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Abstract

This dissertation explores a systematic design methodology for microwave LC sinusoidal oscilla

tors. The objective is to realize oscillators that achieve reliable oscillation build-up and have a single

predictable frequency of oscillation in the steady state. This dissertation also explores novel sinusoidal

VCO (voltage-controlled oscillator) configurations, and investigates the application of inductors in the

design of silicon bipolar monolithic RFamplifiers.

A key problem in the implementation of monolithic microwave LCoscillators is therealization of

integrated inductors. Through use of asilicon bipolar IC process featuring oxide isolation and multilayer

metal options, practical inductors atmicrowave frequencies have been fabricated and fully characterized.

Inductor Q factors from 3 to 10 and inductors up to 10 nH inthe GHz range were achieved.

Presently available sinusoidal VCOs often require external varactors (voltage-controlled capaci

tors) and inductors for frequency tuning and are not suitable for monolithic integration. A novel

sinusoidal VCO circuit has been realized that achieves a simulated tuning range of 300 MHz, extending

from 1.5 GHz to 1.8 GHz. This circuit does not require a varactor for frequency tuning but, instead,

relies oncharacteristics inherent in thecircuit configuration. Simulation results also indicate that this cir

cuitis insensitive toprocess tolerances and temperature variations.

Inductors are used to boost circuit gain and to improve matching and noise performance in RF

amplifiers. A bipolar monolithic bandpass amplifier has been fabricated and characterized. It achieves a

peak S2i gain of8dB, a simulated noise figure of6.4 dB, and a matched input impedance of50 Qin the

frequency range 1 to 2 GHz.
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Chapter 1 - Introduction

1.1. Motivation

Recent advances insilicon bipolar IC technology have sparked interest indeveloping multifunction

silicon MMICs (monolithic microwave integrated circuits) for communication systems. In particular,

various research and advanced developments are presently directed toward demonstrating silicon integra

tion of theRFreceiver system shown Fig. 1.1. This system finds wide application from mobile radio to

microwave satellite reception such as theglobal positioning satellite (GPS) and thedirectbroadcast satel

lite (DBS). Due to the system complexity and the high-frequency requirement, it is necessary toobtain

firm knowledge on the performance and limitations of the circuit components of which the system is

composed. Also, the optimized performance ofsilicon technology is tobeexploited because it provides

the lowest-cost solution, and thus will have the widest impact on practical systems. This dissertation is

concerned with the design and fabrication of the voltage-controlled oscillator (VCO) circuits andthe RF

amplifiers which are to be usedin monolithic microwave (> 1 GHz) RFreceivers.

Mixer

RF Amp

Image Filter HXH IF Filter >
IF Amp

VCO Counter

Loop Filter h<r
Phase Detector

XCO

Figure 1.1: Block Diagramof an RF Receiver

Output
-o
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As frequencies of interest enter the microwave region, parasitic device elements in an oscillator

circuit introduce significant excess phase shiftandhence modifytheoscillation frequency. It is shownin

Chapter 3 that conventional oscillator design techniques may not be applicable in the design of

microwave oscillator circuits. With regard to the initial (linear) response of an oscillator, the so-called

start-up conditions have been widely used for predicting the existence of an oscillatory behavior in the

circuit. However, these conditions are notalways valid and can provide misleading results. It is, there

fore, important to understand the limitations of these conditions and tointroduce additional analysis tech

niques. Conventional design techniques are also insufficient for analyzing the multi-oscillation

phenomenon in which two or more oscillations are simultaneously present in the steady state. This

dissertation explores a systematic design methodology for microwave LC sinusoidal oscillators that

achieve reliable oscillation build-up and have a single predictable frequency of oscillation in the steady

state. While silicon bipolar technology is of primary interest in this dissertation, thedesign methodology

is equally applicable in other technologies.

Depending on the shape of theoscillator outputwaveform, we canclassify oscillator circuits in two

groups: relaxation oscillators and sinusoidal oscillators. Most presently available voltage-controlled

oscillators in monolithic IC technology are relaxation based since only capacitors are required as the

frequency-selective elements. Sinusoidal VCOs on the other hand often require external varactors and

inductors for defining oscillation frequency and hence are not suitable for monolithic integration. This

dissertation also explores new sinusoidal VCO configurations that donotdepend onvaractor elements for

frequency tuning.

A sinusoidal oscillator normally relies on an LC tuned circuit for defining the oscillation frequency

and for reducing noise and distortion in theoutput signal. Current oscillator circuits oftenutilize external

microstrip inductors. This hybrid approach is, however, undesirable because of the additional assembly

cost, anda more serious drawback is due to parasitic packaging elements associated with the external

inductors. In the early development of silicon integrated circuits, planar inductors were investigated, but

the prevailing lithographic limitations and relatively large inductance requirements resulted inexcessive



silicon area and poor performance. Through use of a silicon bipolar IC process featuring oxide isolation

and multilayer metal options, practical inductors atmicrowave frequencies have been fabricated and fully

characterized.

This dissertation also investigates the application of monolithic inductors in the design and fabrica

tion of Sibipolar RF bandpass amplifiers. Inductors are used toboost circuit gain and toimprove match

ing and noise performance.

1.2. Thesis Organization

Chapter 2 presents the oscillator models and defines the concept of circuit instability. Methods for

predicting the frequency and amplitude of oscillation are studied inChapter 3. We investigate the limita

tions in the traditional start-up conditions and propose circuit techniques for fully analyzing the linear

behavior of oscillator circuits. The multi-oscillation phenomenon is analyzed in detail. Conditions for

achieving frequency stability and amplitude stability are derived for use in the design of well-behaved,

frequency-stable, and amplitude-stable sinusoidal oscillator circuits. In Chapter 4 we study the interac

tion between circuit components in negative-resistance oscillators, and then explore a design methodol

ogy for microwave oscillators based on the negative-resistance model. The results obtained from this

study are applied to thedesign and analysis of awidely-used but poorly-characterized microwave oscilla

tor configuration. In Chapter 5, passive inductors and LC filters fabricated in standard silicon IC technol

ogy are demonstrated. Chapter 6 presents anovel sinusoidal VCO circuit configuration and a monolithic

implementation of this circuit The application of monolithic inductors to the realization of Sibipolar

monolithic RF amplifiers is investigated in Chapter 7. Chapter 8concludes with aresearch summary and

indicates potential future research topics.



Chapter 2 • Oscillator Characteristics and Models

2.1. Oscillator Characteristics

An oscillator is an autonomous analog circuit whose function is to generate a stable and periodic

waveform. Oscillator circuits can be classified in two groups: relaxation oscillators and sinusoidal oscil

lators. A relaxation oscillator produces a non-sinusoidal output signal as the circuit switches back and

forth between two astable (unstable equilibrium) states. Such an output signal has relatively high har

monic contentand is suitable for applications where high spectral purity is not important A thorough

discussion of relaxation oscillators can be found in [Liu88, Ped89]. A sinusoidal oscillator, as the name

implies, is capable of producing a near-sinusoidal signal andhasbroad application in communication sys

tems. Sinusoidal oscillators usually use LC tuned circuits, crystals [Fre78], or dielectric resonators

[Bah88] for defining the oscillation frequency. Henceforth, unless otherwise stated, the term oscillator is

usedto mean a sinusoidal oscillator. Anoscillator circuit is typically characterized by

• The oscillation frequency, f0.

• The oscillationamplitude,A0, which indicatesthe availableoutputpower.

• The degree to which the oscillation frequency can remain constant given variations in nonlinear

circuit elements (frequency stability).

• The stabilityof the outputsignaldue to random excitation (amplitude stability).

• The spectral purity of the output signal which is affected by frequency-modulated (FM) and

amplitude-modulated(AM) noise, and by harmonicdistortion.

2.2. Oscillator Models

The analysis of oscillators can be based on two fundamental models: the feedback model and the

negative-resistance model. Figure 2.1 shows the feedback model in which an oscillator is decomposed

into a forward network and a feedback network. If the circuit is unstable about its operating point

(natural frequencies in the righthalfplane of thecomplex-frequency plane), then given an initial excita-
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Figure 2.1: Feedback Model

tion, it produces a growing transient. As the signal becomes large, the active devices in the circuit

become nonlinear andeventually limit the growth of the signal. Since an oscillator is an autonomous cir

cuit electronic noise in thecircuit or power supply turn-on transient can provide the initial excitation that

initiates the oscillation build-up. Figure 2.2 shows how theColpitts oscillator can be viewedas a feed

back circuit We note that both the forward and feedback networks are multi-port circuits. For ease of

reference, henceforth, the term feedback oscillator is used to denote an oscillator circuit that can be

analyzed using the feedback model. The linear behavior of a feedback circuit is typically studied with

the loop gain quantity, defined as the product of the forward and feedback transfer functions a(s) and

T(s) = a(s)f(s). (2.1)

It is shown inSection 2.3 that the expression 1- T(s)=0 gives the characteristic equation of the circuit

from which the natural frequencies are found.

Figure 2.3 show the negative-resistance model in which an oscillator is separated into a one-port

active circuit and a one-port resonant circuit The function of the active circuit is to produce a small-

signal negative resistance about the operating point of the oscillator circuit and to couple with the

resonant circuit for defining the frequency of oscillation. The resonant circuit is usually a linear time-

invariant circuit and issignal independent Figure 2.4 shows how the Colpitts oscillator can be separated
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into an active circuit anda resonant circuit. Weusethe term negative-resistance oscillator to denote an

oscillator circuit that can be analyzed using the negative-resistance model. In Fig. 2.3, the active and

resonant circuits arecharacterized byimpedance quantities Za (s) and Zr(s), respectively. They can also

be characterized in terms of active admittance Ya(s) and resonant admittance Yr(s). It is shown in the

next section that the characteristic equation of a negative-resistance oscillatorcan be derived from either

the expression Za(s) +Zr(s) =0 or Ya(s) + Yr(s) - 0. The negative-resistance model has been widely

used in the design of microwave oscillators due to its simplicity. Many negative-resistance oscillators

use the one-port tunnel diodes and avalanche diodes as the active circuits.
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Figure 2.4: Negative-Resistance Oscillator

2J. Natural Frequencies

As a basic requirement for producing a self-sustained near-sinusoidal oscillation, an oscillator must

havea pair of complex-conjugate natural frequencies in theright-half plane (RHP)

^u = a+7'P. (2.2)

While this requirement does not always guarantee an oscillation in the steady state, it is nevertheless a

necessary requirement for any well-behaved oscillator. When excited by electronic impulses, the RHP

natural frequencies in(2.2) give rise toa sinusoidal signal with an exponential growing envelope

x(t) = Kem cosflfc). (2.3)

The growth of this signal is eventually limitedby the nonlinearities of the active devices. As mentioned

above, the application of either the feedback model or the negative-resistance model is sufficient for

analyzing the linear behavior ofan oscillator. The analysis is essentially a study of the natural frequen

cies from the characteristic equation of thecircuit Onecommon procedure to obtain thecharacteristic

equation is to equate the determinant of the circuit's homogeneous system ofalgebraic equations to zero

[Chu87].
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In the following paragraphs we study other methods for deriving the characteristic equations in

feedback and negative-resistance oscillators. In Fig. 2.5, we assume that a feedback oscillator can be

representedby the two-port Y networks. The current source/, modelselectronic impulses in the circuit

The system of algebraic equations for this circuit is

Is = (Fin + Yuf) Vt + (Yl2a + Yw) V0 (2.4)

0 = (X2la + Y21f )Vi+(X22a+Y22f)V0. (2.5)

The determinantof the above system is simply

D(s) = (Ylla+Ynf)(Y22a+Y22f)-(Y2la+Y2lf)(Yl2a+Yl2f). (2.6)

We now derive the transfer function V0 IIs. It can be shown that

y»fr> _ -<Y21a+Y21f)
/.(*) (Til. +Ynf) (Ta. +Y22f)-(Y2la +Y2V) (Yl2a +yiy) ' (2>7)

It is useful to define

KS) (lrn.+lriV)(ya.+Ir2y) ( '
f(s) = (Yl2a+Yl2f). (2.9)

Using the definitions (2.8) and (2.9) in(2.7) yields the ideal feedback equation

V»M = -a(s) = -a(s)
Is(s) l-a(s)f(s) l-T(s)' (2.10)

We note from (2.6), (2.7), and(2.10) that the characteristic equation ofa feedback oscillator can also be

determined from the expression 1- T(s) =0. This provides us with another method for analyzing the

linear behavior of feedback oscillators.

