i—-) and Z,(i-i) do notdependon i ;they depend only on & (indexing the layers ) and

on i-i , which represents the relative position of the neighbor cell C; with respect to the center cell
C; . Observed that the number of elements in the set W, or Z, is equal to the number of cells in

the nearest neigborhood B;x . For a 2-dimensional generalized CNN, the coefficents We(i-i) and
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Z,(i-i) can be considered as elements of the matrices W, and Z, , respectively, where, W(i,j)
and Z.(i,j) denotes the entry in the i th row and the j th column of the matrix W, and Z; ,

respectively.
IIL. STABILITY OF ISOLATED CELLS

The aim of this section is twofold: i) to show by some concrete examples that the cells of general-
ized CNN have a rather rich repertoire of nonlinear dynamic behaviors, including oscillation and chaos;
and their capabilities, as proccesing elements, go well beyond the ones provided by the common 0 th
order cells (as in Perceptron) and 1 st order cells (as in CNN and Hopfield net); and ii) to give a set of
conditions ensuring the input-output stability, and/or global asymptotic stability, of the isolated cells.

It will become transparent in this section that the neural network model proposed in this paper cov-
ers quite a large class of neural networks and, with its capabilities, it offers a promising architecture for
biological nervous systems as well as for electronic neural networks.

It is shown below that the problem of finding the conditions ensuring the global asymptotic stability
for an isolated cell with zero input is in fact the well-known Lur’e problem for which many comprehen-
sive results are available in the literature [7]-[9]. Our results on generalized CNN input-output stability
are based on Lernmas 1 and 2. For the developement of Lemmas 1 and 2, and the earlier works on the
input-output stability, see [8].

Let us describe what we mean by isolated cells. An isolated cell C; is obtained by setting all con-
nection weights between  C; and its neighbors to zero, i.e., w;j=z,; =0 forall i #1i .Suchan

isolated cell is described by the following equations.
%) = Ao xit) + by ey(r) (15)
&) = cf -x(t) + hi-ei(t) (16)

yi(t) = fi&e)) a7
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ei(t) = wi-yit=tp + ziy- ut—cyp + Iy @18)

As illustrated in Figure 6, each isolated cell can be considered as a feedback system whose forward path
contains a ¢; th order linear time-invariant dynamical subsystem and whose feedback path contains a

memoryless nonlinearity and a delay line.

Figure 6

Therefore, the stability analysis of isolated cells amounts to seeking the conditions which ensure the sta-
bility of such a nonlinear feedback system. A large amount of reults [7]-[9] is available for this feedback

system, The following Theorems 1 and 2 are two applications of these results for neural networks.

In contrast with the models given in the literature [1],{3]-[5], we do not make any assumption on the
nonlinearity fi(®) in our generalized CNN model. This allows us to present our results in as general a
context as possible, and also to see how the choice of the nonlinearity affects the dynamic behaviors of
the generalized CNN.

Let us first demonstrate that an isolated cell possessing chaotic dynamics can be constructed by

choosing an appropriate nonlinearity f(e) .

Example 1 : Chua’s Circuit

Consider a 3 rd order cell defined by

-G G 1
£ 1
%0 = | & & o5 0+ 0 | ey (19)
1
0 -T 0
&0 =100 -x @0)

YiE) = FiG)) = mo-&e) + 5 - (my—mo) (18 +1] - &)~ 1) @D
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ei(t) = yit) , (22)

where G, C;, C2, L , =mg and —m, are positive real numbers. Eliminating the variables ¢; , & and
y; from (19)-(22), we obtain the same set of three piecewise-linear ordinary differential equations which

describes the Chua circuit [16] shown in Figure 7a.

Figure 7

This circuit has been investigated in depth; and it has been observed and proved that Chua’s circuit
possesses rather complicated nonlinear dynamics, including chaotic phenomena [16]. O
As seen in Example 1, even if the linear dynamical subcircuit of a cell consists of some innocent
linear passive circuit elements, the nonlinearity in the feedback path may cause very complicated non-
linear dynamics. In the stability analysis treated below, we usually assume the nonlinearity f (o)
satisfies the sector conditions given in Definition 3.
Definition 3 : Let f;(0) = 0 . We say the function fi(e) belongs to the sector (ki,k2) if
k1E2 < Erfi€) < koEf for all & = O . Similarly, fi(e) belongs to the sector [k;,kz) if
kiEf < Ef €D < k& forall §=0. O
As illustrated in Figure 8, a continuous function f(e) belongs to the open sector (k;,kz) if the
graphof f(§) versus &; lies between and does not touch the straight lines passing through the origin
with slopes k; and &k , respectively. In the case the graph touches both straight lines, we say f (o)

belongs to the closed sector [k1,k2] .

Figure 8

Observed that the nonlinearity used in the CNN (see (5)) belongs to the closed sector [0, 1] while the

sigmoid function, defined by

£1& = Zv-arctan( 3-£.8)) ., . 3)
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with positive numbers V and X , belongs to the open sector (0,K ) .

In the sequel, we are concerned not with the stability of a generalized CNN having a particular non-
linearity, but with the stability of any generalized CNN having a nonlinearity satisfying some sector con-
ditions. In the literature, such an analysis is referred to as absolute stability analysis.

Input-Output Stability :

In most of the current dynamic neural network applications, the external inputs u(¢)’s are fixed at
some constant values, usually zero; and the input data is fed into the network via initial conditions rather
than the external inputs. In a CNN or a HN designed in this way, if the interconnection weights are sym-
metric then every trajectory approaches an equilibrium point that depends on the initial state. Such net-
works are considered as content-addressable memories where the equilibria are the stored memories, or as
classifiers for input patterns. However, the initial conditions of these networks are required to be reset to
zero each time the network is run. This is not a desirable property for a network running in real time. It
is, therefore, of interest [2] to design a neural network which is fed via external-inputs, possibly time-
varying, and then run witﬁout resetting the initial conditions.

With the above motivation, we will study the stability of a generalized CNN having time-varying

external inputs. Before stating the criteria for the input-output stability of an isolated cell, let us present
some basic definitions of input-output stability.

Consider the feedback system shown in Figure 9. Here, the vectors Uj(z), Ux(t) denote the
inputs; Yi(¢), Ya(t) denote the outputs; and E;(t), Ex(r) denote the errors. The subsystem G
and the subsystem Gy are, in general, nonlinear dynamical systems; and can be defined by an operator

which acts on the input E;(¢t) and E(t) , respectively.

Figure 9

For a given pe[1,=),let L, denote the set of all (Lebesgue) measurable functions

g(@® : [0,o)—> R suchthat
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Ilg(t)l"-dt < o .

Similarly, let L.. denote the set of all measurable functions g(e) : [0, )— R such that
€53-54p; lg@)| = inf {a: |g(t)| < a almost everywhere } < oo

ie., |g®)] < a except for a set of measure zero, and the ess.sup. (essential supremum) is the smallest

number having that property. The set L, , called the extended L,-space, is the set of all measurable

functions g(e) : [0, ) — R having the property that forall T e [0, ) the truncation gr(e) of
g(® belongsto L, ;where gr(e) is defined by

grt)=g@) if 0t sT ,
=0 if T<t .

