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ABSTRACT

A rather general class of neural networks, called generalized Cellular Neural Networks (CNNs), is

introduced. The new model covers most of the known neural network architectures including Cellular

Neural Netwoiics, Hopfield Networks and Multi-layer Perceptrons. Several sets of conditions, ensuring

the input-ou^ut stabilityand global asymptotic stability of generalized CNNs, have been obtained. The

conditions for the stability of individual cells are checked in the frequency domain, while the stability of

the overall network is analyzed in terms of the stability of the individual cells and the cormectivity

characteristics. The results on the global asymptotic stability are useful for the design of a generalized

CNN such that the orbit of each state converges to a globally asymptotically stable equilibrium point

which depends only on the input and not on the initial state. Such a network defines an algebraic map

from the spaceof external inputs to the spaceof steady-state values of the outputs, andhence,can accom

plish cognitive and computational tasks.
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L INTRODUCTION

In the past three decades, a number of neural network architectureshas been developed. The archi

tectures have been inspired both by the principles governing biological neural systems and the well-

established theories of engineering and fundamental sciences. Most of the widely applied neural networks

fall into two main dasses: 1) Memoryless Neural Networks [5], and 2) Dynamical Neural Networks [1],

[3], [4], [6]. From a circuit theoretical point of view, the Memoryless Neural Networks are nonlinear

resistive circuits, while the Dynamical Neural Networks are nonlinear R-L-C circuits. A Memoryless

Neural Network defines a nonlinear transformation from the space of input signals into the space of out

put signals. Such networks have been successfully used in pattern recognition and several problems

which can be defined as a nonlinear transformation between two spaces. As in Hopfield Network (HN) [4]

and Cellular Neural Network (CNN) [1], the Dynamical Neural Networks have been usually designed as

dynamical systems where the inputs are set to some constant values, and each trajectory approaches one

of the stable equilibrium points depending upon the initial state. Some useful applications of these net

works includes image processing, pattern recognition and optimizatiotL

This paper presents a new neural networkarchitecture, called generalized CellularNeural Network

(CNN), which is a generalization of CNN introduced in [1]. The generalized CNN includes, as special

cases, someimportant Memoryless Networks, suchas Multilayer Perceptions (MPs), and Dynamical Net

works, such as HN and CNN.A generalized CNNis an interconnection of many subcircuits, called cells,

each of whichis an arbitrary order dynamical circuit and is connected only to its nearestneighbors. High

order generalized CNNs are capable of more functions than the neural networks made up of simple R-C

op amp cells.

The development of generalized CNN has been influenced by the following facts: i) Neurobiologi-

cal studies have demonstrated that neurons exhibit quite complicated dynamical behaviours [6], and

thereforeshould be consideredas an analog microprocessor rather than as a simple processingelement; ii)

The set of differential-difference equations (l)-(4), describing the generalized CNN, defines a rather gen

eral class of nonlinear equations. Indeed, most of the equations governing nonlinear circuits and systems

fall into this important class [11], [19]; and a partial linearization of nonlinear differential equations hav-



ing the state equation foim also yields such a class of nonlinear equations [7]. Moreover, any system

defined by this class of nonlinear equations can be considered as a feedback control system for which

many comprehensive results have been obtained in the literature [7]-[9]; and iii) The generalized CNN

coversmany important neuralnetwork architectures as specialcases. For instance, the MP is a 0 th order

generalized CNNwhile the HN and the CNNare 1 st ordergeneralized CNNs. Consequently, a general

izedCNNis capable of performing any taskthat thesespecial networks can perform, while it offers more

capability than these networks.

In the designof a Dynamical Neural Network, it is always of interestto studythe stability properties

of the network. The vast majority of the stability studies in neural networks [l]-[4], [12], [14]-[15] has

been devoted to finding the conditions which ensure that each trajectory of the network converges to an

equilibrium point dependingon the initial conditions. These completelystable neural networkshave been

used as computing and/or cognitive machines. Here, the external inputs are set to some constant values,

the input data is fed via initial conditions, and the outputs take their steady-statevalues at an equilibrium

point that depends on the initial condition. Such neural networks can accomplish many tasks, such as pat-

tem recognition and image processing [1], [3]-[4], [13].

In contrast with the Dynamical Neural Networks mentioned above, one can design a Dynamical

Neural Network where the input data is fed via external inputs, and each trajectory converges to a unique

equilibrium point that depends only on the input and not on the initial state. Such a globally asymptoti

cally stable neural network has been presented in [10]. The neural network, designed in this way, defines

an algebraic transformation from the space of inputs into the space of steady-state outputs. Therefore, it

can perform computational and cognitive tasks, hi this paper, we present several sets of sufficient condi

tions for global asymptotic stability, and also for input-output stability of generalized CNN. The global

asymptotic stability results are useful for the design of a generalized CNN where the output reaches its

steady-state value depending only on the given constant input and not on the initial state. The input-

output stability results can be used for determining the boundednessof the outputs of a generalized CNN

with constant inputs, as well as for a generalized CNN with time-varying inputs.

The organization of this paper is as follows. In section n, we describe the connectiontopology of
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the generalized CNN, the circuit structure of the cells, and the building blocks of generalized CNN. In

section in, a set of sufficient conditions for the global asymptotic stability and input-output stability of

the individual cells, is given and it is shownby someconcrete examples that the dynamical behaviours of

the cells are much richer than those of simple cells of common neural netwoiks. The stability results

presented in section HI are based on the circle criterion of control theory, and they will be exploited, in

section IV, to develop the conditions for the whole generalized CNN. Section IV presents some results

on the existence, uniqueness and boundedness of the trajectories of generalized CNN, and two types of

conditions ensuring the input-output stability and global asymptotic stability of a rather general class of

generalized CNN. The first type of conditions are applied to the whole generalized CNN and do not

exploit the stability of the individual cells. Thesecond type of conditions are in terms of the connection

topology, the connection weights and the frequency domain transfer fimction of the linear subcircuit of

individual cells. The conditions can be checked only in the frequency domain and verified by a kind of

Nyquist grq)hical test

n. GENERALIZED CNN

In this section, a rather general class of neural networks, called generalized Cellular Neural Net

works , ispresented. Ageneralized CNN isa large-scale nonlinear circuit composed ofalarge number of

subcircuits, called cells. Each cell is an arbitrary order dynamical circuit and is coimected only to its

nearestneighbors (the term nearestwill be clarified in Definition 1).

Connection Topology:

A row of NI cells iscalled a 1-dimensional single-layer generalized CNN and denoted by IT^ .

An N1XN2 array ofcells is called a2-dimensional single layer generalized CNN, and denoted by iP .

Similarly, an n-dimensional single-layer generalized CNN, fl" , is an N\XN2 •'' xNn array of cells;

here each Nj is an integer number. An n-dimensional m-layer generalized CNN, , is built-up

from a collection of m single-layer generalized CNNs IljP , k g { l,2,...,m ) , in sucha way that the

cells in eachlayer Iljf areconnected to thenearest neighbors in theotherlayers Ilj* , j . Bythe

existence of a connection between two cells, we mean that the output of one of the cells is fed into the



-4-

other. If each of these two cells is fed by the outputof the other, the connection is called bilateral; other

wise, it is unilateral. In our illustrations, a link without an orientation will denote a connection which may

be unilateral or bilateral, while a link with an orientation will denote a unilateral connection. A bilateral

connection will be denoted by two oriented links.

A 2-dimensional 3-layer generalized CNN, , is shown in Rgurc 1. The layer 11?, 11} ,and

respectively is a 3x3 , 4x3 , and respectively 3x5 array of cells. As in the generalized CNN of

Figure 1, the size ) and the connection topology may, in general, differ fn)m one layer to

another. Moreover, a layer may be rectangular array of cells, i.e., Ni * N2 . For simplicity, however,

unless otherwise stated, we will assume that the size of each layer is the same, i.e., N/ = Nj for all

j e { l,2,...,n e and k e { l,2,...,m ) , where the superscript k index the layers. Note that a typi

cal cell (say, the hatched cell in 11^ ) in Figure 1 is connected not only to its nearest neighbors in the

same layer, but also to the nearest neighbors in the upper (except the uppermost layer) and the lower (

except the lowermost layer) layers. For the sake of generality, we allow the "size" of the neighborhood

in each layer to be arbitrary, including the entire layer. Moreover, in the most general case, each cell of

each layer may be connected to the cells in more than 2 layers. Using future technologies, such as optical

systems, such interconnections are feasible.

Figure 1

A special class of layered generalized Q4N is feedforward generalized CNN, F/S , inwhich the

output of the cells in a layer HJl is fed only into the cells in the next layer Ilj^+i . The cells within the

same layer are connected to their nearest neighbors as before. A generalization of a feedforward general

ized CNN is a cascade [2], , where the output of the cells in a layer 11^ is fed not only into the

cells in the next layer IljP+i , but also into the cells in the succeeding layers 11/ with

j e { k+2, k+3 m } . Note that the cormections between layers in a cascade are all unilateral

whereas the connections within a layer may not be. A generalized CNN is called recurrent, if it has a

bilateral connection and/or a loop consisting of similarly directed unilateral connections.
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Figure 2a, 2b and 2c shows a feedforward generalized CNN Fj , a cascade ^ of cells, and a

recurrent generalized CNN, respectively.

Figure 2

A cell in the k th layer of an n-dimensional m-layer generalized CNN will be denoted by

where ij e { 1,2,...JV)) for all j e {l,2,...,n ) and k e { l,2,...,m ) . Forbrevity,

let us define i = (11,12 in fk ) and then set = Ci . Sometimes we will still write

and Cijc ratherthan C| particularly when n=2 and n=l , respectively. Definition 1

below describes what we mean by a nearest neighbor of a ceU.

