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Abstract
This dissertation explores a systematic design methodology for microwave LC sinusoidal oscilla-
tors. The objective is to realize oscillators that achieve reliable oscillation build-up and have a single
predictable frequency of oscillation in the steady state. This dissertation also explores novel sinusoidal
VCO (voltage-controlled oscillator) configurations, and investigates the application of inductors in the

design of silicon bipolar monolithic RF amplifiers.

A key problem in the implementation of monolithic microwave LC oscillators is the realization of
integrated inductors. Through use of a silicon bipolar IC process featuring oxide isolation and multilayer
metal options, practical inductors at microwave frequencies have been fabricated and fully characterized.

Inductor Q factors from 3 to 10 and inductors up to 10 nH in the GHz range were achieved.

Presently available sinusoidal VCOs often require external varactors (voltage-controlled capaci-
tors) and inductors for frequency tuning and are not suitable for monolithic integration. A novel
sinusoidal VCO circuit has been realized that achieves a simulated tuning range of 300 MHz, extending
from 1.5 GHz to 1.8 GHz. This circuit does not require a varactor for frequency tuning but, instead,
relies on characteristics inherent in the circuit configuration. Simulation results also indicate that this cir-
cuit is insensitive to process tolerances and temperature variations.

Inductors are used to boost circuit gain and to improve matching and noise performance in RF
amplifiers. A bipolar monolithic bandpass amplifier has been fabricated and characterized. It achigves a
peak S gain of 8 dB, a simulated noise figure of 6.4 dB, and a matched input impedance of 50 Q in the

frequency range 1 to 2 GHz.
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Chapter 1 - Introduction

1.1. Motivation

Recent advances in silicon bipolar IC technology have sparked interest in developing multifunction
silicon MMICs (monolithic microwave integrated circuits) for communication systems. In particular,
various research and advanced developments are presently directed toward demonstrating silicon integra-
tion of the RF receiver system shown Fig. 1.1. This system finds wide application from mobile radio to
microwave satellite reception such as the global positioning satellite (GPS) and the direct broadcast satel-
lite (DBS). Due to the system complexity and the high-frequency requirement, it is necessary to obtain
firm knowledge on the performance and limitations of the circuit components of which the system is
composed. Also, the optimized performance of silicon technology is to be exploited because it provides
the lowest-cost solution, and thus will have the widest impact on practical systems. This dissertation is
concerned with the design and fabrication of the voltage-controlled oscillator (VCO) circuits and the RF

amplifiers which are to be used in monolithic microwave (> 1 GHz) RF receivers.
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As frequencies of interest enter the microwave region, parasitic device elements in an oscillator
circuit introduce significant excess phase shift and hence modify the oscillation frequency. It is shown in
Chapter 3 that conventional oscillator design techniques may not be applicable in the design of
microwave oscillator circuits. With regard to the initial (linear) response of an oscillator, the so-called
start-up conditions have been widely used for predicting the existence of an oscillatory behavior in the
circuit. However, these conditions are not always valid and can provide misleading results. It is, there-
fore, important to understand the limitations of these conditions and to introduce additional analysis tech-
niques. Conventional design techniques are also insufficient for analyzing the multi-oscillation
phenomenon in which two or more oscillations are simultaneously present in the steady state. This
dissertation explores a systematic design methodology for microwave LC sinusoidal oscillators that
achieve reliable oscillation build-up and have a single predictable frequency of oscillation in the steady
state. While silicon bipolar technology is of primary interest in this dissertation, the design methodology

is equally applicable in other technologies.

Depending on the shape of the oscillator output waveform, we can classify oscillator circuits in two
groups: relaxation oscillators and sinusoidal oscillators. Most presently available voltage-céntrolled
oscillators in monolithic IC technology are relaxation based since only capacitors are required as the
frequency-selective elements. Sinusoidal VCOs on the other hand often require external varactors and
inductors for defining oscillation frequency and hence are not suitable for monolithic integration. This
dissertation also explores new sinusoidal VCO configurations that do not depend on varactor elements for

frequency tuning.

A sinusoidal oscillator normally relies on an LC tuned circuit for defining the oscillation frequency
and for reducing noise and distortion in the output signal. Current oscillator circuits often utilize external
microstrip inductors. This hybrid approach is, however, undesirable because of the additional assembly
cost, and a more serious drawback is due to parasitic packaging elements associated with the external
inductors. In the early development of silicon integrated circuits, planar inductors were investigated, but

the prevailing lithographic limitations and relatively large inductance requirements resulted in excessive



silicon area and poor performance. Through use of a silicon bipolar IC process featuring oxide isolation
and multilayer metal options, practical inductors at microwave frequencies have been fabricated and fully

characterized.

This dissertation also investigates the application of monolithic inductors in the design and fabrica-
tion of Si bipolar RF bandpass amplifiers. Inductors are used to boost circuit gain and to improve match-

ing and noise performance.

1.2. Thesis Organization

Chapter 2 presents the oscillator models and defines the concept of circuit instability. Methods for
predicting the frequency and amplitude of oscillation are studied in Chapter 3. We investigate the limita-
tions in the traditional start-up conditions and propose circuit techniques for fully analyzing the linear
behavior of oscillator circuits. The multi-oscillation phenomenon is analyzed in detail. Conditions for
achieving frequency stability and amplitude stability are derived for use in the design of well-behaved,
frequency-stable, anci amplitude-stable sinusoidal oscillator circuits. In Chapter 4 we study the interac-
tion between circuit components in negative-resistance oscillators, and then explore a design methodol-
ogy for microwave oscillators based on the negative-resistance model. The results obtained from this
study are applied to the design and analysis of a widely-used but poorly-characterized microwave oscilla-
tor configuration. In Chapter 5, passive inductors and LC filters fabricated in standard silicon IC technol-
ogy are demonstrated. Chapter 6 presents a novel sinusoidal VCO circuit configuration and a monolithic
implementation of this circuit. The application of monolithic inductors to the realization of Si bipolar
monolithic RF amplifiers is investigated in Chapter 7. Chapter 8 concludes with a research summary and

indicates potential future research topics.



Chapter 2 - Oscillator Characteristics and Models

2.1, Oscillator Characteristics

An oscillator is an autonomous analog circuit whose function is to generate a stable and periodic
waveform. Oscillator circuits can be classified in two groups: relaxation oscillators and sinusoidal oscil-
lators. A relaxation oscillator produces a non-sinusoidal output signal as the circuit switches back and
forth between two astable (unstable equilibrium) states. Such an output signal has relatively high har-
monic content and is suitable for applications where high spectral purity is not important. A thorough
discussion of relaxation oscillators can be found in [Liu88, Ped89). A sinusoidal oscillator, as the name
implies, is capable of producing a near-sinusoidal signal and has broad application in communication sys-
tems. Sinusoidal oscillators usually use LC tuned circuits, crystals [Fre78], or dielectric resonators
(Bah88] for defining the oscillation frequency. Henceforth, unless otherwise stated, the term oscillator is

used to mean a sinusoidal oscillator. An oscillator circuit is typically characterized by

o The oscillation frequency, f,, .

o The oscillation amplitude, A, , which indicates the available output power.

e The degree to which the oscillation frequency can remain constant given variations in nonlinear
circuit elements (frequency stability).

o The stability of the output signal due to random excitation (amplitude stability).

e The spectral purity of the output signal which is affected by frequency-modulated (FM) and

amplitude-modulated (AM) noise, and by harmonic distortion.

2.2. Oscillator Models

The analysis of oscillators can be based on two fundamental models: the feedback model and the
negative-resistance model. Figure 2.1 shows the feedback model in which an oscillator is decomposed
into a forward network and a feedback network. If the circuit is unstable about its operating point

(natural frequencies in the right half plane of the complex-frequency plane), then given an initial excita- -



Forward Network
+ : a(s)

Feedback Network

f(s)

Figure 2.1: Feedback Model

tion, it produces a growing transient. As the signal becomes large, the active devices in the circuit
become nonlinear and eventually limit the growth of the signal. Since an oscillator is an autonomous cir-
cuit, electronic noise in the circuit or power supply turn-on transient can provide the initial excitation that
initiates the oscillation build-up. Figure 2.2 shows how the Colpitts oscillator can be viewed as a feed-
back circuit. We note that both the forward and feedback networks are multi-port circuits. For ease of
reference, henceforth, the term feedback oscillator is used to denote an oscillator circuit that can be
analyzed using the feedback model. The linear behavior of a feedback circuit is typically studied with
the loop gain quantity, defined as the product of the forward and feedback transfer functions a(s) and

fGs),
T(s) =a(s)f(s). 2.1

It is shown in Section 2.3 that the expression 1 - T'(s) = 0 gives the characteristic equation of the circuit

from which the natural frequencies are found.

Figure 2.3 show the negative-resistance model in which an oscillator is separated into a one-port
active circuit and a one-port resonant circuit. The function of the active circuit is to produce a small-
signal negative resistance about the operating point of the oscillator circuit and to couple with the
resonant circuit for defining the frequency of oscillation. The resonant circuit is usually a linear time-

invariant circuit and is signal independent. Figure 2.4 shows how the Colpitts oscillator can be separated
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Figure 2.3: Negative-Resistance Model

into an active circuit and a resonant circuit. We use the term negative-resistance oscillator to denote an
oscillator circuit that can be analyzed using the negative-resistance model. In Fig. 2.3, the active and
resonant circuits are characterized by impedance quantities Z, (s) and Z, (s), respectively. They can also
be characterized in terms of active admittance Y,(s) and resonant Qmittance Y,(s). It is shown in the
next section that the characteristic equation of a negative-resistance oscillator can be derived from either
the expression Z,(s)+Z,(s)=0 or Y,(s)+Y,(s)=0. The negative-resistance model has been widely
used in the design of microwave oscillators due to its simplicity. Many negative-resistance oscillators

use the one-port tunnel diodes and avalanche diodes as the active circuits.



Active Circuit

Figure 2.4: Negative-Resistance Oscillator

2.3. Natural Frequencies

As a basic requirement for producing a self-sustained near-sinusoidal oscillation, an oscillator must

have a pair of complex-conjugate natural frequencies in the right-half plane (RHP)
P1.2=a+jB. (2'2)

While this requirement does not always guarantee an oscillation in the steady state, it is nevertheless a
necessary requirement for any well-behaved oscillator. When excited by electronic impulses, the RHP

natural frequencies in (2.2) give rise to a sinusoidal signal with an exponential growing envelope
x(t) = K e™ cos(Bt) . 2.3)

The growth of this signal is eventually limited by the nonlinearities of the active devices. As mentioned
above, the application of either the feedback model or the negative-resistance model is sufficient for
analyzing the linear behavior of an oscillator. The analysis is essentially a study of the natural frequen-
cies from the characteristic equation of the circuit. One common procedure to obtain the characteristic
equation is to equate the determinant of the circuit’s homogeneous system of algebraic equations to zero

[Chu87].



In the following paragraphs we study other methods for deriving the characteristic equations in

feedback and negative-resistance oscillators. In Fig. 2.5, we assume that a feedback oscillator can be

represented by the two-port Y networks. The current source I, models electronic impulses in the circuit.

The system of algebraic equations for this circuit is

Iy = Yna+Yiy) Vi+ V12 + Y1) Vo
0= +Y2y)Vi+ X pa +Y2p) V, .

The determinant of the above system is simply

D(s) = Yua+Y1r) (Yooa +Yor )= (Y10 + Yayp) (V12a + Yiap) .

We now derive the transfer function V, /I,. It can be shown that

V,(s) _ = (Y215 +Ypy)

L(s)  (Yna+Yiy) Vooa +Yor) = (Va1 + Yoyr) (Vi2a +Yiy)

It is useful to define

(Ya1a +Y2yp)
(Y110 +Y13r) (Y22 + Yopr)

F(s) = Y2 +Y12).

a(s) =

Using the definitions (2.8) and (2.9) in (2.7) yields the ideal feedback equation

Vos) _  —a(s)  _ —a(s)
L(s)  1-a@s)f(s)  1-T(s) '

(2.4)
@2.5)

(2.6)

@

(2.8

(2.9)

(2.10)

We note from (2.6), (2.7), and (2.10) that the characteristic equation of a feedback oscillator can also be

determined from the expression 1—T(s)=0. This provides us with another method for analyzing the

linear behavior of feedback oscillators.

Figure 2.6 shows one general representation of a negative-resistance oscillator. We assume that

the active and resonant circuits can be modeled by the two-port Y networks. The system of algebraic

equations is



Forward Network

: , —-
+ , '
! YouaVi |
CDI, il v Y Yoa| | o
|
-\ : Y12¢ Vo : \ -
9 T |

+0

Feedback Network
Figure 2.5: Feedback Oscillator represented by Two-Port Y Networks

1 b I, ‘{_2 __________________

i
T

: quVl : : Y21rV2

@ Oraf] v @ C

' Y12,V2 o Y2, Vs

E | ) | |
L e e e e e e e e e o 4 e e e =
Active Circuit Resonant Circuit

Figure 2.6: Negative-Resistance Oscillator represented by Two-Port Y Networks

I = Y911V + Y2 Va2
I2=Y,V, + Y2 V2

=1 = Yn, Vo + Y12, V3
Iy = Y3, Va+ Yo Vs @11
12 =0
=0

The determinant of the system (2.11) is
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D(s) = Yia YurYor =Y, Yi2r )+ Yoor M 110Y 220 = Y21aY124) - (2.12)
If we characterize the active and resonant circuits by equivalent admittances Y,(s) and Y,(s), respec-

tively, we can show that

Yo Y
Ya(s) = Yopu — 21‘,"” 12a (2.13)
a
Yo, ¥
Y. (s) =Yyu, - 2}1,’22:2' (2.19)

Now by equating the sum of (2.13) and (2.14) to zero, we obtain
Yo(s)+Y,(5) = 0=Yya Y11-Yo2r = Y21, Y12.) + Yor (P 110Y 220 — Y212Y120) - (2.15)

We note from (2.15) that the expression Y, (s) + ¥, (s) = 0 gives the same characteristic equation (2.12),
and thus provides us with another method for studying the linear behavior of negative-resistance oscilla-
tors. By similar analysis, we can show that if the active and resonant circuits are characterized by
equivalent impedances Z,(s) and Z,(s), respectively, the expression Z,(s)+ Z,(s)=0 also gives the

same characteristic equation.

2.4. Summary

Both feedback and negative-resistance models for analyzing oscillator circuits have been discussed
in this chapter. The concept of circuit instability has also been defined. An oscillator circuit must be
unstable about its bias point or, equivalently, have natural frequencies in the right half plane of the
complex-frequency domain if an oscillation build-up is to take place. The natural frequencies can be
found from the characteristic equation of the circuit. For a feedback oscillator, the characteristic equation
is given by the expression 1-T(s)=0. For a negative-resistance oscillator, the characteristic equation

is given by either the expression Z,(s)+Z,(s)=0 or Y,(s)+7Y,(s)=0.



Chapter 3 - Oscillator Analyses

3.1. Introduction

Analytical expressions governing the initial and steady-state responses of feedback and negative-
resistance oscillator circuits are discussed in this chapter. The conventional start-up conditions that have
been used for predicting whether an oscillation build-up can take place in an oscillator are reexamined. It
is shown that these conditions are not always valid and can provide misleading results. This conclusion
helps provide explanations to many examples of unpredictable oscillation behavior observed in practice.
Methods for predicting the frequency and amplitude of oscillation are also explored in this chapter. Con-
ditions for achieving frequency stability and amplitude stability are derived for use in the design of well-

behaved, frequency-stable, and amplitude-stable sinusoidal oscillator circuits.

3.2. Small-Signal Analysis

Electronic noise can produce growing transients in an oscillator provided that the circuit has natural
frequencies in the RHP. As long as the transients are small, the initial response of the oscillator can be
analyzed using linear analyses such as the Nyquist, Bode, and root locus [Lin61]. As mentioned in
Chapter 2, the small-signal analysis of an oscillator is essentially a study of the circuit’s natural frequen-

cies.