The symbol Lj denotes the set of all g-tuples g(®) = [g1(®) - g, (®) 1T , where g;(o) € L, for
al ie{12,..49)} . LL isdefinedsimilarly. Thenormon Lj is given by

1
lg@ll, = 1 £ la@liz 1

« 1
vith llgi@ll, = [[la@)lP-de 1P for pell,) and llg@ll. = e |20 -
Definition 4 : The system, shown in Figure 9, is said to be L, -stable provided that, for any inputs
Ui®, Ux®e L], if we have outputs Yi(9) , Y(@eLj then Yi(9), Y@< Lj; and, in
addition, there exist finite constants r; and r, suchthat
1Yi@ll, < ri-dlG@I, +10@)l,) + 72 (24)
Y@, < ri-dlU@I, +1T@l, ) +r2 . O (25)

One important special case of L,-stability is the L.-stability which is commonly referred to as
BIBO ( bounded-input/bounded output) stability. Observe that BIBO stability means bounded inputs pro-

duce bounded outputs and (24)-(25) hold.

Now, we present the circle criterion which provides a sufficient condition for L,-stability for the
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feedback system shown in Figure 9, but with scalar inputs U;(¢), Ux(t)e€ R and scalar outputs
Yi(t), Y2(t)e R .
Lemma 1 [8] : Circle Criterion
Consider the scalar feedback system shown in Figure 9, where Uj(¢), Ua(t), Ei(t), Et),
Yy(¢) and Y5(¢) € R . The subsystem G, is linear, time-invariant, possibly distributed and described

by the following convolution operator

@) =Gi)* Eq¢t) = ij(t-k)'E 1A)-dA (26)
where, the impulse response Gi(e) of the subsystem G, belongs to L, and has a Laplace
transform G(s) which is, in general, an irrational function. The subsystem G, is memoryless and
represented by the algebraic relation

Yat) = y[Eat)] 27
where y(e) : R — R belongs to the sector [ o, ] . The system described by (25)-(26) is L2-stable
if the pole locations and Nyquist diagram of G(s) ( i.., the graph of the map w — Gi(jw) with
w e [0,00) ) satisfy one of the following sets of conditions:

i) If 0<a<P <o, there are no restrictions on the location of the poles of G1(s) . However, the
Nyquist diagram of G1(s) must satisfy the following properties:

a) the Nyquist diagram of G(s) is bounded away from the disk D ( which is a circle in the complex

plane centered on the real axis and passing through the points _T} +j-0 and —‘Bl- +j-0 ); that is

|GGjw)—8]|>0 forall weR and 0eD .

b) the Nyquist diagram encircles the disk D in the counterclockwise direction exactly v times, where
v is the number of poles of G1(s) with a positive real part.
ii) If O=a<P<o ,then G1(s) must have no poles in the open right complex half-plane, and the

Nyquist diagram of G1(s) must remain to the right of the vertical line s = —'Bl— + j0 ;ie,

Re {Gi(iw) } > :Bl- forall weR.
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jii) If —c<a<0<P<oo, Gi(s) has no poles in the closed right half-plane, and the Nyquist

diagram of G1(s) is completely contained in the interior of the disk D.
iv) If —o<ot<P<O,replace Gy(s) by -Gi(s), o by =B, B by —o ,and apply i) or
ii) above, as appropriate. O

Theorem 1 is a direct application of Lemma 1 to generalized CNN.

Theorem1:

Assume the nonlinearity fie) belongs to the sector [k;,k2] with k;, k2 finite. An isolated
cell defined by (15)-(18) ( with input z;yui(t — o) + I; , linear part output &i(z) , output yi(z) and
transmitted output wipyi(t —Ty) )is Lo-stableif:

i) for zero feedback wyy = 0 ;
the rational tranfer function
Gis) = ef - [sI-A T by + Ay (28)
is proper ( i.e., all elements of Gl(s) are bounded at s =< ) and all its poles have negative real parts.
ii) for inhibitory feedback wi; < 0 ;
Gi(s)-e™™ satisfies one of the sets of conditions i)-iv) given in Lemma 1, but with o = —w, ik,
B=-wy-ky and Gi(s) e™™ insteadof Gy(s) .
iii) for excitatory feedback wy; > 0 ;
replace B by o and o by B ;and apply ii) .
Proof :
i) wy = 0 implies that the transmitted output w;; - yi(z —Ty) is zero for all time t. Then, the only
output, which should be examined, is y;(¢) . It follows from well-known result for linear systems (8]
that Ege) belongsto L, if ef®)e L, ;and Gi(s) is proper with all its poles in the open left half-
plane. From the assumption that f(e) belongs to sector [k, k2] , we have

k1-&8 S & f1&) < k2- &2 for all §eR
Observe that
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02 (& fiGD~k1-&F) (& filG)—k2-&F) = &2 - (f1&D—k1-&) (fi&) —k2-&)
which implies '

FRE)—Chka+ky) & fi) + ky-ka-EF

= (r@-Bgk gy - faghip g

0 2 (fi@D—k1 &) (fi€D—k2-&)

The last inequality gives

B2k gl 2 a0 - 223K g ) 2 1rie0l - 122 R (29
Therefore, we have

IFi@)] s 3 - (lka=kil+lk2+ ki) 18] . . (30)

It follows from (30) that y;(e) belongsto L, whenever e.(o)é Ly (andthen Ee)e Ly ).

ii) Consider the isolated cell shown in Figure 6. Let us replace the delay element e™™ with the non-
linearity f(e) , and vice versa. The resulting system can be described by a set of equations which are
equivalent to the ones in (15)-(18). Therefore, the proof, which will be given below for this new system,
is also valid for the original one. The system obtained is, indeed, a feedback system with the forward path
transfer function Gi(s)-e™™ and the feedback nonlinearity —wy;- fi(e) . Since Gi(s) is a rational
function, its inverse Laplace transform Gy(¢) , and then, the impulse response of the forward path,

Gi(t -ty belongs to L, . With w;; negative, -wy;-fi® belongs to the sector

[a,B] =[-wii-k1,—wii k2] whenever fie) belongs to the sector [k;,k2] . Lemma 1
implies that the system, with inputs U(t) = zypuit —0p) + i, Ua0¢) =0 and outputs

Yi(t) = &(t) , Ya(t) = —wyy-yit =Ty , is La-stable. The proof for the other output y(t) fol-
lows from (30).

iii) Follows from ii) . O

The result obtained by Theorem 1 is important for the follgwing reasons : i) The conditions can be
easily checked by a straightforward Nyquist graphical test, which is applied directly to the transfer func-
tion of the linear dynamical subcircuit, ii) As will be seen in Theorem 3, the same conditions, plus a
more stringent condition on the nonlinearity, ensure also the global asymptotic stability of an isolated cell

with constant input, iii) Theorem 1 is applicable to an arbitrary order isolated cell having a transmission
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delay, iv) The stability of the linear dynamical subcircuit is not required and v) The L,-stability
analysis is treated in a way which does not depend on the existence of a state equation form, and the
existence and uniqueness of the solutions.

