

Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MULTIPROCESSOR SCHEDULING TO ACCOUNT

FOR INTERPROCESSOR COMMUNICATION

by

Gilbert Christopher Sih

Memorandum No. UCB/ERL M91/29

22 April 1991

MULTIPROCESSOR SCHEDULING TO ACCOUNT

FOR INTERPROCESSOR COMMUNICATION

by

Gilbert Christopher Sih

Memorandum No. UCB/ERL M91/29

22 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

MULTIPROCESSOR SCHEDULING TO ACCOUNT FOR
INTERPROCESSOR COMMUNICATION

by

Gilbert Christopher Sih

ABSTRACT

Interprocessor communication (IPC) overheads have emerged as the major per
formance limitation in parallel processing systems, due to the transmission delays
synchronization overheads, and conflicts for shared communication resources created
by data exchange. Accounting for these overheads is essential for attaining efficient
hardware unhzation. This thesis introduces two new compile-time heuristics for
scheduling precedence graphs onto multiprocessor architectures, which account for
interprocessor communication overheads and interconnection constraints in the archi
tecture. These algorithms perform scheduling and routing simultaneously to account
for irregular interprocessor interconnections, and schedule all communications as well
as all computations to eliminate shared resource contention.

HT JJer^" te?"ique' "lied dynamiclevel scheduling, modifies the classical
HLFET list scheduling strategy to account for IPC and synchronization overheads
By using dynamically changing priorities to match nodes and pRW«wVS32o
his technique attams an equitable tradeoff between load balancing S££ocS
SSi*method is fast-flexible-widely'« sss
nnnn^6 "^ techniclue. called Clustering, establishes aparallelism hierarchv
tlfe ffadeoff6^61106 ^.^ "^"""W" Piques which expHcTtly adShe tradeoff between exploiting parallelism and incurring communication cost Bv
ystemancally decomposing this hierarchy, the declus.ering pr™™s pa alle^

ism instances in order of importance, assuring efficient use of the avatb W, nrLT
meTeveTof^steT T ^^ ?"*•S*^S

Edward A. Lee
Thesis Committee Chairman

if

ACKNOWLEDGEMENTS

Many people contributed in bringing this thesis to fruition. Regarding the

members of my thesis committee, I am especially indebted to my research advisor,

Professor Edward Lee, for his generous support and encouragement, and for his pati

ence while I struggled to find a thesis topic. I look forward to our continued

correspondence as colleagues and friends. I thank Professor David Messerschmitt for

providing valuable advice, and Professor Charles Stone, for making helpful sugges

tions. I also thank Professors Lee and Messerschmitt for their printpaper macros,

which greatly eased the task of writing papers as well as this dissertation.

Several graduate students who arrived before me deserve special mention. Vijay

Madisetti and Ho-Ping Tseng provided camaraderie as well as much-appreciated

advice, while Hovich Mordechay and Teresa Meng contributed valuable assistance.

Conversations with John Barry, Shuvra Bhattacharyya, Paul Haskell, and Phil

Lapsley were enlightening, and interactions with John Baker, Joe Buck, Wen-Lung
Chen, Soonhoi Ha, Wai Ho, Limin Hu, Horng-Dar Lin, Tom Parks, Maureen

O'Reilly, Ravi Subramanian, Jane Sun, and Valerie Taylor have proven fruitful.

This work was supported by SRC grant 52055 and Iam grateful to SRC for their

financial backing.

On the personal side, I thank Julie Stoner for her love and for providing much-
needed diversion from the rigors of graduate school. Finally, Idedicate this thesis to

my parents, for their love, encouragement, and support.

CONTENTS

1 INTRODUCTION TO PARALLEL PROCESSING

1.1 HARDWARE 4

1.1.1 Single-Instruction, Single-Data Machines 4
1.1.2 Single-Instruction, Multiple-Data Machines 5
1.1.3 Multiple-Instruction, Multiple-Data Machines 5

1.2 SOFTWARE 20

1.2.1 The PRAM 20

1.2.2 Parallelizing Compilers 21
1.2.3 Parallel Languages 22

1.3 PARALLEL PROCESSING OVERHEADS 25

1.3.1 Interprocessor Communication 25
1.3.2 Synchronization 28
1.3.3 Load Balancing 29

1.4 CONCLUSION 29

2 SCHEDULING 30

2.1 MULTIPLE PROCESSOR SCHEDULING 33

2.1.1 Scheduling Complexity 34
2.12 List Scheduling 36

2.2 A SCHEDULING TAXONOMY 37

2.2.1 Static Assignment Algorithms 39
2.2.2 Fully Static Scheduling 44

2.3 THE SCHEDULING PROBLEM 52

Ul

N

3 DYNAMIC LEVEL SCHEDULING 57

3.1 HANDLING INTERPROCESSOR COMMUNICATION 58

3.1.1 The IPC Model 58

3.1.2 Communication Scheduling 60

3.2 DYNAMIC LEVELS 62

3.2.1 Processor Selection Revision 67

3.2.2 Algorithm Streamlining 73

3.3 HETEROGENEOUS PROCESSOR EXTENSION 77

3.3.1 Descendant Consideration 79

3.3.2 Resource Scarcity 83

3.4 ROUTING ALGORITHMS 87

3.5 SCHEDULING ENHANCEMENT TECHNIQUES 92

3.5.1 Weighting Factor 92
3.5.2 Forward/Backward Scheduling 93
3.5.3 Precedence Constraint Appendage 95

3.6 SUMMARY AND CONCLUSIONS 97

4 DECLUSTERING 100

4.1 ELEMENTARY CLUSTER FORMATION 104

4.1.1 Parallelism Detection 106

4.1.2 ParallelismExploitation 108
4.1.3 Cut-arc Determination 110

4.2 HIERARCHICAL CLUSTER GROUPING 116

4.3 CLUSTER HIERARCHY DECOMPOSITION 118

4.3.1 List Scheduling Method 118

4.4 CLUSTER BREAKDOWN 124

4.5 SCHEDULING RESULTS 126

4.6 SUMMARY AND CONCLUSIONS 137

IV

5 FURTHER WORK 139

5.1 APEG DERIVATION 140

5.1.1 Increasing Blocking Factor 141
5.1.2 Retiming 142
5.1.3 Pipelining 145

5.2 SCHEDULING PROBLEMS 147

5.2.1 Other Scheduling Problems 148
5.2.2 A Smart Scheduling System 149

5.3 SCHEDULING-ROUTING INTERACTION 151

REFERENCES 152

APPENDIX I 163

APPENDIX II 168

INTRODUCTION TO PARALLEL PROCESSING

Knowledge is the only instrument ofproduction that is not subject
to diminishing returns

— J.M. Clark

Computation speeds, which have increased geometrically since 1982, have still not

kept pace with the insatiable demand for computing power. Applications such as

weather prediction, video processing, medical imaging, and seismic processing

require processing speeds exceeding the capabilities of current machines. At the

uniprocessor level, computer architects have used features such as superpipelining,

parallel instruction issue, and multiple functional units to increase performance. Ata

higher level, the use ofcooperating multiple processors to simultaneously attack asin

gle problem has become increasingly important, with major research and development

2

effortsunderway in both academia and industry. As VLSI density approaches its phy

sical limits, parallel processing offers the most promise for obtaining large computa

tional power in a cost-effective manner.

The primary goal in utilizing multiple processors is to obtain a speedup, defined as

the smallestnumber of time steps needed for sequential execution on a single proces

sor S (n), divided by the number of time steps required for parallel execution on multi

ple processors P(n). The maximum speedup attainable with P processors is P.

Existence of such a speedup can be shown using a problem which partitions perfectly

into P equal, independent sections. The premise that a speedup greater than P is

impossible is shown through contradiction. Given that thefastest possible sequential

algorithm can solve the problemin S (n) time steps, assume that a set of P processors

can obtain a speedup greater than P and therefore solves the problem in time

P(n)< . Simulation of the parallel execution steps using a single processor

results in a sequential algorithm which executes in time P xP(n)<S(n), which

gives the contradiction.

A time-honored argument, referred to as Amdahl's Law, contends that the obtainable

speedup limit is constrained asymptotically by the reciprocal of the fraction of compu

tation which must be performed serially [Amd67]. If Fs denotes the fraction of the

computation which cannot be parallelized, and R denotes the speed ratio of the fast

processing mode (parallel) to the slow processing mode (serial), then the total speedup

can be represented as:

. SPEEDUP = t * pg? . (l.i)
l-Fs+RFs K J

Asymptotically, as R tends to infinity, the speedup tends toward -—. This means that
Fs

if a speedup of 10 is desired, less than 10% of the computationcan be performed seri

ally; similarly, a speedup of 100 requires less than 1% of the computation to be

unparallelizable. A graph illustrating this relationship is shown below in figure 1-1.

Notice how quickly the speedup drops off as Fs increases. While critics have used

this argument to disparage the idea of parallel processing, in actuality this law is

slightly misleading, indicating a pessimistic performance bound. As R tends to

infinity, the number of processors must also tend to infinity, and the problem will cer

tainly be scaled upward with the number of processors. The real question then

becomes: how does the unparallelizable fraction of the computation Fs change as the

problem is scaled? It is easy to construct examples in which Fs tends to zero as the

problemis scaled upward, so that the speedup tends to infinity as R tends to infinity.

00 1 1 1

90 -

80 -

70 -

60 -

P

50 -I -

40 -\ -

30 -

20 -

10

I _.!..

-

_ 1_. .

.1 .2 .3

Fraction of computation performed sequentially

Figure 1-1. Amdahl's law

.4

1.1. HARDWARE

A popular taxonomy for classification of processing systems, due to Flynn [Fly72],

separates machines according to the number of instruction and data streams present

1.1.1. Single-Instruction, Single-Data Machines

Single-Instruction, Single-Data (SISD) machines have a single stream of instructions

from a control unit, which regulates the single stream of data between CPU and main

memory. Virtually every uniprocessor-based machine belongs to this category. The

traditional basis for such machines, the von Neumann computing model, traces most

of its original precepts to an Institute for Advanced Study report written back in 1946

[Bur46]. This stored-program model, shown in figure 1-2, consists of a CPU con

nected to main memory through anarrow pipe, which also connects to an I/O port If

one views the function of acomputer program as attempting to change the contents of

memory via word-at-a-time transfers of addresses and data through this narrow pipe,

the reason this connection between CPU and memory has been nicknamed the "von

Neumann bottleneck" should be clear.

Figure 1-2. The von Neumann computingmodel

1.1.2. Single-Instruction, Multiple-Data Machines

Single-Instruction, Multiple-Data (SIMD) machines have a single stream of instruc

tions controlling an array of multiple execution units. This design avoids a separate

instruction fetch for each data value and permits multiple data units to be processed in

parallel. By controlling all processors in lockstep with a single instruction stream,

SIMD machines incur very litde synchronization overhead, which encourages exploi

tation of fine-grained parallelism. This category includes the Connection Machine

and MasPar MP-1 as well as most array and vector processors such as the Dliac TV

[Bou72] and the Goodyear Massively Parallel Processor [Bat80].

1.1.3. Multiple-Instruction, Multiple-Data Machines

Multiple-Instruction, Multiple-Data (MIMD) machines can be classified as being

control-driven, in which explicit control flow(s) cause the execution of instructions,

data-driven, in which the availability of operands triggers instruction execution, or

demand-driven, in which the need for a result provokes instruction execution

[Alm89]. In this thesis, we restrict our attention to control-driven MTMD machines, in

which each processor contains an autonomous control unit regulating its own data

stream. These systems are more flexible than SIMD machines because processors can

operate asynchronously. However, each processor requires memory to store its own

program, and more complex control and communication strategies are necessary. As

a result of the more extensive communication and synchronization overheads, paral

lelism is generally exploited at a coarser level. MIMD machines can be further

classified as being multiprocessors, which communicate through shared memory, or

multicomputer, which communicate through message-passing. The following sec

tions discuss several popular multiprocessor and multicomputer topologies.

Multiprocessors

In amultiprocessor, individual processors access shared memory using asingle global

address space, where the memory is usually physically distributed among several

banks to allow several processors to access variables simultaneously. As shown in

figure 1-3, the processors (Ph i = 1 ... P), which may have local memory (LM), are

connected to these memory modules (Mj9 j =1... N) through some form of intercon

nection network. This processor-memory interconnection network is a major cost

component in multiprocessor system design. A multitude of different interconnection

schemes are commonly used, offering awide range of cost/performance choices.

Shared Bus Multiprocessors

Single shared-bus multiprocessors consist of a small number (typically <20) of pro

cessors connected to a global shared memory through a high-speed bus. Regions of

physical memory are mapped into the virtual address space of each processor, which

LM Pi

Interconnection

Network

Mt

LM P2 M2

LM P3 M,

•

•

•

•

•

•

LM Pp MN

Figure 1-3. The general structure of a switching network multiprocessor

allows interprocessor communication through the use of shared variables. To reduce

the amount of bus traffic and lessen the average memory access time, each processor

generally has a small local memory, or cache, associated with it as shown in figure

1-4. While such designs are simple and inexpensive, system performance is sorely

limited by the shared bus, which only allows a single processor to access the shared

memory at any time. Bus arbitration is commonly handled using a hardware arbiter.

To eliminate the synchronization and contention resolution overheads normally asso

ciated with a shared bus, Bier et al. propose an ordered memory architecture which is

applicable to a limited class of applications [Bir90]. This architecture uses a central

controller to grant the bus to processors in a pre-specified order.

To allow multiple data transfers in parallel, multiple bus architectures have been pro

posed [Mud87], in which processors are connected to a group of memory banks

through several buses, as shown in figure 1-5. The memory banks are typically inter

leaved for higher memory bandwidth, and multiple arbiters are used to handle bus

LM

PI

GLOBAL

SHARED

MEMORY

LM LM

P2 P3 -

LM

HARDWARE
ARBITER

p4 j

Figure 1-4. A single shared-bus multiprocessor

-f-Bb

B3
.B2

Cache Cache Cache

Mi Ma • •• Mn

Processors Memory Banks

Figure 1-5. A multiple-bus architecture

arbitration. The cache structure and updating policy are critical design issues in

multiple-bus systems, because of the desire to reduce bus traffic while maintaining

memory consistency. Snooping caches, which monitor all bus traffic to check for

cross-hits, are often used to ensure cache consistency. The Wisconsin Multicube,

shown in figure 1-6, connects processors through a multidimensional grid of buses to

p P
Cl

P
Cl

P
CI Cl
1

«-»

1
«->

1
<->

1

«->C2 C2 C2 C2

* * * *

P P P
Cl

P
CI Cl Cl
1

«->

1
€-»

l 1"
«-»C2 C2 C2 «-> C2

* * * *
:

•

P P P
Cl

P
CI Cl Cl
1

«->

l 1
«->

1
«->C2 C2 «* C2 C2

* * *

Mo Mx M2 ••• M„

Figure 1-6. The Wisconsin multicube architecture

achieve high interprocessor communication bandwidth [G0088]. This architecture

uses a two-level cache organization, where the first level is a conventional SRAM

cache designed to reduce memory latency, and the second level is a large DRAM

snooping cache to minimize bus traffic. A write-through cache policy is used from

first to second level, and the second level cache uses a write-back policy to reduce bus

contention problems. Hierarchical bus organizations have been proposed as another

possibility for bus-based multiprocessor systems [Win88].

Crossbar Switch Multiprocessors

A crossbar switch multiprocessor interconnects processors and memories through a

crossbar switch, as shown in figure 1-7. By closing exacdy one switch in every row

and column, this configuration can support simultaneous communication between N

processors and N memories, as long as no two processors access the same memory

M2 M3 M4

PI & & & -O

P2 4± 4± 4>

P3 •O •O •o

P4 •© •& •© •€>

Figure 1-7. A 4x4 crossbar switch interconnection network

10

bank simultaneously. While this scheme yields a high processor/memory bandwidth,

it incurs scaling problems due to aswitching cost which increases as N1. Anexample

of this approach is theCarnegie Mellon multi-mini-processor (Cmmp) [Wul72].

Single-stage Multiprocessors

Single-stage multiprocessors consist of a link interconnection pattern connected to a

stage of switching elements. To route messages between processors, data is often

recirculated several times through this single-stage loop until the correct destination

processor is encountered. The most well-known single-stage interconnection pattern,

often used as a building block in more complicated networks, is called the perfect

shuffle [Sto71]. This network pattern, illustrated in figure 1-8, derives its name from

the similarity of its structure to the shuffling of a deck of cards when the column of

N/2-1

N/2

N/2+1

N/2 + 2

N-2

N-l

Figure 1-8. The perfect shuffle interconnection

11

inputs is pictured as the set of cards. If this deck is "cut" in the center, illustrated by

the dotted line in the figure, and shuffled perfecdy, the stack of outputs then precisely

corresponds to the position of the shuffled inputs. An alternate view can be obtained

by assigning each processor (numbered top-down from 0 to N-1) its binary bit

representation. For each source processor, the bit representation of its destination pro

cessor can be found from a cyclic rotation of its bit representation one position to the

left. This implies that a message will return to its originating processors after exacdy

logN shuffles. The NYU Ultracomputer is an multiprocessor which uses the perfect

shuffle interconnection augmented with nearest-neighbor connections [Sch80].

Appendinga stage of switches to the perfect shuffle, as shown in figure 1-9, results in

the well-known shuffle-exchange network [Che81]. This interconnection scheme is

especially suited for solving problems which lend themselves to a recursive "divide

and conquer" approach, such as sorting[Bat68], FFTs, and matrix multiplication.

Figure 1-9. A shuffle-exchange network

12

Multistage Interconnection Network Multiprocessors

An instance of the final class of multiprocessors generally consists of hundreds or

thousands of processors connected to memory banks through a multistage intercon

nection network (MIN) [Fen81]. In its most general form, the network is a switching

fabric which dynamically routes messages between N inputs and M outputs, and is

constructed by appending multiple stages ofaxb crossbar switches. The most com

mon form of MIN connects N inputs to N outputs using several stages of 2x2 or4x4

crossbar switches. The 4 possible switching configurations for a 2x2 switch are

shown below in figure 1-10. A control bit, normally the ith bit of alog^ bit routing

tag, can be used to steer an input at the ith stage to the proper output, with a zero-bit

routing the connection through the upper output, and a one-bit routing the connection

through the lower output Notice that the two nonconflicting states, shown in a) and

b), have complementary control bits on their inputs, while the two conflicting states,

a) b)

c) d)

Figure 1-10. The possible configurations ofa 2x2 switch

13

shown in c) and d), have the same control bits on their inputs. To eliminate the

conflicting states, onecontrol bit is usually chosen tocontrol theswitch, with theother

required to be its complement.

The wide variety of interconnection networks available offer a range of performance-

cost tradeoffs between a shared bus and full crossbar interconnect [Kru83] [Bhu89].

The two most commonly-used performance measurements are latency, which reflects

the delay in transferring a message from source to destination, and bandwidth, which

indicates the number of messages exchanged per unit time. MIN's are commonly

classified according to the following criteria:

1) Control Strategy
2) Switching Methodology
3) Blocking Characteristics

The control strategy can be centralized, in which a central controller physically

separate from the data routing hardware handles the switching elements, or distri

buted, in which the switching is handled by the individual elements themselves.

Switching methodologies can be classifiedas being circuit switched, in which a dedi

cated connection between source and destination ports is maintained for the duration

of the data transfer, or packet switched, in which fixed-length packets of information

are addressed to their destinations and may be stored at intermediate points in the net

work. To draw an analogy, circuit switching corresponds to the connection operation

used when setting up a telephone call, while packet switching resembles the letter-

forwarding operation used by the postal service. In general, circuit switching is more

efficient for long message transmissions, while packet switching is more effective for

short request/reply type messages.

14

Blocking characteristics refer to a network's capability of supporting dynamically

changing permutations of input/output connections, with many of the results dating

back to research performed for the telephone switching network [Clo53] [Ben62].

Networks which can support an arbitrary permutation of inputs connected to outputs

at all times are referred to as being nonblocking, with the crossbar and Clos networks

being the most notable examples. Networks which can support all possible permuta

tions by rearranging its existing connections to support anew, unassigned input/output

pair are designated as being rearrangeable nonblocking, the Benes network [Ben65]

being aprime example. Networks which support only asubset ofinput/output permu

tations are referred to as blocking networks. Blocking networks are more commonly

used than nonblocking networks in multiprocessor systems due to their lower

hardware switching costs. Packet-switched blocking networks can be further

subclassified according to how collisions are handled. If two messages require the

same output port, abuffered network transmits one message and uses aqueue to store

the other, while an unbuffered network transmits one message and discards the other,

forcing a retransmission from the source. Packets maycontain a field in the header to

aid in determining priorities for transmission.

Banyan Network

One of the most widely-used blocking networks is the banyan network, named for its

structural similarities to an East Indian fig tree [Gok73]. This interconnection net

work, shown in figure 1-11, provides a unique path from any input to any output. The

network structure, which consists of log2N stages of N/2 2x2 crossbar switches each,

is recursively synthesized from smaller banyan networks. Constructing an N x N

banyan network (N inputs, N outputs), requires two N/2 x N/2 banyans placed one

15

Figure1-11. An 8x8 banyan network

above the other, with an additional stage of N switches appended on the right The

perfect shuffle interconnection is then used to interconnect the additional stage to the

two smaller banyans. The base network, connecting 4 inputs to 4 outputs, is also

derived using the perfect shuffle. The appeal of this structure stems from the switch

ing cost, which grows as ivTog2Af as opposed to the crossbar's N2 cost growth. The

delay through the network increases as logN.

Omega Network

Another widely-used interconnection is the omega network, which was originally pro

posed as an alignment network for array processors [Law75]. This interconnection

alsoconsists of log2N stages of N/2 2x2 crossbar switches, but uses the perfect shuffle

interconnection in each stage. An 8 x 8 omega network is shown belowin figure 1-12.

The omega network, as well as the banyan network mentioned earlier, have the advan

tageous property of being self-routing, so that a central controller is unnecessary. If

16

Figure 1-12. An 8x8 omega network

the outputs are numbered top-down from 0 to N-1, routing a message to any output

port can be easily accomplished by using the binary representation of the output

number. If bxb2 *••biog^ represents the binary expansion of the desired output port,

then at switching stage i, the message is routed out the upper switch output if bit

bi = 0 and out the lower switch output if bit bt = 1. The IBM Research Parallel Pro

cessor (RP3) and BBN Butterfly are examples of commercial multiprocessors inter

connected using an omega network.

A delta network connects An inputs to Bn outputs through n stages of AxB crossbar

modules, where each stage is connected through an A-shuffle [Pat81]. An A-shuffle

of C playing cards is constructed by dividing the deck into A equal piles of C/A cards

each and picking cards in acircular fashion (one card from the first pile, one card from

the second pile...) until all the cards have been picked up. The perfect shuffle is a

two-shuffle under this formalism. The self-routing property of the delta network is

obtained byextending the routing algorithm mentioned earlier tobase B.

17

While these multistage interconnections provide an advantageous cost/performance

ratio and support simple self routing schemes, the failure of a single link or switch can

lead to blockage of several input/output paths. Not surprisingly, anincreasing amount

of attention is being devoted to techniques for increasing fault-tolerance [Adam87]

[Kum87], including adding extra stages, adding extra links, increasing the number of

networkports, increasing the switch size,and using adaptive routing methods.

Multicomputers

A multicomputer consists of a collection of processing elements (PE's) intercon

nected in a fixed topology. Each PE contains a processor, local memory, and com

munication hardware. In contrast with multiprocessors, each processor has a private

address space, used to access its own local memory. The cooperating tasks of a paral

lel algorithm execute asynchronously on different processors, and communicate

through message-passing. Hardware costs and packaging constraints limit each PE's

connections to a small subset of the total processing network, so that messages must

typically be routed through many intermediate PE's before reaching their final desti

nation. Typical multicomputer topologies, shown below in figure 1-13, include the

star, ring, hypercube, tree, and mesh [Ree87]. Early multicomputer projects include

the Columbia Homogeneous Parallel Processor (CHoPP), the NASA Finite Element

Machine (FEM), and the Berkeley X-Tree. The Intel iPSC2 is a commercial hyper

cube multicomputer [Arl88], where each node consists of a 16 Mhz 80386 processor,

16 Mbytes of dynamic RAM, and the Direct-Connect routing hardware [Nug88]. The

Inmos transputer and torus routing chip [Dal86] were designed as building blocks for

multicomputers, so that larger multicomputers can be constructed by merelyconnect

ing more of these elements together. This scalability is often touted as one of the

18

a) STAR b)RING

c) HYPERCUBE

O O o

6- •6- •o

6- o o

e)MESH

Figure 1-13. Typical multicomputer topologies

inherent advantages of multicomputers over multiprocessors. A disadvantage is that

the latency in transferring messages across multicomputer nodes is typically higher

than that for multiprocessors, which requires that parallelism be exploited at a larger

grain level. For example, the Intel iPSC2, which uses circuit-switching to transfer

messages, requires 350 us to set up a connection between processors, and transfers

19

data at a rate of 2.8 Mbytes/s [Arl88].

