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On the Universe of Stable Cellular Neural

Networks*

Leon O. Chua and Chai Wah Wu*

Abstract

Cellular Neural Networks(CNN) is a novelanalog circuit architecture
with many desirable features. This paper extends previous stability re
sults of CNN's to include classes of strictly sign-symmetric and acyclic
templates. We show that most of the 3x3 strictly sign-symmetric tem
platesarestable almost everywhere, with the unknown templates reduced
to three cases. We also introduce signed interaction graphs which is use
ful for obtaining results concerning stability and irreducibility of CNN
templates.

1 Introduction

Cellular neural networks(CNN), a newtype of analog circuits, wasinventedre
cently and shown to have many desirable properties [1]. CNN's consist ofmany
parallel analog processors computing in real time. One desirable feature is that
these processors, arranged in a two-dimensional grid, only have local connec
tions, which lent themselves easily to VLSI implementations. The connections
between these processors are determined by acloning template, which describes
the strength of nearest neighbor interconnections. The cloning templates we
willconsider areall space invariant, meaning that each processor has the same
relative connections.

Some important applications of CNN's are in the area of binary image
processing, where several templates has been discovered for edge detection,
noise removal, image thinning, motion detection and other image processing
functions([2],[10],[12]). For proper operation ofsuch templates, a CNN must be
completely stable, Le. for all initial conditions, the states -♦ e as t —* oo, where
e is some, usually among many, dc equilibrium point. In the original paper [1],
complete stability has been proved for CNN's withsymmetric templates.
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1402, by the National Science Foundation under Grant MIP 86-14000, andby the Semicon
ductor Research Corporation.

tDepartment of Electrical Engineering and Computer Sciences, University of California.
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CNN's form a special subclass ofsystems ofdifferential equations, and by
using results obtained for competitive-cooperative systems, a larger class of
templates can be shown to be stable. In [3], a class ofnon-symmetric templates
has been shown to be stable except for a set ofmeasure zero, using results in

This paper extends these results, andshows thatmost strictly sign-symmetric
templates are stable almost everywhere. We will also show that acyclic tem
plates arecompletely stable.- We will also introduce theuse ofsigned interaction
graphs inanalyzing templates and show several results relating tothese graphs.

2 Preliminary definitions

ACNN isgoverned by the following setofdifferential equations [1]:

dvx..(t) 1 -_

+££(*\i;M>«klW +i (i)

where t>x<i, vUij and vyi. denotes the state voltage, input voltage and output
voltage of a cell, respectively. We assume that the input is constant and the
A-template is space-invariant; i.e. for all t,j, Jfe, /, mand n, A(i,j; Jfc, /) = A(i +
m, j + n; k + m, / + n)

Vy = /(««) = y[\vx + 1| - \vs - 1|], We will often use a smooth (C1) ap
proximation of that piecewise linear function in our stability analysis.

Definition 2.1 A dynamical system x = F(x),F€ C1 is cooperative iffor all
i ? j:

-8xT*° (2)
Definition 2.2 A dynamical system is irreducible iffor all i £ j, there exists
a chain of consecutive indices i = Aq, ..., km = ,; such that:

dFkr(x) ^ n-g^-^0, r=l,2,...,m. (3)
Definition 2.3 A dynamical system is stable almost everywhere if the set of
initial values in which the system does not converge to a constant equilibrium
point has Lebesque measure zero.

Note thata dynamical system satifying definition 2.3 is not necessarily com
pletely stable since it may contain unstable limit cycles or other exotic trajec
tories. This weaker form ofstability is easier to prove than complete stability,
and is all that we need in practice.



Throughout this paper, "stable" is used in the sense of Hirsh[5], who called
it "convergent*

Definition 2.4 A cloning template A(i,j;k,l) is positive ifA(i,j:k,l) > 0 for
«tf(*,i) *(*,/).

Definition 2.5 A cloning template i4(i,j;Jb,/) is cell-linking if the non-zero
values of A(i,j;k,l) are located so that any two cells in the entire cell array can
be connected by a sequence of cells with non-zero template values connecting
them, (see [8])

In order to better visualize the connections between cells, let us introduce a
useful tool in analyzing CNN's.

3 Signed interaction graphs

We associate to each A-template a labeled directed graph V. The nodes of
T will be the individual cells, with a directed edge from cell(jb,/) to cell(«, j) if
and only ifA(i, j;*,/) ^ 0. The label associated with that edge will be thesign
ofA(x, j; fc, /). We will also call thatedge positive ornegative, depending on the
sign. As in[6], we will call T thesigned interaction graph. This graph allows us
to see how the cells areconnected to each other, directly andindirectly. Table 1
list some templates along with their graphs ([2],[8],[9],[11]). Instead ofattaching
labels to edges, positive edges will be shown black, and negative edges will be
shown gray.



Name

noiseremoval

00

edgedetection

(b)

Holefiller

(c)

A-template"

0.01.00.0

1.04.01.0

0.01.00.0

0.0-0.50.0

-0.52.0-0.5

0.0-0.50.0

0.01.00.0

1.02.01.0

0.01.00.0

Table1

graph



Name

horizontal

shadow detector

(d)

connected

component

detector (e)

(f)

A-template

0.0 0.0 0.0

0.0 2.0 2.0

0.0 0.0 0.0

0.0 0.0 0.0

1.0 2.0 -l.C

0.0 0.0 0.0

1.0 0.0 1.0

0.0 2.0 0.0

1.0 0.0 1.0

Table 1 (continued)

graph

< • <

< • <



Name

(g)

A-template

0.0 0.0 0.0

0.0 2.0 2.0

0.0 2.0 0.0

graph

Table 1 (continued)

If we look at the shadow detector and its graph, we see that the rows are
disconnected. This means that the state of a cell in a certain row cannot affect
or depend on the state of a cell in another row. So we can consider each
row asan independent 1-dimensional CNN and analyze its behavior separately.
Furthermore, all the edges point to the left, meaning that cells influence the
state of cells to their left and not vice versa. All this is consistent with the
operation of a horizontal shadow detector.