3.2.1. Feedback Oscillators

For a feedback oscillator circuit, the fulfillment of the following well-known condition has been
used as an indication that the circuit is unstable (it can produce an expanding transient when subject to an
initial excitation)

Ph(T(w)} =0 Mag (T(w,)} > 1. @G.1
In (3.1), T denotes the loop gain expression and ®, denotes the zero-phase frequency at which the total

phase shift through both the forward and feedback networks is zero. It is important, however, to keep in

mind that there are oscillator circuits that meet the start-up condition (3.1) but are, nevertheless, stable

11
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Figure 3.1: Pierce Oscillator

circuits and hence cannot produce an oscillation. Equivalently stated, the fulfillment of condition @3.1)
does not necessarily imply that a circuit is unstable.

The above remark is now illustrated through use of the Pierce oscillator shown in Fig. 3.1. For
simplicity, circuit elements r,, r,, and Cy of the bipolar transistor are neglected. After lumping the

remaining parasitic elements of the transistor to the appropriate passive elements, we can show that the

loop gain of the circuit is
sAC +s%+l
T(s)=-T, 3.2
(s) ® a3sP+ayst+a, s, +ag 6.2
where
To = ngl
C C
as =LC2R1C1(1+F]-+C—2)

gy = L(C +C2)+%R1(CI+C,_)

ay %‘FR!(CI'*‘CQ_)

ap=1.
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The natural frequencies can be determined from the roots of the expression 1-T(s)=0. Figure 3.2
shows the root locus as a function of quantity g,, (=/c / V¢ ). Quantities g,,, and g, denote the bias
current range for which the circuit has a pair of RHP natural frequencies. From this plot we observe that
with adequate dc loop gain ( gm1R) < T, S gn2R, ), the complex-conjugate natural frequencies enter the
RHP from the left-half plane (LHP) of the complex-frequency plane. Under this situation the circuit is
unstable and would produce a growing sinusoidal signal in response to electronic impulses. If the loop
gain is 0o large ( gn > gm2 ), however, it is interesting to note that the complex natural frequencies
reenter the LHP. Under this situation the circuit is stable and would produce a decaying sinusoidal signal
in response to electronic impulses. The Bode plot for the case g,, > g,,» is shown in Fig. 3.3. We note
that there are two frequencies, ,; and ,,, where (3.1) is clearly satisfied but the circuit is yet stable
according to the root locus of Fig. 3.2. To further confirm this observation, we generate the Nyquist plots
of (3.2) in Fig. 3.4(a) and Fig. 3.4(b) for gn) <gm <gm2 and g, > g2, respectively. It is helpful to

recall the Nyquist criterion:
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Figure 3.3: Bode Plot for the Circuit of Fig. 3.1

If the polar plot of T () plus its mirror image encircles the point (1,0) in a clockwise
direction as  varies from zero to infinity, the circuit is unstable [Che68].
In Fig. 3.4(a), there are two clockwise encirclements of the point (1,0) which indicates the existence of
two RHP natural frequencies. In Fig. 3.4(b), the net clockwise encirclement of the point (1,0) is zero

which confirms that for g,, > g2 , the circuit is indeed stable.

The above analysis affirms that the start-up condition (3.1) is not always sufficient for predicting
the circuit instability and should be used with the full knowledge of its limitation. As a rule of thumb, the

condition (3.1) is valid if it holds at only one frequency o, .

3.2.2. Negative-Resistance Oscillators

The negative-resistance model of Fig. 2.3 is often used in the design of microwave oscillators due
to its simplicity. Assume that.the active and resonant circuits are modeled by impedances Z, =R, + jX,
and Z =R,+ jX, , respectively, where R and X denote the resistance and reactance. The following

start-up condition has been widely used as an indication of circuit instability [Gon84, E1k86, Maa86]
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Figure 3.4: Nyquist Diagrams corresponding to Eqn. (3.2)

Ra(mx) + Rr(mx) <0 3.3(8)
Xa(w,) + X,(,) = 0. 3.300)

In the above equations, frequency , denotes a frequency at which the total reactive component
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Xa +X, equals zero. It is important to distinguish the frequency ®, from the frequency , of the start-
up condition (3.1) since even though an oscillator circuit can be analyzed using either the negative-
resistance model or feedback model, a frequency «, that fulfills the condition (3.3) is not necessarily the
same frequency that fulfills the condition (3.1). This point is further illustrated in Section 3.2.4. It is also
important to emphasize that an underlying assumption in (3.3) is that the current entering the active cir-
cuit in the steady state must be near-sinusoidal. If, instead, the voltage across the active circuit is near-
sinusoidal, the active and resonant circuits should be modeled in terms of parallel admittances

Y, =G,+jB, and Y, =G,+ B, , respectively, where G and B denote the conductance and suscep-

tance. The dual start-up condition is then

G, (0;) + G, (0,) < 0 3.4(a)

B,(w,) + B,(w,) = 0. 3.4(b)
In the following paragraphs we show that the conditions (3.3) and (3.4) are not always valid for predict-
ing circuit instability, especially in oscillator circuits operating in the microwave region where the effect
of parasitic elements becomes more significant.

To illustrate the above point, we consider a high-frequency Colpitts oscillator shown in Fig. 3.5. In
this circuit, C5 is an off-chip varactor used for tuning the oscillation frequency and L, models the bond-
wire inductance. With the active and resonant circuits defined as shown in Fig. 3.5, the total resistance
R, +R, and reactance X, +X, are plotted in Fig. 3.6 for the given set of circuit parameters. At the
frequency 1.8 GHz, (3.3) is satisfied. Without understanding the limitations of this start-up condition, we
would be inclined to assert that the circuit is unstable under this condition and is capable of producing an
expanding transient. The transient plot in Fig. 3.7 shows, howevér. a decaying sinusoidal waveform
instead of a growing waveform, indicating that the circuit is stable. As a check we generate the Nyquist
plot for the circuit in Fig. 3.8. Since there is no clockwise encirclement of the point (1,0), the circuit is
indeed stable. One characteristic that may attribute the misleading indication of the condition (3.3) in this

circuit is that the reactive plot as shown in Fig. 3.6 crosses the zero point at multiple frequencies.
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Figure 3.5: Colpitts Oscillator

Since the start-up conditions (3.1), (3.3), and (3.4) are not always sufficient for studying the circuit
instability, the root-locus and Nyquist analyses should be used when in doubt. Throughout this disserta-

tion, unless specifically stated, the start-up conditions for both oscillator models are assumed valid.

3.2.3. Multi-Oscillation

In the microwave region, the effect of parasitic elements in an oscillator circuit becomes more
significant and can give rise to a multi-oscillation phenomenon. It is a phenomenon in which two or more
oscillations exist simultaneously in the steady state. In other words, there are parasitic or unwanted oscil-
lations existing together with a main oscillation. Due to the multiple oscillations, the resultant steady-state
signal is severely distorted and hence has limited application in communication systems. It is worth men-
tioned that the multi-oscillation phenomenon is quite different from that of a multi-mode oscillator
[Eds55). A multi-mode oscillator uses an arbitrary number of tuned circuits for defining a well-defined

set of oscillation frequencies, and when subject to an injected instruction signal, the circuit oscillates at
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Figure 3.6: Impedance Plot for the Circuit of Fig. 3.5

only one of these well-defined frequencies.

The circuit configuration shown in Fig. 3.5 can also be used for studying the multi-oscillation
behavior. In Fig. 3.9 the impedance as a function of frequency is generated for the new set of circuit
parameters. We note that the start-up condition (3.3) is now satisfied at three frequencies. It is not clear
from Fig. 3.9 how the transient response would behave and whether there is a well-defined oscillation
frequency in the steady state. In order to obtain further insight into the circuit operation, we construct the
root locus based on the characteristic equation from Z,(s)+Z,(s)=0. The root locus as a function of
bias current is shown in Fig. 3.10. Due to the bond-wire inductance L, , we observe that the circuit can

possess two pairs of RHP complex-conjugate natural frequencies

Pig=ou+jB; and P3y=ay+jB,. (3.5)

Given an initial impulse, the circuit can produce a signal of the form

x(t) = Ky e™ cosByt) + K, e cos(Byr) (3.6)
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Figure 3.9: Impedance Plot for the Circuit of Fig. 3.5

which is a sum of two concurrently growing sinusoids. Simulated time-domain waveforms during tran-
sient build-up and at steady state are shown in Fig. 3.11. Figure 3.11(a) agrees with the predicted linear
behavior (3.6). Figure 3.11(b) displays the steady-state waveform which is quite distorted having two

distinct frequency components. This plot suggests the simultaneous presence of two sinusoidal oscilla-

tions.

The advantages of using the root-locus analysis in oscillator design is apparent from the above
analysis. This technique allows us to determine the exact location of all the natural frequencies in the cir-
cuit, and from which to identify the circuit elements that cause problems: For the circuit under considera-

tion, one way to eliminate the multi-oscillation phenomenon is to minimize the effect of bond-wire induc-

tance. This could be done with multiple bond-wire connections.

3.2.4. Predicting Oscillation Frequency from the Start-Up Conditions
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/

Figure 3.10: Root Locus (not to scale)

The zero-phase frequency as defined in the start-up condition (3.1) is often used as an estimate for
the oscillation frequency. Because of the nonlinearities in the active devices, the zero-phase frequency is
not exactly equal to the frequency of oscillation. Nevertheless, it is a good approximation in oscillator
circuits that have a pair of RHP complex-conjugate natural frequencies lying close to the j® axis. Such
natural frequencies are referred to as ‘*high-Q”’ natural frequencies. In this section, we study whether
the frequency ®, as defined in the start-up condition of negative-resistance oscillators can also be utilized
for predicting the oscillation frequency. Through use of circuit examples, we derive the frequency c;),

and frequency ®, and make a comparison between them.
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(b) Simplified ac Equivalent Circuit

Figure 3.12

The first circuit to be investigated is the transformer-coupled oscillator shown in Fig. 3.12(a). Fig-

ure 3.12(b) shows the simplified ac equivalent circuit. We can show that the loop gain of the circuit is

where

1 1 sL
T(S) = _[gm - ]
n nZx sAC +s% +1

)
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Substituting (3.9) and (3.10) into (3.8) yields

B, 1

I = o TesBows

Using (3.11) in (3.7) and solving for the zero-phase frequency gives

o [fe-]]”

1
wheren=1-
n=r" s,

Substituting s = jo into (3.13) and (3.14) yields

T
Y,((D) - — EmN +jmgnzl"
Y@ = ++—+joC .
0= Rt TaL

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

. The admittances Y, (s) and Y, (s) as defined in Fig. 3.12(a) are

(3.13)

(3.14)

(3.15)

(3.16)

We assume that the start-up condition (3.4) is valid. From (3.15) and (3.16) the circuit is unstable if

_ &M 1 >nl
Real: o R <0 e g, 2 R
. 1 EmTF _
Imag: oL .C+o),,—n2 = [ [

Using (3.17) in (3.18) gives

(3.17)

1
g"‘"] ] 2. (3.18)

(3.19)



25

By comparing (3.19) to (3.12), we note that 0, < «, for this circuit.
We now determine the natural frequencies of the circuit. From either the expression 1-T(s)=0

or. Y,(s) +Y,(s) =0, we obtain the following characteristic equation

s2L[c+g—::i] +¢[%-%] #1=0. (3.20)

Assume that the natural frequencies are complex conjugate, i.e., P, =0+ jB. We can show that

-1
1] 8=M 1 8mTr

] 4122
EmTF 1] 8nT 1 EmTF
The natural frequencies are in the RHP if
€20 & g, 221 (3.21)
&m Rn" .

Note that (3.17) and (3.21) give the same requirement for quantity g,,, and thus confirm the validity of

21

the start-up condition (3.4) in this circuit. If g,, = R

, the quantity o is approximately equal to zero.

Under this condition the natural frequencies lie close to the j® axis and are referred to as high-Q natural

frequencies. It is interesting to note that

-1
= A N
m,~[L[C+an” =@ .
The above analysis on the transformer-coupled oscillator suggests the following.
(@) The frequency @, that fulfills the feedback condition (3.1) is, in general, not equal to the frequency

©, that fulfills the negative-resistance condition (3.3) or (3.4).

()  If the RHP natural frequencies in the oscillator are high-Q natural frequencies, the frequency @, is
almost the same as the frequency ®,. Under this condition, frequency o, can be used for estimat-

ing the oscillation frequency.
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(b) Simplified ac Equivalent Circuit

Figure 3.13

Another circuit from which we can draw the same conclusions as above is the Wien-type oscillator

R
shown in Fig. 3.13(a). Figure 3.13(b) shows the simplified ac equivalent circuit where A, =1+ —=, It

R,
can be shown that
SRC
T(s) = A,
) (RCY +s(3RC) + 1
R
Za(s) = (I—Av) 1+SRC
1
Z,()=R+ C

1
@ = 3¢
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Assuming that the natural frequencies are complex conjugates, we can show that

1

Av-3 . l 2 Av_3 2 2

Pio=——1+jll==| - X
2 C RC 2RC

If A, =3, the natural frequencies lie close to the j@ axis. Again, we observe that

=1 _
% =Rc =9

3.3. Large-Signal Analysis

When growing transients are large enough that the nonlinearities in the active devices become
important, linear analysis is no longer valid. An oscillator must then be analyzed using nonlinear
analysis. While linear analysis is used for studying the instability of the circuit and for predicting the
oscillation frequency, nonlinear analysis is used for predicting the amplitude of oscillation and the output
power level of the oscillator. Furthermore, nonlinear analysis is also used to predict the harmonic distor-

tion in the output signal and the spectral purity of the output signal.

Nonlinear oscillator analysis is complex even when the effects of parasitic nonlinear charge-
storage elements in the active devices can be neglected. Usually a nonlinear oscillator analysis starts
with the assumption that the steady-state signal is near-sinusoidal and then proceeds to predict the ampli-
tude of oscillation. One such analysis is based on the modified Bessel function for analyzing the Si bipo-
lar Colpitts oscillator [Fre78, Mey89, Ped89]. Another analysis relies on computer simulation to generate
a set of curves versus normalized design parameters for analyzing the MOS crystal Pierce oscillator
[Mey80). This dissertation studies the steady-state oscillator behavior through use of a general near-
sinusoidal analysis by Kurokawa [Kur69].

The Kurokawa method is based on the negative-resistance model. It implicitly uses the concept of
the describing function [Azz66) to represent the nonlinearity of the active circuit by an approximate

linear transfer function. For a multi-port nonlinear circuit, the describing function is usually defined as



28

the ratio of the phasor representing the fundamental component of the output to the phasor representing
the sinusoidal input. For a one-port nonlinear circuit, the describing function is similarly defined with the
input and the output being either the port current or port voltage. Note that even though the input is
sinusoidal, the output may not be because of the nonlinearity. l"-'or the Kurokawa analysis to be valid in a
negative-resistance oscillator, either the current through or the voltage across the active circuit must be
sinusoidal or near-sinusoidal in the steady state. If there is a well-defined near-sinusoidal oscillation in
the steady state and furthermore, the current is near-sinusoidal, Kurokawa showed that the following

oscillation condition holds

R (w5, 4,) + R, (0,) = 0 3.22(a)

X (@,,4,) + X, (@,) = 0. 3.22(b)
In 3.22(a) and 3.22(b), the resonant impedance is assumed independent of signal amplitude while the
active impedance is dependent on both the signal amplitude and frequency. Quantities @, and A, are the
frequency and amplitude of oscillation, respectively. The superscript (1) is used to emphasize that the
active impedance is evaluated at the oscillation frequency (fundamental frequency). It can be shown that
3.22(a) and 3.22(b) correspond to the conservation of real and complex energy, respectively [Hac65). If,

instead, the voltage is near-sinusoidal, the dual oscillation condition is
Gaa) (wo ’Ao) + G, (0,) =0 3.23(a)
B (w,,4,) + B, (0,) = 0. 3.23(b)
In Chapter 4 we use the Kurokawa analysis to predict the steady-state responses of a Van der Pol’s oscil-
lator and a microwave oscillator.
3.4. Stability Analyses

Conditions for frequency and amplitude stability in negative-resistance oscillators are derived in

this section.
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3.4.1. Frequency-Stability Analysis

In most oscillator applications, it is important that the oscillation frequency remains constant when
subject to variations in nonlinear circuit elements. In a high-frequency oscillator, this requirement is
more critical because multiple signal-dependent nonlinear capacitors in the active circuits can cause the
oscillation frequency to drift significantly. The degree to which an oscillator can maintain a constant fre-
quency is referred to as the frequency stability. We now derive a general expression for frequency stabil-
ity in negative-resistance oscillators. The expression is based on the oscillation condition (3.22) and can
be similarly derived using the oscillation condition (3.23).

