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Abstract

A method is proposed for synthetizing Cellular Neural Networks
designed for simple applications. Based on the comparison principle
for ordinary differential equations, our method leads to a set of in
equalities which must be satisfied by the parameters of the cloning
template defining the Cellular Neural Network, in order to guarantee
a correct operation of the network.
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1 Introduction

A Cellular Neural Network (abreviated as CNN) is a large scale nonlinear
circuit, made of only locally connected cells [l], [2]. Numerous applications
of these CNNs are quite encouraging. Nevertheless, the design of a cloning
template is a non-trivial problem, whose solution is often based only on
intuition and some computer simulations. Recently, some algorithms have
been proposed to design CNNs (e.g. [3], [4]). In this paper, weintroduce an
analytic method to synthetize a CNN for solving a given problem.

Our method relies on a simple application of the so-called comparison
principle, which will provide bounds on the state and output waveforms of
an analog processing cell circuit. We will then be able to find conditions
on the elements of the CNN, ensuring a correct functionning of the CNN
for a particular application. This comparison principle has been used for
other applications than Neural Networks, such as time-analysis of MOS VLSI
circuits.

First, we will review briefly the architecture of CNNs in Section 2. In
Section 3, wewill compute the bounds of the state and output of a cell, and
we will illustrate how to use this technique to design CNNs for shadowing
(Section 4), motion detection (Section 5) and hole filling (Section 6).

2 Architecture of Cellular Neural Networks

The CNN architecture is described in [1], here we will recall only the main
results. The cell located in the (t, j) position of a two-dimensional M x N
array is denoted by Cy, and its r-neighborhood A/Jj is defined by

My = {Ckt | max{|*- t|,|Z- j\] <r; 1< Jb <M,l </< N}
where r is a positive integer number. The input u# ofa cell Cy is assumed
to be a constant with magnitude less than or equal to 1. The state of the
cell Cij at time t is denoted by*#(<), while the output at time t is denoted
by y%j(t). The initial state Xij(0) is assumed to have a magnitude less than
or equal to 1. The equations ofa cell dj(l < i < M,l < j < N) are the
state equation

x^t) =-*0-(t) + J2AiMyu(t)+ Es».i.w««+/ (i)



and the output equation

Vi&) - /(**«), (2)
where the piecewise-linear function /(•), represented in figure 1, is given by

/M-j(l*+l|-|i-l|). (3)

Note that |j/,-,(t)| <1 for all t > 0. The piecewise-linear function /(•) can be
approximated to within any precision by a smooth (C1) strictly increasing
function. The templates A and B are assumed to be space invariant, which
implies that A,-M can be expressed as Ak-i,i-j, and similarly that BiM can
be expressed as Bk-i,i-j. Finally, if we define

9ij(t)= £ ^*-M-;y«W+ 2 Bk-v-jVu + I, (4)

we can then restate the state equation (1) as

x^t) = -Xij(t) +A0|o y,;(<) +gait). (5)

The notation .A/y\ {Cy} stands for the set ofall cells belonging to the neigh
borhood My of the cell Cy, except the cell Cy itself.

The condition

4o,o > 1 (6)

must always be satisfied, so that the magnitude of all stable steady states
is greater than or equal to 1. It has been shown ([l],[5]) that the complete
stability of the network is assured for some very important classes of tem
plates (such as symmetric, positive/negative and opposite-sign templates).
Nevertheless, no assumption (other than space-invariance and (6)) will be
made on the parameters of the network in this paper.



3 Upper and lower bounds

3.1 Circuit theoretic motivation

The equivalent circuit of a cell, represented in figure 2, contains three ele
ments : a linear capacitor (which we assumed equal to IF without any loss
of generality), a piecewise-linear voltage controlled resistor Tt whose driving
point characteristic is

*R = vr - Ao,o f(VR)

and atime-varying independent current source i9(t) = gij(t). The voltage vc
across the capacitor is equal to Xij.