Definition 1: For a cell C1 in the k th layer of an n-dimensional m-layer generalizedCNN and

a metric f ( •; •) and a positive integernumber r^j , the nearest neighborhood Bij in the I

th layer is defined by

Bij = {Cf I (i; i) < rjk,/ , i ^ i=(AA ••• ) . *} e {1,2,...,^/ )
for all j e { l,2,...,/i ) }

where dkj (i; i) is the distance between the vectors of integer numbers (ii,/2,... ,inyk)^ and

(iuh," - find • Different metrics may be chosenfor dk^ . The set of nearest-neighbors of a cell

C| is the union of all nearest-neigborhoods B\^ in the different layers and is denoted by

B\ = K^B\^ . •

Since each cell is connected only to its nearest neighbors, the cormectiontopology depends on the

choice of r and the distance function d only. Note that the nearest neighborhood of a cell may be an

empty set in one extreme case, or it may contain all cells of the generalized CNN as in the Hopfield

f We define a metric dkji ( •» • ) in the usual sense; namely.^a dkji^'tf) isa real-valued func
tion such Aat the following axioms are satisfied: i) d/tji i; i) = dkjL^ >0_ all !_,! . ii)
dk^(i,i) ^ dik,/(i,i) + dife^("i,i) for all i. i = (ii,r2» •• • .
ij e {1,2,...,^- ) for all y € { l,2,...,rt } . ili) dkjil ,i) > 0 for all I ^ i and
djk./(i ,i) = 0 .
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Network [4], in the other extreme case.

In general, we can choose different r and d for each cell, layer and/or pair of layers. This,

however, causes a nonunifonn connection topology which is not desirable for a neural netwoik architec

ture. In this paper, we assign the same r and d for any two cells within the same layer k and index

them as rkjt and dk^ . We use rtjc and dkjt to denote connections within the same layer (intra-

level connections), and and dk^ with k^l for connections between two different layers

(extra-level connections). Three different kinds of intra-level connections for a 2-dimensional general

ized CNN are shown in Figure 3. Here, the cell located at the center is connected to the cells belonging to

its nearest neighborhood determined by r and d . In Figure 3a, the metric is defined by

dkjtiixdiMixSiJc) = |ii - Al + liz - h\ , consequently, its nearest neighborhood consists ofonly

4 neighbor cells. hi Hgure 3b, the metric is defined by

dkjti ixdiMhSifk ) = max {|/i - AI . Ui - Al} . and the nearest neighborhood in this case con

sists of all 8 neighbor cells. Finally, in Figure 3c, the metric is defined by

dkjciixdiJc'yixSiJ^ ) = |ii - Al + l^z - AI , and the nearest neighborhood in this case consists of12

neighbor cells.

Figure 3

As in the generalized CNN of Rgure 1, and in the Multi-layer Perception [5], any two successive

layers in a neural network may be fully-connected. However, we can create many different extra-level

cormection topologies based on the choice of r and d . Two special examples are shown in Hgure 4.

For both examples, the cell at the center of the lower layer is connected to the 1-nearestneighbors in the

upper layer but with two different kinds of neigborhood defined by different metrics: the metric in Figure

4a is defined by djtjk+i(i,A:;f,A:+l) = ji'i - A! + 1 . whereas that in Rgure 4b is defined by

djk,ik+i(i,^U,^+l) = max {j/i - Al, 1 ) •

Figure 4



Circuit Structure of a Ceil:

The connection topology of a generalized CNN has been described above. Now, we present a circuit

structure for a cell. Each cell C i is, in general, an t| th order nonlinear dynamical circuit such that the

circuit topology, elements and/or element values may differ from one cell to another. The cells, con

sidered in this paper, consists of three basic units as shown in Hgure 5.

Figure 5

The first unit, which is a multi-input, single-output, linear, resistive circuit, forms a weighted sum of

external inputs and the outputs of the neighbor cells. The output of the first unit, ei , is fed into the

second unit The secondunit is a single-input(ei), single-output(), rroller linear dynamicalcircuit

The only nonlinear part of the cell is the third unit which receives and pass it through a nonlinearity

/i(«) . Such a cell is described by the following system ofequations:

X|(0 = A| •xi(r) + bi •ei(f) (1)

5i(0 = cf'xi(r) + hi- eiCO (2)

yi(0 = /iC^iCO) (3)

ei(0 = zii •«K^-<yu) +

where A|€ ; b| , C| e R '̂ ; hi , W|j , Z|j , X|f , a|j , /§ e R are all constants;

xi(»): R R*' ; ei(») , X|(«) and yi(«): R ^ R are functions of time t; xi = ;

/i(#): R->R isa nonlinear function; Y = {p|Cp e fi|} is the set ofintegers indexing the neighbor

cells; here p = (pi^2»... ) ; and i = (iuh, i = (AA •••»A./) with

Pj ,ij ,ij e { l,2,...,iVy } for all y e { l,2,...,/i } and s ,k J e { l,2,...,m ) . Each cell has two

different kinds of external inputs: Ui(r) and /i . The controlling input ui associated with the cell

Ci is also applied through the weights Z|y to the neighbor cells while the constant input 11 is fed
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only into the cell C| . Thedelay times X|j and aij in (4) arcintroduced here to obtain a more real

istic model. t|j and, respectively, Cg reflects thepropagation time needed for a cell, Ci , to receive

the feedback signals yi(r) and, respectively, the controlling input signals u{(r) from the neighbor

cells. The coefficients W|j and Z|j in (4) weights tiie delayed signals yi(^^i,i) and Mi(r-a|f) ,

respectively. For more generality, we can allow y^ft) , y^ft - t|)f) , y\(t - x§) ,..., y^t - Xi^)

as well as Mf(f) , tt{(r - OiJ) , iif(r - o§) ,..., uj(r - asinputs toUnit I inRgure 5. How

ever, such a model can be transformed into the model described by the equations in (l)-(4) by adding vir

tual cells.

Special Case I: Cellular Neural Networks

The generalized CNN given by (l)-(4) is a generalization of CNN introduced in [1]. A one layer

CNN is obtained as a special case of generalized CNN when the following assumptions are made:

(Al) : The network is a 2-dimensional array of cells;

(A2) : The linear dynamical subcircuit ofeach cell is oforder 1 ( = 1 );

(A3) : All delay times are zero ( X|j = 0|j = 0) ;

(A4) : The nonlinear function is the same for all cells and is a continuous piecewise-linear function

defined by

/(4i) =| {I5i+l|-|^-l|) (5)
here |«| denotes the absolute value function given by |^|| = for §| > 0 , = -4i for 5i < 0 .

and =0 for = 0 ;

(A5) : bi = C| = 1 , /i| = 0 and A| is a negative scalar,

(A6) : Ai = -A <0 and, respectively, /| = / is the same for all cells; and

(AT) : Each cell is connected to the cells in its nearest neighborhood definedby the following metric:

dHuii'yiiSz) = niax{ \i1-i1\J2-h\ ) • (6)

Under the above assumptions (A1)-(A7), the system of equations in (l)-(4) can be rewritten as follows:
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= -A + , 2 ^ , Z ^ -+ ' C7)
ij^acY Ii,*2€ Y

yi.^(') = Y < +11 - l*i.A(') -11) • (8)

Special Case n: Hopfield Network

CNN is not the only important subclass of generalized CNN given by (l)-(4). generalized CNN

covers quite a large class of neural networks including many wdl-known neural network architectures

such as HN [4] and MP [5], HN is a 2-dimensional, single-layer generalized CNN where each cell is con

nected to every other cell. If we assume (A8)-(A10) given below, in addition to the (A1)-(A3) and (A6),

the generalized CNN in (l)-(4) reduces into the HN. The additional assumptions are:

(A8) : Each nonlinearity is a sigmoidal function, i.e., /i(«)=Jgmi(«) : R-> (-1,1) is continuously

differentiable, strictly increasing (i.e., > 0 ), 5r/i(5i) >0 for all 0 >

/i(0) = 0 ;

(A9) : wi4 = 0 and U|(r) = 0 forall i ;

(AlO): The network is fully cormected. This means the neighborhood of any cell contains all cells in

the network. Sucha neighborhood canbe obtained by choosing r = 1 and d (i 1,1*2;/ i»i2 ) = 0 .

The system of equations defining HN can be written, as in (9)-(10), by usinga singleindex i for

each cell, i = I'l+ Ni •{'2 denotes a possible transformation from the double index (iiJi) lo i .

The resulting system of equations are given as follows:

Xiit) = Ai XiCO + y ^Wi,r-yf(0 + A- (9)
fmM I

yi(Xi(t)) = sgmi(Xi(t)) (10)

Special Case m: Multi-layer Perceptron

The MP can also be obtained as a special case of generalized CNN if we assume (A11)-(A16)

together with (A3). The additional assumptions are :
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(All) : Thenetwork hasm layers (typically m 3) eachof which is a 1-dimensional array of cells;

(A12) : The cells do not contain a dynamical part* i.e., ri = 0 ;

(A13) : UO = eiit) ,i.e.. /ii = 1 ;

(A14) : The nonlineaiity is a signum function defined as /i(4D = sgni^O = 1 for > 0 » =

for < 0 . anfi = 0 for = 0 ;

(A15) : There is no intra-level connection. This connection topology can be obtained by choosing a suit

able metric such as dkjciiS) = 1 .andassuming rtjt = 0 .

(A16) : Every two successive layers are fiilly interconnected, i.e., each cell in a layer is coimected to

every cell in the next layer.

With these assumptions, our generalized CNN reduces to an MP, which can be characterized by the fol

lowing nonlinear algebraic equations:

yiMO = (11)

= cijid) (12)

ei,i(f) = £ •«.'.!(') + h.i (13)
foTall I

eijciO = X 'yfjc-i(0 + lijc fora// k e {2,3,...,ot } . (14)
for^ I

Here, the subscript {i,k) corresponds to the i th cell in the k th layer.

As can be seen from (13)-(14), each cell in the first layer is fed by the extemal inputs only and the

cells in another layer are fed by only the outputs of the cells in the previous layer. Each cell forms a

weighted sum of its inputs, adds a threshold hj^ and passes the result through the nonlinearity such that

the output is either +1 or -1 except for zero total input (i.e., eijc, = 0).

Special Case IV: Space-invariant generalized CNN

An important subclass of CNN can be characterized simply by a CNN cloning template [1]. As

shown in [1] this subclass is especially useful for image proccessing applications. A space-invariant
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generalized CNN can also be characterized by a generalized CNN cloning template where the space-

invariant property is defined as follows.