Let us apply Theorem 1 to study the L-stability of an isolated cell in a CNN.
Example 2 :

It can be verified by the definition of CNN that, for an isolated cell, the nonlinearity f(e) belongs

to the closed sector [0,1] and the forward path transfer function can be given by Gis) = -3,-7}.—‘4—

with A positive. For zero feedback w;; = 0 ; the Lj-stability follows from the observation that

1

YA is proper and its pole —A is negative real. For inhibitory feedback wj; < O , condition ii) in

Lemma 1 should be applied since oo =0 and B = -wj; > 0 . The inequality

$ VY = 1 - __A 1
holds forall w e R ifand only if A < -w,; . For excitatory feedback w;; > 0 , condition iv) in

Lemma 1 is appropriate to be applied since o = -wj; < 0 and B = 0 . Now, we have the inequality

Re (-Gi(w)} = Re { ox } = 7y > 5,

which holds for all w € R if and only if wj; < A . We conclude that an isolated cell of a CNN is
La-stable if the feedback weight w;; lies in one of the following intervals : 0 S w3 < A or
wii < =A < 0. The region of L,-stability obtained by Theorem 1 is illustrated in Figure 10 where

wyy is the parameter. [J
Figure 10

Although Theorem 1 is important for the reasons mentioned above, the input-output stability analysis
based on this theorem suffers from the following two drawbacks : i) Theorem 1 provides conditions for
only Lj-stability whereas some important source signals, such as sinusoidal or constant signals, do not

belong to L, ,and ii) Since Theorem 1 does not exploit the boundedness of the nonlinearity, it yields
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rather conservative results for those neural networks, such as CNN or HN, having a saturation-type non-
linearity.

The first drawback is overcome by Theorem 2, to be presented below, which provides a set of
sufficient conditions for the L.-stability of an isolated cell. The latter will be considered, in the most

general case, in section IV, where a theorem using the boundedness of the nonlinearity is presented.

This theorem is based on the following lemma.
Lemma 2 [8] : L. -stability

Consider the scalar feedback system shown in Figure 9, where, Ui(t) , Ua() ., E(t),
Ext), Yi(t), Yo(t)e R ,and Uy(t) = 0 . The subsystem G is linear, time-invariant, possibly
distributed, and described by the convolution operator
Yi@@) = G1(t) * Ea() .
Assume the impluse response G(¢t) has a Laplace transform G 1(s) and satisfies the following
exponential weighting condition:

e* -Gy(t) € Li\Ly for some a>0 . (31

The system G2 is memoryless and represented by the following algebraic relation

Yat) = w[E2)]
suchthat y(s) : R— R belongs to the closed sector [a,f] with B, o finite. Under these condi-

tions, if the a-shifted Nyquist diagram of G(s) .ie., the graph of the map w —» G (—a +jw ),
satisfies one of the conditions i)-iv) in Lemma 1,then Ui(¢) e L. implies E ), Yi(0)e L , and

moreover, there exist finite constants /; > 0 and /2 > 0 suchthat

NE@ Il < 1[I Ui I (32)
Y@l < L-lU@Ik . O (33)

Our next theorem is a direct application of Lemma 2 to neural networks.
Theorem 2 :

Consider an isolated cell described by (15)-(18). Assume that i) the nonlinearity f(®) belongs to

the closed sector [k1,k2] with k2 , k; finite, and ii) C?.(s) ,’defined in (28), is strictly proper
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@i.e., all elements of Gi(s) tendtozeroat s = o ) and all of its poles p;j have negative real parts.
Under these conditions; for some a 2 —Rep; > 0 if the a-shifted Nyquist diagram of
Gi(s)-e™™ satisfies the conditions i)-iii) in Theorem 1, then u;(s) belongs to L. implies

E@eLln, y®Wels, wy-y(e—7;)e L., and moreover, there exists a finite constant

! > 0 suchthat
I &@ I < 1 lzigl-ll @ b + 1-113] (34)
Iyi@ Ik < 1k lzygl-ll wi®) b + 7k -7l (€8))
Il wig-yi(o=tg) b < -k -zl lwishll w(@® lbo + 1k -|wisl 12 ] (36)

where, k = —%—-(lkz-kll +lky + K1) .

Proof :
As in the Theorem 1, the proof will be done in three steps corresponding to three different values of
wi; ; namely, zero, negative and positive. First, observe that the total input z; - u(e—oy;) + /;

belongsto L., whenever uj(e) e L., since I; isconstant. Moreover,

| zig- uio—oi) + Ii ke < |zigl-ll i@ I + 143l . €)
i) Zero feedback case:

Ei®e L., if uye) belongsto L. since G.(s) is strictly proper and all of its poles are in the open
left half-plane [8]. The bound (34) follows from (37) and the L..-stability of the linear forward path.
The bound (35) is obtained by using the result in (30) and (34).

When Gi(s) is strictly proper with all of its poles in the open left half-plane, the exponential weighting
condition

e¥ -Gi(t) € Li\L2
is satisfied for any positive real @ with a < —Re{p; } forall poles p; of Gys).The Ty
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shifted impulse response G;(t —1Tj;) also satisfies the exponential weighting condition with the same
a . This fact, together with Lemma 2, implies that &j(¢) € L. if u(s) € L. . Hence, (34)-(36) fol-
lows from (33), (37) and (30). O

Our next example asserts that, for an isolated cell of a CNN, L..-stability is ensured by a set of

conditions similar to those for L-stability.
Example 3 :

Consider an isolated cell of a CNN. We can show that the results given in Example 2 are also valid
for L.-stability but with A replaced by A —a . The region of L .-stability is obtained as the union of
the intervals : 0 S wjy < A—@ and w;; < -A +a < 0 where a is an arbitrary small positive

numberlessthan- A . O
Global Asymptotic Stability :

In the sequel, a set of conditions for the global asymptotic stability of an isolated cell is given. The
results are useful for the design of a neural network having a unique globally asymptotic stable equili-

brium point which depends on the input.

As known in the literature [9], the conditions ensuring the input-output stability of the system con-
sidered in Lemma 1, are also sufficient conditions for the global asymptotic stability of the system with
zero-input. We shall show by Theorem 3 that, under the conditions given for L,-stability, an isolated
cell is globally asymptotically stable for each constant input if the sector condition is replaced by the fol-

lowing more stringent condition, henceforth called the incremental sector condition.

Definition 5 : An f ) , with f0) = 0 , satisfies the incremental sector condition if there exist real

constants k; and k, satisfying k; 2 k; suchthat

ki@ =&"P < @ =8 Fi&N=f1E&") < k2- G -&")? forall & , §"eR.O (38)
Condition (38) gives a sector condiiion with &' = & and &” = 0 . A function fe) , which

satisfies (38), is monotonically increasing, uniformly increasing, and strongly-uniformly increasing if

w0 2ky2k; =0, 0o2ky2k; >0 and o > ky 2 k; > 0, respectively. A function fe) ,

satisfying the incremental sector condition with finite &, k2 is Lipschitz continuous with the Lipschitz

-
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constant -%—-(lkz—kll + lkz+ k1) :

IFIEN-FIEN] € 3+ (kz—kil + ko + ki) - |E -8 (39)
One can verify (39) by the same algebraic manipulations used in the derivation of (30). On the other

hand, if f(e) is differentiable, then its derivative satisfies the following inequalities :

s L8 <y, 0)

For the rest of this section, it is assumed that f(e) satisfies the incremental sector condition, and

thé input u(¢) is aconstant and denoted by U; .

We shall now present the definitions of complete stability and global asymptotic stability for a sys-
tem defined by the autonomous differential equations
x¢) = Flx()] @1
where x(¢) is a vector. '
Definition 6 : A system decribed by the equations in (41) is said to be completely stable if each solution

x(t) converges to an equilibrium pointas ¢ — e . O
Definition 7 : The system is said to be globally asymptotically stable if each solution x(¢) converges
to a unique equilibrium point. [
The equations in (15)-(18) which describe an isolated cell are, in general, not in the state equation
form. Therefore, the stability definitions given above can not be applied directly to generalized CNN.