Now, replace the time-varying current source i9(t) by a dc independent
current source J+ and let vjfc denote theresulting voltage across thecapacitor.
Repeat the same operation with another dc independent current source J~,
and let vg be the voltage across the capacitor in this latter case.

IfVc(t0) = vc(to) = Vc(<o) at some timet0 > 0, and if Ij < is(t) < J+ for
t > t0, we will see that the solution vc of the first circuit is bounded by the
solutions vj and t£ ofthe second and third circuits: v£(t) <vc(t) < v£(t)
for all t > to.

This property of a cell circuit illustrates the guideline of the method
presented in this paper. We will find an upper and a lower bound of i$(t) =
9ij(t) for * > t0. We can then easily compute closed-form upper and lower
bounds of the function vc(-) = *#(•)> and by doing so, estimate the state of
the cell.

3.2 Preliminaries

Before beginning our analysis, it is useful to introduce first some notations.
Throughout this section, we consider the cell Cy (1 <t < JV, 1< j < M).

Let t0 > 0, and let gtj(t0) (respectively ^y(t0)) denote an upper (respec
tively lower) bound of gij(t) for t > t0. (So $(t0) is J+ and #}(t0) is /," in
the previous subsection). Note the dependence of these bounds on t0.

Consider then the functions (J(t,to) and i7$(t,t0) defined for t > t0 by
the initial condition

{$(<o,*o) =*tf(to), (7)



the state equation

&(<> *o) =-f*(t, to) +A0,o »7*(t, to) +gftto) (8)
and the output equation

^•(Mo) =/(#(t,to)). (9)

So 65(Mo) corresponds to the voltage v£(t) defined in the previous subsec
tion.

Note that if t0 = 0, the equations (7), (8) and (9) define a CNN array in
the linear threshold class [6]. By a similar reasonning as in [6], we can state
that the steady state output of this CNN is

*S(oo, *o) =fHn^ T}J.(t, t0) =sgn[(A0to - 1) y,;(to) +**(*&)]. (10)

The solution of the equations (7), (8) and (9) can beexplicitly obtained
(see [7], chapter 6). Consider the three possible cases

(!) ya(to) = »?J(oo,t0). Then, for all t > t0,

€&(*, *o) =M*o) - A0,o y0(t0) - gfjito)] e-<«-*> +A0f0 yij(t0) +**(t0)
and

»7$(*i*o) = y,i(to). (11)
(2) |a;0(to)| < 1. Let

tl =t0 +—1_ In (^•1)^(oo,<b)+^(io) , .
^o.o -1 (Ao,0-l)a:0(to) +^(to) " (12)

Then, for t0<t< tu

#(Mo) - *?$(Mo) - [*«(*,) +-£^]e<^o-i)(*-*o) _J&toL
Ao,o —1 Ao,o —1

while for all t > ti

6$(Mo) =[(1 - Ao,o)^.(oo,t0) - <7*(t0)]e-('-<i> +Ao,o»?*(oo,to) +<#(t0)
and

*S(*i*o) =*$(oo,*o). (13)



(3) l«i(to) = -ij$(oo,t0). Let

2 t0 +m (i-Ao)y«(<o)-^(*o) (14)
and

+Ao,o -1 ™(4» -1)*«(*,) +4(<0)* lW
Then, for *o < * < *2»

6$(t,t0) = [x^to) - A0,o Vifa) - *$(*>)] e-(<-<0) +Ao,o y,;(t0) +4(t0),

^(<i*o)«Jf«(<©),
while for t2 < t < 13

<S(«,«o) =<?S(Mo) =fafr) +^Slle^-DC-") - J&&L
«Ao,o — 1 Ao,o — 1

and for all t > t3

#•(«, *o) = [(w40,o - 1) yy(*o) - *$(<o)] e-(e-*> - A0,o y<#b) +*j(<o)

tf;(Mo) =-y,;(t0). (16)
We define Q(<,t0) and i?5(t9t0) by the equations (7), (8) and (9) where

all the superscripts "+" are replaced by " - ". All the the formulae stated
above apply to fi5(t,t0) (which corresponds thus to the voltage v£ defined
in the previous subsection) and to J?5(t,t0) if we replace all the superscripts
«+ »by"-w.