Definition 2: A layer of a generalized CNN, say the i(: th layer, has the space invariant property if each

cell in the ik th layer has the same interconnection pattern, i.e., the nearest neigbortiood of

each cell, , is defined by the same rkji and the same metric dkjc , and the connection weights

Wfj and Z|j are invariant undera coordinate transformation; namely,

wa = : ZlJ = ft""

where, i = (iiJ2 «.,*). ? = (A/2. ••• ) and q = (?i42 ?».0) with ij , ij

and qj e { 1,2,...,^; ) forall J e { 1,2,...,^ ) .

If all layers of a generalized CNN have the space invariant property, then the generalized CNN is

said to be space invariant •

Note that the cells on the boundaries of the layers always fail the condition in Definition2 and they

should be considered separately. However, one can obtain a uniform structure by adding virtual cells

beyond the boundaries [13].

Observethat, for a space invariantgeneralized CNN, a set of coefficients specif^g the coimection

weights associated with any non-boundary cell is sufficient to express all other coefficients. Conse

quently, it is convenient to express the coefficients of W|j and Z|j as the elements of the sets Wk

and Zk defined as:

Wik(M) = Wi.1

Zt(i-i) = Z|j

where, the center elements Wjk(0,0,...,0) ( respectively, Zjt(0,0,...,0) ) denote the coefficients which

weights the self ouq)ut ( respectively, self input) of any cell in the k th. layer. Similarly, all other ele

ments IV^fc(i-i) and Zkii-i) do not depend on i ; they depend only on ^ (indexing the layers) and

on i-i , which represents the relative position of the neighbor cell Cf with respect to the center cell

Ci . Observed that the number of elements in the set Wk or Zk is equal to the number of cells in
A

the nearest neigboihood . For a 2-dimensional generalized CNN, the coefficents Wjk(i-i) and
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Zjk(i-i) can be considered as elements of the matrices Wk and Zk , respectively, where, WkiiJ)

and ZkdJ) denotes the entry in the / th row and the y th column of the matrix Wk and Zk ,

respectively.

HL STABILITY OF ISOLATED CELLS

The aim of this section is twofold: 1) to show by some concrete examples that the cells of general

ized CNN have a rather rich repertoire of nonlinear dynamic behaviors, including oscillation and chaos;

and their capabilities, as proccesing elements, go well beyond the ones provided by the common 0 th

order cells (as in Perception) and 1 st order cells (as in CNN and Hopfield net); and ii) to give a set of

conditions ensuring the input-output stability, and/or global asymptotic stability, of the isolated ceUs.

It will become transparent in this section that the neural network model proposed in this paper cov

ers quite a large class of neural networks and, with its capabilities, it offers a promising architecture for

biological nervous systems as well as for electronic neural networks.

It is shown below that the problem of finding the conditions ensuring the global asymptotic stability

for an isolated cell with zero input is in fact the well-known Lur'e problem for which many comprehen

sive results are available in the literature [7]-[9]. Our results on generalized CNN input-output stability

are based on Lemmas 1 and 2. For the developement of Lemmas 1 and 2, and the earlier works on the

input-output stability, see [8].

Let us describe what we mean by isolated cells. An isolated cell C] is obtained by setting all con

nection weights between C| and its neighbors to zero, i.e., iV|j = Z|j = 0 for all i ^ i . Such an

isolated ceUis described by the following equations.

x,(r) = A, • x,(f) + b, • eiit) (15)

Ii(») = cfx,(t) + Ai-ei(f) (16)

3-1(0 = /l(5l(0) (17)
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exit) = + zi4 •Mi(r-aij) + I\ (18)

As illustrated in Figure 6, each isolated cell can be considered as a feedback system whose forward path

contains a ti th order linear time-invariant dynamical subsystem and whose feedback path contains a

memoiyless nonllnearity and a delay line.

Figure 6

Therefore, the stability analysis of isolatedceUs amounts to seekingthe conditions which ensure the sta

bilityof sucha nonlinear feedback system. A large amount of reults [7]-[9] is available for this feedback

system. The following Theorems 1 and2 are two applications of these results forneuralnetworks.

In contrast withthe models givenin the literature [l],[3]-[5], wedo notmakeany assumption on the

nonlinearity /i(») in our generalized CNNmodel. This allows us to present our results in as general a

context as possible, and also to see how the choice of the nonlinearity affects the dynamic behaviors of

the generalized CNN.

Let us first demonstrate diat an isolated cell possessing chaotic dynamics can be constructed by

choosing an appropriate nonlinearity /i(*) .

Example 1: Chua's Circuit

Consider a 3 rd order cell defined by

xi(r) =

G G 0
"CT

G G 1
"rr rr

0
1

"r
0

xi(0 +

1

Ci
0

0
exit)

Ut) =[l 0o] -xKt)

yxit) =/i(5i(0) = wo-5i(0 + Y•('"i-'"o)(l5i(0+i| - I5j(0-i|)

(19)

(20)

(21)
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ei(0 = yiCO . (22)

where G, Ci, C2. L . -mo and -mi are positive real numbers. Eliminating the variables e,- , and

yi from (19)-(22), we obtain the same set of three piecewise-linear ordinary differential equations which

describes the Chua circuit [16] shown in Bgure 7a.

Figure 7

This circuit has been investigated in depth; and it has been observed and proved that Chua's circuit

possesses rather complicated nonlinear dynamics, including chaotic phenomena [16]. •

As seen in Example 1, even if the linear dynamical subcircuit of a cell consists of some innocent

linear passive circuit elements, the nonlinearity in the feedback path may cause very complicated non

linear dynamics. In the stability analysis treated below, we usually assume the nonlinearity /{(•)

satisfies the sector conditions given in Definition 3.

Definition 3 : Let /i(0) = 0 . We say the function /i(») belongs to the sector (Jki ,^2) if

ki'^f < 5r/i(§i) < for all ^ 0 . Similaily, /|(») belongs to the sector [^1 ,^2) if

ki-^? ^ 5r/igi) < foraU ^ 0 . •

As illustrated in Figure 8, a continuous function /{(•) belongs to the open sector (ki.kz) if the

graphof /i(^i) versus lies between anddoesnot touch the straight linespassing through the origin

with slopes ki and ki .respectively. In the case the graph touches both straight lines, we say /{{•)

belongs to the closed sector [ki,k2] .

Figure 8

Observed that the nonlinearity used in the CNN (see (5)) belongs to the closed sector [0,1] while the

sigmoid function, defined by

fi&) = ^Varctan(.^-^-^) (23)
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with positive numbers V and K , belongs to the open sector ( 0, ^ ) .

In the sequel, we are concerned not with the stability of a generalized CNN having a particular non-

linearity, but with the stability of any generalized CNN having a nonlinearity satisfying some sector con

ditions. In the literature, such an analysis is referred to as absolute st^ility analysis.

Input-Output Stability:

In most of the current dynamic neural network applications, the external inputs ui(tys are fixed at

some constant values, usually zero; and the input data is fed into the network via initial conditions rather

than the external inputs. In a CNN or a HN designed in this way, if the interconnection weights are sym

metric then every trajectory approaches an equilibrium point that depends on the initial state. Such net

works are considered as content-addressable memories where the equilibria are the stored memories, or as

classifiers for input patterns. However, the initial conditionsof these networks are required to be reset to

zero each time the network is run. This is not a desirable property for a network running in real time. It

is, therefore, of interest [2] to design a neural network which is fed via extemal-inputs, possibly time-

varying, and then run without resetting the initial conditions.

With the above motivation, we will study the stability of a generalized CNN having time-varying

external inputs. Before stating the criteria for the input-output stability of an isolated cell, let us present

some basic definitions of input-output stability.

Consider the feedback system shown in Figure 9. Here, the vectors Ui(r), U2(r) denote the

inputs; Yi(r), Y2(r) denote the outputs; and Ei(r), E2(r) denote the errors. The subsystem Gi

and the subsystem G2 are, in general, nonlinear dynamical systems; and can be definedby an operator

which acts on the input Ei(r) and E2(r) .respectively.

Figure 9

For a given p € [ 1, «>) , let Lp denote the set of all (Lebesgue) measurable functions

g (•) : [ 0,00) _> R such that
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I dt <00.
Similarly, let denote the set of all measurable fimctions : [0,«»)-»R suchthat

|g(r)| = inf {fl : |g(r)| < a almost everywhere } < «»

i.e., Î (r) I ^ a except for a set of measure zero, andthe ess.sup. (essential supremum) is thesmallest

number having that property. The set Lpe , called the extended -space, is the set of all measurable

functions g (•) : [ 0,«») -^ R havingthe propertythat for all r € [ 0, «>) the truncation grC#) of

g(*) belongs to Lp ; where gjiA is defined by

gTit) = g(t) if 0 < r ^ r ,

= 0 if r < t .

The symbol L/ denotes the set ofall q-tuples g(») = [gi(«) ••• g^(») V . where gi(») e Lp for

all t € { 1,2,...,^ } ' L^ is defined similady. The noim on L0 is given by

llg(«)llp = t ± llftWii; F
1 = 1

with ||g,(«)||p =[||gi(t)k-d^ I'' for pe [1,<«) and ||gi(*)IU = 1^/(^)1 •

Definition 4 : The system, shown in Figure 9, is said to be Lp -stable provided that, for any inputs

Ui(*), U2(®) e L/ , if we have outputs Yi(«) , Y2(®) € then Yi(«) , Y2(») e L/ ; and, in

addition, there exist finite constants ri and r2 such that

l|Yi(.)||p S r, •(||U,(.)||, + ||U2(.)||, ) + r2 (24)

I|Y2(«)II, S r,-(||U,(.)||, +||U2(.)||, ) + r2 . • (25)

One important special case of Lp-stability is the La,-stability which is commonly referred to as

BIBO (bounded-input/boimded output) stability. Observe that BIBO stability means bounded inputs pro

duce bounded outputs and (24)-(25) hold.