Because messages must typically be routed through intermediate nodes before reach

ing their final destination, the chosen routing strategy plays a majorrole in determin

ing the communication network performance. In a classical store-and-forward net

work, messages are divided into packets. Each packet is stored at an intermediate

node, only being advanced to the next node along the path after the entire packethas

been completely received. To increase transmission efficiency, many networks use

wormhole [Dal87] rather than store-and-forward routing. This technique subdivides

packets into flits, where a flit is the smallest unit of data that achannel can transmit or

receive. Instead of waiting until a packet has completely arrived, the wormhole rout

ing approach allows a PE to advance each flit to the next PE along the path as soon it

is received. The flits comprising a message become spread throughout the path

between source and destination, so that it is possible for the first flit of a message to

reach the destination before the last flit has left the source. This technique severely

reduces the latency in transmitting messages, as shown in figure 1-14. If L is the mes

sage length, W is the channel width, D is the number of interprocessor hops between

source and destination, and Tc is the channel cycle time, then Tc[Dx—] is the
W

L_
W

latency for store-and-forward routing as shown in the top figure, while Tc [D + —] is

the latency for wormhole routing, as illustrated in the bottom figure. By immediately

forwarding data flits, the number of channel cycles is converted into an additive rather

than a multiplicative term in the latency expression. A similar technique, called vir

tual cut-through [Ker79], buffers messages at intermediate nodes when the header

flit is blocked to preventblocked messages from clogging the network.

PE1

PE2

PE3

4-
L/W

->

D=3

PE1 ; :

c ^ .
PE2 D=3

PE3 i i

— t
(b)

Figure 1-14. Latency ofstore-and-forward routing vswormhole routing

1.2. SOFTWARE

20

While significant advances have been made in the hardware aspects of parallel com

putation, the software aspects have progressed at a slower rate, hindering progress in

the field as a whole. Perhaps the most pressing softwarerequirement is the need for a

portable, general-purpose parallel-programming paradigm which can effectively

express the parallelism in an application, yet spares the user from having to explicidy

coordinate parallel execution.

1.2.1. The PRAM

The most widely used programming model for parallel computation is the Parallel

Random Access Machine (PRAM), which is an idealized shared-memory computation

21

model [Kar88]. The PRAM consists of a set of processors, each with local memory,

which communicate through a global shared memory. In each time step, every pro

cessor can perform a single computation, orread or writeany cell of the global shared

memory or its own local memory. PRAMs can be separated into different classes

according to the allowed possibilities for simultaneous read andwrite access from dif

ferent processors. The most restrictive model is the Exclusive Read Exclusive Write

(EREW) PRAM, which prohibits concurrent access to the same memory location

from different processors for both reading and writing. The Concurrent Read

Exclusive Write (CREW) PRAM allows different processors to simultaneously read

the same memory location but forces writes to be done serially. The Concurrent Read

Concurrent Write (CRCW) model allows both concurrent read and concurrent write,

with various possibilities existing for resolution of simultaneous write conflicts.

Interestingly, it has been shown that the power of these models differ at most by a fac

tor of 0(log P), where P is the number of processors. Although not physically realiz

able, this model is useful for proving complexity results and for gaining insight into

the structure of parallel computation. The drawback to this model is that it requires

the programmer to find and explicidy direct parallel execution in the algorithm.

While this policy is manageable for simple sorting and searching routines, it quickly

becomes intractable for larger problems. Another problem is that the model is tied to

the shared-memory machine, so it is not suitable for general parallel programming.

1.2.2. Parallelizing Compilers

An approach which negates these difficulties uses conventional languages coupled

with parallelizing compilers. Users are free to program in C, Fortran, Pascal, Lisp, or

any other sequential language. The burden for parallelism detection and partitioning

22

falls solely on the compiler, which must generate the proper code for each processor

in the target architecture. An example of this approach is Parafrase, a restructuring

compiler for conventional FORTRAN programs constructed at the University of Illi

nois [Kuc81]. The first phase of Parafrase converts the high-level language format

into a dependence graph representation suitable for performing optimization and res

tructuring steps. Scalar renaming, subscript expansion, node splitting, forward substi

tution, and loop distribution all help to expose as much parallelism as possible in this

machine-independent stage. The second phase maps this description into the specific

architecture. The Bulldog compiler, developed as part of the ELI (Enormously Long

Instruction) project at Yale, is another example of this approach. However, the use of

a conventional sequential language hinders the parallelizability of parts of the pro

gram, incurring the substantial speedup penalty reflected by Amdahl's law.

1.2.3. Parallel Languages

The primary argument against parallelizing compilers is that they are constrained by

the semantics of the program; that is, the compiler is not allowed to rewrite the algo

rithm being employed. However, for many applications, the existing sequential algo

rithm is not amenable to efficient parallelization. Rethinking an algorithm from first

principles can often lead to a more efficient realization which exploits the available

concurrency more effectively. The overriding goal then, must be to find a language

whose attributes implicitly capture the inherent parallelism, yet frees the programmer

from explicit handling of the multiple processor coordination. There have been many

attempts to date, including Multilisp, Concurrent Prolog, CSP, Occam, Ada, and

Linda. Many of these are extensions to current languages, using constructs such as

parbegin/parend, fork/join, or doall to start and stop parallel activities.

23

Backus claims that the structure of conventional languages is based on the program

ming style of the von Neumann computer [Bac78]. He likens program variables to

memory cells, and relates control statements to test and jump operations. By compar

ing program assignment statements to fetch, store and arithmetic functions, Backus

designates the assignment statement as the von Neumann botdeneck of programming

languages. He notes that each assignment statement produces a one word result and

claims that conventional programming (e.g. For loops, do loops) is primarily con

cerned with how words flow through the assignmentbotdeneck. He advocates a func

tional programming approach in which programs are merely functions without argu

ments.

Functional Languages

Languages which operate entirely through the application of function to values are

called functional, applicative, or dataflow languages. This programming style,

based on the mathematical lambda calculus [Chr41][Ros82], is data-driven, so that

data dependencies control the sequencing of instructions, rather than a program

counter.

Conventional imperative languages accomplish much of their work through the use of

side effects, the most common example occurring when a procedure modifies a vari

able in the calling program. Since variables are commonly tied to specific memory

locations in imperative languages, any change in the sequencing of instructions causes

a change in the order of assigned values to a memory cell, which may modify the final

outcome. The ability to parallelize conventional languages is therefore limited by the

presence of side effects.

24

Side effects are prohibited in functional languages. Functions copy their arguments

("call by value" instead of "call by reference") to avoid changing their values in the

calling program. By avoiding sideeffects, functional language reap the benefits of the

Church-Rosser property, which states that any sequence of actions satisfying the data

dependencies will produce the same final result. Examples of dataflow languages

include pure Lisp, theValue Algorithmic Language (VAL) developed atMTT, and the

Irvine Dataflow language (ID) developed at UC-frvine and MTT. A shortcoming of

these languages is the memory inefficiency introduced by the isolation of inputs and

outputs which is necessary to avoid side effects. If a function wishes to access an

array, the entire array must be copied and passed as a value.

Synchronous Data Flow

Synchronous Data Flow (SDF) [Lee87], a special case of data flow, is a programming

methodology in which algorithms are described as directed graphs, where the nodes

represent computations with known execution times, the arcs represent data paths, and

the number of data samples producedand consumed by every node on each invocation

is known statically (at compile time). In addition to being a natural description for

digital signal processing (DSP) algorithms, this data-driven description exposes the

inherent concurrency which can be exploited by parallel hardware. An example SDF

graph is shown below in figure 1-15. The numbers at the tail and head of each arc

indicate the number of data units produced and consumed by the respective nodes.

For example, node A consumes three data units and produces one data unit on each

invocation. The notation 2D on the arc between nodes A and B indicates the presence

of 2 logical delays, where a logical delay (equivalent to z"1 in signal processing)

represents an initial data unit in the first-in, first-out (FIFO) buffer between the nodes.

25

Figure 1-15. A synchronous data flow graph

In this case, because of the feedback loop involving nodes A, B, and C, these initial

data samples are necessary to avoid a deadlock condition, where each node waits for

data from its predecessor. Using SDF graphs, deadlock avoidance and bounded

memory requirements can be guaranteed at compile-time.

1.3. PARALLEL PROCESSING OVERHEADS

In addition to the software difficulties encountered in prograrriming parallel computa

tions, there are many other factors which limit the attainable speedup in a parallel pro

cessing environment

1.3.1. Interprocessor Communication

The most significant performance detriment to parallel processing systems are the

overheads created when processors exchange data. Excessive interprocessor com

munication (IPC) can cause a "saturation effect," in which the addition of processors

actually causes a decrease in throughput [Chu80]. There are two main aspects to the

IPC overhead, the communication delay, and the resource contention. Communica

tion delay refers to the time required to transfer data between the source and destina

tion processors. Resource contention is caused by the need for processors to share

26

communication resources, such asbusses, interconnection links, or memory modules.

Excessive contention for a particular memory module in switching network multipro

cessors has been found to cause so-called "hot spots" in the network, which are analo

gous to traffic jams. Such hot spots not only degrade traffic in the vicinity of the hot

spot, but can degrade all network traffic due to a phenomenon called tree saturation,

in which the tree of switches rooted at the hot spotand extending to all the processors

at the leaves have all their queues filled to capacity. Message combining, in which

messages headed to a common destination are combined [Pfi85] has been used in the

NYU Ultracomputer and IBM RP3 to reduce hot spot traffic. Other approaches

include using a software approach to spread accesses over memory modules [Yew87],

or using feedback to limit memory accesses headed toward hot spots [Sco89].

To illustrate the detrimental effects of IPC on speedup, consider the example graph

shown in figure 1-16, which will be scheduled on a three processor single shared-bus

multiprocessor. When IPC costs are neglected, the optimal schedule which gives

Figure 1-16. An example graph

27

speedup 3 is shown below in figure 1-17. Assuming for simplicity that the number of

data units required to transfer Ddata units is just Dtime units, the schedule including

communication delay is shown in figure 1-18, which has makespan 15, yielding a

speedup of 2.2. However, this schedule allows multiple communications to occur

simultaneously, whereas a physical shared-bus multiprocessor onlyallows oneproces

sor to access thebus atany time. The schedule shown in figure 1-19 results when we

include the effect of bus contention. This schedule, which has makespan 19, yields a

0 2 4 6 8 10 12

P0

PI

P2

A D G

B E H

C F J I

Figure 1-17. Schedule with no IPCcost

0 2 4 6

P0

8 10 12 14 16

Figure 1-18. Schedule including communication delay

8 10 12 14 16 18 20

Figure 1-19. Schedule including communication delay and resource contention

28

speedup of only 1.73. Clearly, the effects of interprocessor communication must be

accounted for when scheduling forparallel processors.

1.3.2. Synchronization

Various forms ofsynchronization are necessary to allow cooperation between proces

sors, creating additional overheads in parallel processing systems. Shared memory

multiprocessors require two basic types of synchronization. The first, called mutual

exclusion, prohibits multiple processes from simultaneously accessing the same

shared memory location. Aregion ofcode containing shared variables which must be

executed in mutual exclusion is called acritical section. Processors that support spe

cialized instructions which can perform two actions atomically, such as test-and-set,

replace-add, or swap, can implement hardware locks to enforce mutual exclusion

[Ray86]. Software solutions are possible as well, the most common form using non-

negative integer counting variables called semaphores and their associated atomic P

and Vprimitives [Dij68]. Ifs =0, P(s) halts the invoking process until s ispositive.

If s >0, P(s) decrements s by 1 and allows the invoking process to continue. V(s)

increments s by 1. So if s is initially set to 1, the sequence {P(s), critical section,

V(s)} enforces mutual exclusion on the critical section. Conditional critical sections

or monitors can be used to handle more general situations [And85].

A second type of synchronization, called condition synchronization, is needed to

ensure a proper partial ordering of events. The most common technique used to pro

vide proper sequencing is called barrier synchronization, in which a barrier is placed

within the code for each participating processor. Processors reaching the barrier are

required to wait until every participating processor encounters the barrier, at which

point execution may proceed. An extension of this scheme, called fuzzy barrier

29

synchronization, attempts to reduce the time that the processors spend in spin-lock

waiting for all processors to encounter thebarrier. Instead of a singleline of code, the

fuzzy barrier specifies a section of code in each processor in which synchronization

can takeplace [Gup89]. In message-passing multicomputers, send and receiveprimi

tives are commonly used to enforce sequencecontrol.

1.3.3. Load Balancing

Assigning a heavy computation load to some processors and a light load to others can

also cause a degradation in speedup. A proper load balance distributes the computa

tion load evenly across all the processors to maximize efficiency. The ability to load

balance depends heavily on the program partitioning and the efficacy of the schedul

ing algorithm used to map the program onto the physical architecture. Notice that

load balancing and minimization of interprocessor communication are conflicting

goals, because whereas load balancing tends to disperse tasks across different proces

sors, minimization of IPC tends to cluster nodes on just a few processors. The trade

off between these two objectives is an important scheduling issue.

1.4. CONCLUSION

Regardless of what hardware architecture or software programming paradigm is used,

there are fundamental difficulties that arise when trying to make processors cooperate

on a common problem. The efficient coordination of parallel processors requires both

a program partitioning which matches the available hardware, and a scheduling stra

tegy which considers the physical hardware architecture and includes the interproces

sor communication and synchronization overheads created by data exchange.

SCHEDULING

Thesimplestproblems often havethehardest solutions

— Anonymous

Scheduling theory encompasses a vast body of literature which spans many discip

lines, including operations research, industrial engineering, electrical engineering,

applied mathematics, and computer science [Con67] [Cof73]. Scheduling problems

are classifiedinto a few major groups.

The general job shop problem consists of n jobs [Jx, J2>... Jn} which must be pro

cessed through m machines {M^M^ ...Mm}. Each job must pass through each

machine exacdy once; however, the order ofpassage through the machines may vary

from job to job. If the order in which the machines are encountered is constrained to

31

be the same for each job, this is called a flow shop problem. Further details concern

ing these two scheduling classes can be found in [Fre82].

As opposed to job-shop and flow-shop scheduling, project scheduling is normally

associated with a one-time project, such as the construction of a skyscraper or an air

plane. The two most popular project scheduling techniques are the Critical Path

Method (CPM) and the Project Evaluation and Review Technique (PERT)

[Hor80]. These methods model a project as a network of tasks connected by pre

cedence constraints, and identify the critical or bottleneck path through the network.

The critical path method starts from a network flow graph. While tasks can reside on

either nodes or arcs, we will assume that the nodes represent the activities, and the

arcs represent the precedence constraints. Without loss of generality, this flow graph

can be assumed to have exacdy one initial node and one terminal node. An example

project network graph is shown below in figure 2-1, where the estimated task duration

t(i) is indicated direcdy below each task i.

The CPM method first traverses the graph in the forward direction to find the earliest

possible start times for each task. After setting the earliest start time (EST) of the ini-

Figure 2-1. An example network flow diagram

32

rial task to 0, the procedure sweeps through the graph, assigning each task i its earliest

start time EST(i) according to the formula

EST(I) = max [EST(/) + *(/)]
j (2.1)

where the maximization operation is taken overall predecessor activities j.

Second, the CPM technique traverses the graph in the backward direction to find the

latest possible start times if the project is to becompleted at the earliest possible time.

The latest start time of the terminal task is initially set to its earliest start time, which

was calculated in the forward pass. The procedure then sweeps through the graph

backwards, assigning latest start times LST(i) according to the formula

LST(i) = min[LST(/)-*(/)]
j

(2.2)

for all successor activities j. Third, the CPM method assigns each task its total slack,

defined as the difference between the latest and earliest start times. This quantity

represents the amount of time the task can be delayed without affecting the smallest

project duration. Tasks that have zero slack are said to lie on the critical path,

because any delay in executing any of these tasksresults in an extended project dura

tion. Tasks with nonzero slack have some flexibility because their start times can be

adjusted within the limits of the slack time without changing the project finishing

time. The earliest start time, latest start time, and total slack for each task in figure

2-1 are shown in table 2-1 below. After examining this table, the critical path

Node A B C D E F G H I

Earliest Start 0 1 5 5 11 11 8 16 22

Latest Start 0 1 5 8 11 12 12 16 22

Total Slack 0 0 0 3 0 1 4 0 0

Table 2-1. Earliest start times, latest start times, and total slack for each task

33

through the graph can easily be identified as {A B C E H I}.

The PERT technique extends the CPM method by incorporating uncertainty in the

task duration times. Three values are specified for each task duration estimate : a

most likely duration, an optimistic duration, and a pessimistic duration. A probability

distribution (often a beta distribution) is specified using these three values and the

CPM formulation can be used to make probabilistic statements about the project dura

tion. Notice that by allowing all tasks to be executed at their earliest start times, the

CPM/PERT formulation implicitiy assumes that an infinite number of processing

resources are available.

2.1. MULTIPLE PROCESSOR SCHEDULING

Scheduling for multiple processor systems has a very rich and distinguished history

[Bus74] [Cof76] [Gon77] [Hu61] [Gar78] [Ram72] [U1173]. The processor schedul

ing problem is to map a set of precedence-constrained tasks {Tf} i = 1... n, onto a set

of processors [Pk) k = 1 ... p to minimize a specified objective function, such as

schedule length or mean flow time. An acyclic precedence graph is commonly used to

describe the interrelationships among the tasks, where an arc Ay directed from task T,-

to Tj indicates that Tj must precede Tj in execution. This problem differs from pro

ject scheduling in that there are a fixed number of processing resources, which makes

the problem harder. Multiple processor scheduling strategies can be divided into

preemptive and nonpreemptive techniques. In preemptive scheduling, a task which

is executing on a processor can be interrupted in the middle of execution to allow

another task to be executed, with the original task resumed at a later time. In

nonpreemptive scheduling, any task which has started execution on a processor must

34

be allowed to run continuously until completion. In general, preemptive strategies

generate better schedules than nonpreemptive techniques due to their greater flexibil

ity; however, preemptive methods also incur additional context-switching overhead.

In this thesis, we restrictour attention to nonpreemptive schedulingmethods.

2.1.1. Scheduling Complexity

A key issue in the study of processor scheduling is the complexity of scheduling prob

lems. If n denotes some reasonable measure of the input size of an algorithm (e.g.

number of nodes), we say that the running time of a program T(n) is O(/(n)) if

there are constants c and n0 such thatT(n) £ cf («) for all n > n0. A program whose

running time is O (/ (n)) is said to have growth rate / (n), and we refer to an efficient

algorithm as one which has a polynomial growth rate. However, most scheduling

problems belong to a class of problems for which no such solutions have been found.

We briefly introduce this subject and direct readers to [Gar79] for further details.

Informally, class P refers to the set of decision problems which can be solved by a

deterministic algorithm in polynomial time, while class NP refers to the set of deci

sion problems which can be solved by a nondeterministic algorithm in polynomial

time. However, the notion of a solution becomes ambiguous in the nondeterministic

case, because when faced with a range of possibilities, a nondeterministic algorithm

has the ability to instandy guess the correct choice. All that remains is to verify the

solution in polynomial time. Thus, a nondeterrninistic polynomial-time solution is

more accurately described as polynomial-time verifiability; the time required to search

for the correct solution is excluded. Although nondeterministic algorithms are obvi

ouslymore powerful than deterministic algorithms (i.e. P £ NP), there has notbeen a

35

single problem which has been proven to be in NP but not in P. That is, the question

of whether P=NP is still open. A problem is referred to as being NP-complete if it

belongs to the set of "hardest" problems in NP, which are equivalent in the senseof

polynomial time reducibility. In other words, if any of theNP-complete problems can

be proven to lie in class P, then all problems in NP also lie in P. Conversely, if any

NP-complete problem can be proven intractable, then all NP-complete problems are

similarly intractable. To reiterate, the fact that a problem is NP-complete does not

prove thatanyalgorithm which constitutes a solution must be exponential in complex

ity, but rather that the problem belongs to a class for which no polynomial-time solu

tions have been found. The prevailing belief is that such solutions do not exist

The notion of strong NP-completeness addresses the fact that some NP-complete

problems rely upon the possibility of extremely large input numbers to gain intracta

bility. An example is the PARTITION problem, which asks if a set of objects with

individual sizes s(a) can be partitioned into two subsets such that the sum of the object

sizes in each subset are equal. Although the problem as stated is NP-complete, the

introduction of a bound on the maximum size of any object causes the problem to fall

into class P. To distinguish these types of problems, the concept of a pseudo-

polynomial time algorithm was introduced, which have complexity bounded by a

polynomial function in two variables: the length of the input, and the maximum

number contained in the input. Such algorithms can be regarded as being slighdy

more powerful than polynomial-time algorithms because they allow the possibility of

requiring an exponential amount of time when faced with inputs containing exponen

tially large numbers. Number problems which are NP-complete in the strong sense

are distinguished from their weaker counterparts in that they cannot be solved by a

36

pseudo-polynomial time algorithm unless P=NP.

For the nonpreemptive processor scheduling problem where the goal is toconstruct a

minimal-length schedule, there are two special cases in which efficient optimal algo

rithms are known to exist. The first case is when all the tasks have equal execution

times and there are only 2 processors, and the second case is when the tasks have

equal execution times and the precedence constraints form a rooted tree. If one

increases the number ofprocessors in the first case, or give the tasks unequal execu

tion times, the problem immediately falls in the class of NP-complete problems. For

this reason, algorithms which obtain optimal solutions are usually discarded in favor

of heuristics whichobtain a fairly goodsuboptimal solution in a reasonable time.

2.1.2. List Scheduling

Perhaps the most widely used scheduling heuristic is the list scheduling algorithm.

List scheduling is a technique in which tasks are assigned priorities and placed in a

list, sorted in order of decreasing priority. Nodes whose predecessors have been com

pleted are designated as being ready (for execution). A global time clock serves to

regulate the scheduling process. Processors which are idle at the current time are

designated as being available (for assignment). When a processor is available, the

first ready node in the list is assigned to beexecuted on that processor. After assign

ment, the processor is removed from the available processor list, the node is deleted

from the priority list, and this process is repeated until the available processors have

been exhausted. The time clock is then incremented until some processors finish exe

cution of their allotted tasks and are available once again. The algorithm terminates

when all nodes have been scheduled.

37

List scheduling can lead to some surprising scheduling results, as shown by Graham in

his classic work on "scheduling anomalies" [Gra69]. In this paper, Graham demon

strated the counter-intuitive notions that increasing the number of processors, reducing

the execution times of some tasks, or weakening the precedence constraints can all

lead to an increase in makespan.

The most well-known list scheduling strategy is the HLFET scheme [Ada74], or criti

cal path algorithm, an extension of Hu's basic work [Hu61]. In this procedure, the

endnodes of the graph are connected to a dummy terminal node Nt and the priority of

each node iVx- is set equal to its level, defined as the sum of execution times along the

longest directed path from Ni to Nt. List scheduling is then invoked using these prior

ities. To minimize confusion in terminology, we will refer to these levels as static

levels, denoting the static level of node iV; as SL(Ni). Several studies have revealed

that the HLFET algorithm demonstrates near-optimal performance when IPC costs are

not included [Ada74] [Koh75]. The success of this technique stems from the accurate

representation of a node's priority by its static level, which causes each successive

scheduling step to shorten the longest path to completion.

Scheduling without consideration of communication costs is now considered a mature

field of investigation. Therefore, in the remainder of this thesis, we will only consider

those algorithms which take interprocessor communications into account.

2.2. A SCHEDULING TAXONOMY

To classify scheduling algorithms, we use the taxonomy presented in [Lee89], which

divides scheduling strategies into the four classes shown below.

38

1) Fully Dynamic
2) Static Assignment
3) Self-Timed
4) Fully Static

The scheduling operation is subdivided into three operations: node assignment

(assigning nodes to processors), node ordering (determining the ordering of nodes on

each processor), and node timing (designating the exact time interval for node execu

tion). Scheduling algorithms are then categorized according to whether these opera

tions occur at compile-time oratrun-time as shown in figure 2-2. The fully dynamic

case incurs the most run-time overhead, because all three of these operations are per

formed at run-time. In static assignment, nodes are assigned processors at compile-

time but the sequencing and timing operations are performed at runtime based on data

availability. Self-timed scheduling adds the sequencing information for each proces

sor at compile-time, but determines the exact firing instants at run-time. The fully

static case specifies all three operations at compile-time, thereby incurring the least

amount of run-time overhead. However, in moving from the fully dynamic to the

fully static case, the numberof algorithms which are applicable under these schedul

ing classes decreases substantially. The domain of applicability in the fully static case

is limited to the class of algorithms which fit the SDF model and have deterministic

fully dynamic

static-assignment

self-timed

fully static

assignment ordering timing

run run run

compile run run

compile compile run

compile compile compile

Figure 2-2. A categorization of scheduling algorithms

39

node execution times. Notice that the other scheduling classes can be derived from

fully static scheduling by discarding one or more pieces of information.

2.2.1. Static Assignment Algorithms

Static assignment, or task allocation algorithms, address the "mapping problem" by

assigning tasks to processors at compile-time, but performing the sequencing andtim

ing operations at run-time. These schemes usually attempt to minimize some

weighted function of the computation andcommunication costs. Notice that ininimiz-

ing such functions is not the same as minimizing the makespan, because precedence

constraints have not been taken into account as a result of the lack of sequencing

information. For this reason, application of such algorithms is usually limited to data

flow machines or restricted to situations in which all tasks are independent. Graph

theoretic, integer programming, clustering, and queuing approaches have all been

used for static assignment

One popular approach is the network flow technique proposed by Stone [Sto77],

which is based on the classic Max Flow/Min Cut theorem of Ford and Fulkerson.