3.3 Theorem 1

The function 6;(*>*o) (respectively £g(t, t0)), defined in the previous subsec
tion, is an upper (respectively lower) bound of x^(t) for all t > t0 :

6}(Mo)<x*(t)<{±(t,to) (17)

for t > to.



Proof: (i) By (5) and with thedefinition of$*(t0) we have that for t > t0

i0(t) =-*<,(*) +A0to /(*<#)) +9ij(t) < -*<#)+A0|0 f(xij(t)) +g±(tQ).

On the other hand, 6$(Mo) is the solution of

&(t, to) =-C&(t, <o) +A0,o /(#(t, to)) +4(t0)
satisfying the initial condition fJ(<o,*o) = «tf(to).

We may now apply a simple form of the comparison principle (see [8],
[9]). Suppose that for some tg >t0, sy(t0') >$(tg,t0). Let t0 be the largest
t in the interval [t0,tg] such that x^) = 6>(*o»*o). Therefore, if

««(*)-*<*«-#(*, to)

wehave that <*o(t0) = 0 and that for f - 0 < t < tg

<*0'(t) > 0. (18)

For the function /(•) shown in figure 1, if v < w then f(w) - f(v) < w- v.
Hence, for t0<t< tg,

4W = i.iW-fS(t,t0)
< -[*<#) - 6j(t,to)] +AoAHxiM) - /(#•(*,to))]
< -[*«(*) " {$(t, t0)] +Ao.olar.-^t) - £$(t, t0)]
< (Ao,o~l)dii(t),

which implies that, for t0<t< tg,

*i(t)<^(to)e(^°-1)(f-to) = 0.

It follows from this last inequality and from (18) that d^t)=0 for t0 <t <
*o- But then xy(tg) = f$(tg,t0), which contradicts our initial assumption.
Therefore, ar^(t) < tfjiWo) for any t > t0.

(ii) One proves similarly that (yfato) < x{j(t) for t > t0. D

We will use this theorem to predict the steady state of the cell C#. Indeed,
if we can pick some time f0 and find an upper bound (tj(t,t0) such that
Vij(<x>yto) = -1, then we know by the previous theorem that yy(oo) =



limt-oo y{j(t) =-1. Similarly, ifcan find some t0 and alower bound $}(t, t0)
such that 175(00, t0) = 1, then we can conclude that yy(00) = 1. But very
often, »?£-(oo, t0) = 1and J?JJ(oo, t0) = -1, and we cannot "predict" the value
ofy,;(oo), as shown in figure 3. (Nevertheless, we may find some other t*0 > t0
such that a prediction is possible). It is therefore important to find an upper
or lower bound as close as possible to thewaveform s#(t). This in turnleads
us to choose the upper and lower bounds of#,(t) as sharply as we can.

3.4 Corollary 1

The function i$(r,t0) (respectively J?5(t,t0)), defined inthe preliminaries, is
an upper (respectively lower) bound of yy(t) for all t > t0 :

*£(*» to) < yy(<) < »/*(t, t0) (19)

for t > t0.

Proof: This corollary follows immediately from (17) and from the fact
that the function /(•) is strictly increasing. D

3.5 Corollary 2

(i) If there is some t0 > 0 such that

(4o,o - 1) yij(t0) +$*(t0) <0 (20)

then yij{t) = -1 for all t > T with T = t0 if yti(t0) = -1, T = tx (where
h is given by (12)) if \yij(t0)\ < 1and T = t3 (where t3 is given by (15)) if
lf«(tb) = 1.

(ii) If there is some t0 > 0 such that

(Ao,0 - 1) yy(to) +g7j(to) > 0 (21)

then Vij(t) = 1 for all t > T with T = t0 if nfa) = 1, T = ta (where ti
is given by (12) with the superscripts a+" replaced by «-») if |yy(t0)| < 1
and T = t3 (where t3 is given by (15) with the superscripts a+n replaced by
a-")**;(to) = l.