Figure 2.6 shows one general representation of a negative-resistance oscillator. We assume that

the active and resonant circuits can be modeled by the two-port Ynetworks. The system ofalgebraic

equations is
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Figure 2.6: Negative-Resistance Oscillator represented by Two-Port Y Networks

h = Ylla Vx + ^i2« V2
72 = Y2la V\ + y22a V2

-h = Tnr V2 + Yl2r V3

I3 = Y2Xr V2 + Y22r V3
/2 = o

/, = "•

The deteiminant of the system (2.11) is

(2.11)
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D(s) = YUa (YurY^-Y^Y^ + Y^ (YUaY22a-Y2laYl2a) . (2.12)

If we characterize the active and resonant circuits by equivalentadmittances Ya(s) and Yr(s), respec

tively, we can show that

roW =r22.-%IiSL (Z13)
-Mia

Yr(s) = Ynr- 2l' 12r . (2.14)
i22r

Now by equating the sum of (2.13) and (2.14) to zero, we obtain

Ya(s) + Yr(s) = 0 = Ylla (YnrY^-Y^Y^ + Y^ (Y^Y^ - Y2XaYX2a) . (2.15)

Wenotefrom (2.15) that the expression Ya(s) + Yr (s) = 0 gives the same characteristic equation (2.12),

and thusprovides us with another method for studying the linearbehavior of negative-resistance oscilla

tors. By similar analysis, we can show that if the active and resonant circuits are characterized by

equivalent impedances Za(s) and Zr(y), respectively, the expression Za(s)+ Zr(s)= 0 also gives the

same characteristic equation.

2.4. Summary

Bothfeedback and negative-resistance models for analyzing oscillator circuits havebeendiscussed

in this chapter. The concept of circuit instability has also been defined. An oscillator circuit must be

unstable about its bias point or, equivalendy, have natural frequencies in the right half plane of the

complex-frequency domain if an oscillation build-up is to take place. The natural frequencies can be

found from the characteristic equation of the circuit. For a feedback oscillator, the characteristic equation

isgiven bythe expression 1- T(s)= 0. For a negative-resistance oscillator, the characteristic equation

is givenby either the expression Za (s) + Zr (s) - 0 or Ya (s) + Yr (s) = 0.



Chapter 3 - Oscillator Analyses

3.1. Introduction

Analytical expressions governing the initial and steady-state responses of feedback and negative-

resistance oscillator circuits are discussed in this chapter. The conventional start-up conditions that have

been used for predicting whether anoscillation build-up can take place in anoscillator are reexamined. It

is shown that these conditions are notalways valid and can provide misleading results. This conclusion

helps provide explanations tomany examples of unpredictable oscillation behavior observed inpractice.

Methods for predicting the frequency and amplitude of oscillation are also explored in this chapter. Con

ditions for achieving frequency stability and amplitude stability are derived for use in the design of well-

behaved, frequency-stable, and amplitude-stablesinusoidaloscillatorcircuits.

3.2. Small-Signal Analysis

Electronic noisecanproduce growing transients in anoscillator provided thatthe circuit hasnatural

frequencies in the RHP. As long as the transients are small, the initial response of the oscillator can be

analyzed using linear analyses such as the Nyquist, Bode, and root locus [Lin61]. As mentioned in

Chapter 2, the small-signal analysis of an oscillator isessentially astudy of the circuit's natural frequen

cies.

3.2.1. Feedback Oscillators

For a feedback oscillator circuit the fulfillment of the following well-known condition hasbeen

used asan indication that the circuit isunstable (it can produce an expanding transient when subject toan

initial excitation)

Ph {7*(©x)} = 0 Mag { T(a>z) } > 1. (3.1)

In (3.1), T denotes the loop gain expression and ooz denotes the zero-phase frequency atwhich the total

phase shift through both the forward and feedback networks iszero. It isimportant however, to keep in

mind that there are oscillator circuits that meet the start-up condition (3.1) but are, nevertheless, stable

11
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circuits and hence cannot produce an oscillation. Equivalendy stated, the fulfillment of condition (3.1)

does not necessarily imply that a circuit is unstable.

The above remark is now illustrated through use of the Pierce oscillator shown in Fig. 3.1. For

simplicity, circuit elements rbt r0, and C^ of the bipolar transistor are neglected. After lumping the

remaining parasitic elements of the transistor to the appropriate passive elements, we can show that the

loop gain of the circuit is

where

T(s) = -T0

To = gnRi

a3=LC2/MC,(l+ -£- +-£-)
Ci L2

a2 =L(C+C2) +jRl(Cl+C2)

*i = j+RiiCi +CJ

a0 = 1.

s2LC + s=- + 1

a3s3 +a2s2+alsl + a0 (3.2)
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The natural frequencies can be determined from the roots of the expression 1- T( s) =0. Figure 3.2

shows the root locus as a function of quantity gM (=/c / VT ). Quantities gm\ and gm2 denote the bias

current range for whichthecircuit hasa pair of RHP natural frequencies. From this plotwe observe that

withadequate dc loop gain (gmlR i £ T0 £ gm2R j), thecomplex-conjugate natural frequencies enter the

RHP from the left-half plane (LHP) of the complex-frequency plane. Under this situation the circuit is

unstable and would produce a growing sinusoidal signal in response to electronic impulses. If the loop

gain is too large (gm > gm2), however, it is interesting to note that the complex natural frequencies

reenter theLHP. Under thissituation thecircuit is stable and would produce a decaying sinusoidal signal

in response to electronic impulses. The Bode plot for thecase gm > gm2 is shown in Fig. 3.3. We note

that there are two frequencies, co,i and tol2, where (3.1) is clearly satisfied but the circuit is yet stable

according to the root locus of Fig. 3.2. To further confirm this observation, wegenerate theNyquist plots

of (3.2) in Fig. 3.4(a) and Fig. 3.4(b) for gml < gm < gm2 and gm > gm2, respectively. It is helpful to

recall the Nyquist criterion:
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Figure 3.3: Bode Plotforthe Circuit ofFig. 3.1

Freq

If the polar plot ofT(<£>) plus its mirror image encircles the point (1,0) ina clockwise

direction as co variesfrom zero to infinity, the circuit isunstable [Che68].

In Fig. 3.4(a), there are two clockwise encirclements ofthe point (1,0) which indicates the existence of

two RHP natural frequencies. In Fig. 3.4(b), the net clockwise encirclement of the point (1,0) is zero

which confirms that for gm > gm2, thecircuitis indeed stable.

The above analysis affirms that the start-up condition (3.1) is not always sufficient for predicting

the circuit instability and should be used with the full knowledge of its limitation. As arule of thumb, the

condition (3.1) isvalid if itholds atonly one frequency ©,.

322. Negative-Resistance Oscillators

The negative-resistance model ofFig. 2.3 isoften used in the design ofmicrowave oscillators due

to its simplicity. Assume that the active and resonant circuits are modeled by impedances Za =rta+jXa

and Zr -Rr+jXr, respectively, where R and X denote the resistance and reactance. The following

start-up condition has been widely used as an indication ofcircuit instability [Gon84, Elk86, Maa86]
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Ra(<ax) + Rr(®x) < 0

Xa((ox) + Xr(<»x) = 0.
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3.3(a)

3.3(b)

In the above equations, frequency cox denotes a frequency at which the total reactive component
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Xa + Xr equals zero. It is important to distinguish the frequency coz from the frequency 0)z of the start

up condition (3.1) since even though an oscillator circuit can be analyzed using either the negative-

resistance model or feedback model, a frequency co, that fulfills the condition(3.3) is not necessarily the

same frequency that fulfills the condition (3.1). This point is further illustrated in Section 3.2.4. It is also

important to emphasize that an underlyingassumption in (3.3) is that the current entering the active cir

cuit in the steady state must be near-sinusoidal. If, instead, the voltage across the active circuit is near-

sinusoidal, the active and resonant circuits should be modeled in terms of parallel admittances

Ya = Ga+jBa and Yr = Gr+jBr, respectively, where G and B denote the conductance and suscep-

tance. The dual start-up condition is then

Ga((Ox) + Gr((ox) < 0 3.4(a)

Ba((ox) + Br((ox) = 0. 3.4(b)

In the following paragraphs weshow thattheconditions (3.3) and(3.4) arenotalways valid forpredict

ing circuit instability, especially in oscillator circuits operating in the microwave region where the effect

of parasitic elements becomes more significant.

Toillustrate theabove point, weconsider a high-frequency Colpitts oscillator shown inFig. 3.5. In

this circuit, C3 is an off-chip varactor used for tuning theoscillation frequency andLb models thebond-

wire inductance. With the active and resonant circuits defined as shown in Fig. 3.5, the total resistance

Ra +Rr and reactance Xa+Xr are plotted in Fig. 3.6for the given setof circuit parameters. At the

frequency 1.8 GHz, (3.3) issatisfied. Without understanding the limitations of this start-up condition, we

would be inclined toassert that the circuit isunstable under this condition and iscapable ofproducing an

expanding transient The transient plot in Fig. 3.7 shows, however, a decaying sinusoidal waveform

instead ofa growing waveform, indicating that the circuit isstable. As a check we generate the Nyquist

plotfor thecircuit in Fig. 3.8. Since there is no clockwise encirclement of the point (1,0), thecircuit is

indeed stable. One characteristic that may attribute the misleading indication ofthe condition (3.3) inthis

circuit isthat the reactive plot asshown inFig. 3.6 crosses the zero point atmultiple frequencies.
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Figure 33: Colpitts Oscillator

Since the start-up conditions (3.1), (3.3), and (3.4) arenotalways sufficient forstudying thecircuit

instability, the root-locus and Nyquist analyses should be used when in doubt Throughout this disserta

tion, unless specifically stated, the start-upconditions for both oscillatormodels are assumed valid.

3.23. Multi-Oscillation

In the microwave region, the effect of parasitic elements in an oscillator circuit becomes more

significant and can give rise toa multi-oscillation phenomenon. It isa phenomenon in which two or more

oscillations exist simultaneously in the steady state. Inother words, there areparasitic orunwanted oscil

lations existing together with a main oscillation. Due to the multiple oscillations, the resultant steady-state

signal is severely distorted and hence has limited application incommunication systems. It isworth men

tioned that the multi-oscillation phenomenon is quite different from that of a multi-mode oscillator

[Eds55]. A multi-mode oscillator uses an arbitrary number of tuned circuits fordefining a well-defined

setof oscillation frequencies, and when subject toan injected instruction signal, the circuit oscillates at
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Figure 3.6: Impedance Plot for the Circuit of Fig. 3.5

only one of thesewell-defined frequencies.

The circuit configuration shown in Fig. 3.5 can also be used for studying the multi-oscillation

behavior. In Fig. 3.9 the impedance as a function of frequency is generated for the new set of circuit

parameters. We note that the start-up condition (3.3) is now satisfied at three frequencies. It is not clear

from Fig. 3.9 how the transient response would behave and whether there isa well-defined oscillation

frequency in the steady state. In order to obtain further insight into the circuit operation, we construct the

root locus based on the characteristic equation from Za(s) +Zr(s) =0. Hie root locus as a function of

bias current is shown in Fig. 3.10. Due to the bond-wire inductance Lb, we observe that the circuit can

possess twopairs of RHP complex-conjugate natural frequencies

P\2 = ctj+JPi and P3A = 02+;p2

Given an initial impulse, the circuit can produce asignal ofthe form

x(t) =Kx eait cosfat) + K2e^ cos(P2f)

(3.5)

(3.6)
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which is a sum of two concurrendy growing sinusoids. Simulated time-domain waveforms during tran

sient build-up and at steady state are shown inFig. 3.11. Figure 3.11(a) agrees with the predicted linear

behavior (3.6). Figure 3.11(b) displays the steady-state waveform which is quite distorted having two

distinct frequency components. This plot suggests the simultaneous presence of two sinusoidal oscilla

tions.

The advantages of using the root-locus analysis in oscillator design is apparent from the above

analysis. This technique allows us todetermine the exact location ofall the natural frequencies in the cir

cuit and from which toidentify the circuit elements that cause problems. Forthe circuit under considera

tion, onewayto eliminate themulti-oscillation phenomenon is to minimize theeffectof bond-wire induc

tance. This could be done with multiplebond-wireconnections.

