
 

 

 

 

 

 

 

 

 

Copyright © 1991, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



NONLINEAR DYNAMICS OF A CLASS OF

ANALOG-TO-DIGITAL CONVERTERS

by

Orla Feely and Leon O. Chua

Memorandum No. UCB/ERL M91/30

22 April 1991



NONLINEAR DYNAMICS OF A CLASS OF

ANALOG-TO-DIGITAL CONVERTERS

by

Orla Feely and Leon O. Chua

Memorandum No. UCB/ERL M91/30

22 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Nonlinear Dynamics of a Class of
Analog-to-Digital Converters

Orla Feely and Leon 0 Chua*

April 22,1991

Abstract

Oveisampled sigma-delta modulators are finding widespread use
in audio and other signal processing applications, due to their simple
structure and robustness to circuit imperfections. Exact analyses of
the system are complicated by the presence of a discontinuous non
linear element — a one-bit quantizer. In this paper we study the
dynamics of the one-dimensional mapping which models the behavior
of the single-loop modulator. This mappinghas a discontinuityat the
origin and constant slope at all other points. With slope one, the dy
namics in the region of interest reduce to those of the rotation of the
circle. With slope less than one, almost all systeminputs give rise to
globally asymptotically stableperiodic orbits. We emphasize the case
with slope greater than one, and explain the structure of the resultant
bifurcation diagram. A symbolic dynamics based study allows us to
explain the self-similarity of the dynamics and the nature of chaos in
the system.

*The authors are with the Department ofElectrical Engineering and Computer Science
University ofCalifornia, Berkeley, CA 94720,USA '



1 Introduction

Oversampled Sigma-Delta (S- A) modulation as a method of analog-to-
digital conversion in electronic circuits has attracted much interest since it

was first studied in [Inose &Yasuda, 1963] and [Candy, 1974]. The technique
is now finding widespread use in such applications as digital signal process
ing systems, voiceband telecommunication systems and commercial compact
disc players [Goedhart et al, 1982; Misawa et al, 1981]. The simple structure
of the E-A modulator, together with its robustness towards circuit imper
fections and component matching inaccuracy, make it especially attractive
for integrated circuit implementation.

Understanding of the operation of the S-A modulator is far from com

plete, due to the presence of a nonlinear element — a quantizer — in the
system. Most researchers who study the problem begin by linearizing the
nonlinearity, thus allowing standard linear theory to be applied, while others
avoid the analysis altogether and confine their efforts to simulation. These

studies provide little insight into the operation of the system, and in many
cases do not yield correct quantitative or even qualitative results.

In this paper we study the dynamics of the nonlinear difference equation
which models the behavior of the single-loop modulator. The nature of the

mapping makes it especially amenable to a symbolic dynamics based study
[Hao, 1989]. The model contains a parameter pwhich accounts for compo
nent nonideality in the circuit implementation. We study the dependence of
system behavior on this parameter.

In the ideal single-loop modulator p = 1. In this case the dynamics of

our model in the region of interest are identical to those of the well-known

rotation of the circle. To account for integrator leak, a common circuit im-



perfection, p is decreased below 1. In this case the region of admissibility

of each observed limit cycle widens out from a point (in the p = 1 case)

to an interval, giving rise to a tongue in the p-input plane. Global asymp

totic stability of all limit cycles guarantees that the tongues cannot overlap.

Various extensions to the basic modulator topology have been proposed —

to examine the behavior of certain of these extensions it is necessary to set

p > 1. This is the case which will be emphasized in this paper. In this case

all periodic orbits are unstable and the tongues overlap. We use symbolic

dynamics to study the overlap of the tongues and the chaotic nature of the

motion.

Section 2 contains a description of S —A modulation for the benefit of

readers who may not be familiar with the technique. Section 3 describes the

difference equation used to represent the single-loop E-A system, and Section

4 explains the dynamics of this equation for p < 1. Section 5 considers the

location and overlap of the tongues for p > 1. Section 6 discusses several

bifurcation diagrams for the p > 1 system and contains a symbolic dynamics

based proof of the nature of the chaos in the system. In Section 7 the main

findings of the paper are summarized.

2 Sigma-Delta Modulation

With recent rapid advances in very large scale integrated circuit (VLSI)
technology, digital means of transmitting, processing and storing data are
becoming increasingly prevalent over conventional analog techniques. Tele
phone networks, audio systems and the new field ofhigh definition television
are just some of the areas in which digital signal processing is finding its
way into everyday life. Digital systems offer several advantages over analog,



including smaller size, lower sensitivity to noise, greater reliability and lower
cost.