This scheme is intended for use in a heterogeneous processor environment and

attempts to minimize the total sum of execution and communication costs. The idea is

to formulate the assignment problem as a network flow diagram so that cutsets of the

diagram correspond to processor assignments in a one-to-one fashion. Using this for

mulation, the optimal assignment corresponds to the minimum weight cutset in the

network flow graph, which is obtained using the O(n5) algorithm of Ford and Fulker

son, as modified by Edmonds and Karp [Edm72]. Consider the example graph shown

in figure 2-3, which will be mapped onto aheterogeneous two-processor system. The

arc weights represent the communication cost in separating the adjoining nodes on

Execution Times

PO PI

A 6 10

B 5 9

C 6 3

D 4 1

40

Figure 2-3. An example graph

different processors, while the execution times of each node on processors PO and PI

are shown in the adjacent table. The corresponding network flow diagram is shown

below in figure 2-4, which is constructed by adding nodes SO and SI, representing

processors PO and PI respectively. Arcs are then added from each node Nt to SO,

weighted with the execution time of Nt on PI. Similarly, arcs are added from each

node Nt to SI, weighted with the execution time of Nt on PO. Each set of edges

separating nodes SO and SI (cutset) corresponds in a one-to-one fashion with a

module assignment, where the cost of the assignment is the sum of weights of the

Figure 2-4. The network flow graph andoptimal cutset

41

edges that were cut All that remains is to use the Ford-Fulkerson algorithm to find

the minimum-weight cutset, which for this example is shown by the dotted line in

figure 2-4. This optimal cutset partitions nodes A and B on PO and nodes C and Don

PI. The total sum of execution and communication costs for this assignment is 20. If

there are p processors, where p >2, then the arcs from Nt to Sj are assigned a

weighted sum of the execution times of N-t on each processor, and a p-way cutset is

used to find the optimal assignment

While extremely elegant, this technique becomes computationally intractable for more

than three processors. Another factor limiting its usefulness is that minimizing the

total sumof computation and communication time does notusually achieve good load

balancing. In the homogeneous processor case, this algorithm will always assign

every task to a single processor.

An extension of Stone's technique which remedies these problemshas been suggested

by Lo [Lo88]. To achieve manageable complexity, the p-processor network is con

verted into a 2-processornetwork by treating the processorunder consideration (Pt) as

a single entity, and combining all other processors into a super-processor group. All

edges between a task and the processor nodes (Sj) within the super-processor group

are replaced with a single edge whose weight is the sumof the weights on the original

edges. The Max Flow/Min Cut algorithm is applied to this 2 processor system to find

the tasks tobe assigned to processor Pt. After applying this procedure to each proces

sor, the assigned nodes are removed, the edge weights are redefined to reflect the par

tial assignment, and these steps are repeated. The procedure terminates when no

further assignment occurs. If all nodes are assigned, the solution is provably optimal

(under Stone's criterion). If some tasks have still not been assigned processors, some

42

additional phases are invoked To avoid the algorithm's propensity to use very few

processors, Lo proposes the use of"interference costs" which promote concurrency by

pushing tasks onto different processors with a repulsive force which is dependent

upon therelative amount of computation and communication costsincurred.

Bokhari proposes another scheme intended for heterogeneous processors which

ininimizes the total sum of execution time and communication time costs [Bok81].

Programs are expressed as invocation trees, where the nodes represent functions, and

the arcs represent data paths. The time to execute node i on processor m, E^, and the

communication cost for transferring D^ data units between any processors p and q,

Spq(E>ij)> are assumed to be known in advance. This method transforms the invoca

tion tree into an assignment graph by appending adummy source node at the root of

the invocation tree, appending dummy terminal nodes at the leaves of the invocation

tree, and expanding each node of the invocation tree into alayer of subnodes, one sub-

node per processor. Each subnode is labeled with a pair of numbers (i,m) which

denotes the assignment of node i on processor m. For example, the invocation tree

shown at the left of figure 2-5 is expanded into the assignment graph shown at the

right of figure 2-5. The directed arc connecting subnode (i,m) to subnode (j,n) has

weight Ejn + Smn(Dij) reflecting the total cost in executing node j on processor n,

given that node i has been assigned to processor m. An assignmenttree is defined as a

tree which connects the source node to all terminal nodes and contains exactly one

node from each layer of the assignment graph. Each assignment tree corresponds

uniquely to an assignment ofnodes to processors, where the sum of the arc weights in

the assignment tree reflects the total cost of this assignment. The problem has thus

been reduced into finding the minimum weight assignment tree in the assignment

43

Figure 2-5. Expansion of invocation tree into assignmentgraph

graph, which can be performed in O(np1) using adynamic programming approach.

Although this algorithm provides an optimal solution in this special case (precedence

relationships form a tree), it does not necessarily minimize the finishing time. Proces

sors are assumed to have infinite processing capability, because the same processor

can be used in different branches in the tree at the same time. This method also

suffers the same deficiency as Stone's method in the homogeneous processor case.

To promote a more balanced load distribution, Chu and Lan propose a heuristic which

attempts to minimize the load of the bottleneck processor [Chu87], where the load

reflects both execution and communication time costs. This scheme first combines

nodes into groups using ratios to indicate the relative importance of execution, com

munication, and precedence effects. The groups are then assigned to processors to

minimize the loadof the most heavily utilized processor.

44

Gylys and Edwards propose two module clustering schemes for static assignment

[Gyl76]. The first method fuses togetherthe two modules with maximum intermodule

communication between them if there is a processor eligible to execute both of them.

If not, the next mostexpensive pair is considered and the process is repeated until all

eligible pairs of modules have been combined. The second method defines a distance

function between modules based on the amount of data transferred. Starting from an

initial set of cluster centroids (center of mass), the procedure searches for the module

with smallest distance from a clustercentroid andmergesthe two if all constraints are

satisfied. The centroids are repetitively updated after each merging step and the algo

rithm terminates when there are no further combination steps.

2.2.2. Fully Static Scheduling

As opposed to static assignment scheduling, fully static scheduling allows computa

tion of the schedule makespan at compile-time, based on the given execution and

communication time estimates. This class is especially important for signal process

ing applications because of the need to satisfy real-time constraints. Most DSP algo

rithms fit the SDF model and are eligible for fully static scheduling.

In practice, self-timed schedules are usually used when executing programs on actual

hardware because they provide a greaterrobustness when execution time estimates are

inaccurate. However, self-timed schedules are normally derived from fully static

schedules by discarding the timing information and adding synchronization primitives

to ensure proper ordering. For these reasons, we concentrate our attention on the

fully-static scheduling class in which minimizing makespan is the scheduling goal.

The four most popular approaches to this problem are limited search, strategies,

modified list scheduling techniques, clustering algorithms, and simulated annealing.

45

Limited Search Strategies

Greenblatt and Linn propose a branch and bound technique for scheduling [Gre87].

Branch and bound is an orderly method of exhaustive search which eliminates possi

bilities through calculation of bounds on partial solutions. The search space can be

envisioned as a tree with each arc representing a possible action taking place, such as

node Nt being scheduled on processor Pj. Since each successive action builds on the

actions which have taken place earlier, the set of partial solutions branches out

exponentially as the tree depth increases. The complete set of solutions lies at the

leaves of this tree. Branch and bound algorithms try to pruneeach branch as early as

possible, rather than enumerate each complete solution in a sequential fashion. A

bound on the performance of a partial solution is calculated and if this bound is poorer

than the best solution encountered so far, this branch (and all following branches) are

pruned from the tree, because no solution along this path can possibly be optimal.

The most important consideration is the choice of the static evaluation function (SEF)

used to calculate the bound, which in the current context must estimate the final

schedule length from a partial scheduling of nodes to processors. A tradeoff exists

between the quality of the estimate and the search time. To ensure optimality, the

SEF cannot overestimate the schedule length, lest the optimal solution be pruned

away. At the same time, if the SEF severely underestimates the schedule length, very

few solutions will be pruned away, causing an enormous search time.

In this technique, the authors first propose a function called OPT which is supposedly

guaranteed to underestimate the schedule length. If /,- denotes the time thatprocessor

i becomes free in the partial schedule, F = max {//}, W is the sum of the execution

times of all unassigned nodes, and p is the number of processors, then

46

P-1 W -/,
OPT =F+max[0,2 —1 (2.3)

i=o P

However, consider the example partial 2-processor schedule shown in figure 2-6 and

assume there is one task left to be scheduled which has execution time 8. Clearly,

scheduling this task on PI produces a makespanof 10; however, the OPT function has

a value of 12, which overestimates the actual schedule length. This counterexample

shows that using this OPT function could result in the optimal solution being pruned

away. In keeping with the authors' objective, we propose a new function OPT2 which

will always underestimate the schedule length as

OPT2 = F +max[0, - (W - £(F -/,))]
P i=0

(2.4)

The authors go on to propose two additional suboptimizing heuristic functions. The

first heuristic function attempts to include idle times, which may result from pre

cedence constraints or interprocessor communication:

IdleTimeinPartialScheduleHI = OPT + (NumberofRemainingArcs) x f2.5)
ArcsConswnedinPartialSchedule

The second heuristic function tries to estimate schedule length by assuming that the

ratio of the length of the partial assignment to the number of tasks assigned stays

approximately constant.

10

B

Figure 2-6. Partial 2-processor schedule

47

„9 _ LengthofPartialAssignment 2g.
~ FractionofTasksAssigned

H2 was found to outperform HI at the cost of increased searching time. The com

plexity of these branch and bound schemes severely restricts the size of the problem

instances which can be solved using this approach. The largest input graphs tested in

the study contained only eight nodes.

List Scheduling

Yu proposes a technique which modifies the classical HLFET list scheduling tech

nique to account for communication delay in the context of a fully-interconnected pro

cessor network [Yu84]. At each step, this technique picks the node with highest static

level, and schedules it on the available processor which completes its execution at the

earliest time. It then removes the node from the list of ready nodes, removes the pro

cessor from the list of available processors, and continues this procedure until the list

of available processors is exhausted. At this point the global clock is updated until

some processors finish execution of their appointed tasks and become available for

assignment once again. While the basic idea of this algorithm is sound, the use of the

classical list-scheduling methodology leads to a performance flaw which will be

exposed in Chapter 3. Yu goes on to propose more complicated techniques which use

combinatorial matching algorithms to pair sets of nodes and processors at each step.

Clustering

Clustering algorithms have gained wide popularity for scheduling in the presence of

interprocessor communication costs. By forcing nodes which communicate heavily

onto the same processor, these strategies produce mappings which avoid excessive

IPC cost. Since processor assignments need only be assigned for each cluster, rather

48

than for each node, clustering also reduces the time needed for scheduling.

The linear clustering technique, proposed by Kim and Browne [Kim88], iteratively

applies a critical path algorithm to transform the graph into a virtual architecture

graph (VAG), which consists of a set of linear clusters and the interconnections

between them. A linear cluster is a degenerate tree in which every node has at most

one immediate predecessor and one immediate successor. Ateach step, the algorithm

groups together the most expensive directed path (in computation and communica

tion) into asingle linear cluster. The clustered nodes are removed from the graph and

this process is iteratively repeated until the entire graph has been divided into clusters.

After some refinement procedures, the algorithm applies graph-theoretic techniques to

mapthevirtual architecture graph ontothe physical processor architecture.

Sarkar presents a complete partitioning and scheduling approach in [Sar89]. Pro

grams are described using a hierarchical graphical representation called IF1, an inter

mediate form for applicative languages inwhich nodes represent operations and edges

denote data paths. Nodes can be simple, so that the outputs are direct functions of the

inputs, orcompound, so that a node represents a complete subgraph in itself. The par

titioning and scheduling technique contains four main phases:

1) Cost Assignment
2) Graph Expansion
3) Internalization
4) Processor Assignment

The cost assignment phase estimates computation and communication costs in the

program. Profile data is used to estimate node execution times. Communication

times are determined by examining the number of data units to be transferred, which

implicitly assumes ahomogeneous communication architecture. The graph expansion

49

phase attempts to expose sufficient parallelism in the graph to accommodate the

number of given processors, while at the same time limiting the number of tasks to a

manageable number. A depth-first traversal of the IF1 graph is used to generate

increased concurrency through recursive subdivision of compound nodes. Compound

node Ni is expanded into itsconstituent subnodes if there is insufficient parallelism to

keep P-1 processors busy while node iV; is executing. A granularity threshold factor

limits the number of nodes by lower bounding the size of the nodes that can be

expanded. A second traversal isused tomerge very small IF1 nodes into a single task.

The internalization clustering phase clusters nodestogether in an attempt to minimize

the schedule length on an unbounded number of processors. The algorithm initially

places each node in a separate cluster and considers the APEG arcs in descending

order according to the amount of data transferred over each arc. Given arc A^ (which

connects nodes Nt and Ny), the algorithm merges the clusters containing these nodes

(C(Ni) and C(Nj)) to "internalize" any communications between nodes in these

respective clusters. The algorithm accepts this cluster merging step if it does not

increase PARTIME, the estimate of the parallel execution time of this clustered graph

on an infinite number of processors. Otherwise, the clusters are unmerged and the

next arc is considered.

The parallel execution time estimate for the given set of clusters is computed in a

manner resembling classical CPM (critical path method) methodology. Forward and

backward passes through the graph are used to find the earliest and latest start times

for each node, where the communication costs between nodes in separate clusters are

included. However, this procedure differs from the CPM techniques in that nodes in

the same cluster are constrained to be executed sequentially on the same processor.

50

To enforce this constraint, the algorithm sorts the nodes in each cluster in increasing

order of their latest starting times and appends additional precedence constraints to

ensure this ordering. This approach is in accordance with Jackson's rule for schedul

ing nodes accordingto nondecreasing deadlines.

When the list of APEG arcs is exhausted, a processor assignment phase uses a

modified list scheduling approach to map the finished clusters to the physical proces

sors. The procedure temporarily shifts each unassigned cluster onto each of the pro

cessors in turn and estimates the parallel execution time in each case. The cluster is

mapped onto the processor which yields minimum PARTTME. The internalization

approach is motivated by the observation that if two nodes are assigned to the same

processor in the infinite processor case, they should also be assigned to the same pro

cessor in the finite processor case.

Simulated Annealing

Simulated annealing is an optimization technique which mimics the annealing process

by which a physical system reaches a state with globally minimum energy [Kir83]

[Haj85]. Annealing is the process of melting a substance and then decreasing the tem

perature very slowly, spending a lot of time at temperatures near the freezing point to

allow the substance to form a regular, stable, crystal lattice. In simulated annealing,

an objective, or cost function is used to measure the degree of "goodness" of some

property of the system at each state, and a temperature schedule whichdecreases very

slowly (usually logarithmically) is used to determine the probability of accepting a

step to aneighboring state which worsens the objective function. If V(s) is the value

of the minimization objective function at the current state, and V(sO is the value at a

potential next state, then this new state is accepted with probability

51

/>*=exp (2.7)

This means that steps in the direction of improving the objective function are always

accepted, while steps in the direction to worsen the objective function are taken with a

probability which decreases as the temperature decreases.

This procedure should be contrasted with the classical iterative improvement tech

nique, in which movement to aneighboring state is only permitted if the new state

shows an improvement in the objective function over the previous state. By only

allowing steps in the direction ofincreasing improvement, this procedure tends to get

stuck in local minima, instead of finding the global minimum. The physical analogy

of this technique is the rapid quenching ofamaterial from ahigh temperature down to

T =0, whichusually results in ametastable final state.

A limitation of the simulated annealing process is that it executes very slowly due to

the logarithmic temperature schedule. It should therefore only be used in applications

in which computation time is not animportant issue.

A simulated annealing scheduling scheme proposed by Bollinger and Midkiff [B0I88]

generates moves by pairwise exchange of nodes. This algorithm first applies a process

annealing phase to assign nodes to processing elements in a multicomputer, then uses

a connection annealing phase to schedule traffic onto interconnection links. The cost

function used in the process annealing phase is £[wft xd(PEs ^PE^)], where w:k

represents the number of data units passed between nodes j and k, and d(PEj , PEk)

represents the distance in hops between processing elements j and k. At very low

temperatures, the cost function is modified slightly so that moves which increase

max [Wjk xd(PEj ,PEk)] are rejected. Next, using the node mapping computed in
j t*

52

the process annealing stage, the connection annealing phase attempts to route each

connection using using a cost function which is the sumof the traffic intensities in the

network links supporting the connection. This work only addressed the limited case

inwhich the number ofnodes did not exceed to the number of processing elements.

Another communication traffic scheduling scheme was proposed by Bianchinni and

Shen [Bia87], which used a traffic smoothing algorithm based on a fluid flow model

incorporating link capacities and traffic flows. A weakness of both communication

traffic scheduling methods is the dichotomy introduced in first scheduling nodes onto

processors and then scheduling communications onto links. Both works acknowledge

that the assignment of nodes to processors has a substantial impact on the ease of

traffic scheduling. Furthermore, neither of these techniques handle contention for

shared communication resources.

2.3. THE SCHEDULING PROBLEM

The problem we are addressing is the nonpreemptive compile-time scheduling of pre

cedence graphs onto multiprocessor architectures, as shown in figure 2-7. Our

scheduling goal is to minimize the makespan when all the interprocessor communica

tion overheads are included, which is equivalent to maximizing the speedup. This

scheduling problem is NP-complete in the strong sense, even if there are an infinite

number of processors available [Sar89].

The input to the scheduling algorithm is an acyclic precedence expansion graph

(APEG) G = {N,A}, where N is a set of nodes (tasks) {TV,-} i = 1... n which represent

program computations, and A is the set of directed arcs {A(j} which represent both

precedence constraints and data paths. Each arc Atj carries label D^ which specifies

PO Pi

P3 P4

P6 P7

P2

P5

P8

53

ACYCLIC PRECEDENCE

EXPANSION GRAPH

MULTIPLE PROCESSOR

ARCHITECTURE

Figure 2-7. The scheduling context

the amount of data (in bits, bytes, or words) that fy passes to Nj on each invocation.

These graphs can derived from algorithmic descriptions which fit the synchronous

data flow model using the algorithm given in Appendix L We assume without loss of

54

generality that each APEG has exactly one terminal node. This condition can be

enforced by connecting multiple endnodes to a dummy terminal node Nt. The target

architecture contains a set of potentially heterogeneous processors {Pk} k = 1 ... p.

We assume that a fairly accurate estimate of the execution time of nodeiVt- on every

processor Pj, E(N(, Pj), is available atcompile-time for each node-processor pair. If

node Nt cannot beexecuted on processor Pj, the execution time E(Nt, PA is infinite.

For scheduling purposes, we assume that each node is indivisible; no attempt will be

made to utilize intranode parallelism.

The scheduler is part of an interactive design system for digital signal processing

(DSP) called Gabriel [Bie90], which allows rapid prototyping of new DSP algorithms

andarchitectures. A block-diagram of this design environment is shownin figure 2-8.

Using a graphical userinterface, an algorithm designer canquickly construct new sig

nal processing algorithms by connecting together blocks which represent DSP func

tions. These blocks range in granularity from simple operators such as adders or mul

tipliers, to higher level functions such as FFTs or FIR filters, to complex signal pro

cessing subsystems such as filter banks or speech coders. After specifying the desired

architecture (using a set of parameters which capture its characteristics), the user

invokes the scheduler, which responds with feedback information concerning the

makespan, the degree of processor utilization, and the time spent in interprocessor

communication. The designer can use this information to answer questions such as:

"Can this algorithm be run in real-time on this architecture?",
"Are more processors necessary?",
"Are there too many processors?",
"Is more interprocessor communication bandwidth needed?",
"Would adifferent processor topology bemore effective?",
"Can be the problem be scaled upward in size?",
"Would adifferent implementation of this algorithm bemore efficient?",
"Is adifferent algorithm needed for this problem?"

DSP ALGORITHM

oo

PROCESSOR
ARCHITECTURE

SCHEDULER

MODIFY
ALGORITHM

FEEDBACK INFORMATION

DSP SYSTEM

REDESIGN

DONE

MODIFY
ARCHITECTURE

55

Figure 2-8. The DSP prototyping environment

Both the algorithm and architecture can be successively refined in several design itera

tions to maximize performance.

56

This environment imposes several stringent constraints on the permissible scheduling

strategies. First, the interactive nature of the design approach requires that the

scheduling technique execute rapidly. Thedesigner should nothave to wait more than

a few minutes for feedback information, which necessitates the useof a fast heuristic

technique. Second, the scheduling technique must be flexible enough to handle

mixed-granularity task graphs. This requires an ability to adjust the tradeoff between

the amount of parallelism utilized and the amount of communication overhead

incurred. Third, the scheduling scheme must be adaptable to the diverse architectures

encountered in digital signal processing. Fourth, both the communication delay and

resource contention aspects of the interprocessor communication overhead must be

accounted for to permit maximum hardware efficiency.

DYNAMIC LEVEL SCHEDULING

/ have gotten a lot ofresults. I know50,000 things that won't work.

— Thomas A. Edison

Our first compile-time scheduling heuristic, called dynamic-level scheduling, is

based on an extension of the classical HLFET list scheduling strategy. This technique

assumes that the processor architecture contains dedicated communication hardware

so that communication and computation can be overlapped. It accounts for interpro

cessor communication overheads and constraints imposed by the interconnection

topology, so that shared resource contention can be avoided. It is applicable to

heterogeneous-processor architectures, which are often encountered in signal process

ing because of the extreme computation demands of many DSP applications.

58

3.1. HANDLING INTERPROCESSOR COMMUNICATION

If interprocessor communication can be obtained for free, all available task parallel

ism can be utilized without cost. That is, given enough processors, an optimal

schedule can always be constructed by invoking all simultaneously executable nodes

on different processors. The reality of nonzero IPC cost induces a tradeoff between

the amount of parallelism utilized and the amount of communication overhead

incurred. Addressing this tradeoff requires consideration of the task grain size, the

amount of parallelism in the graph, the number of processors in the architecture, the

processor interconnection topology, the transmission and synchronization delay over

heads, and the possibility of communication resource contention.

3.1.1. The IPC Model

To accommodate the multitude of different interprocessor and processor-memory

interconnection topologies, we use a single, flexible communication time model. The

time C needed for communication is expressed as

C=(x+yD)®zH (3.1)

where D is the amount of data needed to be transferred (in bits, bytes, or words); H is

the number of interprocessor or processor-memory hops between source and destina

tion; x, y, z, and k are constants which specify the processor topology. The notation

© signifies a special operatordefined as follows:

© = <
x if k = 1

This operator allows H to beincorporated as an additive oramultiplicative term. We

give a few examples below to demonstrate the wide applicability of this model.

59

Single-bus shared memory multiprocessors can be modeled using constant x to

represent the time needed to obtain and release the bus, constant y to reflect the time

necessary for transmission and synchronization, andsetting constants z andk to zero.

Message-passing multicomputers which propagate datagrams in a store-and-forward

manner incorporate the number of interprocessor hops is a multiplicative termin the

communication time (k=l). In this scenario, x models any constant header processing

time, y represents transmission time, and z is set to unity. Multicomputers using vir

tual cut-through or wormhole routing immediately forward data at intermediate pro

cessing elements as soon as it is received, making the number of hops an additive term

(k=0). In this situation, x represents virtual circuit set-up and tear-down time, y

reflects the number of channel cycles to transmit a single unit of data, and z represents

any forwarding delay at intermediate processors.

In large-scale shared memory multiprocessors, resource reservation androuting canbe

performed statically to remove the possibility of blockingand the need for intermedi

ate switch buffering, so that the number of hops is an additive term (k=0). Again, x

models any constant setup time, y represents transmission and synchronization over

head per data unit, and z reflects the delay through each switching node.

The dynamic level scheduling approach can actually target architectures which are not

characterizable using this communication model. Multiprocessors with multiple

busses, multicomputer networks with heterogeneous interprocessor links, and even

topologies which mix the architectural classes described above can be accommodated.

The requirement is that enough information must be supplied to allow the communi

cation time between every pair of processors to be calculated deterministically if

resource availability is assured.

60

3.1.2. Communication Scheduling

Scheduling in the presence of IPC contains two main aspects: assigning processors to

computation nodes (mapping), and allocating communication resources for interpro

cessor data transfers (traffic scheduling). As mentioned earlier, these two problems

have traditionally been dealt with separately. A task allocation algorithm first assigns

nodes to processors in accordance with some objective function, and then a routing

algorithm performs interprocessor traffic scheduling upon the specified node mapping.

This separation is impractical, because the ease with which the traffic scheduling can

be performed is directly dependent on the properties of the mapping; the best isolated

assignment of nodes to processors is invariably suboptimal after simultaneous con

sideration of both communications and computations.

By addressing both issues concurrently, our scheduling strategy averts overloaded

communication resources by adjusting the node-processor mapping accordingly. Just

as computations are scheduled upon processors, communications are scheduled upon

IPC resources by dedicating the resources used in a data transfer for the duration of

the transmission. With guarantee of resource availability, the communication time

can be calculated deterministically (or upper bounded) using the locations of source

and destination processors, the amount of data to be transferred, and the characteris

tics of the communication architecture. A routing algorithm, employed by the

scheduler, uses knowledge of previous resource usage to reserve a path between

source and destination processors for the duration of this time window.

For illustrative purposes, consider the scheduling of the APEG from figure 3-1 onto

the target architecture shown in figure 3-2, which consists of fourprocessors intercon

nected through four full-duplex interprocessor links. For simplicity, assume that the

61

time needed to communicate D units of data between any two processors is merely D

time units, regardless of the distance between them. The upper chart in figure

3-3 shows a possible scheduling of nodes onto processors, while the lower chart in

figure 3-3 shows the corresponding scheduling of communications onto links. This

simultaneous consideration of spatial (routing) and temporal (scheduling communica

tion time windows) aspects of IPC eliminates the possibility of shared resource con

tention, which ensures deterministic behavior.