Recall that if the active and resonant circuits are represented by impedances Z® and Z, , respec-

tively, the following oscillation condition holds
X9 (@,,4,) + X, (@) = 0. (3.24)

Now suppose the active reactance is changed by some 8X. The oscillation frequency ®, must conse-

quently be adjusted by a 8 in order to maintain equality in the above equation. That is,
XM (w,+80,4,) + X,(0,+3w) + 8X(w,+80,4,) = 0. (3.25)

The oscillator is frequency stable if 8w is small with respect to the frequency ®,. An expression for 8@
can be derived by using the Taylor expansion about ©, in (3.25). Keeping the first two terms of the
expansion yields

x> L% a8x
om 00 J0 |w=wn, A=A,

XM (0,,4,) + X, (0,) + 8X(,,4,) + l dw = 0.(3.26)

Combining (3.24) and (3.26) yields

3.27)

M -l
Sw = -8X(m,,,A,){aX" + X, aax]

+ .
ow 0  J0 |w=w, A =4,

From (3.27), 8o is small if 8X (,,A,) is small or the total reactance change with respect to frequency
about ®, is large. Evaluating (3.27) can be tedious since all the calculations must be done using large-

signal quantities. If the oscillation frequency can be accurately predicted by the linear quantity e, , (3.27)
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can be approximated by

(3.28)

-1
X, X,
o = - 8X(“')x) [ ooX ]

ow * ow * 0 |{o=a,

3.4.2. Amplitude-Stability Analysis

Assume that an oscillator has reached its steady-state oscillation. Fluctuations in power supply or
electronic noise can perturb the oscillating signal, possibly resulting in permanent amplitude instability.
An oscillator is amplitude stable if any transient perturbation in the oscillation signal decays with time.

We now derive a condition that guarantees amplitude stability in negative-resistance oscillators.

Early works by Ford and Edson applied the concept of the complex-frequency plane to analyze the
perturbed behavior of the oscillating signal [For46, Eds53). A more general approach is the perturbation
method [Kur69] which assumes that the phase and amplitude change due to disturbances vary slowly
with time. With further assumptions that the active circuit is independent of frequency and the current
through it is near-sinusoidal in the steady state, Kurokawa showed that the following condition must be

satisfied in order to ensure amplitude stability in a negative-resistance oscillator

RM ax,  ax®D aR, )
A o oA o

(3.29)

In the above expression, all the partial derivatives are evaluated at the steady-state values @, and A,.
Condition (3.29) is valid only if the active circuit is frequency independent. For oscillators operating
over a wide frequency range and for microwave oscillator circuits, however, the dependency of the active
circuit on frequency must be considered. An extension of the work of Kurokawa yields the following

general condition for amplitude stability

RM [ax® ox, ox D [ RN R,
% |0 T[T e T | (330
If the voltage instead of the current is near-sinusoidal in the steady state, the dual condition is
G [ eBM 9B, aBY [ 3G oG,
%A 1 o[ M) e T[> @31
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Equations (3.30) and (3.31) are used in the design and analysis of a microwave oscillator circuit in

Chapter 4.

3.5. Summary

Investigation on the conventional start-up conditions has revealed that they are not always valid

and can provide misleading results. Special attention should be given when the start-up condition
Ph(T(w,)} =0  Mag(T(a)} >1
holds at multiple frequencies @, , or when the reactive/susceptive function of the start-up conditions

R(w;) + R, () < 0 Xa(w,) + X, () =0
and

G.(w;) + G(w;) < 0 B,(w,) + B, (0;) =0

crosses the zero point at multiples frequencies ,. The Nyquist and root-locus analyses are powerful
techniques for studying the linear behavior of oscillator circuits. The root-locus analysis is also useful for
analyzing the multi-oscillation phenomenon. Regarding the frequency of oscillation, the frequency ®, is

a good estimation given that the circuit has high-Q natural frequencies.



Chapter 4 - Oscillator Design Methodology

4.1. Introduction

It has been shown in Chapter 3 that conventional oscillator design techniques may not be applica-
ble in the design of microwave oscillator circuits. In particular, the conventional start-up conditions are
not always sufficient for predicting the existence of an oscillatory behavior in the circuit. The multi-
oscillation phenomenon has been studied, and the conditions for frequency and amplitude stability in
negative-resistance oscillators have been derived. In this chapter we study the interaction between oscil-
lator circuit components, and then explore a design methodology for microwave oscillators. The
negative-resistance model is utilized in the design since it is simpler than the feedback model. The
design methodology should achieve the following objective: given an active circuit, an LC tuned circuit
is systematically chosen such that the resultant oscillator circuit achieves a reliable oscillation build-up
and has a single predictable frequency of oscillation in the steady state. The results obtained from this
study are then applied to the design and analysis of a widely-used but poorly-characterized microwave
oscillator configuration. To confirm the theoretical analysis and to demonstrate the feasibility of silicon

integration, a monolithic implementation of this circuit is described.

4.2. Systematic Design Methodology

It is useful to distinguish two types of active circuits since as is shown subsequently, the design

methodology for one is quite different from the other.

The first group of active circuits consists of one-port devices or circuits whose I-V characteristics
contain a negative-resistance region. Examples of such active circuits are the tunnel diodes, avalanche
diodes [Gib73], loop-coupled bistable circuits, negative resistors constructed from op-amp circuits
[Chu87], and inductive transformer-coupled configurations [Mey89, Ped89]. Henceforth, we use the
abbreviation VCNR to denote a voltage-controlled negative resistor and ICNR to denote a current-
controlled negative resistor. An active circuit is a VCNR if the port current of the circuit is a single-

valued function of the port voltage.

32
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The second group of active circuits do not possess a negative-resistance region in their I-V charac-
teristics but, instead, depend on LC elements (often connected in feedback configurations) in order to
produce a small-signal negative resistance about the operating point of the circuit. Examples of such cir-

cuits are the Colpitts, Pierce, and Hartley oscillators [Fre78].

4.2.1. Voltage/Current-Controlled Negative Resistors

In this section we present a detailed approach on the selection of a proper LC tuned circuit for a
VCNR or an ICRN active circuit. For clarity in the analysis, we consider only VCNR active circuits.

Appropriate conclusions can then be drawn for ICNR active circuits through use of the principle of dual-

/\\// .

Figure 4.1: I-V Characteristic of a VCNR

ity [Chu87].

Ty

The I-V characteristic of a VCNR is shown in Fig. 4.1. Note that the current is a single-valued
function of the voltage. When a VCNR is used in conjunction with a parallel RLC tank circuit, we obtain
the well-known Van der Pol oscillator shown in Fig. 4.2 [Pol34]. Upon superimposing the I-V charac-
teristic of the resonant circuit (a short circuit) with the characteristic of the VCNR, we observe that the

circuit has a unique operating point Q inside the negative-resistance region of the VCNR. Denote the

negative conductance of the VCNR by G, (about the operating point Q) and define G = —. We can

>U|t-‘

show that the circuit has the following characteristic equation
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Figure 4.2: VCNR with Parallel Resonant Circuit

+—=—==0. 4.1)

The natural frequencies derived from (4.1) are

2 L
G,+G G, +GC 1 2
PI.Z"_ 2C + [ 2C ] —[LC] . (4.2)

2  S—
G, +G 1 . 1 «J C 1 .
It [ 2C ] < [ LC] or equivalently Q, = | G.+C | > the natural frequencies are com-

plex conjugate. Furthermore, they are in the RHP if

G,+G < 0.
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We can also derive the above instability condition from the start-up condition (3.4) which states
G.(®;) + G,(w,) <0 and B,(w,) + B,(w,) = 0.

-1
o, L

For the circuit of Fig. 4.2, G,(w,)=G,, G,(w,)=G, B,(®,)=0, and B,(w,)= +w,C. If the

VCNR is purely conductive as assumed (valid at low frequencies), the frequency ®, at which the total

susceptance equals zero is simply the resonant frequency of the parallel LC tank

1
1|2
W, = [ZE] . 4.3)
Due to the distortion in the VCNR, we expect the steady-state oscillation frequency to be slightly less

than the frequency , given in (4.3) [Gro33].

The above analysis is concerned with the linear behavior for the circuit of Fig. 4.2. We now inves-
tigate its steady-state behavior by using the Kurokawa analysis presented in Chapter 3. To this end, we
assume that the VCNR can be modeled by the following simple cubic equation which is also referred to

as the Van der Pol’s approximation
I =aV +bV3, @44)

Quantity a (= G, ) is the negative conductance about the origin. Quantity b can be derived to be

a
b=-53 4.5)

where V, is the voltage at which the current reaches the minimum value as shown in Fig. 42. We

assume that the steady-state voltage across the VCNR is near-sinusoidal and can be represented by

V() = V,cos (w,¢) 4.6)

[NV

where @, = [%] = @,. Substituting (4.6) into (4.4) yields

14) = @V, + %bV,’) cos (@, £) + %be cos 3, 1) .

The conductance evaluated at the fundamental frequency is
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av, + % V3 3
GH® = —y. =4 + IbVoz.
o

From the steady-state condition (3.23) in Chapter 3, the circuit is in steady state if

GM+G =0 = a+%bV,2+G =0

where G (= % ) is the linear conductance of the resonant circuit. The amplitude of oscillation is

=4-3832 @.7)

The result given by (4.7) agrees exactly with that obtained from more complicated methods by Van der
Pol and Edson [Pol34, Eds53). These methods determine the amplitude of oscillation by solving the

second-order differential equation governing the behavior of this circuit.

The analysis so far assumes that the VCNR is purely conductive. At high frequencies, parasitic
charge-storage elements associated with the VCNR become significant and cannot be neglected. As an
approximation, the parasitic elements can be modeled by a shunt capacitor across the VCNR. By lump-
ing this parasitic capacitor into the capacitor C of the resonant circuit in Fig. 4.2, the analysis presented
above may still hold.

What if a VCNR is connected to a series RLC tank circuit as shown in Fig. 4.3? Upon superimpos-
ing the I-V characteristic of the series RLC circuit (an open circuit) with the characteristic of the VCNR,
we observe that the circuit now has three possible operating points Q,, Q,, and Q3. Since there is no
guarantee that the circuit will operate in the negative-resistance region, this circuit cannot produce a
well-defined oscillation build-up. Fortunately, the VCNR may be for;:ed into the negative-resistance
region with a shunt inductor L, as shown in Fig. 4.4. In order to study the transient response and to
determine whether this circuit can produce a sinusoidal oscillation, we study the location of the natural

frequencies from the root loci of the circuit.

Let R, denote the small-signal negative resistance of the VCNR about the operating point Q. The

root locus as a function of L, can be constructed from the following characteristic equation
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Series Resonator
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Figure 4.3: VCNR with Series Resonant Circuit

L L L
5 =FLC +5*| “ERC+(L,+L)C |+s | == +RC [+1 = 0. (4.8)
R, R, R,

For small values of L,, it can be shown that (4.8) has a pair of LHP complex-conjugate natural frequen-
cies due to the series resonant circuit, and one RHP real natural frequency due to L,. As values of L,

get larger, (4.8) reduces to
s [sch +SR,+R)C + 1] =0. 4.9)

Equation (4.9) has one natural frequency at the origin and two other natural frequencies from the expres-

sion inside the brackets. Define

-1 [T
Q"IR,,+RI\IC' (4.10)
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Figure 44: VCNR with Shunt Inductor and Series Resonator

If O, < % (low-Q case), we expect the natural frequencies derived from (4.9) to lie on the real axis of

the complex-frequency plane. The associated root locus is given in Fig. 4.5(a). It reveals that there
exists 3 natural frequencies in the RHP, of which the one due to L, appears dominant since it has the

fastest build-up rate. In response to noise impulses, the circuit produces a growing exponential signal and
results into a relaxation-type oscillation as shown in Fig. 4.5(b). On the other hand if o, > % (high-Q

case), we expect the two natural frequencies derived from the expression inside the bracket of 49 tobe
complex conjugate. The associated root locus is given in Fig. 4.6(a). This locus suggests that we can
select a set of circuit parameters that yield a pair of RHP natural frequencies Pia=0y+ jB,, and one
non-dominant RHP real natural frequency Ps=0o; where o<coy. With this selection, we hope to

achieve a sinusoidal signal build-up of the form
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x(t) = K, €™ cos(Byt) + K, e™

and eventually a sinusoidal oscillation in the steady state. But as observed from the transient response of
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one such circuit shown in Fig. 4.6(b), the signal starts out sinusoidally but then settles in a relaxation
oscillation instead. This behavior is rather difficult to explain mathematically. At best the circuit of Fig.

4.4 can only function as a relaxation oscillator.

Im
'
SN
\/
dueto L,

!

¢-¢ X—> Re
P,

s

PyX

(@ Root Locus for the Circuit of Fig. 4.4 (High-Q Case)

vo 57
. f\\ !\\ \\ \\
500m ]
o: e

-500m
aviy;
: VTV
15+ttt Time

400p 500p 600p 700p 800p 900p In
(b) Transient Response

Figure 4.6




41

In conclusion, we have determined that the most appropriate LC resonant circuit for a VCNR that
results in a well-behaved sinusoidal oscillator is the parallel RLC resonant circuit. From the principle of

duality, we can conclude that a series RLC tuned circuit is most appropriate for an ICNR.

4.2.2. LC-Dependent Negative Resistors

In this section we derive a systematic design methodology for active circuits that do not possess a
negative-resistance region in their I-V characteristics. As mentioned above, the Colpitts, Pierce, Hartley,
and Clapp configurations among others belong to this group. Since an active circuit of this kind depends
on energy-storage LC elements in order to produce a small-signal negative resistance, it is frequency
dependent. That is, if the active circuit is represented by an equivalent impedance, the resistive com-
ponent is negative only in a finite frequency band, referred to as the negative-resistance band. In addi-
tion to the negative resistive component, the active circuit also has a reactive component, either inductive
or capacitive. The design methodology below is based on the negative-resistance model and involves the

following three steps.

(1)  Active-circuit characterization: this step determines the negative-resistance band. Because no
oscillation build-up is possible outside this band, the negative-resistance band must be designed to
cover the frequency range of interest. Often this involves the selection of the appropriate LC ele-

ments and active devices.

(2) Resonant-circuit selection / verification: this step selects a resonant circuit that together with the
active circuit form a well-defined oscillator. The selection is based on the start-up condition (3.3)
or (3.4), and should be confirmed with either the Nyquist or root-locus analysis for validity.

(3 Large-signal analysis: this step is concemned with the amplitude and frequency of oscillation
(steady-state behavior).

The above design methodology is now illustrated with a design example. The circuit under con-
sideration, shown in Fig. 4.7, is a widely-used microwave oscillator configuration. One advantage of this

configuration is that if the device capacitance C,, of the transistor can be neglected (the only significant

parasitic element across the base-collector junction), an output signal can be taken across the resistor R



42

without introducing a loading effect to the circuit. This is true since the collector-emitter terminal can be

modeled by a current source. The function of the inductor L, is to produce a negative resistance.
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Z, =R+ X, Z,= R+ jX,

Figure 4.7: Microwave Oscillator

For simplicity, we neglect the effects of R, Rc, C, (internal base-collector capacitance), and

Cbx (external base-collector capacitance). The active impedance can be shown to be

1 L,.Cc
Z(s) = X +5LiCs @.11)

1 +s—=)
bm &m

By separating the active impedance into real and imaginary components, we obtain

Z (@) = gl [1 - mlec,,] +joCs 4.12)

We note that the real component of (4.12) is frequency dependent and is negative if

1
1 |2
> [Llc,,] . “4.13)

Since capacitor Cy is typically a few pico-Farads and inductor L, a few nano-Henries, (4.13) sug-
gests that this circuit can perform well into the microwave range. As frequency increases, it is important

to take into account the effects of C,, and Cj,. The upper limit of this circuit’s negative-resistance band
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can be shown to be constrained by the smaller of the self-resonant frequency of the integrated inductor

-1
L, [Chapter 5] or the frequency [LI(C,,,+ C,,)] 2 I Fig. 4.8, the simulated active impedance shows a

negative-resistance band of about 4 GHz, extending from 1 GHz to 5 GHz. In addition to the negative

resistance component, the active impedance also has an inductive reactance.
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Figure 4.8: Active-Circuit Characterization

With the active circuit characterized, the second step is to determine a resonant circuit that together
with the active circuit forms an oscillator, The objective is to select a resonant circuit such that the resul-
tant circuit has only one pair of RHP complex-conjugate natural frequencies. The selection is based on
the start-up condition for negative-resistance oscillators. Even though this condition may provide
misleading results regarding the linear behavior of the circuit, it nevertheless provides us with a direction
to go about selecting a resonant circuit. It is important to emphasize that this selection process should be

confirmed with either Nyquist or root-locus analysis.