The increasing use of digital techniques has led to significant research
interest in the analog-to-digital and digital-to-analog converters which serve
as interfaces between digital processing systems and real-world analog sig
nals. Ideally, these interfaces should be implemented in VLSI technology so
as to maxmiize reliability and minimize cost of the complete system. While
modern VLSI techniques produce very high-speed and high-density digital
circuits, they restrict the dynamic range and precision of the analog stages.
Conventional analog-to-digital conversion techniques require high precision
components and often do not take advantage ofthe very high speeds permit
ted by the VLSI technology.

Oversampled analog-to-digital converters overcome both of these disad

vantages. The structure is simple and is tolerant of circuit imperfections and
component matching inaccuracy. The quantization can be coarse — in the

basic implementation the quantizer has just two levels. To permit accurate
signal reconstruction with such a quantizer the signal is sampled at a rate
much higher than the usual Nyquist rate \ and a large number of the resul

tant coarse representations of the signal are used to generate a single high
resolution representation.

Sigma-Delta (E-A) modulation is the most popular method of oversam

pled analog-to-digital conversion. In the simplest E-A modulator — the

single-loop system — a one-bit quantizer is used together with a discrete

time integrator inside a feedback loop. This basic structure can be modi-

xThe Nyquist rate is twice the largest frequency component ofthe signal —it is the
smallest sampling rate at which a continuous-time signal is uniquely represented by its
discrete-time samples. See [Oppenheim et a/., 1983].



fied by adding more feedback loops, increasing the number of quantization

levels or changing the forward path transfer function. Since such modifica

tions increase circuit complexity and often give rise to instability, the most

commonly used E—A structures are the single- and double-(feedback) loop

modulators.

One important feature of E —A modulation is the appearance of limit

cycles in the output bit stream. As a result, the quantization noise of the

single-loop system is not white, but rather contains discrete spikes at fre

quencies depending on the input. This "pattern noise" can be particularly

objectionable in audio applications. Higher order systems suffer from this

problem to a lesser extent than does the single-loop system.

3 Single-Loop E-A Modulator with Leaky
Integration

The structure of the ideal single-loop E—A modulator is as shown in Fig. 1.

Figure 1

It consists of a discrete-time integrator together with a quantizer in a

feedback loop. The only nonlinear element in the modulator is the one-

bit quantizer whose output is 1 when its input is > 0; -1 when its input
is negative. We will assume throughout this paper that the input to the
modulator is constant. Under this assumption, the ideal single-loop system
is described by the first order difference equation

u„+i = un + x - sgn(un) (i)



where x is the input to the modulator and un is the quantizer input. Both
are discrete-time signals —since the input is constant we drop the subscript
on x.

This E-Amodel has been studied in [Friedman, 1988] and [Gray, 1987,1989].
If theinitial state u0 lies in the interval [x -1, x+1) the dynamics are equiv
alent to those of the rotation of the circle

0n+i = {0n + k)mod 2„ (2)

which is covered in any elementary textbook on nonlinear dynamical systems
[Hao, 1989; Devaney, 1989]. It follows that for rational input x the output
bit stream is periodic, the average over a complete period being equal to x.
With an irrational input to the modulator the output is quasiperiodic.

One major assumption made in modeling the single-loop system by (1)
is that the integrator is ideal. In any practical implementation of the mod

ulator, circuit nonidealities will result in leaky integration [Gregorian and
Temes, 1986], giving the more complete system description

u„+i = pun + g.(x - sgn(un)) (3)

p and g represent the effect of circuit nonidealities. g is always positive,
so it can be removed by a scale change. As long as p = 1, therefore, the

dynamics of (3) on the interval [g(x - l),g(x + 1)) are still those of the

rotation of the circle, so the qualitative features mentioned earlier still hold.

In a practical implementation, circuit nonidealities will cause p to be less

than 1. In order to quantify the effect of leaky integration on the behavior

of the E—A modulator, it is necessary to study the dynamics of (3) for
the case p < 1. This investigation is described, and the implications for

the operation of the modulator discussed, in [Feely & Chua, 1990]. The



results are summarized in the following section — for further detail readers

are referred to [Feely & Chua, 1990], [Veerman, 1987] and [Ding & Hemmer,

1987].

4 p< 1

With the leaky E —A modulator of Sec. 3 as our motivation, we study

equation (3) for 0 < p < 1. If there exists a Hmit cycle of period JV, (3) can

be summed over the limit cycle to yield the condition

uk=T^x- r5-)7 g ^+*-i-< sgn (Ui) (4)
for 1 < k < N. To check for admissibility of a given period N limit cycle we

follow the procedure:

1. substitute the assumed bit sequence for the sgn terms in (4);

2. calculate the resulting sequence of states U{ in terms of x, </, and p\

3. impose the conditions that these N U{ [quantizer inputs] must be of

such polarities as to give the assumed bit sequence at the quantizer
output;

4. calculate the range of possible values for x from the N inequalities in
step 3.