Definition 3.1 A directed graph is irreducible iffor alii £ j, there is a directed
pathfrom node i to node j.

A cell-linking template corresponds to T being irreducible. The hole-filler is a
cell-linking template, Le. the corresponding T is irreducible. This means that
every cell can influence every other cell. This is consistent with the fact that
hole-filling isa global property. Whether a cell is part ofa hole ornot depends
on cells around it, possibly quite a distance away.

A disconnected directed graph cannot be irreducible. Hence, the directed
graph (d), (e) and (f) in table 1 are reducible. Even a connected digraph may
be reducible. An example of a connected digraph that is reducible is shown in
(g) of table 1.

Definition 3.2 A directed graph is symmetric ifan edge from node i to node j
implies an edge exists from node j to node i.

Definition 3.3 E, a subgraph ofT, is said to be maximally irreducible if any
irreducible subgraph ofT containing E is equal to E.



r can be partitioned into maximally irreducible subgraphs. A symmetric
T can always be partitioned into one or more maximally irreducible subgraphs
that aredisconnected fromeachother. To provethat assertion, let cell i be a cell
in maximally irreducible subgraph 1 and cell j a cell in maximally irreducible
subgraph 2. If there is an edge from cell t to cell jt then by the symmetry
property there must be an edge from cell j to cell t. Every element in subgraph
1 has a path to cell t, hence to cell j, hence to every element in subgraph 2
and vice versa. So the union of subgraph 1 and subgraph 2 is irreducible. Since
subgraph 1and subgraph 2are maximally irreducible, thisimplies that subgraph
1 = subgraph 1 U subgraph 2 = subgraph 2. So the maximally irreducible
subgraphs of T are not connected to each other.

Consider graph (a) in table 1. This graph is symmetric and consist of a
maximally irreducible connected subgraph; namely, itself Consider next graph
(f) in table 1. The graph issymmetric and can beseperated into two totally dis
connected subgraphs corresponding to the twomaximally irreducible subgraphs.
In table 1,nodes corresponding to the twomaximally irreducible subgraphs are
colored black and gray respectively. In a sense this CNN is equivalent to two
independent CNN's operating on a state space that is interleaved.

Definition 3.4 A directed graph is called acyclic if it has no cycles, i.e. there
are no set of nodes »i,...,»j,»/+i alldistinct, except for v;+1 = v\ such that
there is an edge from V{ to t;,+i, t = 1,..., j.

If a graph is acyclic then a path from node i to node j implies no paths from
node j to node i. Intuitively, this means that the dependence ofcells are only
in one direction. There is no indirect feedback through other cells. The graph
of the shadow detector is an example of an acyclic graph.

The stability results obtained in [3] and inthis paper are dependent only on
the A-template or equivalently, T. This is useful as it allows us to determine
the stability ofsome CNN byanalyzing solely its signed interaction graph. For
example, T can be used is to determine whether the template is cell-linking or
not.

4 Test for irreducibility of T

A cell-linking CNN template indicates that the operation performed is global;
the state of a cell depends on the states of all other cells. To test whether
a CNN template is cell-linking, essentially one needs to check whether T is
irreducible. One way to do that is to start with any node and check whether
themaximally irreducible subgraph containing thatnode isequal toT itself T is
irreducible if and only if each node has at least one path to all its immediate
neighbors. Because T is generated by a space-invariant template, we can give
simpler sufficient conditions for a CNN being cell-linking.



Figure 1: Paths from cells shown in black and gray, as specified in theorem 4.1
provide sufficient conditions for T being irreducible.

One such condition is given by our next theorem, where we only need to
check the paths emanating from the 4 corners in the boundary of the CNN
(shown in gray in Fig. 1) as well as those of4other "near-corner'' cells adjacent
to the corner cells along the diagonals (shown in black in Fig. 1).

Theorem 4.1 Given an A-template, if in the signed interaction graph Tgen
erated by an M x N CNN utilizing that template, each of the 4 "near-corner"
cells in Thas paths going to all ofits 8 immediate neighbors, and if each ofthe
4 "corner" cells in T has a path to its corresponding "near-corner" cell, then a
CNN ofat least (2M - 2) x (2AT - 2) cells utilizing the same A-template, will
generate an irreducible sign interaction graph.

Proof: Consider a CNN of(2M-2)x (2N-2) cells and itssigned interaction
graph T divided into 4 quadrants as shown in Fig. 2. All we need to show
is that every node in T has paths to all its immediate neighbors. Consider
first the lower-left quadrant. We define an augmented quadrant as a quadrant



augmented with one more layerof cells. For example, the cellsoutside the lower-
leftquadrant withadot in thecenter together withthe lower-left quadrant form
the corresponding augmented quadrant. By a boundary cell we mean a cellon
the boundary of the (2M - 2) x (2N - 2) array. A path from the "near-corner"
cell to one of its immediate neighbor is shown as connecting node 1 through 8
in Fig. 2. Because of space invariance, any path in T can be shifted and still
remain a valid path in T as long as the entire path stays within T. Because the
augmented quadrant isM x N, the path from the "near-corner" cell lies entirely
within the augmented quadrant. Consider a path from the "near-corner" cell
to its immediate neighbours shifted so that it starts from another cell in the
quadrant. Because the quadrant is (M - 1) x (JV - 1), the maximum amount
ofshift will bea distance ofM - 3 upand N - 3 to the right and the path will
remain within T. For example, the two paths in Fig. 2 starting from node 9 and
10 are just shifted version of the path from node 1 to 8. They lie completely
within T and are therefore valid paths inT . It is clear from Fig. 2 that every
cell in that quadrant that is not a boundary cell has a path to its immediate
neighbors. They are essentially shifted versions ofa "near-corner" cell They
also have paths to every cell in the quadrant. Using similar arguments for the
other quadrants, it follows that every cell in the T that is not a boundary cell
has paths to its immediate neighbors and thus to every cell in I\