Figure 3-1. An example APEG

Figure 3-2. A four-processor target architecture

Execution Times

A 3

B 6

C 5

D 3

E 5

F 2

Q 4

H 4

1 5

J 3

k 6

L 4

M 5

N 5

o 3

p 6

Pi

62

6 8 10 12 14 16 18 20 22

6 8 10 12 14 16 18 20 22

Figure 3-3. Scheduling of nodes onto processors and communication onto links

To permit wide retargetability without sacrificing efficiency, we divide the scheduling

algorithm into two components. The first component contains the fixed, architecture-

independent scheduling routines, while the second component contains the

architecture-dependent communication resource scheduling and routing routines.

This division permits special-purpose routines optimized for a particular architecture

to be employed within the second component. A specific interface is defined at the

boundary, which allows the topology dependent sections to be interchangeable, as

illustrated in figure 3-4. This design makes the scheduler well-suited for an object-

oriented programming environment. Each "architecture object" contains its own com

munication resource scheduling and routing routines.

3.2. DYNAMIC LEVELS

We first derive dynamic levels for the homogeneous processor case. At each schedul

ing step, a list scheduling algorithm performs two tasks. It selects the next node to

Topology
Indapsndsnt

i
C

HI
Ring

l:

j
iMash

Sharod
Bus

Tim

Banyan
Natworfc

63

Figure 3-4. The processortopology dependentportions are interchangeable

schedule, and chooses the processor to execute the node on. The HLFET algorithm

makes these selections independently at each step, causing poor performance in the

presence of IPC. Whereas the static levels used in HLFETare fixed, we introduce a

new quantity whosevalue changes throughout the scheduling process. This dynamic

level, denoted DL(Ni>Pji'L(t))i reflects how well node Nt and processor Pj are

matched at state £(r), where X(r) encompasses both the state of the processing

resources (previously scheduled nodes), and the state of the communication resources

(previously scheduled data transfers) at global time t We first define

DA (Ni , Pj , Z(r)) to bethe earliest time that alldata required bynode fy is available

at processor Pj at state 2(f). This quantity, calculated within the topology-dependent

section of the scheduler, represents the earliest time at which all data transfers to node

Ni from its immediate predecessors can be guaranteed to be completed with all com

munication resources reserved in advance. Thedynamic levelis nowexpressed as

DL(Ni,Pj,Ht)) = SL(Ni) - max[r 9DA(Nt ,/>,• ,2(r))]. (3.3)

64

At each step, the ready node and available processor which maximize this expression

are chosen for scheduling.

The dynamic level has a straightforward interpretation. The maximization term

represents the earliest time that node Nt can start execution on processor Pj, because

the node cannot start execution until the current time, and it cannot be invoked until

all the data from its predecessors has been received. So the dynamic level

DL (Nt ,Pj , Z(r)) is the difference between the static level of node N(and the earliest

time the node can start execution on processor Pj. This expression, which simultane

ously incorporates both execution and communication time aspects, is intuitively

appealing. When considering prospective nodes for scheduling, a node with large

static level is desirable because it indicates a high priority for execution. When com

paring candidate processors for assignment, a later starting time is undesirable

because it indicates either abusy processor or along interval required for interproces

sor communication. Processors which incur a large amount of IPC are penalized by a

later starting time, which lessens the dynamic level. The algorithm evaluates dynamic

levels (which may be negative) over all combinations of ready nodes and available

processors to find the best node-processor match for scheduling at the current state.

We designate this approach the Highest Dynamic Levels First with Estimated Times

(HDLFET) algorithm. This method uses the classical list scheduling formulation with

dynamic levels.

To gain an indication of the performance improvement obtainable through dynamic

levels, we used the random graph generator given in Appendix II to construct task

graphs containing between 50 and 250 nodes, and scheduled these graphs onto a 16-

processor mesh. Node execution times and nearest-neighbor communication times

65

were chosen randomly from the same uniform distribution. We investigated several

options for node and processor selection. The first method initially selects the avail

able processor with smallest index and then chooses the ready node which maximizes

the dynamic level with this processor. The second method initially selects the ready

node with highest static level and chooses the available processor maximizing the

dynamic level with this node. The third method examines all possible combinations

of ready nodes and available processors and chooses the node-processor pair maxim

izing the dynamic level. In each case, we compared the percentage improvement in

speedup obtained over the HLFET approach using independent node and processor

selection. Communication costs were included in all cases.

The curves in figure 3-5 show speedup improvement compared against graph parallel

ism, where graph parallelism is measuredas

% Improvement

1 I I I I I L

4 6 8 10 12 14 16 18 20 22 24

Graph Parallelism

Figure 3-5. Percent improvement in speedup of HDLFET over HLFET

66

IS&wZ*™ 0-4)
j

This is a lower bound on the number of processors required to execute the graph in

time bounded by the critical path (the longest path from any initial node to any termi

nal node) if IPC costs are not included. Each point in figure 3-5 represents the aver

age percentage improvement in speedup overHLFET obtained for all graphs with the

specifiedamountof graph parallelism.

The initial processor selection technique exhibits littleimprovement when the amount

of graph parallelism is small compared to the number of processors, but starts to gain

improvement rapidly as the amount of parallelism increases. This phenomenon can

be simply explained by examining the number of nodes ready for execution at each

step. When the number of processors far exceeds the graph parallelism, there are very

few ready nodes at each scheduling step, in many cases only a single node. By ini

tially selecting the processor, the algorithm forces this single ready node to be exe

cuted on the processor, and therefore performs the same steps as the HLFET scheme

using independent node and processor selection. As the amount of graph parallelism

increases, the number of ready nodes at each step increases, permitting a better match

between nodes and processors.

Conversely, the initial node selection technique exhibits large improvement when the

number of processors exceeds the amount of graph parallelism, but tapers off as the

parallelism is increased. This can be accounted for by considering the available pro

cessors at each step. When the number of processors far exceeds the graph parallel

ism, there is little contention for processors. Each node is able to select its "preferred"

processor which incurs little communication overhead out of the available processor

list As the amount of parallelism increases, parallel paths in the graph begin to share

67

processing resources, and scheduling steps may have multiple ready nodes desiring a

common processor. As processors are successively removed from the available pro

cessor list, the node with highest static level is often forced to be executed on one of

the remaining available processors for which excessive IPC is incurred. The perfor

mance degradation is exacerbated as the amount of parallelismis further increased.

Selecting the highest dynamic level ready-node, available-processor pair out of all

combinations retains good improvement throughout the entire range, increasing

slightly as the amount of graph parallelism increases. This method does not incur the

increased-parallelism performance degradation exhibited by the initial node selection

method because it has more flexibility in choosing nodes. At any step, a node which

does not have the highest static level may form the best match (in dynamic level) with

an available processor, and therefore be selected for scheduling. Instead of forcing

execution on unsuitable processors, this strategy allows a ready node to wait until a

successive time step when its desired processor is again available. This method

demonstrates superior performance over all the other techniques, attaining speedup

improvements of over 50% in comparison with the HLFET algorithm. However, this

performance is attainedat the priceof addedcomputational complexity.

3.2.1. Processor Selection Revision

While the use of dynamic levels significantly improves performance, the HDLFET

algorithm still exhibits the list scheduling deficiency of being unable to idle "avail

able" processors. Consider thegraph shown in figure 3-6, and for simplicity, assume a

two-processor systemwith communication model C =D, so that the number of cycles

needed for IPC equals the number of data units. The optimal schedule executes every

node on a single processor while idling the other processor completely, a solution

Execution Times

A 6

B 3

C 4

D 2

E 3

F 5

68

Figure3-6. A fine-grained precedencegraph

which is unattainable under the current list scheduling methodology. This inability to

idle processors is an inherent flaw in the algorithm, which requires that all available

processors be assigned nodes for execution before the global clock can be updated to

replenish the supply. This philosophy, which attempts to exploit as much task paral

lelism as possible, is no longer valid in the presence of IPC, and causes poor schedul

ing performance in a mixed-grain environment.

To remedy this difficulty, we alter the fundamental operation of the algorithm by

removing the global timeclock used toupdate the current time ateach scheduling step.

There is no difficulty with causality because scheduling is performed atcompile-time,

not at run-time. Since processors are no longer classified as being "busy" or "avail

able", all processors can be considered candidates for scheduling at each step. This

allows the same processor to be chosen in consecutive scheduling steps, and permits

some processors to have nodes scheduled far in advance of other processors. This

revision necessitates a few changes in the dynamic level. Since the notion of a global

time no longer exists, the state of the processing and communication resources 2(r)

becomes 2. We let TF(Pj, X) represent the time that the last node assigned to the jth

processor finishes execution and redefine the dynamic level as

DL(NhPj,D = SL(Ni)-mzx[DA(NitPj,i:),TF(Pj,I)]. (3.5)
The revised algorithm, which operates without a global clock and uses the dynamic

69

level shown in (3.5) is the Dynamic Level Scheduling (DLS) algorithm.

To illustrate the effect of the global clock removal more clearly, we contrast the

scheduling steps taken by the HDLFET algorithm and the DLS algorithm using the

APEG shown in figure 3-7. This example is scheduled onto a two processor system

where the processors are assumed to be interconnected by a full-duplex link. Both

scheduling methods will select a node and processor simultaneously using dynamic

levels at each scheduling step. As shown in figure 3-8, the scheduling steps taken by

the two approaches start to diverge after nodes A and B have been scheduled on PO

and nodes E and F have been scheduled on PI. At this point, the HDLFET

algorithm's global clock is at time 5, when PI is the only processor available for

scheduling, and nodes C, G, and H are ready for execution. After evaluating dynamic

levels for these three nodes with PI, the algorithm finds that node C forms the best

match with PI. It therefore schedules node C on PI, schedules communication A to C

on the link from PO to PI in the interval [3,8], and updates the global clock to time 6,

when PO becomes available. After evaluating dynamic levels for nodes G and H with

PO, the algorithm schedules node H on PO and communication F to H on the link from

PI to PO in the interval [5,9]. The global clock is updated to time 11, freeing PI for

Figure 3-7. An example APEG

Execution Times Static Levels

A 3 A 13

B 3 B 10

C 3 C 10

D 7 D 7

E 2 E 11

F 3 F 9

Q 5 G 5

H 6 H 6

With Global Clock

0 2 4 6

A, I

2 4 6 8 10

a
2 4 6 8 10 12 14

fl

E I P •

2 4 6 8 10 12 14

ihf •£_L

2 4 6 8 10 12 14 16 18 20 22
A

XI 2_I

70

D 2

Wl

4

Itho

6

utGlc

8

tbalC

10

I

10

|

lock

PO A I B. I
P1 E I F |

60 2 4

PO A I B I c

PI E I F I

6 8D 2 4

PO A I B, I C

P1 E | F | H

D 2 4 6 8 10 12 14 16

6

PO A I B | C I D
PI E | F | H

12 14 1D 2 4 6 8 10

PO A LB, I C I D
P1 E I F | H Q

Figure 3-8. Scheduling progression with andwithout the global clock

the scheduling of either node G or D. Although node D has higher static level than

node G, it has a lower dynamic level with PI atthe current state. The input data from

nodeB cannot be guaranteed to be available until time 15, because the previous com

munication from node A to node C has reserved the link from PO to PI until time 8.

Node G is therefore scheduled on PI. Finally, node D is scheduled on P0, with com

munication from C to D being scheduled in the interval [11,15] on the link from PI to

P0. This approach yields a makespan of 22 time units.

In contrast, after nodes A, B, E, and F have been scheduled, the DLS algorithm evalu

ates dynamic levels for nodes C, G, and H with both processors P0 and PI, and dis

covers that node C and P0 form the best match. Node C is subsequently scheduled on

P0 and node D is immediately released into the list of ready nodes even though it can

not be executed until time. 9. Next, after evaluating dynamic levels for each of nodes

D, G, and H with PO and PI, the DLS approach selects and schedules node H on PI.

The final two steps schedule node D on P0 and node G on PI, which results in an

71

optimal schedule with makespan 16. Since additional processors are incorporated

only as they are needed, the DLS approach constructs schedules which exhibit a

natural "clustering" of nodes which communicate heavily, without sacrificingefficient

use of the communication resources.

The performance curves in figure 3-9 show the percentage improvement in speedup

obtained over HLFET for both the HDLFET and DLS algorithms. While the two

methods exhibit comparable performance at modest levels of graph parallelism, the

DLS approach exhibits sharply increasing performance as the amount of parallelism

increases, displaying average speedup improvements exceeding 75% over the HLFET

algorithm. This illustrates its enhanced ability to assign each node its "preferred" pro

cessor. Notice that the DLS algorithm using initial node selection does not exhibit the

performance degradation displayedby the HDLFET approach as the graph parallelism

increases, but rather exhibits nearly equal performance as simultaneous node and

% Improvement
80

70

60

50

40

30

20

n—i—i—i—i—i—i—i—i—T

— HDLFET Algorithm, Select Together
— DLS Algorithm, Select Node First
— DLS Algorithm, Select Together.

I I I I 1 I I L

2 4 6 8 10 12 14 16 18 20 22 24

Graph Parallelism

Figure 3-9. Performance improvement in speedup over HLFET

72

processor selection. A likely explanation is that the greater freedom in processor

selection allows the same scheduling steps to occur in these two cases, but in a dif

ferent order. In practice, we found the speedup improvement to be even higher.

When scheduling signal processing algorithms onto a four-processor shared-memory

multiprocessor, the DLS algorithm often exhibits speedup improvements exceeding

100% when the parallelism greatly exceeds the number of processors. The strength of

the DLS algorithm lies in its ability to effectively overlap communication with com

putation. Consider the example shownin figure 3-10, which will be scheduled onto a

4-processor single shared-bus architecture. If we assume that the time required to

communicate each data unit is five time units, the DLS algorithm produces the

optimal schedule shown at the top of figure 3-11. The communication schedule,

shownat the bottomof figure 3-11, removes the possibility of contention for the bus.

5

5

5

Figure 3-10. A graph example

4£>

4>

<D)

*(H

x 1

p3

Bus

10 15 20 25

A Q R S T

E F B C D

I J K G H

M N 0 P L

10 15 20 25

A-B F-G K-L 1••

73

Figure 3-11. Computation and communication schedules

3.2.2. Algorithm Streamlining

The dynamic level scheduling algorithm can be streamlined to provide faster execu

tion without significant degradation in performance.

Initial Node Selection

In addition to the performance gain attained through removal of the global clock, the

ability to gain analogous performance using initial node selection yieldsa big savings

in execution time because examination of all node-processor combinations is no

longer necessary. After investigating several methods for initially selecting a single

ready node, we narrowed the choicesdown to the following two possibilities:

max {SLi + C^fmax (Dti)]}

max (SLi+^C^Dja)}
1 k

(3.6)

(3.7)

DH represents the number of data units passed from node k to node i, while C^D)

denotes the time needed to communicate D data units between adjacent processors.

74

The first method selects the ready node which has the largest sum of the static level

and the communication time to transfer the largest number of data units passed into

the node from any immediate predecessor. The second method selects the readynode

which maximizes the sum of the static level and the sum of the adjacent processor

communication times for each data transfer from the ready node's predecessors.

Equation (3.6) performs slightly better than equation (3.7). The maximum communi

cation time is more important than the sum of the communication times, presumably

because it may be possible to avoid only one of the IPC costs if the predecessors are

located on different processors. In addition, the DLS algorithm is particularly effec

tive at overlapping communication with execution of other nodes which can be

immediately invoked, thereby obtainingthe other communications at virtually no cost

Limiting Processor Selection

To further decrease the time required for scheduling, we can reduce the number of

processors for which dynamic levels are evaluated with the given node. For many

multicomputer networks (e.g. mesh, hypercube), a scheme based on a center of mass

principle proves to be effective. This method identifies the processor locations for

each predecessor of the candidate node to be scheduled, and obtains the number of

data units to be communicated in each transfer. Using the predecessor processor posi

tions in an appropriate coordinate system, andthe numberof data units as a weighting

function, the technique calculates the center of mass of the data and rounds it to the

nearest processor location. It then limits candidate processors to those within a fixed

radius of this center of mass processor, with a few processors located outside this

range included to promote spreading of the load. Consider the example shown in

75

figure 3-12, in which the partial graph shown at the left is being scheduled onto the 16

processor mesh on the right of the figure. Nodes A, B, and C have already been

scheduled, with their processor locations indicated on the mesh diagram, and the prob

lem is to find candidate processors for node D. We arbitrarily designate the processor

at the lower left corner of the mesh to be the origin. When considering the predeces

sors of node D, we find that there are 10 data units coming from node A on processor

(1,1), 2 data units coming from node B on processor (0,3), and 6 data units coming

from node C on processor (1,3). Calculating the center ofmass of the data, we find

QCcm , Ycm) =
10(l)+2(0)+6(l) 10(l)+2(3)+6(3)

10+2+6 10+2+6

All processors within two hops of processor (1,2) are then considered candidates for

scheduling node D. Intuitively, the center of mass calculation compels each predeces

sor processor to pull the candidate node toward it, with an attractive force proportional

to the amount of data communicated. While this technique is not intended as a pana

cea for all architectures, it is reasonable to assume that similar techniques to limit pro-

=(if'f)=(1-2)(3-8)

C«nt«r

of mass

0 0-1—0 0

o o o o
Origin

Figure 3-12. Center of mass example

76

cessor selection can bedeveloped for each topology with minor performance penalty.

The diagram in figure 3-13 illustrates the operations performed by the streamlined

algorithm ateach scheduling step, where each operation is classified as residing in the

fixed or topology-dependent component The fixed component begins by selecting a

single node according to method 1 in the previous section. It passes the chosen node

to the topology dependent section, which returns a list of candidate processors for

scheduling this node. The topology independent section evaluates dynamic levels for

each processor using the tentative routing and resourcereservation routines contained

in the topology dependent section. After obtainingthe processorwhich maximizes the

dynamic level, the algorithm schedules the node, invoking the permanent routing and

resource reservation routines. The simplicity of this scheme permits execution speeds

suitable for a prototyping environment. The current lisp implementation schedules a

200 node graph onto 16 processors in less than a minute on a Sun-3/60 workstation.

FIXED TOPOLOGY DEPENDENT

y'

Select Single Node •*
** Select Processors

A

Evaluate Dynamic Levels •
for each Processor i

Tentative Routing and
- Resource Reservation

1 •

Comparator

(N..P,
'

Schedule NjonPi 1 Permanent Routing and
Resource Reservation

Figure3-13. The algorithm specification

77

3.3. HETEROGENEOUS PROCESSOR EXTENSION

The presence of heterogeneous processors further complicates the efficacious match

ing of nodes with processors because it may be advantageous to separate nodes which

lie on an entirely sequential path onto different processors to exploit specialized

hardware features. In addition to the tradeoff between exploitation of parallelism and

IPC cost, this environment introduces a new tradeoff between varying processor com

putation speeds and IPC cost

The dynamic level expression requires several modifications to accommodate a

heterogeneous processing environment. Since the static level SL(Ni) loses its mean

ing when execution times vary between processors, we define the adjusted median

execution time of node Nh denoted £*(/Vt), to be the median of the execution times

of node Ni over all the processors, with the stipulation that the largest finite execution

time is substituted if the median itself is infinite. SL* (N^ correspondingly denotes

the static level of node fy, calculated using these adjusted median execution times.

To account for the varying processing speeds, we define

A(NhPj) =E*(Ni)-E(NhPj). (3.9)
A positive A(NitPj) indicates that processor Pj executes node fy more rapidly than

most processors, while a negative A(NiyPj) indicates the reverse. By incorporating

these terms, our first extended dynamic level DLi(NitPj, 2) quickly follows:

DLxW.Pj.H =SL*(Ni) - m3x[DA(NiyPj1Il)iTF(PjtIl)] +A(iV(,/>p.lO)
The static level component indicates the importance of the node in the precedence

hierarchy, giving higher priority to nodes located further from the terminus (in

adjusted median execution time). The maximization term reflects the availability of

78

the processing and communication resources, penalizing node-processor pairs which

incur large communication costs. The delta term accounts for the processor speed

differences, adding priority to processors which execute the node quickly, and sub

tracting priority from processors which execute it slowly. Note that when all proces

sors are identical, A(Ni9Pj) =0 and 5L*(iVl) =5L(iV£), causing this formula to con

verge to thehomogeneous processor dynamic-level expression.

The chart in table 3-1 shows the mean percentage speedup improvement obtained

from using extended dynamic level DLi(jNi9Pj, 2) for node and processor selection

over the classical HLFET method using static levels. We obtained these values from

scheduling 100 randomly generated graphs onto a 16 processor mesh, where the

graphs were constructed using the random graph generator in Appendix n. The node

execution times and the amount ofdata transferred between nodes were uniformly dis

tributed over [5,15], and the speed ratio between fastest and slowest processors was

16. To simulate the effects of special hardware features, we constrained several ran

domly chosen nodes to be executed on a small subset of processors. We investigated

three cases: when a single ready node maximizing equation (3.6) was considered for

scheduling at each step, when the three ready nodes with highest values of equation

(3.6) were considered at each step, and when all ready nodes were considered at each

Percentage 1mprovement in Speedup Over PDLFET

Algorithm Mean Std. Deviation Minimum Median Maximum

DL1,1 Node 125.33% 54.02% 59.24% 111.35% 340.09%

DL1,3 Nodes 127.71% 48.08% 66.96% 113.04% 293.16%

DL1, All Nodes 132.58% 50.81% 70.07% 118.64% 355.45%

Table 3-1. Speedup improvements in using DLi(N,-,Py-,X) for node and processorselec
tion

79

step. The performance increases slighdy with the numberof nodes consideredat each

step. As before, these experiments using randomly generated graphs should be con

sidered indicative, rather than evidential, of performance with practical applications.

3.3.1. Descendant Consideration

This natural dynamic level extension overlooks several subde effects introduced when

different types of processors are present Although DL i(Nt, Pj, Z) indicates how well

node fy is matched with processor Pj, it fails toconsider how well the descendants of

Nt are matched with Pj. Consider the simple example shown in figure 3-14, inwhich

node A passes 20 dataunits to node B. Since P0 executes node A faster thanP lt

DLiiA.PoH > DL^A.P^Z), (3.11)

causing node A to be scheduled on P0. However, because node B cannot be executed

on Pq, the scheduling of node A on P0 forces an interprocessor communication of 20

data units, which we assume for simplicity to take 20 time units as shown in the top

diagram of figure 3-15. If descendant B had been considered during the scheduling of

node A, both nodes would have been scheduled on Pit as shown in the bottom

diagram in figure 3-15. This example illustrates that it is not always advantageous to

schedule a node on the processor which executes it most rapidly, due to this descen

dant effect.

®-=-*®
Execution Times

PO PI

A 5 8

B 00 7

Figure 3-14. A descendant consideration example

Po

Pi

Po

Pi

A 1

A

10

B

25

^wm-ttm

B

15
Til

32
^3

80

Figure 3-15. Schedules for possible placements of nodes A and B

For each node Nh we consider the descendant to which Nt passes the most data,

designating this node as D (N^, and the amount of data passed between them as

d(Ni,D(Ni)). Recalling that E[D(Ni)9Pj] indicates how quickly node D(Nt) exe

cutes on processor Pj, we define another term F[NitD(Ni),Pj] to indicate how

quickly D(Ni) can be completed on any other processor ifTV",- is executed on Pj:

F[Ni,D(Ni\Pj] = Cadj[d(NitD(Ni))] + mnE[D(Ni)tPk]. (3 12)
k * j v * /

This is a lower bound on the time needed to finish execution of D (Ni) on any proces

sor other than Pi after N-t finishes execution on Pj. We then define a descendant con

sideration term as

DC(Ni,PjfId =E*[D(Ni)]-rmn{E[D(Ni\PjlF[NilD(Ni),Pj]}t (3.13)
and update the dynamic level expression to

DL2(Ni,Pj,L) = DLx(ffhPj,Ii + DC(Ni,PjyZ). (3.14)

The descendant consideration term is the difference between the adjusted median exe

cution time of D (Ni) and a lower bound on the time required to finish execution of

D(N^ after Nf finishes execution on Pj. This indicates how well the "most expen

sive" descendant of node Nt matches up with processor Pj, if Nt is scheduled on Pj.

If Pj executes D(Nt) more rapidly than most processors, DC(NilPj,'L) becomes

81

E*[D(Ni)] - E[D(N^Pj], causing an increase in DL2(Ni,Pj,I). Conversely, if

Pj executes D(Ni) very slowly compared with most processors, DC(NitPj,I)

becomes negative, causing a decrease in dynamic level. If E[D (ty), Pj] is equal to

the median execution time of D(Nt), the descendant term is appropriately zero. The

term is also zero when all processors are homogeneous, reflecting the fact that all pro

cessors can execute the descendant equally well.

The percentage improvement in speedup over HLFET in using DL2(Ni,Pj,I,) for

node and processor selection is shown in table 3-2 for the same three cases. When

using DL2, the mean and median performance improve in every case (1 node, 3

nodes, All nodes) over the corresponding measurements for DL1, reflecting the impor

tance of descendant consideration.

Note that if JVj is scheduled on processor Pj, its "most expensive" descendant D (N^

is not necessarily scheduled on the same processor. One reason for this is that D (Nt)

may itself have adescendant which executes slowly onPj. Consider the graph shown

in figure 3-16. Through evaluation of DL2(A,Pj,'L) for each processor, the pro

cedure determines that node A prefers P0. The descendant consideration term is zero

in this case, because node B executes equally quickly on every processor. However,

the immediate scheduling of node B onto P0 leads to an inefficiency because node B's

Percentage 1improvement in Speedup Over HLFET
Algorithm Mean Std. Deviation Minimum Median Maximum

DL2,1 Node 129.29% 51.90% 65.52% 112.04% 338.10%

DL2,3 Nodes 135.45% 54.97% 62.91% 121.05% 327.98%

DL2, All Nodes 138.97% 53.88% 79.44% 123.32% 333.96%

Table 3-2. Speedup improvements in using DL2(Ni*Pj, 2) for node and processor selec
tion

SH-<D-Mg)

Execution Times

PO PI P2

A 3 6 6

B 5 5 5

C 8 4 4

82

Figure 3-16. Another descendant consideration example

descendant, node C,executes slowly on P0. While node Ccould beshifted onto P1 or

P2, this incurs the communication of four data units between B and C. It is more

effective to postpone the scheduling ofBuntil its dynamic level DL2(B, Pj,X) iscal

culated, because after incorporating thedescendant consideration term for C, the pro

cedure will correctly shift node B ontoeitherPiOiP2.

