Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DESIGN OF A REAL-TIME FLEXIBLE
IMAGE PROCESSING SYSTEM

by
Anantha P. Chandrakasan

Memorandum No. UCB/ERL M91/27

18 April 1991

DESIGN OF A REAL-TIME FLEXIBLE
IMAGE PROCESSING SYSTEM

by

Anantha P. Chandrakasan

Memorandum No. UCB/ERL M91/27

18 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Acknowledgements

I would like to thank my advisor Professor Bob Brodersen for all the advice and
support he has given to me over the last few years. He has been a great source of inspiration.

I would also like to thank Bill Baringer who has been a great supervisor to me
during this project. He has helped tremendously in all phases of the project (including
proof reading my report) and I especially thankful for his extreme patience.

I would like Professor Jan Rabaey for reading my report and making suggestions.

Special thanks to Jane Sun for her help in the design of the the VME interface
and THOR simulations.

I would like to thank Phil Schrupp and Sue Mellers for their support for board
design.

I would like to thanks all my friends who have helped me through my project.

Finally, I would like to thank my parents for all the encouragement they have given
me during my study. I would also like to thank Mrs. Coe and my brother who have been

extremely patient tolerating my constant complaints.

Contents

Table of Contents
List of Figures

1 Introduction
Ll OVervView . . . ittt e e e e e e e e

2 System Overview
21 Original System00ii i einnnnnn.
2.1.1 Problems With The Original System
2.2 New Integrated System0iviuummnennnn..

3 The Video Multiplexors
3.1 Three Channel Multiplexor0ovvmneununennn.
3.1.1 Functiomality00 ..
312 ChipDetails00iiiiiiinn e,
3.1.3 Chip Simulations And Testing
3.2 One Channel Multiplexor oovvesmmsnnnnnnnn.
3.21 Functionmality0 0 mnnuuennnnn..
322 ChipDetails0iiiiuuennnnn..

4 Image Processing Board - Description Of Various Modules
4.1 Description Of Modules0 0o,
4.1.1 Video Interface ToTheBoard.
4.1.2 Clock GeneratorModule.000u..0.
4.1.3 Image Processing/Recognition Module
4.14 Histogram Processor and Equalization module
415 VMEInterfaceModule..........................
416 MultiplexorModule¢0.......
4.1.7 ControllerModule0.00.0....
4.2 Interconnectionof Modules000......

5 Design Cycle And Board Specifics
51 DesignProcess0iiiinntn
5.1.1 Design Entry And Simulation
5.1.2 PlaceAndRoutettt

52 Board Specificso e e e e e e
83 Testing i ittt ittt e e e e,

6 Conclusions

Bibliography

A Chip Parameter Files and Bonding Diagrams
B Sample Board Sdl File

C Connector Pin Mapping

D PLD PINOUTS

List of Figures

2.1

3.1
3.2

3.4

4.1
4.2
4.3
4.4
4.5

5.1

Al
A2

Original and Present System vv vt v e vennn.. 11
Three Channel Cross-bar ASIC Schematic Diagram. 15
Chip Photo of Three-channel Multiplexor.00 17
One Channel Cross-bar ASIC Schematic Diagram. 18
Chip Photo of One-channel Multiplexor.o e... 20
Clock Generation Circuitry -Oldand New. 24
Image Processing/Recognition Module. 25
VME Interface Block Diagram.t iveernn... 28
Block Diagram of The Image ProcessingBoard. 30
Software Front-end Tools.« v v vt v vt i e e v e s e nnen e, 32
Top View of Image Processing Board.000000.... 36
Bonding Diagram of Three-channel Multiplexor. 43

Bonding Diagram For One-channel ASIC. 45

Chapter 1

Introduction

1.1 Overview

Digital image processing refers to the processing of two-dimensional data. Image
data is obtained by sampling and quantizing a raster-scanned analog representation of the
image. The quantized picture-elements (also called pixels) are used as sampled data for
image processing functions. A typical image processing system may use a frame size of
512 x 512 pixels and have an update rate of 30 frames/sec. Image processing has a wide
range of applications including image enhancement, restoration, feature extraction, object
recognition, and image compression/decompression[1][2][3].

Image enhancement brings out certain features of the image for future analysis or
display. Examples include edge and contrast enhancement , and noise filtering. Image en-
hancement does not increase the inherent information in the image, but rather it emphasizes
certain characteristics.

Image restoration removes known degradations from images. This may include
the de-blurring of images degraded by noise introduced from the camera. Image restoration
is concerned with filtering the image to minimize the effects of such degradations. Hence,
given a noisy image, the image restoration problem is to find an estimate of the input.
A “weiner” filtering operation represents a typical example of image restoration. Image
enhancement differs from image restoration in that the former emphasizes more on the
restoration of degraded images rather than extraction of image features.

Another major image processing application is feature extraction and recognition.

Computer vision systems typically use these functions. The idea is to extract important

details from the image so that a computer can analyze and recognize the image. A typical
application is in an assembly line where a vision system may detect and isolate faulty parts
based on features stored in the computer.

Image data compression involves finding ways to minimize the “amount of data”
required to represent an image or series of image frames while maintaining “acceptable”
levels of visual fidelity. Image compression finds applications largely in storage and trans-
mission. To transmit images defined over a 512 x 512 lattice, assuming a resolution of
. 24-bits per pixel and an update rate of 30 frames/sec, requires a transmission rate of 188
Mbits/sec. However, the maximum transmission rate is fixed by the bandwidth of the chan-
nel being used for communication. A compression of 125:1 is required to transmit the video
sequence over 2 “T1” channel, at 1.5 Mbits/sec. .

A first generation image processing system was designed to implement many of
the above functions in real-time. NMOS custom ASICs were designed to perform real-time
_ image enhancement, restoration, and extraction. These custom chips were interconnected
to provide a real-time image processing system. The image processing functions were split
up into two separate wire-wrapped boards. One board performs various real-time image
filtering functions and image recognition[5)[6] while the other performs real-time histogram
and histogram equalization[7][8]. The system is based around a 21-slot VME card-cage.
A Commercial A/D-D/A board and frame buffer-boards reside in the card-cage provid-
ing the required video interface and storage. A wire-wrapped multiplexor board[9], also
residing in the card-cage, provides programmable routing of video data. The two image-
processing boards reside outside of the card-cage and communicate with the interface and
storage boards through video ribbon cables and connectors. Due to the limited routing
capability of the multiplexor board, only one of the image processors (either the image
processing/extraction board or the histogram board) can access the video setup.

The goal of this project is to integrate many of the existing video modules in the
first generation image processing system into a flexible, compact, and robust system. This
report describes the redesign of the existing image processing hardware, integrating and
extending existing hardware for more robustness and flexibility. This system realizes a wide
range of real-time image processing algorithms including image recognition.

The system integrates many real-time image processing modules into a complete,
compact system. The system incorporates: (1) a custom VLSI low-level image-processing
chip set[5](6], (2) a custom VLSI histogram processor and equalization chip set[7][8], (3)

support for an external image processor board, and (4) custom multiplexor ASICs to provide
for flexible routing of video signals.

The three image processors can be used, in any order, with commercial A/ D-D/A
and frame buffer-boards. This system can be reconfigured with the aid of two custom VLSI
video crossbar switches, designed and fabricated in a 2um SCMOS process. These two
application-specific IC designs, fabricated in 132 and 68-pin packages, are fabricated and
are fully functional at 10MHz video rates. Four of the 132-pin version and one of the 68-
pin version provide 24-bit (color) and 8-bit multiplexing of video busses as required by the
chosen image-processing algorithm. Internal pipeline registers ensure 10-MHz throughput,
and an external processor can write to the internal configuration registers.

The entire-image processing system has been fabricated on a 9U VME board and
is fully functional at video rates. It contains 16 custom ASICs and 2 programmable logic
devices (PLDs) for interface logic. A slave VME bus interface provides control of all the
image processors and video multiplexer configurations. The board resides in a 21-slot stand-
alone card-cage along with a 68020-based CPU card, an Ethernet card, and a custom robot
controller card. The board is connected by Ethernet to a Sun workstation and is controlled
through a set of X-window front-end tools. Window-based software has been written to

reconfigure the processors in any arbitrary fashion.

Chapter 2

System Overview

2.1 Original System

The original image processing system, shown in figure 2.1, contains many sub-
modules performing several real-time video tasks while maintaining an overall throughput
rate of 10Mhz. The system can be divided into sections according to the task performed:
video interface and storage, signal processing, system reconfiguration, software control, and
display.

The video interface is performed by a commercial A/D-D/A board, manufactured
by Imaging Technologies, Inc. (ITI), that performs the A/D and D/A conversions. The
A/D section of the ITI board samples and quantizes the input analog signal (NTSC stan-
dard) into its three color (red, green, and blue) components, giving 8 bits of precision
per color plane. The D-A section takes 24 bits of video data via three 60-pin connectors
and generates the required analog signal to drive the display unit. This ITI board also
provides the essential video synchronization signals needed for correct system operation, in-
cluding vertical blank(vblank), horizontal blank(hblank), and horizontal sync(hsync). The
input image signal is acquired through different types of cameras and an analog multiplexor
Placed before the A/D selects one camera as the input source.

Three commercial frame buffer boards, also designed by ITI, provide storage for
one frame of color video data, with one buffer board dedicated to each color plane. In the
real-time mode of operation, video data at a maximum rate of 10Mhz can be streamed in
from one port while data is streamed out from another port for processing or display(through
the D/A). These boards can be used to transfer “frozen” images via the VME bus to the

SUN workstation for documentation or as test images for further non real-time processing.
Both the interface board and the frame buffer boards reside in a VME card-cage along with
a wire-wrapped video multiplexor board.

The system is reconfigured through the multiplexor board[9] which provides a
video interface between an external video processing unit and the boards in the card-cage.
The video signal processing for the system is performed by these external units. One of the
image processing units{5][6] (a wire wrapped board), designed by Reutz, consists of several
custom NMOS chips to perform various image processing tasks including sorting, linear
convolution, logical convolution, contour tracing, feature extraction, and limited image
recognition. Another board[7][8] (also wire-wrapped) implements histogram and histogram
equalization functions. One of the two boards communicates to the multiplexor board[9]
through 60-pin video connectors. Due to the limited routing capability of the multiplexor
board, only one of image processors can access the boards in the card-cage at any given
time.

Three 60-pin connectors are used to communicate between the frame buffers and
the multiplexor board. There is no direct connection between the A/D board and the
frame buffers. The multiplexor board selects the inputs to the frame buffers from either
the attached image processor or the A/D board. Similarly, it also chooses the data going
to the D/A from either the processor or the frame buffer. Still frames can be dumped from
a SUN workstation through the VME bus onto the frame buffer boards for processing or
display. Basically, the attached image processor can be used in any order with commercial
A/D-D/A and frame buffer-boards.

In a typical mode of operation, the video data arriving at the multiplexor board
is routed to an image processor such as the recognition board or the histogram board. The
processed data is then transferred back, via ribbon cables, to the multiplexor board which
then routes it to the D/A for display via the frame buffers. The system is reconfigured
through the multiplexor board using X-window front-end tools run from a SUN work-
station.

2.1.1 Problems With The Original System

. The original system includes many boards, and communication is achieved through

many video connectors, which are undesirable due to inherent noise problems. To make

things worse, long cables have to be used for video processing units that do not slide into
the card-cage and reside far away (such as the image processing/recognition board and the
histogram board). More boards and cables also imply more space occupied.

Many of the image processing units, including the multiplexor board, the recog-
nition board, and the histogram board are implemented using wire wrapped technology.
These boards are not as physically robust as modern day printed circuit boards and are
more prone to noise problems. Minimizing noise is especially critical in this system since
the idea of some image processing functions is to reduce noise in images.

Due to the limited processing power of the multiplexor board, only one video
processing unit can be used at any given time. With this set-up, a filtered image using the
image processing/recognition board cannot be histogrammed in real-time. The processors
cannot be easily daisy-chained and connectors have to be often swapped for different image
processors to access the interface and memory boards. Also, constant swapping tends to to
. weaken the boards, which are not very robust to begin with.

A color image can be considered as being represented by three separate monochrome
images in the red, green, and blue spaces. The multiplexor board takes 24-bit video data
as input and sends 8 bits to the attached image processor for video processing. The mul-
tiplexor board limits the image processing capability to just one color plane (hard-wired
to be green). Often there is a need to provide more flexibility by supporting processing of
different color planes.

2.2 New Integrated System

The problems associated with the old image processing system were enough motive
to design a more robust and flexible system. The new redesigned system integrates the
multiplexor board, the image processing/recognition board, and the histogram processor
into one board, and provides support for an external video processor. This single board
solution provides a high level of system integration compacting many modules into one slot
in the VME card-cage.

Two custom VLSI chips, designed using the LagerIV design environment[10], re-
Placed the existing multiplexor board and provide a lot more flexibility. Any of the three
processors can be used in any order with the commercial interface or frame buffer-boards
using a set of 5 multiplexor ASICs. Four of these ICs are the 132-pin version PGA’s pro-

10

viding for 24-bit color multiplexing. The fifth ASIC is a 68-pin flat pack providing for 8-bit
(one plane) multiplexing. The custom version of the multiplexor is much more compact,
enabling it to reside in the new integrated board. This eliminates the connectors between
processor and multiplexor board. The three plane multiplexing capability has enabled the
processing of any arbitrary plane. These chips are internally pipelined and work at the
required 10Mhz rate. An external processor can write to the internal configuration registers
in any of these ASICs.