Now, we present the circle criterion which provides a sufficient condition for L2-stability for the
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feedback system shown in Figure 9, but with scalar inputs U2(t)^ R and scalar outputs

Yiit). r2(0€R .

Lemma 1 [8] : Circle Criterion

Consider the scalar feedback system shown in Figure 9, where Ui(r), U2{t), ^i(r), E2{t),

Yi(t) and Y2(.t) e R . The subsystem Gi is linear, time-invariant, possibly distributed and described

by the following convolution operator

l'i(<) =Gi(0 *Ei(t) =|Gi(f-A,)£ia,)<iX (26)
where, the impulse response Gi(«) of the subsystem Gi belongs to and has a Laplace

transform Gi(s) which is, in general, an irrational fimctioiL The subsystem G2 is memoryless and

represented by the algebraic relation

1^2(0 = V[£2(0 ] (27)
where \|r(*) : R R belongs to the sector [ a, p ] . The system described by (25)-(26) is L2-stable

if the pole locations and Nyquist diagram of G\is) (i.e., the graphof the map w Giijw) with

w € [0,00) ) satisfy one of the following sets of conditions:

i) If 0<a<p<oo , there are no restrictions on the location of the poles of (ji(s) . However, the

Nyquist diagram of G i(,s) must satisfy the following properties:

a) the Nyquist diagram of Gi(s) is bounded away from the disk D (which is a circle in the complex

plane centered on the real axis and passing through the points ^+7 *0 ^nd ); that is

|G(/w)-0| > 0 for all weR and 0eD .

b) the Nyquist diagram encircles the disk D in the counterclockwise direction exactly v times, where

V is the number ofpoles of G i{s) with a positive real part.

ii)If 0 = a<p<<», then G i(s) must have no poles in the open right complex half-plane, and the

Nyquist diagram of G i(^) must remain to the right of the vertical line s = + y-0 ; i.e..

Re { Gi(Jw)} > for a// w e R .
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iii) If -oo<a<0<p<oo, Gi(s) has no poles in the closed right half-plane, and the Nyquist

diagram of Giis) is completely contained in the interior of the disk D.

iv) If -<»<a<P^O .replace Giis) by -Gi(s) , a by -p , p by -a .andapply i) or

ii) above, as appropriate. •

Theorem 1 is a diiea application ofLemma 1 to generalized CNN.

Theorem 1:

Assume the nonlinearity /i(«) belongs to the sector [ki.ki] with ^1.^2 finite. An isolated

cell defined by (15)-(18) (with input zixuiit -ai,i) + /| . linearpart output 5i(^) . output yi(r) and

transmitted output -Xij) )is L2-stableif:

i) for zero feedback wy = 0 ;

the rational tranfer function

d,(j) = cf •( jI-A| ]-»• b| + ht (28)

is proper (i.e.. all elements of Giis) are boundedat s =00 ) and all its poles have negative real parts.

ii) for inhibitoryfeedback wij < 0 ;

Gi(s) • satisfies one of the sets of conditions i)-iv)givenin Lemma 1.but with a = - wy •Jki ,

P = -wyA:2 insteadof Gi(5) .

ill) forexcitatory feedback wy > 0 ;

replace p by a and a by P ; and apply if) .

Proof:

i) wy = 0 implies that the transmitted output wy •yi(r -Xy) is zero for all time t. Then, the only

output, which should be examined, is yi(t) . It follows from well-known result for linear systems [8]

that belongs to L2 if ei(«) e L2 ; and Gi(s) is proper with all its poles in the open left half-

plane. From the assumption that /i(») belongs to sector [ki,k2] .we have

kr^f ^ /igi) < k2'^? for all e R .

Observe that
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0 ^ ai-fi(^d-ki'^?)'arfi&-k2'^h = 5? •(/i(?D - A:i •§,)•(/,go-A:2-5i)

which implies

0 s (/i(|i)-ifci-?i) (Mi)-A2-5i) = fH^d-(.k2 + ki)-^ fm + ki-k2-^

The last inequality gives

s \ft(^- h^-^ \ s |/,(^|-|ii^|.|^l . (29)
Therefore, we have

l/i(5i)l S ^•(k2-<:il+U2+ifcil)-|&l . (30)
It follows hom (30)that yi(») belongs to Lz whenever ei(»)€L2 (and then 5i(«)eL2 )•

ii) Consider the isolated cell shown in Figure 6. Let us replace the delay element with the non-

linearity /i(») , and vice versa. The resulting system can be described by a set of equations which are

equivalent to the ones in (15)-(18). Therefore, the proof, which will be given below for this new system,

is alsovalid for the original one.Thesystemobtained is, indeed, a feedback system with the forward path

transfer function G|(s)e^'^ and the feedback nonlineaiity -Wi4/i(») .Since Gi(s) is a rational

function, its inverse Laplace transform Gi(r) , and then, the impulse response of the forward path,

Gi(t-Xi^d belongs to Lpe • With wg negative, -wy /i(«) belongs to the sector

[ a, p ] = [ -wg •iki, -wg •k2] whenever /i(«) belongs to the sector [ A:i, /:2 ] . Lemma 1

implies that the system, with inputs U\(jt) = zg Mi(r-Oi,i) + I\ , Uzit) = 0 and outputs

YiiO = %i(.0 » YiiO = -wij -Xi,i) , is L2-stable. The prooffor the otheroutput yi(r) fol

lows from (30).

ill) Follows from ii) . •

The result obtained by Theorem 1 is important for the following reasons : i) The conditionscan be

easily checked by a straightforward Nyquist graphical test, which is applied directly to the transfer func

tion of the linear dynamical subcircuit, ii) As will be seen in Theorem 3, the same conditions, plus a

more stringent conditionon the nonlinearity, ensure also the global asymptotic stability of an isolatedcell

withconstantinput, iii) Theorem 1 is applicable to an arbitrary orderisolated cell having a transmission
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delay, iv) The stability of the linear dynamical subciicuit is not required and v) The L2-stability

analysis is treated in a way which does not depend on the existence of a state equation fonn, and the

existence and uniqueness of the solutions.

Let us applyTheorem 1 to studythe L2-stability of an isolatedcell in a CNN.

Example 2:

It can be verified by the definitionof CNN that, for an isolated cell, the nonlinearity / i(*) belongs

A 1
to the closed sector [0,1] and the forward path transfer function can be given by G|(j) =

with A positive. For zero feedback wy = 0 ; the L2-stability foUows from the observation that

is proper and its pole -A is negative real. For inhibitory feedback wy < 0 , condition ii) in

Lemma 1 should be applied since a = 0 and p = -wy > 0 . The inequality

Re {GiUw)) = Re { } = -rA-^ > —

holds for all w e R if and only if A < -wy . For excitatory feedback wy > 0 , condition iv) in

Lemma 1 is appropriateto be appliedsince a = -vvy < 0 and p = 0 . Now, we have the inequality

Re {-diO)} = Re { , ~1 • ) = • > -=1-

which holds for all w e R if and only if wy < A . We conclude that an isolated cell of a CNN is

L2-stable if the feedback weight wy lies in one of the following intervals : 0 < wy < A or

wy < -A < 0 . The region of L2-stability obtained by Theorem 1 is illustrated in Figure 10 where

Wy is the parameter. •

Figure 10

Although Theorem 1 is important for the reasons mentioned above, the input-output stability analysis

based on this theorem suffers from the following two drawbacks : i) Theorem 1 provides conditions for

only L2-stability whereas some important source signals, such as sinusoidal or constant signals, do not

belong to L2 , and ii) Since Theorem 1 does not exploit the boundedness of the nonlinearity, it yields
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rather conservative results for those neural networks, such as CNN or HN, having a saturation-type non-

linearity.

The first drawback is overcome by Theorem 2, to be presented below, which provides a set of

sufficient conditions for the Loo-stability of an isolated cell. The latter will be considered, in the most

general case, in section IV, where a theorem using the boundednessof the nonlinearity is presented.

This theorem is based on the following lemma.

Lemma 2 [8] : Loo-stability

Consider the scalar feedback system shown in Figure 9, where, U\{t) , U2(t) , Li(r) ,

^2(t) . I'lC') . R ,and U2{t) = 0 . The subsystem G\ is linear, time-invariant, possibly

distributed, and described by the convolution operator

Yx{t) = Gxit)* Exit) .

Assume the impluse response Gi(r) has a Laplace transform Gx{s) and satisfies the following

exponential weighting condition:

e*^'Gx{t) 6 LxC\L2 ioi some a>Q . (31)

The system G2 is memoryless and represented by the following algebraic relation

1^2(0 = ¥[^2(0]

suchthat \j/(») : R -> R belongs to the closed sector [ a, p ] with p , a finite. Underthese condi

tions, if the a-shifted Nyquist diagram of Gx(s) ,i.e., the gr^h of the map w -^Gxi-o +jw ) ,

satisfies one of the conditions i)-iv) in Lemma 1, then Ui(«) e L. implies E i(«), Yi(«) e , and

moreover, there exist finite constants /[ > 0 and I2 > 0 such that

ll£i(») lU 'i-ll Ui(*) lU (32)

l|l'i(»)ll- i i2-|IUi(»)IU . • (33)

Our next theorem is a direct application of Lemma 2 to neural networks.

Theorem 2:

Consideranisolatedcelldescribedby(15)-(18). Assume that i) the nonlinearity /{(•) belongs to

the closed sector [kx,k2] with k2 , kx finite, and ii) G|(s) , defined in (28), is strictly proper
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(i.e., all elements of (ji(s) tend to zero at s =«») and all of its poles pj havenegative real parts.

Under these conditions; for some a ^ -Repy > 0 if the a-shifted Nyquist diagram of

satisfies the conditions i)-iil) in Theorem 1, then Ui(«) belongs to implies

4i(«)€Le. , yi(*)eLoo , W|4 yi(»-Xi4)e Lo, , and moreover, there exists a finite constant

/ > 0 such that

Il5i(.)iu ^ /-UmI-IUiC#)!!- + /-Uil (34)

||yi(»)IU ^ /-^ •Izi.iMI M|(*) lU + l'k-\li\ (35)

II Wi.ryi(»-X|j) lU ^ •UmMwi.iMI «i(®) lU + I ' k'\wn\'\li\ (36)

where, ^ = y •(U2-^il + Uz + ^il) .

