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On the Universe of Stable Cellular Neural
Networks*

Leon O. Chua a.nd Chai Wah Wu!

Abstract

Cellular Neural Networks(CNN) is a novel analog circuit architecture
with many desirable features. This paper extends previous stability re-
sults of CNN’s to include classes of strictly sign-symmetric and acyclic
templates. We show that most of the 3 x 3 strictly sign-symmetric tem-
plates are stable almost everywhere, with the unknown templates reduced
to three cases. We also introduce signed interaction graphs which is use-
ful for obtaining results concerning stability and irreducibility of CNN
templates.

1 Introduction

Cellular neural networks(CNN), a new type of analog circuits, was invented re-
cently and shown to have many desirable properties [1]. CNN’s consist of many
parallel analog processors computing in real time. One desirable feature is that
these processors, arranged in a two-dimensional grid, only have local connec-
tions, which lent themselves easily to VLSI implementations. The connections
between these processors are determined by a cloning template, which describes
the strength of nearest neighbor interconnections. The cloning templates we
will consider are all space invariant, meaning that each processor has the same
relative connections.

Some important applications of CNN’s are in the area of binary image
processing, where several templates has been discovered for edge detection,
noise removal, image thinning, motion detection and other image processing
functions([2],[10],(12]). For proper operation of such templates, a CNN must be
completely stable, i.e. for all initial conditions, the states — e as t — 0o, where
e is some, usually among many, dc equilibrium point. In the original paper [1],
complete stability has been proved for CNN’s with symmetric templates.
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ductor Research Corporation.
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CNN’s form a special subclass of systems of differential equations, and by
using results obtained for competitive-cooperative systems, a larger class of
templates can be shown to be stable. In (3], a class of non-symmetric templates
has been shown to be stable except for a set of measure zero, using results in
[4]. )

This paper extends these results, and shows that most strictly sign-symmetric
templates are stable almost everywhere. We will also show that acyclic tem-
plates are completely stable.- We will also introduce the use of signed interaction
graphs in analyzing templates and show several results relating to these graphs.

2 Preliminary definitions

A CNN is governed by the following set of differential equations [1]:

dvg, (1 1 i i
cZ2) o k(04 D 4G ik Do)
z k1
+ZB(ivj;k’l)”un(t) +1 )
k,l

where v;,;, vy,; and vy,; denotes the state voltage, input voltage and output
voltage of a cell, respectively. We assume that the input is constant and the
A-template is space-invariant; i.e. for all i, j, k, I, m and n, A(i, 33 k1) = A(i +
m, j+njk+ m,l+n)

vy = f(vz) = vz + 1| — |vo — 1. We will often use a smooth (C1) ap-
proximation of that piecewise linear function in our stability analysis.

Definition 2.1 A dynamical system & = F(z),F € C! is cooperative if for all
i# j:
8F(z

>
83,' 20 (2)

Definition 2.2 4 dynamical system is irreducible if for all i # j, there ezists
a chain of consecutive indices i = ko,..., kpy = J such that:

OF; (z)

o #0, r=1,2,...,m. 3)

Definition 2.3 A dynamical system is stable almost everywhere if the set of
initial values in which the system does not converge to a constant equilibrium
point has Lebesque measure zero,

Note that a dynamical system satifying definition 2.3 is not necessarily com-
pletely stable since it may contain unstable limit cycles or other exotic trajec-
tories. This weaker form of stability is easier to prove than complete stability,
and is all that we need in practice.



Throughout this paper, “stable” is used in the sense of Hirsh[5], who called
it “convergent”

Definition 2.4 A cloning template A(%, j; k, 1) is positive if A(i, j; k, >0 for
all (4,3) # (k,1).

Definition 2.5 A cloning template A(i, j; k, 1) is cell-linking if the non-zero
values of A(4,j;k,1) are located so that any two cells in the entire cell array can
be connected by a sequence of cells with non-zero template values connecling

them. (see [3])

In order to better visualize the connections between cells, let us introduce a
useful tool in analyzing CNN’s.

3 Signed interaction graphs

We associate to each A-template a labeled directed graph I'. The nodes of
T will be the individual cells, with a directed edge from cell(k, 1) to cell(i, j) if
and only if A(i, j; k,1) # 0. The label associated with that edge will be the sign
of A(i, j; k,1). We will also call that edge positive or negative, depending on the
sign. As in [6], we will call T the signed interaction graph. This graph allows us
to see how the cells are connected to each other, directly and indirectly. Table 1
list some templates along with their graphs ([2],[8],[9],[11]). Instead of attaching
labels to edges, positive edges will be shown black, and negative edges will be
shown gray.
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[ Name A-template jraph
r—€—0—<—»
horizontal 0.010.0 0.0
shadow detector | [0.0 (2.0 |2.0 O-——@—<—¢
(d) 0.00.0]0.0
o——@——9
connected 0.010.0 |0.0
component 1.012.0 |-1.0
detector (e) 0.0 0.0 |0.0
1.0§0.0]1.0
0.012.0]10.0
(f) 1.0}0.0]1.0

Table 1 (continued)



[ Name | ~A-template graph
¢—<c—@—<—9
0.0 /0.0 0.0 A A A
0.0 |2.0§2.0 o ——0—<—9
(g |[o.0]2.0]0.0 A 1\ A
*r——0—<—@

Table 1 (continued)

If we look at the shadow detector and its graph, we see that the rows are
disconnected. This means that the state of a cell in a certain row cannot affect
or depend on the state of a cell in another row. So we can consider each
row as an independent 1-dimensional CNN and analyze its behavior separately.
Furthermore, all the edges point to the left, meaning that cells influence the
state of cells to their left and not vice versa. All this is consistent with the
operation of a horizontal shadow detector.