Since two of the image processors are on the board, it has eliminated the need for
connectors to communicate video signals between them and the multiplexor. This make
the system more robust. The different video processors can be easily cascaded with help
of the custom multiplexor chips enabling more functions to be performed on the image
data. This added flexibility is very useful and could not have been easily accomplished with
the original multiplexor board (only one processor could act on the image data). Extra
cables, compatible with the Data cube format, have been added to support an external
video processor, such as the Parallel Projection Pipeline Engine (PPPE). This provides full
24-bit color access access to the video setup (interface board, frame buffer boards and the
other image processing modules).

Most of the control logic required to operate the various image processing chips
were mapped onto PLDs saving significant board area. The first generation video system
used a Multi-bus card-cage and the multiplexor board required a Multi-bus to VME adapter.
The interface has been redesigned to interface directly to the VME bus, eliminating the need
for an adaptor board. Front-end software tools, that are used to reconfigure the system from
a SUN workstation, have been modified to reflect the added flexibility of the new system.

ORIGINAL SYSTEM

s _

NEW INTEGRATED SYSTEM

VME Bus

IMAGE

BOARD
aux, P, P)

FRAME
BUFFERS

(R.G,B)

£
[—]
,

Figure 2.1: Original and Present System

12

Chapter 3

The Video Multiplexors

This chapter describes the two VLSI video crossbar ASICs that provide flexible
routing of image data at video rates(10MHz). The set of two custom video multiplexors were
implemented to provide flexible interconnection between the image processors, the interface
board and the frame buffer-boards. These chips are critical components for the development
of a flexible and compact system that allows interconnection of different modules in an
arbitrary fashion.

One of the ASICs provides for three-color channel multiplexing (working on 24
bits of video data) while the other ASIC supports only one color plane (working on 8 bits
of video data). One of the three-channel multiplexors replaces the whole first generation
multiplexor board while providing additional functionality. The board contains four of the
three-channel multiplexor ASICs and one single-channel multiplexor ASIC. Both custom
VLSI video crossbar switches were designed using the LagerIV design environment[10] and
fabricated using the MOSIS 2um scalable CMOS process. The following sections describe
the functionality and details of the two multiplexor ASICs.

3.1 Three Channel Multiplexor

The three-channel video cross-bar switch was designed to provide flexible multi-
plexing for color video data. The video data arriving from the A/D and frame buffers are
24-bits wide (8-bits per color plane). The following subsections describe the functionality
and chip details of the three-channel multiplexor.

13

3.1.1 Functionality

The three-channel video multiplexor (see Figure 3.1 for schematic representation)
has two sets of video inputs (48 input pins) and two sets of video outputs (48 output pins).
Out of the 48 input pins, 24 pins correspond to input video busses R1SDI, G1SDI, and
B1SDI and another 24 correspond to video busses R3SDII, G3SDII, and B3SDIL. One set
of output busses are labeled R2SDI, G25DI, and B2SDI (24 bits total) and the other set as
R3SDI, G3SDI, and B3SDI (another 24 bits).

The multiplexor is pipelined using a set of level-sensitive registers used in a master-
slave configuration. A set of these level-sensitive registers are used at the front end to latch
in the video data on the input busses R(G,B)1SDI during the positive phase of the system
clock (which is DOTCLOCK.L). Internal buffers are used to provide enough drive to the
clock signal. The slave registers are active on the opposite phase of DOTCLOCK_.L. The
chip requires only one clock input and the other phase is generated by locally inverting the
clock. Each datapath register has two clock inputs LOAD and LOADBAR for the true
and complement signals. By feeding the LOAD signal of the master register the positive
phase of DOTCLOCK.L and the LOAD signal on the slave register the negative phase of
DOTCLOCK.L, pipelining is achieved.

The output of the master registers drive multiplexors and output tri-state buffers.
The data latched into the pipeline registers are output onto the R(G,B)3SDI busses when
the tri-state buffer driving this bus are enabled. The tri-state buffers are enabled or disabled
via three control signals (one for each plane) written from the VME interface through a set
of standard cell control registers. Latching control data on the chip proved to very area-
efficient at the board level. Since the chip contains 12 control bits, every ASIC saves two
register chips (such as 74LS74s) at the board level. The tri-state bus permits tying video
output busses from different multiplexor chips together. By enabling one of the chips to
have its tri-state outputs enabled, a wired-or multiplexor is emulated. There may be some
concern with this setup during power-up, before the internal registers are written, when
random values appear on the output of these registers.

Any combination of inputs can be routed to any other set of video output busses
R(G,B)2SDIL. Any one of the six input busses (R(G,B)1SDI , and R(G,B)3SDII) can be
output on R2SDI, or G25D], or B2SDL In other words, any output can be derived from

any input color, providing for complete mixing of colors. Also, all the output video busses

14

can derive their outputs from the same color plane. For example, the green input can be
routed to all three output busses, R(G,B)2SDI This feature allows an 8-bit color camera
or single plane image processor to drive all three frame buffers. If such data on the frame
buffers is used to drive the display through the D/A board, a grey level image will appear.
The multiplexing is achieved through the two-input datapath multiplexor cell.
The datapath contains three levels of logic to realize the required flexible multiplexing. The
exact configuration of video signals is programmed by control signals written externally via
writable control registers. Writing of all control signals takes place during the high-to-low
transition of chip select signal (CS_L). Big datapath drivers (using strings of inverters) are
used to drive pad drivers. The pad drivers provide the current drive required for highly
capacitive output pins and PCB traces. The slave pipeline registers placed before the drivers
latch the data onto the output bus during the negative phase of the DOTCLOCK.L.

3.1.2 Chip Details

This ASIC is designed using the LagerIV design environment[10] and fabricated
using the MOSIS 2um process. The connectivity was specified in a textual format using
the structural description language (sdl) and compiled using DMoct. The chip datapath
contains multiplexor cells from the dpp library[4] and was compiled using the dpp compiler.
Standard cell control logic was implemented to provide external control in configuring the
datapath.

The ASIC is packaged in a 132-pin PGA. Out of the 132 pins, it contains 110
signal pins, 4 Vdd and 4 GND pins, and one test pin. The chip is internally pipelined and is
functional at the required 10Mhz. The core of the chip is 2789 * 1777\. With A= 1.0pum
for this pwell process, it occupies 4.95mm? of silicon area. The CAD tool “Padroute” was
used to route nets from the core to the pads. A photo of the the fabricated chip is shown
in Figure 3.2

3.1.3 Chip Simulations And Testing

To test the functionality of the multiplexor, the magic layout was extracted from
the pads using DMpost, a post processor, and a simulation file was created. This “sim”
file was then used as an input to simulator IRSIM, which uses switch level or linear models

to provide approximate timing information. The simulations showed that the chip was fast

THREE COLOR CHANNEL VIDEO MULTIPLEXOR

15

[
- L)
—
[T
(7] -
- d
——= Q |
-
e .
e P
AEQETEN , wla =1
[4) L)
=t y)
2 [__] s
(]
[
.
. !
o
-l‘l':‘. - -'-
T
.
o
LA) u!.l
b —_— ,
1 -
()
L¥3
o
© .
s wny
o - - [7] et
~ - ru .
0
(7]
-y
- LYY
D™
3 s -) o
aar - - |2t
'-. " = AEQETEN
= £ -
-:_ [} L ™Y
(]

Figure 3.1: Three Channel Cross-bar ASIC Schematic Diagram.

16

enough at the required 10Mhz.

The chip was tested using the Tektronix DAS 9100 on a generic wire-wrapped test
board built to test 132 PGA's. The basic testing strategy was to use the DAS to generate
input patterns similar to the ones used in the IRSIM simulations and verify the output
against the ones obtained from simulations. The chip was found to be functional at 25Mhz.
Better testing equipment is required for testing at higher speeds.

3.2 One Channel Multiplexor

The one-channel multiplexor is highly integrated with the three-channel version.
This ASIC supports single-channel (8-bit) multiplexing. The following sections describe the
chip in more detail.

3.2.1 Functionality

The one-channel multiplexor (see Figure 3.3 for schematic representation) contains
three 8-bit wide input busses(labeled AD_OUT, f’.OUT, and FB.OUT) and three 8-bit wide
output busses(labeled FB.IN, P_IN, and DA.IN).

Just like the three-channel multiplexor, this ASIC is internally pipelined using
datapath registers used in a master-slave configuration. Data on input busses AD.OUT
and FB.OUT are latched on the positive phase of the system clock (DOTCLOCK.L). The
slave registers are active on the negative phase of DOTCLOCK_.L and latch the data onto
the output bus when the clock is low. A two-phase clock is emulated internally by swapping
the senses on the LOAD signal controlling the pipeline registers.

The chip contains three parallel multiplexing datapaths each working on 2 different
sets of inputs. The first path selects between P.OUT and AD.OUT, the second between
AD.OUT and FB-OUT, and the third between P.OUT and FB-OUT. In considering the
area trade-offs at the board level, it became apparent that implementing two of these
multiplexors in one 68-pin package would be optimal. In so doing, some of the internal
video busses are shared in common and do not need external I/0 pins off-chip.

The datapath is reconfigured through a set of three standard cell registers (edge-
triggered). Data is latched in these registers on the high-to-low transition of the chip select
signal(CS-L). Big drivers were placed in the datapath to drive the pins and external world.

17

CX TR EGg

M

1Y

ENOEET:

Ve mATT

e B

iplexor.

Photo of Three-channel Mult

Chip

Figure 3.2

ONE CHANNEL VIDEO MULTIPLEXOR

OO TOLO0K
1
[SRS
AD_OUT ::"D-
AEGISTEA " v
o o 2 9
- 7 —>ReasTER—k
= o o)
-
ol nu
| cur [0 e
o1
»
,ouT I' 2
-

=

a5 .
©o oL —3{REGISTER
._;._;REG ! o v t v
5 R v:

Figure 3.3: One Channel Cross-bar ASIC Schematic Diagram.

19

3.2.2 Chip Details

This ASIC is also designed using the LagerIV design environment{10] and fabri-
cated using the MOSIS 2um scalable CMOS pwell process. The datapath contains multi-
plexor cells from the dpp library[4] and and uses a standard cell control logic. It is packaged
in a 68-pin flat pack. Out of which it contains 55 signal pins, 4 Vdd pins and 3 GND pins
and one test pin. Three pins were dedicated for substrate connections.

The chip is internally pipelined and is functional at the required 10Mhz. The core
of the chip is 1367 * 1033\ and hence occupies 1.4mm? of silicon area. A photo of the
fabricated chip is shown in Figure 3.4.

3.2.3 Chip Simulations And Testing

The layout of the one-channel multiplexor was also extracted from the pads using
.. DMpost and simulated and verified using IRSIM. Various input patterns were used to test
| functionality and speed. The simulations showed that the chip was logically functional and
fast enough at the required 10Mhz.

The testing of this chip was done on the new image processing board. This proved
to be easier than building a separate test board. Test images generated off-line were dumped
into the framebuffers and routed via the one-channel multiplexor. By reconfiguring the
chip through the VME bus, while observing and comparing the output on the monitor, the
functionality of the chip was verified. The speed was of lesser concern since it has fewer
levels of logic in the datapath than the three-channel multiplexor and it was clear that is
was fast enough for the application.

20

TFLELLS

i B (ng, ol R EL TN

| 2 \ V7

Chip Photo of One-channel Multiplexor.

Figure 3.4

21

Chapter 4

Image Processing Board -

Description Of Various Modules

The image processing board integrates many modules into a compact system.
This board is VME based and resides in a triple height 21-slot card-cage. The board can
be divided into functional modules including:

* A custom VLSI image processing and recognition chip set module.
¢ A custom VLSI histogram processing and equalization chip set module.

e Custom video multiplexor (color and greyscale) module, supporting two-way 24-bit
communication to an external processor.

The VME interface.

A clock generator module.

A control module generating required control signals to the image processing chips.

The flexible image processing board (See Figure 4.3 For a Block Diagram) sits
on the VME card-cage along with other commercial interface (A/D and D/A boards) and
frame buffer boards. The card-cage is a stand-alone system with a single-board computer
based on Motorola’s 68020 CPU chip and controls all operations over the VME bus. It runs
“VxWorks”, which is a real-time unix-like operating system. Software written on the SUNs

22

can be compiled and down-loaded onto this system. The card-cage also has a commercial
ethernet controller card that acts as a slave processor on the VME bus. Image files can be
dumped to and from the SUN workstation through the ethernet via the network file server.
One important application is that test images can be used for debugging the hardware.

4.1 Description Of Modules

This section will overview the various modules on the board and describe the

function they play in the overall system.

4.1.1 Video Interface To The Board

The board interfaces to the A/D-D/A board, and the three frame buffers through
video connectors. Three 60-pin ITI connectors, one for each color plane, are used to pass
signals to and from the A/D board, with each cable carrying both an input and an output
eight-bit video bus. These connecters also pass synchronization signals, such as DOT-
CLOCK.L, VBLANK.L, and HBLANK_L, required for system operation. The complete
set of signals with pin mappings is compiled in Appendix C. Each frame buffer is also
connected to the image processing board via 60-pin connectors. The board also provides
external port access to an image processor. This is done via six 26-pin digital video connec-
tors using the “Data cube” “Maxbus” video format. Three of these provide red, green, and
blue input channels, and the other three serve as output channels to other image processor
boards in the card-cage.

Video drivers, mostly 74AS5244, were used for signals that are driving highly ca-
pacitive video bus wires. In one case, the AS family of drivers resulted in a high dV/dt and
hence high mutual inductance, causing erroneous data on the other side of the connector.
This cross talk between adjacent bits was reduced by replacing the 74AS244 chip with a
74L5244.

The video busses communicate to the video processors through the multiplexor

chips. Since the incoming signals drive only one multiplexor, buffers were not inserted,

saving area.

