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ABSTRACT

In this paper we report a non-fractal chaotic attractor observed in a

third-order piecewise-linear circuit The attractor's Lyapunov exponents
and spectrum show that it is chaotic, while its trajectory is ergodic on a

2-dimensional surface and therefore this attractor does not possess a
fractal structure.

A special 2-dimensional surface called a folded strip is introduced

to explain the geometrical structure of the attractor. Using a 1-
dimensional map, it is proved that trajectories on a folded strip can be
chaotic. This explains the chaotic mechanism of the attractor.

The attractor's Lyapunov dimension, capacity dimension and corre

lation dimension have been calculated and compared. It is shown that
the Kaplan-Yorke conjecture does not hold for this attractor.
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1. Introduction

Chaos and Strange attractors have been hot research topics for years. Most
chaotic attractors observed so far, either from discrete maps or from continuous flows,
are strange attractors. Consequently, the terms chaotic attractor and strange attractor
are often abused and used as synonyms. However, in a strict sense, chaotic attractors
need not be strange and strange attractors need not be chaotic([l][2]). We adopt the
definition for chaotic attractors and strange attractors, from [1]. Roughly speaking, the
term "chaotic" is more dynamics oriented. It implies sensitive dependence on initial
conditions. A mathematical criterion is that at least one Lyapunov exponent of the
attractor is positive. The term "strange" is more geometry oriented. It means the
attractor has a rather exotic geometrical structure, such as a noninteger fractal dimen
sion, a self-similar Cantor set anatomy, etc. In this paper we report an example of a
non-strange chaotic attractor observed from a third-order piecewise-linear circuit, i.e.
the canonical realization of the Chua's circuit family([3]). Non-strange attractors have
been reported for discrete maps([l][2]). Ours is probably the first example of a non-
strange attractor observed in vector fields of continuous flow.

In Section 2 we present the trajectory of the attractor and its Poincare cross-
sections derived from computer simulations. From these numerically derived Poincare
cross-sections it appears that the trajectory is located on a 2-dimensional surface and
that it is ergodic on this surface. In Section 3 we calculate the Lyapunov exponents
and the spectrum of the attractor to show that it is chaotic. In Section 4 we present a
special geometrical structure of a 2-dimensional surface called a folded strip, and
explain why a trajectory traveling on it can be chaotic. In Section 5 we present exper
imental observations on the same attractor and therefore show that this attractor is
really observable in physical systems. Finally in Section 6 we discuss the problem of
dimension. By calculating and comparing the attractor's Lyapunov dimension, capa
city dimension and correlation dimension, it appears that this attractor provides a
counter-example to the Kaplan-Yorke conjecture([4]).

2. Trajectory and Poincare Cross-sections

The six-element circuit shown in Fig.1(a) is a canonical realization of the Chua's
circuit family. Fig.l(b) shows the v-i characteristic of the piecewise-linear resistor RN
in Fig.1(a). The state equations of the circuit in Fig.1(a) are

dvl i
-3--c7.[-/(vi) +y



dv2 1^- =-^(-Gv2 +/3) (1)

di-i _x

where

_=_(V1 + v2+^3)

/(v) =Gftv+-i-(Ga-G6)[|v +l| - |v-l|] (2)

is the v-i characteristic of the nonlinear resistor shown in Fig. 1(b).

IFigure 11

For the particular attractor discussed in this paper, the parameter values are:

Cx = 1.0, C2 = - 15.6, G = - 6.42,

Ga =4.13, Gb =0.906, L =0.42, R =- 0.555 (3)

By plotting the trajectory of Eq.(l) with the parameter values given in (3), we
obtain the attractor shown in Fig.2 in three different projections, where

*[l]=vlt x[2] = v2t *[3] = /3.

The software we use is INSITE([5][6]).

irigureTT

As seen from the figure, the attractor looks like a strip. To explore its geometri
cal structure further, we plotted its Poincare cross-sections at several different posi
tions. Fig.3 shows a cross-section at v2=0 plane. Observe that this cross-section
consists of two continuous curves. In fact, we have found, not only this one, but all
Poincare cross-sections from any directions consist of one or more continuous curves.
Therefore, within the numerical accuracy ofour computer (DECstation3100), it appears
that this attractor is located on a 2-dimensional surface and does not have a fractal
structure.

"HgureT



-4-

3. Lyapunov Exponents and Spectrum

Our numerical results on the trajectory and the Poincare cross-sections have
revealed a 2-dimensional geometrical structure for this attractor. In order to learn

more about its dynamical behavior, let us investigate its Lyapunov exponents and spec
trum in this Section.