Since the reactance of the given active circuit is inductive, the resonant circuit must be capacitive
so that we can tune out the reactive component at the frequency of interest. One resonant circuit could
simply be a capacitor. If we want to minimize electronic noise and distortion content in the output signal,
we can use either a high-Q parallel or series LC resonant circuit. The constraint here is that the resonant
circuit must still be capacitive at the frequency of operation. In Fig. 4.9, a series LC resonant circuit is

utilized since it does not affect the bias scheme of Fig. 4.7.
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Figure 4.9: Complete Schematic of the Microwave Oscillator

As multiple LC elements are used to form the resonant circuit, extreme care must be taken to
ensure that the multi-oscillation phenomenon does not take place. There should be, therefore, only one
frequency @, at which the start-up condition holds. This requirement can be satisfied if the total reac-
tance plot is monotonic. Figure 4.10 shows the simulated impedance of the circuit. As a check for the
above selection, the root-locus and Nyquist plots have been generated. The plots in Fig. 4.11 confirm the
existence of a well-defined pair of RHP natural frequencies. Due to inductor L,, we observe that the cir-
cuit has a pair of high-Q natural frequencies. It has been observed in practice that any well-behaved

sinusoidal oscillator possesses a pair of RHP complex-conjugate natural frequencies near the j© axis.

Upon the completion of the first two steps, the linear behavior of the oscillator circuit is fully

understood. While these steps are used for achieving a reliable oscillation build-up and for predicting the
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Figure 4.10: Impedance Plot for the Circuit of Fig. 4.9

oscillation frequency, they are not valid for predicting the circuit’s steady-state behavior. Nonlinear
analysis must be used in order to predict the amplitude of oscillation and the output power level of the
oscillator. Nonlinear analysis is usually very complicated due to various nonlinear elements in the cir-
cuit.

In the following paragraphs, the near-sinusoidal method proposed by Kurokawa is combined with
the “‘normalized-parameters’’ method by Meyer [Mey80] for studying the steady-state behavior of this
circuit. To this point, we assume that the steady-state current entering the active circuit is near-
sinusoidal. From the large-signal equivalent circuit shown in Fig. 4.12 with the emitter of the bipolar

transistor being defined as the datum node, the voltage across and the current entering the active circuit

are respectively given by

dl
Vv, = L,T: +rply +V, (4.18)

I, =1.+1 —IQ . 4.15)
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Figure 4.12: Large-Signal Equivalent Circuit

If the current across the base-collector junction is neglected, the base current /, consists mainly of the

diffusion and depletion current components through the base-emitter junction

dlc dVZ
I, = ‘C,ﬁ-7+Cj,T .

The base-emitter junction voltage V, can be expressed in terms of /, as
kT, I 1.
Vs = —In(—)=VrIn(—).
2= InE) = Vrin(75)

By the assumption that the current /, is sinusoidal in the steady state, we can write I, =1, sin(w,t). By

normalizing time ¢’ = @, ¢ and the collector current /, =111y, (4.14) and (4.15) can be rewritten as

Vo dU; LI Vr 1
Ve = @ co., L T +Cje 5 To 1. (4.16)
’ ’ 2
d’c ) IQ VT 1 dlc
dt,coo Vi rb[teﬂr +Cj, Iy Ic' @ 1,2L 1Cje + Inl, + ln( )

’

., d Vr 1 .
—sint’ = Ic,wo[t,f +Cje To I—] +1 - 1. @.17)

c
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Equations (4.16) and (4.17) show that the normalized collector current I, depends on only a few normal-
ized parameters, namely,

I In  Vnm
Ip |1’ Vr

C;
. (DngngTﬁ, (o,,r;,g,,,a't,ﬁe, motcﬁ" (D,2L1Cj‘, (Dar,,C,-,, W, g':; (418)

where V,, is the fundamental component of V, and g,.p =Ip/ V. The circuit operation can be examined
by generating a numerical set of normalized curves versus the normalized parameters. For example, in
Fig. 4.13 the normalized collector current at the fundamental frequency is plotted against the normalized
resistance of the active circuit, defined as follows

Vm Ip
2 LL_p0
Real{ v I, } R3" gmp .

This plot predicts that the magnitude of the steady-state collector current is approximately equal to the
bias current. With regard to the output signal stability against fluctuations in power supply and electronic

noise, it can be shown that the circuit of Fig. 4.9 meets the amplitude-stability cohdition (3.30).

In conclusion, the systematic approach above provides us with the guidelines for designing well-

behaved sinusoidal LC oscillators.

4.3. Implementation

To confirm the theoretical analysis and to demonstrate the feasibility of silicon integration, a
monolithic implementation of the microwave oscillator shown in Fig. 4.14 has been fabricated and
characterized. Capacitor C, is an off-chip varactor for frequency tuning. Bond-wire inductance L,
together with C, form a series LC resonant circuit. L, is a monolithic inductor of 1.5 nH [Chapter 5].
Resistor Rc is matched to the system impedance of 50 Q. The bias current Ic is 10 mA. The circuit

was fabricated in an oxide-isolated Si bipolar IC process with peak fr =9 GHz.

The die photograph of the oscillator is shown in Fig. 4.15. The circuit achieves a measured
negative-resistance band of 2.5 GHz extending from 1.5 GHz to 4 GHz. With C 1=39pFand L, =0.7

nH, the measured output waveform taken from the collector node is shown in Fig. 4.16. The measured
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Figure 4.15: Die Photograph of the Microwave Oscillator

oscillation frequency is approximately 2 GHz compared to the simulated oscillation frequency of 2.1
GHz. The output power is — 6.5 dBm and was measured across a 50-Q off-chip load. The simulated
power is—4.0 dBm. The power loss is attributed to the package and the ac-bypass circuits that were used

for the RF testing of this oscillator.

4.4. Summary

Systematic design approaches for VCNRs, ICNRs, and LC-dependent active circuits have been
explored in this chapter. Combining the conventional start-up conditions with the Nyquist, root-locus,
and Kurokawa analyses provide us with the guidelines for designing predictable sinusoidal LC oscilla-
tors. The conditions for frequency and amplitude stability provide the assurance that the oscillators are

both frequency and amplitude stable.
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Chapter § - Silicon Integrated Inductors

5.1. Introduction

Planar inductors have been implemented in practical systems for many years using a variety of sub-
strates. These include standard PC boards, ceramic and sapphire hybrids, and more recently GaAs ICs
(Pet88, Fri89]. In the early development of silicon ICs, planar inductors were investigated [War65] but
the prevailing lithographic limitations and relatively large inductance requirements (for low-frequency
applications) resulted in excessive silicon area and poor performance. Reflected losses from the conduc-
tive Si substrate were a major contributor to low inductor Q. This research effort was abandoned as pro-

ven impractical.

Recent advances in Si IC processing technology have prompted another look at this situation. In
particular, metal width and pitch in the low micron range allow many more inductor turns per unit area
than in the past. Also, modern oxide-isolated processes with multilayer metal options allow thick oxides
to help isolate the inductor from the Si substrate. In addition, interest is growing in applications at much
higher frequencies with the advent of 900-MHz communications and gigahertz-range satellite reception.

Inductors of only a few nano-Henries are sufficient in these high-frequency applications.

In this chapter we describe inductors fabricated in a production Si bipolar process featuring oxide
isolation and two layers of metal. In the frequency range of interest (above about 1 GHz) the Q of the
inductors is quite usable (3-8) and appears to be almost totally limited by metal and contact resistance,
with little effect from the Si substrate. In this regard, there is little difference between these inductors

and those implemented in GaAs.

5.2. Inductor Structure and Characterization
There are a number of possible inductor structures [Bah88]. They include strip, loop, and spiral
inductors. For inductors of a few tens of nano-Henries, the square-spiral structure [Fig. 5.1] is suitable

for monolithic integration. In this structure the top metal layer M, is used predominantly to minimize

the parasitic metal-substrate capacitance and the accumulated sheet resistance, while the bottom layer M,

52
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Figure 5.1: Spiral Inductor

is used as the lead-out bridge. In order to facilitate the characterization of this inductor structure, we first
discuss two fundamental concepts: the self inductance and mutual inductance. In any current-carrying
conductor there is an associated self inductance, defined as the ratio of the change in magnetic flux to the
change in current. For the rectangular conductor shown in Fig. 5.2(a), Grover has derived a closed-form
self-inductance expression that depends on the length, width, and thickness of the conductor [Gro46].
And for any pair of parallel conductors, there is a mutual inductance due to the magnetic coupling
between them. This mutual inductance is positive if the currents in the two conductors point in the same
direction, and negative otherwise. Grover has also derived a closed-form mutual-inductance expression
for the two parallel rectangular conductors shown in Fig. 5.2(b). It is important to emphasize that if the
conductors are made of non-magnetic materials, the associated inductance is independent of the current
strength and only depends on the geometry of the conductors. Also, the *‘skin effect’’ is neglected in

Grover’s analysis (the current is assumed uniformly distributed over the cross section of the conductor).
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(b) Mutwal Inductance M = f,(Il,d,w)

Figure 5.2

This assumption may not be valid at very high frequencies where the current tends to crowd toward the
surface of the conductor. Figures 5.3(a) and 5.3(b) show, respectively, the self inductance of a rectangu-
lar conductor and the mutual inductance between two parallel rectangular conductors. The mutual induc-
tance is observed to depend significantly on the space separating the two conductors. This observation
suggests that the spacing between metal segments in the spiral inductor should be minimized in order to

achieve a high ratio of inductance per unit area, which in turn implies higher inductor Q.
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The effective inductance of the spiral structure can be shown to be the sum of all the self-
inductance terms and mutual-inductance terms [Gre74]. This inductance calculation can be numerically
intensive and is best solved with a software program. Appendix B lists the source code of a software
package developed during the course of this research and has been used for predicting the inductance
value of the spiral inductor. Note that the segments having the same current direction in the spiral struc-
ture of Fig. 5.1 are relatively near to each other, whereas the segments having the opposite current direc-
tion are farther apart. The positive mutual inductance is hence typically larger than the negative mutual
inductance, and thus enhance the effective inductance of the spiral inductor. Figure 5.4(a) shows the
inductance achieved with a straight-line inductor and that achieved with a spiral inductor of the same
effective length. The spiral inductor is observed to have higher inductance due to the positive mutual

inductance enhancement. The inductance as a function of tumn number is shown in Fig. 5.4(b).

An equivalent circuit for the square-spiral inductor has been derived and is shown in Fig. 5.5. In
this circuit, L, models the effective inductance, R; is the accumulated sheet resistance, C, models the
parasitic capacitance from the second-metal layer to the substrate, and R, represents the resistance of the
conductive silicon substrate. Coupling capacitance between metal segments due to fringing fields in both
the dielectric region and the air region is neglected in this model. Such an approximation is valid because
the relative dielectric constant of the oxide is small and the inductor is used at frequencies well below its
self-resonant frequency. Since the structure of the square-spiral inductor is not symmetrical, the parasitic
capacitance values at the inductor terminals should be different from one another. This difference, how-
ever, is small [Par84] and the two capacitors are assumed the same. If the spiral inductor is modeled as a
lossless transmission line with the total length much smaller than the quarter wavelength, it can be shown
that C, is approximately equal to one half the input capacitance of the open-circuited line [Appendices B
and C]. This gives a first-order estimate of C,. More accurate analytical expressions for C, can be
found in [Gar79]. The substrate resistance R, can be derived from measured S parameters. It is
interesting to note that in a GaAs inductor using microstrip lines, substrate resistance R, is not present

because the GaAs substrate acting as the dielectric layer is in direct contact with the conductive ground

plane.
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Substrate
Figure 5.5: Equivalent Lumped Model

If one side of the inductor is grounded, the self-resonant frequency of the spiral inductor can be

derived from the equivalent circuit. It is approximately equal to

[N B

5.1)

Beyond the resonant frequency, the inductor becomes capacitive. Frequency wg is limited mainly by C,
which is inversely proportional to the oxide thickness between the second-metal layer and the substrate.

The frequency at which the inductor Q is maximum can also be derived. It is

1
1 Rs 4R, |2

Wg = ——— 1+ =1} . 5.2

27 L,C, | 2R, [ 3R,] ©-2)

If the inductor is used as a floating inductor, the shunt branches in the equivalent circuit are effectively in

C
series with one another. Equations (5.1) and (5.2) still hold provided that C, and R, are replaced by —2"-

and 2 R,, respectively.
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5.3. Implementations

Figure 5.6: Die Photograph of the Inductors

Two square-spiral inductors were fabricated, measured, and characterized. A die photo of the test
layout is shown in Fig. 5.6. Metal width was 6.5 pm with 5.5-um spacing of 1.8-pum-thick second-metal
Al. The sheet resistance of Al was 20 mQ/O over 1.7 um of oxide, and the parasitic capacitance from Al
to the substrate was 0.016 fF/u’. The substrate resistivity was 14 Q-cm and 500-pm-thick p-type silicon.
The larger inductor had 9 turns with an outer dimension of about 230 pm. The smaller one had 4 turns
with an outer dimension of about 115 pm. Measured S I plots from 0.3 MHz to 3 GHz for these induc-
tors in a 50-Q system are shown in Fig. 5.7. The large inductor is self resonant at 2.47 GHz while the
small one has an estimated resonant frequency of 9.7 GHz. Pad capacitance was zeroed out of the on-
chip measurement. The large inductor had a measured value of 9.7 nH while the smaller was 1.9 nH.
The theoretical values are, respectively, 9.3 nH and 1.3 nH. The differences are attributed to lead induc-
tances and possible minor imprecision in calibration of the test equipment. The series loss in the induc-

tors deduced from RF measurements agreed very closely with measured and predicted dc series



(b) Large Inductor

Figure 5.7: Measured §,, from 0.3 MHz to0 3 GHz
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resistance, indicating that coupled loss from the silicon substrate was negligible. While metal shrinkage
due to photolithography and etching tolerances can affect the series-loss value, it theoretically has negli-
gible effect on the inductance value. With a typical + 0.2—um metal shrinkage, the inductance value in
the large inductor has been calculated to vary less than 1%. The large inductor has a measured
maximum-Q of 3 at 0.9 GHz and the small one has an estimated maximum-Q of 8 at 4.1 GHz. Circuit
elements in the equivalent circuit for the large inductor were derived from both theory and measured §

parameters. The set {L,,R,,C,,R,} isequal to {9.7 nH, 154 Q, 590 fF, 70 Q}.
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Figure 5.8: Simplified Circuit Diagram of the Five-pole Maximally Flat Low-pass LC Filter

As a test vehicle, a five-pole maximally flat low-pass filter with nominal designed —3-dB -frequency
of 880 MHz and midband insertion loss of 2.25 dB was fabricated. The circuit is shown in Fig. 5.8 where
R; and R, are 50-Q off-chip resistors. Element values are L =9.7nH, M = 0.4 nH, C, = 1.3 pF, and
C2=4.3 pF where parasitic capacitance associated with the inductors is included in the capacitor values.
Mutual inductor M exists between the inductors due to layout proximity. The capacitors were fabricated

in standard form using metal over 1500 A of oxide with an n* bottom plate. Since the sheet resistance of

n* is high (20 ©/00), the series loss in the capacitor must be minimized by reducing the ratio %, where

L and W are, respectively, the length and width that define the capacitor area. Pads were included with
the filter to allow testing but were not included in the design and were zeroed out of the on-chip measure-
ments. This would correspond to use of such a filter in an on-chip environment where pads are not

present. If a packaged stand-alone filter was required, pads and bond wires would have to be included in
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the design.