Proof:

As in the Theorem 1, the proof will be done in three steps corresponding to three different values of

wi4 ; namely, zero, negative and positive. First, observe that the total input 214 • M|(«-ai4) + /|

belongs to whenever ui(9)eLco since /f is constant Moreover,

II zm* "•(•"^14) + lU - UmMI''K*) lU + Uil . (37)
i) Zero feedback case:

^i(«)ELoo if 2^i(*) belongs to Loo since Gi(s) is strictly properandall of its poles are in the open

left half-plane [8]. The bound (34) follows from (37) and the Loo-stability of the linear forward path.

The boimd (35) is obtained by using the result in (30) and (34).

ii)-iii) Negative and positive feedback cases:

When Gi(s) is strictly proper with all of its poles in the open left half-plane, the exponential weighting

condition

e'̂ ' Giit) e LiPjL2

is satisfied for any positive real a with a < -Re {py } for all poles pj of G\(s) . The Xg-
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shifted impulse response Gi(r -Tij) also satisfies the exponential weighting condition with the same

a . This fact, together with Lemma 2, implies that ^i(«) e L<» if »{(•) 6 L. . Hence, (34)-(36) fol

lows from (33), (37) and (30). •

Our next example asserts that, for an isolated cell of a CNN, Loo-stability is ensured by a set of

conditions similar to those for L2-stability.

Example 3:

Consider an isolated cell of a CNN. We can show that the results given in Example 2 are also valid

for Loo-stability but with A replaced by A-a . The region of Loo-stability is obtained as the union of '

the intervals : 0 ^ < A -a and wy < -A +a < 0 where a is an arbitrary small positive

number less than A . •

Global Asymptotic Stability:

hi the sequel, a set of conditions for the global asymptotic stability of an isolated cell is given. The

results are useful for the design of a neural netwoik having a unique globally asymptotic stable equili

brium point which depends on the input

As known in the literature [9], the conditions ensuring the input-output stability of the system con

sidered in Lemma 1, are also sufficient conditions for the global asymptotic stability of the system with

zero-input We shall show by Theorem 3 that, under the conditions given for L2-stability, an isolated

cell is globally asymptotically stable for each constantinput if the sectorconditionis replacedby the fol

lowing more stringent condition, henceforth called the incremental sector condition.

Definition 5 : An /{(•) , with /{(O) = 0 , satisfies the incremental sector condition if there exist real

constants ki and ki satisfying k2> k\ such that

kx' (5i'-^n2 ^ •(f t(5i')-/i(5i")) ^ k2• fora// %{ . kC e R. • (38)

Condition (38) gives a sector condition with = 4i 2nd = 0 . A function /i(») , which

satisfies (38), is monotonically increasing, uniformly increasing, and strongly-uniformly increasing if

oo ^ ^ ^1 = 0 , oo ^ 1:2 ^ ^1 > 0 and <» > ik2 ^ > 0 , respectively. A function /|(») ,

satisfying the incremental seaor condition with finite kx,k2 is Lipschitz continuous with the Lipschitz
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constant y • + l^2 +^il) :

i/i«iO-/i(5r)i ^ i\k2-ki\ + \k2+ki\)'\^{-^n (39)

One can verify (39) by the same algebraic manipulations used in the derivation of (30). On the other

hand, if /](•) is diffeientiable, then its derivative satisfies the following inequalities :

ki 5 S k2 . (40)

For the rest of this section, it is assumed that /i(«) satisfies the incremental sector condition, and

the input 2ii(r) is a constant and denoted by Ui .

We shall now present the definitions of complete stability and global asymptotic stability for a sys

tem defined by the autonomous differential equations

x(f) = F[x(r)] (41)

where x(r) is a vector.

Definition 6 : A system decribed by the equations in (41) is said to be completely stable if each solution

x(r) converges to an equilibrium point as r -> «> . •

Definition 7 : The system is said to be globally asymptotically stable if each solution x(r) converges

to a unique equilibrium point •

The equations in (15)-(18) which describe an isolated cell are, in general, not in the state equation

form. Therefore, the stability definitions given above can not be applied directly to generalized CNN.

However, if Tg = 0 and the nonlinear algebraic relation

5i(0 = ci'' •X|(f) + hi •W|j •/i(^i(r)) + A| •zi4 •f/| + Ai •/| (42)

can be solved for ^i(r) in terms of the state vector xi and the inputs, then the equations in (15)-(18)

can be rewritten in a state equation form. The local solvability of the relation (42) is in fact not an extra

assumption for the absolute (global asymptotic) stability of a cell because, i) it is a necessary precondi

tion for the absolute stability that the cell govemed by the equations (15)-(18) must be globally asymptot

ically stable for all linear feedbacks /i(5i) = /IT -^i with K e [ki ,k2] n) this precondition

requires
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\:^K'Wxyhi (43)

Indeed, if (43) is not satisfied, then the closed loop transfer fimction

l-ATwu-GiCs)

is not proper and so represents an unstable system [8]. iii) It follows from the well-known local implicit

function theorem that the relation (42), with a locally differentiable nonlineaiity / i(«) satisfying (38), is

locally solvable for since the condition (43) together with (40) implies the slope of

' h\'/i(4D is nonzero at each point By the above facts, we can always assume a locally

defined state equation exists in a neigboihood of some specific point, such as an equilibrium point, for

cells without time delays, assuming the nonlinearity is differentiable.

On the other hand, for Ty ^ 0 , the equations in (15)-(18) constitute a set of algebraic and dif

ferential difference equations. Eliminating the variables yi(r) and e\it) , these equations can be recast

into the form:

Xi(r) = Ai •xi(r) + bi •Wg t -tg )) + bi •Zg• t/| + b| •/| (44)

5i(r) = cf xi(r) + /irwg-/i(§i(r-Tg)) + /rrzg t/i + hx h . (45)

Observe that we can consider ^i(r) also as a state variable in additionto the state vector Xi(r) . How

ever, in order to find a solution to the equations (44)-(45), we need to knowthe initial state vector xi(0)

and the initial function ^x(f) = 0i(O with t e [ -^g, 0 ] [20]. The initial function 0i(«) which is

defined inthe interval [^g, 0 ] , isassumed to belong to L2 . An equilibrium point ((X|*)^ , )^

of the differential-difference equations (44)-(45) is defined as a solution to the following algebraic equa

tions.

0 = A| •xi* + b| •wg •/i(5r) + b| •Zg•£/| + b| •/| (46)

^1' = cj'' xx + hx •Wg fxi^*) + hx-zxjiUx hx'Ix . (47)

With the above generalization of state variables, initial conditions, and equilibrium points, our definitions

6 and 7 on complete stability and global asymptotic stability for ordinary differential equations can also

be adopted for the differential-difference equations (44)-(45).
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Throughout our complete and global asymptotic stability analysis, we shall assume that (44)-(45),

and respectively (41), has a unique solution over [ 0, <» ] corresponding to each initial condition. A

sufficient condition ensuring the existence and uniqueness of the solutions for a generalized CNN is given

in section IV.

As mentioned above, the absolute (global asymptotic) stability requires the local solvability of (47)

with respect to , i.e., the existence of a locally defined function

= V(xr,f/i,/i) (48)

which expresses ^i* in terms of the xi* and the inputs. Similarly, observe that if an isolated cell is

absolutely stable, then the system of algebraic equations

0 = A,•x,* + b, •w,4 . C/|./|)) + b| •(2,4 Ui+h) (49)

obtained by substituting (48) into (46), is locally solvable for x,* which corresponds to an isolated

equilibrium point of the cell. This observation is true because i) for linear feedbacks /i(^i) = ^ *4i

with K e [ki .kz] ,(49)becomes

0 = A|X|VU| (50)

= [A, + b|W|4- cf] •x,* + b, (1+^14 •

ii). the nonsingularity of A, is a necessary condition for the stability of the linear closed-loop system

defined by

X| = A|X| + U| (51)

and iii) Since A, is nonsingular for all K e [k\ Ai] »it follows from (40) and the local differentia

bility of the nonlinearity that (49) is locally uniquely solvable for xi .

In conclusion, if the nonlinearity is differentiable in a neighbodiood of an equilibrium point of a

cell, then this equilibrium point should be isolated. In fact, the uniqueness of the equilibrium point is a

necessary condition for global asymptotic stability. Therefore, the conditions (stated in Theorem 3 ) for

the global asymptotic stability of a cell imply also the uniqueness of the solution of (46)-(47).

The conditions of Theorem 3 ensure global asymptotic stability not only for a particular cell, but

also for any cell having a nonlinearity satisfying (38) and for any constant input Hence, they will be
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referred to as the absolute global asymptotic stability conditions.

Theorem 3:

Consider an isolated cell described by (15)-(18). Suppose that the nonlinearity /i(«) satisfies the

incremental sector condition in (38) with finite constants ki ^ kz . The dynamical subcircuit is given

by the transfer fimction

di(j) = cf-lsl-Air^'hi + hi

where, all eigenvalues of Ai have negative real parts and the pair (A|,Ci) is observable, i.e.,

rank [ C| Af-Ci • • • •C| ] = ri .

Under these conditions; for each constant input, the cell has a globally asymptotically stable equilibrium

point ((xi*)'', 5r which is the unique solution of (46)-(47), if the following conditions aresatisfied :

i) For inhibitory feedbacks wg < 0 ;

Gi(s)' e~^ "^ satisfies one of the setsof conditions i)-iv)givenin Lemma1,but with a = -wy •^ i ,

P = -W|4 •k2 and diis) •e~' instead of Giis) .

U) For excitatory feedbacks wy > 0 ;

replace p by a and a by p ; and apply i) .