Our algorithm for calculating the Lyapunov exponents is based on the Gram-
Schmidt orthonormalization technique[6]. Starting from an initial condition close to
the attractor, using more than 50000 data points obtained from the Runge-Kutta
integration routine, this algorithm for calculating Lyapunov exponents converges very
well. The results listed below are virtually independent from the initial conditions
used for the algorithm.

/j = 0.0345 , l2 = -0.0000751 , /3 = -0.755 (4)

From a practical point of view, we can classify them as follow:

/i>0, /2 = 0, /3<0 (5)

It is quite reasonable that the attractor has one Lyapunov exponent equal to zero(f7]).
The negative Lyapunov exponent /3 has the largest absolute value, thereby implying
that the trajectory converges to an attractor. The most important point is that this
attractor has a positive Lyapunov exponent, thereby suggesting that it is chaotic.

Another numerical criterion for asserting that the attractor is chaotic, and not
quasi-periodic, or periodic with a long period, is its spectrum. Figure 4 shows the
spectrum obtained by using FFT analysis with 216 data points from the time waveform
of vj associated with the attractor. The spectrum has components over a broad band
of frequencies, and hence meeting our second empirical characterization for chaotic
attractors. The highest peak 5.2dB appears at / = O.OSHz. This corresponds to the
time needed for a point traveling one cycle along the trajectory (see Fig.2), which is
averagely T = \2sec. Since the attractor is asymmetric with respect to the origin, the
spectrum has a nonzero component, -3.2dB, at / = 0. In Fig.4, this component coin
cides with the vertical axes, and hence cannot be distinguished clearly. The spectra for
v2 and i3 are qualitatively similar to that of vx and we therefore omitted them.

Therefore, both the Lyapunov exponents and the spectrum indicate that this
attractor is chaotic.

Hgure 4
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4. Geometrical Explanation

It is well known that the most complicated attractors existing in any 2-
dimensional autonomous dynamical systems can only be limit cycles. In other words,
any attractors on a 2-dimensional plane can only be either equilibrium points or limit
cycles, because the trajectory can never intersect itself on a plane, except at equili
brium points. Consequently, in order for our chaotic attractor to be 2-dimensional, it
must sit on some non-planar 2-dimensional surface.

In this Section we will describe a 2-dimensional surface with a special geometri
cal structure and prove that a trajectory on it can be chaotic.

Let us start with a long strip of paper(with no thickness), as shown in Fig.5(a).
Imagine first that we band it around into a cylinder by pasting the line AC to the line
GH. The result is an orientable cylindrical closed-strip. Let us define a continuous
vector field (with no equilibrium points) on this cylindrical closed-strip. Without loss
of generality, we can assume the lines AG and CH are in parallel with the vector field
If they are not, we can tailor the closed-strip to make so. When a trajectory evolves
along this closed-strip, we claim that the only possible attractors are limit cycles. We
can prove this assertion by introducing a 1-dimensional map as follow: first, label the
line GH as the x axis, with xG = 0 and xH = 1, as shown in Fig.5(a). Suppose next
that a trajectory starting from an arbitrary point x0 on GH arrives at some point x1 on
AC. Since the line AC is identified with the line GH, the point xx is also a point on
GH. Therefore we get a 1-dimensional map /0: jc0 -» xv The map /0 is continuous
and monotone-increasing because the vector field on a plane can never intersect itself.
Figure 6(a) shows a typical continuous monotone-increasing map. Clearly, it can have
one or more stable and/or unstable fixed points. Each of the stable fixed points ( with
Idf/dx |£1 ) corresponds to a periodic motion of the trajectory on the closed-strip.

Next imagine that we twist the plain strip in Fig.5(a) by 180 degrees and paste
the line AC upside down to the line HG (i.e. paste point A to point H and paste point
C to point G). We then get a Afobius strip. Again, let us analyze the trajectories on it
by using a 1-dimensional map fv Suppose a trajectory starting from the point xQ
arrives at some point xx on AC in Fig.5(a). Due to the fact that the line AC is pasted
upside down to the line HG, the point xx is now identified with the point x[ on GH so
that

U-*il = l*Il

in Fig.5(a). Therefore the map fx: x0 -»x[ is continuous and monotone-decreasing.
Figure 6(b) shows a typical continuous monotone-decreasing map. Obviously, a
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monotone-decreasing map has only one intersecting point with the diagonal line. If we
have \dfxldx \<>\ at this intersecting point, then there is a stable periodic trajectory on
the strip. Therefore, although the Mobius strip seems to be more complicated then the
flat closed-strip, still, the only possible attractors on it is a limit cycle.