However, if 1y = 0 and the nonlinear algebraic relation

Eit) = of -xi(t) + hy-wig- Fi&i@) + hi-zy- Ui + by I 42)
can be solved for &;(z) in terms of the state vector x; and the inputs, then the equations in (15)-(18)

can be rewritten in a state equation form. The local solvability of the relation (42) is in fact not an extra
assumption for the absolute (globaf asymptotic) stability of a cell because, i) it is a necessary precondi-
tion for the absolute stability that the cell govemed by the equations (15)-(18) must be globally asymptot-
ically stable for all linear feedbacks fy&) = K -& with K e [k;,k2] ; ii) this precondition

requires
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Indeed, if (43) is not satisfied, then the closed loop transfer function

Gi(s)
1-K 'Wu'é[(s)

is not proper and so represents an unstable system [8]. iii) It follows from the well-known local implicit
function theorem that the relation (42), with a locally differentiable nonlinearity f(e) satisfying (38), is
locally solvable for &; since the condition (43) together with (40) implies the slope of

E—wii-hi-fi&D is nonzero at each point. By the above facts, we can always assume a locally
defined state equation exists in a neigborhood of some specific point, such as an equilibrium point, for

cells without time delays, assuming the nonlinearity is differentiable.

On the other hand, for Tj; # 0 , the equations in (15)-(18) constitute a set of algebraic and dif-

ferential difference equations. Eliminating the variables y;(¢) and e(t) , these equations can be recast

into the form:
Xi(#) = Apoxi(e) + byowyy FiG( e —Tiy)) + bz Uy + by I 44)
Eie) = of -xy(t) + hi-wig - fi&i(t —ng)) + hi-zig-Up + by I . @s5)

Observe that we can consider &;(z) also as a state variable in addition to the state vector xi(t) . How-
ever, in order to find a solution to the equations (44)-(45), we need to know the initial state vector x;(0)
and the initial function &i(t) = 6y(t) with ¢ e [—1;,0] (20). The initial function ©y(e) which is
defined in the interval [—t;;,0] , is assumed to belong to L . An equilibrium point ((x{)T , &’ )7

of the differential-difference equations (44)-(45) is defined as a solution to the following algebraic equa-

tions.
0=Arx +by-wy - fiE) +by-ziy- Uy + by 1 (46)
& =cf X"+ hy-wy - Fi&) + hi-zig- Uy + by 1y C))

With the above generalization of state variables, initial conditions, and equilibrium points, our definitions
6 and 7 on complete stability and global asymptotic stability for ordinary differential equations can also
be adopM for the differential-difference equations (44)-(45).
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Throughout our complete and global asymptotic stability analysis, we shall assume that (44)-(45),
and respectively (41), has a unique solution over [0,<e] corresponding to each initial condition. A
sufficient condition ensuring the existence and uniqueness of the solutions for a generalized CNN is given

in section IV.

As mentioned above, the absolute (global asymptotic) stability requires the local solvability of (47)
with respectto &{" , i.e., the existence of a locally defined function
& =&'(x", Ui, Iy) @3)
which expresses &' in terms of the x;° and the inputs. Similarly, observe that if an isolated cell is
absolutely stable, then the system of algebraic equations
0= Ay x +bywy fil&'&, Ui, ID) +by - (215 Ur +1)) 49)
obtained by substituting (48) into (46), is locally solvable for x;* which corresponds to an isolated
equilibrium point of the cell. This observation is true because i) for linear feedbacks fi(&) = K - &
with K e [k, k2] ,(49) becomes

0= A| . X|. + i][ 50

= Wi K el 1 %" +b - . K chi)- .
=(Ar+brwy g T ef 1% +by- (1+wy T=K wy; Fir hi) -z Up+1y)
ii). the nonsingularity of Ay isa necessary condition for the stability of the linear closed-loop system
defined by
Xj = A| i +ﬁ| G
and iii) Since A. is nonsingular forall X e [ k;,k2] , it follows from (40) and the local differentia-

bility of the nonlinearity that (49) is locally uniquely solvable for xi .

In conclusion, if the nonlinearity is differentiable in a neighborhood of an equilibrium point of a
cell, then this equilibrium point should be isolated. In fact, the uniqueness of the equilibrium point is a
necessary condition for global asymptotic stability. Therefore, the conditions ( stated in Theorem 3 ) for

the global asymptotic stability of a cell imply also the uniqueness of the solution of (46)-(47).

The conditions of Theorem 3 ensure global asymptotic stability not only for a particular cell, but

also for any cell having a nonlinearity satisfying (38) and for any constant input. Hence, they will be
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referred to as the absolute global asymptotic stability conditions.
Theorem 3 :

Consider an isolated cell described by (15)-(18). Suppose that the nonlinearity f(®) satisfies the
incremental sector condition in (38) with finite constants k; , k2 . The dynamical subcircuit is given

by the transfer function

Gis) = of - [sI-A T - by+hy
where, all eigenvalues of A; have negative real parts and the pair ( A;, ¢;) is observable, i.e.,

rank [ ¢ Af:'¢q - ANl l=1¢.
Under these conditions; for each constant input, the cell has a globally asymptotically stable equilibrium

point ( (x)T ,&" )T which is the unique solution of (46)-(47), if the following conditions are satisfied :
i) For inhibitory feedbacks wj; < 0 ;
Gi(s)-e™ ™ satisfies one of the sets of conditions i)-iv) given in Lemma 1, but with o = —wy;-k; ,
B=-wiy-ky and Gi(s) e~ ™ instead of G y(s) .
it) For excitatory feedbacks wy; > 0 ;
replacec B by o« and o by P ;andapply i) .
Proof :

Given a cell with constant input, let us derive first another cell with zero input such that an equili-
brium point x;° of the given cell is globally asymptotically stable if and only if the equilibrium point
0 of the new cell is globally asymptotically stable. Let ( (x{)T ,&" )T be a solution to (46)-(47). By

a change of variables, the system of equations in (15)-(18) can be transformed into the following systexh:
Xi(t) = A X(t) + by ei(®) (52)

Et) = of - Xi(t) + i &(2) (53)

Fit) = FiGie) = FE) +&") - F1ED (54)
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eit) = wii-yi(t —Ty) (55)
where () =x0) -x' ., &G@) =e) —e . Fi) =y) -yl ., E@) = &@) - &,
yi =fi&") and ef =wi-yi +2y Ui+ 1; .

Observe that the transformed cell nonlinearity Fi(e) belongs to the sector [k;,k2] since

F(0) = f1&") - fi&") = 0 and (38), with & =& + &' , &" = &' , gives

ky-EF < E2-FyE) < ko EF . (56)

In the sequel, we shall show that the equlibrium point 0 of the system in (52)-(55) is globally
asymptotically stable. The proof parallels that of Theorem 6.4(1) in [9].