Proof:

Given a cell with constant input, let us derive first anothercell with zero input such that an equili

brium point X|* of the given cell is globally asymptotically stable if and only if the equilibrium point

0 of thenew ceU is globally asymptotically stable. Let ((xi*)^ , be a solution to (46)-(47). By

a change of variables, the system ofequations in (15)-(18) can be transformed into the following system:

iiiO = Arx,(r) + bre,(r) (52)

fi(») = cf •X|(f) + A| •ei(») (53)

yi(t) = F|(fi(0) = /i( li(t) + (54)
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«i(0 = wyfiCf -Tij) (55)

where X|(0 = X|(r) - X|* , ei(r) = ei(r) - ef , yiit) = yi(t) - yj , fi(r) = 5i(0 - .

3'f =/i(§r) and ef ^wij^ yi +Zi4 i/| + /|.

Observe that the transformed cell nonlinearity Fi(«) belongs to the sector [^1,^2] since

F|(0) = /,(§r) - /,(?,*) = 0 and(38).with ?i' = 1, + . I" = .gives

. (56)

In the sequel, we shall show that the equlibiium point 0 of the system in (52)-(S5) is globally

asymptotically stable. The proofparallels that of Theorem 6.4(1) in [9],

Equation (52) can be recast into the following form:

5^0 = ' -^(0) +Ie*' <'-*'> bi-ei(X) dX . (57)
Substituting (57) into (53). we obtain:

li(0 = '-x^O) + +/i| ei(r) . (58)

Observethat the system of equations in (58) and (54)-(55) defines a feedback system in the form of

Figure9 with the following inputs and outputs:

Um s 0 (59)

U2(0 = • X|(0) (60)

1'1«) =fi(«) - u^t) =Ici^• •b, •e,(X) •dX +A, •e,(f) (61)
1^2(0 = wi4 yi(r) . (62)

Here, the subsystem Gi is defined by the transfer function G|(5) • , and G2 is defined by a

memorylessnonlinearity wij-F|(«) .

The input U2(*) belongs to L2 because all eigenvalues of Ai have negative real parts. Since

f/i(») and U2(*)gL2 it follows from Lemma 1 that T^*) , Y2(*) belongs to L2 . Moreover.
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^\{t) = ^2('-'Cm) and the initial function 6i(«)E L2 imply that ei(»)G L2 . It follows from

€ L2 and cf e^'• bie L2 that

as t 00

For the proofof (63), see Theorem 6.4(1) in [9].

By (63), we have Ti(r) - h\ e\(f) ^ 0 as r « , and hence

5i(0-f/2(0-/i| W,4 F,(|,(r-uu)) 0 as t 00

(63)

(64)

It follows from (64) and Uzit) 0 as r->«> that, when t tends to infinity |i(f) and

fi(^ -ty) both tend to zero, and hence yi(r) tends to zero. By the observability of the linear

dynamical forward path, we conclude that Xi(r) tends to zero as r -> <» . •

Let us apply Theorem 3 to a 2 nd order cell.

Example 4:

Consider a second order cell defined by

xi(0 =
-2 -1
-1 -1 xi(r) +

5,(t) =[1 0] -x, +Oe,(t)

exit)

y\it) =/i(^i(r)) = ^*arctani^ •^

exit) = 1 •yi(0 + 1 • f/| + 0-/i

(65)

(66)

(67)

(68)

Such a cell can be realized by the circuit shown in Rgure 11a, where X|(r) = [ vci(f), vc2(^) .

yi(r) = vo(^) , and Ci = C2 . One simple op amp implementation of this circuit is given in Figure

lib. The operational amplifier A1 is in the linear region [18]. The operational amplifier A2 is modeled

by a nonlinear voltage-controlled voltage source such that its transfer characteristic is defined by (67) and
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shown in Figure1Ic. The circuitof Figure 1la is reduced intothe well-known Wien bridge oscillator cir

cuit when the input U\ is zero.

Figure 11

It can be verified that G\(s) = —7—tt r and that fiOi) satisfies the incremental sector
5^ + 3 +1

condition (38) with = 0 , kz = K . By Theorem 3, we obtain the following inequality which gives

a sufficient condition for the absolute global asymptotic st^ility of the equilibrium point 0 of the cell:

(1-^2)2 + 3.^2.>0 for fl// weR . (69)

We conclude that the cell is globally asymptotically stable, for each constant input C/i , if K < 3 .

Note that, for this specific example, the conditions ofTheorem 3 are weaker tiian the ones given in [21].

There, it is proved that the Wien bridge circuit is globally asymptotically stable if K < 2 . By using

the frequency domain Hopf bifurcation theorem given in [19], it was shown that the Wien bridge circuit is

a locally stable nearly-sinusoidal oscillator when K = 3 + e , where e is a sufficiently small number.

Cosequently, K < 3 is also a necessary condition for the absolute global asymptotic stability of the

cell under consideration. •

Example 4 demonstrates that the conditions given by Theorem 3 are not conservative for the Wien

bridge oscillator. Nevertheles, Theorem 3 gives only sufficient conditions. The following example will

show that absolute global asymptotic stability holds for some generalized CNN even when the conditions

ofTheorem 3 are not satisfied.

Example 5:

Consider an isolated cell of a CNN with constant input Since the nonlinearity /{(•) satisfies the

incremental sector condition with ki = 0 , kz = i ,it follows from Theorem 3, and the results in

Example 4, that the region of absolute global asymptotic stability is the same that given for L2-stability,

as shown in Hgure 10.
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The conditions imposed on the feedback weights wij are also necessary for absolute stability

when the feedback is excitatory. Indeed, by using the dynamic route approach [18], we can show that

when W|,i > A , an input with |zi4 •U\ + /|| < wij - A can be found such that the cell has two

stable equilibrium points and one unstable equilibrium point [1], [13]. For inhibitory feedbacks, when

-A < Wij < 0 , anycell with an arbitrary constant input is also globally asymptotically stable. This

result follows from the dynamic route depicted in Figure 12, where wy < 0 . Observe that, for each

input, the unique equilibrium point is globally asymptotically stable when -A < wy < 0 , even

though this is not implied by Theorem 3. •

Figure 12

IV. STABILITY OF GENERALIZED CELLULAR NEURAL NETWORKS

hi this section, we present several sets of results on the existence and uniqueness of the solutions,

the boundedness of the trajectories, the input-ouqiut stability, and the global asymptotic stability, for the

generalized CNN described by equations (l)-(4). hi the stability analysis treated below, we shall present

two different types of results. In the first type, the results are applied to the whole generalized CNN. hi

thesecond type, a generalized CNN is considered as aninteicoimection of individual cells, and the results

are obtained in terms of the stability of the isolated cells and the connectioncharacteristics, i.e., the con

nection topology and connection weights. This approach reduces the design of a class of generalized

CNN with appropriate cormection characteristics into the design of single cells. Moreover, it also pro

vides a systematic and easy way to analyze a largescale generalized CNNin terms of its building blocks(

individual cells) and the cormection characteristics.

In the sequel, a generalized CNNdescribed by the equations in (i)-(4), will be considered as a feed

back system, as shown in Figure 13.

Figure 13
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The forwardpath in Figure 13 consists of uncoupled, single-input, multiple-output, linear, time-invariant,

distributed, dynamical systems. The feedback consists of a memoiyless nonlinear system. The symbol

t denotes the number of cells and the subscript i e { l,2,...,r } indices the cells. Note that the index

i used here is different finm the index i = (i i, 1*2 >• • •» in >^ ) which is used before. However, we

can define a one-to-one map for transforming one set of index into another.

Existence and Uniqueness ofSolutions:

It is a standard result in the theory of ordinary differential equations that there is a unique solution

to (41) if F(«) is a Lipschitz continuous function. Unfortunately, this result can not be applied directly

to generalized CNN since the set of equations (l)-(4) consists of a set of algebraic and differential-

difference equations. Observe that this generalized CNN can be considered as a feedback system as

shown in Figure 13. A rather general result for the existence and uniqueness of the solution of a feedback

system is given in [8]. The following fact, which is stated for generalized CNN, is a special case of

Theorem ni.5.2 in [8].

Fact 1:

Consider a generalized CNN described by (l)-(4). If each nonlinearity /i(*) satisfies a global

Lipschitz condition, i.e., there exists a finite constant Li such that

Ifiiki)-/i(§i") I < L, •I5,'-I for all e R (70)

then, given the inputs ut(«) e Lpg , there exists a unique set of Xi(*) e , £{(•) e Lpe ,

5i(®)€Lpe ,and yii»)eLpe which satisfy (l)-(4). •

It should be observed that the conditions of Fact 1 hold for CNN, HN, and any generalized CNN

having differentiable nonlineaiities, and any generalized CNN having continuous piecewise-linear non-

linearities.

A Boundedness Result:

In the design of a physical circuit, it is namraUy required that the circuit has bounded trajectories for

any bounded input Our next theorem gives a boundedness result which is useful for the design of a gen

eralized CNN.
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Theorem 4:

Consider a generalized CNN described by the equations in (l)-(4). Assume that all eigenvalues of

each Ai have negative real parts, and each nonlinearity /{(•) is bounded, i.e.,

< « (71)

where || • It is usually called thesupremum nonn. Under these conditions, if theinputs are bounded in

the sense that

II It = tefjfo,) l"'̂ ^^l <
then, every trajectory [ xi''(r), 5i(r) ofeachcell is bounded in thesense that

II xi(*) It = llxi(Oll < ~

II ^i(*) It = I5i(0l < ~

where || • || denotes any vectornomi.

Proof:

Applying the triangle inequality and (4), we obtain

UiCOl ^ .y |w,jMyi(f-T,;)| + y |z,jMMr(^-<Ji.r)l + Uil (74)
leY l6i

It follows that

|e,(f)l s y |w,j|-||/K.) II + y Ual-ll «k») it + i/ii (75)

The right hand side of (75) is independentof t. By this fact, togetherwith (71)-(72),we obtain

II «!(•) It ^ ki,tl*ll/i(*) It + |zi.fMUi(*) It + Uil < ~ (76)

The equation in (1) can be recast as follows:

Xi(») = '-xiCO) +I e'̂ '̂ '-'-> bi ei(X) dA. . (77)
Applying the triangle inequality, we obtain

l|xi(t)ll s ||e'̂ '-x,(0)|| +| |||e,(X)|dX . (78)
Since all eigenvalues of A| have negative real parts, there exist constants ci,C2 > 0 , a >0 such

that
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II •Xi(0) II ^ ci fe[0,oo)

II -bill ^ C2'e~^'^ t6[0,oo) . (79)

It follows from (78) and (79) that

||x,(»)ll s Ci-e-' +^.(l-e^O-lleiWllr (80)
and hence,

II xi(*) It ^ ci + -^-11 g|(«) It (81)
It follows from (81) and (76) that xi(») is bounded.The boundedness of §i(») follows by (2), (76) and

(80). •

It should be noted that the result given in (80) can be used also for computing an upper bound on

X|(«) .