23

4.1.2 Clock Generator Module

Most of the image processing chips required a two-phase non-overlapping clock
signals. The original system achieved this by using a pair of cross coupled NOR gates
(since NOR gate ensure non-overlapping signals) with one input being a buffered version
of DOTCLOCK.L and the other is an inverted version of DOTCLOCK_L. These chips ran
off 7V power supplies to provide fast rise time. With TTL NOR gates this translated to
around 5V swing on the clock lines. The present board eliminates the need for an extra
power supply by replacing the slow TTL NOR gates with fast CMOS NOR gates that
provide rail to rail swing (74HC02’s). Since the HC family requires CMOS input levels, .
the buffers and inverters driving the HC chips are from the ACT family that convert TTL
input levels(from DOTCLOCK_L) to CMOS levels. The clocks have a frequency of 10Mhz
and a duty cycle of 55-45%.

4.1.3 Image Processing/Recognition Module

The board has two image processing modules. The first of these modules contains
a set of 8 custom NMOS chips[5][6] to perform real-time image processing tasks (as shown
in Figure 4.2). The chips include a 3x3 linear convolver, a 3x3 sorting filter, a 7x7 logical
convolver, a contour tracer, a feature extractor, a look-up table ROM, and 2 post processors
for the linear convolver. Most of the chips are cascaded (see Fig 4.2) and clocked with PHI1
and PHI2. These are non-overlapping clocks as described in the clock generation module.
The feature extractor and contour tracer have a more complicated interconnection. The
input video signals to this module are latched in through an 8-bit wide register clocked
by PHI1 and the output video signals are latched out through another 8-bit wide register
clocked on the opposite phase. .

Low rate control signals from the host are latched by a bank of seven 74LS374
registers. These signals configure the chips internally for different modes of operation. For
example, the convolver chip has many convolution kernels stored internally and one of them
can be chosen at a time. Similarly, low rate data is read out to the VME bus through a
bank of four 74LS244 drivers. The VME interface generates control signals to select these
latches and drivers.

The other control signals required by the chips are generated on board and de-
scribed in the control module section.

CLOCK GENERATION CIRCUITRY - OLD AND NEW

24

™
1'> PHASE1
4L807
DOTCLOCK_L
PHASE2
> =
sV
Jl> PHASE1
AACT244
DOTCLOCK_L

PHASE2
> =

Figure 4.1: Clock Generation Circuitry - Old and New.

IMAGE PROCESSING/RECOGNITION MODULE

ya NS he \
¢)
AN 1 7
CONTROL
VME INTERFACS
LOGIC
| Samwve A0 ibtany
f "1 7 7 T 7 ;
) () &) ‘* J U L
Rack Order Uneer Eoge baindll B Foure
® Exvactn Theasholdng Osaton o —
Fiker Log (323 Ktiers) Tracer e | Exvecer

643 00 tuage (09 bumounc}

Video Multiplexor

Figure 4.2: Image Processing/Recognition Module.

26

4.1.4 Histogram Processor and Equalization module

This module contains custom chips to perform real-time histogram and histogram
equalization[7] . These chips are designed using a MOSIS NMOS technology. Histogram
estimates the pixel intensity distribution over a selected portion of an image. The equaliza-
tion chip modifies the contrast of an image by changing the pixel intensities of an image to
result in an equal distribution of grey levels in the image. The video input to this module
is latched in through an 8-bit register and the video out is latched out through another
register. The control signals to the chips are provided by dip switches that set the values
to zero or one depending on whether they are closed or open. The chips are clocked using
the non-overlapping two-phase clocks PHI1 and PHI2 generated by the clock generation

circuitry.

4.1.5 VME Interface Module

The VME interface (shown in Figure 4.3) provides the communication between
the image processors and the VME bus host. The VME based card-cage has a 68020-based
single-board computer running Vxworks, a real-time Unix-like operating system. This acts
as a system controller and arbitrates all transactions on the VME bus. The VME interface
performs the following important functions:

¢ Decodes sixteen address bits (A[9-25], AM[0-5], A[6-8], and LWORD.L) and deter-

mines which processor the VME master is communicating with.

¢ Allows data from the VME to be written to all the multiplexors and image processing
modules over 12-bits on the DATA bus D[0-11].

o Allows low-rate data from the image processors to be read to the VME from the

Processors.

The VME interface provides communication between three banks on the board
and the VME bus. Out of these, two banks are writable (five multiplexor chips and four
7415374 latches) and the other is readable (seven 74LS244 drivers). The interface not only
selects the particular bank, but it also enables one particular chip in the bank.

A set of drivers (7415244 and 74LS645) are used to buffer address lines from the
VME bus (in accordance to the VME electrical specifications). The VME interface uses

. 27

a two-level decoding strategy. The first level performs the decoding of A[9-15],AM[0-5]
and LWORD.L and is implemented using an Altera EP610 PLD. This basically selects
the particular bank (one among three). The second level of decoding (A[6-8]) strobes one
particular chip in the bank. This stage is implemented using 74LS138 decoder chips.

Another EP610 PLD handles the synchronization of data transfer. It monitors
the VME data strobe (DS.L) and write control signals from the VME bus and generates
the acknowledge signal (DTACK_L). It also controls the strobe lines on the vector decoder
chips (the second stage of decoding).

Table 4.1 lists the exact address space of the different processors that communicate

with the VME interface.

[Instance Name | Address | Reference Designator Type
pip-xx374.2 0xftfc00 | US0 Writable
pipxx374.3 0xfifcd0 | US1 Writable
pipxx374.4 0xitic80 | U52 Writable
pipxx374.5 0xftfcc0 | U53 Writable
pipxx374.6 0xfffd00 | US4 Writable
PipXx3747 0xf1d40 | U55 Writable
pipxx374.8 0xf1{d80 | U56 Writable
board MUXFBI1 [0xftfe00 | U1 Writable
board MUXFB2 | 0xfffe40 | U2 Writable
board MUXVP1 | 0xfffe80 | U3 Writable
board MUXVP2 | Oxfifec0 | U4 Writable
board MUXPI [0xfffl00 | U5 Writable
Pipxx244.1 0xitfa00 | U43 Readable
pip-xx244.2 0xftfad0 | U44 Readable
pipxx244.3 0xfffa80 | U45 Readable
pipxx244._4 Oxfffac0 | U46 Readable

Table 4.1: Address Space for Various Processors and Multiplexors

4.1.6 Multiplexor Module

The board contains four color video cross-bar switches and one single-plane switch.
These chips provide flexible routing of video data between processors and interface boards.
Using these chips we can reconfigure the system to utilize the processors in any order with
the interface and storage boards. It also permits the cascading of different processors. The
complete functionality of the chips were discussed in Chapter 3.

VME INTERFACE BLOCK DIAGRAM

28

Level senshive latches
VMEbus Edge-triggered registers
//\\ trhat uffers
As-8)
= — 0 image chips
A[9-15),AM[0-5],LWORD* " ;"\
IACK® ——— . o
v Mux MUXart
Address Vector .L .
Decoder ? m
Decoder X ! Rog REGIn
L | c @
AOSL A RSEL®
Cin Breq
whe > Handshake M o
4 >
y os* R output BUFout
7] teske | A Butters
< DTACK® @
] Jom 7K
pov) opnfe = from image chize
2

(/
< - /] transc
1
N l¥=_“

(DS*/AS°Cin,DTACK"JHS

Figure 4.3: VME Interface Block Diagram.

29

4.1.7 Controller Module

The control signals required by many of the image processing chips were produced
using many TTL chips in the original system. In the present system, all the glue logic for
the control signals are programmed and densely packed into a 132-pin Altera EP1800 PLD.
The logic was simulated using the THOR simulator and approximate timing analysis was
used to make sure that the logic meets the speed requirements.

4.2 Interconnection of Modules

The interconnection of all the modules on a single PCB resulted in a very flexible
image processing system. A block diagram of the board is shown in Figure 4.4.

The video connectors interface to the outside world (the interface boards and the
storage boards). Each of the image processing modules (including the external processor)
are abstracted as blocks in the block diagram with video-in and video-out busses and control
signals connected to each block. A set of five multiplexor chips are used to provide flexible
interconnection between the modules. The input video signals (24-bit color) from the A/D
board goes into a three channel multiplexor. The source of the input to the frame buffers
can either be from the A/D or an image processor depending on how this multiplexor is
configured. The outputs from the frame buffer boards come in to another three-channel
multiplexor on the board. The tri-state output busses of these two multiplexors are tied
together and act as the input to another three-channel multiplexor controlling the data to
the external video processor. The output from the off-board expansion processor is routed
through another three-channel multiplexor chip.

Four of the multiplexors are thus used in controlling the I/0O of the A/D, frame
buffers, and off board expansion processor. The single-channel multiplexor handles the
routing for the two single-plane image processors. The two blocks labeled 1ICHMUX are
physically only one chip. With this setup, the video data can be very flexibly routed through
different processors and hence allows processors to be easily daisy-chained.

The VME interface module interfaces to the VME bus. It produces control sig-
nals that select particular processors and multiplexor chips and writes control words that
configure them in the appropriate modes of operation. Other control signals are generated
by the EP1800 PLD and are distributed to the image processors.

REAL-TIME FLEXIBLE »

IMAGE PROCESSING BOARD
< VME BUS
r V
T — VME INTERFACE

A/D OUT T < wean D/AIN
~ N I -—H

24 EXPANSION h

e 24
OFFBOARD | . ' -;’D
s—| VIDEO PORT >--&7

\J‘|g ‘\I‘!S 7
i
/
21

LOW LEVEL >
I K >
_&‘ 8 CUSTOM 4
> >—1 CHIP SET > -&Z

gh gh

J HISTOGRAM

PROCESSOR

y

Figure 4.4: Block Diagram of The Image Processing Board.

31

The image lab has a graphical user interface. When the “image-lab” program is
invoked from a SUN workstation, an X window pops up with boxes representing different
processors (as shown in Figure 4.5). Selecting a box by clicking on it, opens more windows in
some cases. For example the filter chips have many convolution kernels and a particular one
can be chosen by clicking on a box. The graphical interface also allows the reconfiguration
of the data flow through the multiplexors.

ameral.

|Source:

Green
AtoD

Monitor

Region Select

hreghold Linear
0 Filter

]

f-

Radon group 1

Radon group 2

Raden group 3

Radon group 4

Histogram Processor

Histogram £Q L

Figure 4.5: Software Front-end Tools.

32

33

Chapter 5

Design Cycle And Board Specifics

This chapter outlines the design cycle involved in the design of the 8-layer 9U
VME application specific board. This includes net-list entry, simulations, and placement
and routing. This chapter also highlights the board specifics and the strategy used for

testing.

5.1 Design Process

The board was mainly designed using the LagerIV design environment. A com-
mercial package designed by Racal-Redac was also used in the final phases of the design.
The following sections describe the design process and CAD support in more detail.

5.1.1 Design Entry And Simulation

The connectivity information was entered an textual format using the structural
description language (sdl). This is preferred over schematic entry. Simulation of the design
can be achieved using the THOR functional simulator. Once the design was entered, DMoct
was used to generate its representation in the “OCT” database (“SMVs” and “SIVs™). Sdl
format is also very useful in visualization of the design in a hierarchical fashion. For example,
if three color-plane processing capability were to be incorporated into the image processing
module as future enhancement, it can be easily done by instantiating the image processing
module (written as one sdl file) three times.

THOR models for the various leaf-cells were written and MakeThorSim was used
to generate input files required by the THOR simulator. The design was simulated mainly

34

for checking the connectivity information.

5.1.2 Place And Route

A commercial package was used for placement and routing. This software requires
the net-list to be in a special format called “rinf”. The CAD tool “Oct2rinf” extracts net-
list information from the “SIV™ representation and generates a rinf file, called “design.frs”,
which is the input to the Visula PCB tool. Oct2rinf also generates an ASCII report file,
called "design.rep”, which has part/net and chip count information of the board.

The rinf file was loaded into the PCB tool and each part was manually placed. |
Oct2rinf provides the feature of being able to include the placement information in the
sdl file. This way the placement has to be done only once manually and the placement
information can be back-annotated into the sdl file. The exact placement information
is obtained by dumping a “design.frp” file that reflects design changes. This feature is
especially useful when there are minor design changes and and a complete manual placement
is undesirable. Hence, very little time is spent in the layout. A trick employed to make the
initial placement faster was to create a dummy set of sdl files that have no nets but the
same parts as the real design. This way the parts could be moved around faster in the PCB
tool since it does not have any nets.

Once the design was simulated and placed, the Racal-Redac router was used to
route this 8-layer board (6 signal-layers). After 100% routing, post-processing operations
such as mitering and fattening were performed. At each stage of routing, error-checking
was performed to fix any design rule violations. Gerber format files were generated and
films were produced using these files. After visually checking the film for obvious shorts
and other errors, the film was shipped off to the PCB fabrication house.

5.2 Board Specifics

The board is triple-height 9U and resides in a 21-slot stand-alone card-cage. The
board contains a total of 16 custom ASICs and three programmable logic devices for inter-
face and control logic. The logic for the PLDs were entered schematically and the PLDs
were programmed using the Altera software on a DOS PC. The board contains a total of
12 connectors to communicate video signals and a total of 70 ICs. The ICs sockets were

inserted and then the board was wave soldered.

35

Out of the 8-layers, 6 layers are signal layers and one layer is dedicated to each
power and ground. This is to reduce noise in the system. Bypass capacitors were also
inserted between power and ground for each IC in order to reduce noise. Two separate
proto-type playgrounds (holes without any connections) were placed for testing purposes.
Also a few unconnected 20-pin DIP’s were placed in unused areas to provide spare parts in
case of design errors. A photo of the board is shown in Figure 5.1.