32.4. Predicting Oscillation Frequency from the Start-Up Conditions
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The zero-phase frequency as defined in the start-up condition (3.1) is often usedas an estimate for

the oscillation frequency. Because of the nonlinearities inthe active devices, the zero-phase frequency is

notexacdy equal to the frequency of oscillation. Nevertheless, it is a good approximation in oscillator

circuits that have a pair of RHP complex-conjugate natural frequencies lying close to the yco axis. Such

natural frequencies are referred to as "high-Q" natural frequencies. In this section, we study whether

the frequency tax as definedin the start-up condition of negative-resistance oscillators canalsobe utilized

for predicting the oscillation frequency. Through use of circuit examples, we derive the frequency <ax

and frequency coz and make a comparisonbetween them.
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The first circuit tobe investigated isthe transformer-coupled oscillator shown inFig. 3.12(a). Fig

ure 3.12(b) shows the simplified ac equivalent circuit We can show that the loop gain of the circuit is

where

T(s) = -=-
n

8m
nZ*

sL

s2LC+sj +l
(3.7)
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!C —

i+*•*£*

r*=T6 m

c% = gm^F •

Substituting (3.9) and (3.10) into (3.8) yields

Z« =
8M l + s$0%P

1

Using (3.11) in (3.7)and solving for thezero-phase frequency gives

co, = C +
xF

nRr\

where T\ ~ 1 —. Theadmittances Ya(s) and7r(j) as defined inFig.3.12(a) are

r«(*) = --
n

Substituting s =j(0 into (3.13)and (3.14)yields

8m
nZ«

7a(©) = +70) r-

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Weassume thatthestart-up condition (3.4) is valid. From (3.15) and(3.16) thecircuit is unstable if

"•*-V-7*°-**Ti
1 2 Xe

Imag: r + Q)*c + ®x-j1t- = 0 <=> cox =

Using (3.17) in (3.18) gives

cox £ C +
nRx\

C +

•% i i

Sm^F

(3.17)

(3.18)

(3.19)
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By comparing (3.19) to (3.12), we note that cox £ co, for this circuit

We now determine the natural frequencies of the circuit From either the expression 1- T(s)=0

or Ya (s) + Yr (s) - 0, we obtain the following characteristic equation

s2L C +
8m*F

+ sL
1 8mT\

R n
+ 1=0 (3.20)

Assume that the natural frequencies are complex conjugate, i.e., Pia =a ±yP. We can show that

tt=2
8mV 1

n R
C +

8m*F
*\ -1

P = C +
8m*F

1-1
8m1\

R
C +

8mtF

The natural frequencies are in the RHP if

°*°~fa*H

1 2
-1

(3.21)

Note that (3.17) and (3.21) give the same requirement for quantity gmt and thus confirm the validity of

n 1the start-up condition (3.4) in this circuit. If gm =--—, the quantity a is approximately equal to zero.

Under this condition the natural frequencies lie close to the y© axis and are referred to as high-Q natural

frequencies. It is interesting to note that

-<> i i

©r = C +
xF

nRr\
= cox .

The above analysis on the transformer-coupled oscillator suggests the following.

(a) The frequency coz that fulfills the feedback condition (3.1) is, in general, not equal to the frequency

co, that fulfills the negative-resistance condition (3.3) or (3.4).

(b) If the RHP natural frequencies inthe oscillator are high-Q natural frequencies, the frequency cox is

almost thesame as the frequency co,. Under this condition, frequency cox can be used for estimat

ing the oscillation frequency.
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Another circuit from which wecan draw the same conclusions as above is the Wien-type oscillator

shown in Fig. 3.13(a). Figure 3.13(b) shows the simplified ac equivalent circuit where Av = 1+ —-. It
Rb

can be shown that

T(s) = Av
sRC

(sRC)2 + s(3RC)+l

Za(s) = (\-Av)
1 + sRC

Zr(s)=R+±

CO, =
RC



co* =
1

/?CVA,-2

Assuming that thenatural frequencies are complex conjugates, we can showthat

Pi* =
Av-3

2RC
±j

RC

1 i_
2

^ 2
A,-3

2RC

If Av ~ 3, thenatural frequencies lieclose to the j co axis. Again, we observe that
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3J. Large-Signal Analysis

When growing transients are large enough that the nonlinearities in the active devices become

important linear analysis is no longer valid. An oscillator must then be analyzed using nonlinear

analysis. While linear analysis is used for studying the instability of the circuit and for predicting the

oscillation frequency, nonlinear analysis isused for predicting the amplitude ofoscillation and the output

power level of theoscillator. Furthermore, nonlinear analysis is also used to predict theharmonic distor

tion in theoutput signal and thespectral purity of theoutput signal

Nonlinear oscillator analysis is complex even when the effects of parasitic nonlinear charge-

storage elements in the active devices can be neglected. Usually a nonlinear oscillator analysis starts

with the assumption that the steady-state signal is near-sinusoidal and then proceeds to predict the ampli

tude ofoscillation. One such analysis isbased on the modified Bessel function for analyzing the Si bipo

lar Colpitts oscillator [Fre78, Mey89, Ped89]. Another analysis relies on computer simulation to generate

a set of curves versus normalized design parameters for analyzing the MOS crystal Pierce oscillator

[Mey80]. This dissertation studies the steady-state oscillator behavior through use of a general near-

sinusoidal analysisby Kurokawa[Kur69].

The Kurokawa method isbased on the negative-resistance model. It implicitly uses the concept of

the describing function [Azz66] to represent the nonlinearity of the active circuit by an approximate

linear transfer function. For a multi-port nonlinear circuit, the describing function is usually defined as
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the ratio of the phasor representing the fundamental component of the outputto the phasor representing

the sinusoidal input Fora one-portnonlinear circuit the describing function is similarlydefinedwith the

input and the output being either the port current or port voltage. Note that even though the input is

sinusoidal, the output may not be because of the nonlinearity. For the Kurokawa analysis to be validin a

negative-resistance oscillator, either the current through or the voltage across the active circuit must be

sinusoidal or near-sinusoidal in the steady state. If there is a well-defined near-sinusoidal oscillation in

the steady state and furthermore, the current is near-sinusoidal, Kurokawa showed that the following

oscillation condition holds

*a(1)(co,,A0) + Rr (co0) = 0 3.22(a)

Xa(1)(co0,A0) + Xr (coj = 0. 3.22(b)

In 3.22(a) and 3.22(b), the resonant impedance is assumed independent of signal amplitude while the

active impedance is dependent on boththe signal amplitude and frequency. Quantities co0 andA0 are the

frequency and amplitude of oscillation, respectively. The superscript (1) is used to emphasize that the

active impedance is evaluated at theoscillation frequency (fundamental frequency). It can be shown that

3.22(a) and 3.22(b) correspond to theconservation of real and complex energy, respectively [Hac65]. If,

instead, the voltage is near-sinusoidal, the dual oscillation condition is

Ga(1> (©<,,A0) + Gr (co,) = 0 3.23(a)

BP (co„ ,A,) + Br (co0) = 0. 3.23(b)

InChapter 4 we use the Kurokawa analysis to predict the steady-state responses of aVan der Pol's oscil

lator and a microwave oscillator.

3.4. Stability Analyses

Conditions for frequency and amplitude stability in negative-resistance oscillators are derived in

this section.
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3.4.1. Frequency-Stability Analysis

In mostoscillator applications, it is important that theoscillation frequency remains constant when

subject to variations in nonlinear circuit elements. In a high-frequency oscillator, this requirement is

more critical because multiple signal-dependent nonlinear capacitors in the activecircuits can cause the

oscillation frequency to drift significandy. The degree to whichan oscillator canmaintain a constant fre

quency isreferred toas the frequency stability. Wenow derive ageneral expression for frequency stabil

ity in negative-resistance oscillators. Theexpression isbased on theoscillation condition (3.22) and can

be similarlyderived using the oscillation condition (3.23).

Recall that if the active and resonant circuits are represented by impedances Za(1) and Z^, respec

tively, the following oscillation condition holds

^a(1)(co0,A0) + Xr(©0) = 0. (3.24)

Now suppose the active reactance is changed by some SX. The oscillation frequency ©„ must conse-

quendybe adjusted by a 5© inorder to maintain equality in theabove equation. Thatis,

xV(<a0+8G},A0) + Xr(©„+6©) + 5Y(©0+8©,A0) = 0. (3.25)

The oscillator is frequency stable if 5© is small with respect tothe frequency ©„. An expression for 6©

can be derived by using the Taylor expansion about ©„ in (325). Keeping the first two terms of the

expansion yields

^(©o.A,) + Xr((0o) + 8X((0o,Ao) +

Combining (324) and (3.26) yields

ayj» | dXr [ dSX
3co d© 3co

m M . .6© = 0.(3.26)

a*q(1) ( dXr t 33Xn "!
8© = -6X(©0, A0)

3(0 3(0 3(o
(3.27)

oa=CDot A -A0

From (3.27), 5© issmall if SX (©0, A0) issmall or the total reactance change with respect to frequency

about ©0 is large. Evaluating (3.27) can be tedious since all the calculations must bedone using large-

signal quantities. If the oscillation frequency can be accurately predicted bythe linear quantity ©x, (3.27)
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can be approximated by

i -i

8© = -SX((ax)
dXa dXr a§y

3(0 3co 3(0
(3.28)

3.4.2. Amplitude-Stability Analysis

Assume that an oscillator has reached its steady-state oscillation. Fluctuations in power supply or

electronic noise can perturb the oscillating signal, possiblyresulting in permanent amplitude instability.

An oscillator is amplitude stable if any transient perturbation in the oscillation signal decays with time.

We now derive a condition that guarantees amplitudestabilityin negative-resistance oscillators.

Early works by Ford andEdson applied theconcept of the complex-frequency plane to analyze the

perturbed behaviorof the oscillating signal [For46, Eds53]. A moregeneral approach is theperturbation

method [Kur69] which assumes that the phase and amplitude change due to disturbances vary slowly

with time. With further assumptions that the active circuit is independent of frequency and the current

through it is near-sinusoidal in the steady state, Kurokawa showed that the following condition must be

satisfiedin order to ensure amplitude stability in a negative-resistance oscillator

dR™ dXr 8Xfla) dRr
dA 3(0 dA 3(0

> 0. (3.29)

In the above expression, all the partial derivatives are evaluated at the steady-state values ©0 and A0.

Condition (3.29) is valid only if the active circuit is frequency independent. For oscillators operating

over a wide frequency range and for microwave oscillator circuits, however, thedependency of theactive

circuit on frequency must be considered. An extension of the work of Kurokawa yields the following

generalcondition for amplitude stability

arc« f dxav dxr} dxp f aaj1* br.r} atf> f
) J dA [ + ^-y>0. (3.30)dA Id© 3© J dA 1 3© 3©

If the voltage instead of the current is near-sinusoidal in the steady state, the dual condition is

dG™ f dB}» dBr \ a* « f dG}» dGr 1
-§r1-5T+i5-r-"arH©-+i©- >0- <3-31>
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Equations (3.30) and (3.31) are used in the design and analysis of a microwave oscillator circuit in

Chapter 4.

3.5. Summary

Investigation on the conventional start-up conditions has revealed that they are notalways valid

and can provide misleading results. Special attention should be given when thestart-up condition

Ph { T(©,)} = 0 Mag { T(©,) } > 1

holds at multiple frequencies co,, orwhen thereactive/susceptive function of thestart-up conditions

Ra((Ox) + /?,(©,) < 0 Xa((ox) + Xr((ox) = 0

and

Ga((Ox) + Gr(©x) < 0 Ba((ox) + Br(d)x) = 0

crosses the zero point at multiples frequencies ©,. The Nyquist and root-locus analyses are powerful

techniques for studying the linear behavior of oscillator circuits. The root-locus analysis is alsouseful for

analyzing themulti-oscillation phenomenon. Regarding the frequency of oscillation, the frequency ©z is

a goodestimation given thatthe circuithashigh-Qnatural frequencies.



Chapter 4 • Oscillator Design Methodology

4.1. Introduction

It has been shown in Chapter 3 that conventional oscillator design techniques may not beapplica

ble in the design of microwave oscillator circuits. In particular, the conventional start-up conditions are

not always sufficient for predicting the existence of an oscillatory behavior in the circuit The multi-

oscillation phenomenon has been studied, and the conditions for frequency and amplitude stability in

negative-resistance oscillators have been derived. In this chapter we study the interaction between oscil

lator circuit components, and then explore a design methodology for microwave oscillators. The

negative-resistance model is utilized in the design since it is simpler than the feedback model. The

design methodology should achieve the following objective: given an active circuit an LC tuned circuit

is systematically chosen such that the resultant oscillator circuit achieves areliable oscillation build-up

and has a single predictable frequency of oscillation in the steady state. The results obtained from this

study are then applied to the design and analysis of a widely-used but poorly-characterized microwave

oscillator configuration. To confirm the theoretical analysis and to demonstrate the feasibility of silicon

integration, a monolithic implementationof this circuitis described.

4.2. SystematicDesign Methodology

It is useful to distinguish two types ofactive circuits since as is shown subsequently, the design

methodology for one is quite different from the other.

The first group of active circuits consists of one-port devices orcircuits whose I-V characteristics

contain a negative-resistance region. Examples of such active circuits are the tunnel diodes, avalanche

diodes [Gib73], loop-coupled bistable circuits, negative resistors constructed from op-amp circuits

[Chu87], and inductive transformer-coupled configurations [Mey89, Ped89]. Henceforth, we use the

abbreviation VCNR to denote a voltage-controlled negative resistor and ICNR to denote a current-

controlled negative resistor. An active circuit is aVCNR if the port current of the circuit is a single-

valued function of the port voltage.

32
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The second group of active circuits do not possess a negative-resistance region in their I-V charac

teristics but instead, depend on LC elements (often connected in feedback configurations) in order to

produce a small-signal negative resistance about the operating point of the circuit Examples of such cir

cuits arethe Colpitts,Pierce, and Hartley oscillators [Fre78].

4.2.1. Voltage/Current-Controlled Negative Resistors

In this section we present a detailed approach on the selection of a proper LC tuned circuit for a

VCNR or an ICRN active circuit. For clarity in the analysis, we consider only VCNR activecircuits.

Appropriate conclusions can then be drawn for ICNR active circuits through useof theprinciple ofdual

ity [Chu87].