The example shown in figure 3-17 illustrates another factor to account for when per

forming descendant consideration. When node A is scheduled, it will use node C in

its descendant consideration term by default. However, since node C receives more

data from node B, the processorlocation of node B will likely play a more important

role in placement of node C than the location of node A. We therefore designate node

B as the data-dominating ancestor of node C, denoting this as B -» C. If a node is

not the data-dominating ancestor of its most expensive descendant, it may not be

necessary to consider D (Ni) when scheduling Ni. To investigate this factor, we intro-

Execution Times

PO PI P2

A 3 6 6

B 5 5 5

C 8 4 4

Figure 3-17. Node B is the data-dominating ancestor ofnodeC

83

duce anadditional dynamic level DL$(Ni, Pj, £) defined as

[DL2(Ni,Pj,D if Ni ->D(Ni)
DL,(Ni, Pj, L) = DLi(Nit p Z) ehe 0.15)

The performance results using DL$(Ni, Pj, £) are displayed in table 3-3. After com

paring tables 2 and 3, the performance gain obtained using DL3 appears to be

insignificant

3.3.2. Resource Scarcity

In addition to the descendant consideration effect, a heterogeneous processing

environment also introduces a cost associated with a node not being executed on a

certain processor. This phenomenon occurs because effective processing resources

may be scarcer for some nodes than others at certain states. To illustrate this cost,

consider a situation in which an APEG is being scheduled onto a five processor sys

tem and the partial schedule at the current state £' is shown in figure 3-18. There are

two nodes left to be scheduled, M and N, whose execution times on each of the pro

cessors are shown in table 3-4 below. After evaluating dynamic levels for M and N,

the algorithm finds that both nodes would like to be scheduled on Pq at the current

state. If node M is initially scheduled on P0 in the time interval [8,12], the earliest

time that node N can finish execution is at time 16 on Pq, as shown in figure 3-19.

Percentage Improvement in Speedup Over HLFET
Algorithm Mean Std. Deviation Minimum Median Maximum

DL3,1 Node 130.38% 57.61% 63.40% 114.83% 383.42%

DL3, 3 Nodes 133.62% 50.15% 70.78% 121.21% 340.09%

DL3, All Nodes 139.37% 58.64% 76.02% 124.18% 379.17%

Table 3-3. Speedup improvements in using DL3(NitPjtI)ior node and processor selec
tion

8 10 12 14 16

Po A F

p, B G K

p2 C H

p3 D J

p4 E I L

Figure 3-18. The schedule at state £"

Node PO PI P2 P3 P4

M 4 8 5 8 8

N 4 8 oo 8 8

Table 3-4. Execution times for nodes M and N

8 10 12 14 16

Po A F M N

Pi B G K

p2 C H

Ps D J

p4 E I L

84

Figure 3-19. Initially scheduling Mon P0 gives makespan 16

However, if node N is initially scheduled on P0, node M can be scheduled on P2,

leading to the schedule with makespan 12 shown in figure 3-20. There is a negligible

cost if node M is not assigned to Pq at state L', because P2 can execute the node

almost as rapidly. Conversely, there is a large cost if node N is not assigned to Pq at

this state because Pq is the only processorwhich executes node N so quickly.

0 2 8 10 12 14 16

Pi

p2

p3

p4

A F N

B G K

C H M

D J

E I L

85

Figure 3-20. Initially scheduling Non P0 gives makespan 12

This example illustrates that while A(M,P0) and A(N,P0) account for processor

speed variations, they fail to consider howimportant it is for nodes M and N to obtain

processor Pq at the current state. Li this case, node N should have greater claim toP0,

because its cost in not obtaining it is much higher. This cost in depriving a node of a

certain processor stems from the relative scarcity of the processing resources for each

node at the current state. Its existence indicates that a more careful apportionment of

nodes to processors is necessary in an inhomogeneous environment

This situation arises at scheduling steps which have 2 or more ready nodes simultane

ously desiring the same processor. To characterize this resource scarcity cost, we first

define

DL(Ni,Pj.,Z) = maxDL(Ni,Pj,I), (3J6)

which designates Pj* as apreferred processor ofnode Ni. That is, j* is the index ofa

processor which maximizes the dynamic level with node JV,- at state S. We then define

the cost in not scheduling node Ni on its preferred processor at the current state as:

C(Ni,P,I,) = DL(Ni,Pj.,X) - max DL(Ni,Pk,2). (3.17)

C(Nj,P,I) is the difference between the highest dynamic level and the second

86

highest dynamic level for node JV,- over all processors at the current state. In other

words, if anode other than Nt is scheduled on processor Pj- at state S, the cost is the

amount ofdynamic level which is lost inhaving tosetde for the "next best" processor.

Notice that this cost is only nonzero when there is a single preferred processor P-

such that for all k * j*

DL(NhPj.,I) > DL(Ni,PktZ). (3.18)
If this condition is not satisfied, the cost is zero because even if another node is

scheduled onto one ofNt 's preferred processors, Nt will still have at least one proces

sor with which it can attain the same dynamic level (assuming communication

resources are still available). C(fy, P, E) is a function of the entire set of processors

P, because calculating this term requires evaluation of dynamic levels for node N>

over all processors at the current state. We now define a "generalized" dynamic level

as follows:

GDL(Ni,P,Z) = DL(Ni,Pr,D + C(NhP,Z). (3.19)
We now consider several ready node candidates simultaneously, and the node which

maximizes GDL(Ni,P,I) is scheduled on its preferred processor. The scheduling

results obtained using generalized dynamic levels are shown in table 3-5. GDL1

refers to the generalized dynamic level calculated using DLX as its base level. Simi

larly, GDL2 uses DL2 as its base level, andGDL3 uses DL3 as its base level. As indi

cated by these results, the generalized dynamic levels provide a significant perfor

mance improvement, especially when they are evaluated over all ready nodes. How

ever, the algorithm which considers all ready nodes at each step has complexity

O[n3p f (p)], where n is the number of nodes, p is the number of processors, and the

function used to route a path between two given processors on the targeted architec-

87

Percentage Improvement in Speedup Over HLFET
Algorithm Mean Std. Deviation Minimum Median Maximum

GDL1,3 Nodes 133.23% 49.35% 74.83% 119.12% 342.18%

GDL1. All Nodes 145.82% 55.50% 60.26% 136.42% 384.21%

GDL2,3 Nodes 138.18% 57.27% 72.26% 116.81% 364.65%

GDL2, All Nodes 145.92% 58.82% 72.41% 129.55% 389.36%

GDL3,3 Nodes 137.30% 53.48% 78.26% 122.66% 357.35%

GDL3, All Nodes 149.33% 60.41% 82.64% 132.84% 400.00%

Table 3-5. Speedup improvements in using generalizeddynamic levels

rare is O \f (p)]. Since this algorithm is too time-consuming for use in an interactive

environment, we recommend the method which chooses three candidate nodes at each

step and uses GDL2 for node and processor selection. The complexity of this scheme

is O[n3 +n2p f (p)], which can be trimmed further if the generalized dynamic levels

are only evaluated over a chosen subset of processors.

3.4. ROUTING ALGORITHMS

The scheduling of communications invoked by the dynamic-level scheduling

approach necessitates the use of routing algorithms to choose a path for data transfer

between source and destination processors. The DLS algorithm maintains a data

structure for each communication link between processors, indicating the time inter

vals the link is used. By checking these link records for each considered routing path,

the scheduler can find the earliest time that required data can be made available at its

destination processor. The routing functions lie within the topology-dependent por

tion of the scheduler, permitting a specialized routing routine to be used for each dif

ferent processor architecture. Since the routing function lies in the "critical path" of

the algorithm (it is used each time a dynamic level is evaluated), the routing pro-

88

cedures must be simple and fast We restrict our attention to shortest path algorithms,

so that the chosen path betweentwo processors always contains the minim^Tn number

of processor hops. Example routing functions are given below for the mesh and

hypercube architectures.

For two mesh processors which are separated by v vertical hops and h horizontal

hops, there are —— possible shortest paths between them. Since it is inefficient

to check each possible path, we investigated several possible routing algorithms for

this topology and found that a three-line routing procedure proves effective. This

technique only looks at paths which can be constructed using three or fewer straight

lines. The diagram in figure 3-21 shows the six possible routes permitted by the

three-line method between diagonally opposed processors in a 16-processor mesh. In

addition to being simple and quick, this method actually permits more

9—9—9—9 9—9—9—9 9—9—9—9

0—0—6—o 9—9—o—6 9—o—6—6

0—9—0—o 9—9—o—6 9—o—6—6

o—9—9—4) Q—9—i)—6 ©—c>—6—6

9—9—9—9 9—9—9—9 9—9—9—©

9—9—9—o 9—9—9—$ o—0—6—6

O—9—9—*v o—9—9—6 o—0—6—6

(b—6—6—6 <b—6—6—6 <b—6—6—6

Figure 3-21. Six possible routes between diagonally opposed processors

89

communications between different pairs of processors to take place simultaneously

than more complicated routing methods. This is due to the difficulty in fitting

together paths which have many twists and turns on the mesh simultaneously.

The processors in a hypercube can be assigned binary addresses such that adjacent

processors have unity hamming distance; that is, the addresses of nearest-neighbor

processors differ in exactly one bit position. An example address assignment with this

property is shown for an eight-processor hypercube in figure 3-22. For two processors

which differ in b bit positions, there are exacdy b! shortest paths between them. For

large b, this requires many paths to be pruned away for efficient turnaround. For this

topology, an algorithm using a priority queue proves effective in reducing the number

of search paths. This routing method maintains a queue of partial paths, sorted in

priority according to the earliest time the message can be routed through every link in

the partial path, earliest times first. Initially, the queue contains values for each link

stemming out from the source processor. At each step, the algorithm grabs the top

element in the queue, extends the partial path by one link toward the destination pro

cessor, determines the earliest message completion time for this partial path, and

inserts this new path into the queue sorted in order. A partial path is only deleted

-O HI

010 O^l

Figure 3-22. An eight-processor hypercube

90

from the queue when all of its possible extensions toward the destination have been

examined. This procedure is repeated until acomplete path from source to destination

processor remains at the top of the queue. The completion time for this path, C*, is

guaranteed to be the earliest time the message can berouted, because any other path

would have to use one of the partial paths below it, which have completion times

greater than or equal toC*.

To illustrate this procedure, consider an example in which node A finishes execution

on processor 000 at time 5, at which time it sends 2 data units to node B. The

scheduler is considering execution of node B on processor 111,and wishes to find the

earliest time the data can be routed from processor 000to processor 111. Assumethat

the data transfer between these processors takes 5 time units, and that the current link

records are as given in figure 3-23. As shown in part a) of figure 3-24, the priority

queue initially, contains the earliest completion time (ECT) for the message in each of

the three links stemming out of source processor 000. Evenif the link has no previous

reservations, the earliest completion time is 10, because node A finishes execution at

time 5, and an additional 5 time units are required for data transmission. In the first

Link Times of use

000-001 (0,6)

000-010 (2,4)

000-100

001-011 (0.6)

001-101

010-011

010-110 (1,3),(3.6)

011-111 (4.8)

100-101 (4,7)

100-110

101-111 (1.4)

110-111 (1.3)

Figure 3-23. The link records at the current state

a)

b)

c)

d>

e)

9)

000410 10

000-100 10

000-001 11

"

000410-011 10

000410 10

000-100 10

000401 11

1
000410 10

000-100 10

000401 11

000410411-111 13

' r

000-100 10

000410-110 11

000401 11

000410411-111 13

' r

000-100 10

000410-110 11

000401 11

000-100-101 12

000410411-111 13

i f

000-100-110 10

000410-110 11

000401 11

000-100-101 12

000410411-111 13

i r

000-100-110-111 10

000410-110 11

000401 11

000-100-101 12

000410411-111 13

91

Figure 3-24. The steps taken in the priority queue

step, the algorithm grabs the element at the top of the queue, link 000-010, and

extends it one link further to obtain partial path 000-010-011. Since the ECT of this

partial path is still time 10, this partial path remains at the top of the queue, as shown

in part b) of figure 3-24. The algorithm then extends this path one link further to

obtain path 000-010-011-111. However, since the link from 011-111 is already being

used in the time interval (4,8), the ECT for this path is 13, causing this path to drop to

92

the bottom of the queue as shown in part c) of figure 3-24. Partial path 000-010-011 is

deleted from the queue because the only shortest path from 000-010-011 to 111 has

already been considered. Link 000-010, which is at the top of the queue is then

extended to form partial path 000-010-110, which has ECT 11. Since both shortest

path from 000-010 to 11 have been considered, link 000-010 is deleted, causing link

000-100 to rise to the top as shown in diagram d) in figure 3-24. Partial path 000-

100-101 with ECT 12 is then obtained, as shown in diagram e), and the next two steps

extend link 000-100 to successive paths 000-100-110, and 000-100-110-111. Since

this last path is acomplete route from source to destination which remains at the top

of the queue, the earliest time themessage can be routed is its ECTtime 10.

3.5. SCHEDULING ENHANCEMENT TECHNIQUES

While the DLS methods are promising, they are heuristics designed primarily for fast

scheduling which can beimproved using several additional techniques.

3.5.1. Weighting Factor

One possible technique to improve scheduling performance is to incorporate weight

ing factors a (0 <a < 1) and P into the dynamic level expression, so that

DLx(NiiPj,I) equals

SL* (N^ - [aDA (Ni,Pj,I) +(1 - a) TF(Pj,Z)] + PA(ty, Pj). (3.20)
In an iterative scheduling scheme, one could adjust factors a and P based on the

results of the previous schedule. Increasing a gives more emphasis to IPC, while

decreasing a gives more weight to load balancing, p can be adjusted depending on

the variance of execution speeds for a given node over all the processors.

93

3.5.2. Forward/Backward Scheduling

Due to its method of operation,dynamic level scheduling has more difficulty schedul

ing graph structures which converge than those which diverge. For this reason, it is

often advantageous to schedule the precedence graph in the backward as well as the

forward direction. Consider the precedence graph G shown in figure 3-25, and

assume that the architecture consists of two processors interconnected by a full-duplex

data link. We will assume for simplicity that the amount of time needed to communi

cate D data units is just D time units. After applying each of the algorithms discussed

in section 3, the best result obtained from scheduling G in the forward direction is

shown in figure 3-26, which has a makespan of 25 time units. To schedule graph G

backwards, one simply schedules the graph G shown in figure 3-27, in which every

arc in G is inverted. This reverses both the precedence constraints and the direction

of every data transfer between nodes. Scheduling this reversed graph using DL2 with

Execution Times

l^-MS)

Figure 3-25. Original graph G

PO PI
A 3 5

B 5 6

C 2 4

D 4 4

E 5 3

F 2 3

G 4 6

H 5 6

I 4 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 3-26. Schedule for graph G

Execution Times

PO PI
A 3 8

B 5 6

C 2 4

D 4 4

E S 3

F 2 3

G 4 6

H 5 6

I 4 2

94

Figure 3-27. Inverted graph G

only a single node considered for scheduling at each step results in the schedule

shown below in figure 3-28, which has a makespan of 20. Clearly, any admissible

schedule for the inverted graph is a legal schedule for the forward graph if the time

scaleis inverted, as shown for this example in figure 3-29.

The simplest approach for using forward-backward scheduling is just to schedule a

graph G in both the forward and backward directions, keeping the betterresult of the

two. If reverse scheduling produces the better result, an admissible schedule can be

obtained by inverting the time scale in the schedule for G. Alternatively, the steps

executed when scheduling G can be stored and repeated in reverse order when

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Po
Pi

HFC

Figure 3-28. Schedule for inverted graph <j

B

0 2 4 6 8 10 12 14 16 18 20 22 24 26

oi B C F H

Pi D G I

Figure 3-29. Inverted schedule forgraph G

95

scheduling graph G in the forward direction. The schedule obtained from using the

stored scheduling steps in this example is shown below in figure 3-30. Rescheduling

graph G in the forward direction is not strictly necessary; however, it allows the ini

tially executable nodes to start at time zero as in figure 3-30, instead of being stag

gered, as in figure 3-29. When rescheduling in the forward direction, it is important to

preserve both the processorassignmentsand the specific pathsused to route communi

cations between processors. In addition, the scheduling and routing steps taken during

backward scheduling must be executed in precisely reversed order to obtain the proper

outcome. The results obtained from keeping the best schedule in forward-backward

(FIB) scheduling are shown in table 3-6 below for the DL2 and GDL2 algorithms.

3.5.3. Precedence Constraint Appendage

A more productive use of backward scheduling can result from applying the informa

tion obtained in scheduling G to aid in scheduling the original graph G. The

scheduler can obtain clues as to how upcoming nodes should be scheduled by examin

ing how they were scheduled coming from the other direction. One means of storing

2 4 6 8 10 12 14 16 18 20 22 24 26

B C F H

Figure 3-30. Schedule for G using the schedulingsteps from G

Percentage Imiprovement inSpeedup Over HLFET
Algorithm Mean Std. Deviation Minimum Median Maximum

FIB, DL2, 3 Nodes 140.96% 57.32% 76.07% 123.08% 375.70%
FIB, GDL2, 3 Nodes 145.66% 64.62% 83.23% 126.27% 447.31%

Table 3-6. Speedupimprovements in using forward-backward scheduling

96

these clues from the backward schedule is to alter the graph G by adding precedence

constraints in the forward direction to form graph G\ Since all the original pre

cedence constraints are still present, this procedure does not alter the algorithm; every

schedule which satisfies theconstraints in G' is guaranteed to satisfy theconstraints in

G. In fact, the set of admissible schedules for G' form a subset of the set of admissi

ble schedules for G. This technique of adding precedence constraints was first intro

duced in an optimal scheduling strategy for homogeneous processors when interpro

cessor communication is not considered [Bus74]. Additional precedence constraints

were used to limit the parallelism in an application to match thenumber of processors.

In the present context, when interprocessor communication must be accounted for,

this technique can be used to limit the amount of parallelism in cases where the

exploitation of such parallelism is too expensive due to communication costs. Con

sider the APEG G shown below in figure 3-31, which will be scheduled onto a set of

3 identical processors. After node A has been scheduled, it appears upon inspection of

arcs AC and AD that nodes C and D should be placed on different processors. The

dynamic level algorithm places C and D on different processors, resulting in the

schedule shown in figure 3-32, which has a makespan of 33. Backwards scheduling

Figure 3-31. An example APEG

Execution Times

A 5

B 8

C 4

D 7

E 7

F 5

G 3

H 6

I 6

97

12 15 18 21 24 27 30 35

Figure 3-32. Schedule forthe original graph

reveals that the parallelism between paths CF and DG shouldnot be exploited, caus

ing graph G' to be created by inserting a single precedence constraint between nodes

C and D in graph G. Scheduling graph G' results in the schedule shown in figure

3-33, which has a makespan of 30 and uses only 2 processors.

3.6. SUMMARY AND CONCLUSIONS

Dynamic-level scheduling is a fast, single-pass, compile-time scheduling strategy

which accounts for interprocessor communication overheads when mapping pre

cedence graphs onto multiple processor architectures. This technique eliminates

shared resource contention by performing scheduling and routing simultaneously to

enable the scheduling of all communications as well as all computations. In hetero

geneous processing environments, it accounts for varying processor speeds and

delivers a more careful apportionment of processing resources. The algorithm is split

0 3 6 9 12 15 18 21 24 27 30 33

p.'
p2

p3

Figure 3-33. Schedule for the precedence-modified graph

98

into two sections topermit arapid retargeting toany desired multiple-processor archi

tecture by loading in the correct topology-dependent section. This approach attains

good scheduling performance byeffectively trading off load balancing with interpro

cessor communication, and efficiendy overlapping communication with computation.

The main drawback to the dynamic-level scheduling approach is that it demonstrates

greedy scheduling behavior, primarily as a result of the need for scheduling speed.

When scheduling the partial graph structure shown figure 3-34, the algorithm

schedules nodes B and Csolely based on the dynamic levels ofB and Cwith the pro

cessors. It does not consider if the total structure looks like the top graph in figure

3-35, in which case nodes B and C should probably be mapped onto the same proces

sor to avoid excessive communication cost, or if it looks like the bottom graph in

figure 3-35, in which case nodes B and C should probably be separated onto different

processors to exploit the parallelism. As a result of this local view, the algorithm

occasionally makes unwise scheduling decisions. However, this phenomenon is not

confined solely to the dynamic-level scheduling algorithm, but rather is a property of

single-pass scheduling approaches, due to the difficulty in evaluating the impact of a

Figure 3-34. A partial graph

99

Figure 3-35. Two possible expansions of the partial graph in figure 3-34

scheduling decision at any intermediate point in the scheduling process. Node place

ments which appear logical when viewed locally may produce a poor end result.

Although it is possible to' "look ahead" one or more scheduling steps before making a

decision, scheduling exhibits a phenomenon known in the artificial intelligence com

munity as the "horizon effect". This property asserts that no matter how far one looks

ahead before making a local decision, there may exist something "just over the hor

izon" which can render the decision detrimental to the objective. While this property

does not exclude the possibility of gaining increased scheduling performance from

looking ahead, it is important to realize that any improvement comes at the expense of

scheduling speed, due to the increased computation required at each scheduling step.

DECLUSTERING

Imagination is more important that knowledge

— Albert Einstein

This chapter presents a second compile-time scheduling heuristic called declustering,

which addresses the deficiencies exposed in the dynamic-level scheduling approach.

This algorithm takes a global scheduling perspective by using new graph-analysis

techniques to explicitly address the tradeoff between exploiting parallelism and incur

ring IPC cost. Instead of using a single scheduling pass, this technique takes an itera

tive scheduling approach, performing most ofits computation in between scheduling

iterations. Rather than expend computation to decide node placements during the

actual scheduling process, this method uses computational energy more effectively by

101

analyzing a schedule and finding the most promising alternative placements.

The declustering method also overcomes disadvantages introduced by traditional clus

tering approaches. By grouping nodes into higher-granularity units, clustering tech

niques constrain the possible mappings of nodes to processors, limiting their ability to

balance processor loads. Such algorithms also face significant difficulties when map

ping clusters to the physical processor architecture. For example, consider the graph

shown in figure 4-1, which naturally decomposes into the three clusters ABCDE,

FGHI, and JKLM. If the architecture has three processors, this clustering proves

effective, producing the schedule shown in figure 4-2 with makespan 21. Here, we

have assumed that the targeted architecture is a shared-bus multiprocessor using a

send/receive IPC protocol. The processors execute send and receive communication

••****

1yf'7j§\ i

'•'•...jd"''' ' *

♦©-MM-*®
5 2 3_.

*<G>-i-+(H>-L-<£A

^H^LjL^^

Figure 4-1. An APEG broken into three clusters

0 2 4 6 8 10 12 14 16 18 20 22

Figure 4-2. The clusters scheduled onto three processors

102

nodes taking two time units each, where we allow a send node for one communication

to be overlapped with a receive node of another communication. These assumptions

are made solely for purposes of illustration and are not intrinsic to the proposed algo

rithm itself. Now, if the graph in figure 4-1 is to be scheduled onto a 2-processor

architecture, the clustering scheme performs poorly, producing the schedule shown in

figure 4-3 with makespan 30. Both the linear clustering and internalization clustering

methods described in chapter 2 will produce similar schedules, in which two clusters

are scheduled on one processor and one cluster is scheduled onto the other processor.

The load imbalance, whichresults in low processor utilization, is caused by the failure

of these traditional clustering schemes to account for the numberof processors in the

architecture when choosing the granularity of the clusters. This difficulty in account

ing for architectural considerations during scheduling is a primary motivation for the

declustering approach. The question of whether a given instance of parallelism should

be exploited is complex, requiring consideration of the graph structure, the node

granularity, the number of available processors, the cost of IPC, and the structure of

the processor interconnection topology. Furthermore, when processing resources are

limited, one faces the additional problem of exploiting some parallelism instances at

the expense of others.

The declustering algorithm is specifically designed to address these scheduling con

siderations. Similar to the dynamic-level scheduling algorithm, the declustering

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

D

H I

Figure 4-3. The clusters scheduled onto two processors

103

technique is split into topology dependent and independent components to account for

the interconnection structure, and the scheduling of all communications as well as all

computations removes the possibility of contention for communication resources. The

declustering algorithm is divided into four main sections, as shown in figure 4-4.