5.3 Testing

The board was tested module by module. The method of using software for de-
bugging hardware was repeatedly used. .

First, the VME interface chips were inserted and tested. Different test vectors
inputs were written into the writable registers on the board and read back through readable
registers. Then various registers were addressed and appropriate strobe signals were probed
to check the functionality of the interface.

Next the multiplexors were tested. Test pattern raster files generated using “C”
code were dumped onto the frame buffers and routed through the multiplexor ASICs by
writing appropriate control words into them. All the clock generators were probed to
make sure they produce non-overlapping two-phase signals. Once the functionality of the
multiplexors were established, the image processing chips were inserted and video data was
routed through them. At this point the software, originally written for the original system
was rewritten to reflect new additions and flexibility.

Most of the critical signals were easily accessible because of the headers attached
to them for testing purposes.

VME CONMECTOR I L VME COMNECTOR I VME CONNECTOR I
SPARE PARTS
VME INTERFACE PROTO AREA
HSTOGRAM
—
IMAGE PROCES MG CLOOK GENERATOR
FEATURE EXTRACTION
I VIDEO COMMECTORS I
DRVERS
] VIDEO CONMNECTORS I
PROTO AREA
~|[=][=
scHuUx

[_coree] { com] [oo] [[coms] [comr] [com]

Figure 5.1: Top View of Image Processing Board.

36

37

Chapter 6

Conclusions

The design of a real-time flexible image processing board has been described. This
functional 8-layer printed circuit board sits on the VME card-cage and provides for a very
flexible and integrated image processing system.

In the process of designing the image processing board, a lot of implementation
issues were dealt with. A top-down design approach was practiced. First, crucial high level
decisions were made and a block level interconnection diagram produced. Given the block
level description, each block was then designed.

Considering the area tradeoffs for this compact system, a custom multiplexor mod-
ule was preferred over the existing implementation. Two custom VLSI crossbar ASICs were
designed and fabricated very quickly using the LagerIV tools. These chips provided very
flexible routing of video signals and proved to very critical in developing a compact and
flexible system. A total of five ASICs (4 color ASICs and one greyscale ASIC) were used
on the board.

Control logic for image processing chips that were implemented using TTL tech-
nology in the original system were mapped onto PLDs to save board area. A VME interface
was designed to interface to the VME bus. Two PLDs were used to perform address de-
coding and handshake logic.

The board was prototyped with the help of extensive CAD support. The board was
designed in the LagerIV environment. The SDL format was used to specify connectivity
information, and the THOR simulator was used to verify connectivity and functionality.
Oct2rinf produced the netlist format required by the commercial PCB tool. Racal-Redac’s
PCB software package was used for place and route. Altera’s APLUS package was used for

38

schematic capture and design of the PLDs. The CAD tools proved to be invaluable in the
effort to prototype the system very quickly.

This system is capable of real-time image processing and image recognition. This
feature can be used in tracking applications and hence can be used to integrate vision and
robotics.

A future generation board can be built with the capability of processing real-time
color images. This would be very simple in terms of design effort due to the modular design
approach used in the design of this system. The image processor module would have to be
duplicated three times (for three color planes) by instantiating it three times in a top level
sdl file.

39

Bibliography

[1] Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, NJ, 1989.
[2] J.S. Lim, “Two-Dimensional Signal and Image Processing”, Prentice-Hall Inc., 1990.
[3] R.C. Gonzalez, and P. Wintz, Digital Image Processing, Addison-Wesley, MA, 1987.

[4] R.W. Brodersen et. al., “LagerIV Cell Library Documentation”, Electronics Research
Laboratory, University of California, Berkeley, June 23, 1988.

(5] P.A. Ruetz, R.W. Brodersen, “Architectures and Design Techniques for Real-Time
Image-Processing IC’s”, IEEE Journal of Solid-State Circuits, Vol. SC-22, pp. 233-
250, April, 1987, pp. 233-250.

[6] P.A. Ruetz, “Architectures and Design Techniques for Real-Time Image-Processing
ICs”, Memorandum No. UCB/ERL M86/37.

[7] B.C. Richards, A. Sherstinsky, R.W. Brodersen, “A Parameterized VLSI Video-Rate
Histogram Processor”, Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing, Dallas, April 1987.

[8] B.C. Richards, “Design of a Video Histogrammer Using Automated Layout Tools”,
Memorandum No. UCB/ERL M86/38.

[9] Julian, ”Video Signal Multiplexing Board”, UCB/ERL report.

(10] C.B.Shung, R.Jain, K. Rimey, R.W.Brodersen, E.Wang, M.B.Srivas tava, B.Richards,
E. Lettang, S.K.Azim, P.N.Hilfinger, J.Rabaey, “An Integrated CAD System for
Algorithmic-Specific IC Design”, Publication Pending.

Appendix A

Chip Parameter Files and

Bonding Diagrams

40

THREE-CHANNEL_MUX.par

(x 8)
(wpads
((*1n2_2_0u" *RISDI[O]" *» wn wn wm)
(*ia2_2_0u" unsn:[llu LU L TG LY
("in2.2_0u" “R1SDI[2]* #» ®u wuu wun)
("in2_.2_0u" “RI1SDI[3]" #» wsn un wuu)
("in2_2_0u" "R1SDI [4]r wn a0 wn wn)
("inz_z_ouu “R18SDI [5]» LOBC UL U
("1‘2_2-00" “R18SDI [e]u “woe S0 w0 uu)
("1‘2-2-0’!" unsnltnn "ot 0N HM uu)
("vdd.?.Ou“ uyddr sn un wn uu)
("in2_2_0u" “qxspx[o]n un nn we o)
("in2_2_0u" “GLSDI[1]" »n wn s wu)
("in2_2_0u" uczsnx[z]u "o un N)
("in2_2_0u" "G1SDI[3]" "n ww wun uw)
(*in2_2_0u" “G1SDI[4]" %u wwu uw uw)
("$a2_2_0n" ua‘snlts]u "o 0 wu nu)
("in2_2_0u" *“G1SDI [68]% v wu un wu)
("inz_z.““ “@18DI [7]n e an 0o on)
("pd-g-onu HGED" we we wn wo)
(“102-2-0]1" unisnltojn "o i B uu)
("in2_2_0u" “BiSDI[1]" »» we wu uu)
(*in2_2_0u" “B1SDI[2]" »» wu# wu uu)
("in2_2_0u" “B1SDI[3]" ®n s ua un)
("in2_2_Ou" “B1SDI[4]" "v ww wn ww)
(*in2_2_0u" "B1SDI[E]* "4 wn wu wn)
("in2.2_0u" “BiSDI[G]" #» ne we wuu)
("in2_2_0u" “B1SDI [7]e o0 ne ww o)
("1ﬂ2-2-°\l" HEBQY we we ne uw)
("1]!2-2_0\1" ORBO" st wn wn nu)
("1n2_2-°nn ”“10" 00 060 o100 uu)
(llinz-g-onu HCS_L" "0 w0 uwn we)
(“inz-z_ouu “BDOTCLOCK®! %% ¢« ne uu)))
(npads
(("in2.2_0u" “NB13" "% ®n wn ww)
(nio.z-ouu uussnx[o]u " nmq.'.u "o nn)
(uio_z-oﬁu uaasnx[’]n " uma-l‘n "o ouc)
("io-2-0u" uusn:[z]n "o cnu‘q-!.u L1 uol)
(nio-a-ouu .'338»1[3]” (111 IQRB‘q-L“ "o llll)
("io_2_0u" "R3SDI[4]" "» “NB4Q_L" »* *»)
("i0.2_0u" “R3SDI[E]" *» “NB4Q_L"
("i0_2_.0u" "“R3SDI 6] s “NB4Q_L" *)
("io_2_0u" "R3SDI[7]" *» “NB4Q_LY w» un)
("vdd_2_0u" “Vdd" " «» wn uw)
(*i0_2_0u" *“G3SDI [0 %» YHBOQ_L™ “* ww)
(nio-z-o“u "03301[1]“ o "lm-lo” 0w “,,)
("10-2-0““ "035»1[2]“ “we um-l_n "o nn)
("io_2_0u" "G3SDI[3]" "« “NBOQ_L" #» ww)
("io_2_0u" "G3sDI [4]y e YNBOQ_L" v ®»)
(n‘o-z-oun uoasDI[s]u "o nm-Lu "ne .".)
(uio_z-oun noasblteln "o “m-l-”) ,..,)
(*i0.2_0u" ©G3SDI[7]" "* “MBOQ_L"* "% ““)
("snd_z_ouﬂ HQEDH v uw e uu)
("10-2-0“" naasnI[o]u "o un‘w.'-n “n uu)
(uio-z-oun “BasDI [1]0. oo nn‘oq-l... "
("i0.2.0u" “B3SDI[2]" “* “NB10Q_L" ** #v)
("i0.2_0u" *"B3SDI[3]“ " “NB1OQ_L" ** "»)
("io_2_0u" “B3SDI[4]" ** “NB1OQ_L® “ #n)
("i0.2_0u" "B3SDI[6]* w« YHBLOQ_LY “¢ ww)
(nio-g-oun nBasDx [6]" “e nn‘m_!‘u oo O'l.)
(uio-a-oun "33501[7]" "o unlm_x... we .".)
("in2_2_0u" “NBS" “n ue wn uw)
("in2_2_0u" “MB1" B¢ wn «u uw)
("in2_2_0u" "NB11% %0 w6 «w nn)
€"in2_2_0u" “NB7" %t we wun wny))
(epads
((“out_2_0u" “R2SPI[O]" # we ww wu)
("out_2_0u" “R2SDI[1]" »» wu wa D)

41

("out_2_0u"
(“out_2_0u"
(“out_2_0u"
("out_2.0u"
(*out_2_0u"
("out_2_0u"
("vdd_2_o0u"
(“out_2,0u"
("out_2_0u"
("out_2_0u"
("out_2_0u"
("out_2_0Ou"
(“out_2_0u"
(*out_2_0u"
("out_2_0u"
™ gnd-2-0n"
(*out_2_0u"
(*out_2_0u"
("out_2_0u"
("out_2_0u"
(“out_2_0u*
("out_2_0u"
("out_2_0u"
(*out_2_0u"
("in2_2_0u"
(*in2_2_Ou"
(spads
(("in2_2_0u"
("out_2_0u"
(*in2_2_Ou"
("in2_2_Ou"
(*in2_2_0u"
("in2_2_Ou"
(*in2_2_0Ou"
("in2_2_Ou"
("in2_2_0u"
("in2_2_0Ou"
("vdd_2_Ou"
("in2_2_Ou"
(*in2_2_0Ou"
("in2_2_Ou"
("in2_2_0u"
(*in2_2_Ou"
(*in2_2_0u"
(*in2_2_Ou*
("in2_2_0u"
(n snd-z-oun
("in2_2_Ou"
("in2_2_0u"
("in2_2_0Ou"
("in2_2_0u"
(in2_2_0u"
(*in2_2_Ou"
(*in2_2_ou"
("in2_2_Ou"
(*in2_2_0u"

uusbx[z]» "e wu 0 un)
“R28D1 [3]»0 “u "N ne nu)
u.zsnlt‘]u Ne ne wn nu)
unsnltslu we K wn uu)
unsnx[e]n 0 NN wn wn)
"R28DI [7]-1 "N Ke un uu)
nydd” N e we uu)

*g28D1 [o]u HEr e ne nn)
“G28DI [1]0. LU LU T
“G2SDI [2]1: " M e)
»G28D1 [3]00 "u He un uu)
*g28D1 tﬂ« LLBCURCL T
uczsnl [s]u LU TTR 1T uu)
nczsnl[e]u LU LTI T nu)
uazsnxtn“ "o em wn uu)
HGED™ e un Wi we)

nazspI[o]u C OB T nn)
“stbl[l]“ “wen we wn ouo)
“3230![2]" LU TN T “u)
unzsnl[slu WH 0N o uu)
nszsnxt4]u " 0 o we)
uszsnlts]u LLBCUNCCT Y
"32301[3]" LTI T T n»)
“B2SDI [7]« LU T 1T un)

WHBGt wH wn wen nu)

YNB12" % we we un)))

UNBGY tu ner an nn)
u‘cx.Ln LT YT T nn)
nnsnllto]u 0 e wn uu)
naasnll[‘]n W e s nu)
anII[2]n NN M 6N un)
anII[3]n LU T) uu)
"BSSDII[(]" wer e wen un)
n”snxxts]n LU LU) oul)

“R3SDIY [6] (LTI T T T »u)
“R3SD1I [7]" " “n un)
nydde v wn oo

uessnlxtolu (1) e uu)

nqssnxx[llu "o s e nu)
uossnlltzln 0 "o uu)
“033»11[3]" “n "o nn)
uo3snxz[ﬂu "o " uu’

"03SDII£5]” LU U))
"033311[6]" LUBLLEC U D))
»casnlltnu 0 et 0 nu)
nc'nu "ot uer ne uu)
unasnxx[o]u LU TN T uu)
naasbxttijn LTI T T uu)
"B33DII[2]" @ér e e uu)
nnasnlxtalu HU MU e uu)
"m”tl[u" LU T T nu)
nnssnxx[s]u Nes Mo e uu)
uassnllte]n CLC T ouo)
nsssnxltnn 0 NI WK uu)
HNBO e e e uu)))

42

Do RERRRRRA @%%%%%%%m

F]:l

=2 W77 e
=\ “%&@&&[%%%%ZV =
=\ L=
= ==
= | ==
%%%fffé? - e
%%% _____ WN&%&s =
:ﬁé VN&&Qx b
........... @EJH%%BMWMH
<::;96KKB‘I::>

11-DAR-RES/UCB_FECS 5?