The I-V characteristic of a VCNR is shown in Fig. 4.1. Note that the current is a single-valued

function of the voltage. When aVCNR is used inconjunction with a parallel RLCtank circuit, weobtain

the well-known Van der Pol oscillator shown in Fig. 4.2 [Pol34]. Upon superimposing the I-V charac

teristic of the resonant circuit (a short circuit) with the characteristic of the VCNR, we observe thatthe

circuit has a unique operating point Q inside the negative-resistance region of the VCNR. Denote the

negative conductance of the VCNR by Ga (about the operating pointQ) and define G = —. We can
R

showthatthe circuit has the following characteristic equation
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VCNR >R

Parallel Resonator

Figure 4.2: VCNR with Parallel Resonant Circuit

2 Ga+G i

The natural frequencies derived from (4.1) are

P - G'+G, r Ga+G 2

1

LC2C

(4.1)

(4.2)

If
' Ga+G 2

<
1

LC
» .

2C

1 / C 1orequivalendy 0, a |— —|A/— >—, the natural frequenc
I/a + U ' L 2

ies are com

plex conjugate. Furthermore, they are in the RHP if

Ga+G < 0
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We canalsoderivethe aboveinstability condition from the start-up condition (3.4) whichstates

Ga(C0x) + Gr((Dx) < 0 and Ba((ox) + Br(®x) = 0.

For the circuit of Fig. 4.2, Ga(©x) =Gfl, Gr(©x) =G, 5a(©,) =0,and Br(<ox) =^- +(oxC. If the
(OxL

VCNR is purely conductive as assumed (valid at low frequencies), the frequency ©x at which the total

susceptance equals zero is simply theresonant frequency of the parallel LC tank

©, =
LC

V. J

(4.3)

Due to the distortion in the VCNR, we expect the steady-state oscillation frequency to be slighdy less

than the frequency ©x given in (4.3) [Gro33].

The above analysis is concerned withthelinear behavior for thecircuit of Fig. 4.2. We nowinves

tigate its steady-state behavior by using the Kurokawa analysis presented in Chapter 3. To thisend, we

assume that theVCNR can be modeled by the following simple cubic equation which is also referred to

as the Van der Pol's approximation

/ = aV +bV3. (4.4)

Quantity a (= Ga ) is thenegative conductance about theorigin. Quantity b can bederived tobe

b =-
3V2

(4.5)

where Vx is the voltage at which the current reaches the minimum value as shown in Fig. 4.2. We

assume that the steady-state voltage across the VCNR isnear-sinusoidal and can berepresented by

V(0~ V0cos((d0t) (4.6)

^ l

where ©>, =
LC

= ©x. Substituting (4.6) into (4.4) yields

/(O =(aV0 +jbV?) cos (©0r) +jbV? cos (3©,f).

The conductance evaluated at the fundamental frequency is
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aV.+^bV?
G™= -* =a +hv2

From thesteady-state condition (3.23) inChapter 3, thecircuit is in steady state if

G}l) +G=0 => a+jbV2+G=0

where G (= — ) is thelinear conductance of theresonant circuit The amplitude of oscillation is

-H^- (4-7)3 b

The result given by (4.7) agrees exacdy with that obtained from more complicated methods by Van der

Pol and Edson [Pol34, Eds53]. These methods determine the amplitude of oscillation by solving the

second-orderdifferential equation governing the behavior of this circuit

The analysis so far assumes that theVCNR is purely conductive. At high frequencies, parasitic

charge-storage elements associated with the VCNR become significant and cannot be neglected. As an

approximation, the parasitic elements can bemodeled bya shunt capacitor across the VCNR. By lump

ing this parasitic capacitor into the capacitor C of the resonant circuit inFig. 4.2, the analysis presented

above may still hold.

What if aVCNR isconnected toaseries RLC tank circuit as shown inFig. 4.3? Upon superimpos

ing the I-V characteristic of the series RLC circuit (an open circuit) with the characteristic of the VCNR,

we observe that the circuit now has three possible operating points Q\,Q2,andQ3. Since there is no

guarantee that the circuit will operate in the negative-resistance region, this circuit cannot produce a

well-defined oscillation build-up. Fortunately, the VCNR may be forced into the negative-resistance

region with a shunt inductor Lp as shown in Fig. 4.4. In order to study the transient response and to

determine whether this circuit can produce a sinusoidal oscillation, we study the location of the natural

frequencies from the root loci of the circuit

Let Rp denote the small-signal negative resistance of the VCNR about the operating point Q. The

root locus asa function of Lp can beconstructed from the following characteristic equation
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s*-£-LC+s<
Rp

-^-RC +(Lp+L)C
Kp

+ S i;+"c + 1 = 0
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(4.8)

For small values of Lp, it can beshown that (4.8) has apair ofLHP complex-conjugate natural frequen

cies due to the series resonant circuit and one RHP real natural frequency due to Lp. As values of L

get larger, (4.8) reduces to

[j2LC+*(/?,+/?) C+ll =0 (4.9)

Equation (4.9) has one natural frequency atthe origin and two other natural frequencies from the expres

sion inside the brackets. Define

Q= 1 -J±y* \R0+R\VC (4.10)
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If Qs < 2 (low-Q case), we expect the natural frequencies derived from (4.9) to lie on the real axis of

the complex-frequency plane. The associated root locus is given in Fig. 4.5(a). It reveals that there

exists 3 natural frequencies in the RHP, of which the one due to Lp appears dominant since ithas the

fastest build-up rate. In response to noise impulses, the circuit produces agrowing exponential signal and

results into arelaxation-type oscillation as shown in Fig. 4.5(b). On the other hand if Qs >—(high-Q

case), we expect the two natural frequencies derived from the expression inside the bracket of(4.9) to be

complex conjugate. The associated root locus is given in Fig. 4.6(a). This locus suggests that we can

select a set of circuit parameters that yield apair ofRHP natural frequencies />u =o* tjfa , and one

non-dominant RHP real natural frequency P3 =a3 where a3<a1. With this selection, we hope to

achievea sinusoidal signal build-upof the form
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and eventually a sinusoidal oscillation inthe steady state. But asobserved from the transient response of
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one such circuit shown in Fig. 4.6(b), the signal starts out sinusoidally but then setdes in a relaxation

oscillation instead. This behavior israther difficult to explain mathematically. Atbest the circuit ofFig.

4.4 can only function as a relaxation oscillator.
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In conclusion, we have determined that the most appropriate LC resonantcircuit for a VCNR that

results ina well-behaved sinusoidal oscillator is the parallel RLC resonant circuit From the principle of

duality, we can conclude that a series RLCtuned circuit is mostappropriate for anICNR.

4.2.2. LC-Dependent Negative Resistors

In this section we derive a systematic design methodology for active circuits that do notpossess a

negative-resistance region intheir I-V characteristics. As mentioned above, the Colpitts, Pierce, Hartley,

and Clapp configurations among others belong to this group. Since an active circuit of this kinddepends

on energy-storage LC elements in order to produce a small-signal negative resistance, it is frequency

dependent. That is, if the active circuit is represented by an equivalent impedance, the resistive com

ponent is negative only in a finite frequency band, referred to as the negative-resistance band. In addi

tion to the negative resistive component, the active circuit alsohasa reactive component eitherinductive

or capacitive. The designmethodology belowis basedon the negative-resistance model andinvolves the

following three steps.

(1) Active-circuit characterization: this step determines the negative-resistance band. Because no

oscillation build-up is possible outside this band, the negative-resistance band must be designed to

cover the frequency range of interest. Often this involves theselection of theappropriate LCele

ments and active devices.

(2) Resonant-circuit selection / verification: this step selects a resonant circuit that together with the

active circuit form a well-defined oscillator. The selection is based onthe start-up condition (3.3)

or(3.4), and should beconfirmed with either the Nyquist orroot-locus analysis for validity.

(3) Large-signal analysis: this step is concerned with the amplitude and frequency of oscillation

(steady-state behavior).

The above design methodology is now illustrated with a design example. The circuit under con

sideration, shown inFig. 4.7, isa widely-used microwave oscillator configuration. One advantage of this

configuration is that if the device capacitance C^ of the transistor can beneglected (the only significant

parasitic element across the base-collector junction), an output signal can betaken across the resistor Rc
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without introducing a loading effect to the circuit This is true since the collector-emitter terminal can be

modeled by a current source. The function of theinductor L\ is toproduce a negative resistance.

Resonant

Circuit

Z, = Rr+ jXr

w
R

EE

Za —Ra+jXa

Figure 4.7: Microwave Oscillator

Re

fCC

For simplicity, we neglect the effects of Ru Rc, C^ (internal base-collector capacitance), and

Cbx (external base-collector capacitance). The active impedance can beshown tobe

Za(s) =
l + jCrfc+j'LtC,

&»(! + *—)
8m

Byseparating theactive impedance into real and imaginary components, weobtain

Za(co) =—fl-co^cJ +;
8m *» J8m ^ j - ^

We note that the real component of(4.12) isfrequency dependent and isnegative if

© >
1

^iC„

rbC%
©

(4.11)

(4.12)

(4.13)

Since capacitor C% is typically a few pico-Farads and inductor Li a few nano-Henries, (4.13) sug

gests that this circuit can perform well into the microwave range. As frequency increases, it isimportant

totake into account the effects of C^ and Cte. The upper limit of this circuit's negative-resistance band
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can be shown tobeconstrained by the smaller of the self-resonant frequency of the integrated inductor

L! [Chapter 5] or the frequency |I!(Cta+ cA 2. In Fig. 4.8, the simulated active impedance shows a

negative-resistance band ofabout 4 GHz, extending from 1GHz to 5GHz. In addition to the negative

resistance component the active impedancealso hasan inductive reactance.
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Figure 4.8: Active-Circuit Characterization
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With the active circuit characterized, the second step isto determine aresonant circuit that together

with theactive circuit forms an oscillator. Theobjective is to select a resonant circuit such that theresul

tant circuit has only one pair of RHP complex-conjugate natural frequencies. The selection isbased on

the start-up condition for negative-resistance oscillators. Even though this condition may provide

misleading results regarding the linear behavior of the circuit, itnevertheless provides us with adirection

togo about selecting aresonant circuit It is important toemphasize that this selection process should be

confirmed with either Nyquist orroot-locus analysis.
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Since the reactance of the given active circuit is inductive, the resonant circuit must be capacitive

so that we can tune out the reactive component at the frequency of interest. One resonant circuit could

simply be a capacitor. If we want to minimizeelectronic noiseand distortioncontent in the output signal,

we can use either a high-Q parallel or series LC resonant circuit. The constraint here is that the resonant

circuit must still be capacitive at the frequency of operation. In Fig. 4.9, a series LC resonant circuit is

utilized since it does not affect the bias scheme of Fig. 4.7.

As multiple LC elements are used to form the resonant circuit extreme care must be taken to

ensure that the multi-oscillation phenomenon does not take place. There should be, therefore, only one

frequency ©x at which the start-up condition holds. This requirement can be satisfied if the total reac

tance plot is monotonic. Figure4.10 shows the simulated impedance of the circuit. As a check for the

above selection, theroot-locus andNyquist plots have been generated. The plots inFig. 4.11 confirm the

existence of a well-defined pairof RHPnatural frequencies. Due to inductor L2, weobserve thatthecir

cuit has a pair of high-Q natural frequencies. It has been observed in practice that any well-behaved

sinusoidal oscillator possesses a pair ofRHP complex-conjugate natural frequencies near the j © axis.

Upon the completion of the first two steps, the linear behavior of the oscillator circuit is fully

understood. While these steps areused for achieving a reliable oscillation build-up and for predicting the
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oscillation frequency, they are not valid for predicting die circuit's steady-state behavior. Nonlinear

analysis mustbe used in order to predict theamplitude of oscillation and the output power level of the

oscillator. Nonlinear analysis is usually very complicated due to various nonlinear elements in the cir

cuit

In the following paragraphs, thenear-sinusoidal method proposed by Kurokawa is combined with

the "normalized-parameters" method by Meyer [Mey80] for studying the steady-state behavior of this

circuit To this point, we assume that the steady-state current entering the active circuit is near-

sinusoidal. From the large-signal equivalent circuit shown in Fig. 4.12 with the emitter of the bipolar

transistor being defined as the datum node, the voltage across and the current entering the active circuit

are respectively given by

dlbVa =L\—j~ +rbIb +V2

la = U +/* -In .

(4.14)

(4.15)
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If the current across the base-collector junction is neglected, the base current Ib consists mainly of the

diffusion and depletion current components through the base-emitter junction

h-^-^ +C,.— .