Proof: (i) The condition (20) implies that ?7*(oo,to) = -1, and by
corollary 1, yij{t) < rj±(t, t0) for t > t0. The claim follows then immediately
from (11), (12), (13), (14), (15) and (16).

(ii) Similar to (i). D

4 Application 1 : Shadowing template

In order to illustrate how corollary 2 can help us in designing a template, let
us first take the very simple example of a "shadowing" CNN. Matsumoto,
Chua and Suzuki [10] proposed the cloning template

A =

0 0 0 "
0 2.0 2.0 » £ =

0 0 0

0 0 0

0 2.0 0

0 0 0

J = 0.

creating the "shadow" of an object in a bipolar image, as illustrated in fig
ure 4. The image is fed into the input while all the initial states are equal
to 1. Is it possible to find CNN templates performing the same operation
without having to store the image in the input (i.e. the image will be stored
in the initial states only) ? Suppose that we want to create the shadow of
an object with the "light source" coming from the right. Note that
(i) Any black pixel in the initial image, or in the image at any temporary
stage, will remain black thereafter.

(ii) Any white pixel which has a black neighbor on its right will become
black itself. By applying this fact recursively, and because of (i), all the
pixels located on the left of a black pixel will eventually become black.
(iii) Finally, a white pixel which has never a black pixel on its right will
remain white.

These three observations are the rules to be implemented by our shad
owing templates. Since this isa one dimensional problem, only the elements
of the central row of the template A will be different than zero. Since we
do not want to store anything in the input, all the elements of B will be
zeros. Finally, since the only external influence on a pixel is due to its right
neighbor according to rules (ii) and (iii), the templates which could solve this



problem have the form

A =

a o o '

0 Aoto Ao,i
0 0 0

5 £ =

0 0

0 0

0 0

Consider a cell Cy (1 < t < M, 1 < j < N). Let us find the conditions on
«Ao,o, Aoti and I imposed by the three rules stated above. First, note that

$tf(t) = Aiy*n(t) + J. (22)

(i) The first rule implies that if y#(t0) = 1 at some time t0 > 0, then
yij(t) =1for t >t0. By part (ii) ofcorollary 2, ifwepick^(to) = -|>lo,i|+/
(which is clearly a lower bound of gy(t) for any t > 0), the first rule will
always be satisfied if

AOto-l-|Ao,i| + />0. (23)

(ii) The second rule will apply when yij+i(t0) = 1 at some time t0 > 0.
The first rule implies then that yy+i(t) = 1 for all t > t0. Therefore we may
take this time gjj(t0) = A0ti +J (In this case, gjj(t0) = gij(t) for t > t0), and
corollary 2 (ii) leads to the condition

(w40,o - 1) y.j(to) +^(*o) > 1- ^o,o + Aotl + J > 0. (24)

(iii) The third rule takes care of all other cases, i.e y#(0) = -1 and
y»'i+i(*) < 1 for t > 0. Note that because of (ii), a pixel will never become
black if and only if all the pixels on its right are initially white. Hence
ytf(0) = -1 for i < / < JV. First, consider the edge cell CiNi located on the
right edge ofthe array. For this cell, giN(t) =J. Therefore yiN(t) = -1 if

1 - 4o,o +1 < 0. (25)

because of corollary 2(i). Next, consider CW-i. Since yiN(t) = -1 for all
t > 0, #jv-i(t) = —A0,i + J, and the condition

implies that y,N-i(t) =
(26) yields that y^t) =

1 - Ao,o - A0ti + / < 0. (26)

—1 for t > 0. Recursive application of inequality
-1 for all t >0 if j < I< N. Therefore yij(t) = -1

10



for all t >0if (25) and (26) are both satisfied. Note that bycombining (24)
and (26), we deduce that A0ti > 0. Hence if (25) is satisfied, so is (26).