In the ideal single-loop E-A system each limit cycle could exist for a

fixed value of x only; the average output over the complete limit cycle being
equal to a?. In the p < 1 case each limit cycle can exist over a range of x
values, limiting the resolution ofthe modulator. All Hmit cycles are globally



asymptotically stable, so for fixed x and p there can exist at most one Hmit
cycle.

The Hmit cycles (consisting of strings of ones and zeros representing quan
tizer outputs of +1 and -1 respectively) which appear at the output of the
ideal single-loop E-A modulator with constant rational input x are those
produced by the EucHd algorithm of number theory [Friedman, 1988]. We
wiU use the following special form of the EucHd algorithm:

Algorithm: To find the Hmit cycle with a ones and (6 - a) zeros (a and b
coprime)

(i) Form the continued fraction expansion of a/b

a

b 1

1
a2 +

1
a3H

1
•• + —

C*n

To guarantee uniqueness we require that the final coefficient an ^ 1.

(ii) Define

So = 0

Sk = Sfc-2(S*-i)tt*

S„ = 5n_2(5n_1)°f«

8



where (Sj)ak consists of the block Sj repeated a* times, and the a; are the

coefficients of the continued fraction expansion.

Sn is the Hmit cycle at the output of the ideal single-loop system with

constant input x = 2a/b —1. For n even we term Sn the R-sequence corre

sponding to S„. The first two bits of Sn in this case are 01. Interchanging

these two bits gives the L-sequence of 5n. For n odd S„ begins with the

bits 10 — we term this the L-sequence of Sn and obtain the R-sequence by

interchanging the first two bits. It can easily be shown that the L-sequence

is a shifted version of the R-sequence.

To determine whether the Hmit cycle represented by Sn persists as p is

decreased below 1, substitute into (4) to find the condition

N+h-1 N+k2-l

Here 5„ = (su.. .sN), s{ £ {0,1}, ut- = 1 (resp. -1) if s{ = 1 (resp. 0) and
hi and k2 (both < N) are chosen subject to the constraint u^ = —1 and

ujb2 = 1. To find the greatest lower bound on x it is necessary to find the

shift fc2 oi Sn which maximizes the polynomial

AT+Jfej-l

i—k2

subject to the constraint v^ = 1. In fact the appropriate shift of Sn is just
the L-sequence of Sn. Similarly the R-sequence is the shift of Sn which
produces the least upper bound on x.

A Hmit cycle is admissible iff the corresponding greatest lower bound on
x is lower than the corresponding least upper bound. For the "ideaT Hmit

cycles (by which we mean those that appear in the p = 1 system) this is



always the case, the difference between the bounds being

2pN~2 (-0+1)
j^-i+...+p+l>0 to* 6(0,1) (6)

Thus any Hmit cycle which can exist at the output of the ideal E-A

system can also exist at the output of the leaky system. Any Hmit cycle
which is inadmissible in the ideal (p = 1) system is also inadmissible for

p < 1. This is a consequence of the fact that for a given p the complement
in (-1,1) of the set of input intervals which give rise to "ideal" Hmit cycles
has measure zero.

Fig. 2 shows the dependence of the average output over a Hmit cycle on
the dc input x for p = 0.8.

Figure 2

The plot was obtained by choosing 20000 dc input values uniformly spaced
in the interval[-1,1]. The form of the graph is that of the well known devil's

staircase, the quaHtative form being repHcated at varying levels ofresolution.
The staircase contains a step at average output q, where q is any rational
number in the range (-1,1). From (6) it is clear that the width of the steps
corresponding to Hmit cycles with period iV decreases with N. The widest

step is that corresponding to the Hmit cycle 01 (average output 0) and the
next widest are those corresponding to Hmit cycles 101 (average value ^) and
100 (average value -|). Fig. 3 shows the 27 widest steps predicted by the
analysis for p = 0.8.

Figure 3

The correspondence between theory and simulation is clear. Fig. 4 shows
the locations of the 27 widest steps for varying x and p.

10



Figure 4

At p = 1, as expected, the widths of aU steps shrink to zero, and the "steps"

are just the rational numbers.

5 p > 1

In the leaky E—A system whichmotivated ourstudy of equation (3), physical

constraints require that p neverexceed 1. There exist other E—A topologies,

however, which attempt to overcome the disadvantages of the basic modu

lator by changing the forward path transfer function. [Chao et a/.,1990], for

example, describes an interpolative E—A modulator, the first order version

of which is described by equation (3) with p no longer constrained to be less

than 1. For this reason, in this section and for the remainder of the paper

we consider the dynamics of (3) for the case p > 1. Once again we assume

a constant input x with absolute value less than 1. Since g affects only the

scaling of the state variable, we shaU without loss of generality set g = 1,

giving the difference equation

u„+i = pun + x - sgn(un) (7)

We can immediately deduce some important facts:

1. AU fixed points and periodic orbits are unstable.

2. If |x|< -1 +2/p the interval [f±i, f=i] is invariant under the map. In
the context of E-A modulation, this means that if |rc|< -1 +2/p, all
initial integrator states in the range [f±i, f=i] give rise to a bounded
series of quantizer inputs.