Thebase-emitter junction voltage V2 can beexpressed interms of Ie as

kT Ic hv2=*rWj-)=vTw-r)-

By the assumption that the current Ia is sinusoidal in the steady state, we can write Ia =Imsm(<0ot). By

normalizing time t' =©01 and the collector currentl'e =Ic/IQi (4.14) and (4.15) can berewritten as

;2,'

VT - dt***VTLl
VT i

lQ h

dlc h VT i

lQ h

Im . , dle
—sin* = —©0
JQ dt'

dt'
w -pi-LyC}, + ln/c' +ln(-2-)

VT i
+ /, - 1

(4.16)

(4.17)
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Equations (4.16) and (4.17) show that the normalized collector current l'e depends ononly a few normal

ized parameters, namely,

J-'f
lQ

•f-> "TT-. CO^L^^T^gr, ©o^^X^gr, (00Xtff, ©^C;,, (0orbCJet (00~JL-
'Q VT g„Q

(4.18)

where Vm isthe fundamental component of Va and gmQ=IQ/VT. The circuit operation can beexamined

by generating a numerical setof normalized curves versus the normalized parameters. For example, in

Fig. 4.13 the normalized collector current atthe fundamental frequency is plotted against the normalized

resistance of the active circuit defined as follows

V- k . ....
8mQ~H^£ -«*>

This plot predicts that the magnitude of the steady-state collector current is approximately equal to the

bias current With regard tothe output signal stability against fluctuations inpower supply and electronic

noise, itcan beshown that the circuit of Fig. 4.9 meets the amplitude-stability condition (3.30).

In conclusion, the systematic approach above provides us with the guidelines for designing well-

behaved sinusoidal LC oscillators.

43. Implementation

To confirm the theoretical analysis and to demonstrate the feasibility of silicon integration, a

monolithic implementation of the microwave oscillator shown in Fig. 4.14 has been fabricated and

characterized. Capacitor Cx is an off-chip varactor for frequency tuning. Bond-wire inductance Lb

together with Cx form a series LC resonant circuit Lx isamonolithic inductor of 1.5 nH [Chapter 5].

Resistor Rc is matched to the system impedance of 50 ft. The bias current Ic is 10 mA. The circuit

was fabricated inan oxide-isolated Sibipolar IC process with peak/r =9GHz.

The die photograph of the oscillator is shown in Fig. 4.15. The circuit achieves a measured

negative-resistance band of2.5 GHz extending from 1.5 GHz to 4GHz. With Cx =3.9 pF and Lb =0.7

nH, the measured output waveform taken from the collector node is shown in Fig. 4.16. The measured
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oscillation frequency is approximately 2 GHz compared to the simulated oscillation frequency of 2.1

GHz. The output power is - 6.5 dBm and was measured across a 50-ft off-chip load. The simulated

power is- 4.0dBm. The power loss isattributed to the package and the ac-bypass circuits that were used

for the RF testing of this oscillator.

4.4. Summary

Systematic design approaches for VCNRs, ICNRs, and LC-dependent active circuits have been

explored in this chapter. Combining the conventional start-up conditions with the Nyquist, root-locus,

and Kurokawa analyses provide us with the guidelines for designing predictable sinusoidal LC oscilla

tors. The conditions for frequency and amplitude stability provide the assurance that the oscillators are

both frequency and amplitude stable.
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Chapter 5 - Silicon Integrated Inductors

5.1. Introduction

Planar inductors have been implemented inpractical systems for many years using a variety ofsub

strates. These include standard PC boards, ceramic and sapphire hybrids, and more recendy GaAs ICs

[Pet88, Fri89]. In the early development of silicon ICs, planar inductors were investigated [War65] but

the prevailing lithographic limitations and relatively large inductance requirements (for low-frequency

applications) resulted in excessive silicon area andpoorperformance. Reflected losses from theconduc

tive Si substrate were a major contributor to low inductor Q. This research effort was abandoned as pro

ven impractical.

Recent advances in Si IC processing technology have prompted another look at this situation. In

particular, metal width and pitch in the low micron range allow many more inductor turns per unit area

than in the past Also, modem oxide-isolated processes with multilayer metal options allow thick oxides

to help isolate the inductor from the Si substrate. In addition, interest isgrowing inapplications atmuch

higher frequencies with the advent of 900-MHz communications and gigahertz-range satellite reception.

Inductors ofonly a few nano-Henries are sufficient inthese high-frequency applications.

In this chapter we describe inductors fabricated in a production Si bipolar process featuring oxide

isolation and two layers ofmetal. In the frequency range of interest (above about 1GHz) the Qofthe

inductors is quite usable (3-8) and appears to be almost totally limited by metal and contact resistance,

with litde effect from the Si substrate. In this regard, there is little difference between these inductors

and those implemented in GaAs.

5.2. Inductor Structure and Characterization

There are a number of possible inductor structures [Bah88]. They include strip, loop, and spiral

inductors. For inductors ofa few tens of nano-Henries, the square-spiral structure [Fig. 5.1] is suitable

for monolithic integration. In this structure the top metal layer M2 is used predominandy to minimize

the parasitic metal-substrate capacitance and the accumulated sheet resistance, while the bottom layer Mx
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isused as the lead-out bridge. In order to facilitate the characterization of this inductor structure, we first

discuss two fundamental concepts: the self inductance and mutual inductance. In any current-carrying

conductor there isan associated self inductance, defined as the ratio of the change inmagnetic flux tothe

change in current. For the rectangular conductor shown inFig. 5.2(a), Grover has derived aclosed-form

self-inductance expression that depends on the length, width, and thickness of the conductor [Gro46].

And for any pair of parallel conductors, there is a mutual inductance due to the magnetic coupling

between them. This mutual inductance ispositive if the currents in the two conductors point in the same

direction, and negative otherwise. Grover has also derived aclosed-form mutual-inductance expression

for the two parallel rectangular conductors shown in Fig. 5.2(b). It isimportant to emphasize that if the

conductors are made of non-magnetic materials, the associated inductance is independent of the current

strength and only depends on the geometry of the conductors. Also, the "skin effect" is neglected in

Graver's analysis (the current is assumed uniformly distributed over the cross section of the conductor).
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(a) Self Inductance L = fi(l,w,t)

/« w V

(b) Mutual Inductance M = f2(lyd,w)

Figure 5.2

This assumption may not be valid at very high frequencies where thecurrent tends to crowd toward the

surface ofthe conductor. Figures 5.3(a) and 5.3(b) show, respectively, the self inductance ofa rectangu

larconductor and the mutual inductance between two parallel rectangular conductors. The mutual induc

tance is observed to depend significandy on the space separating the two conductors. This observation

suggests that the spacing between metal segments in thespiral inductor should be rninimized in orderto

achieve a high ratio ofinductance per unit area, which in turn implies higher inductor Q.
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Figure 5.3
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The effective inductance of the spiral structure can be shown to be the sum of all the self-

inductance terms and mutual-inductance terms [Gre74]. This inductance calculation can be numerically

intensive and is best solved with a software program. Appendix B lists the source code of a software

package developed during the course of this research and has been used for predicting the inductance

value of the spiral inductor. Note that the segmentshaving the same current direction in the spiral struc

ture of Fig. 5.1 are relatively near to each other,whereas the segments havingthe oppositecurrentdirec

tion are farther apart. The positive mutual inductance is hence typically larger than the negativemutual

inductance, and thus enhance the effective inductance of the spiral inductor. Figure 5.4(a) shows the

inductance achieved with a straight-line inductor and that achieved with a spiral inductor of the same

effective length. The spiral inductor is observed to have higher inductance due to the positive mutual

inductance enhancement The inductance as a function of turn number is shown in Fig.5.4(b).

An equivalent circuit for the square-spiral inductor has been derived and is shown in Fig. 5.5. In

this circuit, Ls models the effective inductance, Rs is the accumulated sheet resistance, Cp models the

parasitic capacitance from the second-metal layer tothe substrate, and Rp represents the resistance of the

conductive silicon substrate. Coupling capacitance between metal segments due to fringing fields inboth

the dielectric region and the airregion isneglected inthis model. Such anapproximation isvalid because

the relative dielectric constant of the oxide issmall and the inductor isused at frequencies well below its

self-resonant frequency. Since the structure ofthe square-spiral inductor isnot symmetrical, the parasitic

capacitance values at the inductor terminals should bedifferent from one another. This difference, how

ever, is small [Par84] and the two capacitors areassumed the same. If the spiral inductor is modeled asa

lossless transmission line with the total length much smaller than the quarter wavelength, itcan beshown

that Cp isapproximately equal toone half the input capacitance ofthe open-circuited line [Appendices B

and C]. This gives a first-order estimate of Cp. More accurate analytical expressions for Cp can be

found in [Gar79]. The substrate resistance Rp can be derived from measured S parameters. It is

interesting to note that in a GaAs inductor using microstrip lines, substrate resistance Rp is not present

because the GaAs substrate acting as the dielectric layer is in direct contact with the conductive ground

plane.
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If one side of the inductor is grounded, the self-resonant frequency of the spiral inductor can be

derived from the equivalent circuit. It is approximately equal to

% =
1

l-Rs2

<LsCp
l-Rp2 [c'l

(5.1)

Beyond the resonant frequency, the inductor becomes capacitive. Frequency co* is limited mainly by Cp

which is inversely proportional to the oxide diickness between the second-metal layer and the substrate.

The frequency at which the inductor Q is maximum can also be derived. It is

coe =
<l£~p 2Rr 3 Rs

-1 (5.2)

If the inductor is used as a floating inductor, the shunt branches in the equivalentcircuit are effectively in

cpseries with one another. Equations (5.1)and (5.2)stillholdprovided that Cp andRp are replaced by —r-

and 2Rp, respectively.
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53. Implementations

Figure 5.6: Die Photograph of the Inductors

Two square-spiral inductors were fabricated, measured, and characterized. Adie photo of the test

layout is shown in Fig. 5.6. Metal width was 6.5 |im with 5.5-^im spacing of 1.8-ptm-thick second-metal

Al. The sheet resistance ofAl was 20 mQ/D over 1.7 um ofoxide, and the parasitic capacitance from Al

to the substrate was 0.016 fF/|i2. The substrate resistivity was 14 Q-cm and 500-^im-thick p-type silicon.

The larger inductor had 9 turns with an outer dimension of about 230 ^m. The smaller one had 4 turns

with an outer dimension of about 115 ^im. Measured Sn plots from 0.3 MHz to 3 GHz for these induc

tors in a 50-ft system are shown in Fig. 5.7. The large inductor is self resonant at 2.47 GHz while the

small one has an estimated resonant frequency of 9.7 GHz. Pad capacitance was zeroed out of the on-

chip measurement. The large inductor had a measured value of 9.7 nH while the smaller was 1.9 nH.

The theoretical values are, respectively, 9.3 nH and 1.3 nH. The differences are attributed to lead induc

tances and possible minor imprecision in calibration of the test equipment The series loss in the induc

tors deduced from RF measurements agreed very closely with measured and predicted dc series
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(a) Small Inductor

(b) Large Inductor

Figure 5.7: Measured S u from 0.3 MHz to 3 GHz
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resistance, indicating that coupled loss from the silicon substrate was negligible. While metal shrinkage

due to photolithography and etching tolerances can affect the series-loss value, it theoretically has negli

gible effect on the inductance value. With a typical ±0.2-um metal shrinkage, the inductance value in

the large inductor has been calculated to vary less than 1%. The large inductor has a measured

maximum-Q of 3 at 0.9 GHz andthe small one has an estimated maximum-Q of 8 at 4.1 GHz. Circuit

elements in the equivalent circuit for the large inductor were derived from both theory andmeasured S

parameters. Theset [Ls, Rs,Cp, Rp) isequal to {9.7 nH, 15.4 Q, 590 fF, 70 CI].

Rs

0v, ;Ci

i .

o-
+

Figure5.8: Simplified Circuit Diagram of theFive-pole Maximally Flat Low-pass LC Filter

As a test vehicle, a five-pole maximally flat low-pass filter withnominal designed -3-dB frequency

of 880 MHz and midband insertion loss of 2.25 dB was fabricated. Thecircuit is shown inFig. 5.8 where

Rs and R0 are 50-ft off-chip resistors. Element values are L =9.7nH, M ~ 0.4nH, Cx ~ 1.3 pF, and

C2=4.3 pFwhereparasitic capacitance associated with the inductors is included in the capacitor values.

Mutual inductor M exists between the inductors due to layoutproximity. The capacitors were fabricated

in standard form using metal over 1500 Aofoxide with an n+ bottom plate. Since the sheet resistance of

n+ is high (20 Q/D), theseries loss in the capacitor must beminimized by reducing theratio —, where
W

L and W are, respectively, the length and width that define the capacitor area. Pads were included with

the filter to allowtesting but werenot included in thedesign and werezeroed out of the on-chip measure

ments. This would correspond to use of such a filter in an on-chip environment where pads are not

present. If a packaged stand-alone filter was required, padsand bond wires would have to be includedin



62

the design.

The transfer function can be derived from the simplified circuit in Fig. 5.8 and is given by

a2s2 + a0

where

Vo(s)
Vs(s) bss5 +b4s4 + b3s3 +b2s2 +bls +b0

a2 = MC2

bs = (L-M)Cl(L+M)C2RsCl

bt = (L-M)Cx(L+M)C2
Rm

1+-

b3 =(L+M)C2 (LpM) +[2(L-M)Cl +2LC2]RsCl
Ro

b2 =2(L-M)Cl+LC2+-^-[2(L-M)Cl+LC2]
R0

bl =2V^l+Rs(2Cl +C2)
A/.