To summarize the previous results, if we choose AQf0i Ao,i and J so that

4o,o-l-4o,i + J > 0
l-Ao,0 + Aotl + I > 0

-Ao.o-1-I > 0
«Ao,o-l > 0

(27)

we have the guarantee that the shadowing templates will work properly. Ob
viously, the solution ofthese inequalities is not unique, and many templates
will perform the same operation. For instance, wemay take

A =

0 0 0 "
0 2.0 1.0 » £ =
0 0 0

J = 0.5.

5 Application 2 : Motion detection

5.1 Hubel and WiesePs experiment

Hubel and Wiesel have conducted important experiments on the cat's visual
cortex. In particular, they found some specific cortical cells which respond
only to movement across the retina in acertain direction [11]. Figure 5shows
actual records of selected cells when abar is moving across aparticular region
of the cat's visual field. Hubel and Wiesel noted that a slow downward move
ment ofthe bar gave a strong response, while upward movement gave only
weak response and horizontal movements no responses (and so would oblique
movements do as well) ([11], p. 120). They further observed that "discharges
ofhighest frequency were evoked byrelatively slow rates ofdownward move
ment; rapid movement in either direction gave only very weak responses. If
the movement was halted, the cell continued to fire, but less vigorously".

In other words, ifthe bar is moving in acertain direction at aspeed lying
within a certain range, some specific cells are firing and the motion of the
bar is detected. Our aim is to implement these experiments on CNNs.

11



5.2 Algorithm

The motion ofan object is simulated bya sequence oftime discrete samples
ofmoving bipolar images P(kAt) (Here A; is an integer and At is the sampling
time). The consecutive image samples P(kAt) are fed into the inputs while
the image samples P((k + l)At) are applied to the initial states of the CNN.
We always suppose that the settling time of the CNN is much smaller than
At, so that we may assume that the input is constant during the processing
time.

We want to detect whether an object is moving with a given speed in
a given direction, say for instance a speed lying in a small neighborhood of
As/At in the horizontal direction (Ax is the resolution of a pixel). Con
sider two successive images P(kAt) (applied to the input) and P((k +l)At)
(applied to the initial states). The problem amounts then to comparing the
position ofthe moving object in P(kAt) and its position in P((*+l)At). We
make the assumption that the shape ofthe object does not change between
the two snapshots P(*At) and P((k +l)At). In a previous approach [12],
the first step of the processing was the computation of the difference between
P(fcAt) and P((k + l)At). In the approach described here, we do not take
the difference between P(kAt) and P((k +l)At), but we compare directly
both pictures. Figure 6 shows four bars at some time fcAt (fig 6(a)) and
at time (k +l)At (fig 6(b)), and the desired output of the CNN (fig 6(c)).
Consider first the case ofthe second bar, which moves with the correct speed
of Ax/At in the horizontal direction. Then, to every black pixel u^j = 1
in P(kAt) will correspond ablack pixel a?o(0) = 1in P((k +l)At). In this
case the output is the same as the initial state.

Now, consider the first bar (which did not move), the third (whose speed
was greater than Ax/At) and the fourth (which moved in another direction
than horizontal to the right). Then some black pixels uy-i = 1in P(ifeAt)
will not have acorresponding black pixel xy(0) =1in P((k +l)At). In this
case, we want to erase theobject from thescreen: wemusthave yy(oo) = -1
for all 1 < i < M, 1 < j < N.

Asintheprevious example ofthe shadowing templates, we must find aset
of rules covering all the cases which may occur. Let us consider a particular
cell dj. We will call "corresponding pixels" the pair {vq-u x0(0)}. Four
cases may occur :

(i) at some time t0, yy(*o) =-1. We may then impose that y0(t) =-1 for

12



all t > to since a white pixel will always remain white.