Now suppose we fold the long strip in Fig.5(a) along the line BE and paste the
rectangle ADEB to the rectangle CFEB. The result is a spoon-like shape structure
henceforth referred to as afolded junction, as shown in Fig.5(b). Imagine next that we
stretch the whole strip continuously (as if it were a rubber band) and. band it around.
Finally, paste the line AC-B in Fig.5(b) to the line GH, as shown in Fig.5(c). We call
the resulting structure a folded strip. It is 2-dimensional. The crucial part of this
structure is around the line DF-E. At this junction, two surfaces tangential to each
other merge into one. Everywhere else the folded strip is locally homeomorphic to a
2-dimensional plane.

Our goal is to prove that trajectories on a folded strip can be chaotic. Suppose
(a) there is a continuous vector field (with no equilibrium points) on the folded strip
and the edges G-I-DF-AC and H-J-DF-AC of the strip are in parallel with this vector
field; (b) the trajectory travels clockwise on this strip. Let us investigate the behavior
of trajectories on this folded strip. Again, let us introduce a 1-dimensional map which
is denoted by f2 for this case. Using the same coordinate as before ( xG =0 and
XH - ! )» from Fig.5(c) we can see that the trajectory starting from the point G will go
through points I and D and return to the point G. This means that we have /2(0) =0.
Observe, however, that the trajectory starting from the point Hwill go through points J
and F and return to the point G, also. This means that we have /2(1) =0. Clearly,
there must be some critical point x* between G and H (i.e. 0 <x* < 1), such that the
trajectory starting from x* will go through the point E (which is at the bottom of the
strip) and arrive at the point B. Since point B is identified with the point H, we have
fi(x )=1. From continuity we know f2 is increasing for *e(0, x*) and decreasing
for xs(x , 1). Hence, f2 is aunimodal map, as shown in Fig.6(c). There are many
examples as well as rigorous proofs that a unimodal map can be chaotic([8][9]). Since
the trajectories on a folded strip behave like a unimodal map, we have proved that
they are potentially chaotic.

Pigure~5"
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-7-

Now let us relate the folded strip structure to our attractor. From our observa

tions, the folded junction structure actually exists in the attractor. Indeed, if we look

at a sequence of consecutive Poincare cross-sections of the attractor, we can identify
the folded junction structure. Here we give four consecutive Poincare cross-sections.

Figure 7 shows the Poincare cross-sections at v2=0.9, 0.6, 0.3 and 0, respectively.
Each Poincare cross-section has two branches. Here we plot only the branch associ
ated with the folded junction structure. In order to see the fine details, we have
magnified the cross-sections. The readers can locate their corresponding positions in
Fig.2 by comparing the coordinates.

figure 71

The trajectory traverses in a clockwise direction on the vx - v2 and vx - f3 pro
jections and in a counter-clockwise direction on the v2 - i3 projection. In Fig.7(a)(i.e.
v2=0.9), the cross-section has just started to fold. In Fig.7(b)(i.e. v2=0.6), the
cross-section has folded further to form an acute angle. In Fig.7(c)(i.e. v2 =0.3), the
cross-section has almost completely folded. If we examine it carefully, we find that it
is still "open" at the upper-right corner of the picture and therefore there is still a small
angle. Finally, in Fig.7(d)(i.e. v =0), which is the magnification of the upper-right
part of Fig.3, it has completely folded. No matter how much we zoom it, within the
finite word-length limitation of our computer (DECstation3100) we have found that it
remains a line and not an angle.

We can also extract the unimodal map mentioned earlier from our calculation.
To plot this one-dimensional map, we use the same data points for plotting the Poin
care cross-sections. For example, for the v2= 0.9 Poincare cross-section (see
Fig.7(a)), we plotted the v1->vl map, as shown in Fig.8. For each point on the curve,
the abscissa is the vx value of a point of the Poincare cross-section and the ordinate is

the vx value of the next point where the trajectory crosses the Poincare cross-section
again. Figure 8 shows clearly a unimodal map. Since our attractor has the structure
of a folded-strip, our preceding analysis of the folded strip is applicable and hence the
unimodal map in Fig.8 explains the mechanism of the non-fractal chaotic attractor
quite well.

figure SI
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5. Experimental Observation

We have also observed the same attractor experimentally in the laboratory using
an electronic analog circuit

Observe that the parameters in (3) involve negative R and C, and that these
negative elements are not connected to a common node. There are techniques for real
izing negative capacitors and inductors using GIC (Generalized Immitance Converter)
consisting of operational amplifier circuits([10]). To realize the floating negative ele
ments, we can use the grounded-to-floating converters which are also made of op-amp
circuits([ll]). Although such a circuit can be designed and built, it becomes quite
cumbersome that we opted for an analog circuit realization of Eq.(l).