Definition 3.1 A directed graph is irreducible if for all i # J, there is a directed
path from node i to node j.

A cell-linking template corresponds to I' being irreducible. The hole-filler is a
cell-linking template, i.e. the corresponding I' is irreducible. This means that
every cell can influence every other cell. This is consistent with the fact that
hole-filling is a global property. Whether a cell is part of a hole or not depends
on cells around it, possibly quite a distance away.

A disconnected directed graph cannot be irreducible. Hence, the directed
graph (d), (e) and (f) in table 1 are reducible. Even a connected digraph may
be reducible. An example of a connected digraph that is reducible is shown in
(g) of table 1.

Definition 3.2 A directed graph is symmetric if an edge Jrom node i to node j
implies an edge ezisis from node j to node i.

Definition 3.3 E, a subgraph of T, is said 1o be mazimally irreducible if any
irreducible subgraph of T’ containing E is equal to E.



T’ can be partitioned into maximally irreducible subgraphs. A symmetric
T can always be partitioned into one or more maximally irreducible subgraphs
that are disconnected from each other. To prove that assertion, let cell i be a cell
in maximally irreducible subgraph 1 and cell j a cell in maximally irreducible
subgraph 2. If there is an edge from cell ¢ to cell j, then by the symmetry
property there must be an edge from cell j to cell i. Every element in subgraph
1 has a path to cell 4, hence to cell j, hence to every element in subgraph 2
and vice versa. So the union of subgraph 1 and subgraph 2 is irreducible. Since
subgraph 1 and subgraph 2 are maximally irreducible, this implies that subgraph
1 = subgraph 1 U subgraph 2 = subgraph 2. So the maximally irreducible
subgraphs of I' are not connected to each other.

Consider graph (a) in table 1. This graph is symmetric and consist of a
maximally irreducible connected subgraph; namely, itself. Consider next graph
(f) in table 1. The graph is symmetric and can be seperated into two totally dis-
connected subgraphs corresponding to the two maximally irreducible subgraphs.
In table 1, nodes corresponding to the two maximally irreducible subgraphs are
colored black and gray respectively. In a sense this CNN is equivalent to two
independent CNN’s operating on a state space that is interleaved.

Definition 3.4 A directed graph is called acyclic if it has no cycles, i.e. there
are no set of nodes vy, ...,vj,vj41 all distinct, ezcept for vj41 = vy such that
there is an edge from v; 1o viyy,i=1,...,J.

If a graph is acyclic then a path from node i to node j implies no paths from
node j to node i. Intuitively, this means that the dependence of cells are only
in one direction. There is no indirect feedback through other cells. The graph
of the shadow detector is an example of an acyclic graph.

The stability results obtained in [3] and in this paper are dependent only on
the A-template or equivalently, I'. This is useful as it allows us to determine
the stability of some CNN by analyzing solely its signed interaction graph. For
example, I' can be used is to determine whether the template is cell-linking or
not. :

4 Test for irreducibility of T

A cell-linking CNN template indicates that the operation performed is global;
the state of a cell depends on the states of all other cells. To test whether
a CNN template is cell-linking, essentially one needs to check whether T is
irreducible. One way to do that is to start with any node and check whether
the maximally irreducible subgraph containing that node is equal to I itself, T is
irreducible if and only if each node has at least one path to all its immediate
neighbors. Because T' is generated by a space-invariant template, we can give
simpler sufficient conditions for a CNN being cell-linking.



Figure 1: Paths from cells shown in black and gray, as specified in theorem 4.1
provide sufficient conditions for I’ being irreducible.

One such condition is given by our next theorem, where we only need to
check the paths emanating from the 4 corners in the boundary of the CNN
(shown in gray in Fig. 1) as well as those of 4 other “near-corner” cells adjacent
‘to the corner cells along the diagonals (shown in' black in Fig. 1).

Theorem 4.1 Given an A-lemplate, if in the signed interaction graph T' gen-
erated by an M x N CNN utilizing that template, each of the 4 “near-corner”
cells in T' has paths going to all of its 8 immediate neighbors, and if each of the
4 “corner” cells in I has a path to its corresponding “near-corner” cell, then a
CNN of at least (2M - 2) x (2N —2) cells utilizing the same A-template, will
generale an irreducible sign interaction graph.

Proof: Consider a CNN of (2M —2) x (2N —2) cells and its signed interaction
graph T' divided into 4 quadrants as shown in Fig. 2. All we need to show
is that every node in I' has paths to all its immediate neighbors. Consider
first the lower-left quadrant. We define an augmented quadrant as a quadrant



augmented with one more layer of cells. For example, the cells outside the lower-
left quadrant with a dot in the center together with the lower-left quadrant form
the corresponding augmented quadrant. By a boundary cell we mean a cell on
the boundary of the (2M — 2) x (2N —2) array. A path from the “near-corner”
cell to one of its immediate neighbor is shown as connecting node 1 through 8
in Fig. 2. Because of space invariance, any path in I' can be shifted and still
remain a valid path in I as long as the entire path stays within I'. Because the
augmented quadrant is M x N, the path from the “near-corner” cell lies entirely
within the augmented quadrant. Consider a path from the “near-corner” cell
to its immediate neighbours shifted so that it starts from another cell in the
quadrant. Because the quadrant is (M — 1) x (N ~ 1), the maximum amount
of shift will be a distance of M — 3 up and N — 3 to the right and the path will
remain within I'. For example, the two paths in Fig. 2 starting from node 9 and
10 are just shifted version of the path from node 1 to 8. They lie completely
within I and are therefore valid paths in I' . It is clear from Fig. 2 that every
cell in that quadrant that is not a boundary cell has a path to its immediate
neighbors. They are essentially shifted versions of a “near-corner” cell. They
also have paths to every cell in the quadrant. Using similar arguments for the
other quadrants, it follows that every cell in the I' that is not a boundary cell
has paths to its immediate neighbors and thus to every cell in T.