*0 = 1+-
Rr

(5.3)

As seen from (5.3), the mutual inductance M creates two high-frequencyzeros on the jco axis. Since M is

relatively small compared to the inductance valueL, its effect on the filter attenuation is significantonly

in the stopband. Let/Z (= l/[ 2ir<lMC2 ]) denote the magnitude of the complex-conjugate zeros. It can

be shown that the zeros increase the stopband loss at frequencies below fz but decrease the loss at fre

quencies above. If maximum high-frequency attenuation is desired, the value of M should be minimized

by separating the two inductors far apart in the layout. If M = 0, (5.3) reduces to a simple five-pole

transfer function.

A die photo of the filter is shown in Fig. 5.9. In order to minimize the electrical coupling through

the substrate, a buried p-type layer was placed around the I/O pads and around the periphery of each dev

ice. Measured |Sn | is shown in Fig. 5.10and is closeto thesimulated values. The filter wassimulated

using the 3a limits of capacitance of ± 10% due to process variations but assuming all capacitors tracked
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closely. The resulting spread of S2i characteristics is shown in Fig. 5.11 together with two measured

characteristics from opposite sides ofa 4-in wafer. The filter has a measured midband insertion loss of

2.4 dB and measured -3-dB frequencies of 845 MHz and 860 MHz. Simulation with capacitor tolerances

predicted the -3-dB frequencies at 830 MHz, 880 MHz, and 930 MHz with 880 MHz being the nominal

design value.

Since MOS capacitors display small but finite voltage coefficients [McC81], the filter was checked

for nonlinearity by a third-order intermodulation measurement at 500 MHz. Measurements at signal lev

els of+15 dBm indicated that the third-order intercept was better than the measurement resolution of+42

dBm.
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Figure 5.10: Measured andSimulated |S111 for the Filter

5.4. Conclusion

Passive inductors and LC filters useful in the gigahertz range are demonstrated in standard Si IC

processing. These elements can be used for high-frequency on-chip filtering, inductive peaking of high-

frequency amplifiers, and impedancematching for low-noise amplifiers.
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Chapter 6 - Monolithic LC Voltage-ControlledOscillators

6.1. Introduction

In thedesign of a phase-locked loop(PLL) [Fig. 6.1],thevoltage-controlled oscillator (VCO) is the

most critical component since its characteristics directly determine the performance of the system.

Important characteristicsof the VCO include frequency stability,linear voltage-to-frequency conversion,

wide tuning range, high-frequency capability, frequency accuracy, and monolithic-technology compati

bility. The VCO characteristicsdepend stronglyon the VCO configurations [Liu88]. Dependingon the

shape of the oscillationwaveform, we can categorize VCOcircuits into two groups: relaxationoscillators

and sinusoidal oscillators. A relaxation VCO produces either a square or triangular signal, whereas a

sinusoidal VCO produces a near-sinusoidal signal. Most presenUy available VCOs in monolithic IC tech

nology are relaxation based since they require only capacitors as the frequency-selective elements

[Cor75]. Sinusoidal VCOs on the other hand often require external varactors (voltage-controlled capaci

tors) and inductors for defining oscillation frequency and hence are not suitable for monolithic integra

tion.

v,(0
O—1

Phase

Comparator
Loop Filter Amplifier

"™^n

fo

Voltage-Controlled

Oscillator

Figure 6.1L: Block]Diagram of a Phase-Locked Lo<>P

In this chapter we discuss a novel microwave sinusoidal VCO in monolithic IC technology. The

circuit does notrequire a varactor for frequency tuning butinstead relies oncharacteristics inherent in the

circuitconfiguration. As a test vehicle, a Si bipolar monolithic VCO has been fabricated. It achieves a
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simulated tuning rangeof 300 MHz extending from 1.5GHzto 1.8GHz. The oscillator wasfabricated in

an oxide-isolatedBiCMOS IC process with typical fT (npn) = 10 GHz.

6.2. Circuit Configuration

The simplified circuit schematic of the LC VCO is shown in Fig. 6.2. It consists of two

capacitive-feedback Colpitis oscillators. The left oscillator is comprised of QX,LURU Cu C3, and C6.

The right oscillator is comprised of 24,L2,/?2. C2, C4,and C5. Voltages V£ and V£controlthe amount

of bias current IQ that flows into the two Colpius oscillators. We now study the properties inherent in

this circuit configuration that dictate the voltage-frequencytranslation.
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6.2.1. Oscillation Frequency

The characteristics of this cross-coupled LC VCO are best understood using the feedback model

discussedin Chapter 2. Let T^co) and r2((o) denote the loopgains of the two Colpittsoscillators. Furth

ermore, let ai and a2 denote the fractions of bias current Iq 12 that drive the transistors Qi and Q4

(0< a] <1, 0 < a2 £ 1, aj + a2 = 1). Quantities 04 and a2 are set by voltages V£ and Vc, respectively.

It is shown in Section 6.3 that the effective loop gain for the circuit of Fig. 6.2 is

T((o) = ^ 7,(0)) + a2 r2(o)). (6.1)

It is shown subsequently that the conventional start-up condition is valid for this feedback oscilla

tor. According to this condition, the circuit of Fig. 6.2 is unstableabout its bias point if the loop gain

(6.1) is larger than one at the zero-phase frequency. Since the zero-phase frequency is often used as an

estimate for the oscillation frequency, we observe from (6.1) that if 04 » a^, the zero-phase frequency

is determined mainly by the left Colpitts oscillator; whereas if 012 » a,, it is determined mainly by the

right Colpitts oscillator; and if a! and 0C2 are comparable to one another, both oscillators are equally

significant. If o^= 0 (ax = 0), the circuit of Fig. 6.2 effectively reduces to a simple Colpitts oscillator.

Under this condition theeffective oscillation frequency issolely determined bytheleft(right) oscillator.

To understand thesumming property of (6.1) further, weconsider thesimulated loop gains 7^0))

and T2(o)) inFig. 6.3(a) assuming the same tank-circuit Q and the same maximum loop gain. Quantities

0)1 and 0)2 denote the zero-phase frequencies of the stand-alone Colpitts oscillators andare related to

each other according to

where

C02-0)! = — (6.2)

0)1 + 0)2
<»>c = —ir2- • (6.3)

It has been determined that the relationship (6.2) gives the allowable tuning range for this circuit; any

further separation than this can result in the multi-oscillation phenomenon discussed in Chapter 3. The
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resultant loop gain for at = ct2= — is shown in Fig.6.3(b). We note that the effective zero-phase fre

quency is between ©! and 0)2. By varying cii from 1 to 0 while maintainingthe constraint a,.+ a2= 1,

we achieve a zero-phase frequency that varies from o)t to 0)2. Note that no varactor is needed in this cir

cuit for frequency tuning.

In the following paragraphs we confirm the simulation results of Fig. 6.3(b). It can be shown that

the loop gain has the form of (a more elaborate derivation is given in Section 6.3)

'i

T(s) = a, Tt
R

Li
+ OL2Tr

/?<
(6.4)

s2L{Cx + s^- + 1 s2LoCv + s^ + 1'2«-y
R-

where it is assumed that T\(s) and T2(s) have the same maximum gain. It is useful to define the follow

ing quantities

COi =

©2 =

1

1

Using the above definitions in(6.4) and replacing s-jta gives

Ha) = o, Tu

i+yfii

= a1rmaxk>eM +a2rmaJ^92|.

1

0) Q>i

©1 ©

+ <hTt

l+JQ:

1

© CO2

©2 ©

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

,y'Q 7'OaFor G1 =02 =6 = 10, the values of |eJ l | and |eJ 2| asfunctions offrequency are given in Table 6.1
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co\e'B'\

<*(1-i>
.428e>647'

««-&.698e'45'7"

©i1.0

*0+i>.716e-JM3'

«*(!+•£•)A64e-J62A°

Table(.1:Q=10;idenoteseither1or2

Tofacilitatesubsequentcalculations,weexpressquantity©tintermsof©2andviceversa.By

combining(6.2)and(6.3)weobtain

©1=©2

and

©2=0)!

[i-M
rN

2g

I"*]
=©2

f'**l=©1

(6.10)

(6.11)

wherethefollowingapproximationhasbeenused

f(x)=jT~=1-2jcfor*«1.

Wealsoexpressquantity©cintermsof©1and©2,respectively.Combining(6.2)and(6.3)gives

©c=©1=©!1+

1-
20

(6.12)

20

and

©c=©2=©21-

1+
20

(6.13)

20
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where the following approximation has been used

f{x) = -3- = 1+x forx«l.

We now evaluate the loop gain (6.9) at frequencies ©^ ©c, and ©2. For at =02= «-, the effective

loop gain evaluated at ©1 using (6.10-6.13)andTable 6.1 is

r(«i) = J r™« ^L-^ +l^i
casc^a-—)

=^mtx[l.0+.428^ =±fTmnen*r

Similarly,

7X©c) = T rm«

r(©2) = •=- 7max

e^\ x +\J*

={raiini[.716e^44^"+.698^45-r] =\ 7,

(0 = ^(1-—)

l '̂9ll 1 +k'X-©=©,(1 +̂-) 0>2

={rmK(.464e-^2.4-+1.o] =If-T^e'l**

(6.14)

(6.15)

(6.16)

The above analysisagrees well with the simulated results. For 04= a2 = —, the zero-phase frequency is

approximately equal to ©c according to (6.15). As ai varies from 1 to 0 and a2 varies from 0 to 1, it can

be shown that the effective loop gain of the circuit decreases from7,^ at ©1, reaches the minimum value

°f ?max / 2 at ©c, and increases back to Tmn at ©2.

6.2.2. Frequency Variation

We observe from the above analysis that if ©2 - ©1 = ©c / 0»the effective frequency variation is
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approximately ±-^r with respect to ©c [Eqns. (6.12) and (6.13)]. For a0 of 10, the tuning range is ±

5% of the center frequency. If wide tuning bandwidth is desired, the tank-circuit 0 should be reduced.

We now determine whether it is plausible to separate the frequencies ©i and ©2 further apart in order

to achieve a tuning bandwidth wider than ©c / 0. Figures 6.4(a) and 6.4(b) show the loop gains of the

©c
two Colpitts oscillators and the resultant loopgain for the case ©2- ©1 = - , - . From Fig. 6.4(b) we

observe that the multi-oscillation phenomenon can occur since the non-monotonic phase function crosses

the zero point at multiple frequencies. The Nyquist diagram (not shown) corresponding to the charac

teristic of Fig.6.4(b) reveals thatgiven a sufficient 7max, there canbe more than twonatural frequencies

in the right-half plane which give rise to multiple expanding signals.

In conclusion, the relationship ©2 - ©1 = ©c / 0 givestheallowable tuningrange for this circuit.

63. Loop-Gain Derivation and Root Loci

We now confirm the relationship (6.1). The simplified ac circuit schematic of the VCO is shown in

Fig. 6.5. If we break the circuit at the common emitter node shared by transistors 05 and 0$ and apply

a test signal, this signal would traverse through the left and right oscillators along the paths numbered

from # 1 to #4 and from ifa to #d, respectively. The block diagram of the paths is shown in Fig. 6.6.

Upon traversing through the loops, the two signals return to the emitter node of 05 and Q6 and are

added up due to the summing property of the emitter-coupled pair. This rather unique property has been

observed and derived from a varactor-tuned multivibratorcircuit configuration [Duc89].

In the following paragraphs we derive the effective loop gain of the VCO. The simplified ac cir

cuit of the left Colpitis oscillator is given in Fig. 6.7 where for ease of analysis, the base of the transistor

0 s is assumed grounded. Under this assumption we can show that

<H\ gmS gm6
dV} 2 2

= Gm (6.17)

C c c
and the approximate impedance looking into the base of 06 is —— = —r- = -—-. Figure 6.8 shows the
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simplified equivalentcircuit for deriving the loopgain 71(.y). It can be shown that

Us) = G„
sL\

s2LxCx +s—- + 1
*i

LC3+-^-+C6J

where

Cx = d + c3ll + c

It is useful to define

«i =

C3 +-y-+C6

#3
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(6.18)

(6.19)

(6.20)
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Using the definitions (6.20) and (6.21) in (6.18) gives

T\(s) = 7mixl
*,

s2LlCx+s--- + l
K l

In similar fashion, we can derive the loop gain T2(s). It is equal to

T2(s) = 7max2
/?-

.s2L,C„ + j—- + 1
2 y R-

where

Cy = C2+ + C<

n2 =

C4 +?f+C5
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(6.22)

(6.23)

(6.24)

(6.25)
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The effective loop gain of the circuit is

max2

GmR2

n2

T(s) = axTx(s) + a2T2(s)

(6.26)

(6.27)

According to (6.21) and (6.26), the two Colpitts oscillators have the same maximum loop gain 7max if

Rx/nx=R2/n2. Quantity 7mtx should be chosen to be about 6 so that the loop gain has a minimum

value of about3 [Eqn. (6.15)]. This is sufficienUy large for ensuring a reliable oscillation start-up when

subject to temperature changes andpower-supply fluctuations ina practical implementation.