#ls 27926 \MUL TIMUX

PGAIZ2L: 32 PARTS

Figure A.1: Bonding Diagram of Three-channel Multiplexor.

ONE-CHANNEL_MUX.par

(¥ 8

(npads

((*in2.2_0u" “P_QUT[0]" "n ww ww ww)
("1:2-2.0u" "P.owtl]'l ne wu wn wu)
(ninz-z-oun up-ou-rtzlu e 0 K mn)
(“132-2_0@” np.owtaln LLBC UL LTS
("in2_2_0u” *“P_OUT[4]" %% =« uu “n)
(“1“2_2-0‘" "P.OW[;]» “i He wn we)
("inz-z.ouu np.om[slu "H He e we)
("in2_2.0v" “P_QUT[7]" o ww se wn)
(Hsnd_z_oun “QEDH “0 wer wu LY
("iu2-2_0u“ UPHASEL™ %% wu un wew)
("in2_2_.0u" “PHASE2" “# uu aun o)
("vdd_2._0u" “ydd*" =& we wa D)
("in2_2_0u" NCS_LY “% e wn win)))

(spads
(("vdd_2_0u” “Vdd" “» «u un ww)
(“out_z_o““ ”p_l'[o]n B wn e we)
(”out-z-onu "P.I'[!]" 0er M BN un)
("out_2_0u" “P_IN[2]" "* wun wa nn)
("out_2.0u" “P_IN[3]" = ww wn wu)
("0“‘-2-0\1" wp_IB[4]" “» wu wo sn)
("0“‘-2_0“" »P_x'[s]u "o 0o wo Illl)
(*out_2_0u" “P_IN[6]" "= ww ww ww)
(“gnt-z_ou" "P-I'tn" LU UNC TS)
("snd-z_ouu BEED® w0 we we uu)
(“1].2_2-0“'0 MGELL® e wo uu)
(ll‘nz-z_ouu MEEL2" "% uu uu uw)
(*in2_2_0u" “SEL3" "® 4# un wu)
("out_z_ow' WACK_L® W% ne wn nn)
("gnd_2_0u" “GED" #% ww we uu)))

(epads

(("0“‘-2-0&" “FB.I.[O]" CUBUUNCTRCT) Y
("out-z-Ou" "n.x.[llu LUBUURU U L)Y
("out_2_0u" SFB_IN[2]" #n we on wn)
(”ou'-z-o“u un-l'[slu LU LR)
("out_2_0u" “FB_IE[4]" ¢ ®u uu au)
("ont-z_oun "FB.I'[S]" W B i un)
("out_z_Ou" "l.‘B.I'IG]n W 0 ne uu)
("out_2_0u" “FB_IN[7]" ¥# s wa uw)
("vdd_2_0u" "Vdd" "* we un ner)
("out_2_0u" “DA_IN[O]" u» wo wn uu)
("out_2_0u" “DA_IN[1]" ®# wun uu uu)
(“out_2_0u" “DA_IN[2]" "» wu wuu an)
("Out-z-onu nn‘.tltalu e eare G000 un)
("out_2_0u" "DA_IB[4]" ¢ we we ne)
(“out_z-ouu "DA.!'[S]" “He w0 e un)
("out_2_0u" “DA_IEB[G]" ** we unu ner)
("out_2_0u" “DA_IEB[7]" *# nn we wn)))

(upads

€("in2_2_0u" “FB_QUT[0)" »# e un wa)
("in2_2_0u" “FB_OUT[1]" “# #v wu wu)
(*4n2_2_0u" “FB_OUT[2]" v ww uw ww)
("1n2-2_0u" “FB_OUT[3]" "% nw wn ")
("in2_2_0u" "FB_OUT[4]" "» ww wuw on)
("in2_.2_0u" "FB_OUT[E]" %% %« we ner)
("*in2_2_0u" “FB_OUT[6]" ®» ne wn wn)
(*in2_2_0u" “FB_DUT[7]* »* we un wu)
("vdd_2_0u" "Vdd" " wn wn uw)
(llinz_z-ouu uAn.owtoju Wer el nee uu)
("in2_2_0Ou" YAD_OUT[1]* #¢ #er soer wae)
("in2_2_0u" u‘D.om[nu “n e o0 nu)
(ninz-z-oun uw-omlslu “we ne un nu)
("in2_2_0u" "‘D_om[uu LUBL U U
("in2_2_oOu* YAD_OUT{B]" v u& wn uu)
(ninz-z-onn ”‘D-OW[GJ" et N n un)
("in2.2_0u" "AD_QUT[7]* #% wn wn un)))

45

68 PIN BONDING DIAGRAM

17 16 15 |] 1

HQHHHHHHPHHDDHHH

. 2
1 E =
: :
= =
p—)
1
= 1
= 2
— |
— 1
1
= —
—]
= | lala) —
M —J
v 14 ANU W v M U \ TN
o aounuuoogoooueg
TOP VIEW
NOTES

O PINS 9,16,44 ARE CONNECTED TO THE SUBSTRATE

O SKIP BONDING PADS 15,17,51
OO0 PROJECT ID 28868

Figure A.2: Bonding Diagram For One-channel ASIC.

Appendix B

Sample Board Sdl File

46

board.sdl

R R R R R R R R A R A T A T
HA BAKE:INAGE PROCESSIEG BOARD (TOP LEVEL) i
HH This module contains the connectivity information for the HH
8 top level. It calls various modules (processors, vme interface, H
i bypass capacitors, and PROTO) and contains comnector and HH
H and sultiplezor interconnection inforsation S
HA Author: Anantha P.Chandrakasan H
H CALLED BY: BOSE s
R R R A R R A I R A A A A H

The leaf-cell sdl files can be found in:
“anantha/board/cellid

............. . . seceseveses

(parent-cell board)

(sudbcells
(pip (pip.1))
(bip (bip.1))
(vme (vme_1))

(TCENUX WUXFBi ((ROTATION "180.0") (POSITION "8.60 10.40%)))

(TCENUX MUXFB2 ((ROTATION "180.0") (POSITION "8.60 8.50")))

(TCEMUX NUXVP1 ((ROTATIOS “180.0") (POSITION "8.60 6.60")))

(TCENUX NUXVP2 ((ROTATION “180.0") (POSITION "8.60 4.70")))
(GCHMUX NUXPI ((ROTATION “90.0") (POSITION “3.50 9.10")))
(coR60 R1 ((ROTATION “180.0") (POSITION “12.3 6.70")))
(CON60 R2 ((ROTATION “180.0") (POSITION “12.3 7.90")))
(coNeo a1 ((ROTATION “180.0%) (POSITION “12.3 6.50")))
(coN60 a2 ((ROTATION “180.0") (POSITION “12.3 9.10")))
(CON60 B1 (CROTATION “180.0") (POSITION "12.3 4.30")))
(CoB60 B2 ((ROTATION “180.0") (POSITION “12.3 10.30")))
(CON14 RI3 ((ROTATION *180.0") (POSITION "2.95 10.30")))
(CoF14 GI3 ((ROTATION “180.0") (POSITION “1.90 10.30")))
(co’i4 BI3 ((ROTATION “180.0") (POSITION "0.85 10.30")))
(COB14 RO3 ((ROTATION "180.0") (POSITION “6.1 10.30")))
(CON14 GO03 ((ROTATION “180.0") (POSITION “5.05 10.30")))
(CoN14 BO3 ((ROTATION "180.0") (POSITION "“4.0 10.30")))
(CoNGO SPARE ((ROTATIOB “180.0") (POSITION “12.3 3.10")))
(xx244 xx244.1 ((ROTATION “180.0") (POSITION “13.80 10.60")))
(xx244 xx244_2 ((ROTATICN "180.0") (POSITION "13.80 10.00")))
(xx244 xx244_3 ((ROTATION *180.0") (POSITIOB "13.80 9.40")))
(xx244 xx244_4 ((ROTATION *180.0") (POSITION “13.80 8.80")))
(xx244 xx244.5 ((ROTATION "180.0") (POSITIOE “13.80 8.20")))
(xx244 xx244_6 ((ROTATIOB “180.0") (POSITION "13.80 7.60")))
(xx244 xx244_7 ((ROTATION “180.0") (POSITION "3.60 8.80")))
(xx244 xx244.8 ((ROTATION "180.0") (POSITION "2.30 8.30")))
(xx244 xx244_9 ((ROTATION »180.0") (POSITION "3.40 8.30")))
(xx244 xx244_10 ((ROTATION “180.0") (POSITION “13.80 7.00")))
(xx244 xx244_11 ((ROTATION “180.0") (POSITION “13.80 6.40")))
(PROTO PROTO_1 ((ROTATION “0.0") (POSITION “0.0 0.0")))
(capacitor capacitor.i ((ROTATION “0.0") (POSITION "0.0 0.0")))

)

(layout-generator oct2rin?)

R R I I I
N POVER NETS

(net GED ((parent GED) (bip.1 GED) (pip.i GND) (vme_1 GED) (vme_1 GEDBUS
(MERGE 0 30)) (vme_1 AGED (MERGE O 5)) (MUXFB1 GED (MERGE 0 3))
(MUXFB2 GND (MERGE O 3)) (MUXVP1 GED (MERGE O 3)) (MUXVP2 GED
(MERGE 0 3)) (NUXPI GED (MERGE 0 2)) (xx244_1 GND) (xx244_2 GND)
(xx244_3 GED) (xx244_4 GED) (xx244_5 GED) (xx244_6 GED)

47

(xx244_7 GED) (xx244_8 GBD) (xx244_9 GBD) (xx244_10 QED)
(xx244.2 G1_L) (xx244_1 G1_L) (xx244_11 GBD)
(xx244_3 01_L) (xx244_4 G1_L) (xx244.5 G1_L) (xx244_6 G1_L)
(zx244.7 G1_L) (xx244_8 G1_L) (xx244.9 G1_L) (xx244_11 G2_L)
(xx244.1 G2_L) (xx244_2 G2_L) (xx244.10 G1_L) (xx244_11 G1_L)
(xx244.3 G2_L) (xx244_4 G2_L) (xx244_5 G2_L) (xx244_6 G2_L)
(xx244.7 G2_L) (xx244_8 G2_L) (xx244_9 02_L) (xx244_10 G2_L)

(PROTO.1 GND) (RO3 B 3) (RO3 B 0) (RO3 A 6) (203 4 2)
(G03 B 3) (G03 B 0) (G03 A 5) (G03 & 2)
(BO3 B 3) (BO3 B 0) (BO3 A 5) (B03 A 2)
(RI3 B 3) (RI3 B O) (RI3 A 5) (RI3 A 2)
(GI3 B 3) (GI3 B 0) (GI3 A 6) (GI3 4 2)

; GED WERE DONE IN RACAL FOR GRB1-3 connecors
(BI3 B 3) (BI3 B 0) (BI3 A 6) (BI3 4 2)
’ (capacitor_1 G¥ND)

(net ¥CC ((parent VCC) (bip_1 VCC) (pip.1 VCC) (vme_1 YCC) (wme.i VCCBUS
(KERGE 0 30)) (WUXPI VCC (MERGE O 3)) (NUXFB1 VCC (NERGE O 3))
(MUXFB2 VCC (MERGE O 3)) (NUXVP1 VCC (MERGE O 3)) (NUXVP2 VCC
(MERGE 0 3)) (WUXFBL SUB) (KUXFB2 SUB) (WUXVP1 SUB) (MUXVP2 SUB)
(MUXPI SUB (MERGE 0 2)) (xx244.9 VCC) (xx244_.10 VCC) (xx244.11 VCC)
(xx244_1 VCC) (xx244_2 VCC) (xx244.3 VCC) (xx244_4 VCC)
(xx244_5 VCC) (xx244_6 VCC) (xx244_7 VCC) (xx244.8 VCC)
(capacitor.1 VCC)
(PROTO.1 VCC)))

(net PLUS12 ((parent PLUS12) (vme_1 PLUS12 (MERGE 0 4))))
(net JEG12 ((parent NEG12) (wme_1 NEG12 (MERGE O 4))))
(net VEE ((parent VEE) (vme_1 VEE (MERGE O §))))

;i nets(DATA PATH) i3

............................... $9 000 c0 e 0000000000000 0000E0NRTN0LO000000PIETEIES
‘llllll"ll"'"l’ll"l.llll'l..ll""U.'ll”'.'l'D.."'.."ll.".."l.l.""’