Consider next a cell on the bottom boundary of the lower-left quadrant. The
lower left corner cell has a path, call it pl, towards the upper right neighbors,
lying completely inside the augmented quadrant. The distance between the cell
in question and the lower left corner cell is at most N — 2. Therefore the path
pl shifted so that it start at this cell will still lie entirely within I'. The shifted
path will end at the cell’s upper right neighbor which is not a boundary cell.
Since a cell not on the boundary has paths to every cell in the graph, this cell on
the bottom boundary also has path to every cell in the graph, in particular its
immediate neighbors. In Fig. 3, node 3 has a path to node 4 since node 1 has
a path to node 2. Node 4 is not a boundary cell, so node 4 has paths to every
other cell in I'. Therefore, node 3 has paths to every other cell in . A similar
argument holds for a cell on the left boundary in the quadrant. Therefore every
cell in the quadrant has a path to its immediate neighbors. The boundary cells
in the other quadrants follow a similar reasoning. It follows that T is irreducible.
It is clear that the signed interaction graphs of even larger CNN’s (using the
same A-template) will also be irreducible n

When M = N = 3, we have the following corollary:

Corollary 4.1 Given a A-template, if in the T of a 3 x 3 CNN utilizing that
A-template, the center cell has paths to all the other cells, and if each corner
cell has a path to the center cell, then the signed interaction graph generated by
a 4 by 4 (or bigger) CNN utilizing that A-template, is irreducible.

We conjecture that if the hypothesis of corollary 4.1 is satisfied then the
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Figure 2: Each cell that is not a boundary cell has paths going to its neighbors.
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Figure 4: The requirement for irreducibility is satisfied for template 4; and A,.

signed interaction graph generated by any size CNN is irreducible. As an ex-
ample, let us analyze two A-templates described by:

ojoj1jo0jo
0j11}o ojojojojo
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As shown in Fig. 4, the signed interaction graphs of those templates for a
3 x 3 CNN satisfy the requirements stated above. Therefore both templates are
cell-linking in a CNN bigger than 4 x 4.1

5 State transformations

In [3], stability results has been obtained for CNN’s with positive cell-linking
templates. We will extend these results by finding state transformations that

produce a transformed system similar in form to a CNN with positive cell-linking
templates.

Lactually the templates are cell-linking for any size CNN’s.
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Consider again the state equation of a M x N CNN:
dvz,,(2) 1 .
¢ 2; = TR )+ ; A( G ky Doy (1)

+ By s ky D)oy, (8) + I (4)
&,

As in (3], let us repack the state variables v.;; of the CNN into a vector # of size
MN. Similarly, let us repack the input and output variables y;; and vy,. into
% and §, respectively (using the same ordering as that for ). The invertible
ordering will be called o, ie. Z,(;5) = vs,;. Without loss of generality, let
R:=1,C =1 and the state equations assumes the form:

E=F(Z)=-%+ Af(Z)+ Ba+1 (5)

where A and B are MN x MN matrices containing the coefficents A(i, i k, {)
and B(i, j; k,1) respectively. I is a constant vector of length M N and fi(z) =
f(zi) = §llzi+1]—|z5=1]) for i = 1,...,MN.2 By our choice of (=),
%‘é‘ﬁ >0,s0fori#j

OF(Z) _ 5 9fi(2)
55~ 97oE;

>04 4;;>0 - (8)

So the system is cooperative if and only if A has only nonnegative off-
diagonal elements. CNN’s whose templates are not positive have a correspond-
ing A matrix that contains some negative off-diagonal elements. Our goal is to
find a suitable transformation that produces an equivalent dynamical system
that is cooperative and irreducible. We will consider a type of transformation
where only the sign of some strategically chosen states are changed. Chang-
ing the signs of state variables amounts to multiplying the state vector by
J = diag{(=1)™,(-1),...,(—1)™}, where k = MN, the size of the state
vector, and n; € {0,1}. Setting JZ’ = Z, the state equation transforms as
follows:

f=F(&)=-i+ Af@)+Bi+Te
Ji' = -J&' + Af(JE') + Ba+ I (7)
#=-3+JVAfJF) + I Ba+ I = F'(3) (8)
The Jacobian matrix of F’ is:
DF'(#'y= J-1ADf(J&")J -U (9)

2we use the symbol & since in the following proofs, we will assume f(::.') to be a smooth,
strictly increasing and odd approximatjon of the piecewise linear function.
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where U denotes the identity matrix. Note that Df and J are both diagonal
matrices, and thus they commute. Noting that J=1 = J, we have:

DF'(#)=JAIDf(J3") - U (10)
So for i # j,

OF; (&) _ s 1y 9f(v)

8_5;- = (JAJ)ij o e, (11)

So the system in (8) is cooperative and irreducible if and only if A’ = JAJ is
nonnegative in the off-diagonal elements and is irreducible.

Theorem 5.1 The system (8) is stable almost everywhere if A’ is nonnegative
in the off-diagonal elements and irreducible .