The first stage presents a new clustering approach which divides the graph into ele

mentary clusters using a novel set of parallelism analysis techniques. This phase con

siders the graph structure while explicitly addressing the tradeoff between exploiting

parallelism and incurring IPC costs. The second stage combines the clusters in a

Invoke Cluster
Decomposition

Step

(endV Execute
Best Shift

Determine
Cut*Are i

Remove
Cut«Arcs

»
Identify

Connected
Components

Determine
Cut>Arcs

t

ELEMENTARY CLUSTER FORMATION

List
Schedule

Find Merging
Cluster C2

Cancel
Decomposition

Step

CLUSTER HIERARCHY DECOMPOSITION

T
List

Schedule

Shift Breakpath
To Another
Processor

CLUSTER BREAKDOWN

Get Smallest

Cluster C1

Cluster
Shifting

Identify
Breakpaths

Figure 4-4. A flowchart description of the declustering algorithm

104

hierarchical fashion by considering the IPC and parallelism relationships between

them It effectively ranks the instances of graph parallelism in preparation fordeclus

tering. The third stage decomposes the hierarchy by systematically breaking higher

level clusters into their component sub-clusters and mapping one of the sub-clusters

onto a different processor. This phase insures effective use of the available processors

by exploiting the parallelism instances in order of importance. The fourth stage

analyzes the best schedule obtained so far and breaks down the elementary clusters if

additional flexibility is needed to achieve an effective load balancing. By traversing

the cluster hierarchy from top to bottom (large-grain to small-grain), this "decluster

ing" process matches the level of cluster granularity to the characteristics of the archi

tecture.

4.1. ELEMENTARY CLUSTER FORMATION

The elementary cluster formation phase consists of a new clustering procedure

which decomposes the precedence graph into groups of nodes by isolating a collection

of arcs which are likely candidates for separating the nodes at both ends onto different

processors. These cut-arcs are temporarily cut, or removed from the graph and the

algorithm designates each remaining connected component as an elementary cluster.

The problem of finding an effective set of cut-arcs is complex. An insufficient

number of cut-arcs constrains the possible processor assignments severely, causing

reduced scheduling performance. Conversely, an overabundance of cut-arcs leads to

an excessive time required for scheduling. We examined several methods for select

ing cut-arcs before selecting the final approach. To clarify some terminology, a

branch node is defined as a node that has two or more immediate successors, while a

105

merge node is defined as a node possessing two or more immediate predecessors.

One approach considered for selecting cut-arcs designates every arc output from a

branch node and every arc input to a merge nodeas a cut-arc. This technique is effec

tive when the APEG arcs are homogeneous, meaning that each node sends and

receives the same number of dataunits on eacharc. Since the communication penalty

for placing any two communicating nodes on different processors is exacdy the same,

the graph will normally be broken at locations which permit the greatest amount of

parallelism to be exposed, namely the arcs output from a branch node or input to a

merge node. To illustrate this point, consider the simple homogeneous graph shown

in figure 4-5.

Partitioning this graph onto two processors entails breaking two arcs in the graph.

However, since the graph is homogeneous, breaking any two arcs in the graph incurs

the same communication penalty. To minimize schedule length, the graph should

therefore be broken to release the greatest amount of parallelism, which lies between

paths {B-C-D} and {E-F-G}. Therefore, the minimum makespan solution can be

obtained by breaking arcs AEandDH, or AB and GH. However, in a nonhomogene-

M£K

MD-Mg) '

Figure 4-5. A homogeneous graph

106

ous setting, it may be advantageous to break arcs not direcdy connected to branch or

merge nodes. Consider the same graph in figure 4-6, in which the number of data

units on the arcs have been changed to make the graph nonhomogeneous. Now the

minimum makespan solutionis to cut the arcs CD and EF, neitherof which is direcdy

connected to branch node A or merge node H. This proposed approach to breaking

arcs is clearly deficient in the nonhomogeneous case. Another problem is that this

technique produces an excessive number of elementary clusters for dense graphs,

which lengthens the time required for scheduling.

The key to effective cut-arc selection lies in skillfully trading off the amount of paral

lelism exploited with the amount of interprocessor communication cost incurred.

Obtaining such a tradeoff requires both a method for detecting parallelism within the

graph, and an effective means of comparing parallelism with communication cost

4.1.1. Parallelism Detection

To enable parallelism detection, we assign each node Nt its transitive closure

TC (N^, defined as the set of nodes (excluding terminal node Nt) reachable through a

directed path from Ni. If"node Aft- lies inthe transitive closure of node Nj, this implies

that a precedence constraint exists from Nj to ty. Stated another way, nodes Nt and

B>^<£F

Figure 4-6. A nonhomogeneous graph

107

Nj can beexecuted in parallel if and only if each node is not contained in the other's

transitive closure. While this reveals parallelism at the node level, our goal is to iden

tify parallelism between paths of nodes. Since it is virtually impossible to account for

all the path parallelism in the graph simultaneously, we use a "divide and conquer"

approach which considers two paths at a time. Recognizing that parallelism is created

at branch nodes, we focus attention on paths which diverge out from these nodes. The

branch nodes in the graph are sorted smallest static level first, so that the branch nodes

near the end of the graph are initially considered. For each branch node Ni, the algo

rithm obtains a list of its immediate successors IS(Ni) and sorts them largest static

level first. At each step, the procedure considers the first two successors in the list and

computes the intersection of their transitive closures to categorize this instance into

one of two classes, called the Nbranch and Ibranch cases respectively. To illustrate

this procedure, consider the case in which branch node A has two immediate succes

sors B and C.

If TC (B) n TC (C) is empty, the paths stemming from B and C never combine. We

classify this instance into the Nbranch (Nonintersecting branch) case and isolate the

longest paths from nodes B and C to terminal node Nt for parallelism consideration.

In the example Nbranch case shown in figure 4-7, the available parallelism between

the two paths is min {SL(B), SL(C)}. This is the maximum overlap in execution time

possible if the paths starting from B and C are separated onto different processors.

If TC(B)nTC(C) is not empty, this instance fits into the Ibranch (Intersecting

branch) case because the paths stemming from nodes B and C combine at some point.

The node in the intersection with largest static level is identified as the first merge

node at which paths starting from B and C combine, and the algorithm isolates the

108

-®
Figure 4-7. The nonintersecting branch case

longest path from B to themerge node and the longest path from C to the merge node

for parallelism consideration. This situation is illustrated in figure 4-8, where node Z

is the merge node. If we designate the string of nodes from B to X as pathl and the

string of nodes from C to Y as path2, then the available parallelism in this case is the

minimum of the sum of node execution times in pathl and the sum of node execution

times in path2.

4.1.2. Parallelism Exploitation

After parallelism detection, the next step is to develop a criterion for determining

whether the path parallelism can be exploited effectively. A reasonable first guess

might be to discard any parallelism which is exceeded by the communication cost in

©-<£)-•

Figure 4-8. The intersecting branch case

109

separating paths onto different processors. However, when the scheduling goal is to

minimize makespan, it is easy to find examples in which the exploitation of parallel

ism allows an earlier finishing time even when this condition is violated. For exam

ple, the graph shown in figure 4-9 will finish execution at time 24 if it is scheduled on

a single processor. The available parallelism between the two paths is

min (8,14) = 8, so one might expect that an PC cost of 8 time units or greater would

preclude the exploitation of parallelism in this example. However, the schedule

shown in figure 4-10 finishes at time 22 even though the communication cost is 12

time units. So when the goal is to minimize schedule length, we consider exploitation

of all two-path parallelism instances that can finish execution more rapidly on two

processors than on one processor.

^®-4)

MD-Hg)

Figure 4-9. An example graph

0 2 4 6 8 10 12 14 16 18 20 22

PO

PI
Rocv
AB B D

Figure 4-10. A schedule for figure 4-9 when the IPC cost is 12 time units

110

4.1.3. Cut-arc Determination

This method of categorizing two-path parallelism instances into the Nbranch and

Ibranch classes provides a tractable means of determining cut-arcs, because finding

the minimum makespan solution for each instance is a straightforward calculation in

both of these cases. If the parallelism instance can be exploited effectively, the algo

rithm finds which single arc will be cut in the Nbranch case, or which two arcs will be

cut in the Ibranch case.

To illustrate how a graph is broken into two-path parallelism instances, we demon

strate the procedure on the graph shown in figure 4-11. The algorithm first identifies

nodes A and I as branch nodes. Node I, which is examined first, is found to have two

immediate successors M and N, where TC(M)nTC(N) = <|>. This two-path parallel

ism instance, shown in figure 4-12, therefore fits into the Nbranch case. Again,

assuming the architecture is a shared-bus multiprocessor which executes send and

receive communication nodes taking two time units each, the algorithm quickly

©-^©^(kHXp

Figure4-11. An example graph

111

Figure 4-12. A nonintersecting branch case

ascertains that separating paths {I-M-Q} and {N-R} onto separate processors leads to

the minimum makespan solution. It therefore adds arc IN to the list of cut-arcs and

moves on to examine branch node A. Since node A has more than two immediate

successors, the procedure sorts them into a list largest static level first :

IS(A) = [E F D]. At each step, it considers the two remaining successors with larg

est static level, which are initially E and F in this case. After finding that

TC(E)nTC(F) = <|>, the algorithm classifies this instance into the Nbranch case and

isolates the two longest paths stemming from nodes E and F for parallelism considera

tion, as shown in figure 4-13. To facilitate computation of the minimum makespan

solution for this instance, we code each arc in the two paths with a triad of information

in the following form: (runtime_passed communication_cost runtime__ahead). The

first element is the amount of execution time in the path which lies to the left of the

MI>-L<N>-U®
3 4 2

Figure 4-13. Anothernonintersecting branchcase

112

arc. The second element indicates the amount of time spent in interprocessor com

munication if the arc is split The third element shows the amount of execution time

in the path which lies to the right of the arc. The parallelism instance in figure 4-13 is

shown with coded arcs below in figure 4-14. The PC costs reflect the same assump

tions made earlier, where send and receive nodes of two time units each must be exe

cuted for transfer of every data unit For arcs which passmultiple data units, such as

EI and OS, the time spentin PC reflects a pipelining of communications, obtained by

overlapping the receive node of one data unit with the send node of the next data unit.

This pipelining allows the time C (D) to communicate D data units to be expressedas

C (D) = 2* (D + 1). Because these triads contain all the pertinent schedulinginforma

tion, the algorithm can quickly compute the minimum makespan solution without hav

ing to repeatedly schedule the two paths. In this case, the optimum solution is to cut

arc AF. Since this cut-arc lies in the path containing successornode F, the algorithm

removes node F from the list of successors, so that IS (A) = [E D].

The algorithm then examines the next two successor nodes, D and E, and determines

that node Q is the first merge node in TC(D) n TC(E), at which the paths starting

from D and E combine. This Ibranch case, shown in figure 4-15, requires two cut-arcs

to split paths onto separate processors. After coding the arcs with triads, the algorithm

(0 413)

Figure 4-14. The parallelism instance with coded arcs

113

Figure 4-15. An intersecting branch case

first calculates the makespans for cutting pairs of arcs in the four "comer" cases

(AD,LQ), (AD,MQ), (AE,LQ), and (AE,MQ), which are pairs of arcs direcdy con

nected to the branch node or merge node. The procedure uses the shortest makespan

obtained over the comer cases as a bound to quickly eliminate other eligible pairs of

cut-arcs. Due to the excessive communication costs in this case, the minimum mak

espan solution is to leave all arcs uncut; that is, schedule the entire structure on a sin

gle processor. In such cases when no path is cut, the algorithm deletes the successor

with smaller static level from IS(A) to prevent the same two paths from being

analyzed again, and moves on to examine the next two nodes in IS (A). If there is

only one successor remaining, as in this case, the routine passes to the next branch

node.

When all the branch nodes have been exhausted, the algorithm connects a dummy

start node Ns to all the initial nodes in the graph, and computes static levels and tran

sitive closures for each node in the reverse direction (right to left), denoting these

quantities as SLR(Ni) and TCR(Ni) respectively. The procedure identifies all the

merge nodes in the graph and repeats the procedure applied to the branch nodes,

except that path analysis proceeds in the opposite direction. In addition to treating

cases in which the parallelism is initially extant, this consideration of merge nodes

114

handles situations in which two paths combine in several places. Since the parallelism

detection strategy only considers the first merge node (with largest static level) when

isolating an Ibranch case, the parallel paths combining at the later merge nodes would

beignored if all the merge nodes were not identified and analyzed.

Continuing ourexample, the algorithm examines merge nodeF and its two immediate

predecessors A and B. After classifying this instance into the nonintersecting merge

(Nmerge) case andcoding arcs, the procedure determines that the best solution is not

to cut any arcs. When considering merge node Q, the algorithm recognizes that this

Imerge case has already been examined as an Ibranch case for node A and skips on to

consider merge node S and its two immediate predecessors O and P. Since

TCR (O) n TCR (P) =ty, the algorithm classifies this instance into the Nmerge case,

traces the two longest paths to the dummy start node as illustrated in figure 4-16, and

isolates KP as the optimal cut-arc.

After all the cut-arcs have been determined, the algorithm temporarily removes them

from the graph and invokes a depth-first search to isolate the connected components

remaining in the graph. Each remaining component is designated as an elementary

cluster. After cutting arcs IN, AF, and KP, theelementary clusters in ourexample are

shown below in figure 4-17. For comparison, the linear clustering algorithm produces

5 3 3 4

Figure 4-16. A nonintersecting merge case

115

(^©-U©-i^g^

Figure 4-17. The elementary clusters in the graph

the set of clusters shown in figure 4-18, and the internalization approach produces the

clusters shown in figure 4-19. It is important to realize that selecting an arc to be a

cut-arc does not force the nodes at each end onto separate processors. Rather, these

Figure 4-18. The linear clustering clusters

116

Figure 4-19. The internalization clusters

arcs represent promising locations for splitting paths onto different processors. The

mapping decisionsare made in later phasesof the algorithm.

4.2. HIERARCHICAL CLUSTER GROUPING

The hierarchical cluster grouping stage combines existing clusters in a pairwise

fashion until a single cluster remains which contains every node in the graph. This

procedure establishes a parallelism hierarchy, effectively sorting the graph parallelism

by importance in preparation for declustering.

This procedure initially sorts the elementary clusters by the sum of the execution

times of the nodes they contain, to allow the smallest cluster, say Ci, to be considered

for merging at each step. The algorithmdetermines which cluster communicates most

heavily with Cj by examining the intercluster cut-arcs. Ties are broken by arbitrarily

selecting the cluster with smaller total execution time. The algorithm proceeds to

merge Cx and its selected cluster into a new larger cluster, and records this cluster

117

combination step (e.g. [Ci + C2 = C3]) in order of execution for future reference. To

account for nodes with hardware constraints, each cluster maintains a list of proces

sors which are eligible to execute every node in the cluster. Two clusters will only be

combined if there is at least one processorwhich can execute every node in both clus

ters. After a cluster combination step is invoked, the algorithm removes the two com

ponentclusters from the list of current clusters, adds the new larger cluster to the list

in sorted order, and considers the next smallest cluster for merging. This procedure is

repeated until only a singleclusterremains, or the process has progressed as far as the

hardware constraints permit The procedure finishes by scheduling the remaining

cluster(s) onto a processor which satisfies its hardware constraints to obtain an initial

makespan.

The order in which the clusters are combined is important The procedure selects the

smallest cluster for combination at each step because combining this cluster with

another does not suppress very much parallelism. While this technique incorporates

interprocessor communication considerations, it builds clusters in such a fashion to

maintain as much parallelism as possible for as long as possible. The end result is that

the combination steps near the end merge clusters which have the largest amounts of

parallelism between them, subject to the communication pattern in the graph. This

effectively imposes a ranking of the instances of parallelism present in the graph,

where the combination steps near the beginning suppress the less important parallel

ism instances, and the combination steps near the end suppress the most prominent

parallelism instances.

118

4.3. CLUSTER HIERARCHY DECOMPOSITION

The cluster hierarchy decomposition phase begins the declustering process, in

which the parallelism hierarchy constructed in the first two stages is decomposed into

successively smaller levels. To avoid the inflexibility induced by the clustering pro

cess, the algorithm traverses cluster granularity levels from large to small to find the

level which is roughly consistent with thecharacteristics of the targetarchitecture.

This procedure examines the list of clustercombination steps in reverseorder, so that

the last consolidation step (say [C18 + C19 = C20D is considered first It then invokes

a decomposition step on C2q by shifting either subcluster C18 or C19 onto a selected

group of candidate processors, which are selected by considering the cut arcs of the

chosen subcluster, the finishing times of the processors, and any pertinent hardware

constraints. The algorithm shifts thechosen subcluster ontoeachof thecandidate pro

cessors in turn, and list schedules the graph to determine the makespan for each of the

subcluster placements.

4.3.1. List Scheduling Method

As in the dynamic-level scheduling approach, the list scheduling method used here

schedules all communications as well as all computations, employing a routing algo

rithm tailored for the particular architecture in the topology-dependent section of the

scheduler. Likewise, there is no global timeclock to distinguish which nodes are runn-

able and which processors are available. A node is runnable if all its immediate

predecessors have already been scheduled, and the processor assignments for each

node are already fixed by the declustering algorithm before scheduling is invoked.

119

Static levels are used to determine the ordering of nodes on each processor. Dynamic

levels are not necessary in this case becauseof the fixed processorassignments. After

scheduling, a node reordering procedure is invoked which analyzes the schedule and

identifies instances where a shift of node priorities permits a more effective schedule.

We illustrate this idea using two examples.

In the first example, shown in figure 4-20, node B has static level 9 while node C has

static level 8. This causes node B to be scheduled before node C, leading to the

schedule with makespan 23 shown in the top chart of figure 4-21. The node reorder

ing phase sees the idle time before the receive node and realizes that the communica

tion can be executed earlier if a node scheduled before C can be moved behind it. By

searching the transitive closureof each node scheduled before C on processor 0, it dis

covers that node B can be executed after C. The routine then changes the priority of

node B below that of node C, resulting in the schedule shown in the lower chart in

figure 4-21, which has makespan 18.

JS 6 3

Figure 4-20. An example APEG

4 6 8 10 12 14 16 18 20 22 24

0 4 6 8 10 12 14 16 18

PO

PI

A C :Smd
M!CO:i B D

E F R«CV
CO G H

120

Figure 4-21. The reorderingshifts node B in back of node C

In the second example, shown in figure 4-22, the the static level of node G exceeds the

static level of node F. This can cause the schedule shown at the top of figure 4-23

which has makespan 22. The node reordering procedure again notices the idle time

before the receive node. Since the communication cannot be moved forward any

further, the technique next tries to shift nodes into the gap by searching for nodes

scheduled after node G which are not contained in the transitive closure of G. Upon

discovering that nodes F and G have no precedence relationships between them, the

routine shifts the priority of node F above that of node G, resulting in the schedule

shown at the bottom of figure 4-23.

(a>^(b

Figure 4-22. An example APEG

10 12 14 16 18 20 22

0 8 10 12 14 16 18

PO

PI

A 6
S«nd

BQ C D

E F
:R«evi

BQ G H

121

Figure4-23. The reordering shifts node Fin front of node G

After decomposing a cluster by splitting one of its component clusters onto another

processor, the algorithm accepts the decomposition step if a faster schedule is

obtained. If a tie in makespan occurs, the first tiebreak criterion selects the schedule

with less IPC, and the second criterion selects the schedule with a smaller sum of pro

cessor finishing times. If the step is accepted, the procedure saves the new schedule

and records a new processor location for the shifted subcluster. Otherwise, it ignores

the step and considers the next cluster combination step (in reverse order) for decom

position. This process is repeated until all the cluster combination steps have been

considered. This procedure constrains the number of processor placement permuta

tions which are examined, because each cluster remains in its default position if its

decomposition step is discarded.

When the list of cluster combination steps is exhausted, the algorithm invokes two

ad-hoc cluster shifting techniques called communication reduction and load shift.

These routines search for better processor placements at the current level of cluster

granularity, and are repeated on successively lower levels of granularity until reaching

the elementary clusters. This strategy is consistent with the overall approach in exa

mining placements at the higher levels of cluster granularity before examining place-

122

ments at the lower granularity levels. This top-down strategy helps avoid overlooking

the situation in which shifting two lower granularity component clusters individually

does not produce a better result, but shifting these components together results in a

better placement.

Rather than examine alternative placements in a haphazard fashion, the cluster shift

ing techniques attack the schedule limiting progression (SLP), the progression of

nodes and communications which inhibits attainment of a faster schedule. While this

progression may span several processors, it cannot contain any idle time. The SLP is

a function of the particular schedule, anddepends on the effectiveness of the schedul

ing procedure as well as the characteristics of the targeted architecture. In contrast

with the critical path, the SLP is sensitive to changes in the number ofprocessing and

communication resources. An example schedule is shown below in figure 4-24, with

the SLP marked by the sequence of arrows.

The communication reduction routine, which attempts to remove instances of inter

processor communication from the SLP, first isolates the SLP clusters at the current

level of granularity. The routine traces the intercluster cut-arcs stemming from each

SLP cluster and evaluates the difference between the number of data units passed to

clusters on a different processor and the number of data units passed to other clusters

on the same processor. Expressing this mathematically, we defineD [Ct, P (Cf)] to be

0 2 4 6 8 10 12 14 16 18 20 22 24

PO

PI

P2

B

D
Send

I
jecv:

Send

FHii

Recv

;:FH;i

1

H

K

Send

M

N
leev

isL

Figure 4-24. Anexampleschedule with the SLP markedusing arrows

Q-+

123

the number of data units passed from cluster C, to other clusters on the same proces

sorP (Ci), andD [Q, P (Q)] to be the numberof data units passed from Q to clusters

on any other processor. We then define

A(Ct) =D[ChP(Ci)] -D[ChP(Ci)] (4.1)

as the difference between the number of outgoing and ingoing data units for processor

P (C^ attributable to cluster Q. We arbitrarily designate the three SLP clusters with

the highest values of A(Q) as cluster switch candidates, becausethere is a good possi

bility that switching these clusters onto a different processor can lessen the amount of

IPC incurred. For each cluster switch candidate, the procedure uses the A(C,-) cri

terion to identify several other clusters as candidates for exchanging processor loca

tions with. The procedure invokes each cluster location switch individually and exe

cutes the switch which provides the greatest improvement in makespan.

The load shift routine moves clusters onto different processors to balance processor

loads more effectively. It first categorizes each processor as being heavily loaded or

lighdy loaded. We distinguish these categories using a load threshold which is initial

ized to half of the maximum sum of the computation and communication costs on any

processor. If all processors are heavily-loaded, the threshold is multiplied by 1.5 and

this process is repeated until some processors fit into the lighdy loaded category. The

procedure invokes a sequence of cluster shifts from heavily loaded processors to

lighdy loaded processors and implements the shift which provides the greatest

improvement in makespan.

While it may seem unusual to build a parallelism hierarchy, only to tear it down, this

procedure provides several advantages. The sorting of graph parallelism which occurs

during hierarchy construction allows effective use of the available processors. As

124

each new processor is pressed into service, the algorithm assigns it the largest section

of unrealized parallelism remaining in the graph which has thesmallest interprocessor

communication cost Faced with the inevitable problem of having to exploit some

parallelism instances at the expense of others, the declustering algorithm insures that

the most significant sections of graph parallelism are assigned first The less impor

tant parallelism instances will be exposed laterif there are sufficient resourcesremain

ing to warrant exploitation. By sweeping through arange of cluster granularities dur

ing cluster decomposition, this approach also performs some natural partitioning

which automatically adapts to the grain size of the nodes. When the cluster granular

ity reaches the point where IPC costs negate any gains realized in exploiting parallel

ism, the algorithm discards any further decomposition steps. So in cases where the

nodes are too fine-grained for the architecture toeffectively use the intemode parallel

ism, the process keeps the hierarchy at a higher level which is conducive to parallel

ism exploitation. If the desired granularity is smaller than the level of the elementary

clusters, these clusters canbe broken further in the next phase of the algorithm.

4.4. CLUSTER BREAKDOWN

Whereas the decomposition phase cannot manipulate subgraph segments smaller than

the elementary clusters, the cluster breakdown phase has the ability to break down

the elementary clusters, if additional freedom is required to achieve a better place

ment This stage supplies the capability necessary for effective load balancing when

the appropriate cluster granularity is smallerthan the level of the elementary clusters.

The procedure first identifies the SLP nodes which are connected to at most one other

SLP node on the same processor. Each of these SLP edge nodes denotes a starting

125

point for a breakpath, where a breakpath refers to a portion of the SLP which is a

good candidate for being shifted onto another processor. Starting from an edge node,

the procedure extends a path by one node further into the SLP onthe same processor.

The current path of nodes is considered a breakpath if the sum of execution times in

the path falls between lower and upper bounds derived for this case. The lower bound

insures that any gain created by shifting nodes onto a different processor exceeds the

net IPC cost The upper bound, set by considering the processor loads, insures that

potential shifts have a possibility of obtaining a faster schedule. For each edge node,

the algorithm finds the sequences of nodes which satisfy the bounding requirements.

It thenindividually switches each breakpath onto another processor to obtain the mak

espan, and executes the split which produces the fastest schedule.

To illustrate this procedure, consider onceagain the APEGin figure 4-1, which is split

into three elementary clusters. While this example maps onto three processors effec

tively by scheduling one clusteron each processor, the fastest two-processor schedule

obtained after cluster hierarchy decomposition has makespan 30, as shown in figure

4-25. The load imbalance occurs because the granularity of the elementary clusters is

too large for the two processor case. A smaller cluster granularity is required to

obtain effective processor utilization. The SLP, which lies entirely on processor 0,

consists of nodes {A SendAF JBKCLDEM}. The algorithm analyzes the two

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

B K

G H I

Figure 4-25. The fastest schedule obtained after cluster shifting

126

edge nodes in this group, E and M, and uses the bounding techniques to obtain the

possible breakpaths {E, DE, CDE, M, LM, and KLM}. After shifting processor

assignments and list scheduling the graph in each of these cases, the procedure deter

mines that splitting DE onto processor 1 gives the best schedule, which is shown in

figure 4-26. This ability to break down cluster granularity beyond the elementary

level is essential, because as illustrated in the preceding example, the most effective

clustergranularity is determined by the characteristics of the architecture.