Consider next acell onthebottom boundary ofthe lower-left quadrant. The
lower left corner cell has a path, call it pi, towards the upper right neighbors,
lying completely inside the augmented quadrant. The distance between the cell
inquestion and the lower left corner cell is at most N - 2. Therefore the path
pi shifted so that it start at this cell will still lie entirely within T. The shifted
path will end at the cell's upper right neighbor which is not a boundary cell.
Since acell notontheboundary has paths toevery cell in thegraph, this cell on
the bottom boundary also has path to every cell in the graph, in particular its
immediate neighbors. In Fig. 3, node 3 has a path to node 4 since node 1 has
a path to node 2. Node 4 is not a boundary cell, so node 4 has paths to every
other cell in T. Therefore, node 3 has paths to every other cell in T. A similar
argument holds for acell on the left boundary in the quadrant. Therefore every
cell in the quadrant has a path toits immediate neighbors. The boundary cells
in theother quadrants follow asimilar reasoning. It follows that T isirreducible.
It is clear that the signed interaction graphs ofeven larger CNN's (using the
same A-template) willalso be irreducible H

When M = N = 3, wehave the following corollary:

Corollary 4.1 Given a A-template, if in the T ofa 3 x 3 CNN utilizing that
A-template, the center cell has paths to all the other cells, and if each corner
cell has apath to the center cell, then the signed interaction graph generated by
a 4 by 4 (or bigger) CNN utilizing that A-template, is irreducible.

We conjecture that if the hypothesis of corollary 4.1 is satisfied then the
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Figure 4: The requirement for irreducibility is satisfied for template Ai and A2.

signed interaction graph generated by any size CNN is irreducible. As an ex
ample, let us analyze two A-templates described by:

0 0 1 0 0

0 1 0 0 0 0 0 0

0 A 0 0 1 A 0 0

1 0 1 0 1 0 1 0

0 0 0 0 0

Ax A2

As shown in Fig. 4, the signed interaction graphs of those templates for a
3x3 CNN satisfy therequirements stated above. Therefore both templates are
cell-linking in a CNN bigger than 4 x 4.1

5 State transformations

In [3], stability results has been obtained for CNN's with positive cell-linking
templates. We will extend these results by finding state transformations that
produce atransformed system similar in form to aCNN with positive cell-linking
templates.

1actually the templates are cell-linking for anysize CNN's.
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Consider again the state equation of a M x N CNN:

+I>(*\i;MKH(<) +/ (4)
k,i

As in [3], let usrepack the state variables vSij ofthe CNN intoavector * ofsize
MN. Similarly, let us repack the input and output variables vUij and vyii into
u and y, respectively (using the same ordering as that for x). The invertible
ordering will be called <r, i.e. S*(<j) = vXij. Without loss of generality, let
Rx = 1> C = 1 and the state equations assumes the form:

£=F(x) =-x +Af(x) + Bu + I (5)

where A and B are AfJV x Jlf.N matrices containing the coefficents A(i, j;k, I)
and B(iy j;k,l) respectively. J isa constant vector of length MN and /<(x) =
/(*<) * tn** +l|-|*<-l|] for t = 1,...,JWJV.2 By our choice of/(x),
^2i>0,sofor«^i

dFi(x) ~ dfj(x) A -

So the system is cooperative if and only if A has only nonnegative off-
diagonal elements. CNN's whose templates are not positive have a correspond
ing A matrix that contains some negative off-diagonal elements. Our goal is to
find a suitable transformation that produces an equivalent dynamical system
that is cooperative and irreducible. We will consider a type of transformation
where only the sign of some strategically chosen states are changed. Chang
ing the signs of state variables amounts to multiplying the state vector by
J = &ag{(-l)n»f(-l)»a,...,(-i)»»}, where k = MN, the size of the state
vector, and nt- 6 {0,1}. Setting Jx' = x, the state equation transforms as
follows:

x = F{x) = -x + i/(x) + Bu+ I &
Ji'=- Jx' + Af{Jx') + Bu + I (7)

i' =-x' +J^AfiJx') +J^Bu +J-1! =F'(x') (8)
The Jacobian matrix of F' is:

DF\x') =J-lADf(J5?)J - U (9)
2we use the symbol» since in the following proofe, we wfll assume /(x.) to be asmooth,

strictly increasing and odd approximation of the piecewise linearfunction.
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where U denotes the identity matrix. Note that Df and J are both diagonal
matrices, and thus they commute. Noting that J'1 = J, we have:

DF\x') =JAJDf{Jx') - U (10)
So for i 96 j,

3P-C'i*^ (11)

So the system in (8) is cooperative and irreducible if and only if A' = JAJ is
nonnegative in the off-diagonal elements and is irreducible.

Theorem 5.1 The system (8) is stable almost everywhere if A' is nonnegative
in the off-diagonal elements and irreducible .