The transfer function can be derived from the simplified circuit in Fig. 5.8 and is given by

V,(s) _ azs2+ao

Vs(s) - b5s5+b4s4+b3s3+b2s2+b1s +bg

(5.3)
where
az= MC2

ap=1

b5=(L—M)C1 (L+M)C2R,C1
R;
b4= (L—M)Cl (L-l-M)Cz [1+R—]

by=(L+M)Cy ﬁ‘;i) +[20L-M)C, +2LC, ] R,C,

R
by=2(L-M)C,+LC,+ F"[ 2(L-M)C,+LC,]

b1=2("R;M)- +R,(2C, +Cy)
[

bo= 1+RJ
0= R |

As seen from (5.3), the mutual inductance M creates two high-frequency zeros on the jw axis. Since M is

relatively small compared to the inductance value L, its effect on the filter attenuation is significant only
in the stopband. Let f; (=1/[ 21n/E] ) denote the magnitude of the complex-conjugate zeros. It can
be shown that the zeros increase the stopband loss at frequencies below f, but decrease the loss at fre-
quencies above. If maximum high-frequency attenuation is desired, the value of M should be minimized
by separating the two inductors far apart in the layout. If M = 0, (5.3) reduces to a simple five-pole

transfer function.

A die photo of the filter is shown in Fig. 5.9. In order to minimize the electrical coupling through
the substrate, a buried p-type layer was placed around the I/O pads and around the periphery of each dev-
ice. Measured |S,,| is shown in Fig. 5.10 and is close to the simulated values. The filter was simulated

using the 3¢ limits of capacitance of + 10% due to process variations but assuming all capacitors tracked
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Figure 5.9: Die Photograph of the Filter

closely. The resulting spread of §,; characteristics is shown in Fig. 5.11 together with two measured
characteristics from opposite sides of a 4-in wafer. The filter has a measured midband insertion loss of
2.4 dB and measured —3-dB frequencies of 845 MHz and 860 MHz. Simulation with capacitor tolerances
predicted the —3-dB frequencies at 830 MHz, 880 MHz, and 930 MHz with 880 MHz being the nominal

design value.

Since MOS capacitors display small but finite voltage coefficients [McCB81], the filter was checked
for nonlinearity by a third-order intermodulation measurement at 500 MHz. Measurements at signal lev-
els of +15 dBm indicated that the third-order intercept was better than the measurement resolution of +42

dBm.
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5.4. Conclusion

Passive inductors and LC filters useful in the gigahertz range are demonstrated in standard Si IC
processing. These elements can be used for high-frequency on-chip filtering, inductive peaking of high-

frequency amplifiers, and impedance matching for low-noise amplifiers.
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Chapter 6 - Monolithic LC Voltage-Controlled Oscillators

6.1. Introduction

In the design of a phase-locked loop (PLL) [Fig. 6.1}, the voltage-controlled oscillator (VCO) is the
most critical component since its characteristics directly determine the performance of the system.
Important characteristics of the VCO include frequency stability, linear voltage-to-frequency conversion,
wide tuning range, high-frequency capability, frequency accuracy, and monolithic-technology compati-
bility. The VCO characteristics depend strongly on the VCO configurations [Liu88]. Depending on the
shape of the oscillation waveform, we can categorize VCO circuits into two groups: relaxation oscillators
and sinusoidal oscillators. A relaxation VCO produces either a square or triangular signal, whereas a
sinusoidal VCO produces a near-sinusoidal signal. Most presently available VCOs in monolithic IC tech-
nology are relaxation based since they require only capacitors as the frequency-selective elements
[Cor75]). Sinusoidal VCOs on the other hand often require external varactors (voltage-controlled capaci-

tors) and inductors for defining oscillation frequency and hence are not suitable for monolithic integra-

tion.
Vi(t) Phase
o— N Loop Filter —— Amplifier
fs Comparator
fo
Voltage —Controlled
Oscillator

Figure 6.1: Block Diagram of a Phase-Locked Loop

In this chapter we discuss a novel microwave sinusoidal VCO in monolithic IC technology. The
circuit does not require a varactor for frequency tuning but instead relies on characteristics inherent in the

circuit configuration. As a test vehicle, a Si bipolar monolithic VCO has been fabricated. It achieves a
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Vee

Figure 6.2: Simplified Schematic of the VCO

simulated tuning range of 300 MHz extending from 1.5 GHz to 1.8 GHz. The oscillator was fabricated in

an oxide-isolated BICMOS IC process with typical fr (npn) =10 GHz.

6.2. Circuit Configuration

The simplified circuit schematic of the LC VCO is shown in Fig. 6.2. It consists of two
capacitive-feedback Colpitts oscillators. The left oscillator is comprised of Q,,L,,R,,C,,C3, and Cg.
The right oscillato;' is comprised of Q4, L3, R2, C2, C4, and Cs. Voltages V¢ and V¢ control the amount
of bias current /, that flows into the two Colpitts oscillators. We now study the properties inherent in

this circuit configuration that dictate the voltage-frequency translation.
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6.2.1. Oscillation Frequency

The characteristics of this cross-coupled LC VCO are best understood using the feedback model
discussed in Chapter 2. Let T,(w) and To(®) denote the loop gains of the two Colpitts oscillators. Furth-
ermore, let o, and oy denote the fractions of bias current /g /2 that drive the transistors @, and Q4
0o €1, 0s0p< 1, oy +0,=1). Quantities o, and 0, are set by voltages V& and V¢, respectively.

It is shown in Section 6.3 that the effective loop gain for the circuit of Fig. 6.2 is
T(0) = oy T1(w) + 0 To(w) . 6.1)

It is shown subsequently that the conventional start-up condition is valid for this feedback oscilla-
tor. According to this condition, the circuit of Fig. 6.2 is unstable about its bias point if the loop gain
(6.1) is larger than one at the zero-phase frequency. Since the zero-phase frequency is often used as an
estimate for the oscillation frequency, we observe from (6.1) that if o; > a,, the zero-phase frequency
is determined mainly by the left Colpitts oscillator; whereas if o, > a, , it is determined mainly by the
right Colpitts oscillator; and if o and o, are comparable to one another, both oscillators are equally
significant. If o, =0 (o =0), the circuit of Fig. 6.2 effectively reduces to a simple Colpitts oscillator.

Under this condition the effective oscillation frequency is solely determined by the left (right) oscillator.

To understand the summing property of (6.1) further, we consider the simulated loop gains T,(w)
and T»(o) in Fig. 6.3(a) assuming the same tank-circuit Q and the same maximum loop gain. Quantities
®; and @, denote the zero-phase frequencies of the stand-alone Colpitts oscillators and are related to
each other according to

e
Q

©p— @y = 6.2)

where

W, + 0,

We = 2

6.3)

It has been detérmined that the relationship (6.2) gives the allowable tuning range for this circuit; any

further separation than this can result in the multi-oscillation phenomenon discussed in Chapter 3. The
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resultant loop gain for oy =, = % is shown in Fig. 6.3(b). We note that the effective zero-phase fre-

quency is between @, and ,. By varying o, from 1 to 0 while maintaining the constraint o, + ¢ = 1,
we achieve a zero-phase frequency that varies from ®,; to «,. Note that no varactor is needed in this cir-

cuit for frequency tuning.

In the following paragraphs we confirm the simulation results of Fig. 6.3(b). It can be shown that

the loop gain has the form of (a more elaborate derivation is given in Section 6.3)

Ll L2
] SR, st
(5) = oy Tpax + 0 Tx L 6.4
SAC,+5—+1 S2LoCy +5 241

where it is assumed that T(s) and T(s) have the same maximum gain. It is useful to define the follow-

ing quantities

Cy
Q: =R, \/L_l 6.5)
3
0: =R\ I 6.6)
1
0, L.C. 6.7)
N
(02 - ‘JLT(:’ . (6.8)

Using the above definitions in (6.4) and replacing s = j o gives

T(®) = oy Tpax :n ” + 0 Thax 1 o . 6.9)
1+ ji L _ 1 ﬂ _——

jo 6.
oy Tmaxlej ll + (XZTmaxleJ 2'-

For 0,=0,=0Q =10, the values of |e’ el| and |e/ ez| as functions of frequency are given in Table 6.1.
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where the following approximation has been used

1

=1+x forx«x 1.
1-x

f&) =

We now evaluate the loop gain (6.9) at frequencies ;, ¢, and w,. For oy =0, = % the effective

loop gain evaluated at , using (6.10-6.13) and Table 6.1 is

-

_ 1 je e
T(w) = ET"“" le ll"’="’l *le 2(;)::(t);(l-l)
- Qo
= ‘% Tmax L l.0+ .428 ej64'7.] = l—'zzi Tmu ejl&l. .
Similarly,
1 io .
T(@c) = 5 Toux | 1™ sty ’ |e/®| -1
0= (1+— W= R
L A7) @ 1-35)
1 : * . -
- -;— Tnax \'716 e M3 4 698 ¢4 ] N %me
1 io 0
T = — JY ]9,
(w2 2Tmax Ie I(oz(,)‘(1+l)+|e I(S)=0);_
L o
1 [ —i60 4" ,
= E Tonax ~.464 e j624 + 10] = l'-2-2§- T max e 18.7
The above analysis agrees well with the simulated results. For o; = a; = —;—

(6.14)

(6.15)

(6.16)

, the zero-phase frequency is

approximately equal to w¢ according to (6.15). As o, varies from 1 to 0 and o, varies from O to 1, it can

be shown that the effective loop gain of the circuit decreases from T, at ©;, reaches the minimum value

of Trax / 2 at @¢, and increases back to T, at ;.

6.2.2. Frequency Variation

We observe from the above analysis that if w, — ; = ¢ / @, the effective frequency variation is
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approximately + i with respect to @¢ [Eqns. (6.12) and (6.13)]. Fora Q of 10, the tuning range is

5% of the center frequency. If wide tuning bandwidth is desired, the tank-circuit @ should be reduced.
We now determine whether it is plausible to separate the frequencies ®; and @, further apart in order

to achieve a tuning bandwidth wider than w¢ / Q. Figures 6.4(a) and 6.4(b) show the loop gains of the

two Colpitts oscillators and the resultant loop gain for the case W, — ;= -(-)C;C—Q From Fig. 6.4(b) we

observe that the multi-oscillation phenomenon can occur since the non-monotonic phase function crosses
the zero point at multiple frequencies. The Nyquist diagram (not shown) corresponding to the charac-
teristic of Fig. 6.4(b) reveals that given a sufficient T,,, there can be more than two natural frequencies

in the right-half plane which give rise to multiple expanding signals.

In conclusion, the relationship @, — ; = ¢ / Q gives the allowable tuning range for this circuit.

6.3. Loop-Gain Derivation and Root Loci

We now confirm the relationship (6.1). The simplified ac circuit schematic of the VCO is shown in
Fig. 6.5. If we break the circuit at the common emitter node shared by transistors Qs and Q¢ and apply
a test signal, this signal would traverse through the left and right oscillators along the paths numbere&
from #1to #4 and from #a to #d, respectively. The block diagram of the paths is shown in Fig. 6.6.
Upon traversing through the loops, the two signals return to the emitter node of Qs and Qg and are
added up due to the summing property of the emitter-coupled pair. This rather unique property has been

observed and derived from a varactor-tuned multivibrator circuit configuration [Duc89].

In the following paragraphs we derive the effective loop gain of the VCO. The simplified ac cir-
cuit of the left Colpitts oscillator is given in Fig. 6.7 where for ease of analysis, the base of the transistor

Qs is assumed grounded. Under this assumption we can show that

d’l - 8ms . 8mé
av, = 2 2

= Gy 6.17)

. . . . C C C .
and the approximate impedance looking into the base of Q¢ is -23 = T"G = —5’5 Figure 6.8 shows the
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Figure 6.5: Simplified ac Circuit Schematic

simplified equivalent circuit for deriving the loop gain T(s). It can be shown that

sLy Cs
Ty(s) = G,

s3L,C +s£-l-+l Cc +&+C

where

c
C, = cl+{c3 I [TMC‘” )

It is useful to define

C3+—“+C6

(6.18)

(6.19)

(6.20)



76

#2 #b
SR
v v
#1 #a
| I Db
' 3 &
#4 #d
v - g v
#3 #c

Figure 6.6: Block Diagram of the Feedback Loops

=

Figure 6.7: Simplified ac Circuit of the left Colpitts Oscillator
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Figure 6.8: Simplified Loop-Gain Model

GnR
Toan = [ n 1 ] . 6.21)

Using the definitions (6.20) and (6.21) in (6.18) gives

Ty(s) = Trun . 6.22)

2 L,
S°L\Cy +5s +1
R,

In similar fashion, we can derive the loop gain T,(s). Itisequal to

Ly

st
Ty(s) = Traxa L, (6.23)

82L2C, + SR—Z' +1
where
Cs
C.y = Cy+ Ca " T+C5 6.24)
C
Ci+t —+Cs

ny = (6.25)
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GnR
Toasz2 = [ =2 ] . 6.26)
na
The effective loop gain of the circuit is
T(s) = oy Ti(s)+ 0 To(s). (6.27)

According to (6.21) and (6.26), the two Colpitts oscillators have the same maximum loop gain T, if
R,/ny=R,/n, Quantity T, should be chosen to be about 6 so that the loop gain has a minimum
value of about 3 [Eqn. (6.15)]. This is sufficiently large for ensuring a reliable oscillation start-up when

subject to temperature changes and power-supply fluctuations in a practical implementation.

D

Figure 6.9: Root Locus for a; > o, (not to scale)

We now construct the root loci for the circuit from the characteristic equation 1—-T7T(s)=0. The
root loci for o) > a,, a;=0a,, and o, <oy are given in Figures 6.9, 6.10, and 6.11, respectively. In
these figures, the natural frequencies P, and P, are contributed by T,(s) and the natural frequencies P,
and P, (at relatively higher frequencies) are contributed by T(s). We note that with sufficient loop
gain, the circuit always has a unique pair of RHP natural frequencies. The oscillation build-up is

expected to be well behaved. These root loci also indicate that for a; 2 o, , the oscillation behavior is
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\
determined mainly by the left Colpitts oscillator; whereas for a; < @, it is determined mainly by the

right Colpitts oscillator.
Im
L 3
Py X
o<
Py X
¢ < *» Re
P, %X
o<
P, X
Figure 6.10: Root Locus for o, = o, (not to scale)
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»
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Figure 6.11: Root Locus for o; < a, (not to scale)
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6.4. Circuit Implementation and Performance

A monolithic LC VCO has been realized which achieves a simulated tuning range of 300 MHz
extending from 1.5 GHz to 1.8 GHz. The center frequency of the VCO is approximately 1.65 GHz. For
a tank-circuit Q of 5, the tuning range is + 10% of the center frequency. The complete circuit is shown
in Fig. 6.12. The input differential pair Q7 and Q4 converts a single-ended input signal to a differential
output signal which is used to control the amount of bias current Iy that drives the transistors O, and

Q.. Resistor R sets the proper bias voltage for the succeeding stage. Resistors R3 and R, are used to
improve the linear input range for V;y. The differential pair Q; and Q5 forms an output amplifier with
resistance value R 7 chosen to be equal to the system impedance of 50 Q. Transistors Q; to Q¢ form the
core of the VCO. Important element values are L =6.5 nH, C;=0.2 pF, C3=1.0 pF, C¢=3.0 pF,
L,=3.7nH, C4=1.6 pF, and Cs= 1.0 pF. Parasitic elements associated with inductors L, and L, are
used to replace capacitor C, and resistors R, and R, of Fig. 6.2. Recall from Chapter 5 that parasitic ele-
ments associated with a silicon integrated inductor include the sheet resistance R, , parasitic capacitance
C, from the metal layers to the substrate, and substrate resistance R,. The set {R,,C,,R,)} for L, is
approximately {9.9 Q, 460 fF, 70 Q) and for L, is approximately {5.8 Q, 450 fF, 50 Q}. The network
transformation in Fig. 6.13 is used to convert the series L,—R; branch of the inductor equivalent circuit

into a parallel network.