11



As outlined in Sec. 4, therange ofinputs x which give rise to a particular
admissible period N orbit for a fixed p < 1 is found to be of the form

l{p) r(p)
1n(p) s x< Mrf <8)

Here /(.), r(.) and 1N(.) are (N - l)-th order polynomials. 1N(.) has aU
coefficients equal to 1, while the coefficients of /(.) and r(.) are obtained by
applying the particular form of the EucHd algorithm given in Sec. 4.

Whenp > 1 the analysis is the same but for the reversal of the directions

of the inequaHties. The range of inputs x which give rise to a particular
admissible period N orbit is now found to be of the form

Mp) " Mp) (9)
Since

l{p)-r(p) 2p"-2(p-l)

we find that all admissible periodic orbits from the p < 1 system are again
admissible for p > 1. Fig. 5 shows the tongues or regions of admissibiHty in
the p —x plane of these particular periodic orbits.

Figure 5

Whereas for p < 1 the tongues could not overlap, we see that for p > 1
there isoverlap. Theupper boundaries oftwo distinct tongues never intersect
—this is a consequence of thefact that the upper boundaries correspond to
periodic orbits containing the point x - 1. Similarly the lower boundaries of

two distinct tongues never intersect. This fact wiU be used in later analysis.
Global asymptotic stability was used for p < 1 to rule out the possibil

ity of periodic orbits other than those produced by the EucHd algorithm.

12



Since with p > 1 periodic orbits are no longer globally asymptotically stable,

other periodic orbits may be admissible. The technique of Sec. 4 is again

appHcable. To test whether a given sequence V = (u1?.. .vpr) of Is and —Is

represents an admissible periodic orbit we substitute into

N+ln-l N+k2-l

^*<^-ll -v-a ^ TT (11)^-i+PAr-2+...+i • p^^+p^^+.-.+i

where t;/^ = —1 and v^ = 1. This is just (5) with the direction of the

inequaHty signs reversed. V is shifted to find the tightest bounds on x —

if the greatest lower bound is less than the least upper bound for some x

and p the orbit is admissible for those parameter values. This investigation

proves that orbits represented by any periodic sequence of zeros and ones are

admissible for some values of p < 2 and x € (—1,1). This foUows from the

inequaHty

p">p"-i+/r-2 +... +1 forp>2, (12)

which impHes that the fact that the upper bound polynomial has first coeffi

cient 1 and the lower has first coefficient —1 is in itselfenough to guarantee
admissibiHty for some values of x and p < 2.

Fig. 6 shows the regions of admissibiHty of several orbits with average
value 0.

Figure 6

Note that these regions all lie inside the region of admissibiHty of the
"ideal" orbit with average 0—the 10 orbit. In fact the region of admissibiHty
for any orbit lies within that of the "ideal" orbit with the same average value.
This is proven in the foUowing theorem.

13



Theorem 1: Let Sk be the symboHc representation of a periodic orbit pro
duced by the EucHd algorithm and let F be the symboHc representation of

a second periodic orbit which has the same average value as S*. The region
of admissibiHty of jP Hes within that of Sk.

Proof: We wiU show that theupper boundary of the region of admissibility
of F Hes below the upper boundary of the region of admissibiHty of Sk. The
corresponding proof for the lower boundaries is analogous.

An upper bound on the region of admissibiHty of F is the rational function

lmw(p)
where mN is the length of F and /(.) is a polynomial of order mN - 1 with

coefficients given by any shift of F which leaves a 1 in the first position.

The least upper bound on the region of admissibiHty of Sk is

l(p) _J(p)(l+gy + ...+J*»-i>")
IjvO?) lmN(p)

Our goal is to show that there is some shift of F which leaves a 1 in the

first position and produces

f(p) < 7(p)(l + p" + •••+ pO-D") for p > 1

Define L = LkLk...Lk (repeated m times) where Lk is the L-sequence
of Sk and so gives the coefficients of /(.). If there is a shift F of F with

first element 1 such that the cumulative total of (L —F) is everywhere non-
negative, the theorem is proven.

Suppose this is not the case — suppose that for every such shift of F

there is a point q where

3 q

£L(i)-F(0>0 \fj<q and ^I(i)-F(»)<0
«=i »=i

14



Take the shift with largest such q: caU it F*. (If there are several such

shifts, choose any of them.) By producing another shift which gives rise to

a cumulative total function which is non-negative until q* > q, we wiU prove

the theorem by contradiction.