Proof: the proofis similar to that oflemma 1 in [3]. First we note that from
any fixed x(0), thestate vector x in(5) has a bounded forward orbit bytheorem
1in [1], and therefore, x'has a bounded forward orbit, x'isanequilibriumpoint
of(8) ifand only ifJx' is an equilibrium point of(5). Since the system (8) is
cooperative and irreducible , theorem 5.1 follows from [4]. •

If the transformed system isstable almost everywhere then the original sys
tem isalso stable almost everywhere. It is clear that Aisirreducible ifand only
if JAJ is irreducible. So we need to find a J in the diagonal form described
above such that JAJ is an off-diagonal nonnegative matrix.

(JAJ)iS = (-l)^(ij)y = (-l)»«^(-l)«i = (-1)"*+"^ (12)
The matrix A results from a space-invariant template. Assume that for

all i £ j, Aij/neqO. Given this assumption, and the requirement that JAJ
has nonnegative off-diagonal elements, some properties of J can be obtained.
Aij £ 0 and (JA J)y > 0 for all t ^ j implies that:

(-ir+"'i« =\Aij\ (13)
Let i = o-(a, 6),,; = <r(a+/, 6), k= o\a+2l, b) for some 1 < a < M-21, l<b<N
and / = 1,..., [(M - 1)/2J. Because of spacial invariance, Aij = Ajk and we
have:

(-i)n'+»i^ =\ah\ =\Ajk\ =(-!)»;+»*iiJb =^i)ni+nkAij (14)
Consequently, we have:

(-!)"< = (-l)n* =» n, = nk (15)

14



The same conclusion follows if we take s= o\a,6), j = cr(a, b+l), k = cr(a, 6+2/)
for some 1 < a < Af, 1< 6< N- 2/ and/ = 1,..., [(N - 1)/2J . Therefore we
have the following sets of constraints on J:

n*(a,b) = n<T(fl+2/li), 1< a < M - 2/,1< b< N,I= 1,..., |_(AT - 1)/2J (16)
n«7(o,t) = na(o,i+20,1 < a < M, 1< b< N - 2/, / = 1,..., [(JV - 1)/2J (17)

This gives us 5 possible choices for J. From all the sign-changing transforma
tions, only these 5 have any chance of generating a cooperative system. Two
of them, J = ± U, gives A' — A. The other three will be discussed in more
details.

Remark 1: A transformation that changes all the states to their negatives
amounts to J being equal to - U, and therefore A! = A, which does not help
us in determining the stability of the system.

Remark 2: The5choices for J were found from the two sets ofcontraints (16)
and (17) which in turn were derived from the space-invariance of the templates
and the absence of zeros in the off diagonal elements of A. These J's will also
yield correct results if there are some zero-elements in the off-diagonal elements
of A. If we arerestricting ourselves to considering templates with zero-elements
in certain locations,i.e. A has zeros in some off-diagonal entries, then some
of the constraints might not be necessary and more choices for J can then be
found. We will demonstrate that later in the paper.

Remark 3: / is assumed to be constant and B is assumed to be generated
by a space-invariant B-template, since they correspond to a CNN with space-
invariant templates. For J -£U, J~XB need not correspond to a space-invariant
B-template and J"1! need not be aconstant vector and (8) need not correspond
to the repacked equation of a space-invariant CNN.

Remark 4: There are other constraints on J of the form

»<r(a,6) = »ff(a±2J,6±2m)»1 < a < M -2/,l <6 < N -2m
'=1 L(M-l)/2j,m=l,...,L(iV--l)/2j (is)

but they are equivalent to (16) and (17).
A' generated by the 3 transformations is space-invariant in the sense that a

space-invariant cloning template A'{%, j;k,I) generates A' through a. To sim
plify notations, let us return to stateequation (4). The transformation will now
simply be:

% = vSij •(-l)»-«.i) (19)

Let us denote the output variables after the transformation byty. = f(vxi_).
The state equation after the transformation is: ''

dv^Xt) i

* *,/

15



+£B'(i,i;*l/)*««m + iS,
4,1

(20)

For now, let us only consider 3x3 templates.
(a) transformation 1. vx,..(i) = vXii(t)i-l)i, Le. v^t) =vXij(t) ifj is even,

**«(*) = "•»«(') ** J' " odd- ** follows that the cells with their states changed
to their negatives form alternating columns. The effect on the A-templates is
depicted as follows:

+a +b +c

+d +c +f

+g +h +i

-a +b -c

-d +e -f

-g +h -i

Proof: vyij(t) = f(vXij(t)), and / is odd. So ifv^t) = -vXij(t), then
%(*) = -%,(<)•

Suppose j is even; then Vxnj(t) = vXii(t).

dv^it) dvXij(t) . . .

= A(i, j; i+1, j+l)(-t>y(<+i)( .+i) (*)) +•••
= A'(i,i;*+i,i +iK(j+i)(.+i)(t) +... (2i)

where the symbol + ••• indicates the remaining terms whichare not relavant to
our proof here.

Therefore A'(t, j;i +1, j + 1) = - A(», j;« + 1, j +1). The same argument is
valid when *+ 1 is replaced by t, or t - 1, and when j +1 is replaced by j —1
(j + 1 and j —1 are both odd).

*V„W dvXii(t)

= A(*,i;t +l,;>y|.+i)i(<) +---
= A'(t,i;f+l,i)v(4+iM(*) +... (22)

Therefore A'(i, j; i + IJ) = A(iyj; i + 1, j). The same argument is valid when
t + 1 is replaced by i — 1 or i.