In the preceding sections, the natural frequencies due to the resonant circuits have been assumed to
be dominant. At high frequencies, other less significant natural frequencies in the active transistors can
produce excess phase shift and cause significant loop gain loss. This effect is more eminent in the right
Colpitts oscillator since it must operate at higher frequencies than the left Colpitts oscillator. For this rea-
son, the ratio n, was intentionally chosen to be less than n, so as to compensate for the loop gain loss

[Eqn. (6.26)].

The nominal bias current I, is 10 mA. Diodes D ,~D s form protection circuits against electrostatic
discharges. The simulated quiescent power dissipation is 95 mW from a single supply of 5 V. The VCO

is simulated assuming the 3o limits of + 10% on the capacitance values. When subject to these process
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L, R,
o— T —W——0 = Ly Ry
= M‘a
Qd = R

R, = Ry[1+02]

Lb = La[l"l- Qlaz]

Figure 6.13: Series-to-Parallel Transformation

variations, the frequency tuning range is observed to vary at less than + 3%, indicating that the circuit is
insensitive to process variations. This is intuitively expected since the oscillation frequency is inversely
proportional to the square root of the LC time constant. Figure 6.14 displays the oscillation frequency as

a function of the controlling voltage V,y .

The steady-state condition for feedback oscillators is described by the so-called Barkhausen cri-
terion which states that the *‘large-signal’’ loop gain evaluated at the oscillation frequency and amplitude
is equal to one, i.., T® (0,,A,) = 1. It is important to emphasize that one must utilize the concept of
the describing function to describe the large-signal loop gain quantity. This VCO circuit achieves its
steady-state behavior through distortion limiting due to the active transistors 0, and Q4. As the oscilla-
tion frequency varies from ; to ,, the output signal taken from either the base of Qs or the base of Q¢
is not expected to be constant. In fact, the signal V,, decreases from its peak value at o, and reaches a
minimum value at o,. This is expected since as the oscillation frequency increases, the effective *‘large-
signal” impedance at the coliector of O, decreases; the output signal is reduced accordingly. The signal
V,1 behaves oppositely from the signal V,,. In order to maintain a somewhat constant amplitude of oscil-

lation over the whole tuning bandwidth, it is necessary to use the differential output signal between V,;
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and V, 2

The oscillator was fabricated in an oxide-isolated BICMOS IC process with typical f7 (npn) =10
GHz. Preliminary testing of the circuit in package form showed circuit performance close to the simu-
lated results. Further characterization on the oscillator phase noise and the voltage-to-oscillation transla-
tion has been planned. Since the oscillator phase noise is inversely proportional to the square of the
oscillator @ [Rob82], good phase noise performance can be achieved at the expense of a narrow tuning

bandwidth.

6.5. Conclusion

A monolithic microwave sinusoidal LC voltage-controlled oscillator (VCO) has been described.
Unlike conventional sinusoidal VCOs that must depend on a varactor for frequency tuning, this VCO
uses two cross-coupled Colpitts oscillators to achieve the objective. The obtainable tuning bandwidth is

W, - 0, =0¢ / @ where ®, and w, are the oscillation frequencies of the stand-alone Colpitts oscillators.

Simulation results indicate that the circuit is insensitive to process tolerances and temperature vari-
ations. This VCO can be used in a high-frequency phase-locked loop for various communication appli-

cations.
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Chapter 7 - Si Bipolar Monolithic RF Bandpass Amplifiers

7.1. Introduction

RF amplifiers are widely used in many RF communication systems. Important characteristics
include gain per stage, frequency response and noise performance. Resistive feedback amplifiers are
often used to achieve the above objectives [Mey81, Pet83]. In the frequency range extending from dc to
the —3-dB frequency, these amplifiers achieve simultaneous input and output impedance match, while
maintaining flat gain and relatively low amplifier noise. Beyond the —3-dB frequency, the circuit noise
increases as the circuit gain drastically reduces and the terminal impedances are severely mismatched.
The performance of such circuits can be optimized for use with band-limited RF signals by focusing on
the passband of interest. In this chapter we investigate the application of monolithic inductors in the
design and fabrication of Si monolithic RF amplifiers in the L band (1-2 GHz). The inductors are used to

boost the gain of the RF amplifiers and to improve noise performance.

As a test vehicle, a bipolar monolithic bandpass amplifier has been fabricated, measured, and
characterized. A 4-nH silicon integrated inductor was used to achieve a peak S5, gain of 8 dB, a simu-
lated noise figure of 6.4 dB, and a matched input impedance of 50 Q in the frequency range 1-2 GHz.

The amplifier was fabricated in an oxide-isolated Si bipolar IC process with peak fr = 9 GHz.

7.2. Design Approach

A simplified ac circuit schematic of a widely-used resistive feedback amplifier is shown in Fig.
7.1(a). The circuit incorporates a shunt feedback resistor (Rr) and a series feedback resistor (Rg) to
achieve stabilized circuit gain, low output distortion, and simultaneous input and output impedance
matching. In order to predict the frequency response of this circuit, the simplified equivalent circuit
shown in Fig. 7.1(b) which neglects the effects of C, and r, of the bipolar transistor is used. It can be
shown that the transimpedance gain is

Vols) (1-GnRr) R,
Is(s) (l+G,,,R,_)+le,Rp+(C,+C7)RLJ +52C\R-CR,

(1.1)
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Figure 7.1

The denominator of (7.1) can be written as

2
D(s) = [I-PL] [1-—3-] =1-s [-—1-+-1—] +=2— = 1+a,s +a,s?.

1 PP,

If P, is a dominant pole, it can be approximated by

1 l+GmRL _
2, - " CRr+ (€ 1CoR, [

(1.2

1.3)
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The midband gain of the circuit from (7.1) is

_ (1-GuRe)R,

Ao - 1+ GmRL (7.4)

Equations (7.3) and (7.4) can be combined to yield the gain-bandwidth product of this circuit. It is

approximately equal to
GB = A, fa4gs = OFRy 1.5)

where wp = %?— denotes the transition frequency of the bipolar transistor. It is seen from (7.5) that the

T
gain-bandwidth product is a constant quantity, implying that if the —3-dB frequency is optimized well

into the microwave region, a considerable amount of circuit gain is sacrificed.

For the low-pass amplifier of Fig. 7.1(a) the —3-dB frequency is observed to be limited mainly by
capacitance C,. Beyond the —3-dB frequency, the terminal impedances are severely mismatched while
the circuit gain is greatly reduced. The performance of such circuits can be optimized for use with band-
limited RF signals by focusing on the passband of interest. For the circuit in Fig. 7.1(b), this can be
accomplished with the addition of a shunt inductor across capacitor C,. Effectively, this inductor

transforms the ‘‘untuned’’ low-pass amplifier into a bandpass amplifier.

In order to understand how the shunt inductor used in this topology modifies the circuit bandwidth,

we first consider the general representation of a low-pass amplifier shown in Fig. 7.2(a). The gain func-

tion can be derived to be
V,(s) R; 1 1
= - 7.
V,(s) G"'(RL"R")R,-+R3 [1-s/1=, 1-s/P, (7.6)
where
Pr=——L —— and Pp=——b a7
LT (RsIIR G 27T (RUIRN G, ‘

A typical plot of (7.6) is shown in Fig. 7.2(b) where the assumed dominant pole P, determines the
bandwidth of the circuit. Since the input resistance R; must be matched to the source resistance Rg in

order to minimize reflected signal loss, quantity C; dictates the frequency P,. We next consider the
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Figure 7.2: (a) Low-pass Amplifier and (b) Frequency Response

modified circuit shown in Fig. 7.3(a). It can be shown that

Vo (s) 1 S(LI/Rs)
= -Gm R Ro . 7.8
Vi(s) (Rl )[l-s/Pz] [slec,.+sL1(1/R,-+1/R,)+1 .8)

A typical plot of (7.8) is shown in Fig. 7.3(b). At frequencies well below or above the center frequency
o, (= 1AL 1C:), the parallel R;L,C; tank circuit behaves like a short circuit, and consequently, little sig-
nal power can be transmitted to the output. Denote the frequencies at which the peak gain drops by 3-dB

by w. and ®,. , and the bandwidth of the circuit by w_3 45. If P32 > 0, , it can be shown that [Chu87]

(1))
©ogip = Q= O = — 71.9)

Q

where

[
0 = sk T (7.10)

By substituting (7.10) into (7.9) we obtain
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1

O34 = TR TIRC, .10

It is interesting to note that the bandwidth of the modified circuit is equal to that of the original circuit.

The new circuit technique effectively transforms a low-pass frequency response to a bandpass
response, centered around ®,. This method is attractive because it achieves the required bandwidth
without reducing circuit gain. In addition, it can also achieve a matched input impedance. By tuning out
the device capacitance near the center frequency ., the shunt inductor also improves the noise perfor-

mance at high frequencies. A detailed analysis illustratiﬂg this point is presented in Section 7.4.

7.3. Circuit Configuration and Implementation

As an application of the above circuit technique, an L-band (1-2 GHz) bipolar monolithic amplifier
has been realized. The complete circuit is shown in Fig. 7.4. Cascode transistor Q, eliminates the Miller
effect resulting from capacitance C,. of transistor Q;. Transistor Q, functions as a voltage buffer that

minimizes forward transmission through the feedback resistor R. The only drawback to having the



90

o\
N
U
S

Rg

Figure 7.4: Complete Schematic of the L-Band RF Amplifier

buffer @, is that simultaneous impedance matching at both the input and output cannot be achieved. For
optimum noise performance, Rz and the base resistance of O, must be minimized, and Ry maximized.
Diodes D —-D , function as protection circuit against electrostatic discharges. The amplifier utilizes a 4-
nH silicon integrated inductor [Ngu90] to achieve a peak S, gain of 8 dB and a bandwidth of 1.2 GHz
that extends from 700 MHz to 1.9 GHz. The input transistor Q is a large device and is fabricated with
six 30 x 2 um base strips, yielding a 17-Q base resistance at 6 mA of collector bias current. The meas-

ured quiescent power dissipation is 130 mW from a single supply of 10 V.

A die photograph of the amplifier is shown in Fig. 7.5. In order to minimize electrical coupling
through the substrate, a buried p-type layer was placed around the I/O pads and around the periphery of

critical devices. Measured |S,,| and |, | are shown in Figs. 7.6 and 7.7, respectively. They agree well
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Figure 7.5: Die Photograph of the Amplifier

with the simulated results.

The amplifier’s input resistance is matched to a system impedance Z; of 50 Q with careful selec-

tion of Ry and Ry according to the derived relationship

R = AvZy (7.12)
where Ay = G, Z;, G, = ﬁ , and Rg =R; =Zy (=50Q). The circuit bandwidth can be
mlNE

determined from the untuned amplifier (without L,) shown in Fig. 7.8. By neglecting the effect of base
resistances and by treating the cascode transistor Q, as a unity current buffer, we can show that the

admittance matrix of the two-port amplifier is

[Yn Ysz} Rr : Rp GG
= 1
Y21 Yzz 1 s N :
e e et
Rr Rr @ -2

where
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Figure 7.6: Measured and Simulated |S 5, |

Cm

Cl - l+gmlRE

C,=C.c +Cb,c+Cbc2.

The gain function can be derived to be

Vo(s) - YsYy
Vi(s) YoV o - (Y +Ys) Yo+ 1)
- Ay
S2C\CoZP +5Zp [cl+cz[1+l” +[2+ L]
Ay Ay

(7.14)

From (7.14), the -3-dB ﬁ'eqﬁency can be predicted assuming that the transfer function has the dominant

pole

®,
2 L

fam=-Z CvCy = A,

(7.15)
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Figure 7.7: Measured and Simulated [S ;|

The above analysis agrees well with simulation results.

While frequency response is an important requirement in an RF amplifier, a good noise perfor-
mance is equally significant since it places a limit on the smallest RF signal that can be detected. Noise
figure (NF) is commonly used as a figure of merit in low-noise amplifiers (LNA). It is shown in Section
7.4 that this bandpass amplifier has better noise performance than that of the corresponding low-pass
amplifier since the source impedance Z; as defined in Fig. 4 has an inductive reactance component which
is closer to the optimum for lowest noise figure. The simulated noise figure has a minimum of 6.4 dB at
the frequency 1.5 GHz, of which 0.5 dB is contributed by transistor Q s and resistive loss in L,. For pur-
poses of comparison, the untuned circuit has a —3-dB frequency of 1.2 GHz and a noise figure of greater

than 7 dB at the frequency 1.5 GHz.
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Figure 7.8: Simplified Circuit for Frequency Analysis

7.4. Noise Figure Derivation

Noise figure is defined as the ratio of the total output noise power to the output noise power contri-
buted by the source resistance. Because of the influence of the source resistance on the noise figure, an
LNA often incorporates an impedance-matching network (ideally noiseless) at the input in order to obtain

an optimum source resistance for noise performance. In the following paragraphs, a general expression
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for the noise figure is derived and then used to predict the roise performance of the amplifier in Fig. 7.4.

Let Z, denote the source impedance, v,> denote the noise power of the source resistance, and
represent the noise performance of the amplifier by equivalent input noise voltage and current generators

v,-_" and z,_z After the noise voltage v; (rms value) is decomposed into
Vi = w+i; Z, (7.16)

where with respect to the noise current i;, v, is an uncorrelated part and Z, is a correlation factor

[Har76}, the noise figure can be shown to be

Wiy
I 2

NF = 1+ =+ — |Z, +Z|2. (7.17)

V:Z V,z

Now assume

Z. = R+ jX, (7.18)
Z, = R, + jX, (7.19)
v2 = 4KTR, Af (7.20)
iZ = 4TG;Af (7.21)
vZ = 4kTR,Af . (1.22)

Substituting (7.18-7.22) into (7.17) yields

R, G;
NF = 1+ — +— [(Rc +R)?+ (X, +x,)2] . (7.23)
R, R,

By taking the partial derivatives of (7.23) with respect to X, and R,, and setting them equal to zero we

find that the noise figure is optimum if

R,
X;(opt) = -X, and R,(opt) = \/ ron +R2. (1.24)

The above result is now applied to the circuit in Fig. 7.4. The amplifier noise is assumed to be
dominated by noise in the input transistor Q, and feedback resistors R and Rg. Figure 7.9(a) shows the
simplified input stage for noise analysis. In this figure, ‘;z' and i:.?_ are the equivalent noise generators for
the bipolar transistor Q. Quantities i,_2 and ‘? are the associated thermal-noise generators for the feed-

back elements. In Fig. 7.7(b), all the noise sources in the circuit are replaced by two equivalent noise
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Figure 7.9: (a) Simplified Input Stage for Noise Analysis and (b) Equivalent Noise Generators

generators v,_2 and z,_z The equivalent noise generators for the bipolar transistor are [Gra84]

< 3 7 1 Ty
V,% = Vbz + "bzlbz + |—+

gn Blw)

|2i2 (7.25)
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> 3 1 >
i2 =i +|=—|%i2. (7.26)

B(w)

In (7.25) and (7.26), quantities \?, i;z-. and ic_zare the noise generators of the base resistor, base current,

and collector current, respectively. They are expressed in terms of the mean-square values
vE = 4Try Af
— I8
2 B8
iy = 2qIgAf + KT Af
2 8m
;= 2q1cAf = 4kT—2—Af .

Taking into account the thermal noise generated by feedback elements Rg and Rg, we can show that the

overall equivalent noise generators are (rms values)

. 1  r+Re |,
y, = v,,+rbtb+[-g—m-+%)—]zc+v, (1.27)
A
i = lb+m+lf (7.28)

where i7 = 4kTRLAf andvZ2 = 4kTRgAf .
F
The correlation factor Z, as defined in (7.16) can be determined from the autocorrelation function
of v; and i; [Lee88]
E(viif) =E{(u+iZ)i ) = E(wii +Z.1i|*).