Equation (52) can be recast into the following form:

X)) = eM %0 + j eM =2 p a0 -dh . (57)

Substituting (57) into (53), we obtain :

- ¢
8) = of - &Mt -0 + [of - &M UM by Ei) - d + by E() (58)
Observe that the system of equations in (58) and (54)-(55) defines a feedback system in the form of

Figure 9 with the following inputs and outputs:

Uie) =0 (59)
Uxt) = cff - ' -%(0) (60)
Y1(t) = E@t) - Uar) = j ef e UM g g A) - dM + by E(E) (61)
Yo(t) = wiy- 7i(t) - (62)

Here, the subsystem G is defined by the transfer function Gi(s)-e™ ™ ,and G, is defined by a

memoryless nonlinearity w;;- Fi(e) .

The input Ua(e) belongsto L, because all eigenvalues of A; have negative real parts. Since

Ui(e) and Uy(e) e L, it follows from Lemma 1 that Y,(s) , Y(e) belongsto L, . Moreover,
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eit) = Yo(t -7,;) and the initial function 6ye) e L, imply that eye) e L, . It follows from

ei®e L, and c]'-eA"(')-b|e L, that

t

lcf-e'*-'“-*)-b.-e'.(x)-dx -0 as t — oo (63)

For the proof of (63), see Theorem 6.4(1) in [9].

By (63), we have Y (t) — hj-eit) = 0 as ¢t — = ,and hence

Eit) = Uat)~hy-wiy- FiE(t =13) > 0 as t — o (64)

It follows from (64) and Ux(t) - 0 as t — o that, when ¢ tends to infinity &(r) and
E;( t —T,;) both tend to zero, and hence Yy(¢) tends to zero. By the observability of the linear

dynamical forward path, we conclude that Xi(¢) tendstozeroas ¢t — o . O
Let us apply Theorem 3 to a 2 nd order cell.
Example 4 :

Consider a second order cell defined by

() = [Zf Z}] Xt + [}] - i) (65)
&) = [l 0] +x; + 0-e4(t) ' (66)
yit) = 1) = %-V -arctan(3 - —’5— &) 67
eid)=1-yt)+1-U; +0-1; (68)

Such a cell can be realized by the circuit shown in Figure 11a, where x(t) = [vc1(),ve2) I
yi(t) = vo(t) ,and C; = C, . One simple op amp implementation of this circuit is given in Figure
11b. The operational amplifier A1 is in the linear region [18]. The operational amplifier A2 is modeled

by a nonlinear voltage-controlled voltage source such that its transfer characteristic is defined by (67) and
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shown in Figure 11c. The circuit of Figure 11a is reduced into the well-known Wien bridge oscillator cir-

cuit when the input U; is zero.

Figure 11

It can be verified that G(s) = ?—4_3‘—85 and that fi(e) satisfies the incremental sector

condition (38) with &; = 0 , k3 = K . By Theorem 3, we obtain the following inequality which gives

a sufficient condition for the absolute global asymptotic stability of the equilibrium point 0 of the cell:

(1-w22 +3-w2:(3-K) > 0 for all weR . (69)

We conclude that the cell is globally asymptotically stable, for each constant input U; ,if K < 3.
Note that, for this specific example, the conditions of Theorem 3 are weaker than the ones given in [21].
There, it is proved that the Wien bridge circuit is globally asymptotically stableif KX < 2 . By using
the frequency domain Hopf bifurcation theorem gi\./en in [19], it was shown that the ern bridge circuit is
a locally stable nearly-sinusoidal oscillator when K = 3+¢ , where € is a sufficiently small number.
Cosequently, K < 3 is also a necessary condition for the absolute global asymptotic stability of the

cell under consideration. O

Example 4 demonstrates that the conditions given by Theorem 3 are not conservative for the Wien
bridge oscillator. Nevertheles, Theorem 3 gives only sufficient conditions. The following example will
show that absolute global asymptotic stability holds for some generalized CNN even when the conditions

of Theorem 3 are not satisfied.
Example 5 :

Consider an isolated cell of a CNN with constant input. Since the nonlinearity f (o) satisfies the
incremental sector condition with 4; =0, k; = 1, it follows from Theorem 3, and the results in
Example 4, that the region of absolute global asymptotic stability is the same that given for L-stability,

as shown in Figure 10.
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The conditions imposed on the feedback ‘weights wy; are also necessary for absolute stability
when the feedback is excitatory. Indeed, by using the dynamic route approach [18], we can show that
when wj; > A , aninput with |zj;-U; + Ii| < wiy — A can be found such that the cell has two
stable equilibrium points and one unstable equilibrium point [1], [13]. For inhibitory feedbacks, when

-A < wy; < 0, any cell with an arbitrary constant input is also globally asymptotically stable. This
result follows from the dynamic route depicted in Figure 12, where w;; < 0 . Observe that, for each
input, the unique equilibrium point is globally asymptotically stable when -A < wy; < 0, even
though this is not implied by Theorem 3. O

Figure 12

IV. STABILITY OF GENERALIZED CELLULAR NEURAL NETWORKS

In this section, we present several sets of results on the existence and uniqueness of the solutions,
the boundedness of the trajectories, the input-output stability, and the global asymptotic stability, for the
generalized CNN described by equations (1)-(4). In the stability analysis treated below, we shall present
two different types of results. In the first type, the results are applied to the whole generalized CNN. In
the second type, a generalized CNN is considered as an interconnection of individual cells, and the results
are obtained in terms of the stability of the isolated cells and the connection characteristics, i.e., the con-
nection topology and connection weights. This approach reduces the design of a class of generalized
CNN with appropriate connection characteristics into the design of single cells. Moreover, it also pro-
vides a systematic and easy way to analyze a large scale generalized CNN in terms of its building blocks (

individual cells ) and the connection characteristics.

In the sequel, a generalized CNN described by the equations in (1)~(4), will be considered as a feed-

back system, as shown in Figure 13.

Figure 13
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The forward path in Figure 13 consists of uncoupled, single-input, multiple-output, linear, time-invariant,
distributed, dynamical systems. The feedback consists of a memoryless nonlinear system. The symbol
t denotes the number of cells and the subscript i € { 1,2,...,t } indices the cells. Note that the index
i used here is different from the index i = (iy,i2,..., ix , k) which is used before. However, we

can define a one-to-one map for transforming one set of index into another.
Existence and Uniqueness of Solutions :

It is a standard result in the theory of ordinary differential equations that there is a unique solution
to (41)if F(e) is a Lipschitz continuous function. Unfortunately, this result can not be applied directly
to generalized CNN since the set of equations (1)-(4) consists of a set of algebraic and differential-
difference equations. Observe that this generalized CNN can be considered as a feedback system as
shown in Figure 13. A rather general result for the existence and uniqueness of the solution of a feedback
system is given in [8]. The following fact, which is stated for generalized CNN, is a special case of
Theorem II1.5.2 in [8].