Proof: the proof is similar to that of lemma 1 in [3). First we note that from
any fixed Z(0), the state vector Z in (5) has a bounded forward orbit by theorem
1in (1], and therefore, #’ has a bounded forward orbit. ’ is an equilibrium point
of (8) if and only if JZ/ is an equilibrium point of (5). Since the system (8) is
cooperative and irreducible , theorem 5.1 follows from [4]. |

If the transformed system is stable almost everywhere then the original sys-
tem is also stable almost everywhere. It is clear that A is irreducible if and only
if JAJ is irreducible. So we need to find a J in the diagonal form described
above such that JAJ is an off-diagonal nonnegative matrix.

(JAT)ij = (~1)™(AT)i; = (1) Ayy(=1)™ = (-1)™+m5 4, (12)

The matrix A results from a space-invariant template. Assume that for
all i # j, Ai;/neg0. Given this assumption, and the requirement that J 4J
has nonnegative off-diagonal elements, some properties of J can be obtained.
Aij # 0 and (JA J);j > 0 for all i # j implies that:

-1+ Ay = |44 (13)
Leti = o(a,d), j = a(a+l,b), k = o(a+21,b) forsome1 < a < M=-2,1<b< N
and ! = 1,..., (M —1)/2]. Because of spacial invariance, Aij = Ajr and we
have:
(0 = |Ay| = |Ap| = (comtm Ay = cortm Ay (1g)
Consequently, we have:

(D)% = (=)™ =3 n;=n; (18)
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The same conclusion follows if we take i = o(a,b), j = o(a,b+1), k = o(a, b+2I)
forsome1<a<M,1<b<N-2andl=1,...,|(N —1)/2] . Therefore we
have the following sets of constraints on J:

No(a) = Mo(at+2tp)y 1 <@ S M -2L,1<bS N,i=1,...,|(M - 1)/2] (16)
No(ab) = No(ap+3y 1 K@< M, 1<K N =-2,1l=1,...,|(N - 1)/2] (17)

This gives us 5 possible choices for J. From all the sign-changing transforma-
tions, only these 5 have any chance of generating a cooperative system. Two
of them, J = & U, gives A’ = A. The other three will be discussed in more
details.

Remark 1: A transformation that changes all the states to their negatives
amounts to J being equal to — U, and therefore A’ = A4, which does not help
us in determining the stability of the system.

Remark 2: The 5 choices for J were found from the twosets of contraints (16)
and (17) which in turn were derived from the space-invariance of the templates
and the absence of zeros in the off diagonal elements of A. These J’s will also
yield correct results if there are some zero-elements in the off-diagonal elements
of A. If we are restricting ourselves to considering templates with zero-elements
in certain locations,i.e. A has zeros in some off-diagonal entries, then some
of the constraints might not be necessary and more choices for J can then be
found. We will demonstrate that later in the paper.

Remark 3: I is assumed to be constant and B is assumed to be generated
by a space-invariant B-template, since they correspond to a CNN with space-
invariant templates. For J # U, J=15 need not é¢orrespond to a space-invariant
B-template and J~1] need not be a constant vector and (8) need not correspond
to the repacked equation of a space-invariant CNN.

Remark 4: There are other constraints on J of the form

No(ab) = Ro(akaldtam) 1< <M —-2I,1<b< N-2m
1= 1,00, (M =1)/2),m=1,.... (N = 1)/2] (18)

but they are equivalent to (16) and (17).

Al generated by the 3 transformations is space-invariant in the sense that a
space-invariant cloning template A'(4, j; k,I) generates A’ through o. To sim-
plify notations, let us return to state equation (4). The transformation will now
simply be:

Vot = Vg, (—1)eGd (19)

Let us denote the output variables after the transformation by vy, = f(v,:.,’,).
The state equation after the transformation is:

dvs'i.(t) 1 , §
C—i— = ‘R_',vzs,-(t)+§‘4'(w= k, Dy, ()
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+ E B'(i, j; ky Doy, (t) + Is!j (20)
k
For now, let us only consider 3 x 3 templates.
(a) transformation 1. vt (8) = vz, (2)-(—1), Le. vz (8) = vz,;(t) if j is even,
v,:,,(t) = —vz,;(t) if j is odd. It follows that the cells with their states changed

to their negatives form alternating columns. The effect on the A-templates is
depicted as follows: .

+af+b|+c -a [+b| -c

+d|+e|+f] — [-d|+el-f

+g|+h|+i -g |+h| -i
A A

Proof: 9yu(t) - f(”z.-j(t)), 8nd f is odd. So ifvz:’(t) = —vzi’(t)’ then
”vﬁ,-(t) = —vy,;(?)-
Suppose j is even; then vz45(t) = vg,;(2).
dvg; () dv,, (¢ L
(;; = zd;( = A(HJ5 1,5+ 10y 1y00y () + -
= AGjii+1,+ DA N O) L
= AGHi+ L+t o (@)+-- (21)

where the symbol + - - - indicates the remaining terms which are not relavant to
our proof here.