By assumption, quantities v, and i; are uncorrelated and thus

_E{wmil) _ E(wi}

Z, = =1 7.29
B 7 - 7.2

If the base shot noise and flicker noise can be neglected due to small dc base current and high-frequency

operation, respectively, the correlation factor can be derived to be

_1-+ ry +RE 1 ‘7

e B@ [P °
‘- 1 3.3
”3((1))[2 1. + i

. (7.30)

Equation (7.30) can be simplified to
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(ro +Rg) +B(©0) / gm
Z, =
1+a

=R, +j X, (7.31)

2
ngF

where a = |B(w)|? . Equation (7.16) is now rewritten as

Vy =V, — i,' Zc . (732)

Substituting (7.27), (7.28 ), and (7.31) into (7.32) gives

R 1 ).
v“=[v,,+v,]+{ng+ rbB:w)E H lfa],-c_{rbm“f%}[ 1+a]‘f' (7.33)

The mean-square value \E can be determined directly from (7.33) where the noise generators vy, v, i.,

and iy are uncorrelated. Quantity R, from ;,? = 4kTR Af is

2 2
Ry = (ry +Rg) + %"‘—{L L) H a ]

22 Bl [|1+a

2
oo )2
Rp g

- l+a

Quantity G; from i? = 4kTG;Af is

1 8m 1
P = —_—+—. 7.35
G IB(w)|? 2 " Re (.33

Quantities R;, R,, and G; as given in (7.31), (7.34), and (7.35), respectively, can be now substituted in

(7.24) for the optimum source resistance.

®
In the frequency range — < @ < @, , the current gain (w) can be approximated by

(4

_ Ot
B@) = =5 = Joc, -

(7.36)

Substituting (7.36) into the imaginary component of (7.31) gives

27 -1
o1 2 | O
X, = mcu[ungF[m” : (1.37)

Since X, (opt) = - X_, the optimum source reactance is inductive. The optimum source inductance is
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29-1
1 2 W,
L.(opt) = 1+ — . 7.38

(op) O)ZC,; [ ngF [ (0] ] ] ( )

The above analysis predicts that better noise performance can be achieved with the presence of
inductor L,. While this inductor is used mainly to shift the low-pass response to a bandpass response, it

also functions as an inductive source reactance for improving noise performance.

7.5. Conclusion

The application of monolithic inductors in the design of RF bandpass amplifiers has been investi-
gated in this chapter. Inductors can be used to boost circuit gain and to improve impedance matching and

noise performance. An L-band RF amplifier has been realized to confirm the theoretical investigation.



Chapter 8 - Conclusions and Future Directions

This thesis has demonstrated the application of Si bipolar IC technology to the design and fabrica-
tion of microwave inductors, voltage-controlled oscillators, and amplifiers. The attainable performance
with these individual circuits gives much promise and potential for the development of multifunction sili-
con MMICs (monolithic microwave integrated circuits). Analytical design techniques have been particu-
larly emphasized throughout this dissertation. They provide much insight into the circuit performance

and limitations, and have been pivotal in the development of new circuit configurations.

My =\ O Port 2

Port 1 C >

«—Q Port 3

Substrate

Figure 8.1: 3-Dimensional Inductor/Transformer Structure

Future research with potential application in MMIC technology may include the characterization of

the multispiral inductor/transformer structure shown in Fig. 8.1. Due to the magnetic field strongly cou-

100
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pling between the metal segments, this structure achieves a ratio of inductance per unit area higher than
that of a single spiral structure, which in turn implies higher inductor Q. Characterization of this struc-

ture is expected to be complicated and may require intensive EM-field theory.

In the equivalent lumped model of the spiral inductor investigated in Chapter 5, the substrate resis-
tor R, is probably the most difficult element to characterize. Though its value can be derived from the
measured § parameters, it is more desirable if the effect of this circuit element is minimized. One way to
minimize its effect is to introduce a highly doped n* layer underneath the structure. This provides an

alternative low-resistive conductive path to the substrate contact.

As frequencies of interest continue to increase, the electric coupling through the lossy Si substrate.
becomes important and can degrade the circuit performance, especially in Si microwave amplifiers. In an
amplifier circuit, the substrate can link the input to the output through the collector-substrate capacitance
of the active transistors, and may cause a reduction in circuit bandwidth due to the Miller multiplication
effect. It is important, therefore, to understand the substrate structure and to be able to characterize it
probably with a 3-D circuit model. Such research could provide explanations for many high-frequency

monolithic-amplifier anomalies presently observed in practice.



Appendix A - Indefinite Admittance Matrix

The indefinite admittance matrix is derived for the single-transistor oscillator shown in Fig. A.1.
For generality, the bias circuit is not shown and the datum node is not yet specified. The result obtained

can be used for analyzing the linear behavior of the Colpitts and Pierce oscillators.

Figure A.1: Single-Transistor Oscillator

The circuit is redrawn in Fig. A.2 in which the bipolar transistor is represented by a simplified

high-frequency model. The indefinite admittance matrix Y is defined as follows

I, Yy Yo Yia| |V
Il =Yy Yu Yu! |V,
1, Yy Y Y| | V3
where
I, I, I
Y= —(V2=V3=0) Yi=——(V=V3=0) VY;3=—(,=V,=0)
Vi Vs Vs

12 lz 12
y21 = —(V2=V3=0) Y22= —(V1=V3=0) Y23 _(V1=V2=0)
Vl V2 V3
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Figure A.2: Small-Signal Equivalent Circuit

I Iy I
Yy = — (V2=V3=0) Yyp=——(V,=V3=0) Yn=—"—(V,=V=0).
Vi Va Vs

Any indefinite admittance matrix has a special property that the sum of any row or column in the matrix

is equal to zero. The matrix Y can be derived to be

yo o L 1+5(Cx+Cry + Ly (Ca+Cr+ CY +°LiCoACr+ Cry
m- SLl l+S(C“+C")rb
v L 1+5(Cr+Cry +s°L\Cy

= SLl I+S(Cﬂ+ C"_)r,,

s(C+CQ/8n +82C2r,,(Cn+.C"_)/g,,,
Yi3=-gn

1+5(Cr+Crp
yo oL 1+S[(Cn+Cry —L1gn) +5*L,C,
ST 1+5(Ce+Cprs

v 1 { 1+5(Cx+Cpry +52L\(Cy+Cp+ Curygm) + S°L1C1(Cx+ Cput CoCul C)ry }
»n =

sL, 1+5(Ce+CPry

You = l+s(C1/g,,,+C“r,,)+52C1rb(C,‘+C“+C“Cu/C,)/g,,,
B="8m 1+5(Cr+CYry
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Ya = l+s(Cay+ Cit)/gm +s2C2rb(C,,+.C,,_)/g,,.
= "8n 1+5(Cp+Cprs

Yo = S(Cy ! gm +Cury) +5*C1ry(Cx+ Cy+CaCp/ Cy) 1 g
2= "8n 1+5(Cr+Cpry

Yon = 1+s[(Cy+Co+C)/gm +Cpyry] +5(Cy+ CIry(Cr + C)/8m+CrCylgml
B = &m 1+5(Ce+ Crs

1



Appendix B - Lossless Transmission Line Modeling

In this appendix we derive a simple lumped model for a lossless transmission line. This model can

be used to predict the excess phase due to interconnection lines in microwave integrated circuits.

From transmission-line theory, the two-port network representing a transmission line in Fig. B.1

has the following transmission matrix [Lee88]

1 1 1 2
O—>— ——0
+ +
Vi Transmission Line 2
o— —0

Figure B.1: Transmission Line represented by a Two-Port Network

lvl] cosh (y/) Z,sinh (yl) [Vz}
I leinh ah) cosh (Y/) I, |-

@®.1)

In (B.1), Y=a+ jP is the propagation constant, o. and B are the attenuation constant and phase con-

stant, respectively. If the transmission line is lossless (t=0), the transmission matrix (B.1) can be

simplified to
[ Vi ] cos (Bl) Jjz,sin (Bl) [Vz]
I, j-l— sin (B1) cos (Bl) I,
Z,
. . . . Vi,
If port 2 is terminated by a load impedance Z; , the input impedance T is
1

g -z ZtiZan @)
‘T Z, +jz an @)

If Z, =0 (shorted transmission line), the input impedance is purely inductive

105

®.2)

®.3)



106

Z
Z = jZ,tan(Bl) & L, = —jtan B . (B4)

If Z, = (open-circuited transmission line), the input impedance is purely conductive

Z, 1
= — = . B.5
e it iy =
I L, A
o—> ——+ T ? ——0
+ [ | +
[
I .
| [}
) Co ===
Vi : 2 2 ! V2
| ]
| [}
O T T O
] [}
Figure B.2: Lumped Model

In the following paragraphs we show that the circuit in Fig. B.2 is adequate for modeling a lossless
transmission line provided that quantity B/ is much less than 1. The transmission matrix for the circuit

of Fig. B.2 can be derived to be

1+ 2 &&.
I:Vl] $ 2 SL, lV2]
= . (B.6)
1 I
l sCo[l-;-sz__L‘f" ] [1+s2 LSZCO ] 2
Substituting s =jo, L, = %— tan (B!) ,and C, = 7 o tan (B/) into (B.6) yields

1 - Loan? @1)

[Vx] 2 JjZ,tan (Bl) [Vz} E

IL|~ 1 ! :
‘ i tan (1) [1-%lan2(Bl)] 1- @D L

If Bl (= -2% 1) is much less than 1 or equivalently, the length ! of the transmission line is much less
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than the quarter wavelength %-

tan (B1) = (B1) ®8)
cos (Bl) = 1- 5 (BI)? 39
sin (B1) = (B1). (B.10)
Using (B.8) in (B.7) gives
n [1mz @ Z@) | [v2
[" ] R [1'%@:)2] - G [12J | o

Substituting (B.9) and (B.10) into (B.2) gives

1
[v.} 1= B0 iz @) [Vz]
= . (B.12)

Bl _1 2| {12
1- 7 @)

From a comparison between (B.11) [lumped model) and (B.12) [transmission-line theory] we observe

that if B/ < 1, the lumped model of Fig. B.2 is adequate for modeling a lossless transmission line.



Appendix C - Software Characterization of the Spiral Inductor & Microstrip Line

C.1. Spiral Inductor

/*
* Using the Grover method, this program predicts the inductance value of a silicon integrated planar
* spiral-inductor. The program also predicts the resistive loss and shunting capacitance of the structure.
*
* References:
* (1) Inductance Calculation, F. Grover, 1942.
* (2) "Design of Planar Rectangular Microelectronics Inductors," H. Greenhouse, June 1974.
*

* Usage: spiral [-c -v -a -d -x] [-i <data>] [-0 <output>]

*

* Options:

* -c : keep outermost area constant, step down the turn number
-v : step down both the area and turn number

-a : consider the air-bridge segment

-d : print track distance & segment length

-x : xy coordinates for layout

-i : datafile
-0 : output file
Input Data:

L1 : length of the outermost segment #1
L2 : length of the outermost segment #2
W : metal width

S : metal spacing
T : metal thickness
N : tumn number
Assumptions:
(1) Dielectric and metal are non-magnetic materials. Inductance value is hence
independent of the current.

(2) Neglect "skin effect”, current is uniformly distributed. At low frequencies,
skin depth is significantly larger than the conductor thickness.
(3) Lumped model: good assumption up to the self-resonant frequency of the

#0% ¥ ¥ ¥ X OF F X ¥ OF ¥ K O O X OE H X X X ¥

spiral inductor.

*/

#include <stdio.h>

#define PI 3.14159

#define EPSILON 8.854e-14 /*F/cm */

#define RshM1 50e-3 /* sheet resistance, M1 */
#define RshM2 20e-3 [* sheet resistance, M2 */
#define CM1 0.029¢-15 /* F/um"2, M1 to SUB */
#define CM2 0.016e-15 /*F/fum"2, M2 to SUB */
#define TOX 1.7e-6 /* M2 10 SUB */

#define LAMBDA 4
FILE *ifp, *ofp;

int constant=0, vary=0, air=0, verbose=0, coord=0;
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double  L1,L2,W,S, T, n, Segment[100];

main(argc, argv)
int  argc;
char *argv(];
{
int ifind=0, ofind=0, argn=1, already_print=0;
double Lself, Mplus, Mminus, Lt;
double L, Length, Loss, M2Scap;
double log(), exp(), pow(), sqrt();
double  Abs(Q, Q0Q, GMD(;

/* Open user-defined input and output files */
while (argn < argc) {
if (stremp(argv(argn],”-c") == 0) constant=1;
else if (strcmp(argv([argn),”-v") == 0) vary=1;
else if (strcmp(argv[argn],”-a") == 0) air=1;
else if (stremp(argv[argn],”-d") == 0) verbose=1;
else if (stremp(argv[argn],"-x") == 0) coord=1;
else if (stremp(argv([argn],"-i") == 0) {
ifp = fopen(argv([++argn], "r");
ifind=1;
)
else if (stremp(argv(argn],”-0") == 0) {
ofp = fopen(argv[++argn], "w");
ofind = 1;
}

argn++;

}

/* Open default input and output files */
if (ifind==0) ifp = stdin;
if (ofind==0) ofp = stdout;

/* Get information about the spiral structure */
fscanf(ifp, "%f", &L1);

fscanf(ifp, "%f", &L2);

fscanf(ifp, "%f", &W);

fscanf(ifp, "%f", &S);

fscanf(ifp, "%f", &T);

fscanf(ifp, "%f", &n);

fprintf(ofp, "Input Data\n");

fprintf(ofp, "L1 = %5.1f (uM)\n", L1);

fprintfofp, L2 = %5.1f (uM)\n", L2);

fprintf(ofp, "W = %5.1f (uM)\n", W);

fprintf(ofp, " S = %5.1f (uM)\n", S);

fprintf(ofp, " T = %5.1f (uM)\n", T);

fprintf(ofp, " N = %5.1f, %3.1f (max)\n”, n, L1-W)(2.0%(W+S))+1);

/* Determine xy coordinates for the layout of the spiral inductor */
if (coord) print_xy();
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/* Convert input data from micrometer to centimeter */
L1=(L1-W)*1e-4;
L2=(L2-W)*1e-4;
W=W*le4;
S=S*1e-4;
=T*1e-4;

* Check for valid structure */

if (L1-(n-1)*(W+8)) <= (L1/2.0)) (
printf(" *** Structure violated with %3.1f complete turns ***\n", n);
exit(-1);

)

/¥ Start computation */

if ((constant) Hl (vary)) {
/* determine the maximum turn for the given outermost length */
n=(int) (L1/(2.0*(W+S))+1.0);

else if (air) {
/* add air-bridge segment */
n=n+(1.0/4.0);

)

do {
segment();
self(&Lself);
pos_mutual(&Mplus);
neg_mutuval(&Mminus);
res_loss(&Length, &Loss);
sht_cap(Length, &M2Scap);

Li=Lself+Mplus-Mminus;

if (lalready_print) {
heading();
already_print=1;
)
fprintf(ofp, "%7.4f %7.4f %7.4f %5.1f %5.1f %4.2f %7.4f %6.1f %5.2f %6.3f\n",
Lself, 2*Mplus, 2*Mminus, (L1+W)*1e4, (L2+W)*1e4, n, Lt, Length*1e4, Loss, M2Scap*1e12);

/* Keep outermost area constant but step down the turn number */
if (constant) n--;

/* Step down both the area and the turn number */
if (vary) {
n--;
L1=L1-2.0*(W+S);
L2=012-2.0*(W+S);
}
)
while ((n>0.0 && vary) Il (n>0.0) && constant));

fclose(ofp);
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/*

* This procedure prints the output heading.