(ii) Xij(0) = 1 and tiy«i = —1. Then we know that the object has mo-ved
with a "wrong" speed, so we must impose that yi,(T) = -1 at some time T.
(iii) x'y(O) = 1, Uij-i = 1 but ymn(t0) = -1 and umfl-x = 1 for at least oae
cell adjacent to Cy, at some time t0 > 0. This means that the object brs
moveri with a "wrong" speed and we muat again imposu that yy(T') - -1
at soicit time T' > t0. This, in turn, implies that.for any cell Cu adjacent to
djt VuiT") = -1 for someT" > T't and this process will continue o?til th..
entire (connected) object is erased.

(iv) a?l((0) = 1, uy.j 8 1 and for every cell Cmn adjacent to C,,-, we have
that if timn-i = 1 then ym„(t) = 1 for all t > 0. In this case the object has
moved with correct speed, and we will impose that yy(i) = 1 for all t > 0.

Rules (i) to (iii) apply whenever the object has moved at a different
speed and/or ina different direction than 1 pixel per sampling period in the
horizontal direction to the right; and ru!es (i) and (iv) apply when the object
has moved with the correct speed in the correct direction.

5.3 Templates for motion detection

Let us now implement these rules wilh a CNN, as we did in the case of
the shadowing templates. First note that only the immediate neighbors ofa
pixel ofP((fc +1)At), and their corresponding pixels inP(JfeAt), are involved
in the computations. Moreover, all these neighboring pixels have the same
Influence on the central pixel, so we may take all Ak-i,t-j equal to some An
and all Bk-u-j-i equal to some Bn fcr (*,/) 9* (i,i). Finally, because of
rile (iv), the neighboring cells Cu for which arw(0) = uU-i must hsr* no
influent on the state of the central rza dj. Since this influence is Cquai
to Ak-ij-j yw(t) +£*_,-,/-,•_! ««-!, we should take Ak .,,/-,• = An « -£„ a
-2?fc.,V-,-x. Therefore the templates Miited for th?B problem will have the
fcrm

13



B

x =

0 0 0

An An An

An Aofi An
An An An
0 0 0

0 0

'An ~An

•An B0,-i
'An ~An

0 0

0

'An
An
An
0

Note that since A is symmetric, the CNN is completely stable and all
states will have a magnitude greater than one at some time t. So the four
rules (i) to (iv) encompass all possible cases. With these templates, (4)
becomes

gait) = An £ [yu(t) - uw-!] + B0,-i ti.'i-i + /• (28)
C«€MA{Ctf}

Let us assume that An > 0, and let us find a set of parameters Ao,oi Ani
£o,-i &nd I such that these templates "implement" rules (i) to (iv).

(i) Rule (i) applies whenever y<,(to) = -1 at some time t > 0. Clearly,
16A„+|Bo,-i|+J is an upper bound of$y(t) (given by (28)) for any t. Hence,
by corollary 2(i), yy(t) = —1 for t > to if

1 - Ao,o + 16An + |£o.-i| + J < 0. (29)

(ii) Rule (ii) is handled similarly. Now, we have that yij(0) = 1 and
«0-i = —1, so 16A„ —Bo,-i + J is an upper bound of g#(t) for t > 0. If

Ao,o - 1 + 16An - B0|-1 + J < 0

then, by corollary 2(i), ytj(t) = —1 for all t > T with

T = In
l-Aofl + 16An-B0t-i + I

Aq,0 - 1 Ao,o -1 +164„ - B0|-i + /'

14

(30)

(31)



(iii) Rule (iii) applies when uy»i = 1, and when at least one cell in the
neighborhood of C& say Cmn, is such that umn-i = 1 and ymn(to) = -1 at
some time t0 > 0. Because of rule (i), ymn(t) = -1 for all t > t0. On the
other hand, because ofrule (ii), for any cell CM such that tZp,_i = -1, we
have that y^t) = -1 for t >T, with T given by (31). This implies that for
any cell C«

Vki(t) - u«-i < 0

for t >T, since uW-a =±1 and |yw(t)| <1. Therefore, if r"= max{t0,r},

*>(*) = An Y, [y«W-WW-l] +^n[ymnW-Ura„-i]+Bo,-iU<i-1 +7

< 0+ An[-l-l] + B0|-i-f J = -2An + B0,-i + J

for t >t. So g±(I) =-2A„ +B0|-i +J is an upper bound of#,(t) for t > ?,
and if

(Ao,o - l)y,j(t) +<#(*) <X0,o - 1- 2A„ +B0,-i +1 < 0, (32)

corollary 2 (i) implies that Vij(t) = -1 for all t > 2", where T can be
computed by (12) or (15).