Ir
4
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-•—-^

/>!* ^
^^

/>4x

—*——

Figure 6.9: Root Locus for a! > a2 (not to scale)

We now construct the root loci for the circuit from the characteristic equation 1 - 7(5) = 0. The

root loci for cti > c<2, o.\ = 0C2, and 04 < 02 are given in Figures 6.9, 6.10, and 6.11, respectively. In

these figures, the natural frequencies Px and P2 are contributed by Tx(s) and the natural frequencies P3

and P4 (at relatively higher frequencies) are contributed by T2(s). We note that with sufficient loop

gain, the circuit always has a unique pair of RHP natural frequencies. The oscillation build-up is

expected to be well behaved. These root loci also indicate that for cti > a2, the oscillation behavior is
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determined mainly by the left Colpitts oscillator; whereas for cti < a2, it is determined mainly by the

right Colpitts oscillator.

Im
4 i

P3*

Pi*
—♦ Re

/>2*_

Pa* "

Figure 6.10: Root Locus for a, = ot2 (not to scale)
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6.4. Circuit Implementation and Performance

A monolithic LC VCO has been realized which achieves a simulated tuning range of 300 MHz

extending from 1.5 GHz to 1.8 GHz. Thecenter frequency of the VCO is approximately 1.65 GHz. For

a tank-circuit 0 of 5, the tuning range is ± 10% of thecenter frequency. Thecomplete circuit is shown

in Fig.6.12. The input differential pair 07 and 08 converts a single-ended input signal to a differential

output signal which is used to control the amount of bias current Iq that drives the transistors 0 xand

04. ResistorR5 sets the proper bias voltagefor the succeeding stage. Resistors /?3 and R4are used to

improve the linearinputrange for Vw. Thedifferential pair0 21 and 022 forms an outputamplifier with

resistance value R17 chosen to be equal to thesystem impedance of 50 SI. Transistors 01 to 06 form the

core of the VCO. Important element values are Lx = 6.5 nH, Cx = 0.2 pF, C3= 1.0 pF, C6= 3.0 pF,

L2= 3.7 nH, C4= 1.6 pF, and C5= 1.0 pF. Parasitic elements associated with inductors Lx and L2 are

used to replace capacitor C2and resistorsRxandR2of Fig. 6.2. Recall from Chapter 5 that parasitic ele

ments associated with a silicon integrated inductor include the sheet resistance Rs, parasitic capacitance

Cp from the metal layers to the substrate, and substrate resistance Rp. The set {Rs,CptRp) for Lx is

approximately {9.9 0,460 fF, 70 O.) and for L2 is approximately {5.8 Q, 450 fF, 50 Q). The network

transformation in Fig. 6.13 is used to convert the series Ls-Rs branch of the inductor equivalent circuit

into a parallel network.

In the preceding sections, the natural frequencies due to the resonant circuits have been assumed to

be dominant. At high frequencies, other less significant natural frequencies in the active transistors can

produce excessphase shift and cause significant loop gain loss. This effect is moreeminent in the right

Colpittsoscillator since it must operate at higher frequencies than the left Colpittsoscillator. For this rea

son, the ratio n2 was intentionally chosen to be less than nx so as to compensate for the loop gain loss

[Eqn. (6.26)].

Thenominal biascurrent IQ is 10mA. Diodes D X-D5 form protection circuits against electrostatic

discharges. The simulated quiescent power dissipation is 95 mW from a single supply of 5 V. The VCO

is simulated assuming the 3a limits of ± 10% on the capacitance values. When subject to these process
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variations, the frequency tuning range is observed to vary at less than ± 3%, indicating that the circuit is

insensitive to process variations. This is intuitively expected since the oscillation frequency is inversely

proportional to the square root of the LC time constant Figure 6.14 displays the oscillation frequency as

a function of the controlling voltage VlN.

The steady-state condition for feedback oscillators is described by the so-called Barkhausen cri

terion which states that the "large-signal" loop gain evaluated at the oscillation frequency and amplitude

isequal toone, i.e„ r(1) (co0, A0) = 1. It is important toemphasize that one must utilize the concept of

the describing function to describe the large-signal loop gain quantity. This VCO circuit achieves its

steady-state behavior through distortion limiting due to the active transistors Qx and 04. As the oscilla

tion frequency varies from ©i to ©2, the output signal taken from either the base of 0 5or the base of Q6

is not expected to be constant In fact the signal Vo2 decreases from its peak value at cax and reaches a

minimum value at ©2. This is expected since as the oscillation frequency increases, the effective "large-

signal" impedanceat the collectorof Qx decreases; the output signal is reducedaccordingly. The signal

V0 xbehaves oppositely from the signalVo2. In orderto maintain a somewhatconstantamplitude of oscil

lation over the whole tuning bandwidth, it is necessary to use the differential output signal between VoX
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and Vo2.

The oscillator was fabricated in an oxide-isolated BiCMOS IC process with typical fT (npn) = 10

GHz. Preliminary testing of the circuit in package form showed circuit performance close to the simu

lated results. Further characterization on the oscillator phase noiseand the voltage-to-oscillation transla

tion has been planned. Since the oscillator phase noise is inversely proportional to the square of the

oscillator 0 [Rob82], good phase noiseperformance can be achieved at the expense of a narrow tuning

bandwidth.

6.5. Conclusion

A monolithic microwave sinusoidal LC voltage-controlled oscillator (VCO) has been described.

Unlike conventional sinusoidal VCOs that must depend on a varactor for frequency tuning, this VCO

uses two cross-coupled Colpitts oscillators to achieve the objective. The obtainable tuning bandwidth is

co2 - (0, = wc / (2 where coj and co2 are the oscillation frequencies of the stand-alone Colpitts oscillators.

Simulation results indicate that the circuit is insensitive to process tolerances and temperaturevari

ations. This VCO can be used in a high-frequency phase-locked loop for various communication appli

cations.



84

OscFreq (GHz)

1.82

1 1 1 1 1 1 1

1.80 - / -

1.78 - / -

1.76 - / -

1.74 - / -

1.72 - / -

1.70 - / -

1.68 - / -

1.66 - / -

1.64 / -

1.62 - / -

1.60 - / -

1.58 / -
1.56 / -

1.54
—

1.52
—

1.50

1.48 ~ 1 1 1 1 1 1 -

.10 2.20 2.30 2.40 2.50 2.60 2.70

Figure 6.14: Oscillation Frequency (GHz) versus Input Voltage

Vin(V)



Chapter 7 - Si Bipolar Monolithic RF Bandpass Amplifiers

7.1. Introduction

RF amplifiers are widely used in many RF communication systems. Important characteristics

include gain per stage, frequency response and noise performance. Resistive feedback amplifiers are

often used to achieve the above objectives [Mey81, Pet83]. In the frequency rangeextending from dc to

the -3-dB frequency, these amplifiers achieve simultaneous input and output impedance match, while

maintaining flat gain and relatively low amplifier noise. Beyond the -3-dB frequency, the circuit noise

increases as the circuit gain drastically reduces and the terminal impedances are severely mismatched.

The performance of such circuits can be optimized for use with band-limitedRF signals by focusing on

the passband of interest In this chapter we investigate the application of monolithic inductors in the

design and fabrication of Si monolithic RF amplifiers in the L band (1-2 GHz). The inductors are used to

boost the gain of the RF amplifiers and to improve noise performance.

As a test vehicle, a bipolar monolithic bandpass amplifier has been fabricated, measured, and

characterized. A 4-nH silicon integrated inductor was used to achieve a peak 52i gain of 8 dB, a simu

lated noise figure of 6.4 dB, and a matched input impedance of 50 Q, in the frequency range 1-2 GHz.

The amplifier was fabricated in an oxide-isolatedSi bipolar IC process with peak/r = 9 GHz.

7.2. Design Approach

A simplified ac circuit schematic of a widely-used resistive feedback amplifier is shown in Fig.

7.1(a). The circuit incorporates a shunt feedback resistor (RF) and a series feedback resistor (RE) to

achieve stabilized circuit gain, low output distortion, and simultaneous input and output impedance

matching. In order to predict the frequency response of this circuit, the simplified equivalent circuit

shown in Fig. 7.1(b) which neglects theeffects of C^ and rb of the bipolar transistor is used. It can be

shown that the transimpedance gain is

V0(s) (l-GmRF)RL

his) (\ +GmRL) +s CXRF + (CX + C£RL + s2CxRFC2RL

85
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RF
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©v. Zi

(a) Series and Shunt Feedback Amplifier

Rs Is Vx Rf

Qvs Cx \yfjGmVX

c, =
G% /-, f, n 8>

» ^2 = <"a . t/m =
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(b) Simplified Equivalent Circuit

Figure 7.1

The denominator of (7.1) can be written as

D(s) =

Rl

'-* l~k = l-s
J_ _1_

PiP
= l + axs +a2si

1^2

If P i is a dominant pole, it can be approximatedby

l + GMRL

ax CXRF + (CX + C2)RL ~ /-3-dB

(7.2)

(7.3)
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The midbandgain of the circuit from (7.1) is

(l-GmRF)RL

l + GmRL

Equations (7.3) and (7.4) can be combined to yield the gain-bandwidth product of this circuit. It is

approximately equal to

GB = A0 /.j.jB = ©!•/?£, (7.5)

Q

where cor =-£- denotes the transition frequency of the bipolar transistor. It is seen from (7.5) that the

gain-bandwidth product is a constant quantity, implying that if the -3-dB frequency is optimized well

into the microwaveregion, a considerable amountof circuit gain is sacrificed.

For the low-pass amplifier of Fig. 7.1(a) the -3-dB frequency is observed to be limitedmainly by

capacitance Cx. Beyond the -3-dB frequency, the terminal impedances are severely mismatched while

the circuit gain is gready reduced. The performance of such circuits can be optimized for use with band-

limited RF signals by focusing on the passband of interest For the circuit in Fig. 7.1(b), this can be

accomplished with the addition of a shunt inductor across capacitor Cx. Effectively, this inductor

transforms the "untuned" low-pass amplifier into a bandpass amplifier.

In order to understand how the shunt inductor used in this topology modifies the circuit bandwidth,

we first consider the general representation of a low-pass amplifier shown in Fig. 7.2(a). The gain func

tion can be derived to be

where

V0(s) „ Ri
= -Gm(RL\\R0)

Vs(s) mv *" "' Ri+Rs
1

1-j/P, \-s IP-
(7.6)

Pi=-(«sii«,)ci -d '»—cosher- (77)

A typical plot of (7.6) is shown in Fig. 7.2(b) where the assumed dominant pole Px determines the

bandwidth of the circuit. Since the input resistance /?, must be matched to the source resistanceRs in

order to minimize reflected signal loss, quantity C, dictates the frequency Px. We next consider the
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Figure 7.2: (a) Low-pass Amplifier and (b) Frequency Response

modified circuit shown in Fig. 7.3(a). It can be shown that

V0{s) s(Lx/Rs)

Vs(s)
= -Gm(RL\\R0)

1

l-s IP, s2LxCi+sLx(\/Ri + l/Rs)+\
(7.8)

A typical plot of (7.8) is shown in Fig. 7.3(b). At frequencies well below or above the center frequency

coc (= lNLxCi), theparallel RtLxCt tank circuit behaves like a short circuit, andconsequendy, little sig

nal power can be transmitted to the output Denote the frequencies at which the peak gain drops by 3-dB

by co_ and <o+, and the bandwidth of the circuit by 0)_3.dB. If P2 » co+, it can be shown that [Chu87]

W-3-dB = co+- co_ =
Q

(7.9)

where

Q =(RS |«W£- (7.10)

By substituting (7.10) into (7.9) we obtain
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Figure 7.3: (a) Bandpass Amplifier and (b) Frequency Response
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(7.11)

It is interestingto note that the bandwidthof the modified circuit is equal to that of the original circuit

The new circuit technique effectively transforms a low-pass frequency response to a bandpass

response, centered around coc. This method is attractive because it achieves the required bandwidth

without reducing circuit gain. In addition, it can also achieve a matched input impedance. By tuning out

the device capacitance near the center frequency 0)c, the shunt inductor also improves the noise perfor

mance at high frequencies. A detailed analysis illustrating this point is presented in Section 7.4.

73. Circuit Configuration and Implementation

As an application of the above circuit technique, an L-band (1-2 GHz) bipolar monolithic amplifier

has been realized. The complete circuit is shown in Fig. 7.4. Cascode transistor Qc eliminates the Miller

effect resulting from capacitance Cbc of transistor Qx. Transistor Q2 functions as a voltage buffer that

minimizes forward transmission through the feedback resistor RF. The only drawback to having the
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Figure 7.4: Complete Schematic of the L-Band RF Amplifier

*
V0

•o

buffer Q2 is that simultaneous impedancematching at both the inputand output cannot be achieved. For

optimum noise performance, Re and the base resistance of Q xmust be minimized, and RF maximized.