*/

heading()

{
fprintf(ofp, "nSelf-Ind Pos-Ind Neg-Ind L1 L2 Turn Eff-Ind Length Loss Cap\n");
fprintf(ofp, " (nH) (nH) (H) M) (M) (nH) (M) (Ohm) (PF)\");

)

r*

* This procedure determines the segment lengths in the spiral inductor.
*/

segment(

{

inti, y;

Segment[1]=L1;
Segment{2]=L2;
for (i=3; i<=(4*n); i++) {
if (((+1)%2)==0) {
/* odd-numbered segments */
if ((air) && (i==4*n)) Segment[i]=L1-((int)n-1)*(W+S)+(W+S);
else {
y=(i+1)/2;
Segment[i]=L1-(y-2)*(W+S);
)
)
else {
/* even-numbered segments */
y=i/2;
Segment[i]=L2-(y-1)*(W+S);
)
}

if (verbose) {
printf("\nSegment Lengths (uM)\n");
for (i=1; i<=(4*n); i++) (
printf(" s[%2d] = %5.18\n", i, Segment(i]*1e4);
)
)
)

r*

* This function returns the absolute value.
*/

double Abs(value)

double value;
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if (value < 0.0) value=(-value);
return (value);

}

* ’
* This function determines the geometric mean distance between two segments.
*/
double GMD(d, W)
double d, W;
{
double gmd, r;

r=d/W;

gmd=log(d);
gmd=gmd-1.0/(12.0*pow(r,2.0));
gmd=gmd-1.0/(60.0*pow(r.4.0));
gmd=gmd-1.0/(168.0*pow(r,6.0));
gmd=gmd-1.0/(360.0*pow(r,8.0));
gmd=gmd-1.0/(660.0*pow(r,10.0));
gmd=exp(gmd);

return{gmd);

/*
* This function determines the mutual-inductance parameter Q.
*/
double Q(Length, gmd)
double Length, gmd;
{
double q;

if (Length==0.0) q=0.0;

else {
q=log((Length/gmd)+sqrt(1.0+pow((Length/gmd),2.0)));
q=q-sqrt(1.0+pow((gmd/Length),2.0));

] q=q+(gmd/Length);

return(q);

/*
* This procedure determines the self inductance of the straight-line segments.
*/

self(Lself)

double *Lself:
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{

int i, count=0;

*Lself=0.0;

for (i=1; i<=(4*n); i++) {
*Lself = *Lself+(2.0* Segment(i])*(log(2.0* Segment[il/(W+T))+.50049+(W+T)/(3.0*Segment(il));
count++;

}
if (verbose) printf("\nNumber of Self-Inductance Terms = %5d\n", count);

r*
* This procedure determines the positive mutual inductance between all the

* parallel segments that have the same current direction.
*
* General: 2M = M(1+m-delta) + M(delta) - M(l-delta) - M(m-delta)
* Special Case: 2M = M(m+p) + M(m+q) - M(p) - M(@)
*/
pos_mutual(Mplus)
double *Mplus;
{

int i, j, k, count=0;

double d, p, q, m, Mmp, Mp;

double 1, delta, Mlmd, Md, Mld, Mmd;

if (verbose) {
printf("\nDistance between Track Centers (uM)\n");
for (i=1; i<=(int) ((n-1)*4); i++) (
Jj=(int) (4*n-i)/4;
for (k=1; k<=j; k++) {
if ((air) && (i+4*k==4*n)) (
d=k*(W+S);
delta=Segment((int) (4*n-2)]+(k-1)*(W+S);
printf("  d{%2d,%2d)] = %5.1f delta = %5.1f\n", i, (int) (4*n), d*1e4, delta* 1e4),
}
else {
d=k*(W+8S);
p=q=k*(W+S);
printf("  d[%2d,%2d] = %5.1f p = %S5.1f q=%5.1f\n", i, (i+4*k), d*1e4, p*1e4, q*1ed);
}
)
)
}

*Mplus=0.0;
for (i=1; i<=(int) ((n-1)*4); i++) (
j=(int) (4*n-i)/4;
for (k=1; k<=j; k++) {
if ((air) && (i+4*k==4*n)) {
d=k*(W+S);
1=Segment[i];
m=Segment[(int) (4*n)];
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}

delta=Segment[(int) (4*n-2)]+(k-1)*(W+S);
Mimd=2.0*(1+m-delta)*Q((1+m-delta), GMD(d,W));
Md=2.0*delta*Q(delta, GMD(d,W));

MId=2.0* Abs(l-delta)*Q(Abs(l-delta), GMD(d,W));
Mmd=2.0* Abs(m-delta)*Q(Abs(m-delta), GMD(d,W));
*Mplus = *Mplus+2.0*((MImd+Md-MIid-Mmd)/2.0);
count++;

else {

}
}
}

d=k*(W+S);

p=k*(W+S);

m=Segment[i+4*k];
Mmp=2.0*(m+p)*Q((m+p),GMD(d,W));
Mp=2.0%p*Q(p,GMD(d,W));

*Mplus = *Mplus+2.0*(Mmp-Mp);
count++;

if (verbose) printf(™nNumber of Positive Mutual-Inductance Terms = %5d\n", count);

}

/*
* This procedure determines the negative mutual inductance between all the
* parallel segments that have the opposite current direction.
*
* General: 2M = M(+m-delta) + M(delta) - M(I-delta) - M(m-delta)
* Special Case: 2M = M(m+p) + M(m+q) - M(p) - M(q)
*/
neg_mutual(Mminus)
double *Mminus;
{
int i, j, k, count=0;

double d, p, q, m, Mmp, Mmq, Mp, Mq;
double 1, delta, Mimd, Md, Mld, Mmd;

if (verbose) {
printf("\nDistance between Track Centers (uM)\n");
for (i=1; i<=(int) (n*4-2); i++) (
j=(int) (4*n+2-i)/4;
for (k=1; k<=j; k++) {

if ((air) && (i+4*k-2==4*n)) {
d=Segment[i+1]}-(k-1)*(W+S);
delta=Segment[(int) (4*n)]+(k-1)*(W+S);
printf(" d(%2d,%2d) = %5.1f delia = %5.1f\n", i, (int) (4*n), d*1e4, delta* 1e4);
} .
else (

d=Segment[i+1]-(k-1)*(W+S);

p=k*(W+S);

q=(k-1)*(W+3);

printf("  d[%2d,%2d] = %5.1f p=%5.1f q=%5.1f\n", i, (i+4*k-2), d*1le4, p*led, q* led);
)
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}
}
)

*Mminus=0.0;
for (i=1; i<=(int) (n*4-2); i++) (
j=(int) (4*n+2-i)/4;
for (k=1; k<=j; k++) {
if ((air) && (i+4*k-2==4*n)) (
d=Segment[i+1]-(k-1)*(W+S);
1=Segment[(int) (4*n)];
m=Segment[i];
delta=Segment[(int) (4*n)]+(k-1)*(W+S);
Mimd=2.0*(1+m-delta)*Q((1+m-delta) GMD(d,W));
Md=2.0*delta*Q(delta, GMD(d,W));
Ml1d=2.0*Abs(l-delta)*Q(Abs(l-delta), GMD(d, W));
Mmd=2.0*Abs(m-delta)*Q(Abs(m-delta), GMD(d,W));
*Mminus = *Mminus+2.0¥*(MImd+Md-MIld-Mmd)/2.0);
count++;
)
else (
d=Segment[i+1]-(k-1)*(W+S);
p=k*(W+S);
q=(k-1)*(W+S);
m=Segment[i+4*k-2];
Mmp=2.0*(m+p)*Q((m+p).GMD(d,W));
Mmq=2.0*(m+q)*Q((m+q).GMD(d,W));
Mp=2.0*p*Q(p,GMD(d,W));
Mq=2.0*q*Q(q,GMD(d,W));
*Mminus = *Mminus+2.0*((Mmp+Mmgq-Mp-Mq)/2.0);
count++;
]
}

}
if (verbose) printf("\nNumber of Negative Mutual-Inductance Terms = %5d\n", count);
}

™

* This procedure accumulates the sheet resistance in the segments.
*/

res_loss(Length, Loss)

double *Length, *Loss;

{

int i;

*Length=W;
for (i=1; i<=4*n; i++) *Length = *Length+Segment][i];
if (air)
*Loss=(RshM2*(*Length-Segment[i-1])/W)+(RshM1*Segment[i-1}/W);
else
*Loss=RshM2*(*Length/W);
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/*

* This procedure determines the parasitic capacitance from the metal segments to the substrate.
*/

sht_cap(Length, M2Scap)

double Length, *M2Scap;

{

int i=4*n;

/* Determine cap per unit area using parallel-plate formula */
*M2Scap=(3.9*EPSILON)/(TOX*1e2); /* F/fcm"2 */
*M2Scap=(*M2Scap)/1e8; * Flum™2 */

/* Consider total area of spiral inductor, appears too large */
*M2Scap=((L1+W)*(L2+W)*1e8)*CM2;

/* Consider effective area, seems about right. Also add fringing effects, 25% to 30% of total cap */
if (air)
*M2Scap=((Length-Segment[i])*W* 1e8)*CM2+(Segment[i]*W*1e8)*CM1;
else
*M2Scap=(Length*W*1e8)*CM2;
*M2Scap=(*M2Scap)*1.25;

/*
* This procedure determines the XY coordinates for the layout of the spiral inductor.
*/
print_xy()
{
inti, L1s,L2s, Ws, Ss;

printf("\nSegment (x1,yl) (x2,y2)\n");

L1s=(int) (L1*LAMBDA);

L2s=(int) (L2*LAMBDA);

Ws=(int) (W*LAMBDA);

Ss=(int) (S*LAMBDA);

for (i=1; i<=(int) n; i++) (
if (i==1) printf("%4d  (%3d,%3d) ", (i-1)*4+1, 0, L2s-(i-1)*(Ws+Ss));
else printf("%4d  (%3d,%3d) ", (i-1)*4+1, (i-2)*(Ws+Ss), L2s-(i-1)*(Ws+Ss));
printf("(%3d,%3d)\n", L1s-(i-1)*(Ws+Ss), L2s-i*(Ws+Ss)+Ss);

printf("%4d  (%3d,%3d) ", (i-1)*4+2, L1s-(i-1)*(Ws+Ss), L2s-(i-1)*(Ws+Ss));
printf("(%3d,%3d)\n", L1s-i*(Ws+Ss)+Ss, (i-1)*(Ws+Ss));

printf("%4d  (%3d,%3d) ", (i-1)*4+3, L1s-(i-1)*(Ws+Ss), (i-1)*(Ws+Ss));
printf("(%3d,%3d)\n", (i-1)*(Ws+Ss), i*(Ws+Ss)-Ss);

printf("%4d  (%3d,%3d) ", (i-1)*4+4, (i-1)*(Ws+Ss), (i-1)*(Ws+Ss));
printf("(%3d,%3d)\n", i*(Ws+Ss)-Ss, L2s-i*(Ws4+Ss));
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C.2. Microstrip Line

/‘

* This program determines the effective characteristic impedance and wavelength of a microstrip line.
* It also determines the shorted-stub inductance and the open-stub capacitance.

*

* References:

* (1) Microwave Circuit Analysis and Amplifier Design, S. Liao, 1987.

* (2) "Principles of Microstrip Design”, A. Tam, June 1988.

*

* Usage: strip [-m1 -m2 -ga] -w <width> -1 <length> -f <frequency> [-0 <output>]

*

* Options:

* -m1 : microstrip line made of M1 metal

* -m2 : microstrip line made of M2 metal

* -ga : microstrip line using GaAs technology

* -0 :output file

*

* Input Data:

* -w : width in micrometer

* -1  :length in micrometer

* -f :frequency

*/
#include <stdio.h>
#define PI 3.14159

#define Eo 8.854e-12

#define C 3.0e8 /* velocity of light in vacuum, m/s */
#define EOx 39 /* relative dielectric constant of oxide */
#define ESi 11.7 /* relative dielectric constant of silicon */
#define EGaAs 13.1 /* relative dielectric constant of GaAs */

#define MICAP 0.029e-15 /* parasitic cap from M1 to Sub */
#define M2CAP 0.016e-15 /* parasitic cap from M2 to Sub */

FILE *ifp, *ofp;

main (argc, argv)
int argc;
char *argv(];
{
int ifind, ofind, argn=1, SiM1=0, SiM2=0, GaAs=0;
double W, Length, Freq, T, H, CpA, Er;
double Weff, Eeff, Zo, Coeff, Lambda;
double Leff, Ceff, Sig, Par;
double  abs(), log(, exp(), pow(, sqrtQ, tan();

/* Open user-defined input and output files */
while (argn < arge) (
if (stremp(argv(argn],”-m1") == 0) SiM1=1;
. if (stremp(argv[argn],”-m2") == 0) SiM2=1;
if (stremp(argv[argn],”-ga") == 0) GaAs=1;
if (stremp(argv(argn],”-w") == 0)
sscanf (argv[++argn], "%f", &W);
if (stremp(argv(argn},”-17) == 0)
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sscanf (argv[++argn], "%f", &Length);

if (strcemp(argv[argn],”-f") == 0)
sscanf (argv[++argn], "%f", &Freq);

if (strcmp(argv([argn},"-i") == 0) {
ifp = fopen(argv[++argn], "r");
ifind=1;

)

else if (strcmp(argv(argn],"-0") == 0) {
ofp = fopen(argv[++argn], "w");
ofind=1;

)

argn++;

}

/* Open default input and output files */
if (ifind==0) ifp = stdin;
if (ofind==0) ofp = stdout;

if (SiM1) {
T=0.675; H=0.8;
CpA=M1CAP; Er=EOx;
)
else if (SiM2) {
T=1.8; H=1.7;
CpA=M2CAP; Er=EOx;
)
else if (GaAs) (
T=1.8; H=200.0;
CpA=0.0; Er=EGaAs;
)

/* Determine the effective width, Eqns. (6-1-8a) & (6-1-8b) */

if ((T/H >= .005) && (W/H >= 1.0/(2.0*PI)))
Weff=W+(T/PI)*(1.0+log(2.0*H/T));

else if ((T/H >= .005) && (W/H <= 1.0/(2.0*PI)))
Weff=W+(T/PI)*(1.0+log(4.0*PI*W/T));

else Weff=W;

/* Determine the effective relative dielectric constant, Eqns. (6-1-2) & (6-1-3) */
if (Weff/H <= 1.0)

Eeff=(Er+1.0)/2.0 + ((Er-1.0)/2.0)*(pow(1.0+12*H/Weff,-0.5)+0.04*pow(1.0-Weff/H,2.0));
else

Eeff=(Er+1.0)/2.0 + ((Er-1.0)/2.0)*pow(1.0+12*H/Weff,-0.5);

fprintf(ofp, " Input Data\n");

fprintf(ofp, " W = %5.1f (uM, conductor width)\n", W),
fprintf(ofp, " L = %S5.1f (uM, conductor length)\n", Length);
fprintf(ofp, " T = %5.1f (uM, conductor thickness)\n", T);
fprintf(ofp, " H = %S5.1f (uM, dielectric thickness)\n", H);
fprintf(ofp, " Er = %?35.1f (relative dielectric constant)\n", Er);

fprintf(ofp, " Weff = %S.1f (uM, effective conductor width)\n", Weff);
fprintf(ofp, " Eeff = %5.1f (effective dielectric constant)\n\n", Eeff);



/* Determine the characteristic impedance, Eqns. (6-1-6) & (6-1-7) */
if (Weff/H <= 1.0)
Zo=(60.0/sqrt(Eeff))*log(8.0*H/Weff+0.25* Weff/H);
else
Zo=(120.0*Pl/sqrt(Eeff))/(Weff/H + 1.393 + .667*log(Weff/H + 1.444));

/* Determine the wavelength, Eqns. (6-14) & (6-1-5) */
if (Weff/H >= 0.6)
Coeff=(1.0/sqrt(Er))*sqrt(Er/(1.0+0.63*(Er-1.0)*pow(Weff/H,.1255)));
else
Coeff=(1.0/sqrt(Er))*sqrt(Er/(1.0+0.60* (Er-1.0)*pow(Weff/H,.0297)));
Lambda=Coeff*C/Freq;

/* Convert the conductor length from micrometer to meter */

Length=(Length*1e-6);

/* Shorted-stub inductance */
Leff=(Zo/(2.0*PI*Freq))*tan(2.0*PI*Length/Lambda);

/* Open-stub capacitance */
Ceff=(1.0/(2.0*PI*Freq*Zo))*tan(2.0*PI*Length/Lambda);

/* Parallel parasitic cap calculation. Use the original width in the computation */
Par=(Eeff*Eo)*(W/H)*Length;

/* Signetics parasitic cap calculation */
Sig=1.25*CpA*(Length*1e6)*W,

fprintf(ofp, "Characteristic Impedance = %4.1f\n", Zo);

fprintf(ofp, "Frequency = %7.1e\n", Freq);
fprintf(ofp, "Wave Length = %8.2e\n", Lambda);
fprintf(ofp, "Shorted-stub Inductance = %5.3f (pH)\n", Leff*1e12);
fprintf(ofp, "Open-stub Capacitance = %5.3f (fF)\n", Ceff*1e15);
fprintf(ofp, "Parallel-Plate Cap. = %5.3f (fF)\n", Par*1el5);
fprintf(ofp, "Signetic-Process Cap. = %35.3f (fF\n", Sig*1el5);
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