Therefore A'(4, j3i+1,j + 1) = —A(i, j;i + 1, j + 1). The same argument is
valid when i + 1 is replaced by , or i — 1, and when j + 1 is replaced byj—-1
(J+ 1 and j -1 are both odd).

dvz (1) d”c.'j(t) i ded d
;: = at A 538+ 1, )0y ), (8) + -

Al 335+ 1, Doy, () + -
= A‘(i, i+ l’j)v"ii-}x)j(t) RPN (22)

Therefore A'(i, j; i+ 1,j) = A(i, j;i + 1, j). The same argument is valid when
i+ 1is replaced by ¢ — 1 or i.
Suppose j is odd; then vz (1) = —vz,5(2).

dvz(-(t) dv...(t ... .
= —AG G+ L+ Doy, ()4
= A’(i, i+ 1,7+ l)vyi"l'l)(:'-!'l) (t) e (23)

16



Therefore A'(i, j;i+1,j4+1) = —A(4, j;i+1, j+1). The same argument is valid
when i 41 is replaced by 4, or i — 1, and when j + 1 is replaced by j — 1 (G+1
and j — 1 are both even).

d”g’ (t) dvz (t) + o s o
——;;—— = ——E‘t’— =—A(@, fii+1, J)”v(.-q.x),-(t) +oe
= —AG G+ L5)(=vy,, () + -
= A FHi+ 15y, @)+ (29)

Therefore A'(i, j;i + 1,j) = A(i, j;i + 1, j). The same argument is valid when
i+ 1is replaced byi —1 or i. |

(b) transformation 2. ve (2) = vs,4(t) - (—1), ie. oy, (8) = vz,;(2) if i s
even, vy (t) = —vg,;(t) if { is odd. It follows that the cells with their states
changed to their negatives form alternating rows. The effect on the A-templates
is depicted below:

+a|+b|+c -al-bj-c

+d|+el+f| — [+d|+e|+f

+g|+h|+i -g|-h|-i
A A

The proof is similar to that of the previous transformation. In essence, this is
tranformation 1 rotated 90 degrees. ’

(c) transformation 3. vy () = vg,(2)- (—1) (D), e, g1 (1) = v5,;(t) if i+ j
is even, vy () = —vy,;(t) if i + j is odd. It follows that the cells with their
states changed to their negatives form a checkerboard pattern.

The effect on the A-templates is depicted as follows:

+al+bl+c +al-b |+c
+dl+e|+f] — [-d|+e|-£

+g{+h|+i +g|-h [+i
A A’

Proof: suppose i + j is even; then v,g’,(t) = vp,(1).
dvt'p(t) dv 55 t s e .
d; = zd;( ) = A G+ 1+ Doy (@) + -
A(£’ j; i + l’ j + I)vﬂ(“,)(ﬂ,,) (t) + o
A'(s, 5564+, + l)v,,:‘_mm‘)(t) 4 oee (25)
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Therefore A'(i, j;i+ 1,j +1) = A(4, j;i+ 1,5+ 1). The same argument is valid
when i + 1 is replaced by i — 1, or when j + 1 is replaced by j — 1 or when
considering A’(%, j; 4, ) (the sum of the second pair of indices stays even)

dvy (2) dv.,(t) e
d; = d; = A(HL 3+ 1, ) vy, (8) + -

= AGGi+1,5)(-vy,, @)+
= AGdi+ Ly, () +- (26)

Therefore A’(3, 53+ 1,j) = —A(i, j; i+ 1, j). The same argument is valid when
i+ 1 is replaced by ¢ — 1. It is valid also when i+ 1 is replaced by i, and J in the
second set of coordinates is replaced by j + 1 or j — 1.(the sum of the second
set of indices stays even)

Suppose i + j is odd; then vy (1) = —vz,5(2).

dvz (t) dvz, (¢ . . .
-#- = ——Eﬁ = =AG i+ L5+ Doy o0 @) + -0
= —A(,ji+1,5+ 1 G P RNIN ) & T
= A(i,5;i+1,j+ l)vyz‘“)(’_“) @) +--- 27

Therefore A'(, j;i+1,j+ 1) = A(%, j;i+ 1, j+ 1). The same argument is valid
when ¢ + 1 is replaced by i — 1 or when j + 1 is replaced by j — 1 or when
considering A’(%, j; {, j) (the sum of the second pair of indices remains odd)

dv"s,’ (t) _ dv,,(t)

—— = = —AQG, 538+ 1, 5)vy 00, () + -+
= —A(i,ji+1, j)v,,z‘,“”_(t) + .-
= AGaHi+ Loy, (#)+- (28)

Therefore A'(3, j;i+ 1,j) = —A(i, j;i + 1, 7). The same argument is valid when
i+ 1 is replaced by i — 1. It is also valid when i+ 1 is replaced by i and j in the
second set of coordinates is replaced by j —1 or j + 1.(the sum of the second
pair of indices stays even) n

We can now summarize the above results into the form of a theorem. Note
that A'(3, j; k, 1) is positive cell-linking if and only if A’ is off-diagonal nonneg-
ative and irreducible:

Theorem 5.2 If through one of the above 3 transformations on A(s, js k1) the
resulling A'(%, j; k,1) is positive cell-linking, then the CNN with the template
A(3, j; k1) is stable almost everywhere.

The main idea is that the transformation either changes the state of a cell
to its negative or it does not change the state of a cell. Consider two cells (ij)
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Figure 5: Under transformation 1, black cells have their states reversed, while
white cells remain unchanged.

and (j,k) connected by a template element A(4, ; k,I). The cells are connected
by an edge in T. If both cells’ states are changed to their negatives by the
transformation, then the connection between these two cells remain the same
after the transformation.(A'(4, j; k,1) = A(4, j; k,1)) The same result occurs if
both cells’ state remain unchanged. If one cell’s state is changed to its negative,
while the other cell’s state remain unchanged, then the connection between these
two cells is chunged to its negative.(A'(4, j; k,1) = —A(3, j; k, 1)) So by looking
at how a cell is changed by the transformation rélative to the surrounding cells,
we can determine the transformation’s effect on the connections A(i, ji k, [) and
T.