(iv) Finally, rule (iv) applies when *y(0) = ti^-i = 1, and when for all
cells Cpg € Mi, \ {Cij} such that uM-i = 1, we have that y^t) = 1 for all
t > 0. Consequently, for any cell C« € Mj \ {C#},

Vkt(t) - UW-! > 0

for all t > 0, and since An > 0,

g7j(0) = An J2 (0) +Bo,-iUy.1 +/ = Bo,-i+/

is alower bound of gtj(t) for all t >0in this case. It follows from corollary 2,
part (ii) that y^t) = -1 for all t > 0 if

(Aoja - l)yo(0) +gr.(Q) =Ao,0 - 1+B0,_i +1> 0. (33)

Note that the combination of (30) and (33) yields that B0 i > 0 since
An > 0.

15



Consequently, if we choose A0|o, Ani B0,_i and I so that

A0,o - 1 - 16j4„ - B0t-i - I > 0
1 - A0,o - 16An + B0,-i - J > 0
l-Ao + 2An-B0,-i-/ > 0

A0,o - 1 + B0,-i + / > 0
Ao-l > 0

An > 0

(34)

the CNN will solve the problem ofmotion detection stated insubsection 5.1,
in all cases. Such a set of parameters is A0|o = 4.2, An = 0.3, B0,-i = 3.1
and J = —6, or the templates

B =

0 0 0 0 0

0 0.3 0.3 0.3 0

A = 0 0.3 4.2 0.3 0

0 0.3 0.3 0.3 0

m0 0 0 0 0

0 0 0 0 0 '
0.3 - 0.3 -0.3 0 0

0.3 :J.l -0.3 0 0 j

0.3 - 0.3 -0.3 0 0

0 0 0 0 0

J =-6.0.

Figure 7 shows a computer simulation of this cloning template in the
case of a movement with the correct speed and direction (figure 7(a)), in
the correct direction but with agreater speed (figure 7(b)) and in the wrong
direction (figure 7(c)). Note finally that if thegiven speed was different than
Ax/At or if the direction was different from the horizontal direction to the
right, we can modify the template B accordingly.
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6 Application 3 : Hole filler

6.1 Statement of the problem

Our next example is the "Hole-Filler" CNN. We will distinguish here two
different problems :

1. A given bipolar image, representing a black object on a white back
ground, is fed into the input while all initial states are equal to 1.
Then the CNN must fill up any hole in the object, as shown in fig
ure 8(a). (We will consider here the so-called 8-connected neighbor
hood. Namely, two pixels diagonally adjacent are considered to be
connected. So the object in figure 8(a) is connected.)

2. The given bipolar image which is fed into the input represents now
either a black object (on a white background) or a white object (on
a black background). All the states of the CNN are initialized at the
values of the pixels forming the object (i.e. s«,'(°) = 1 if the object is
black and xtJ(0) = -1 if the object is white). The CNN must fill up
any hole in theobject inboth cases, as shown in figures 8(a) and (b).

A CNN cloning template solving the first problem is reported in [13]. The
second problem is more restrictive than the first one, and we will of course
have more constraints on thechoice of the templates. We will see, thanks to
the following theorem, that the additional constraint is to impose 7 = 0.

6.2 Theorem 2

For all 1 S i < M, 1 < j < N, let x{j(t) be the trajectory of the state
corresponding to the initial condition X{j(0) and input u#. Denote byxj-(t)
the trajectory of the state corresponding to the initial condition *{ (0) =
-a?O'(0) and input u^ = -tig, for all 1 < i < M, 1 < j < JV.^Then
x'iM) = -*tfW for all t > 0 if and only if I = 0.