; From A/D out R1,G1,and B1 connectors

(net ADINRE (NETWIDTH 4) ((NUXFB1 R1SDI O 2) (Rt A 14)))
(net ADINRO (NETWIDTH 4) ((NUXFB1 R1SDI 1 2) (R1 B 14)))
(net ADIXGE (NETWIDTH 4) ((NUXFB1 G1SDI 0 2) (G1 A 14)))
(net ADINGO (NETWIDTH 4) ((WUXFB1 G1SDI 1 2) (G1 B 14)))
(net ADINBE (NETWIDTH 4) ((MUXFB1 B1SDI 0 2) (B1 A 14)))
(net ADINBO (NETWIDTH 4) ((WUXFB1 B1SDI 1 2) (Bf B 14)))

.
’

(net RINT1 (BETVIDTH 8) ((NUXFB1 R3SDI O) (NUXFB2 R3SDI O) (WUXVP1 R1SDI 0)))
(net GINTI (NETWIDTH 8) ((MUXFB1 G3SDI O) (NUXFB2 G3SDI 0) (MUXVP1 G1SDI 0)))
(net BINT1 (NETWIDTH 8) ((MUXFB1 B3SDI 0) (NUXFB2 B3SDI 0) (NUXVP1 BiSDI 0)))

.
’

(net RINT2 (NETVIDTH 8) ((MUXFBL R3SDII 0) (MUXFB2 R3SDII 0) (NUXVP2 R2SDI 0)))
(net GINT2 (NETVIDTH 8) ((WUXFB1 G3SDII 0) (NUXFB2 G3SDII 0) (NUXVP2 G2SDI 0)))
(net BINT2 (NETWIDTH 8) ((NUXFB1 B3SDII O) (WUXFB2 B3SDIX 0) (NUXVP2 B2SDI 0)))

i To the frame buffers R2,G2,and B2

(net RFBINE (NETWIDTH 4) ((MUXFB1 R2SDI O 2) (xx244_1 A1 0)))
(net RFBINO (NETWIDTH 4) ((NUXFB1 R2SDI 1 2) (xx244_1 A2 0)))
(net GFBISE (NETVIDTH 4) ((MUXFB1 G2SDI O 2) (xx244_2 A1 0)))
(net GFBINO (BETWIDTH 4) ((NUXFB1 G2SDI 1 2) (x2244_2 A2 0)))
(net BFBINE (NETWIDTH 4) ((WUXFB$ B2SDI O 2) (xx244_3 A1 0)))
(net BFBINO (BETWIDTH 4) ((MUXFB1 B2SDI 1 2) (xx244_3 A2 0)))

(net RFBINEL (BETWIDTH 4) ((xx244.1 Y1 0) (X2 A 14)))
(net RFBINOL (NETWIDTH 4) ((xx244.1 Y2 0) (B2 B 14)))
(net GFBINE: (NETWIDTH 4) ((zx244.2 Y1 0) (G2 A 14)))
(net GFBINO1 (NETWIDTH 4) ((xx244_.2 Y2 0) (G2 B 14)))
(net BFBIBE1 (NETWIDTH 4) ((xx244.3 Y1 0) (B2 A 14)))

(net

BFBIR01 (NETVIDTH 4) ((xx244_3 Y2 0) (B2 B 14)))

;FRON thke frame buffers R2, G2, and ,B2;

(net
(net
(net
(net
(net
(net

; To

(net
(net
(net
(net
(net
(net

(net
(net
(net
(net
(net
(net

;3 To

(net
(net
(net
(net
(net
(net

(net
(net
(net
(net
(net
(net

(net
(net
(net
(net
(net
(net

(net
(net
(net
(net
(net
(net

RFBOUTE (NETVIDTRE 4) ((RUXFB2 R13SDI O 2) (R2 A 22)))
RFBOUTO (NETVIDTH 4) ((NUXFB2 R1SDI 1 2) (R2 B 22)))
GFBOUTE (BETWIDTH 4) ((NUXFB2 G1SDI 0 2) (G2 A 22)))
GFBOUTO (NETWIDTH 4) ((WUXFB2 G1SDI 1 2) (G2 B 22)))
BFBOUTE (BETWIDTH 4) ((WUXFB2 B1SDI 0 2) (B2 A 22)))
BFBOUTO (NETWIDTH 4) ((WUXFB2 B1SDI 1 2) (B2 B 22)))

D/A R1,G1,andBl connectors

DAINRE (SETVWIDTH 4) ((NUXFB2 R2SDI O 2) (xx244_4 41 0)))
DAINRO (NETWIDTH 4) ((WUXFB2 R2SDI 1 2) (xx244_4 A2 0)))
DAIBGE (BETVWIDTH 4) ((WUXFB2 G2SDI 0 2) (xx244_5 A1 0)))
DAINGO (NETWIDTH 4) ((KUXFB2 G2SDI 1 2) (xx244_5 A2 0)))
DAINBE (NETWIDTH 4) ((NUXFB2 B2SDI O 2) (xx244_6 A1 0)))
DAINBO (EETVIDTH 4) ((NUXFB2 B2SDI 1 2) (xx244_6 A2 0)))

DAINREL (NETUIDTH 4) ((xx244.4 Y1 0) (R1 A 22)))
DAIBRO1 (NETWIDTH 4) ((xx244.4 Y2 0) (R1 B 22)))
DAINGE1 (NETVIDTH 4) ((xx244.6 Y1 0) (a1 A 22)))
DAINGO1 (BETWIDTH 4) ((xx244_5 Y2 0) (G1 B 22)))
DATNBE? (NETWIDTH 4) ((xx244.6 Y1 0) (B1 A 22)))
DAINBO1 (NETWIDTH 4) ((xx244_6 Y2 0) (B1 B 22)))

Video port (DATA OUT)expansion connectors 203 G03 and BO3.

RVPINL (NETWIDTH 4) ((MUXVP1 R2SDI O) (xx244_7 At 0))) ;
RVPINK (BETVIDTH 4) ((NUXVP1 R2SDI 4) (xx244_7 A2 0))) ;
GVPINL (NETWIDTH 4) ((WUXVP1 G2SDI O) (xx244_8 A1 0)))
GVPINH (NETVIDTH 4) ((WUXVP1 G2SDI 4) (xx244_8 A2 0)))
BVPINL (NETWIDTH 4) ((WUXVP1 B2SDI 0) (xx244_9 A1 0)))
BVPINH (NETWIDTH 4) ((NUXVP1 B2SDI 4) (xx244_9 A2 0)))

:0,2,4,6

RVPIN1 (NETWIDTH 1) ((RO3 4 1) (xx244.7 Y1 0))) HY
RVPIN2 (BETWIDTH 2) ((R03 B 1) (xx244.7 Y1 1))) 31,2
RVPIN3 (NETWIDTH 1) ((RO3 A 3) (xx244_7 71 3))) ;3
RVPING (NETWIDTH 1) ((RO3 A 4) (xx244.7 Y2 0))) L
RVPING (BETWIDTH 2) ((RO3 B 4) (xx244.7 Y2 1))) ;5,6
BVPING (NETWIDTH 1) ((RO3 A 6) (xx244_7 Y2 3))) H 4

GVPIN1 (BETWIDTH 1) ((GO3 A 1) (xx244_8 Y1 0))) HYJ
GVPIB2 (BETVWIDTH 2) ((G03 B 1) (xx244_8 Y1 1))) 31,2

GVPIN3 (BETWIDTH 1) ((G03 A 3) (xx244.8 Y1 3))) H

QVPIN4 (BETWIDTH 1) ((G0O3 A 4) (xx244_8 Y2 0))) 4
QVPINS (NETWIDTH 2) ((G03 B 4) (xx244_8 Y2 1))) ;5,6
GVPING (NETVWIDTH 1) ((G03 A 6) (xx244_8 Y2 3))) 37

BVPINL (BETWIDTH 1) ((BO3 A 1) (xx244_9 Y1 0))) ;0
BVPIN2 (BETWIDTH 2) ((BO3 B 1) (xx244.9 Y1 1))) 31,2

BVPIN3 (BETVIDTH 1) ((BO3 A 3) (xx244.9 Y1 3))) H
BVPIN4 (BETVIDTH 1) ((BO3 A 4) (2x244.9 Y2 0))) H

BVPINS (BETVIDTH 2) ((BOS B 4) (xx244_9 Y2 1))) ;6,6

BVPING (NETWIDTH 1) ((BO3 A 6) (xx244.9 Y2 3))) H

; From Video port to RI3 GI3 BI3

(net
(net
(net
(net
(net

(net
(net
(net
(net
(net

RVPOUTL (NETWIDTH 1) ((RI3 A 1) (NUXVP2 R1SDI 0)))
RVPOUT2 (NETVIDTH 2) ((RI3 B 1) (WUXVP2 R1SDI 1)))
RVPOUT3 (NETVWIDTH 2) ((RI3 A 8) (NUXVP2 R1SDI 3)))
RVPOUT4 (BETVIDTH 2) ((RI3 B 4) (MUXVP2 R1SDI §)))
RVPOUTS (NETWIDTH 1) ((RI3 A 6) (NUXVP2 R1SDI 7)))

GVPOUT1 (NETVIDTH 1) ((GI3 A 1) (NUXVP2 G1SDI 0)))
GVPOUT2 (NETWIDTH 2) ((GI3 B 1) (MUXVP2 G1SDI 1)))
GYPOUT3 (NETWIDTH 2) ((GI3 4 3) (NUXVP2 G1SDI 3)))
GVPOUT4 (NETWIDTH 2) ((GI3 B 4) (NUXVP2 G1SDI 5)))
GVPOUTS (NETWIDTH 1) ((4I3 A 6) (MUXVP2 G1SDI 7)))

Y XY

. we wo wo we
-Jm_u:—o NOWwe= O
X X

50

(net BVPOUT1 (NETVIDTE 1) ((BI3 A 1) (RUXVP2 B1SDI 0)))
(net BYPOUT2 (NETWIDTH 2) ((BI3 B 1) (WUXVP2 B18SDI 1)))
(net BVPOUT3 (NETVIDTH 2) ((BIS 4 3) (WUXVP2 B18DI 3)))
(net BVPOUT4 (NETVIDTH 2) ((BI3 B 4) (WUXYP2 B18DI 6)))
(net BVPOUTE (NETWIDIE 1) ((BI3 A 6) (RUXVP2 B18DI 7)))

- e wo ws wo
do-.u-o
e

; nets to pip

(net GPIPIE (NETWIDTH 8) ((NUXVP1 G3SDI 0) (NUXPI AD_OUT 0) (NUXVP2 G3SDI 0)))
(net GPIPIN2 (NETWIDTH 8) ((WUXPI P_IF¥ 0) (pip.1 DI 0)))

(net GPIPOUT (NETWIDTE 8) ((WUXPI P_OUT 0) (pip_1 DG 0)))

(net GBIPIN (NETWIDTH 8) ((NWUXPI FB_1N 0) (bip_1 DI 0)))

(net GBIPOUT (BETWIDTH 8) ((WUXPI FB_OUT 0) (bip_1 DOUT 0)))

(net DA_ING (NETWIDTH 8) ((NUXPI DA_IF 0) (WUXVP1 G3SDII O) (NUXYP2 G3SDII 0)))

............................ €8 000920000000 000000000900000000000000000000R000S0TS
A S A R A R I A A I R A R R R A R A R R R R R R R R R R A R R A A R X R A R R R R R R R A X X A 2)
.e

ii: SIGEALS FROM THE Ri-> R2 G1->G2 B1->B2

. o essesosassssnss
R R R A R R A A R A R T

(net R1D1 (BETWIDTH 4) ((R1 A 18) (R2 A 18)))
(net R1D2 (NETVWIDTHE 4) ((Ri B 18) (R2 B 18)))
(net G1D1 (NETVIDTH 4) ((G1 A 18) (G2 A 18)))
(net G1D2 (FETWIDTH 4) ((G1 B 18) (G2 B 18)))
(net B1D1 (NETWIDTH 4) ((B1 A 18) (B2 A 18)))
(net B1D2 (NETVIDTH 4) ((B1 B 18) (B2 B 18)))

(net R1D3 (BETWIDTH 4) ((R1 A 26) (R2 A 26)))
(net R1D4 (NETVIDTH 4) ((R1 B 26) (R2 B 26)))
(net G1D3 (NETWIDTH 4) ((G1 A 26) (G2 & 26)))
(net G1D4 (NETWIDTH 4) ((G1 B 26) (G2 B 26)))
(net B1D3 (NETWIDTH 4) ((B1 4 26) (B2 A 26)))
(net B1D4 (BETWIDTH 4) ((B1 B 26) (B2 B 26)))

--

oo

(net XTAL1 ((R1 B 0) (R2 B 0)))
(net SYSCLE1 ((R1 B 1) (R2 B 1)))
(net HRESET_L1 ((R1 B 2) (R2 B 2)))
(net VRESET_L1 ((R1 B 3) (R2 B 3)))
(net DOTCLK_L1 ((R1 B 4) (R2 B 4)))
(net EBLANE_L1 ((R1 B 6) (R2 B 6)))
(net VBLANE_L1 ((R1 B 7) (R2 B 7)))
(net VSYEC_L1 ((R1 B 8) (R2 B 8)))
(net FIELD1 ((R1 B 9) (R2 B 9)))
(net HREF_Lt ((R1 B 10) (R2 B 10)))

(net HBLANK_L1 ((R1 A 7) (R2 A 7)))
(net HSYNEC_L1 ((R1 A 8) (R2 A 8)))
(net CSYNC_L1 ((R1 A 9) (R2 A 9)))
(net SBLANE_L1 ((R1 4 10) (R2 A 10)))
(net VGATE.L1 ((R1 A 11) (R2 A 11)))

(net XTAL2 ({61 B 0) (62 B 0)))
(net SYSCLE2 ((G1 B 1) (a2 B 1)))
(net HRESET_L2 ((G1 B 2) (62 B 2)))
(net VRESET_L2 ((G1 B 3) (G2 B 3)))
(net DOTCLE_L2 ((G1 B 4) (G2 B 4)))
(net EBLANK_L2 ((G1 B 6) (G2 B 6)))
(net VBLANK_L2 ((G1 B 7) (G2 B 7)))
(net VSYEC_L2 ((G1 B 8) (G2 B 8)))
(net FIELD2 ((c1 B 9) (62 B 9)))
(net HREF.L2 ((G1 B 10) (G2 B 10)))

(net HBLANE_L2 ((G1 A 7) (G2 A 7)))
(net HSYNEC_L2 ((G1 A 8) (G2 A 8)))
(net CSYEC_L2 ((G1 A 9) (G2 A 9)))
(net SBLANE_L2 ((G1 A 10) (G2 A 10)))

(net VGATE_L2 ((G1 A 11) (02 A 11)))

(net XTAL3 ((B1 B 0) (B2 B 0)))

(net SYSCLX3 ((B1 B 1) (B2 B 1)))

(net HRESET_L3 ((B1 B 2) (B2 B 2)))

(net VRESET_L3 ((B1 B 3) (B2 B 3)))

(net DOTCLK_L3 ((B1 B 4) (B2 B 4) (xx244.10 A1 3) (xx244_10 A2 (MERGE 0 1))))
(net EBLANK_L3 ((B1 B 6) (B2 B 6)))

(net VBLABE_L3 ((B1 B 7) (B2 B 7) (xx244.10 A1 1) (xx244_11 A2 2)))

(net VSYNEC_L3 ((B1 B 8) (B2 B 8)))

(net FIELD3 ((B1 B 9) (B2 B 9) (xx244_10 A1 0)))

(net HREF.L4 ((B1 B 10) (B2 B 10)))

(net HBLANK_L3 ((B1 & 7) (B2 A 7) (xx244_10 A1 2) (xx244_11 A2 3)))
(net HSYNC_L3 ((B1 A 8) (B2 A 8) (xx244_10 A2 2)))

(net CSYNC_L3 ((B1 4 9) (B2 A 9)))

(net SBLANE_3 ((B1 A 10) (B2 A 10) (xx244_10 A2 3)))

(net VGATE.3 ((B1 A 11) (B2 A 11)))

....... secesesessses sssssesessensenss
AR R A I R T A R A R i E E R R

HAH SIGNALS TO PIP AND BIP and G3 i

---------------------------------- [R R R N R R N NI I I I T
'lll.’llD.l.'l."'ll'"ll""'.lllllD...l.'..."’...'.'llll'.llll".’..".’l’.