When the trajectories are bounded, every forward trajectory [ x^(r), approaches its posi

tive limit set whichis nonempty, closed, bounded and invariant [9]. Here, [ x^(/), ^(r) denotes the

vectorof state variables [ ( • •• , X|''(r) ,•••).(••. 5i(^). **• ) ]^ •The positive limit set of a tra

jectory is the limit set of points p which are the limits of sequences [x^(tk) ,^(tk)V where

tk -> + oo . If a generalized CNN is globally asymptotically stable, then the limit set of every trajec

tory consists of a single element which is necessarily the unique equilibrium point For a bounded gen

eralized CNN, the positive limit set of a trajectory may contain cycles or more complicated orbits.

The conditions of Theorem 4 are not only sufficient for boundedness of generalized C!NN, but also

sufficient for eventually uniform boundedness, which is stronger than mere boundedness [17]. By the

evenmally uniform boundedness of a generalized CNN, we mean that, given any bounded input, there

exists a closed and bounded set such that any trajectory enters and remains inside it for all time t >T ,

where T < <» may depend on the initial conditions. The fact that a generalized CNN which satisfies

the conditions ofTheorem 4 is eventually uniformly bounded, ''an be shown as follows. The only term in

(80) which depends on the initial conditions is c i • ' . This term can be made sufficiently small by

choosing a large t since a > 0 . Therefore, we can find a time T < «> and a set to prove the even

tually uniform boundedness of the generalized CNN.
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Lz- stability:

In the sequel, we shall present two types of L2-stability results for generalized CNN. The first type

of results, stated by Theorem 5, gives conditions which are applied to the whole generalized CNN. This

result is more general than the second result, but it does not exploit the L2-stability of the individual

cells.The secondtype of results,whichwill be derivedfromTheorem5, is in termsof the L2-stability of

the isolated cells and the connection characteristics.

Theorem 5 is based on Lemma 3, a special case of Theorem V.2.4 in [8], which provides a sufficient

condition for the L2-stability of the general multivaiiable feedback system shownin Figure9.

Lemma 3 [8]:

Consider the feedback system shown in Figure 9, where Ui(r) , U2(t) , Ei(f) , E2(f) ,

Yi(r) and Y2(r)eR^ . The subsytem Gi consists of a set of uncoupled, linear, time-invariant,

possibly distributed, scalarinput, scalaroutput, dynamical systems. It is described by a diagonal transfer

matrix Gi(s) with the diagonal elements ^i(s) = ' where ntis) and diis) are
ui (S )

polynomials with no common zeros and the inverse Laplace transform of ^i(s) belongs to Lpe .The

subsytem Gz is memoryless and represented by

Y2(r) = ^[E2(r)] (82)

where *P(») : R' -» R' satisfies (83) with a constant matrix KeR'^ and a real constant y .

i Y-lllll foroa • (83)

Under these conditions, if

I) „inf „ I det[I + K Gi(j)] I > 0 , (84)
Re j 20

ii) det [ diag{di{s),..., d,(s)) + K •diag{d\{s) • ,..., n/(j) • ) ] 9^ 0

whenever Re^ >0 and 17^ d/C^) =0 , (85)
1

Hi) y { ^suij^ mp Xi [ //jfC/w) •//ifC/w) ] )^ < 1 (36)

where M* denotes the conjugate transpose of the matrix M , X,-(M) denotes the i th eigenvalue of

the matrix M ,and
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i/^(5)=:G,(5)-[I + K-Gi(5)r» , (87)

then, the system is L2-stable. •

The inequality in (84) can be checked by a Nyquist graphical test as done in Lemma 1. The graphi

cal test is based on Fact 2.

Fact 2 [8]:

The inequality in (84) holds if and only if

0 det[ I + K-GiC/w) ] = 1 + i(jw) 0 for a// w e R , (88)

«) A0= ^Im^ [ B(jQ) - 0(-yQ) ] = ^ 11* = n* (89)

where Q(Jw) is the phase of 1 + i(Jw) , i.e., QQw) = arg [ 1 + ^(jw) ] ; rip denotes the

numberof poles in the open right half-plane; and p,* is the multiplicity of the k'th pole. •

Condition (88) means that ^(jw) is bounded away from -1 + y-0 . Condition (89) can be inter

preted as follows: The Nyquist diagram of ^(s) [ i.e., the graph of the map w i(Jw) ] encircles

the point, -1 + y-0 , rip timesin the counterclockwise direction.

Now, we shall apply Lemma 3 to generalized CNN.

Theorem 5:

Considerthe generalized CNNshownin Figure 13. Assume that all nonlinearities /,* (•) belongto

a closed seaor [^1,^2] withfinite constants A: 1, A:2-Assume theoutput yf(t) of anycell Cy is

received, by all neighbor cells, with the same delay, i.e., for each Cy , there exists a Ty such that

,t = 'Cf for all i • Then, th generalized CNN is L2-stable if the conditions in (83)-(86) are

satisfied with

6i(i) = diag ( d,a) •e"''' d,(j) •e-''^ ) . (90)

K = ( ) • W . (91)

Y= I I • II W II (92)

where, G,(j) = c,^ - I - A,- • b,* + /i/ , W is the matrix whose elements are the connection

weights W,/ ,and || W || denotes any induced nomi ofthe matrix W .
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Proof:

By our assumption on the delay times, the generalized CNN shown in Rgure 13 can be reduced into

the feedback system of Figure 9. Then the proof follows fiom Lemma 3 and the fact that (29) together

with (91)-(92) implies (83). •

Theorem 5 can also be applied to a generalized CNN having nonlinearities belonging to different

sectors. To do this, we can simply define a sector covering all sectors to which the nonlinearities belong.

Let us now apply Theorem 5 to a CNN.

Example 6:

By the definition of CNN, we obtain Gi(s) = ^ ^ *I . K=- y •W, and

Y= X .II w II . We can rewrite conditions (84) as

Re!?Co > 0 (93)

where A./ (W) denotes the i th eigenvalue of the connection matrix W . Observe that (93) holds if and

only if

Re{A.j(W)) < 2 'A for all i (94)

For a CNN, (85) becomes

det[(5 + i4)'I-y*W] * 0 whenever Re 5 ^ 0 and {s + i4 ) = 0 (95)

which is equivalent to the nonsingularityof the connectionmatrix W , i.e.,

det W 0 (96)

The inequality in (86) can be recast as

( TTTOT ' < fW
where

Mif = [ +w^)-I - - Aj^JUL-V/t +^.WW^ ] (98)
and Xi ( Mk ) is the i th eigenvalue of Mjf . The equivalence of (86) and (97) follows from the facts

that (Jw) • Hjf (jw) has positive real eigenvalues only and its eigenvalues can be given as
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1

TFTW) '

We conclude that if the connection matrix W satisfies the conditions in (94), (96) and (97), then

the associated is L2-stable. •

Note 1:

Theorem 1, which gives the conditions for the L2-stability of an isolated cell, is indeed a special

case of Theorem 5. For an isolated cell C, , the condition in (84), (85) and (86) takes the foim in (99),

(100) and (101), respectively.

^Inf„ > 0 . (99)

( ' e~' 0 whenever Re .r ^ 0 (100)

I CA^) I ^ 2 ^Ifll^

It is shown in [8], by using Fact 1, that the conditions in (99)-(101)can be checked by the Nyquist graphi

cal test stated in Lemma 1. •

Our next result gives a coimection topology underwhich L2-stable subnetworks yield an L2-stable

network.

Fact 3:

Consider a generalized CNN consisting of a cascade of the layers . Let us isolate each

layer from the other layers by setting all extra-level connection weights to zero. If each isolated layer is

Lp-stable, then so is the whole generalizedCNN .

Proof:

The proof follows directly from the definition of a cascade generalized CNN. •

Our next theorem describes that, for some suitable values of the coxipxction weights, the intercon

nection of a class of L2-stable individual cells is also L2-stable.

Note 2:
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It will be assumed in Theorem 6 that each individual cell satisfies the conditions ofTheorem 5 (and

equivalently ofTheorem 1) but with the condition (101) replaced by the following stronger condition:

11 ^

where p= mjj ^J™own [8] that p^1 for any induced matrix norm || W|| . This

implies that if (102)holds, then (101)holds. Condition (102) can be checked graphically in a waysimilar

to the graphical test in Lemma 1. To do this, observe the following facts:

For the complex number z = ^i(jw) ,

i) If \k2 + ki\ > p •U2 - I , then (102) is equivalent to thecondition that z is bounded away from

the disk D ( which is a circle in the complex plane centered on the real axis and passing through the

ii) If |ife2 + I < P *1^2 - 1. then (102) is equivalent to the condition that z is in the interior of

the disk D given in i),

and iii) If |A:2 + I= P'Ua - ^il . then (102) is equivalent to the condition that

(ki + ki)'Wij'Rez < 1. •

Theorem 6:

Consider the generalized CNN shown in Rgure 13. Assume that i) There is a nonempty set

/ £ R such that for W/,/ g I , each individual cell, isolated from the rest of the generalized CNN,

satisfies the conditions of Theorem 5 but with the condition in (102) instead of (101), ii) the output of a

cell Ci is transmitted to the neighborcells with the samedelay x,- ; and iii) all cells are identical, i.e.,

they have the same nonlinearity and the same transfer function g(s) defined by

£(s) = 4^-e-'-' = le^ -Isl - A}-' -b + h] • e"" (103)
a(s)

with c = Ci , A = A/ , b = bi , h = hi , x = X/ for all i g { 1,2,...,/} ; and n(s) does

not have a zero in the closed right half-plane. Underthese conditions, the generalized CNN is L2-stable
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if

i) The connection matrix W is nonsingular and symmetric,

and ii) Any eigenvalue A,, (W) lies in / .