While this cluster breakdown technique is intrinsic to the declustering process, it can

be applied successfully to the other clustering methods as well. After using acluster

ing technique to address interprocessor communication considerations, it is useful to

apply adeclustering procedure to gain flexibility for effective load balancing.

4.5. SCHEDULING RESULTS

To test the scheduling effectiveness of the declustering technique, we scheduled

several digital signal processing algorithms onto a shared bus multiprocessor contain

ing four DSP56001 processors. We invoked the declustering algorithm, Sarkar's

internalization algorithm, and a modified version of Kim and Browne's linear cluster

ing algorithm on each of these DSP applications to compare scheduling performance.

The modification to the linear clustering algorithm was necessary because the method

6 8 10 12 14 16 18 20 22 24 26 28

B K

G H

Figure 4-26. The schedule after cluster breakdown

Send
CD

Recv
CD D

M

127

used to assign clusters to processors was notdescribed clearly enough for implementa

tion. Our modified version, which we will refer to as the critical-path clustering algo

rithm, uses the linear clustering method to determine a set of clusters, but substitutes

phases 2 and 3 of the declustering algorithm for processor assignment We tested

these scheduling techniques using four different signal processing algorithms: two

sound synthesis programs, a telephone channel simulator, and a 16-QAM (quadrature

amplitude modulation) transmitter. The schedule makespans in processor cycles are

shown below in table 4-1 for each of these cases. The declustering technique pro

duced the best result (shortest schedulelength) in each instance.

Upon comparison of the times required to construct each schedule, as shown in table

4-2, it is readily seen that thecritical-path clustering technique is the quickest and the

internalization approach the slowest of these algorithms. If n represents the number

of nodes and p represents the number of processors, the critical path algorithm has

complexity 0[n3p], while the declustering and internalization algorithms have com

plexity O[n3(n +/?)].

These signal processing algorithms were all homogeneous graphs, meaning that each

arc passes the same number of data units. For such graphs, the declustering algorithm

SCHEDULE LENGTHS IN PROGESSOR CYCLES

DSP Algorithm(#nodes) Declustering C-P Clustering Internalization

Sound Synthesis I (26) 173 179 218

Sound Synthesis II (27) 170 214 210

Telephone Channel Simulator (67) 297 297 488
QAM Transmitter (411) 4661 4881 5024

Table 4-1. Schedule lengths in processorcyclesfor4 DSP algorithms

TIME REQUIRED FOR SCHEDULING IN SECONDS
DSP Algorithm(#nodes)

Sound Synthesis I (26)
Sound Synthesis II (27)

Telephone Channel Simulator (67)
QAM Transmitter (411)

Declustering

5.65

3.16

34.16

1523.20

C-P Clustering

2.35

1.72

19.50

265.72

128

Internalization

5.60

4.34

48.32

5024.46

Table 4-2. Time required to construct a schedule (in seconds) for each scheduling tech
nique. The algorithms were programmed in Lisp and run on a Sun3-60.

usually produces the same set of clusters as the critical-path clustering algorithm.

Since the communication penalty in breaking any arc in the graph isexacdy the same,

the graph will almost always be broken in locations which expose the greatest amount

of parallelism, namely the arcs output from abranch node or input to amerge node.

To investigate the more interesting nonhomogeneous case, we randomly generated

100 APEGs containing between 70 and 140 nodes, where the node execution times

were uniformly distributed over [4,20], and the number of data units assigned to each

arc were uniformly distributed over [1,5]. These graphs were scheduled onto shared-

bus architectures containing 4, 5, 6, 7, and 8 processors respectively, where the same

send/receive communication protocol usedin this paper was assumed. The decluster

ing algorithm again demonstrated the best scheduling performance, and the average

percentage speedup improvements (analogous to average percentage improvements in

makespan) of the declustering algorithm over the two clustering techniques are shown

in figure 4-27.

One reason that the declustering method performs better than the critical-path cluster

ing algorithm is its superior clustering approach. The graph parallelism analysis tech

niques allow the declustering algorithm to break arcs not direcdy connected to branch

or merge nodes, a capability which critical-path clustering lacks. The declustering

40%

30%

20%

10%

0%

% Spoodup Improvomont ovor Critical-Path Clustaring

% Spoodup Improvomont ovor Internalization

5 6 7

Number of Processors

129

Figure 4-27. Percentage improvement in speedup of declustering over critical-path cluster
ing and internalization

algorithm gains additional improvement by direcdy attacking the scheduling limiting

progression rather than the critical path, because the two are often very different. The

increasing speedup improvement as additional processors are added is primarily due

to the enhanced load-balancing capability obtained through declustering. The graph-

analysis clustering technique also surpasses the clustering performance of the internal

ization method. While the internalization procedure is more flexible than the critical-

path clustering technique, it occasionally "overclusters" the graph by combining nodes

which should remain separate. This effect is caused by the algorithm's inherent ambi

guity in deciding the order in which arcs that pass the same number of data units

should be considered. Lacking a global view of the graph, the internalization pro

cedureoften merges arcs in a suboptimal order.

To illustrate why the parallelism-analysis clustering technique in the first stage of the

declustering algorithm outperforms the critical-path clustering and internalization

130

approaches, consider the graph example shown below in figure 4-28, which will be

scheduled onto atwo-processor shared-bus configuration. The declustering algorithm

invokes the graph analysis techniques presented in section 3. After identifying nodes

B and Fas the immediate successors of branch node A, the procedure finds that cut-

arc AB gives the minimum makespan solution for this Nbranch case. The algorithm

proceeds to merge node I, identifies itsimmediate predecessors as nodes Fand H, and

determines that cutting arc HI yields the optimum solution in this Nmerge case. The

elementary clusters obtained after removing these two cut-arcs and invoking a con

nectivity search are shown in figure 4-29. The resulting schedule with makespan 24 is

shown in figure 4-30.

<S>^©^®-^®

Figure 4-28. An example graph

\2 ^S^-JLiN. 4 4 3-.--''

*•».••-.3 ^s "•••-.
^.«S^

Figure 4-29. The declustering algorithm's elementary clusters

131

4 6 8 10 12 14 16 18 20 22 24

H I

B D

Figure4-30. The declustering schedule

The critical-path clustering algorithm first identifies path {A-B-C-D-E} as the critical

path with (computation +communication) length 42. After coalescing this path into a

linear cluster and removing these nodes from the graph, it determines that path {G-H-

1} is the critical path in the remaining portion of the graph. Afterplacing node Finto

its own cluster, the final set of clusters is shown below in figure 4-31. The best place

ment of these clusters results in the schedule with makespan 30 shown in figure 4-32.

It is immediately apparent that clustering thecritical path can force a large communi

cation to occur. Regardless of whether cluster F is grouped with cluster ABCDE or

*• 2 _^Ss,5 „ i 4. *—"'

i

Figure 4-31. The clusters obtained through critical-path clustering

P0

PI

6 8 10 12 14 16 18 20 22 24 26 28 30

A
SMd

AF B C D E

G
Rocv
AF H F I

Figure 4-32. The critical-path clustering schedule

132

cluster GHI, this cluster composition forces a communication of 6 data units either

between nodes A and Fornodes Fand I. This phenomenon occurs because the algo

rithm treats each path as a complete entity, ignoring the fact that communication

should weigh more heavily than computation for clustering purposes. In addition,

clustering the entire critical path together may beunnecessary. Since the critical path

is often different from the schedule limiting path, clustering only part of the critical

path (e.g. BCDE) may lead to a more effective solution.

The internalization algorithm sidesteps this difficulty by considering merges at a

lower level. It initially places each node in a separate cluster and sorts the arcs in

decreasing order by the amount of data transferred. Since arcs AF and FI pass the

greatest number of data units, the clustering steps [A + F = AF] and [AF +1 = AFT]

are immediately invoked, which avoids the data transfers of six data units. It then

executes [AFI + B = ABFTJ, [ABFI + C = ABCFI], [ABCFI + D = ABCDFI],

[ABCDFI + E = ABCDEFI], [G + H = GH], [ABFI + H = ABFHI], and [CDE + G =

CDEG], to produce the clusters shown in figure 4-33. Using its modified list schedul

ing procedure for cluster placement, the internalization algorithm obtains the schedule

<£>-Kc)-Kd)-KeJ)
^ 5 4 4 3 /

Figure 4-33. The clusters obtained through internalization

133

shown below in figure 4-34 which has makespan 29. Recalling that the algorithm

accepts any cluster merging step which does not increase the parallel execution time

estimate, we can immediately see that the ordering of arcs plays a major role in deter

mining the clusters. In thisexample, there are 6 arcs which pass 2 data units each, and

the order in which these arcs are considered wholly determines the cluster composi

tion. The ordering {DE CD BC GH HI AB} produces the sameclusters as the declus

tering technique, while the ordering {AB HI BC GH CD DE} produces clusters

ABCFGHI and DE, which leads to a schedule with length 33. This ordering depen

dence reflects the local view exhibited by the internalization algorithm. By consider

ing each arc for internalization individually, the algorithm loses its global perspective

as to how each merge affects the total cluster structure.

A quick comparison of these schedules illustrates the global scheduling perspective

taken by the declustering algorithm. Instead of immediately invoking the two initially

executable nodes A and G on processors PO and PI respectively, the declustering

algorithm maps both nodes onto PO and idles PI for four time units to obtain the

optimal schedule.

Next, consider the graph shown in figure 4-35, which will be scheduled onto a 3 pro

cessor shared-bus topology. The declustering algorithm identifies nodes C and D as

the immediate successors of branch node A and determines that arc AC is theoptimal

6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 4-34. The internalization schedule

134

Ms>-KD

Figure 4-35. Another example graph

cut-arc for this Nbranch case. Arcs FJ and IL are subsequendy identified as the two

best cut-arcs for the Ibranch case involving nodes B, E, and F. Having exhausted the

branch nodes, the algorithm turns tomerge node L, which has three immediate prede

cessors H, I, and J. Since I and J have the highest values of SLR (fy), the procedure

initially considers the Imerge parallelism instance involving nodesI, J, andL. Recog

nizing that this Imerge case was already examined when considering branch node B,

the algorithm deletes node I from the list of immediate predecessors and proceeds to

the Nmerge case involving nodes H, J, and L. This instance gives cut-arc FJ, which

was already selected earlier. The elementary clusters are shown below in figure 4-36.

Notice the irregular structure of clusters BEFI and ADHJL. To avoid excessive IPC

cost, the algorithm suppresses some of the available parallelism in the graph by clus

tering together nodes which can be executed in parallel. This group of clusters pro

duces the schedule shown in figure 4-37, which has makespan 24.

The critical-path clustering method iteratively clusters paths {A-D-H-L}, {B-E-I},

{C-G-K}, and {F-J} to obtain the set of clusters shown below in figure 4-38. The

K§)-Kk))
5 3_^

Figure4-36. The declustering clusters

0 2 4 6 8 10 12 14 16 18 20 22 24

Figure 4-37. The declustering schedule

•^....5 5 J3L....-*

-* 7.-.-"'

135

Figure 4-38. The critical-path clustering clusters

critical-path clustering schedule, shown in figure 4-39, has makespan 32. Unlike the

PO

PI

P2

8 10 12 14 16 18 20 22 24 26 28 30 32

136

Figure 4-39. The critical-path clustering schedule

declustering algorithm, the technique of iteratively clustering linear paths cannot

break arc FJ because it is not direcdy connected to a branch or merge node. It is

therefore forced to break arcs BF and JL which transfer four and five units of data

respectively. This inability to break arcs in the middle ofasequential string can cause

large scheduling inefficiencies for nonhomogeneous graphs.

The internalization algorithm constructs the set of clusters shown below in figure

4-40, which produces the schedule shown in figure 4-41 with makespan 28. Although

the internalization technique can construct irregular cluster shapes, it again illustrates

a lack of global scheduling perspective by merging nodes A and C into the same clus-

Figure 4-40. The internalization clusters

137

8 10 12 14 16 18 20 22 24 26 28

Figure 4-41. The internalization schedule

ter. Lacking the parallelism analysis techniques of the declustering method, the inter

nalization algorithm does not see that merging arc CG instead of AC will expose a

greater amount of graph parallelism.

4.6. SUMMARY AND CONCLUSIONS

We have introduced a new compile-time scheduling heuristic called declustering,

which accounts for interprocessor communication costs and interconnection con

straints within multiprocessor architectures. The first stage of this algorithm consists

of a new clustering strategy which outperforms traditional clustering schemes by

using novel parallelism analysis techniques to explicidy compare the tradeoff between

parallelism exploitation and IPC cost. By systematically establishing and then decom

posing a parallelism hierarchy, declustering exposes graph parallelism instances in

order of importance and adjusts the level of cluster granularity to suit the characteris

tics of the specified architecture. So while it retains the ability to account for IPC, it

also displays the flexibility necessary for effective load balancingand ensures efficient

use of the available processors. The algorithm gains additional performance improve

ment by methodically attacking the schedule limiting progression, rather than the crit

ical path. Due to the hierarchical nature of this approach, the algorithm scales well to

138

handle larger problems, especially for architectures which themselves possess a

hierarchical structure.

While declustering is intended to target multiprocessors, we anticipate that message-

passing multicomputers are also valid targets. The major difference is that whereas

processors in a shared memory architecture are essentially equidistant for purposes of

IPC, the distance between processors in a multicomputer varies according to the

number of hops between processor locations. Although techniques such as virtual

cut-through or wormhole routing lessen the importance of this distinction, the declus

tering algorithm can no doubt benefit from a technique which reassigns placements

according to processor proximities.

FURTHER WORK

Research is the process ofgoing up alleys to see if they are blind

— Marston Bates

The problem of scheduling with IPC overheads contains many issues which remain to

be explored. This chapter touches on a few of these ideas, leaving them as sugges

tions for further research. The first section shows that several APEG realizations can

be derived from the same data flow algorithmic description, and raises the question of

finding which derivations are most suitable for certain scheduling methods. The

second section discusses other approaches to the scheduling problem and poses other

scheduling topics which need to be addressed in the same context The third section

proposes the subject of scheduling/routing interaction as an additional research topic.

140

5.1. APEG DERIVATION

Thus far, the scheduling process has started from the acyclic precedence expansion

graph (APEG) description, with the implicit assumptions that this graph is immutable

and scheduled only once. In actuality, most signal processing algorithms are run

repeatedly on an infinite stream of data. We will assume that the schedules are

blocked with blocking factor J, meaning that each node in the APEG must be

scheduled exacdy J times in the current cycle before scheduling any nodes in the next

cycle. The schedule period Sj(§) is defined to be the amount of time a schedule §

requires to complete a single cycle, where the cycle time includes the time required to

execute each nodeexacdy J times plus any time required for communication to begin

the next cycle. The iterationperiod Tj (§) for schedule <|> is then defined

TjW =-^ (5.1)
This normalized quantity, which indicates the average amount of time taken to exe

cute each cycle, allows comparison of schedules with different blocking factors. In

this new context, where the algorithm is run over and over, the scheduling goal is to

minimize the iteration period.

We have been expressing DSP algorithms using synchronous data flow graphs, where

the APEG is derived from the SDF graph using the algorithm given in Appendix I.

These SDF graphs can contain directed loops if each loop contains enough logical

delays (z"1 in signal processing) on its arcs to ensure deadlock avoidance. Again,

each logical delay on an arc from iVt- toNj corresponds to an initial token in the input

buffer ofNj coming from Nt. An interesting property ofSDF graphs is that there may

be several SDF representations which describe the same DSP algorithm. These

141

equivalent realizations can be obtained by shifting delays around (retiming), or adding

delays to arcs which are not in any directed loops (pipelining). We can also increase

the number of iterations of the graph in one periodic cycle (increasing blocking fac

tor). Each of these representations generates a different APEG, some of which may

be better suited for particular scheduling schemes than others. By using these tech

niques, we may be able to find an APEG which leads to a better schedulingresult

5.1.1. Increasing Blocking Factor

One technique which may reduce iteration period is increasing the blocking factor,

that is, increasing the number of times each node in the APEG is executed in each

cycle. Consider the data flow graph in figure 5-1, in which nodes A, B, and C are con

nected in a directed loop. The 6D on the arc from C to A indicates the presence of 6

logical delays, corresponding to 6 initial tokens in A's input buffer. Node A is thus

initially executable, as is node C. Using the blocking factor J = 1 results in the

schedule shown in the top chart in figure 5-2, where the arrows indicate communica

tions required to start the next cycle. The schedule period Sx(^) and iteration period

Ti($) are both 12. The speedup is 1, indicating that the second processor is being

wasted. If the blocking factor J is increased to 2, the schedule shown at the bottom of

Figure 5-1. An example graph

Execution Times

A 3

B 5

C 4

142

figure 5-2 results. Here, the schedule period S2($) is 12, the iteration period T2($) is

6, and the speedup is 2, indicating an optimal schedule. Here we have assumed that

the nodes have no state, so that successive invocations of the same node can be

invoked without transmitting any data between them. The costs incurred by an

increased blocking factor are thatmore memory is required in each processor to store

the longer schedule, and that scheduling will take longer because more nodes are

present in the APEG. To our knowledge, the problem of finding theoptimal blocking

factor is stillopen. Onepossible approach is to step through different blocking factors

to see if a reduced iteration period is feasible.

An alternative to using blocked schedules is to employ schedules which overlap suc

cessive periods, such as the cyclo-static schedules of Schwartz [Swr85].

5.1.2. Retiming

Retiming was originally developed to minimize the clock period in synchronous cir

cuits by changing the locations of registers [Lei83]. In the present context, we can use

it to change the initially executable nodes by altering placement of the logical delays.

0 2 4 6 8 10 12 14 16 18 20

Ai Bi A2 B2

Ci
i 1 •

c2

0 2 A\ 6 i t 10 1 2 14 16 18 20 22 24

Ai Bi c2 A3 B3 C4

Ci A2 B2 c3 A4 B4

Figure 5-2. Schedules for blocking factor 1 and2

143

Retiming can be thought of as a freedom to choose the initial condition, that is, per

mitting the choice of where time zero should be designated. By simply invoking a

few nodes ahead of time before starting the scheduling process, an improved iteration

period in the steady state may result Consider the data flow graph Gl shown at the

left of figure 5-3. The precedence graph, shown at the right of figure 5-3, indicates

that nodes A and B are initially executable. Scheduling of this precedence expansion

results in the disastrous schedule with iteration period 25 shown in figure 5-4. This

poor schedule is a result of the extreme load imbalance, coupled with the communica

tion of 8 time units needed to begin the next cycle. If nodes B and C are initially

invoked before starting the scheduling process, the retimed graph G2 shown at the left

of figure 5-5 is obtained, with its corresponding APEG shown at the right Scheduling

this graph leads to an iteration period of 18 as shown in figure 5-6. While the load is

®

BMChXDj-KEj-KF

Figure 5-3. Data flow graph G1 and its precedence expansion

0 2 4 6 8 10 12 14 16 18 20 22 24 26

•SSE^S^^MSl
B D

Figure 5-4. One iteration of the schedule for G1

144

a)-kb)-Kc

DJ-KE

Figure 5-5. Data flow graph G2andits precedence expansion

more evenly distributed, the communication penalty of 8 time units to begin the next

iteration cycle is still present

By initially invoking additional nodes, the retimed graph G3 and its derived APEG

shown in figure 5-7 can be obtained. The schedule for this representation, shown in

figure 5-8, has iteration period 12, because only 2 time units are required for

0 2 4 6 8 10 12 14 16 18

A B Cr\ P- j

D r?
F jy.

Figure 5-6. One iteration of the schedule for G2

(f>(aXb)

Figure 5-7. Data flowgraph G3 and its precedence expansion

145

10 12

B

D *i

Figure 5-8. One iteration of the schedule forG3

communication to beginthe next iteration cycle. In addition, by coupling thisretimed

graph with an increased blocking factor, one can spread this communication time over

a greater number of cycles, making its effective contribution to the iteration period

arbitrarily small. Since IPC costs are dependent on the architecture, a retiming algo

rithm will not be solely dependent on just the graph, but rather will vary with the

architecture being targeted. Retiming could be used initially to minimize the critical

path in the graph, or usedin a schedule-analysis feedback routine to reduce the length

of the schedule limiting progression.

5.1.3. Pipelining

Pipelining is a means of increasing throughput by exploitation of temporal parallel

ism. Similar to an assembly line, a task is split into subtasks, each of which is

assigned dedicated hardware to form a pipeline stage. Each pipeline stage operates

concurrendy with other stages in the pipe, so that the execution of successive tasks is

overlapped at the subtask level. Considerthe simple linear graph shown in figure 5-9.

Execution Times

®-Mb>^©

Figure 5-9. An example graph

A 4

B 6

C 5

146

In aclassical pipelining approach, pipelining latches are placed between each pair of

nodes, separating the string of nodes into 3 pipeline stages, as shown in figure 5-10.

Different processors are then allocated to execute each pipeline stage, resulting in the

schedule shown in figure 5-11. The iteration period of this schedule is 8, which gives

a speedup of 15/8 = 1.875.

Under the synchronous data flow methodology, pipelining is performed by placing

delays on each arc which is not part ofadirected loop. For the linear graph example,

the pipelined graph is shown in figure 5-12. This approach allows more freedom than

the classical pipelining technique, because processors are not constrained to execute

certain nodes. In the classical pipelining example, an increase in blocking factor

doesn't accomplish anything, because node A is only executed on processor Pq, node

©H-KD-+-©
Figure 5-10. Classical pipelining approach

r0

Pi

p2

0 2 4i <> i 10 12 14 16

A, A2

Bi
r

B2

Ci
W

c2

Figure 5-11. Classical pipeline schedule

(THMIP^©

Figure 5-12. Pipelining by adding logical delays

147

B is only executed on processor Px, and nodeC is only executed on processor P2.

However, the dynamic level scheduler allows a node to be naturally assigned to

whichever processor can execute it most effectively, on the basis of dynamically

changing priorities. Increasing the blocking factor to 3 results in the schedule shown

in figure 5-13, which has a schedule period 53(<|>) of 15 and an iteration period r3(<j>)

of 5 in the steady state (the pipeline is full). The associated speedup is 45/15 = 3,

indicating an optimal schedule.

5.2. SCHEDULING PROBLEMS

There are a number of scheduling issues left to consider. The most pressing need is

for an algorithm which combines the techniques of retiming, changing blocking fac

tor, and pipelining into the current scheduling framework. The ability to modify the

APEGbeing scheduled by changing the data flow description is powerful. It supplies

an additional method of overcoming scheduling difficulties which would be especially

effective when applied within an iterative scheduling approach.

While this thesis has presented a few schedule analysis techniques, there is still agreat

need to develop heuristic methods of analyzing a schedule to provide clues as to what

r0

Pi

2 i A! !

0 2 4 (s g 10 12 14

A3 B3 c3
j A2 B2 c2 A5

Bi Ci A, B4

15

Figure 5-13. Dynamiclevel pipeline schedule

148

scheduling changes should be made in the next iteration. In addition toproviding per

formance improvement, such techniques contribute toscheduling efficiency by identi

fying subsets of the search space of possible schedules which have ahigh probability

of containing a faster schedule. An important question regarding iterative schemes is:

"To what degree should worse solutions be accepted?" As mentioned in chapter 2,

iterative schemes which only accept better solutions risk becoming trapped in local

minima. On the other hand, the simulated annealing process is too slow to be usedin

many practical applications.

5.2.1. Other Scheduling Problems

There are a numberof otherinteresting scheduling problems to consider.

Scheduling with Real-Time Constraints

Scheduling in the presence of real-time constraints is a slightly different problem than

scheduling to minimize makespan. Once thereal-time constraint is met, it maynotbe

useful to schedule the graph any faster, a criterion to minimize memory buffer sizes or

hardware cost might be more useful to pursue in this instance. When attempting to

minimize hardware cost, one possible approach is to find a schedule that meets the

real-time constraint and successively delete hardware components as long as the con

straint is satisfied.

Scheduling for Massively Parallel Systems

Massively parallel systems using thousands or tens of thousands of processors such as

the Connection Machine or MasPar MP-1 are gaining momentum in parallel computa

tion. Whereas such machines were traditionally used for their cost/performance ratio,

149

they are now starting to provide the fastest performance for several computation inten

sive applications. Daniel Hillis, founder ofThinking Machines Corporation, estimates

that by 1995, massively parallel machines will be about 100times faster thanconven

tional supercomputers [Hil90].

The problem of programming massively parallel machines from fine-grained pre

cedence graphs is correspondingly gaining importance. These graphs may represent

an algorithm broken into its elementary computations, or may be generated from a

parallelizing compiler. In either case, the graph may contain tens or hundreds of

thousands of nodes, which creates a formidable scheduling difficulty when one recalls

the complexity of the scheduling problem. A hierarchical clustering scheme would be

a reasonable first approach.

5.2.2. A Smart Scheduling System

Since it is highly doubtful that any single scheduling strategy can cope with the diver

sity of scheduling instances that might be encountered, it would be useful to collect a

library of scheduling strategies, each of which performs effectively for a certain class

of applications. The existence of such a library raises the possibility of using a

"smart" supervisor to oversee theiruse. When confronted with a scheduling instance,

this scheduling manager would invoke several information-gathering routines on the

precedence graph and specified architecture to isolate characteristics to helpdetermine

the appropriate scheduling technique or subset of techniques. A block diagram of

such a system is shown below in figure 5-14. The user first inputs the precedence

graph describing the desired algorithm and the processor architecture specification.