For example, let us consider transformation 1. In Fig. 5, the dark cells
correspond to cells that have their state variables changed to their negatives,
while the white cells correspond to cells that have their state variables left alone.
Consider first an arbitrary white cell, which we shall call the center cell, and it’s
neighbors as it would appear in I'.(In Fig. 6 , the labels have been omitted and
only the edges pointing towards the center cell is shown.) The transformation
does not change the state of the center cell. The cells immediately to the left
and to the right of the center cell have their states changed, so all the edges
pointing towards the white cell from its immediate right and left neighbors have
changed sign. The right and left (with respect to the center) elements on the
A-template of the center cell corresponds to these edges, and are also changed
to their negatives. The cells above and below the center cell remain the same,
and thus the elements above and below the center on the A-template of the
center cell does not change. Similarly, the diagonal elements of the A-template
is changed to their negatives. So the effect of this transformation on the A-
template can be read off directly by looking at the difference in color between
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Figure 6: Cells on the left and right of the center cell have their state changed
to their negatives.

Figure 7: Cells in the center columns has its states changed, while the cells on
the left and right are not.

the center cell and its neighbors in Fig. 6.

Consider next an arbitrary dark cell (which we call the center cell now) and
it’s neighbors as it would appear in I'(Fig. 7) The center cell itself has its state
changed to its negative, while the cells to the left and to the right of the center
cell are left alone. So the left elements and the right elements (with respect to
the center) of the A-template of the center cell is changed to its negative., The
cells immediately above and below the center cell also change to their negatives
along with the center cell, so the element above and below the center on the A-
template of the center cell does not change. Again, the effect on the A-template
is apparent from the color pattern of Fig. 7.

The effect of the transformation on the A-template is the same in both cases.
This is due to the fact that these transformations preserve space-invariance of
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the A-templates. We will illustrate this using a concrete numerical example,
where the template A is changed to A’ by transformation 1:

-1 [+1]-1 +1[+1]+1

-1 2f-1] = [if+2la

-1 [4+1]-1 +1]+1[+1
A A

Consider first an arbitrary cell(5,8); v, (t) = v24,(t). The neighbors’ coor-
dinates are:

“s | we |wn

@ | e |en

@8 | e |@n

A bar above the coordinates indicates that that cell will be changed to it’s
negative by the transformation.

dvg (1
Boete®) . Bene®) _ 45,616, 70 (t) o -
dt dt
= vy @)+---
= A'(5,6;6, 7)0%7(t) doee (29)

Therefore A’(5, 6;6,7) = 1. Same argument is valid for A°(5, 6; 5, 7), A’ (5,6;4,7),
A'(5,6;4,5), A’(5,6;5,5), A'(5,6;6, 5).

dvgy () _ Bzee®) _ 45,616, 6)00y(t) + -+

dt - dt
- l.vys‘(t)-'-...
= A'(5,6;6,6)vy (1) +--- (30)

Therefore A’(5,6; 6, 6) = 1. Same argument is valid for A’ (5,6;4,6), A'(5,6;5,6),
A'(5,6;6,6).

Consider next cell(5,7), the cell to the right of cell(5,6); vt (1) = —vz,(2).
The neighbors’ coordinates are:

(4,¢) (477) (4,8)

o [ & | o

©o |en | @
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Again, a bar above the coordinates indicates that the cell will be changed to its
negatives by the transformation.

d!
%3;(‘_) - -d"%(‘):-A(s,7;e,8)v,,..(t)+~--

- l'vyé.(t)"'...
= A'(5,7;6, 8)0%6(t) + e (31)
Therefore A’(5,7;6,8) = 1. Same argument is valid for A’ (5,7;5,8), A(5,7; 4, 8),
A'(5,7; 4, 6), A'(5,7;5, 6), A(5,7;86, 6).
dvy (t) dv.,,(t
_i_;ti_ = -'a‘d._;() = -A(5$ 7;86, 7)”Vev(t) +-e
= =1 (cog, () + -
= A'(5,7:6, vy (t)+--- (32)

Therefore A’(5,7;6,7) = 1. Same argument is valid for A'(5,7;4,7), A(5,7;5,7).

6 Bigger templates and hexagonal templates

The above three transformations of templates are similar when extended to

larger size templates. For example, transformation 1 has the following effect on
a 5 x 5 template:

+al+bl+c|+d|+e +a|-b |+c|-d |+e

+f{+g|+h|+i|+j +f|-g |+h| -i |+

+k|+l Hml+nl+o| — [+k|-] Hm|-n |+o

+pl+al+r|+s|+t +p|-q |+r| -5 |+t

+ul+viH-wit+x|+y +u|-v H-w| -x |+y
A A’

The same technique can be applied to other network topologies as well. For
example, in a hexagonal network, we would have a transformation that change
a template as in Fig. 8. There are also two other transformations that are just
the transformation in Fig. 8 rotated 60 and 120 degrees.

7 Strictly sign-symmetric templates

All the stability results we obtain so far are for cell-linking templates. We will
now introduce a class of templates that is not necessarily cell-linking.

22



Figure 8: Effect of a transformation on a hexagonal template.