Choose thelargest qsuch that (i) F*(q) = 1and (u) £?=! L(i)-Fm(i) < 0.
We know such a q exists, sinceq itself satisfies conditions (i) and (ii). Define

A A

F (resp. L) to be the shift of F (resp. L) with q in first position.

Case 1: If L(q) = 1,

3

]TL(t)-F(0>0 Vj <q + mN-q
i=i

and in fact over this range of j, £Li L(i)—F(i) = 0 only for 1 < j < j,

where F(i) =0 V 2 < i < j

Applying Lemma 11 of [Feely & Chua, 1990] yields that

£L(i)-P(i)>0 Vj<q +mN-q =q*
t=i

Case 2: If L(q) = 0,

3

££(*)-^(0£-l Vj<q + mN-q
i=i

and in fact over this range of j, YL\ ^(0 ~ -^(0 = -1 only for 1 <
j < j, where F(i) = 0 V 2< z< j

Applying Lemma 11 of [Feely & Chua, 1990] yields that

3

J2Ld)-H*)>Q Vj<q + mN-q = q*
t'=i

15



The theorem is therefore proven by contradiction. •

We can derive some measures of theextent of tongue overlap. For x = 0
it appears from Fig. 5 that for 1 < p < p* w 1.4 the only orbits present are
those with average value zero. A quick analysis confirms this intuition. We

wish to find the infimum over aU periodic orbits with average greater than
zero of the set

Since lower boundaries of distinct tongues cannot intersect, it suffices to
consider the lower boundaries of periodic orbits with average value l/(2iV+l)
for integer N —• oo. These boundaries are given by

T_ (-P+ 1)(1 +P2 +•••+P2"-4) -Hp2*-2 +p2*-i -p>"
l +p+---+p2JV (I4)

As N —• 00, these expressions converge to

which is positive for 1< p < y/2. For x = 0 and 1< p < y/2, therefore, aU
admissible periodic orbits haveaverage value zero.

For x = 0.02, solving the inequality

(l-p)(p2-2) rt£+? }>°-02 (16)
yields that for 1.05048... < p < 1.32211... all admissible periodic orbits

have average zero. In Sec. 6 these values wiU bederived in asHghtly different
manner.

The same procedure can berepeated for any tongue. Tostudythe tongue
with average value |, we consider the lower boundaries of tongues (N +

16



l)/(3iV + 1) and the upper boundaries of tongues N/(3N + 2) as N —• oo.

The loci converge to

-p4 + p3 + p2 + 2p - 2 p4-p3 + p2-2p + 2
p* + p* + p> an p4+p3 + p2

respectively. These loci, together with the boundary of the region of admis

sibiHty of the 101 orbit tongue, are plotted in Fig. 7.

Figure 7

In the shaded region all admissible periodic orbits have average value |.
For x = 0.3, for example, aU periodic orbits wiU have average | for psuch

that

-? + ? + ?+ 2p-2 Pi-? + Pi-2p.+ 2
p4+p3 + p2 • p4+p3 + p2

i.e. for p 6 (1.06123... ,1.16043...). Again, Sec. 6 provides a different
interpretation of this analysis.

6 Bifurcation Diagrams

In this section we study the bifurcation structure of the map

w-* f(u,p,x) ±pu + x- sgn(u) (17)

with bifurcation parameter p. Webeginwith the casex = 0. The bifurcation

diagram corresponding to this case is plotted in Fig. 8.

Figure 8

(This diagram was obtained using the "brute-force" method described in
[Parker k Chua, 1989].)

17



To aid us in our study of this diagram we define the following functions

*i+(p) = /(1,*0) FT(p) = f(-l,p,0)

*?(?) = /*(!,P, 0) F2-(p) = /»(_i, p, 0)

*?&>) = /3(1,P,0) F?(p) mf(-l,p,0)

These functions are plotted in Fig. 9.

Figure 9

The correspondence between Figs. 8 and 9 is clear:

(i) The band boundaries of the bifurcation diagram are given by

±1 for p > pi « 1.4

±1> *?O0. f?(p) for ^ > p > p2 « 1.2

±1, F±(p),... Ff(p) for p2 > p > p3

(ii) The bands of the bifurcation diagram merge at points p* where

W) = F?(P*) fori^j

If twoof the functions Fi intersect at a point, infinitely manyof the F{
intersect at that point.

(iu) Within the bands of the bifurcation diagram can be seendarker"shad

owing" bounded by the functions F*.

18



These phenomena are easily explained by the fact that 1 and —1 are

extrema of the map (17), leading to grouping of points on one side of the

iterates of these values. Interested readers are referred to [Hao, 1989], where

this approach is appHed to a number of systems.