Factl:

Consider a generalized CNN described by (1)-(4). If each nonlinearity f;(e) satisfies a global

Lipschitz condition, i.e. , there exists a finite constant L; such that

| FI&N-FiE | < Li-| & -&” | forall & ,E"eR (70)
then, given the inputs wui®)e L, , there exists a unique set of x(®)e Lyt , ef®)e Ly ,
E® e Ly, ,and yi(e) e L, which satisfy (1)-(4). O

It should be observed that the conditions of Fact 1 hold for CNN, HN, and any generalized CNN
having differentiable nonlinearities, and any generalized CNN having continuous piecewise-linear non-
linearities.
A Boundedness Result :

In the design of a physical circuit, it is naturally required that the circuit has bounded trajectories for
any bounded input. Our next theorem gives a boundedness result, which is useful for the design of a gen-

eralized CNN.
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Theorem 4 :

Consider a generalized CNN described by the equations in (1)-(4). Assume that all eigenvalues of

each A; have negative real parts, and each nonlinearity fj(e) is bounded,i.e.,

Ir@ b = s @l < =

an

where || o ||, is usually called the supremum norm. Under these conditions, if the inputs are bounded in

the sense that

Nu@lk =, gp., lm®] < =
then, every trajectory [ x{(t),&(¢) 1T of each cell is bounded in the sense that

Ix@ b =, g, %Ol < =
Ne@ b =, .., 8@ < =

where || o || denotes any vector nomn.
Proof :
Applying the triangle inequality and (4), we obtain
. - . t- + 11
leit)] < iezvlw"il lyie =up) + iglzljl lui(t =oy) | + |44
It follows that
eit)| s wiil- D + ziil- 1 ui(e + |1
leie)| iezvl il Fi@ fezYlljl | ui@ Ik + |24l
The right hand side of (75) is independent of t. By this fact, together with (71)-(72), we obtain

|l ei® Il < s?& lwigl-ll £®) Ik + iez\' lzggl- Il wi@ |k + 1] < oo

The equation in (1) can be recast as follows:

xi(t) = e - %(0) +I eM U2 ped)-dA .

Applying the triangle inequality, we obtain

4
=) || < Il e - x(0) ||+([ | e ¢ =2y |- leiM)]- dA

(72)

(73)

(74)

s

(76)

@an

(78)

Since all eigenvalues of A; have negative real parts, there exist constants ¢y,c2 > 0, a > 0 such

that
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e - x@ Il S cy-e? te[0,=)
| et by || € cp-e2? te[0,) . )
It follows from (78) and (79) that

=@ || < c1-e=? + Z2-(1-2*)[l e@ L (80)
and hence,
=@l < e+ Z2-lle@ il @1)

It follows from (81) and (76) that x;(e) is bounded. The boundedness of &ye) follows by (2), (76) and
@80. O
It should be noted that the result given in (80) can be used also for computing an upper bound on
(o) |
When the trajectories are bounded, every forward trajectory [ x7(¢),&(z) 17 approaches its posi-
tive limit set which is nonempty, closed, bounded and invariant [9]. Here, [x7(t),&(t)]7 denotes the
vector of state variables [( --- ,xf(), < ),( -+ ,&), --- )17 . The positive limit set of a tra-
jectory is the limit set of points p which are the limits of sequences [ x7 (), &) 1T where
fx — +oo . If a generalized CNN is globally asymptotically stable, then the limit set of every trajec-
tory consists of a single element which is necessarily the unique equilibrium point. For a bounded gen-

eralized CNN, the positive limit set of a trajectory may contain cycles or more complicated orbits.

The conditions of Theorem 4 are not only sufficient for boundedness of generalized CNN, but also
sufficient for eventually uniform boundedness, which is stronger than mere boundedness (17]. By the
eventually uniform boundedness of a generalized CNN, we mean that, given any bounded input, there
exists a closed and bounded set such that any trajectory enters and remains inside it foralltime ¢ 2 T ,
where T < o may depend on the initial conditions. The fact that a generalized CNN which satisfies
the conditions of Theorem 4 is eventually uniformly bounded. ~an be shown as follows. The only term in
(80) which depends on the initial conditions is c¢;-e™* . This term can be made sufficiently small by
choosing a large ¢ since a > 0 . Therefore, wecan findatime T < o and a set to prove the even-

tually uniform boundedness of the generalized CNN.
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L, stability :

In the sequel, we shall present two types of L-stability results for generalized CNN. The first type
of results, stated by Theorem 5, gives conditions which are applied to the whole generalized CNN. This
result is more general than the second result, but it does not exploit the L,-stability of the individual
cells. The second type of results, which will be derived from Theorem 5, is in terms of the L,-stability of

the isolated cells and the connection characteristics.

Theorem § is based on Lemma 3, a special case of Theorem V.2.4 in [8], which provides a sufficient
condition for the L ,-stability of the general multivariable feedback system shown in Figure 9.

Lemma 3 [8]:
Consider the feedback system shown in Figure 9, where Uy(r) , Ux(t) , E((t) , Ex(t),
Yi(t) and Y,(t)e R' . The subsytem G, consists of a set of uncoupled, linear, time-invariant,
possibly distributed, scalar input, scalar output, dynamical systems. It is described by a diagonal transfer

ni(s)

matrix Gy(s) with the diagonal elements g;(s) = 16
’ ]

e™™ , where #;(s) and d;(s) are

polynomials with no common zeros and the inverse Laplace transform of £;(s) belongsto L, .The

subsytem G, is memoryless and represented by

Ya(t) = W[Ex)] 82)

where W(e) : R* = R’ satisfies (83) with a constant matrix K e R** and areal constant 7y .

I¥&-K-&ll < y-ll€ll forall EeR . (83)

Under these conditions, if

i) inf |det[I +K-Gis)Il > 0, (84)
i) det[ diag(dy(s),..., di(s)) + K-diag(ry(s)-e=™,..., A(s)-e™)] # 0
whenever Res 20 and l’:]l di(s) =0 (85)
. N 1
i) y- { sup max A:[ HikGw)-HgGw) 117 < 1 (86)

where M* denotes the conjugate transpose of the matrix M , A; (M) denotes the i th eigenvalue of

the matrix M , and
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He(s) = Gy(s)- [ I + K-Gy(s) 17, (87)
then, the system is Lj-stable. [J

The inequality in (84) can be checked by a Nyquist graphical test as done in Lemma 1. The graphi-
cal test is based on Fact 2.
Fact 2 [8] :

The inequality in (84) holds if and only if

i) det[T+K-G(Gw)1=1+gGw)=0 foral weR |, (88)
i) AG= lim [0(Q) -0-iD] =T =m (89)
where 6(jw) is the phase of 1 + g(w) ,ie, O(w) = arg[ 1+ §(Gw) 1 ; n, denotes the
number of poles in the open right half-plane; and . is the multiplicity of the k’th pole. O

Condition (88) means that §(jw) is bounded away from -1+ j-0 . Condition (89) can be inter-
preted as follows: The Nyquist diagram of §(s) [i.e., the graph of themap w — g(jw) ] encircles
the point, -1+;-0 , n, times in the counterclockwise direction.

Now, we shall apply Lemma 3 to generalized CNN.
Theorem S :

Consider the generalized CNN shown in Figure 13. Assume that all nonlinearities f;(s) belong to
a closed sector [{cl »k2] with finite constants k;, k2 . Assume the output y;(t) ofanycell C; is
received, by all neighbor cells, with the same delay, i.e., for each C; , there exists a T; such that

T;,; =7 forall i . Then, th generalized CNN is L,-stable if the conditions in (83)-(86) are

satisfied with

Gi(s) = diag ( Gy(s)-e=*™ ,..., G(s)-e=%) (0)
_—ka—ky .