(net BDOT1_L ((xx244_.10 Y1 3) (G03 4 0))) ; vas B3 A O
(net BDOT2_L ((xx244_10 Y2 0) (pip.1 DOTCLOCK1_L)))

{net BDOT3_L ((xx244_10 Y2 1) (pip_1 DOTCLOCK2_L)))

(not BFIELD ((xx244.10 Y1 0) (pip_1 FIELD) (RO3 B 6)))
(net BVBLABX_L ((xx244.10 Y1 1) (pip.1 VBLANK.L)))

(net BHBLANE_L ((xx244_10 Y1 2) (pip.1 HBLAFE.L)))

(net BVBLANK2_L ((xx244_11 Y2 2) (RO3 A 0)))

(net BHBLABNE2_L ((xx244_11 Y2 3) (B03 A 0))) ; was Q03
(net BSBLANE_L ((xx244.10 Y2 3) (B03 B 6))) ; was G03
(net BHSYNC_L ((xx244.10 Y2 2) (pip_1 HSYNC.L)))

[R R R I S I esecesessesens eeeesscossnan secs e $90¢vecnsssessnas soe
"l"'l"’l"ll’lll."lll'l"l’0'!"."’.'"""'."D"'I’..’.ll'..ll.."'."’

CLOCKS(FOR NUX CHIPS) i

...

(net DOTML ((pip_1 DCLXM) (xx244.11 At (MERGE 0 3))
(xx244_11 A2 0)))

(net DOTM2 ((pip_1 DCLEM_L) (xx244_11 A2 1)))

(net MPHI1 ((xx244.11 Y1 0) (NUXFB1 BDOTCLOCK)))

(nat MPHI2 ((xx244_.11 Y1 1) (NUXFB2 BDOTCLOCK)))

(net MPHI3 ((xx244.11 Y1 2) (NUXVP1 BDOTCLOCK)))

(net MPHI4 ((xx244_11 Y1 3) (NUXVP2 BDOTCLOCK)))

; changed on the 2nd dec. PHASEL & 2 are the same-- change reflected

; in the layout.

(net MPHI6 ((xx244_11 Y2 0) (NUXPI PHASEL) (NUXPI PHASE2)))

i(net MPHIS_L ((xx244.11 Y2 1) (WUXPI PHASE2)))

........... s essesssecaser s esscsss et toasees .
;;;it:;ll';l;;;l.';'ll;;';l;OI0’!"Dlll;"’ll'll'll:;.;;;l;;::;;;;;;;;:;;;;==;

TROL SIGNALS(To WUX CHIPS) 123

..... .e esseresesesseessans
"""""""""" R I I I A T Y

ifor multiplexors

(net DO ((vme_1 D 0) (NUXFBL KB4) (NUXFB2 WB4) (NUXVP1 WB4) (WUXVP2 MB4)
(NUXPI SEL1) (pip.1 BDATA 0) (pip_1 HDATA 0)))

(net D1 ((vme_1 D 1) (NUXFB1 NBO) (NUXFB2 HBO) (NUXVP1 NBO) (WUXVP2 RBO)
(WUXPI SEL2) (pip_1 BDATA 1) (pip_1 HDATA 1)))

(net D2 ((vme_1 D 2) (WUXFB1 MB10) (NUXFB2 MB10) (NUXVP1 MB10) (NUXVP2 MB10)
(WUXPI SEL3) (pip.1 BDATA 2) (pip.1 HDATA 2)))

. (net D3 ((vme_1 D 3) (MUXFBL MBS) (NUXFB2 MBS) (NUXVP1 MBS) (NWUXVP2 RBS)
(pip_1 BDATA 3) (pip.1 HDATA 3)))

(net D4 ((vme_1 D 4) (NUXFBf MB1) (NUXFB2 WB1) (MUXVP1 NB1) (NWUXVP2 MB1)
(pip.1 BDATA 4) (pip_i HDATA 4)))

(net DS ((vme_1 D 5) (NUXFBi MB11) (NWUXFB2 NB11) (NUXVP1 MB11) (NUXVP2 MB11)
(pip.1 BDATA 6) (pip.1 HDATA 5)))

(net D6 ((vme_1 D 6) (MUXFB1 MBS) (NUXFB2 MB6) (NUXVP1 MBS) (NUXVP2 MB6)
(pip.1 BDATA 6) (pip.1 HDATA 6)))

51

(net D7 ((vme_1 D 7) (RUXFB1 RB7) (NUXFB2 WBY) (NUXVP1 KB7) (NUXYP2 MB7)
(pip_1 BDATA 7) (pip.1 HDATA 7)))

(net D8 ((vme_1 D 8) (WUXFB1 MB12) (NUXFB2 WB12) (KUXVPi KB12) (WUXVP2 WB12)))
(net D9 ((vme_1 D 9) (NUXFBL WB13) (WUXFB2 WB13) (KUXVP1 MB13) (MUXVP2 MB13)))
(net D10 ((vme_1 D 10) (NUXFB1 WMBS) (WUXFB2 MBS) (WUXVP1 NB8) (NUXVP2 NBS)))
(net D11 ((vme_.1 D 11) (WUXFB1 RBS) (WUXFB2 NBS) (WUXVP1 HB9) (NUXVP2 NBS)))

(net CS_L1 ((vme_1 MSEL_L O) (NUXFBi cs.L)))
(net CS_L2 ((vme_1 MSEL_L 1) (WUXFB2 CS_L)))
(net CS_L3 ((vme_1 MSEL_L 2) (WUXVP1 CS_L)))
(net CS_L4 ((vme_1 KSEL_L 3) (NUXVP2 CS_L)))
(net CS_L5 ((vme_1 RSEL_L 4) (NUXPI CS_L)))
(net ACK_L1 ((vme_1 ACK_L 0) (NUXFBi ACE_L)))

(net ACK_L2 ((wvme_1 ACK_L 1) (WUXFB2 ACK_L)))
(net ACK_L3 ((vme_1 ACK_L 2) (MUXVP1 ACK_L)))
(net ACK_L4 ((vme_1 ACK_L 3) (NUXVP2 ACK_L)))
(net ACK_LS ((vme_1 ACK_L 4) (NUXPI ACE_L)))

A T R e R I T S T A T
.

COBTROL SIGEALS(To pip) iid

..

(net WSEL (BETWIDTH 7) ((vme_1 WSEL 0) (pip.1 WSEL 1)))
(net RSEL_L (NETWIDTH 4) ((vme_1 RSEL.L) (pip._1 SEL 0)))

..

-, -

X3
"
------------- S 829 20200900000 00000000 0000000000000l IEIEO0OELLEEEBSGEGE
'ill"D"PD"II.DDl’Ill.!’l‘"'l."0""l'.l'.."ll'lllll."'.."...ll'l""'

(net INLATCHT ((bip_i INLATCHB) (pip.1 INLATCHB)))
(net INLATCH.LT ((bip.1 OUTLATCHB) (pip_1 OUTLATCHB)))
(net PHILHT ((bip.1 HPHI1) (pip_1 HPHI1)))
(net PHI2KT ((bip_1 HPHI2) (pip.1 HPHI2)))
(net PHIICT ((bip_1 CPHI1) (pip_1 CPHI1)))
(net PHI2CT ((bip_1 CPHI2) (pip.1 CPHI2)))

R T S R R R T)
i3; FROM THE PLD IN pip to bip iis

.............................. [s R A I N N R R I R I T I I I Y™
""ll"'!"l.'.0ll'0'l’l..l"llll"’lD'll.l..'lll"""'l".’l’lllll.!l...’.’

(net VBLANK ((pip.1 VBLANK) (bip_1 VBLANK)))

(net HSYNC ((pip.1 HSYNC) (bip_1 HSYNC)))

(net HELANK ((pip.1 HBLANK) (bip_i HBLANK)))

(net HBLANKB_L ((pip.1 HBLABKB_L) (bip_i HBLANKB_L)))
(net LIBESTART ((pip.i LIBESTART) (bip_1 LIBESTART)))
(net FIELD.L ((pip.1 FIELD_L) (bip_1 FIELD_L)))

(end-sdl)

Appendix C

Connector Pin Mapping

53

R1 CONNECTOR

R1(FROR AND TO0 A/D)

R-C SIGNAL NANE 2-C SIGEAL BAME
B29 R18D0([15) 429 R18D0[14]
B28 R1SDO[13) A28 R18DO[12]
B27 R18D0[11] A27 R18D0[10]
B26 R18D0[9) A26 R18p0[8)
B25 R18D0([7) 426 r18p0f6]
B24 R1SDO[E) A24 R18D0([4])
B23 R18D0[3] 423 218D0[2)
B22 R18D0[1] A22 R18D0[0)
B21 R1SDI[15) A21 R15DI[14)
B20 B1SDI[13] 420 R18DI[12]
B19 R1SDI[11] A19 R18D1[10]
B18 R1SDI[9) A18 R18D1{8]
B17 R18DI[7) 17 R1SDI[6]
B16 R218DI{5) a16 R18DI[4])
B15 R18DI[3] A15 Rx18D1[2]
Bi4 218DI[1) As4 R18D1[0]
B13 ~RESERVED- A13 =RESERVED-
B12 -RESERVED- A12 =~RESERVED-
B11 <RESERVED~ Al V.GATE.L
B10 H.REF_L A10 S.BLADK_L
B9 FIELD(0/1) A9 C.8SYEC_L
B8 V.SYEC_L A8 HSYEC_L
B7 V.BLABK_L A7 HBLABE_L
BS E.BLABK_L A6 amD

BS GED AS G D

B4 DOT_CLOCK.L Ae GED

B3 V.RESET_L A3 GED

B2 H.RESET_L A2 asp

B1 SYSTEN CLOCK Al anp

BO XTAL CLOCK A0 amp

BOTES:

-

The pin assignments are according to Racal-Redac DB.
BO=PIN1 : A29 PIR6O;

R1SDI[0)-[7] are connected to R1SDI{8)-[15] respectivly.
R1SDO[0]-[7] are connected to R1SDO[8)-[16) respectivly.
R1SDI bus is from the A/D and R1SDO is to the A/D.

Ll

54

55

G1 CONNECTOR

G1(FRON AXD TO A/D)

2-C SIGNAL WARE R-C SI1GBAL NANE
B29 418D0[15) 429 Q18p0[14)
B28 a18p0[13] A28 018D0[12)
B27 @18p0[11] A27 G18p0[10]
B26 618po[9) A26 a18pofs]
B25 61800[7] 425 a18bo[e]
B24 G18p0(6) 424 G138p0(4)
B23 G18D0[3] A23 a18p0[2)
B22 61SD0[1) A22 G18p0[0]
B21 @18D1[15] A21 a18DI[14)
B20 618D1{13] 420 G1SDI[12)
B19 a18D1(11) A19 a18D1(10]
B18 a18p1[9] A18 a18p1[8]
B17 G18DI(7) A17 018p1(6]
B16 G18D1[5] 16 a1Sp1{4]
B16 618DI1([3] 15 a18p1[2]
Bi4 G18DI[1] Al4 @18d1[0]
-B13 =RESERVED- A13 ~RESERVED-
B12 «~RESERVED- A12 =RESERVED-
Bii <RESERVED~ ALt V.GATE.L
B10 H.REF.L A10 8.BLANK_L
B9 FIELD(0/1) A9 C.8YNC_L
B8 V.8YEC_L A8 HSYBC_L
B7 V.BLARK_L AT HBLABE_L
B6 B.BLANK_L A6 qED

BS am AS amd

B4 DOT.CLOCK_L Al o D

B3 V.RESET_L A3 e D

B2 H.RESET_L A2 a¥D

B1 SYSTEN CLOCK Al (] 1))

BO XTAL CLOCE A0 qaEp

NOTES:

[

- The pin assignments are according to Racal-Redac DB.
BO=PIN1 : A29 PINGO;

- G1SDI[0]-[7] are connected to G1SDI[8]-[15] respectivly.

- G15D0(0]-[7] are connected to 015DO[8)-[15] respectivly.