From (u) above it is clear that at the band-merging points the extrema

±1 arehomoclinic to unstable periodic orbits of (17). Homoclinicity in maps

does not in general play as important a role as it does in flows, but it often

provides useful insights. See [Block, 1978] and [Grebogi et a/., 1982] for

further details. The merging of three bands of the bifurcation diagram into

one occurs at pi, where the locus of the unstable symmetric period-2 orbit

intersects the bands. At this point the orbit of +1 has the symboHc form

1(10)°°. Substituting into (17) to find the condition for such homoclinicity
yields the value p\ = \/2. Similarly, the merging of seven bands into three

occurs at p2, where the orbit of+1 has the symboHc form 110(1001)°°. Again,

we can substitute into (17) to find p^ = y/2. At p0 = 2, the extrema ±1 are
fixed points of the mapping.

We wiU now use the self-similarity of the bifurcation structure to gen
eralize these observations and to define precisely the sense in which (17) is
chaotic for p > 1 and x = 0. For p = 2, the dynamics of (17) are equivalent
to those of the circle map

e^{29)mod2ir 0<=[O,27r) (18)

which is known to be chaotic [Devaney, 1989]. The chaotic nature is also

clear from the proof in Sec. V that for p = 2 and x = 0 all possible blocks
of ones and zeros correspond to admissible periodic orbits. (See [Hao, 1989]
for a discussion of this feature in the context of the logistic map.)

19



We now state and prove the central theorem concerning the self-similarity
of the bifurcation structure for x = 0.

Theorem 2: Given the symboHc representation 5 ofa periodic orbit which
is admissible for x = 0, p = p > 1. Define T by performing the foUowing
operations on each element of 5: 0 -• 01 and 1 -• 10. The periodic orbit
represented symboHcally byT is admissible for x = 0, p = y/p.

Proof: We will show that the least upper bound on the region of admissibiHty
of T at y/p has the same sign as the least upper bound on the region of
admissibiHty of5 at p. Thecorresponding proof for thegreatest lower bounds
is analogous.

Consider any shift of T which leaves a 1 in the first position. We wiU
show that either (i) this shift corresponds exactly to the least upper bound
shift of5 or (ii) we can find another shift ofT with a 1 infirst position which
produces a lower polynomial.

Case 1: The 1 in the first position of T comes from a 10 block obtained by
transforming a 1 from 5 (say the 1 in position qof5). This sequence
leads to a polynomial (p - 1)s(p2), where s(.) is the polynomial with
coefficients given by the shift of 5 which starts in position q. Evaluating
this polynomial at y/p gives (y/p - 1)s(p). To minimize this over aU

such shifts we must choose the shift of S which minimizes s(p) —i.e.
we must ensure that our shifted T is a direct transformation of the least

upper bound shift of S. Clearly the polynomial at y/p corresponding
to this shift of T wiU have the same sign as the least upper bound
polynomial of S at p.

20



Case 2: The 1 in the first position of T comes from a 01 block (obtained by

transforming a 0 from S) preceded by a 01 block. Consider T, obtained

by shifting each element of T two places to the right. Consider T—T.

Over each 10 (resp. 01) block of T preceded by another 10 (resp. 01)

block, T - f = 0. Corresponding to each 10 (resp. 01) block of T
preceded by a 01 (resp. 10) block, T -f = 1-1 (resp, -11). T-f is
of the form

(0)ail-l(0)O2-l l(0)a8l-l. ..-1 l(0)a»

which impHes that T gives a lower polynomial than does T.

Case 3: The 1 in the first position of T comes from a 01 block (obtained by

transforming a 0 from 5) preceded by a 10 block. Consider T, obtained

by shifting each element of T three places to the right. T —t is then
of the form

(0)Oll(0)a2-l(0)a8l(0)a*-l...-l(0)an

To prove this, one can write out aU possible subblocks of T which would

give a -l(0)a'-l block in T - f —each has three adjacent elements of
the same type, which is not aUowable. Similarly a 1(0)a*l block is not
allowable so, since the first non-zero element of T —t is 1, we get the
above sequence. This impHes that f gives a lower polynomial than
does T. D

We are now in a position to discuss the chaotic nature of (17) for p > 1
and x = 0. For p > 2 aU symboHc blocks of zeros and ones correspond
to admissible periodic orbits at x = 0, and the map is chaotic in the sense
described in [Hao, 1989]. For p > y/2, so, all symboHc blocks obtained by
the transformation 0 -> 01 and 1 -> 10 correspond to admissible periodic
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orbits. The motion here is as chaotic as it is for p > 2, since coarse-grained
over the scale (10, 01) the orbits at p > y/2 are identical to those at p2 > 2.
Successive appHcations of the same reasoning yield that the motion is as

chaotic for p > 2 as it is for any p > -^2, ^5, \^2... 2\»/2 —for any p> 1,
in other words. Note also that this analysis yields the values of the band-

merging points — po = 2, pi = V?, p2 = 1^2...