Proof:

The assumption on the delay times allows us to use Theorem 5. We will now show the conditions

in (84)-(86) are satisfied. For the generalized CNN considered, (84) becomes (104).

^Inf Jdet[I-(i4*l.)Wif(^)|

= R.^20 I1 - ( ) I > 0 . (104)
Each term in the product of (104) correspondsto the condition for an isolated cell. The inequality in (104)

holds since each isolated cell satisfies the condition in (99) and each X((W) lies in I .

For the generalized CNN under consideration, the condition (85) assumes the following fonn:

det [d(s) •I - ( 2 ) •W•it(s) ] ^ 0 whenever Re >0 and dis) - 0. (105)

Condition (105) holds because d{s) does not have zeros in the right half-plane and the connection

matrix W is nonsingular.

Observe next that Hk{s) as defined in (87) can be recast as follows:

%(I) = #(«)• (I - . (106)

Our next relation follows by the symmetryof the connectionmatrix W .

I P

T

Now, the inequality in (86) takes the form in (108).

h { •HkUw) ] = U(fo')P . (107)
I 1 - ( *^ I )-X.(W) -^(/w) F

suD max • „ .^1 I. „u, 11 , (108)
" ' 11 - ().x<(W) •i(jw) I ^ ^TFFWTf
Condition (108) holds since each cell satisfies condition (102) and since each Xj (W) lies in / . •

The following corollary is a direct consequence ofFact 2 and Theorem 6.
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Corollary 1:

Consider a generalized CNN made up of a cascade of the layers Iljf . If each isolated layer

Iljf satisfies the conditions ofTheorem 6, then the whole generalized CNN is L2-stable.

Proof:

The L2-stability of each isolated layer follows by Theorem 6. Then, Fact 2 completes the proof.

•

Loa- Stability:

We now present, by Theorems 7 and 8, sufficient conditions for the L«-stability of generalized

CNN. Theorems 7 and 8 are based on Lemma 4 which is a generalization ofLemma 2 and a direct conse

quence ofTheorem V.2.4 and Lemma V.3.21 in [8].

Lemma 4:

Consider the feedback system shown in Rgure 9, where Ui(0 , U2(r) , Ei(r) , E2(r) ,

Yi(r) , Y2(r) e R' and U2(f) s 0 . The subsystem Gi consists of a set of uncoupled, linear,

time-invariant, possiblydistributed, scalar input, scalaroutput, dynamical systems. The subsystem G i

ft' Cs)
is described by a diagonal transfer matrix G\(s) with the diagonal elements ^i{s) = ,

where, and diis) are polynomials with no common zeros and the inverse Laplace transform

gi(t) of ii(s) satisfies the exponential weighting condition:

' 8i(.0 ^ for some a > 0 .

The subsystem G2 is memoryless andrepresented by Y2(r) = T'[E2(r)] .where, *P(») : R' -> R'

satisfies (83).

Under these conditions, if the a-shifted transfer function +s) satisfies the conditions in (84)-

(86), then U\(9)eLL implies that Ei(»), Yi(«) e LL . •

Let us apply next Lemma 4 to generalized CNN.

Theorem 7:

Consider the generalized CNN shown in Figure 13. Assume that each is strictly proper
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and that allof its poles pj have negative real parts. If theconditions of Theorem 5 hold butwith ana-

shifted transfer function Gi(-a +s) ( here, a > -Repy >0 ), then the generalized CNN is Loo-

stable.

Proof:

The proof is similar to that ofTheorem 2, where Lemma 4 is used. •

The conditions of Theorem 7 can be verified by examining the transfer function of the whole gen

eralized CNN. hi contrast, the conditions of Theorem 8 can be checked by examining the connection

characteristics alone, if the individual cells satisfies certain conditions.

Theorem 8:

Consider a generalized CNN made up of a cascade of the layers Tin - Assume that each iso

lated cell of a layer Up has the same transfer function ^(s) defined in (103), where, is

strictly proper and all of its poles pj have negative real parts. Then the generalized CNN is

Loo-stable, if each isolated layer Tin satisfies the conditions ofTheorem 6 but with an a-shifted transfer

function i{-a +s) (here, a > -Repj > 0 ).

Proof:

The proof follows fipom Fact 3 and Theorems 5-7. •

Global Asymptotic Stability:

Let us now generalize the results, obtained in section III, on the global asymptotic stability of the

individual cells, into the whole generalized CNN. Theorem 9 shows that the conditions given by Theorem

5 for the L2-stability of generalized CNN also ensure the global asymptotic stability of the generalized

CNN, if the nonlinearities //(•) satisfies a condition stronger than the sector condition. Theorem 10

presents a set of conditions on the cormection characteristics which guaranties that the interconnection of

a class of globally asymptotically stable individual cells yields a globally asymptotically stable general

ized CNN.

Throughout the global asymptotic stability, we assume that i) the extemal inputs M, (r) ate con-
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stants and denoted by (/,- , ii) all nonlinearities /i(») satisfy the incremental sector condition in (38)

with finite constants k\,k2 , iii) the set of differential-diiference equations in (l)-(4) has a unique

equilibrium point As discussed in section m, the last assumption is not an extra condition for a globally

asymptotically stable system. The second assumption, which is needed for the global asymptotic stability

of a generalized CNN under an aibitrary constant input ensures the existence and uniqueness of the solu

tions to the equations in (l)-(4). This follows from Fact 1 and the result in (39).

Theorem 9:

Consider the generalized CNN shown in Figure 13. Suppose that all nonlinearities /, (•) satisfy

the incremental sector condition in (38) with the same finite constants k\^ kz >and assume the output

yc{t) of any cell C/-. is received by neighbor cells with the same delay t/- = t,-/* . For the linear

dynamical subdrcuits in the forwardpath having the following transfer function

Giis) = cT-[sl- Ai •bi + hi

assume all eigenvalues of Ai have negative real parts and assume the pair (A,-, C() is observable.

Under these conditions, if Gi(s) together with K and y defined in (90)-(92) satisfy the conditions

in (83)-(86), then, for each constant input, the generalized CNN has a unique equilibrium point which is

globally asymptotically stable.

Proof:

The proof is parallel to that ofTheorem 3 and follows by Theorem 5. •

In the sequel, we shall present a class of generalized CNN where the global asymptotic stability of

individual cells implies the global asymptotic stability of the whole generalized CNN, under some suit

able interconnection characteristics. This result needs Fact 4 which gives a connection topology ensuring

that the interconnection of the globally asymptotically stable layers is also globally asymptotically stable.

For a proofofFact 4, see Theorem 5 in [2].

Fact 4:

Consider a generalized CNN made up of a cascade of the layers Iljf . If each isolated layer

ITjP is globally asymptotically stable, then so is the whole generalized CNN . •
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Theorem 10:

Consider a generalized CNN made up of a cascade of the layers . Assume that i) for

each layer III} >aU nonlineaiities //(•) satisfy the incremental sector condition in (38) with the same

finite constants kiJc2, ii) each layer UH *as a feedback system shown in Figure 13, satisfies the con

ditions of Theorem 13, where all eigenvalues of A have negative real parts, and the pair (A, c) is

observable. Then, for each constant input, the generalized CNN has a unique equilibrium point

which is globally asymptotically stable.

Proof:

The proof follows from Fact 4, Theorem 9, and uses the same approach as that ofTheorem 6. •

V. CONCLUSION

A new neural network architecture, generalized CNN, has been developed, generalized CNN is a

very general neural networic model in regards to both connection topology and structure of building

blocks. Hence, the potential applications of generalized CNN go well beyond the ones offered by the

common neural networks consisting of simple cells. In (Articular, the results given for the global asymp

totic stability, and the input-output stability of the generalized CNN, can be used for designing general

ized CNNs as computing and/or cognitive machines.
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CAPTIONS FOR FIGURES

Figure 1. A 2-dimensional 3-layer GCNN, . Each layer has nearest neighbor intra-layer intercon

nection of size 1^1, while every two successive layers are fully-interconnected, for instance, each cell of

n} is connected to everycell in layer Ilf and fl^ .

Figure 2. a) A feedforward GCNN , b) A cascade GCNN , and c) A recurrent GCNN.

Figure 3. The connectivity of a single cell within the same layer k for a) = 1 and

dk,k (i hi'SxSiM ) = 111 - AI + Ii2- h I . b) = 1 and

dkjciihiiMiiSiM ) = max { |ii-Al , |f2-Al ) and c) rjkjt =2 and

dkjc. (i i./2»^ ;A/2.^ ) = I«1 - a I+1*2 - a 1•

Figure 4. The extra-level connectivity of a single cell of a 1-dimensional 2-layer GCNN with a)

rtjt+i = l and (i,^ ; i'',^+l) = |ii - A1+1 and b) rit.)k+i = l and

dkMi (' I' •^+1) = ®ax {I i1- AI»1} . respectively.

Figure 5. Block diagram of a cell.

Figure 6. Feedback diagram of an isolated cell.

Figure 7. a) Chua's circuit consisting of a linear passive resistor, a linear inductor, two linear capacitors,

and one nonlinear resistor, b) The v-i characteristic of the nonlinear resistor Rn .

Figure 8. The region where the function belonging to the sector [k\,k2] lies.

Figure 9. Block diagram of a general nonlinear feedback system.

Figure 10. The regionof L2-stability for an isolated cell of a CNNobtained by the circle criterion.
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Figure 11. a) A circuit model of an oscillatory second order cell b) The Wien bridge oscillator circuit,

c) The transfer function of the voltage-controlled source.

Figure 12. The dynamicroute for an isolatedcell of a CNNwhen wy < 0 .

Figure 13. A GCNN considered as a multivariable feedback system.
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