Suppose j is odd; then vj.ft) = -vXij(t).

dvx'Jt) dvXi.(t)
= Jr = -Mhiii + U+ iK.+1)(i+l)(<) + ...
= -Aft i;t+1, j+lK|i+1)(.+1)(t) +...

eft

= A'(tfi;t + l,i + l)v i%(<) +

16



Therefore A'ft j; t+1, j+1) = -Aft j; i+1, j +1). The same argument is valid
when i +1 is replaced by», or i - 1, and when j + 1is replaced by j - 1 (j + 1
and j —1 are both even).

cfo«liW = <fog<i(t) =
dt dt

-Aft i; t + 1,j)«,(<+1)i (<) + .••
= -A(i,i;* + l,i)(-v («)) +

(H-Or

= A'ftj;t>l,i)t;y, (<) +
(<+»)i

+a +b +c

-

-a -b -c

+d +e +f +d +e +f

+g +h

A

+i -g -h

At

-i

(24)

Therefore A'ft j; i + 1,j) = Aft j; t + 1,j). The same argument is valid when
i + 1 is replaced by i —1 or i. •

(b) transformation 2. v^fi) = »«„(«) •(-1)*, Le. tv.^r) = vx..(t) if t is
even, «*»„(*) = -vXii(t) if* is odd. It follows that the cells with their states
changed to their negatives form alternating rows. The effect onthe A-templates
is depicted below:

The proof is similar to that of the previous transformation. In essence, this is
tranformation 1 rotated 90 degrees.

(c) transformation S. v^fi) =».„(<)• (-1)<*W>, Le. v^t) =«,„(<) ifi+j
is even, v^t) = -vXii{t) ifi +j is odd. It follows that*the cells with their
states changed to their negatives form a checkerboard pattern.

The effect on the A-templates is depicted as follows:

+a +b +c

+d +e +f

+g +h +i

+a -b +c

-d +e -f

+g -h +i

Proof: suppose i + j is even; then t>x# (t) = vXij(t).

dvst.it) ^ (t)

= ^i;^i,i+i)x+1)(i+1)(t) +-..
i+»)(i+i)

i+i)(i+i)
= A'fti;<+i,i+i)^HLiM_i(t) +

17
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Therefore A'ft j; i +1,,; -f1) = Aft j; i +1, j + 1). The same argument is valid
when i + 1 is replaced by i - 1, or when j + 1 is replaced by j - 1 or when
considering A'ft j;i, j) (the sum of the second pair of indices stays even)

*>*'..(<) dvXii(t) . . .
—2*— = -^-=i(u;i+l,;>y(j+I)i(t) +...

= Afti;t +l,i)(-Wy,.+i).(<)) +...
= A'ft>;s+ l>i)%+1)i(<) +'-- (26)

Therefore A'ft j;»+1, j) = -Aft j;t +1, j). The same argument is valid when
t+1 is replaced by s-1. It is valid also when«+1 is replaced by *, and,; in the
second set of coordinates is replaced by j + 1 or j - l.(the sum of the second
set of indices stays even)

Suppose t + j is odd; then v* (t) = -vXii(t).

dv^.it) dvXii(t)
—dt" = —5T" =""A(,'i;,' +1'-'+1Ki+x)(i+»)(t) +--

= -Aft i;i+1, j+l)(-vy[i+i)li+i)(t)) +•••
= A'fti;i+U +l)fy(i+1)(y+1)(t) +••• (27)

Therefore A'(j,j;t+1, j +1) = A(t,j;» +1, j + 1). The same argument is valid
when t + 1 is replaced by t - 1 or when j + 1 is replaced by j - 1 or when
considering A'ft j;i,j) (the sum ofthe second pair ofindices remains odd)

~"3*~ = —^~ =-A(,'^« +i,iK(J+1)i(0 +---
= - A(t, j; i+1, iKf .+i)i(*) +•••
= A'ftj; i+1, j>y, .+i) .(*) +... (28)

Therefore A'ft j;i+1, j) = -Aft j;i+ 1, j). The same argument is valid when
** +1 isreplaced by i -1. It isalso valid when i+1 isreplaced byt and j in the
second set of coordinates is replaced by j - 1 or j + l.(the sum of the second
pair of indices stays even) sj

We can now summarize the aboveresults into the form of a theorem. Note
that A'ft j;k, I) is positive cell-linking ifand only if A' is off-diagonal nonneg
ative and irreducible:

Theorem 5.2 Ifthrough one ofthe above Stransformations on A(i,j;k,l) the
resulting A'(iJ;k,l) is positive cell-linking, then the CNN with the template
Aft j; k, I) is stable almost everywhere.

The main idea is that the transformation either changes the state of a cell
to its negative or it does not change the state ofacell Consider two cells (ij)
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Figure 5: Under transformation 1, black cells have their states reversed, while
white cells remain unchanged.

and (j,k) connected by a template element A(i,j;k,l). The cells are connected
by an edge in T. If both cells' states are changed to their negatives by the
transformation, then the connection between these two cells remain the same
after the transformation. (A'ft;; k,l) = A(i,j;k,l)) The same result occurs if
both cells' state remain unchanged. Ifone cell's state ischanged to its negative,
while the other cell's state remainunchanged, then the connection betweenthese
two cells is chuiged to its negative.(A'ft j; k, I) = -A(i, j;k, I)) So by looking
at how a cell is changed by the transformation relative to thesurrounding cells,
we can determine the transformation's effect on the connections Aft j;k, I) and

For example, let us consider transformation 1. In Fig. 5, the dark cells
correspond to cells that have their state variables changed to their negatives,
while the white cells correspond to cells that have their state variables left alone.
Consider first an arbitrary white cell, which we shall call the center cell, and it's
neighborsas it would appear in I\(In Fig. 6 , the labels have been omitted and
only the edges pointing towards the center cell is shown.) The transformation
does not change the state of the center cell. The cells immediately to the left
and to the right of the center cell have their states changed, so all the edges
pointing towards the white cell from its immediate right and left neighbors have
changed sign. The right and left (with respect to the center) elements on the
A-template of the center cell corresponds to these edges, and are also changed
to their negatives. The cells above and below the center cell remain the same,
and thus the elements above and below the center on the A-template of the
center cell does not change. Similarly, the diagonal elements of the A-template
is changed to their negatives. So the effect of this transformation on the A-
template can be read off directly by looking at the difference in color between
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Figure 6: Cells on the left and right ofthe center cell have their state changed
to their negatives.