Definition 7.1 A CNN is called strictly sign-symmetric if whenever A(3, j; k, 1) #
0, A(4, 5 k, DAk, 1, > 0.3

In view of the repacked equation (5), this is equivalent to saying that E;,-E,-; >0
if A',-,- # 0. Because of space-invariance, this means that the templates are sign-
symmetric with respect to the center element, i.e. A(i, j;i+m,j+ n)A(, j;i —
m, j—n) > 0 if A(4, ;i + m, 5+ n) # 0. For such a template, the sign of each
non-zero element is identical to the sign of is corresponding symmetric (with
respect to the center element) element. We will also call the associated templates
strictly sign-symmetric. For example, in table 1, only template (a),(b),(c) and
(f) are strictly sign-symmetric. A strictly sign-symmetric template generates a
symmetric signed interaction graph.

In our next lemma, we say a CNN is composed of independent subsystems if
the state variables can be partitioned into n subsets of state variables S1y+44y8n,
such that A(3, j; k, 1) = 0 for cell(ij) € S,, cell(k,]) € St and S; # S;. In other
words, the state of cells in one subset in the partition is independent of the state
of cells in other subsets in the partition.

Lemma 7.1 A CNN composed of independent subsystems is stable almost ev-
erywhere if each subsystem is stable almost everywhere.

Proof: Consider first a system composed of two independent subsystems. Since
the states are bounded, given that the initial conditions are taken from a
bounded set[1], we denote the state space of the system to be the cartesian
product of closed interval [a,a + b], b > 0; namely [a,a+ b]™. Similarly, let the
state space of subsystem 1 be [a, a+b]*, and that of subsystem 2 be [a, a+b)"—F,
b > 0. Assume that the state variables of the whole systern is composed of first

3This definition of “strict sign-symmetry” is more restrictive than that of “sign-symmetry”
defined in (5]
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the state variables of subsystem 1, and then followed by the state variables
of subsystem 2. Let E; be the set of initial values in which subsystem i is
not stable, where i € {1,2}. Let E be the set of initial values in which the
entire system is not stable. An initial state z is not stable for the system if
the subvector of the first k coordinates belongs to E; or the subvector of the
last n — k coordinates belongs to E;. Let @ C [a,a + b]* be a covering of
E, with measure € then o/ = {(21,...,2,) : (z1,..+y2) € a} has measure
b»=*ke. Similarly, let 8 C [a,a+ b]*~* be a covering of E; with measure ¢ then
B = {(z1,-.-12n) : (Tk41y-.-,2n) € B} has measure b*e. Now o’ U §' is a
covering of E' with measure < (b"~* + b*)e. Since ¢ can be made as small as
possible, E has measure zero. So the whole system is stable almost everywhere.
The proof for a finite number of subsystems is similar. | |

Theorem 7.1 A positive strictly sign-symmetric CNN is stable almost every-
where

Proof: As shown earlier a symmetric graph can be decomposed into maximally
irreducible subgraphs that are disconnected from each other. Because all the
edges have positive labels, the CNN can be decomposed into independent posi-
tive irreducible subnetworks and each subnetwork has been shown to be stable
almost everywhere [3}, [4]. By lemma 7.1, the whole CNN is completely stable
almost everywhere. | |

For example, template (f) in table 1 corresponds to a I' with two positive
maximally irreducible subgraphs. So the CNN corresponding to that template
is stable almost everywhere.

Theorem 5.1 and theorem 5.2 are still true when the words “irreducible” and
“cell-linking” are replaced by “strictly sign-symmetric”. Note that the property
of “cell-linking” and “strictly sign-symmetric” is preserved under the three sign-
changing transformations presented earlier. So using these transformations, only
cell-linking templates can be transformed into a postive cell-linking template,
and only strictly sign-symmetric templates can be transformed into a positive
strictly sign-symmetric template.

Using the three sign-changing transformations, and theorem 7.1, we can
deduce that the following classes of 3 x 3 strictly sign-symmetric templates are
stable almost everywhere.4

In the following descriptions, the elements refer to the elements of the tem-
plates, not including the center. In the figures, the number above the arrow
indicates the type of tranformation (1,2, or 3) used. N indicates the corre-
sponding weight is non-positive, and P indicates that the corresponding weight
is non-negative. A + and — indicates positive and negative weights respectively.
The choice of the weights must be kept consistent with the definition of strict
sign-symmetry.

4Most of these 3 x 3 strictly sign-symmetric templates are cell-linking, and the stability

can be deduced without using theorem 7.1, but we would like to illustrate the technique used.
For bigger templates, strictly sign-symmetric templates are not necessarily cell-linking.
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1. corner elements are zero

o0}|P

NJA

0l|P

The four possible combinations are:

oj+]o0 0 0 0|+
-]1A|-] |- -1 lolA
oj+1]0 0 0 01+
N
P P| 2 [P
0N
Some examples are:
0j—-1|0 0jo0]o
+|Al+]| [+]A]+
0j-10 ojoljo
0|N
N[A[N]| & [P
0N 0|P
An example:
0|-1o
—l1Al-
o|-|o
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2. corner elements are nonnegative, while the rest is nonpositive

PIN|[P Plp]pP
AIN] 2 [P]alP
P[N][P PlP|[P

Some examples are:

of-1+] [+]=-T+] [oTo[+] [+ -1+
-1af-| [-TAT-1 [=-Tal-
+{=[o| |+]=-{+] [+[o]o] [+]-+

[—]
>
[—)

3. every element is nonpositive, except two nonnegative elements aligned in
a row or a column.

N[P[N PP
N N| L
N[P[|N Plp[pP

Some examples are:

o[+[-1 [FToT=]1 F1=1=1 [FT=To

-1Al-] [-]A]-][ofalo]| [ofa]o

—-1+{ol (=]o[-]| |-[+]-| [o[+]-
N[N P
Pla[P]| & P
N[N[N P[rP]P

Some examples are:

=lo]-1T1-T-To
0]J]A]O 0]A}O
~lol=|1]ol=-1T=
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Figure 9: Signed interaction graph.