Figure 9 shows the block diagram of our analog circuit Observe that there are 4
types of building blocks in Fig.9; namely, linear amplifiers, integrators, summers and a
nonlinear function generator. The circuits for implementing linear amplifier, integrator
and summer are standard, as shown in Fig.lO(a) (b) and (c), respectively. The only
block which needs special design is the nonlinear function generator /(•). Figure
10(d) shows a realization of a nonlinear function generator, whose transfer characteris
tic is shown in Fig.lO(e). With Fig.lO(a), (c) and (d) as building blocks, the
piecewise-linear characteristic in Fig.l(b) with any slopes Ga and Gb can be easily
obtained.

The number of op-amps needed in this analog circuit realization is less than that
required by the "physical circuit" approach. In addition, our analog circuit has other
advantages. For example, since the variable i3 is converted to a voltage signal in the
analog circuit, it can be measured more easily without affecting the behavior of the
system.

rigure 91
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We have built a realization of Eq.(l) using the block diagram in Fig.9. Each
block is realized using the basic structures in Fig.10, or their combinations. After
choosing an appropriate normalizing scale, we found that for the parameter values
close to those in Eq.(3), the same attractor is observed as that obtained from computer
simulation. Figure 11 gives the oscilloscope pictures of vx - v2, vj - i3 and v2 - i3
projections of the attractor, respectively. They are qualitatively identical to the results



obtained from computer simulation (see Fig.2). Figure 12 shows the spectrum of vx(t)
obtained from an HP3582A spectrum analyzer. Again, it is similar to the numerical
result shown in Fig.4.

figure 11

figure 12

6. Discussion on Dimension

The fractal dimension is often used as another characterizing feature of a chaotic
attractor. There are many definitions for various types of dimension. Some of them
are only of theoretical interest because they are impractical from a computational point
of view.

In practice, the so-called Lyapunov dimension is widely used because it is related
to the Lyapunov exponents by a simple formula. Once the Lyapunov exponents of an
attractor are calculated, the Lyapunov dimension is a by-product of the calculation. Its
definition is as follows. Let /x £ • • • £ ln be the Lyapunov exponents of an attractor
of a continuous-time dynamical system Let j be the largest integer such that
11 + - • + lj; £ 0. The Lyapunov dimension dt is defined as

, , /i+ ••• + /,-

dl=J+ l/^l <6>
In the case of a 3-dimensional vector field where the three Lyapunov exponents lu l2
and /3 satisfy

llZl2Z0>l3 (7)

the formula for calculating the Lyapunov dimension dt is given simply by

/l + /2

d'=2 +ThT <8>
Yorke and others have classified different definitions of dimensions into two

broad categories; namely, metric dimensions 2nd frequency-dependent dimensions. All
metric dimensions tend to yield the same value, which is called the fractal dimension
and denoted by dF. Similarly, all probabilistic dimensions tend to yield the same
value, which is called the dimension of the natural measure and denoted by d„. Typi
cally, d^<dF. Formula (6) was originally given by Yorke and Kaplan and they
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conjectured that the Lyapunov dimension dt is equal to the dimension of the natural
measure d^ and is a lower bound on the fractal dimension dF ([4][12]).

The Lyapunov exponents of our attractor, as listed in (4), satisfy condition (7).
According to (8), its Lyapunov dimension is

d„2.Mg,1M!1

The capacity dimension, which is one of the metric dimensions, can be calculated
by

deaB = lim — "• (q\
cap e-»o ln(l/e) w

where e is the diameter of a small volume element(sphere, cube, etc.) and N(e) is the
minimum number of such volume elements needed to cover an attractor. Since our
attractor is located on a 2-dimensional surface, its capacity dimension dcm is at most
2. From Fig.3 and Fig.7 we can see the attractor's cross-sections are continuous
curves, which indicate that dcap =2 for this attractor.