Figure 7: Cells in the center columns has its states changed, while the cells on
the left and right are not.

the center cell and its neighbors in Fig. 6.
Consider next an arbitrary dark cell (which we call the center cell now) and

it's neighbors as it would appear in T(Fig. 7) The center cell itself has its state
changed to its negative, while the cells to the left and to the right of the center
cell are left alone. So the left elements and the right elements (with respect to
the center) of the A-template of the center cell is changed to its negative. The
cells immediately above and below thecenter cell also change to their negatives
alongwith the center cell, so the element above and below the center on the A-
template of thecenter cell does notchange. Again, the effect onthe A-template
is apparent from the color pattern of Fig. 7.

The effect of the transformation on the A-template is the samein both cases.
This is due to the fact that these transformations preserve space-invariance of
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the A-templates. We will illustrate this using a concrete numerical example,
where the template A is changed to A' by transformation 1:

-1 +1 -1

-1 +2 -1

-1 +1 -1

+1 +1 +1

+1 +2 +1

+1 +1 +1

Consider first an arbitrary cell(5,6); vx*M(t) = vXM(t). The neighbors' coor
dinates are:

«7») («.«> <«7t>

(87s) («.«) (»7t)

(«7«> («,«) («7t>

A bar above the coordinates indicates that that cell will be changed to it's
negative by the transformation.

**«<*> - ^gM(/)_
di ~ —di ^(5»o;6,7)t>y„(<) + ...

= Vw(0) + —
= A'(5,6;6,7)t;y4T(t) + ... (29)

Therefore A'(5,6; 6,7) = 1. Same argument isvalid for A'(5,6; 5,7), A'(5,6; 4,7),
A'(5,6; 4,5), A'(5,6; 5,5), A'(5,6; 6,5).

^dt— - —dt— = ^(5,6;6,6)t>y<J6(t) + ...

= 1-V-W + -
= A'(5,6;6,6)vy4a(t) + ... (30)

Therefore A'(5,6; 6,6)= 1. Same argument isvalid for A'(5,6;4,6),A'(5,6;5,6),
A'(5,6;6,6). "

Consider next cell(5,7), the cell to the right ofcell(5,6); v^t) = -vx„(t).
The neighbors' coordinates are:

(«.«> «7t> <«.•)

(*.«) (»7t> (».«)

(«.«) («7t> («.«)
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Again, a bar above thecoordinates indicates that the cell will be changed to its
negatives by the transformation.

**«(*) _ dvx„(t) _ ,,,7.fig, m.
di "" di— ~ * ' ' ' 8J*»«w+ ***

= A'(5,7;6,8)t;yi#(<) + ... (31)

Therefore A'(5,7;6,8)= 1. Same argument isvalid for A'(5,7;5,8),A'(5,7;4,8).
A'(5,7; 4,6), A'(5,7; 5,6), A'(5,7; 6,6). *

ifc» =.^)=̂(5,7;6,7KaT(<)+...

= A'(5,7;6,7)t;y»T(<) + ... (32)

Therefore A'(5,7; 6,7) = 1. Same argument is valid for A'(5,7; 4,7), A'(5,7; 5,7).

6 Bigger templates and hexagonal templates
The above three transformations of templates are similar when extended to
larger size templates. For example, transformation 1has the following effect on
a 5 x 5 template:

+a +b +c +d +e

-

+a -b +c -d +e

+f +g +h +i +j +f -g +h -i +j

+k +1 -r-m +n +0 +k -1 4-m -n +0

+P +q +r +s +t +P -q +r -s +t

+u +v +w +x +y +u -V +w -X +y

A A*

The same technique can be applied to other network topologies as welL For
example, in a hexagonal network, we would have atransformation that change
a template as in Fig. 8. There are also two other transformations that are just
the transformation in Fig. 8 rotated 60 and 120 degrees.

7 Strictly sign-symmetric templates

All the stability results we obtain so far are for cell-linking templates. We will
now introduce aclass of templates that is not necessarily cell-linking.
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Figure 8: Effect of a transformation on a hexagonal template.

Definition 7.1 A CNN is called strictly sign-symmetric ifwhenever A(i.j:k, I) £
Q,A(i,r,k,l)A{k,l;i,j)>0*

In yiew ofthe repacked equation (5), this is equivalent tosaying that AijAji > 0
if A^ ^ 0. Because ofspace-invariance, this means that the templates are sign-
symmetric with respect to the center element, Le. A(t, j;i+m,j +n)A(i, j;i -
m, j - n) > 0 if A(t, j;i -rmj + n)^ 0. For such a template, the sign ofeach
non-zero element is identical to the sign of is corresponding symmetric (with
respect to the center element) element. We will also call the associated templates
strictly sign-symmetric. For example, in table 1, only template (a),(b),(c) and
(f) are strictly sign-symmetric. A strictly sign-symmetric template generates a
symmetric signed interaction graph.

In our next lemma, we say aCNN iscomposed of independent subsystems if
the state variables can be partitioned into n subsets ofstate variables Si,..., Sn,
such that A(i, j;k,l) = 0 for cell(ij) e Sa, cell(k,l) € Sb and Sa ? Sb. In other
words, the state ofcells inone subset inthe partition isindependent of thestate
of cells in other subsets in the partition.

Lemma 7.1 A CNN composed of independent subsystems is stable almost ev
erywhere if each subsystem is stable almost everywhere.