- G1SDI bus is from the A/D and G1SDO is to the A/D.

o wN

56

Bl CONNECTOR

B1(FROR AND TO A/D)

R-C SIGENAL BANE R-C SIGEAL NAME
B29 B1SDO[15] 429 B18D0[14]
B28 B18DO[13) A28 B18DO[12)
B27 B1spo[11) A27 B1SD0[10]
B26 B1sp0[9) A28 B18p0[8]
B25 B18SDO[7] A26 B18DO[6]
B24 B1SDO(5] 424 B18D0(4])
B23 B1SDD[3] A23 B18DO([2]
B22 B1SDO[1) A22 B1SDO(0])
B21 B1SDI[15]) A21 B18DI[14]
B20 B1SDI[13)] 420 B1SDI[12])
B19 B1SDI[11) A19 B18DI[10]
B18 B18DI[9] A18 B18DI[8])
B17 B1SDI[7) A17 B18DI[6]
B16 B1SDI[5] A6 B18DI[4]
B1§ B1SDI(3] ALS B18DI[2])
B14 B1SDI[1) Al4 B18DI[0)
B13 ~RESERVED- a13 ~RESERVED-
B12 =RESERVED~ A12 =RESERVED~
Bit ~RESERVED- At V.GATE.L
B10 H.REF.L A10 8.BLABK_L
B9 FIELD(0/1) A9 C.SYEC.L
B8 v.SYEC_L A8 HSYEC_L
B7 V.BLASE_L A7 HBLABK_L
B6 E.BLABK_L A6 GED

BS (4)} A5 () 1))

B4 DOT.CLOCE_L Ad anp

B3 V.RESET_L A3 (1] 1))

B2 H.RESET_L A2 am

B SYSTEN CLOCK At asd

BO ITAL CLOCK 40 asp

NOTES:

1. The pin assignments are according to Racal-Redac DB.
BO=PIN1 : A29 P1N6O;

B1SDI[0]-[7] are connected to B1SDI{8]-[15] respectivly.
B1SDO[0)~[7] are connected to Bi1SDOL8]-[15] respectivly.
B1SDI bus is from the A/D and BiSDO is to the A/D.

oW

57

R2 CONNECTOR

R2(FROR AND TO FRANE BUFFER)

R-C SIGNAL NANE 2-C SIGEAL BAME
B29 R28DO[15] 429 R2SD0[14)
B28 R25D0[13) 428 22800(12])
B27 R28DO[11] A27 X2SD0[10)
B26 R23D0[9) A26 R2sDpofs)
B25 R28D0[7] A25 R28D0{6])
B24 R28DO[5] 424 R25D0(4)
B23 R28DO[3] 423 228Dp0(2)
B22 R2SDO[1) A22 R28D0[0]
B21 R28DI[15] A21 22sDI[14]
B20 R2SDI[13) A20 R28DI[12]
B19 R2SDI[11] A19 R2SDI[10]
B18 R2SDI[9] A18 R2s8Dp1[86]
B17 R2SDI[7] A17 R2sp1(6)
B16 R2SDI[5] A16 R28DI[4)
B1§ R2SD1([3] AlS R28DI[2)
B14 R2SDI[1] A4 R28D1[0]
B13 -RESERVED~ A13 -RESERVED-
B12 ~RESERVED~ A12 <~RESERVED-
Bi1 =RESERVED- Atl V.GATE_L
B10 H.REF_L A10 8.BLAFK_L
B9 FIELD(0/1) A9 C.SYNC_L
B8 v.SYEC.L A8 HSYEC_L
B7 V.BLABE_L AT HBLANE_L
B6 E.BLANK_L A6 G D

BS q D 1 oED

B4 DOT_CLOCE_L Ad amp

B3 V.RESET_L A3 amp

B2 H.RESET_L A2 G D

B1 SYSTEN CLOCK AL amp

BO XTAL CLOCK A0 (4 1))

NOTES:

-

- The pin assignments are according to Racal-Redac DB.
BO=PINi : A29 PIN6O;

- R2SDI[0]-(7] are connected to R2SDI[8]-[15] respectivly.

- B2SDO[0]~[7] are connected to R2SDO[8]-[15]) Tespectivly.

R2SD0 bus is from the FB and R2SDI is to the FB.

o wn

58

G2 CONNECTOR

G2(FRON AND TO FRAME BUFFERS)

R-C SIGEAL BANE R-C SIGEAL NANE
B29 62sp0[15] : A29 628p0[14)
B28 G2sp0{13] A28 628D0[12)
B27 a2spof11} A27 62500[10]
B26 6238D0[9] A26 62s8po[8]
B26 G2SD0[7) A25 g2spofe]
B24 G25D0({s) A24 a2sp0[4)
B23 a2sp0([3) A23 a2sp0[2)
B22 625p0(1) A22 62sDp0[0)
B21 G2sD1[15] A21 G25DI[14]
B20 G28Dp1[13]) 420 a2s8Dp1(12])
B19 G25DI[11) A19 628D1[10}
B18 a2sDI[9) A18 623D1[8)
B17 623D1(7) AT @2sp1[6)
B16 a2sp1(6) A16 @231 (4]
Bi5 @28DI[3) A6 62sD1[2)
B14 a2sDI[1) Al4 62301 (0]
B13 -RESERVED- A3 ~RESERVED-
B12 ~RESERVED- A12 ~RESERVED-
B11 ~RESERVED~ Al V.GATE.L
B10 H.REF.L A10 S.BLANK.L
B9 FIELD(0/1) A9 C.SYEC.L
B8 V.SYEC_L A8 HSYEC_L
B7 V.BLANK_L A7 HBLANK_L
B6 E.BLANK_L A6 a

BS amp AB axD

B4 DOT_CLOCK_L At qamp

B3 V.RESET_L A3 asD

B2 H.RESET_L A2 o§D

B1 SYSTEM CLOCK At GED

BO ITAL CLOCK A0 amD

ROTES:

[y
.

The pin assignments are according to Racal-Redac DB.
BO=PIN1 : A29 PIB6O;

G2SDI[0]-[7] are connected to G2SDI[8)~[16) respectivly.
G2SD0[0]-[7] are connected to G2SDO[8]-[15] respectivly.
G2SD0 bus is from the FB and G28DI is to the FB.

o wN

59

B2 CONNECTOR

B2(FRON AXD TO FRAME BUFFER)

R-C SIGBAL BAME 3 SIGEAL NANE
B29 B2sDa(15] A29 B2SDO[14)
B28 B2SDO[13] A28 82sD0[12)
B27 B2sDO[11] A27 B2500[10]
B26 B2SpO[9) A26 B238D0[8])
B25 B2SDO[7] 426 B2spofe)
B24 B2sDO (5] A24 B2SDO([4)
B23 B2spo[3] 423 B2SDO[2]
B22 B2SDO[1] A22 B28D0[0]
B21 B2SDI[15]) A21 B2sDb1[14]
B20 B2SDI[13) 420 B28D1[12]
B29 B2SDI[11] A9 B2SDI{10]
B28 B2SDI[9] A18 B2sb1[8)
B27 B2SDI[7] A7 B2SDI[6)
B26 B2sDI [5) A16 B2SDI[4]
B25 B2SDI[3)] A18 B2spI([2])
B24 B23DI[1] Al4 B2SDI[0]
B23 -RESERVED~ A13 ~RESERVED~
B22 ~RESERVED- A12 ~RESERVED-
B21 ~RESERVED- Al V.GATE_L
B20 H.REF_L A10 S.BLANK_L
B9 FIELD(0/1) A9 C.SYNC.L
B8 V.SYEC_L A8 HSYEC.L
B7 V.BLANK_L A7 HBLABK_L
B6 E.BLANK_L A6 amp

BS GED AS GED

B4 DOT_CLOCK_L A4 aED

B3 V.RESET_L A3 axp

B2 K.RESET_L A2 anmp

B2 SYSTEM CLOCK AL arp

BO XTAL CLOCK A0 GED

NOTES:

-

- The pin assignments are according to Racal-Redac DB.
BO=PINL : A29 PINGO;

B2SDI[0]-[7] are connected to B2SDI{8]-[15] Tespectivly.
B2SD0[0]-[7] are connected to B2SDO[8]-[15) respectivly.
B2SD0 bus is from the FB and B2SDI is to the FB.

b!ﬂw

RI3 (From Video port)

2-C

A8
A6
A4
A3
A2
a1
A0

BOTES:

SIGENAL BAME

RYPOUT(7)
anmp
RVPOUT([4]
RVPOUT[3]
GND
RVPOUT[O]
[

R-C SIGEAL BANE

[
RVPOUT[6]
RVPOUT[S)
a¥D

RVPOUTL2]
RVPOUT[1]
o D

E2BRRERE

1. The pin assignments are according to Racal-Redac DB.
AC=PIN1 : B6 PIN14;
2. This connector is compatible with the data-cube format.

R0O3 (To Video port)
R-C

A8
AS
Ad
A3
A2
At
A0

NOTES:

SIGNAL BANE

RVPIN[7)
axd

RVPIB[4]
RVPIN[3]
qp

RVPIB[O]
BVLABK_L

R-C SIGEAL NANE
8BS BFIELD

B6 RVPIN[E)
B4 RVPIN[E]
B3 [} 1]

B2 RVPIN[2])
B1 RVPIN[1]
BO am

1. The pin assignments are according to Racal-Redac DB.
AO=PIN1 : B6 PINi4;
2. This connector is compatible with the data-cube format.

60

GI3 (From Video port)

R-C SIGEAL NANE R-C SIGEAL EANE
A8 GVPOUTL7) B6 (o

A5 () 1} B6 avpouT(6)
A4 GVPOUT(4]) B4 GVPOUTLE)
A3 avPOUT(3) B3 anp

A2 asp B2 avPouT[2)
Al avPoUT (0] B avPoUT[1)
A0 (v} BO (1))

NOTES:
1. The pin assignments are according to Racal~Redac DB.

AO=PIN1 : B6 PIN14;
2. This connector is compatible with the data-cube format.

@03 (To Video port)

R-C SIGNAL FANE 2-C SIGNAL NANE
A6 GvPIN[7] B6

A GED BS avPIN(6)
A4 GVPIN[4) B4 GVPIN[5]
A3 avPIN[3] B3 () 1]

A2 [1)) B2 avPIB(2)
Al GVPIN[0] B GvPIN[1)
A0 BDOTCLK.L BO anp

NOTES:

1. The pin assignments are according to Racal-Redac DB.
AO=PIN1 : B6 PINi14;
2. This connector is compatible with the data-cube format.

B3

R-C

A6
A6
Ad
A3
A2
Al
A0

NOTES:

SIGNAL NANE

BVPOUT[7]
oED
BVPOUT[4]
BVPOUT[3]
[0 1]
BVPOUT[0]
ic

BI3 (From Video port)

%
Q

gERERRy |

SIGEAL JARE

L
BVPOUT[6)
BYPOUT[S)
[1}
BVPOUT(2)
BVPOUT([1)
(] 1]

1. The pin assignments are according to Racal-Redac DB.

AO=PINL :

B6 P1Ni4;

2. This connector is compatible with the data-cubs format.

R-C

A6
A6
A4
A3
A2
Al
A0

NOTES:

SIGEAL NANE

BVPIN(7]
GED
BVPIN[4]
BVPIB[3]
GED
BVPIN[O]
BDOTCLK_L

BO3 (To Video port)

R-C

EERERRE |

SIGEAL BANE

BHBLANK L
BVPIN[6]
BVPIN[5]
(] 1]
BVPIN([2]

" BVPIN[1]
()).}

1. The pin assignments are according to Racal-Redac DB.
AOSPIN1 : B6 PIN14;
2. This connector is compatible with the data-cube format.

62

Appendix D

PLD PINOUTS

63

decoder.rpt
EP610

Gnd -1 24|~ Vecc
BLWORDL -|2 23|~ BA14
VENABLE -3 22]- aNo
REFABLE -|4 21|~ amt
MENABLE -{5 20|~ AM2
BSEL ~16 19]- am3
BA13 -|7 18]- amg
BA12 -|8 171 ANS
BALl -|9 16|~ BASL

BA10 -{10 18|~ BA9
BIACEL ~|11 14|~ BA1S
amD ~|12 13|- Gnd

hshake.rpt
EP610
Gnd -|1 24|~ Vee
VMEWRI -|2 23|~ DEVMRI
SDC -13 22|~ Gnd
MREGO -|4 21|~ Gnd
WREQLD -I§ 20|~- Gnd
DACKO -|6 19]- Gnd
CSLO ~|7 18]~ Gnd
BREQO -|8 17|~ 6nd
CINI -|9 16]- Gnd
BACKI -|10 16(- Gnd
KACEKI -|11 14]- DREQI

GED -|12 13|- Gnd

64

65

a
fesedie

aomm WVLWwW

LR N K]

LY X,]
HJdowuwnm
MdoMa» M
dMunka» D
CL -3 N R N J-
CL KL RN §-]
oma

QarMAdr

L N X X-¥ |
S Aaa
[N K XN)

L - N |
Mk addn
MK NS
MR d> o

9 8 7 6 56 4 3 2 168676665064 636261

/
19
20
21
22
23
24
26

CXOUT | 10
| 18

DCLK | 14
DXL
DYLi | 16

Vee | 18

FDOBE
FEPHI2

ERROR | 17

CYOUT | 11
ACQOUT | 12
BRESERVED | 13

FIELD
HBLANKL

Gnd

Gnd

Gnd

Gnd

logic.rpt

0 4« ot b

o3 = 0 0 b
LR R _J

B3 60 od o by et D I
B aed e
oavo

oav

oav

oma

Ml >0
MRNnUd>KL
Mk d>
L2 X 2
RWadbmoO
Beitdentg

o a9

osv

	Copyright notice 1991
	ERL-91-27