K= —2—) W, o1

y=lf25 w ©2)

where, Gi(s) =c¢7-[sI - A;J''b; + & , W is the matrix whose elements are the connection

weights W;; ,and || W || denotes any induced norm of the matrix W .
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Proof :

By our assumption on the delay times, the generalized CNN shown in Figure 13 can be reduced into
the feedback system of Figure 9. Then the proof follows from Lemma 3 and the fact that (29) together
with (91)-(92) implies (83). O

Theorem 5 can also be applied to a generalized CNN having nonlinearities belonging to different

sectors. To do this, we can simply define a sector covering all sectors to which the nonlinearities belong.
Let us now apply Theorem 5 to a CNN.

Example 6 :
By the definition of CNN, we obtain Cl(s)=s——_}_7-l, K=-,}2--w, and

¥ = -%- -|| W || . We can rewrite conditions (84) as

1 = -L.a
Rell 20|clet[l T 5+ A ‘W] = Rl 20 s+ ]Ils + A X.(W)l > 0 (93

where A;(W) denotes the i th eigenvalue of the connection matrix W . Observe that (93) holds if and
only if

Re {AA(W)} < 2-A forall i . %4)
For a CNN, (85) becomes

det [(s + A) 1 --%wW ] # 0 whenever Res 20 and (s +A)=0 95)

which is equivalent to the nonsingularity of the connection matrix W ,i.e.,

det W = 0 (96)
The inequality in (86) can be recast as

o (o ) < TWT e

where

= [(A2+w2)I-Acw.w_ Atiw.wr,l.owow (98)
and A; (Mg ) istheitheigenvalue of Mg . The equivalence of (86) and (97) follows from the facts

that Hg (jw) - Hx (jw) has positive real eigenvalues only and its eigenvalues can be given as
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1
A (Mg)

We conclude that if the connection matrix W satisfies the conditions in (94), (96) and (97), then
the associated CNN is Lz-stable. [
Notel:

Theorem 1, which gives the conditions for the L-stability of an isolated cell, is indeed a special

case of Theorem 5. For an isolated cell C; , the condition in (84), (85) and (86) takes the form in (99),

(100) and (101), respectively.
+
ot - (Biikywsae) > 0 99)
(f%ﬁ)-w,-,;-ﬁ;(s)-e""‘ # 0 -whenever Res 20 . (100)
| giGw) | 2
w R K1+ k2 < k2 = kA" TWii | (101)

1= (25=2) Wi - gi(jw) |
It is shown in [8], by using Fact 1, that the conditions in (99)-(101) can be checked by the Nyquist graphi-

cal test statedin Lemma 1. O

Our next result gives a connection topology underwhich L ,-stable subnetworks yield an L ,-stable

network.
Fact3:

Consider a generalized CNN ®2 consisting of a cascade of the layers IIf . Let us isolate each
layer from the other layers by setting all extra-level connection weights to zero. If each isolated layer is

L, -stable, then so is the whole generalized CNN @7, .
Proof :
The proof follows directly from the definition of a cascade generalized CNN. O

Our next theorem describes that, for some suitable values of the conpcction weights, the intercon-

nection of a class of L,-stable individual cells is also L ;-stable.

Note 2 :
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It will be assumed in Theorem 6 that each individual cell satisfies the conditions of Theorem 5 (and

equivalently of Theorem 1) but with the condition (101) replaced by the following stronger condition :

| :Gw) | 2
iR < — W (102)
v |1-(£;Q)'W;J'gsﬁw)l lkz = k1[-1Wiil-p
where p = w .Itis known [8] that p = 1 for any induced matrix norm || W || . This

i

implies that if (102) holds, then (101) holds. Condition (102) can be checked graphically in a way similar
to the graphical test in Lemma 1. To do this, observe the following facts:

For the complex number z = g;(jw) ,

i)If |k2 + k1| > p-lka — k1|, then (102) is equivalent to the condition that z is bounded away from

the disk D ( which is a circle in the complex plane centered on the real axis and passing through the

2
Lk + k1 +p- (k2 —%k1)]- W,

points +j-0 and
2

(ks + k1 = p (k2 = k1) ] Wi +j-0)

ii) If |ky + k1] < p-lka = k], then (102) is equivalent to the condition that z is in the interior of
thedisk D givenini),

and iii) If |ky + ky|=p-|lks - k;], then (102) is equivalent to the condition that
(k2 + k) W;;*Rez < 1. 0

Theorem6 :

Consider the generalized CNN shown in Figure 13. Assume that i) There is a nonempty set

I cR suchthat for W;; e I , each individual cell, isolated from the rest of the generalized CNN,
satisfies the conditions of Theorem 5 but with the condition in (102) instead of (101), ii) the output of a
cell C; is transmitted to the neighbor cells with the same delay <; ; and iii) all cells are identical, i.e.,

they have the same nonlinearity and the same transfer function §(s) defined by

g(s)=g'(%)l'e"'"=lcr'[sl-A]"-b+h]-e-” (103)

with ¢c=¢;, A=A;, b=b;, h=h, 1t=1 foral ie{1.2...:};and rA(s) does

not have a zero in the closed right half-plane. Under these conditions, the generalized CNN is L,-stable
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if

i) The connection matrix W is nonsingular and symmetric,
and ii) Any eigenvalue A;(W) liesin 7 .

Proof':

The assumption on the delay times allows us to use Theorem 5. We will now show the conditions

in (84)-(86) are satisfied. For the generalized CNN considered, (84) becomes (104).

ot et (1 - (22 Ky wog |
= W50, IT 11 - (235 amge | > 0 . a0
Each term in the product of (104) corresponds to the condition for an isolated cell. The inequality in (104)
holds since each isolated cell satisfies the condition in (99) and each A; (W) liesin 7 .
For the generalized CNN under consideration, the condition (85) assumes the following form :

k

det [cz‘(s)-l-(%ﬁyw-ﬁ(s)] # 0 whenever Re s20 and d(s) = 0. (105)

Condition (105) holds because d(s) does not have zeros in the right half-plane and the connection

matrix W is nonsingular.

Observe next that Hy(s) as defined in (87) can be recast as follows :

He(s) = £6) 11 - (255w g1 (106)

Our next relation follows by the symmetry of the connection matrix W .

M {HeGw)" - HgGw) } = el P . (107)
11 - (255 m) gGw) P

Now, the inequality in (86) takes the form in (108).

- | Ig (w) |
|1 - (225=L) - (W) £Gw) |
Condition (108) holds since each cell satisfies condition (102) and since each A;(W) liesin / . O

(108)

2
s ks = Kl TW I

The following corollary is a direct consequence of Fact 2 and Theorem 6.
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Corollary1:

Consider a generalized CNN @2 made up of a cascade of the layers IIf . If each isolated layer
II# satisfies the conditions of Theorem 6, then the whole generalized CNN @7 is L-stable.

Proof :

The L,-stability of each isolated layer follows by Theorem 6. Then, Fact 2 completes the proof.
O
L.~ stability :

We now present, by Theorems 7 and 8, sufficient conditions for the L -stability of generalized
CNN. Theorems 7 and 8 are based on Lemma 4 which is a generalization of Lemma 2 and a direct conse-
quence of Theorem V.2.4 and Lemma V.3.21 in [8]. |

Lemma4:
Consider the feedback system shown in Figure 9, where Uy(r) , Ux(?) , Ei(r) , Ex(),
Yi(t), Yat)e R and Ux(t) = 0 . The subsystem G; consists of a set of uncoupled, linear,
time-invariant, possibly distributed, scalar input, scalar output, dynamical systems. The subsystem G

ni(s) e

is described by a diagonal transfer matrix Gi(s) with the diagonal elements gi(s) = Z6)
L

where, #;(s) and cf,-(s) are polynomials with no common zeros and the inverse Laplace transform

8i(t) of g;(s) satisfies the exponential weighting condition:

e* - gi(t) e LiLy for some a >0 .
The subsystem G, is memoryless and represented by Ya(r) = W[E(t)] , where, ¥(s) : R* — R

satisfies (83).