We now generaHze this analysis stiU further by showing that the (coarse
grained) motion along the center curve of the region of admissibiHty of any
of the periodic orbits produced by the EucHd algorithm corresponds to the
motion along the x = 0 Hne.

Theorem 3: Given a sequence B of zeros and ones such that the correspond
ing periodic orbit is admissible for x = 0 and p = p > 1. Given any sequence
S formed by the EucHd algorithm. Let N denote the length of 5; R the
R-sequence of5; and L the L-sequence. Apply the foUowing transformation
to each element of B to form a new sequence C:

1->L Q-+R

Then the sequence Ccorresponds to an admissible periodic orbit for p = KYp
and x = (r(p) + l(p))/ (2.1 N(p)).

Proof: The proof will consist of two main steps. We wiU first show that

the least upper bound and greatest lower bound shifts of C are the exact

transformations of the least upper bound and greatest lower bound shifts of

B. Then we will show that the least upper bound polynomial of C Hes above

the Hne x = (r(p) + l(p))/(2.1N(p)) at p = ^p if the least upper bound

polynomial of B is greater than zero at p = p. The corresponding proof for
the greatest lower bound shift is analogous.

22



Given any shift C of C with first element 1 — say C is the shift such that

the fcth element of C moves to first position.

A

Case 1: (k)mod jv = 1. In this case, C is the direct transformation of a shift of

B. As in Theorem 2, therefore, the least upper bound shift of this type

is the direct transformation of the least upper bound shift of B.

Case 2: (k)mod n > 2. Marking C off in blocks of N from the start, we see that

each such block is a shifted version of L beginning with a 1. It follows,

using Lemma 11 of [Feely & Chua, 1990], that the direct transformation

of any shift of B will produce a lower bound polynomial than does C,
A

so C in this case can not be the least upper bound shift of C

Case 3: (fc)mod n = 2. Again, we mark C off in blocks of n from the start.

Each such block is a shifted version of £, except for those blocks taken

from an LR or an RL block of C. In these cases the last element of

the block is changed from a 0 to a 1 (in the case of the RL block) or

from a 1 to a 0 (in the case of the LR block). Note also that the first

element of a block is 1 for blocks taken from an RL or RR block of C

and 0 for blocks taken from an LR or LL block of C. Combining these

facts with Lemma 11 of [Feely k Chua, 1990], we find that the direct

transformation of anyshift of B wiU produce a lower bound polynomial

than does C, so C in this case can not be the least upper bound shift
ofC.

The corresponding proof for the greatest lower bound shift is analogous,
so the first step of the theorem is proven. Now we show that the least upper
bound polynomial of C Hes above the line x = (r(p) + l(p))/(2.1 N(p)) at
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p = KYp if the least upper bound polynomial of B is greater than zero at
p= p. Let 6(.)/la(.) be the least upper bound polynomial of B\ c(.)/laN(.)
the least upper bound polynomial of C.

c(p) r(p) l(p)
Un(p) 2.1N(p) 2.1N(p) -

c(rt r(p) l(p)
>0Mp) (1 + PN + '' •+ P**-1)") 2.1iv(p) 2.1N(p) "

& 2c(p)-r(p)(l+p^ +...+p^-1)jV)-/(p)(l+p^+...-l-p(«-i)^) > 0

# 2(p-l)piV"26(piv)>0

* 6(pN) > 0

Once again, the corresponding proof for the greatest lower bound poly
nomial is analogous, so the theorem is proven. •

Figure 10 shows the bifurcation diagram of (17) along the curve x =
I/O'2 + P+ 1) —i-e- the center curve of the 101 tongue.

To conclude this section we briefly examine the bifurcation diagrams of
(17) for x = 0.02 and 0.3. The bifurcation diagram for x = 0.02 is plotted in
Fig. 11.

Figure 11

Note the change in the structure of the bands at p = 1.05048... and

1.32211.... These values wereobtained in Sec. 5 as the points where other

tongues impinge on the 01 tongue for x = 0.02. We now recognize them as

the points where the locus of the unstable period-2 orbit colHdes with the
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bands — the points where one or other of the extrema -0.98 and 1.02 are

homoclinic to an unstable period-2 orbit. The zeroth band-merging point po,

where the locus of the unstable period-1 orbit (fixed point) colHdes with the

band, is at p = 2/(x + 1) = 1.9607..., as predicted in Sec. 5.

The bifurcation diagram for (17) with x = 0.3 is plotted in Fig. 12.