Proof: Consider first a system composed oftwo independent subsystems. Since
the states are bounded, given that the initial conditions are taken from a
bounded set[l], we denote the state space of the system to be the cartesian
product ofclosed interval [a,a+b], b> 0; namely [a,a+ b]n. Similarly, let the
state space ofsubsystem 1be [a, a+6]*, and that ofsubsystem 2be [a, a+6]n-fc,
6>0. Assume that the state variables ofthe whole system iscomposed of first

sThi$ definition ofu«trict ngn-symmetry" is more restrictive than that of"rim-symmetry"
denned m [5] *
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the state variables of subsystem 1, and then followed by the state variables
of subsystem 2. Let Ei be the set of initial values in which subsystem i is
not stable, where t 6 {1,2}. Let E be the set of initial values in which the
entire system is not stable. An initial state x is not stable for the system if
the subvector of the first k coordinates belongs to Ei or the subvector of the
last n - k coordinates belongs to E2. Let or C [a, a+ b]k be a covering of
Ei with measure c then o/ = {(«i,...,xn) : (xi,...,x*) € a} has measure
6n-*c. Similarly, let 0 C [a,a+b]n'k be acovering of E2 with measure c then
& —{(*if.i*n) : (*k+i,...,x„) € 0} has measure btc. Now a' U0* is a
covering of E with measure < (bn~k + 6*)c. Since c can be made as smallas
possible, E has measure zero. So thewhole system isstable almost everywhere.
The prooffor a finite numberof subsystems is similar. •

Theorem 7.1 A positive strictly sign-symmetric CNN is stable almost every
where

Proof: As shown earlier a symmetric graph can be decomposed into maximally
irreducible subgraphs that are disconnected from each other. Because all the
edges have positive labels, the CNN can be decomposed into independent posi
tive irreducible subnetworksand eachsubnetwork has been shown to be stable
almost everywhere [3], [4]. By lemma 7.1, the whole CNN is completely stable
almost everywhere. g

For example, template (f) in table 1 corresponds to a T with two positive
maximally irreducible subgraphs. So the CNN corresponding to that template
is stable almost everywhere.

Theorem 5.1 andtheorem 5.2 arestill true when the words "irreducible" and
"cell-linking" are replaced by"strictly sign-symmetric". Note that the property
of"cell-linking" and "strictly sign-symmetric" is preserved under the three sign-
changing transformations presented earlier. So using these transformations, only
cell-linking templates can be transformed into a postive cell-linking template,
and only strictly sign-symmetric templates can be transformed into a positive
strictly sign-symmetric template.

Using the three sign-changing transformations, and theorem 7.1, we can
deduce that the following classes of3x 3 strictly sign-symmetric templates are
stable almost everywhere.4

In the following descriptions, the elements refer to the elements of the tem
plates, not including the center. In the figures, the number above the arrow
indicates the type of tranformation (1,2, or 3) used. N indicates the corre
sponding weight is non-positive, and P indicates that the corresponding weight
isnon-negative. A+ and - indicates positive and negative weights respectively.
The choice of the weights must be kept consistent with the definition of strict
sign-symmetry.

4Most of these 3x3 strictly sign-symmetric templates are cell-linking, and the stability
can bededuced without using theorem 7.1, butwe would like toillustrate thetechnique used.
For bigger templates, strictly sign-symmetric templates are not necessarily cell-linking.
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1. corner elements are zero

0 P 0

l

0 p 0

N A N p A p

0 P 0 0 P 0

The four possible combinations are:

0 + 0 000 0 + 0 000

- ~~ "^""a""^~ ~~~ "o"~"o

o~+""o" "o o o" "b~"+~T" ~o~~o""o

0 N 0

2

0 p 0

p A P P A P

0 N 0 0 P 0

Some examples are:

An example:

0-0 000 0-0

+~X+" ~~~ ~~n

oH~~o~ ~o~~o~"o~ "o"T""o

0 N 0

3

0 p 0

N A N p A P

0 N 0 0 P 0

0-0

<T""o
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2. corner elements are nonnegative, whilethe rest is nonpositive

Some examples are:

o - +

~"a~~

+"~T

p N P

3

P P P

N A N P A P

P N P P P P

+ - +

~"a"~

+ - +

o~~a"~o

3. every element is nonpositive, except two nonnegative elements aligned in
a row or a column.

Some examples are:

0 + -

~+~~o

Some examples are:

N P N

l
—♦•

P P P

N A N P A P

N P N P P P

N N N

2

P P P

P A P P A P

N N N P P P

- 0 - - — 0

0 A 0 0 A 0

— 0 — 0 - -
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Figure 9: Signed interaction graph.

The following templates are also stable almosteverywhere:

- 0 + + 0 -

o~"a~"o~ ~~H

+~~0~"^" ~~~+

One way to show that they are stable almost everywhere is by constructing T
of the first template (Fig. 9). By seperating the two maximally irreducible
subgraphs, we see thateach component istopologically equivalent to the signed
interaction graph of a strictly sign-symmetric templatewith the corner elements
equal to zero, which we know is stable almost everywhere (Fig. 10). Since the
stability results we obtained are solely dependent on the template A(«, j;k, I) or
equivalent on T, the system corresponding to each component is stable almost
everywhere andsois the whole systemby lemma 7.1. By wayof oneof the three
transformations, the second template can also be shown to be stable almost
everywhere.

There are only 5 state transformations (2 of them trivial) of the type dis
cussed insection 5 such that theorem 5.2 can be used on all types oftemplates.
Other transformations can exist if we restrict ourselves to templates with zero
elements in certain locations. To illustrate this, we will give an alternate proof
of the stability of the first template in the pair shown above.