Under these conditions, if the a-shifted transfer function G 1(—a +s) satisfies the conditions in (84)-

(86),then Uj(e) e L., impliesthat E;(¢), Yi(® e L, . O
Let us apply next Lemma 4 to generalized CNN.
Theorem 7 :

Consider the generalized CNN shown in Figure 13. Assume that each G(s) is strictly proper



-42 -

and that all of its poles p; have negative real parts. If the conditions of Theorem 5 hold but with an a-
shifted transfer function Gy(—a +s) (here, @ = —Rep; >0 ), then the generalized CNN is Lo-
stable.
Proof :

The proof is similar to that of Theorem 2, where Lemma 4 is used. O

The conditions of Theorem 7 can be verified by examining the transfer function of the whole gen-
eralized CNN. In contrast, the conditions of Theorem 8 can be checked by examining the connection
characteristics alone, if the individual cells satisfies certain conditions.
Theorem 8 :

Consider a generalized CNN @2 made up of a cascade of the layers IIp . Assume that each iso-

lated cell of a layer TIf has the same transfer function ¢(s) defined in (103), where, g.%)l is

strictly proper and all of its poles p; have negative real parts. Then the generalized CNN @7 is
L .-stable, if each isolated layer II} satisfies the conditions of Theorem 6 but with an a-shifted transfer

function §(—a +.§) (here, a 2 -Repj > 0).
Proof :

The proof follows from Fact 3 and Theorems 5-7. O
Global Asymptotic Stability :

Let us now generalize the results, obtained in section III, on the global asymptotic stability of the
individual cells, into the whole generalized CNN. Theorem 9 shows that the conditions given by Theorem
S for the L-stability of generalized CNN also ensure the global asymptotic stability of the generalized
CNN, if the nonlinearities f;(e) satisfies a condition stronger than the sector condition. Theorem 10
presents a set of conditions on the connection characteristics. which guaranties that the interconnection of
a class of globally asymptotically stable individual cells yields a globally asymptotically stable general-
ized CNN.

Throughout the global asymptotic stability, we assume that i) the external inputs ;(¢) are con-
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stants and denoted by U; , ii) all nonlinearities f;(s) satisfy the incremental sector condition in (38)
with finite constants k;, k2 , iii) the set of differential-difference equations in (1)-(4) has a unique
equilibrium point. As discussed in section III, the last assumption is not an extra condition for a globally
asymptotically stable system. The second assumption, which is needed for the global asymptotic stability
of a generalized CNN under an arbitrary constant input, ensures the existence and uniqueness of the solu-
tions to the equations in (1)-(4). This follows from Fact 1 and the result in (39).
Theorem 9 :
Consider the generalized CNN shown in Figure 13. Suppose that all nonlinearities f;(e) satisfy

the incremental sector condition in (38) with the same finite constants k;, k2 , and assume the output

¢(t) of any cell C; is received by neighbor cells with the same delay 1y = T; 7 . For the linear
dynamical subcircuits in the forward path having the following transfer function
Gi(s) = el [sT - AT! b +h
assume all eigenvalues of A; have negative real parts and assume the pair (A;,c;) is observable.
Under these conditions, if G(s) together with K and ¥y defined in (90)-(92) satisfy the conditions
in (83)-(86), then, for each constant input, the generalized CNN has a unique equilibrium point which is
globally asymptotically stable.
Proof :

The proof is parallel to that of Theorem 3 and follows by Theorem 5. O

In the sequel, we shall present a class of generalized CNN where the global asymptotic stability of
individual cells implies the global asymptotic stability of the whole generalized CNN, under some suit-
able interconnection characteristics. This result needs Fact 4 which giVes a connection topology ensuring
that the interconnection of the globally asymptotically stable layers is also globally asymptotically stable.

For a proof of Fact 4, see Theorem S in [2].
Fact4:

Consider a generalized CNN @2 made up of a cascade of the layers I} .If each isolated layer

ITZ is globally asymptotically stable, then so is the whole generalized CNN &7 . O



Theorem 10 :

Consider a generalized CNN @2 made up of a cascade of the layers II# . Assume that i) for
each layer IT , all nonlinearities f;(s) satisfy the incremental sector condition in (38) with the same
finite constants k1 k2 , ii) each layer IIf , as a feedback system shown in Figure 13, satisfies the con-
ditions of Theorem 13, where all eigenvalues of A have negative real parts, and the pair (A,c¢) is
observable. Then, for each constant input, the generalized CNN @72 has a unique equilibrium point
which is globally asymptotically stable.

Proof':

The proof follows from Fact 4, Theorem 9, and uses the same approach as that of Theorem 6. O

V. CONCLUSION

A new neural network architecture, generalized CNN, has been developed. generalized CNN is a
very general neural network model in regards to both connection topology and structure of building
blocks. Hence, the potential applications of generalized CNN go well beyond the ones offered by the
common neural networks consisting of simple cells. In particular, the results given for the global asymp-
totic stability, and the input-output stability of the generalized CNN, can be used for designing general-

ized CNNs as computing and/or cognitive machines.
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CAPTIONS FOR FIGURES

Figure 1. A 2-dimensional 3-layer GCNN, Q£ . Each layer has nearest neighbor intra-layer intercon-
nection of size r=1, while every two successive layers are fully-interconnected, for instance, each cell of

17 is connected to every cell in layer IT¢ and IT# .
Figure 2. a) A feedforward GCNN T{ , b) A cascade GCNN @4 , and c) A recurrent GCNN.

Figure 3. The connectivity of a single cell within the same layer k for a) rix=1 and
dig Ciniokiinizk ) = liy=i1| + lia=13], b) ree=1 and
i Cinigksipizk ) = max  |ig=i1], liz=i3] ) and c) Ty =2 and

dk.k (il!iZ'k;iAlyfzgk ) = Iil—{ll + liz—i}l .

Figure 4. The extra-level connectivity of a single cell of a 1-dimensional 2-layer GCNN with a)
Teg+1=1 and deprt (k3 Tk+1) = |ig =11 ]+1 and b T+ =1 and

di i1 (i K i+l ) = max { i, -i‘ll, 1} , respectively.
Figure 5. Block diagram of a cell.
Figure 6. Feedback diagram of an isolated cell.

Figure 7. a) Chua’s circuit consisting of a linear passive resistor, a linear inductor, two linear capacitors,

and one nonlinear resistor. b) The v-i characteristic of the nonlinear resistor Ry .
Figure 8. The region where the function belonging to the sector [ k;,k2] lies.
Figure 9. Block diagram of a general nonlinear feedback system.

Figure 10. The region of L,-stability for an isolated cell of a CNN obtained by the circle criterion.
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Figure 11. a) A circuit model of an oscillatory second order cell. b) The Wien bridge oscillator circuit.

c¢) The transfer function of the voltage-controlled source.

Figure 12. The dynamic route for an isolated cell of a CNN when wy; < 0 .

Figure 13. A GCNN considered as a multivariable feedback system.
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