Figure 12

Notice again the zeroth band-merging at p = 1.538... and the collision

with the unstable 110 orbit at p = 1.06123... and 1.16043... — the values

obtained in Sec. 5 from a study of the 110 tongue and its neighbors. The

110 tongue is the only one whose influence is plainly visible in Fig. 12, but

this is merely because it is the widest tongue of influence here. As explained

in [Feely k Chua, 1990], given two tongues corresponding to periodic orbits
where the fraction of ones present is /x and /2, the widest tongue between

the two is found by taking the Farey composition of fa and fx [Hao, 1989].
Applying this operation here yields that the next widest tongue of influence

is that with average ^. In Fig. 13 we plot a magnified segment of the
bifurcation diagram for x = 0.3.

Figure 13

The ^ tongue is clearly visible between the homocHnic colHsions of the
10101101101101101101101 orbit.

7 Summary

With the E-A modulator as our motivation, we have studied the dynamics
of (17) for varying x € (-1,1) and p> 0. With p= 1 (17) reduces to the
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simple rotation of the circle, so all rational inputs lead to periodic orbits, aU
irrational inputs to quasiperiodic orbits. As pis decreased below 1the regions
of admissibiHty of the periodic orbits widen out from points (at p = 1) to
intervals, forming tongues in the p- x plane. The bounds ofthese tongues
are rational functions of p such that (i) the tongues never overlap, and (ii)
almost aU inputs give rise to periodic outputs. Note that for p = 1 the set
of inputs which give periodic outputs has measure zero, while for p < 1the
set of inputs which do not give periodic orbits has measure zero.

Our emphasis in this paper has been on the p > 1 case. For p > 1 aU
periodic orbits are unstable, and for |x|< -1 -f 2/p the interval \&± s=L]

'r ii—p» l—pi

is invariant under (17). Again, the region of admissibiHty of each periodic
orbit observed in the p=1system widens out to form a tongue in the p- x
plane, but in this case the tongues overlap. New periodic orbits now become
admissible — in fact any periodic sequence of zeros and ones is admissible for
some values of p < 2 and x € (-1,1). For x = 0 and p = 2 all such orbits are
admissible. There is aelement of order in that the region of admissibiHty of
each periodic orbit with average value qHes within the region of admissibiHty
of the "ideal" periodic orbit with the same average value. The bifurcation
diagrams of (17) were plotted for various values of x, and were discussed in
the context of such concepts as homocHnic coUisions and iterates of extrema.

The self-similarity ofthebifurcation structure for x = 0 was proven and used
to explain the chaotic nature ofthe map along the Hne x= 0. This analysis
was then generaHzed to discuss the self-similarity along the center curve of
any of the tongues corresponding to "ideal" periodic orbits.
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List of Figures

Figure 1: Block diagram ofideal single-loop E-A system. The modulator consists
of adiscrete-time integrator and aone-bit quantizer inside a feedback loop, x
is the input to the modulator and u the input to the quantizer.

Figure 2: Average output over aHmit cycle plotted versus dc input x. This graph
corresponds to the leaky single-loop system with p = 0.8.

Figure 3: AnalyticaUy predicted intervals ofadmissibiHty of the 27 shortest Hmit
cycles for p = 0.8. Compare to Fig. 2.

Figure 4: Regions ofadmissibiHty of the 27 shortest Hmit cycles —i.e. those with
period < 9 — for 0 < p < 1. Tongues of the same color correspond to Hmit
cycles of the same period: turquoise - period 2; red - period 3; dark green -
period 4; dark blue - period 5; blue-grey - period 6; orange - period 7; light
green - period 8; purple - period 9.

Figure 5: Regions of admissibiHty of the 27 shortest Hmit cycles for 0 < p < 2.
The region ofadmissibiHty of the 10 orbit is highHghted inblue and that of the
101 orbit in red. Note the overlap in purple.

Figure 6(a): Regions of admissibiHty ofseveral orbits with average zero —symmet
ric.



Figure 6(b): Regions of admissibiHty of several orbits with average zero — non-
symmetric.

Figure 7: 101 tongue —in the shaded region all admissible orbits have average |.

Figure 8: Bifurcation diagram of Eq.(17) for 1 < p < 2 with x = 0. The horizontal
axis shows u.

Figure 9: Skeleton of bifurcation diagram ofEq. (17) for 1 < p < 2 with x = 0
i.e. Ff(p),... F£(p) plotted versus p.

Figure 10: Bifurcation diagram of Eq. (17) for 1 < p < 2 along the curve x =
!/(& + p + 1) (center of the 101 tongue). Thehorizontal axis shows u.

Figure 11: Bifurcation diagram of Eq. (17) for 1 < p < 2 with x = 0.02. The
horizontal axis shows u.

Figure 12: Bifurcation diagram of Eq. (17) for 1 < p < 2 with x = 0.3. The hori
zontal axis shows u.

Figure 13: Bifurcation diagram of Eq. (17) for 1 < p < 1.05 with x = 0.3. The
horizontal axis shows u.
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