We can also calculate the correlation dimension for this attractor. The correlation
dimension dcor is defined by

d™ = 53 iw, (io)

In ±P?

e^O In E

where e and N(z) have the same meaning as in Eq.(9) and P( is the relative frequency
with which a typical trajectory enters the itfa volume element From its definition we
know that dcor belongs to the category of a frequency-dependent dimension. To
numerically calculate dcor, one can use the correlation integral C(£) defined by

C(e) = lim —-{ the number ofpairs ofpoints (xt , *.•) (11)

such that | \xt -Xj\\ <e}

where N is the total number of points of a trajectory. It can be shown that ([6])

C(£)= ±P?
i=l

Therefore the algorithm for calculating the correlation dimension is efficient and rela
tively easy to implement on a computer. In INSITE there is a subprogram for calcu
lating the correlation dimension. Using data number N =50000, the result of our
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calculation is shown in Fig.13. The horizontal axis is log^E/En), where En is a small
constant in the program. The vertical axis is log2C(E). In practice, the log2C(£) -
log2(£/£n) curve is nearly a straight line in a portion of the curve and the slope of this
line is the correlation dimension([6]). For the line shown in Fig.13, we have
dcor = 1.98.

I figure 131

The two dimensions d^ and dw are related by

dcor ^ d^

where the equality holds only when the trajectory visits each point on its attractor at a
uniform probability (i.e. the trajectory is ergodic). Indeed, when we have

Eq.(lO) becomes

Pi =lm foralli =1,2, '" tN(e)>

ln£ l
a - Km i=1 [N(E)] r -miV(£) .dcor = ™ — = urn —-—^ = dcaD

e-»0 In E e-*o In E cap

Hence dcor = 1.98 = 2 is a very interesting numerical result It means that our attrac
tor is nearly ergodic on the 2-dimensional surface, as can be seen from Fig.2.

Therefore, both theoretical analysis and numerical calculation have shown that our

present attractor has dcor £ d^ £ 2. However, since it has a positive Lyapunov
exponent, its Lyapunov dimension dt > 2. So our attractor seems to provide a
counter-example to the Kaplan-Yorke conjecture.

7 Conclusions

(1) A 2-dimensional surface with a special geometrical structure called a folded strip
is introduced. Using a 1-dimensional map, it is proved that trajectories on a
folded strip can be chaotic.

(2) In a 3-rd order autonomous piecewise-linear circuit, we have observed both
numerically and experimentally a chaotic attractor which has the structure of the
folded strip.

(3) The attractor is chaotic but non-fractal. Its capacity dimension dcap is equal to 2
and the correlation dimension dcor is less than but very nearly equals to 2. On
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the other hand, since it has a positive Lyapunov exponent, its Lyapunov dimen
sion is greater than 2. Hence, the Kaplan-Yorke conjecture does not hold for this
attractor.

(4) The folded strip may be only one of many possible 2-dimensional surfaces on
which a trajectory in a 3-dimensional space can be chaotic. Hence, other non-

fractal chaotic attractors may also exist in 3-dimensional vector fields.
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Figure captions

Fig.l (a) The canonical realization of the Chua's circuit family.

(b) The v-i characteristic of the nonlinear resistor G#.

Fig.2 Trajectories of the system (1) with the parameter values given by (3).

(a) Projection on vx - v2 plane. The trajectory travels in a clockwise direction.

(b) Projection on vx - i3 plane. The trajectory travels in a clockwise direction.

(c) Projection on v2 -13 plane. The trajectory travels in a counter-clockwise
direction.

Fig.3 The Poincare cross-section at the v2 = 0 plane.

Fig.4 The spectrum of the waveform vx(r) of the attractor in Fig.2.

Fig.5 (a) A flat strip; (b) A folded junction; (c) A folded strip.
Fig.6 (a) A monotone-increasing map;

(b) A monotone-decreasing map;

(c) A unimodal map.

Fig.7 A sequence of successive Poincare cross-sections showing the folded junction
structure of the attractor.

(a) At v2 = 0.9 plane;

(b) At v2 = 0.6 plane;

(c) At v2 = 0.3 plane;

(d) At v2 = 0 plane;

Fig.8 A unimodal map obtained from the data of the v2 = 0.9 Poincare cross-section.
Fig.9 The block diagram of the system described by Eq.(l).
Fig. 10 (a) Realization of a linear amplifier;

(b) Realization of an integrator;

(c) Realization of an summer;

(d) Realization of the nonlinear function generator / (•).
Fig.11 The oscilloscope pictures of the attractor.

(a)vx - v2 projection; (b)vx - v3 projection; (c)v2 - v3 projection.
Fig. 12 The measured spectrum of the waveform of vx.
Fig.13 The correlation dimension of the attractor.
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