The following templates are also stable almost everywhere:

—[o]+]| [+]o]-
o[a]o]| [o[a]o
+|o]-]1[=-To [+

One way to show that they are stable almost everywhere is by constructing T’
of the first template (Fig. 9). By seperating the two maximally irreducible
subgraphs, we see that each component is topologically equivalent to the signed
interaction graph of a strictly sign-symmetric template with the corner elements
equal to zero, which we know is stable almost everywhere (Fig. 10). Since the
stability results we obtained are solely dependent on the template A(%, j k1) or
equivalent on T, the system corresponding to each component is stable almost
everywhere and so is the whole system by lemma 7.1. By way of one of the three
transformations, the second template can also be shown to be stable almost
everywhere.

There are only 5 state transformations (2 of them trivial) of the type dis-
cussed in section 5 such that theorem 5.2 can be used on all types of templates.
Other transformations can exist if we restrict ourselves to templates with zero
elements in certain locations. To illustrate this, we will give an alternate proof
of the stability of the first template in the pair shown above.

Because the template has some zero elements, the following state transfor-
mation will work in theorem 5.2.

Transformation 4: vy (t) = —vs,;(t) if i+ j =0 mod 4, or i+ j = 1 mod 4,
and L8 (t) = vz,;(t) otherwise. The cells that have their states changed to their
negatives are shown in black in Fig, 11. The effect on the A-template is:
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Figure 10: The signed interaction graph in Fig. 11 can be separated into two
maximally irreducible subgraphs.

Figure 11: Pattern of how the cells is transformed using transformation 4. Black
cells have their states changed to their negatives. While cells are left unchanged.
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+a| 0 |+¢c —a} 0 |+c

O|+ej0| — |0 |+e|O

+g| 0 |+ +g] 0 |—i
A A’

This transformation changes the A-template (with ¢ < 0 and i < 0) into a
positive strictly sign-symmetric template which we know is stable almost every-
where.

8 AcyclicT

Theorem 8.1 A CNN with an acyclic T' and A(i, j;1,j) > RZ! is completely
stable.

Proof: because T is acyclic, there exists a set of cells such that there are no
edges going towards it. Since they receive no input from other cells and the
external input is constant these cells converge to an equilibrium. As shown
in [1), A(i, ji{,j) > RZ? implies that stable equilibria have magnitude greater
than 1. The states are bounded and the output of these cells will not change
after a finite time. Delete those cells and the edges coming out of them, and
the resulting graph will have another set of cells such that there are no edges
going towards it. The only varying influence or input acting on these cells are
from cells whose output will not change after a finite time. So these cells also
converge with an unchanging output after a finite time. This argument can be
repeated until all the cells have been shown to converge. |

A sufficient condition for a template to generate an acyclic I' is the following:

Theorem 8.2 A template such that the white portion in Fig. 12(ezcluding the
center) has only zero elements generates a CNN with an acyclic T'.

Proof: We need to show that there are no cycles in I'. Imagine the cells are
arranged on a regular rectangular lattice in cartesian space with the edges of
T being straight vectors connecting the nodes. Then the edges have a certain
direction that we can decompose into a horizontal and vertical component. The
hypothesis in theorem 8.2 corresponds to the edges in I' having a horizontal
direction > 0. Now we show that a cycle must include a edge with horizontal
direction > 0. Suppose not, then a cycle must consists solely of edges with
horizontal direction = 0. The only edge that has no horizontal direction is
an edge pointing straight up. Such a path can never be a cycle. So a cycle
must include edges with horizontal direction > 0. But there are no edges with
horizontal direction < 0. So you move farther and farther away horizontally in
such a path. Therefore there are no cycles in the graph. |
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-1-1-1 [+]+]+] [+T-T+] [-T+1-
-1Aa]-| [-1A]-]| [+TA]+]| [+ A+
-1-1-1[+1+1+] [+1-1+] [ 1+]-

These four templates are equivalent and belong to the same equivalence class
in the sense that they can be transformed into each other through rotations,
reflections or the three transformations defined in section 5. If one of them can
be shown to be stable almost everywhere (or unstable everywhere) then so are
the other three.

Similarly, the following templates and its equivalent templates form another
class of strictly sign-symmetric templates that have not been shown to be stable:

-|-|P
—1Al-
Pl-]-

A third class consists of the following template and its equivalent templates:
+10]|-
+|Al+
~]01]+

These three classes, together with the templates in section 7, form all of the 3x 3
strictly sign-symmetric templates. Out of the 81 possible types of strictly sign-
symmetric 3 x 3 templates, 53 have been proved to be stable almost everywhere.
The rest form the three classes above.

Combining the results in this paper and (3], we find that out of the 6561
possible types of 3 x 3 templates with A(4, 5; 1, 7) > R-1, 965 have been proved
to be stable almost everywhere. This forms a relatively large but yet incomplete
subset of the universe of all stable 3 x 3 templates. Figure 13 illustrates the
relationship between the various types of templates that are presently known
to be stable almost everywhere. For the definitions of the different classes, see
definiton 2.4,2.5 , 7.1, and section 8. The yet unsolved problem is to identify
the complete universe of all stable templates.
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Figure 13: Venn diagram illustrating the relationship between the different
classes of templates. The universe of templates stable almost everywhere is
shown shaded.
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