Because the template has some zero elements, the following state transfor
mation will work in theorem 5.2.

Transformation 4: tv. .(t) = -vXii(t) if i+ j = 0mod 4, or i+ j = 1mod 4,
and ».#,(*) = vXi.(t) otherwise. The cells that have their states changed totheir
negatives are shown in black in Fig. 11. The effect on the A-template is:
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Figure 10: The signed interaction graph in Fig. 11 can be separated into two
maximally irreducible subgraphs.

Figure 11: Pattern ofhow the cells is transformed using transformation 4. Black
cells have their states changed to their negatives. While cells are left unchanged.
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+a 0 +c

0 +c 0

+9 0 +t

—a 0 +c

0 +c 0

+9 0

At

—t

This transformation changes the A-template (with a < 0 and i < 0) into a
positivestrictly sign-symmetric template which weknow is stable almost every
where.

8 Acyclic V

Theorem 8.1 A CNN with an acyclic T and A(i,j;i,j) > Rxl is completely
stable.

Proof: because T is acyclic, there exists a set of cells such that there are no
edges going towards it. Since they receive no input from other cells and the
external input is constant these cells converge to an equilibrium. As shown
in [1], A(i,j',i,j) > R'1 implies that stable equilibria have magnitude greater
than 1. The states are bounded and the output of these cells will not change
after a finite time. Delete those cells and the edges coming out of them, and
the resulting graph will have another set ofcells such that there are no edges
going towards it. The only varying influence or input acting on these cells are
from cells whose output will not change after a finite time. So these cells also
converge with an unchanging output after a finite time. This argument can be
repeated until all the cells havebeen shown to converge. •

Asufficient condition for a template togenerate anacyclic T is thefollowing:

Theorem 8.2 A template such that the white portion in Fig. 12(excluding the
center) has only zero elements generates a CNN with an acyclic T.

Proof: We need to show that there are no cycles in T. Imagine the cells are
arranged on a regular rectangular lattice in cartesian space with the edges of
T being straight vectors connecting the nodes. Then the edges have a certain
direction that we candecompose intoa horizontal andvertical component. The
hypothesis in theorem 8.2 corresponds to the edges in T having a horizontal
direction > 0. Now we show that a cycle must include a edge with horizontal
direction > 0. Suppose not, then a cycle must consists solely of edges with
horizontal direction = 0. The only edge that has no horizontal direction is
an edge pointing straight up. Such a path can never be a cycle. So a cycle
must include edges with horizontal direction > 0. But there are no edges with
horizontal direction < 0. So you move farther and farther away horizontally in
such a path. Therefore there are nocycles in the graph. •
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Figure12:Thewhiteportionofthetemplate(excludingthecenter)havingonly
zeroelementsisasufficientconditionforatemplatetogenerateanacyclicT.

Forsimplicity,wewillcallsuchatemplateacyclicOfcourse,anacyclic
templateisstillacyclicafterrotationorreflection.

Anexampleofanacyclictemplatethatsatisfythehypothesisoftheorem
8.2(afterreflection)isthehorizontalshadowdetector(table1(d)).Another
exampleisthefollowingtemplate:

+-+00

+"~~"b~"o

^""+""T"o"l

+""+""o"T""o

+"~TT"o

Acyclictemplatescanneitherbecell-linkingnorstrictlysign-symmetric.
ByconsideringanL-layerMxNCNNasanLbyMbyNarrayofcells,

thedefinitionofasignedinteractiongraphcanbeappliedtoamultiplelayer
CNN.ItiseasytoshowthatthegraphofafeedforwardmultiplelayerCNN
consistingoflinearthresholdlayers[7]isacyclic.

9Concludingremarks

Inthispaperwehaveextendedthestabilityresultsin[3]toaclassofCNNtem
platesthatarenotnecessarilypositivecell-linking.Amongthemisasubclass
ofstrictlysign-symmetrictemplates.Otherstrictlysign-symmetrictemplates
thathasnotyetbeenshowntobestablearethefollowing:
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- - - + + + +-+ - + -

-a - ~~~ TTT "+~T +

~~~ ~~~ ~~~ ~T~

These four templates are equivalent and belong to the same equivalence class
in the sense that they can be transformed into each other through rotations,
reflections or the three transformations defined in section 5. If one of them can
be shown to be stable almost everywhere (or unstable everywhere) then so are
the other three.

Similarly, the following templates and its equivalent templates form another
class of strictly sign-symmetric templates that havenot beenshown to be stable:

- - P

p""^"~

A third class consists ofthe following template and itsequivalent templates:

+ 0 -

+"X +

~~b~ +

These three classes, together with the templates insection 7, form all ofthe3x 3
strictly sign-symmetric templates. Out ofthe 81 possible types ofstrictly sign-
symmetric 3x3 templates, 53 have been proved to be stable almost everywhere.
The rest form the three classes above.

Combining the results in this paper and [3], we find that out of the 6561
possible types of3x 3templates with A(i,j;i,j) >J£i, 965 have been proved
to be stable almost everywhere. This forms arelatively large but yet incomplete
subset of the universe of all stable 3x3 templates. Figure 13 illustrates the
relationship between the various types oftemplates that are presently known
to be stable almost everywhere. For the definitions ofthe different classes, see
definiton 2.4,2.5 , 7.1, and section 8. The yet unsolved problem is to identify
the complete universe of all stable templates.

10 Acknowledgements

The authors would like to thank Mr. Bert Shi and Prof. Morris Hirsh for helpful
discussions.

31



symmetric

Universe of templates

Figure 13: Venn diagram illustrating the relationship between the different
classes of templates. The universe of templates stable almost everywhere is
shown shaded.
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