The scheduling system extracts several parameters from the graph which capture its

PRECEDENCE
GRAPH

User

Parameters

ARCHITECTURE

Paramtter
Extraction

Scheduler
Selection

*

Parameter
Extraction

*

"SMART SCHEOUUNG SYSTEM

150

Expert
tM Feedback

System

Figure 5-14. Diagram of a "smart" scheduler

characteristics such as its size (number of nodes), its density (ratio of number or arcs

to number of nodes), its shape (strongly connected components), the mean and vari

ance of the node execution times, and perhaps the average indegree and outdegree of

the nodes. The system also extracts architectural parameters such as the number of

processors, the interprocessor communication bandwidth, the number of nearest

neighbors for each processor, and therouting scheme being employed. The grain size

of the nodes in the graph (relative size of nodeexecution times to interprocessor com

munication times) is another important consideration. The user can also enter param

eters, such as a real-time constraint on the DSP algorithm, or a timeframe in which

feedback information is desired. Using these input parameters, a scheduling selector

chooses an appropriatetechnique or group of techniques for scheduling.

After scheduling the precedence graph, the system can feed back the standard schedul

ing results (makespan, processor efficiency, time spent in IPC) to the scheduler selec-

151

tor to help modify parameters of the current scheduling scheme, or select another

technique altogether. An "expert" (rule-based) system could also supply feedback

information to the user, suggesting possible changes in the graph and/or the architec

ture. For example, it might indicate possible retimings of the graph, or point out that

pipelining certain feedforward arcs would be useful in creating more parallelism. If

the graph description itself is hierarchical, it might suggest that certain large-grain

nodes be broken down one level of granularity to create additional flexibility for

load-balancing. On the architecture side, the system might indicate that there are too

many ortoo few processors, orit might determine that resource contention is the main

problem and suggest an architecture that allows more simultaneous communication

between processors.

5.3. SCHEDULING-ROUTING INTERACTION

Another possible avenue of investigation concerns the relationship between the

intertwined scheduling and routing functions. Since previous communication

resource reservations may block a node from being scheduled on a certain processor,

the rerouting of data transfer paths may facilitate a better node to processor mapping.

While many researchers have acknowledged the importance of this topic, it has been

neglected in the literature. The relative importance of the mapping functions and the

communication scheduling routines is still unknown. This thesis concentrates on the

scheduling functions, using very simple routing schemes. However, for some

scheduling instances, the communication routing may have more effect on perfor

mance, so that incorporating adaptive routing techniques may be worthwhile.

152

REFERENCES

[Ada74].

T.L. Adam, K.M. Chandy, and JX. Dickson, "A Comparison ofList Schedules for Parallel Pro

cessing Systems,** Communications ofthe ACM 17(12) pp. 685-690 (December 1974).

[Adam87].

GJB. Adams m, DJE>. Agrawal, and HJ. Siegel, "A Survey and Comparison ofFault-Tolerant

Multistage Interconnection Networks,** Computer, pp. 15-27 (June, 1987).

[Alm89].

G.S. Almasi and A. Gottlieb, Highly Parallel Computing, Benjamin/Cummings Publishing Com

pany,Redwood City, CA (1989).

[Amd67].

G.M. Amdahl, "Validity ofthe Single Processor Approach to Achieving Large Scale Computing

Capabilities,** AFIPS Conference Proceedings 30 pp. 483-485 (1967).

[And85].

F. Andre, D. Herman, and LP. Verjus, Synchronization ofParallel Programs, MTT Press, Cam

bridge, Massachusetts (1985).

[Arl88].

R. Arlauskas, "iPSC/2 System: A Second Generation Hypercube,** The Third Conference on

Hypercube Concurrent Computers andApplications l(January, 1988).

[Bac78].

J. Backus, "Can Programming Be Liberated from the von Neumann Style? A Functional Style

and Its Algebraof Programs,'* Communications of theACM21(8) pp. 613-641 (August, 1978).

153

[Bat68].

ICE.Batcher, "Sorting Networks andTheirApplications,** Proceedings 1968Spring JCC 32 pp.

307-314(1968).

[Bat80].

ICE. Batcher, "Design of a Massively Parallel Processor,'* IEEE Transactions on Computers C-

29(9)pp. 836-840(September, 1980).

[Ben62].

VJE. Benes, "On Rearrangeable Three-Stage Connecting Networks,** Bell System Technical

Journal 41(5) pp. 1481-1492 (September, 1962).

[Ben65].

V.E. Benes, Mathematical Theory ofConnecting Networks, Academic Press, New York (1965).

[Bhu89].

L.N. Bhuyan,Q. Yang, and D.P. Agrawal, "Performance of Multiprocessor Interconnection Net

works," Computer, pp. 25-37 (February, 1989).

[Bia87].

R.P. Bianchini Jr. and JP. Shen, "Interprocessor Traffic Scheduling Algorithm for Multiple-

Processor Networks," IEEE Transactions on Computers C-36(4) pp. 396-409 (April 1987).

[Bie90].

J.C. Bier, EJE. Goei, W.H. Ho, P.D. Upsley, MP. O'Reilly, G.C. Sih, and E.A. Lee, "Gabriel: A

Design Environment for DSP,'* IEEEMicro10(5) pp. 28-45 (October, 1990).

[Bir90].

J.C. Bier, S. Sriram, and E.A. Lee, "A Class of Multiprocessor Architectures for Real-Time

DSP,** in VLSIDSP IV, IEEE Press, New York (1990).

154

[Bok81].

S.H. Bokhari, "A Shortest Tree Algorithm for Optimal Assignments Across Space and Time ina

Distributed Processor System,** IEEE Transactions on Computers SE-7(6)pp. 583-589

(November, 1981).

[B0I88].

S.W. Bollinger and SP. Midkiff, "Processor and Link Assignment in Multicomputers using

simulated annealing,'* International Conference on Parallel Processing 1pp. 1-7 (August, 1988).

[Bou72].

WJ. Bouknight, S.A. Denenberg, DE. Mclntyre, J.M Randall, AM Sameh, and DJL. Slotnick,

"The ffliac IV System," Proceedings ofthe IEEE 60(4) pp. 369-379 (April, 1972).

[Bur46].

A.W. Burks, H.H. Goldstine, and J. von Neumann, "Preliminary Discussion of the Logical

Design of anElectronic Computing Instrument,'* IAS Report,(June, 1946).

[Bus74].

B. Bussell, E. Fernandez, and O. Levy, "Optimal Scheduling for Homogeneous Multiproces

sors,'*Proceedings IFIP Congress, pp. 286-290 (1974).

[Che81].

P.Y. Chen, D.H. Lawrie, P.C. Yew, and D.A. Padua, "Interconnection Networks Using

Shuffles," Computer, pp. 55-64 (December, 1981).

[Chr41].

A. Church, The Calculi ofLambda-Conversion, PrincetonUniv. Press, Princeton, NJ (1941).

[Chu80].

W.W. Chu,LJ. Holloway, M.T. Lan,andK. Efe, "Task Allocation in Distributed Data Process

ing,** Computer, pp.57-69 (November 1980).

155

[Chu87].

W.W. Chu and L.M.T. Lan, "Task Allocation and Precedence Relations for Distributed Real-

Time Systems,** IEEE Transactions onComputers C-36(6) pp.667-679 (June 1987).

[Clo53].

C. Clos,"A Study of Non-Blocking Switching Networks,** BellSystem Technical Journal 32 pp.

406-424 (March, 1953).

[Cof73].

E.G. Coffman, Jr. andPJ. Denning, Operating Systems Theory, Prentice Hall, EnglewoodCliffs,

NJ (1973).

[Cof76].

E.G. Coffman Jr.,Editor,Computer andJob Shop Scheduling Theory, JohnWiley and Sons, New

York, NY (1976).

[Con67].

R.W. Conway, WJL Maxwell, and L.W. Miller, Theory of Scheduling, Addison-Wesley, Read

ing, Mass. (1967).

[Dal86].

WJ. Dally and C.L. Seitz, "The Torus Routing Chip,** Journal of Distributed Computing

1(3)(1986).

Pal87].

WJ. Dally, "Wire-Efficient VLSI Multiprocessor Communication Networks," Proceedings

1987 Stanford Conference on VLSI, pp. 391-415 (1987).

[Dij68].

E.W. Dijkstra, "Co-operating Sequential Processes," pp. 43-112 inProgramming Languages, F.

Genuys ed„ Academic Press, New York (1968).

156

[Edm72].

J. Edmonds and R.M. Karp, "Theoretical Improvements in Algorithm Efficiency for Network

Flow Problems," Journal ofthe ACM 19pp. 248-264 (April, 1972).

[Fen81].

T.Y.Feng, "A Survey of Interconnection Networks,** Computer, pp. 12-27 (1981).

[Hy72].

MJ. Flynn, "Some Computer Organizations and their Effectiveness,** IEEE Transactions on

Computers C-21(9) pp.948-960 (Sept. 1972).

[Fre82].

S. French, Sequencing and Scheduling: An Introduction to the Mathematics ofthe Job-Shop, Ellis

Horwood, New York (1982).

[Gar78].

Mil. Garey, R.L. Graham, and D.S. Johnson, "Performance Guarantees for Scheduling Algo

rithms,** Operations Research 26(1) pp.3-21 (January 1978).

[Gar79].

MP. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman andCo., New York, NY (1979).

[Gok73].

L.R. Goke and GJ. Lipovski, "Banyan Networks for Partitioning Multiprocessor Systems,"

Proceedings ofthe First AnnualSymposium on ComputerArchitecture, pp. 21-28 (1973).

[Gon77].

MJ. Gonzalez, Jr., "Deterministic Processor Scheduling," Computing Surveys 9(3)(September,

1977).

157

[Goo88].

JP. Goodman and PJ. Woest, "The Wisconsin Multicube: A New Large-Scale Cache-Coherent

Multiprocessor,**International Symposium onComputer Archtecture, pp.422-431 (June, 1988).

[Gra69].

RX. Graham, "Bounds on Multiprocessing Timing Anomalies,** SIAM Journal on Applied

Mathematics 17(2) pp. 416-429 (March, 1969).

[Gre87].

B. Greenblatt and CJ. Linn, "Branch and Bound Algorithms for Scheduling Communicating

Tasks in a Distributed System," Compcon, pp. 12-16 (1987).

[Gup89].

R. Gupta, "The Fuzzy Barrier A Mechanism for High Speed Synchronization of Processors,**

ASPLOS-III Proceedings, pp. 54-63 (April, 1989).

[Gyl76].

V.B. Gylys and J.A. Edwards, "Optimal Partitioning of Workload for Distributed Systems,**

COMPCON, pp. 353-357 (Fall, 1976).

[Haj85].

B. Hajek, "A Tutorial Survey of Theory and Applications of Simulated Annealing," Proceed

ings ofthe 24th Conference on Decision and Control, pp. 755-760 (December 1985).

[HU90].

W.D. Hillis, "Keynote Address,** Supercomputing '90, (December 1990).

[Hor80].

J. Horowitz, Critical Path Scheduling : Management Control Through CPM and PERT, RE.

Krieger, Huntington, NY (1980).

158

[Hu61].

T.C. Hu, "Parallel Sequencing and Assembly Line Problems," Operations Research 9(6) pp.

841-848 (November 1961).

[Kar88].

R.M. Karp and V. Ramachandran, "A Survey of Parallel Algorithms for Shared-Memory

Machines,** ReportNo. UCB/CSD 881408, (March, 1988).

[Ker79].

P. Kermani andL. Kleinrock, "Virtual Cut-Through: A New Computer Communication Switch

ingTechnique,'* Computer Networks 3 pp.267-286 (September, 1979).

[Kim88].

SJ. Kim and J.C. Browne, "A General Approach to Mapping of Parallel Computations upon

Multiprocessor Architectures,** Int. Conf. onParallel Processing 3 pp. 1-8 (August, 1988).

[Kir83].

S. Kirkpatrick, CD. Gelatt, Jr., and MP. Vecchi, "Optimization by Simulated Annealing," Sci

ence 220(4598) pp. 671-680 (May 1983).

[Koh75].

W.H. Kohler, "A Preliminary Evaluation of the Critical Path Method for SchedulingTasks on

Multiprocessor Systems," IEEE Transactions on Computers, pp. 1235-1238 (December, 1975).

[Kru83].

CP. Kruskal and M. Snir, "The Performance of Multistage Interconnection Networks for Mul

tiprocessors," IEEE Transactions onComputers C-32(12) pp. 1091-1098 (December, 1983).

[Kuc81].

DJ. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, and M. Wolfe, "Dependence Graphs and Com

piler Optimization," Symp. on Principles ofProgramming Languages, pp. 207-218 (Jan. 1981).

159

[Kum87].

VP. Kumar and S.M. Reddy, "Augmented Shuffle-Exchange Multistage Interconnection Net

works,** Computer, pp. 30-40 (June, 1987).

[Law75].

D.H. Lawrie, "Access and Alignment of Data in an Array Processor,** IEEE Transactions on

Computers C-24(12) pp. 1145-1155 (December, 1975).

[Lee87].

E.A. Lee andD.G. Messerschmitt, "Static Scheduling of Synchronous Data Flow Programs for

Digital Signal Processing,** IEEE Transactions on Computers C-36(2)(January, 1987).

[Lee89],

E.A. Lee and S. Ha, "Scheduling Strategies for Multiprocessor Real-Time DSP,** Globecom,

(November, 1989).

[Lei83].

F.M. Roseand J.B. Saxe, "Optimizing Synchronous Circuitry by Retiming,'* Proceedings of the

3rd Caltech Conference onVLSI, (March, 1983).

[Lo88].

VM. Lo, "Heuristic Algorithms for Task Assignment in Distributed Systems," IEEE Transac

tionson Computers 37(11) pp. 1384-1397 (November, 1988).

[Mud87].

T.N. Mudge, JP. Hayes, and D.C. Winsor, "Multiple Bus Architectures," Computer, pp. 42-48

(June, 1987).

[Nug88].

SE. Nugent, "The iPSC/s Direct-Connect Communications Technology," TheThirdConference

on Hypercube Concurrent Computers andApplications l(January, 1988).

160

[PatSl].

JJEL Patel, "Performance of Processor-Memory Interconnections for Multiprocessors,** IEEE

Transactions onComputers C-30(10) pp.771-780 (October, 1981).

[Pfi85].

GP. Pfister and VA. Norton, " "Hot-spot" Contention and Combining inMultistage Intercon

nection Networks,'* IEEE Transactions on Computers C-34 pp. 943-948 (October, 1985).

[Ram72].

C. V. Ramamoorthy, ICM. Chandy, and MJ. Gonzalez, "Optimal Scheduling Strategies in a

Multiprocessor System,** IEEE Transactions on Computers C-21(2)pp. 137-146 (February

1972).

[Ray86].

M. Raynal, AlgorithmsforMutual Exclusion, MTT Press, Cambridge, MA (1986).

[Ree87].

D.A. Reed and D.C. Grunwald, "The Performance of Multicomputer Interconnection Net

works," Computer, pp. 63-73 (June, 1987).

[Ros82].

J.B. Rosser, "Highlights of the History of the Lambda-Calculus,** Proceedings ofthe ACM Sym

posium onLISP andFunctional Programming, pp. 216-225 (August, 1982).

[Sar89].

V. Sarkar, Partitioning andScheduling Parallel Programsfor Multiprocessors, MTT Press, Cam

bridge, MA (1989).

[Sch80].

J.T. Schwartz, "Ultracomputers," ACM Transactions on Programming Languages and Systems

2(4)pp.484-521 (October, 1980).

161

[Sco89].

SX. Scott and G.S. Sohl, "Using Feedback to Control Tree Saturation in Multistage Interconnec

tion Networks,** IEEE 16th AnnualSymposiumon Computer Architecture, pp. 167-176 (1989).

[Sto71].

H.S. Stone, "Parallel Processing with the Perfect Shuffle,** IEEETransactionson Computers C-

20(2) pp. 153-161 (February, 1971).

[Sto77].

H.S. Stone, "Multiprocessor Scheduling with the Aid of Network Flow Algorithms,** IEEE

Transactionson Computers SE-3(1) pp. 85-93 (January, 1977).

[Swr85].

DA. Schwartz, "Synchronous Multiprocessor Realizations of Shift-Invariant Flow Graphs,"

PhJ). Thesis, Georgia Institute ofTechnology, (June, 1985).

[U1173].

J.D. Ullman, "Polynomial Complete Scheduling Problems,*' 4th Symposium on Operating Sys

tem Principles, pp. 96-101 (1973).

[Win88].

D.C.Winsor andT.N. Mudge, "Analysis of Bus Hierarchies forMultiprocessors,'* IEEE Sympo

sium on Computer Architecture, pp. 100-107 (1988).

[Wul72].

WA. Wulf andCG. Bell, "Cmmp-A Multimicroprocessor," AFIPS Conference Proceedings

41 pp. 765-777 (1972).

[Yew87].

P.C. Yew, NP. Tzeng, and D.H. Lawrie, "Distributing Hot-Spot Addressing in Large-Scale

Multiprocessors,'* IEEE Transactions onComputers C-36(4)(April, 1987).

162

[Yu84].

WJL Yu, "LU Decomposition on a Multiprocessing System with Communication Delay,'*

PhD. Thesis, UC-Berkeley, (1984).

APPENDIX I

SDF TO APEG GRAPH EXPANSION

163

This appendix describes the algorithm for expanding a synchronous data flow (SDF)

graph into an acyclic precedence expansion graph (APEG). We first introduce some

formalism which is described in greater detail in [Lee87]. A synchronous data flow

graph can be represented by a topology matrix T, which represents its structure. This

matrix is constructed by assigning a column to each node and a row to each arc, so

that the (i,j)th entry represents the amount of data injected into the FIFObuffer on arc

i by node j on each invocation. This number is negative if node j consumes data from

arc i. For example, the SDF graph shown in figure A-l has topology matrix

r=
2-3 0
0 1 -2
-10 3

where the arcs labeled 1, 2, and 3 correspond with the rows of the matrix going from

top to bottom, and nodes A, B, and C correspond to the columns going from left to

right respectfully.

Figure A-1. An example SDF graph

164

A SDF graph with s nodes which has consistent sample rates is guaranteed to have

rank(D =s -1, which ensures that the topology matrix has a nullspace [Lee87].

This fact is important because the smallest integer vector q in the nullspace of T

(Tq =<|>), indicates the number of invocations of each node ineach complete iteration

of the graph. The topology matrix above has integer nullspace vector

"3"
q= 2

[l.
indicating that A is invoked three times, B twice, andC once in eachinvocation.

For simplicity, we first concentrate on expanding the single arc from A to B in figure

A-l. Vector q indicates that there are three invocations of A (Alt A^ A3) and two

invocations of B (B^B^) in the expansion, which is shown in figure A-2. The SDF

arc from A to B has no delays on it, indicating that the arc buffer is initially empty.

The first data sample produced by Aj is therefore the first sample consumed by Bv

and the second sample produced by Axis the second sample consumed byBv How

ever, the third sample consumed byBx is the first sample produced by A2, because

each invocation of A onlyproduces twosamples. The rest of the expansion follows in

a straightforward fashion.

Figure A-2. The expansion forthe arc between nodes A and B

165

The situation becomes more complicated if the SDF arc has delays on it, as shown in

figure A-3. If the arc has n logical delays, the n data samples initially present in the

arc's FIFO data buffer are the first data units to be consumed by the instances of B.

For example, in part a) of figure A-3, the SDF arc has a single delay, so the first sam

ple consumed by B1 is this initial data sample, and the first data sample produced by

Ai is the second data unit consumed by B2. The other data assignments follow

A)*-5-*® A^UCB a>1_5U(b)

(a) ("»>

®^Kb) ®^^(B) &-^®

(e) (0

Figure A-3. Graph expansions for different numbers of delays

166

accordingly by stepping through instances of A andB in order, switching invocations

as necessary. Similarly, the two delays on the SDF arc in partb) indicate that the first

sample produced by Axis the third sample consumed by Blt and the three delays on

the arc in part c) indicate that the first sample produced by A1 is the first sample con

sumed by B2. As we increase the number of delays, this process continues until the

situation in part f), where the data assignments are the same as in figure A-2, except

that eachof the data units consumedby B xandB2 come from the FIFO buffer.

To formalize this arc expansion, consider the single arc between nodes A and B

shown in figure A-4, which we assumeto be part of a larger SDF graph. The notation

A0 represents the number of data samples that node A produces on the arc in each

invocation, and Bt is the number of data units that node B consumes from the arc on

each invocation. The notation nD indicates the presence of n logical delays on the

arc. We let IA and IB represent the number of invocations of nodes A and B respec

tively in each iteration of the graph, as given by the smallest integer vector q in the

nullspace of the topology matrix. The first sample produced by node A x goes to sam

ple number 55awpte of instance number Bmsi(mce of B, where

Bsample=[(n ™>d hBi) ™°* ^1+1,
and

instance = K» mod IbBi) div B{\ + 1.

The other data assignments are made by systematically stepping through samples of

Figure A-4. An example SDF arc from tailnode Ato headnode B

167

instances of A and B, switching invocations as necessary. The expanded graph is

obtained by repeating this procedure for each arc in the graph. To derive the pre

cedence graph from the expanded graph, we must identify the initially ninnable

nodes in the expanded graph. We say a node is initially ninnable, if for each arc

entering the node, the number of initial data units on the arc (number of logical delays

on the arc) equals or exceeds the number of data units required to invoke the node.

The APEG is then derived by breaking the arcs entering the initially ninnable nodes.

The algorithm to derive an APEG from a SDF graph can be stated as follows:

1) Construct the topology matrix T.
2) Find the smallest integer vector q in the nullspace of T
3) Expand each arc using the procedure described above.
4) Identify the initially ninnable nodes.
5) Break the arcs heading into initially ninnable nodes.

168

APPENDIX II

RANDOM GRAPH GENERATION

The algorithm used to generate random graphs is shownbelow in a pascal-like syntax.
global variable: endnodes

Function Random_Graph (numberjstartjiodes graphjength)
begin

(* Make a list ofinitially ninnable nodes *)
Fori:= 1 to numberjstartjiodesdo

begin
newnode := Create_node(execjmean, execjvar)
Add newnode to endnodes list

end

iterations := numberjstartjiodes x graphjength
For i:= 1 to iterations do

begin
(* Choosearandomintegerin [0,100] to select an action*)
action_number := Random_integer(100)

(* Connect a newly-created node to one of the endnodes *)
if {actionjnumber < 40} men

Extend_Node { Pick_Randomly(endnodes 1) 1}

(* Causesome endnodesto allconvergeto a singlenode *)
if {40 < action_number <=60} men

convjnumber := Random_Integer(k)
conv_nodes:= Pick_RandomIy(endnodes convjiumber)
Converge(convjnodes)

(* Havearandomlychosenendnodedivergeout to severalnewly-creatednodes *)
if {60 < actionjnumber <=80} then

Diverge { Pick_Randomly(endnodes 1),Random_lnteger(m)}

(* Attach a structurewhich diverges and then converges to an endnode *)
if {80 < actionjnumber <=90} then

DIverge_Converge{ Pick_Randomly(endnodes1)}

(* Make a random connection *)
if {action_number > 90} then

Random_Connection()
end

end

Function Extend_Node (oldjendnode extensionJength)
begin

Fori := 1 to extensionjength
begin

newjendnode := Create_Node(exec_mean exec_var)
ConnectJ<odes(old_endnode newjendnode data_mean datajvar)
Delete oldjendnode from endnodes list
Add newjendnode to endnodes list
oldjendnode := new_endnode

end

Return new_endnode
end

Function Converge (listjjfjiodesjojxmverge)
begin

newjendnode :=Create_Node(execjmean execjvar)

For each endnodein Ustjyfjiodesjojonverge do
begin

Delete endnode from endnodes list

Connect_Nodes (endnode newjendnode datajmean datajvar)
end

Add newjendnode to endnodes list
end

FunctionDiverge (oldjendnode numberJojUverge)
begin

For i := 1 to numberJojiiverge
begin

newjnode := Create_Node (execjmean execjvar)
Connect_Nodes (oldjendnode newjnode datajmean datajvar)
Add newjnode to endnodes list
Add newjnode to listjof_diverged_nodes

end

Delete oldjendnode from endnodes list
Return list_of_diverged_nodes

end

FunctionDiverge_Converge (oldjendnode)
begin

number.divcon :=Random_Integer (n)
divergedjnodes := Dlverge(oldjendnode, numberjdivcon)
numb_extend :=Randomjtateger (m)
For each divergejnode in divergedjnodes do

begin
endpathjnode :=Extend(divergejnode numb.extend)
add endpathjnode to endpathjnodes_list

end

Converge(endpathjnodes_list)
end

Function Random_ConnectJon 0
begin
Try_again

head :=Pick_Randomly (alljnodes 1)
tail :=Plck_RandomIy (alljnodes 1)
ifno loop created, then Connect_Nodes (head taildatajmean datajvariance)
else goto Try_again

end

Function Pick_RandomIy(listjafjiodesnumberJoj?ick)
begin ~

if {number_tojpick = 1} then
Pickandreturn arandom nodeoutof listjsfjiodes

else "" ~"
Pickandreturn alistof nodes outof listjofjiodes

end ~~ ~*

Function Random_Integer (range) picks and returns arandom integer in [Orange]

Function Connect_Nodes (tailnode headnode datajnean datajtar)
connects tailnode to headnode,assigning the arca number of data
units chosen from a uniform distribution with given mean andvariance.

Function Create_Node (mean variance) creates andreturns anew node with execution time
chosen from a uniform distribution with given mean andvariance.

169

	Copyright notice1991
	ERL-91-29 (1 of 2)
	ERL-91-29 (2 of 2