Proof: First, let us repack the state variables xy into an MN x 1 vector
x and the input variables ity into u (using the same ordering as that for x).
Then the state equation can be rewritten as

x(t) » -x(t) + Am f(x(t)) + Bm u +1

17



Here /,(x) = /,-(«<) = /(*<)• Tlle diagonal elements of the MN x MN
matrices Am and Bm are respectively Ao,o and Bo,o, and their off-diagonal
elements are either zeros or off-diagonal elements of the templates A and B.
All the components of the vector I are equal to J. Similarly,

Define

x'(t) = -x'(t) + Am f(x'(t)) + Bmu' + L

s(t) = x(t) + x'(t).

Since u = —u',

s(t) = x(t) + x'(t) - -(x(t) + x'(t)) + Ara (f(x(t)) + f(x'(t))) + 21. (35)

(=•) Suppose first that for all 1 < i < M, 1 < j < N and all t > 0,
xIi(<) = -*«i(*)» or equivalently that x'(-) = -x(-). Then s(-) = 0, and since
f(x;) = f(-x) = -f(x), it follows from (35) that I = 0, and thus that I = 0.

(«^0 Next, suppose that 1=0. Since f(xi) < x, with /(•) given in
figure 1, it follows then from (35) that

lis(t)|| < \\(Am - U)(x(t) + x'(t))|| < ||Am - U\\ ||s(t)||

where U is the identity matrix. Noting that s(0) = 0 for x'(0) = -x(0), this
inequality implies that

l|s(<)||<||s(0)||e"^-^' = 0.

Hence x(-) = -x'(-), and x0(.) = -*<,•(•) for all 1 < i < M, 1 < j < N. D

6.3 Cloning template for a Hole-Filler CNN

It follows from the previous theorem that templates solving the first problem
stated in subsection 6.1 will solve the second problem as well if / = 0. We
can restate problem 1 as a set of local rules applying to a particular cell CtJ
(1 < t < M, 1 < j < N) and to the cells horizontally and vertically adjacent
to Cij. By a similar reasonning as the two previous examples, we come up
with templates assuming the form

A =

0 An 0 '
An Aoft An ; £ =
0 An 0 .
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where the parameters A0,o, An and B0|0 satisfy the inequalities

Xo,o-l-4An + B0fo > 0
Ao-l+4^n-B0,o > 0
l-Ao,o-3An + B0,o > 0 (36)

Aoto-l > 0
An > 0.

For instance, we can take A0|0 = 2.5, An = 1 and B0t0 = 5, that is, the
templates

A =

0 1.0 0

1.0 2.5 1.0

0 1.0 0

B =

0

5.0

0

7=0.

7 Conclusion

We have presented amethod for synthetizing aCNN to solveagiven problem.
The first step consists in the translation of the problem into a set of local
rules, involving a cell and its nearest neighbors only. The second step is
the implementation of these rules with a cloning template. By applying
corollary 2, we get then a system of inequalities which must besatisfied by
the parameters of the templates to ensure a correct operation of the CNN.

This methbd can also provide us with some insight on the sensitivity of
the templates to small variations around their nominal value. Indeed, we
will try to choose the parameters denning the templates so that they always
satisfy the set of inequalities derived in the second step, even if their values
are slightly perturbed. This pointis relevant because of the unavoidable lack
of accuracy of the VLSI realization of a CNN.

The method described in this paper can be extended to multiple layers
CNNs, and can therefore be applied to a broader class of problems. Never
theless, its application is restricted torelatively simple problems, which can
be formulated within a reasonable number of local "rules".
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Figure 4: Creation of the shadow of an object: the given image (left) and
the output of the CNN (right).
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applied respectively to theinput and the initial states, and theoutput ofthe
CNN (c). *
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Figure 8: Hole filling of a black object on a white background (a) and of
white object on a black background (b)'.
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