DiodesD X-D4 function as protection circuit against electrostatic discharges. The amplifier utilizes a 4-

nH silicon integrated inductor [Ngu90] to achieve a peak S2i gainof 8 dB and a bandwidth of 1.2 GHz

that extends from 700 MHz to 1.9 GHz. The input transistor Q xis a large device and is fabricated with

six 30 x 2 pm base strips, yielding a 17-ft base resistance at 6 mA of collector bias current The meas

ured quiescent power dissipation is 130 mW from a single supply of 10 V.

A die photograph of the amplifier is shown in Fig. 7.5. In order to minimize electrical coupling

through the substrate, a buried p-type layer was placedaround the I/O pads and around the periphery of

critical devices. Measured 152i I and \SXX\ are shown inFigs. 7.6and 7.7,respectively. They agree well
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with the simulated results.

The amplifier's input resistance is matched to a system impedance Zj of 50 Q. with careful selec

tionof RF and RE according to the derived relationship

where Av s GmZr , G„ = 8ml

l + £ml*£

determined from the untuned amplifier (without L{) shown in Fig. 7.8. By neglecting theeffect of base

resistances and by treating the cascode transistor Qc as a unity current buffer, we can show that the

admittance matrix of the two-port amplifier is

^21 ^22

where

RF = AvZj- (7.12)

, and Rs =RL=Zf ( = 50 Q.). The circuit bandwidth can be

R,
+ sC,

1

Rf

1 s A.n * s , ~n
(7.13)
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Figure 7.6: Measured andSimulated |S2X

d =
nl

1 + gmlRE

G2 - Cac + Cbcc + Cbc2

The gain function can be derived to be

Vo(s)

Vs(s)

Y*YS*21

Yi2Y2x-(Yxx + Ys){Y22+YL)

Av

s2CxC2Z? +sZr Cx+ C: 1 + 2 +

Freq (Hz)

(7.14)

From (7.14), the -3-dB frequency can be predicted assuming that the transfer function has the dominant

pole

2 w,

/"3"dB =" Zr(C, +C2) ="2A7 (7.15)
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Figure 7.7: Measured and Simulated \SXX\

The above analysis agrees well with simulation results.

While frequency response is an important requirement in an RF amplifier, a good noise perfor

mance is equally significant since it places a limit on thesmallest RF signal that can be detected. Noise

figure (NF) is commonly used as a figure of merit in low-noise amplifiers (LNA). It is shown in Section

7.4 that this bandpass amplifier has better noise performance than that of the corresponding low-pass

amplifier since the source impedance Zs as defined in Fig. 4 has an inductive reactance component which

is closer to theoptimum for lowest noise figure. The simulated noise figure has a minimum of 6.4dB at

the frequency 1.5 GHz,of which 0.5 dB is contributed by transistor Qs and resistive loss in Lx. For pur

poses of comparison, the untuned circuit has a -3-dB frequency of 1.2GHz anda noise figure of greater

than 7 dB at the frequency 1.5 GHz.
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Figure 7.8: Simplified Circuit for Frequency Analysis

7.4. Noise Figure Derivation

Noise figure is defined as the ratio of the total output noise power to the output noise power contri

buted by the source resistance. Because of the influence of the source resistance on the noise figure, an

LNA often incorporates an impedance-matching network (ideally noiseless) at the input in order to obtain

an optimum source resistance for noise performance. In the following paragraphs, a general expression
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for the noise figure is derived and then used to predict the noise performance of the amplifier in Fig. 7.4.

Let Z, denote the source impedance, v2 denote the noise power of the source resistance, and

represent the noise performance of the amplifier by equivalentinput noise voltageand current generators

v2 and i,-2. After the noise voltage v,- (rms value) isdecomposed into

v,=vw+i4Zc (7.16)

where with respect to the noise current /,-, vu is an uncorrelated part and Zc is a correlation factor

[Har76], the noise figure can be shown to be

""2 '~2

NF= l+-^ +4=|Zc+Zj2. (7.17)

Now assume

Ze=Re+jXe (7.18)

Zs=Rs+jXs (7.19)

vj = 4kTRuAf (7.20)

/? = tkTGAf (7.21)

V? = 4*7H,A/ . (7.22)

Substituting (7.18-7.22) into (7.17) yields

NF =1+j-+JL [<*e +RS)2 +(XC +X,)2] . (7.23)

By taking the partial derivatives of (7.23) with respect to Xs and Rs, and setting them equal to zero we

find that the noise figure is optimum if

X,(opt) =-Xc and *,(opt) =̂ ^- +R2. (7.24)
The above result is now applied to the circuit in Fig. 7.4. The amplifier noise is assumed to be

dominated by noise in the input transistor Qxand feedback resistors RF and Re • Figure 7.9(a) shows the

simplified input stage for noise analysis. In this figure, v£ and ij are the equivalent noise generators for

the bipolar transistor Qx. Quantities // and v2 are the associated thermal-noise generators for the feed

back elements. In Fig. 7.7(b), all the noise sources in the circuit are replaced by two equivalent noise
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Figure 7.9: (a) Simplified Input Stage for Noise Analysis and (b) Equivalent Noise Generators

,2 __,j ;2generators v,- and **,•. The equivalent noise generators for the bipolar transistor are [Gra84]

vi = v*2 + ri i} + | + zrr-r I2 i}
gm P(co)1 c

(7.25)
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(7.26)

In (7.25) and (7.26), quantities vb, ifr2, and i'c2 are thenoise generators of the base resistor, base current,

and collector current, respectively. They areexpressed in terms of the mean-squarevalues

2 _vf = 4kTrbAf

2 _if =2qIBAf+KjAf

i2 =2qIcAf =4kT^-Af .

Taking into account the thermal noise generated by feedback elements RF and Re, we can show that the

overall equivalent noise generators are (rms values)

vi = vfc +rbib +
1 rb+RE

8m + PC©)
i«

ii = ib +
p(co)

1where if = 4kT-±-Af andv/ = 4kTREAf,
RF

ic + v« (7.27)

(7.28)

The correlation factor Ze as defined in (7.16) can be determined from the autocorrelation function

of v, and z'i [Lee88]

E { v,- /*} = E {(vu +U Zc)i\ ) = E {v^ +Zcttt I2 }.

By assumption, quantities vu and /, areuncorrelated and thus

E { vt i*) E{Vi i*)
Zc =

E{|iil2}
(7.29)

If the baseshot noiseand flicker noisecan be neglected due to smalldc basecurrent andhigh-frequency

operation, respectively, the correlation factor canbe derived to be

Z, =

Equation (7.30) can be simplified to

1 rb+RE

8m + K») P*(co)

I .• 2 , .• 2
2 l' + lfIP«o)l

(7.30)
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2
where a = | p(oo) |2

gmRF

_ (rfc+/?E) + P(a))/gm
Ze = r— = /Cc + y Ac

l + a

. Equation (7.16) is now rewritten as

Vu = V; - U Zc

Substituting (7.27), (7.28), and (7.31) into (7.32) gives

v„ =\vb +v* J

(7.31)

(7.32)

1 rb+RE

+ \8m+ P«*>)
a

1 + a -f+^+̂}(T^]v- ™
The mean-square value v2 can be determined direcdy from (7.33) where the noise generators vb, ve, ie,

and// are uncorrected. Quantity Ru from vH2 = 4kTRuAf is

/?a = (rb+RE) + -z-<—+ .n/ ,|2
2 Ui P(«>)

+̂ jfo+**>2 , lP(co)l:

2 _Quantity G, from */ = 4kTG:Af is

G = l 8m l
' IP(to)|2 2 *,

1

1 + a

a

1 + a

2

(7.34)

(7.35)

Quantities /?c,Ru, and G, as given in (7.31), (7.34), and (7.35), respectively, can be now substituted in

(7.24) for the optimum source resistance.

G)r
In the frequency range — < ©< cor, thecurrent gainP(co) canbe approximated by

(0, &•P(©) = -± =
y© y©c„*

Substituting (7.36)into the imaginary component of (7.31) gives

Xc =-
©C„

1 +
&»*/

» «

CO,
2-

0)

-1

(7.36)

(7.37)

SinceXs (opt) = - Xc, the optimum sourcereactance is inductive. Theoptimum sourceinductance is
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4 (opt) = 2
cozC,

1 +
8mRf CO

-1

(7.38)

The above analysis predicts that better noise performance can be achieved with the presence of

inductor L j. While this inductor is used mainly to shift the low-pass response to a bandpass response, it

also functions as an inductive source reactance for improving noise performance.

7.5. Conclusion

The application of monolithic inductors in the design of RF bandpass amplifiers has been investi

gated in this chapter. Inductorscan be used to boostcircuit gain and to improve impedance matchingand

noise performance. An L-band RF amplifier has been realized to confirmthe theoretical investigation.



Chapter 8 - Conclusions and Future Directions

This thesis has demonstrated the application of Si bipolar IC technology to the design and fabrica

tion of microwave inductors, voltage-controlled oscillators, and amplifiers. The attainable performance

with theseindividual circuits givesmuch promise and potential for thedevelopment of multifunction sili

con MMICs (monolithic microwave integrated circuits). Analytical design techniques havebeen particu

larly emphasized throughout this dissertation. They provide much insight into the circuit performance

and limitations, and havebeenpivotal in thedevelopment of newcircuit configurations.

Mi ^PPort 2

Port 1 O—*

SiO>

Port 4

"E

•+—O Port 3

1M3
3M2
BAf,

Substrate

Figure 8.1: 3-Dimensional Inductor/Transformer Structure

Future research with potential application in MMIC technology may include thecharacterization of

the multispiral inductor/transformer structure shown inFig. 8.1. Due to the magnetic field strongly cou-

100
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pling between the metal segments, this structure achieves a ratio of inductance perunit area higher than

that of a single spiral structure, which in turn implies higher inductor Q. Characterization of this struc

ture is expected to be complicated and may require intensive EM-field theory.

In the equivalent lumped model of the spiral inductorinvestigated in Chapter5, the substrate resis

tor Rp is probably the most difficult element tocharacterize. Though its value can be derived from the

measured S parameters, it is more desirable if theeffect of this circuitelement is minimized. One way to

minimize its effect is to introduce a highly doped n* layer underneath the structure. This provides an

alternative low-resistive conductive path to the substrate contact

As frequencies of interest continue to increase, the electric coupling through the lossy Si substrate

becomesimportant andcan degrade the circuit performance, especially in Si microwaveamplifiers. Inan

amplifier circuit the substrate can link the input to the outputthrough the collector-substrate capacitance

of the active transistors, and may cause a reduction in circuitbandwidthdue to the Miller multiplication

effect It is important therefore, to understand the substrate structure and to be able to characterize it

probably with a 3-D circuit model. Such research could provide explanations for many high-frequency

monolithic-amplifier anomalies presendy observed in practice.



Appendix A - Indefinite Admittance Matrix

The indefinite admittance matrix is derived for the single-transistor oscillator shown in Fig. A.l.

For generality, the bias circuit is not shown and the datum node is not yet specified. The result obtained

can be used for analyzing the linear behavior of the Colpitts and Pierceoscillators.

V2
O

J
<•—^nnr^—(h-^-o vx

T_
c,

Figure A.l: Single-Transistor Oscillator

The circuit is redrawn in Fig. A.2 in which the bipolar transistor is represented by a simplified

high-frequency model. The indefinite admittance matrix Y is defined as follows

where

11 Yx2 YX2 Vi

21 ^22 ^23 Vl

31 ^32 ^33 v3

Yn =-£-(^2=^3=0) rl2= v-(^=k3=0) r13= ^-(vx =v2=o)
Vx V2 K3

^21 =-^(^2=^3=0) 722= ^"(^1 =̂3 =0) 723= Tr(Vx =V2 =0)
M *2 v3
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<i—Tmr*—* ^«-o vx
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V,

Figure A.2: Small-SignalEquivalent Circuit

r3i =^-(^2=^3=0) y32= ^-(^1 =̂ 3=0) r33= -^-(^ =̂ =0)
"\ y2 v3
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Any indefinite admittance matrix has a special property that the sum of any row or column in the matrix

is equal to zero. The matrix Y can be derived to be

Yu =
1 f l +s(CK +CJrb+s2Ll(C2 +C1t +CJ +s3LlCACK+Cv)rb \

JsL] l + s(CK + C^rb

yl2 = -
1 J l+j(Cg+Cp)rfe+j2LiCn

sLx 1 1+J(CB+C^)rfc

^is = -*.
s(C2 +C1d/gm+ s2C2rb (Cg +.CxJ/gn

l+S(CK+CJrb

y2i = -
1 \ l +s[(Cn+Cldrb-Lxgm] +s2LxCA

sLx l + siCx+C^rb

^22 =
1 I l+s(CK +CJrb+s2Lx(Cx +CVL +CiLrbgm) +s3LxCx(C1t +CVi +C1£iLfCx)rb

sL,

Y73 = ~8»

l+siCx+C^r,,

l +s(Cx/gm+Cflrb) +s2Cxrb(CK+C}l +CKCil/Cx)/gn
1+5(C, + C„)r*
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Appendix B - Lossless Transmission Line Modeling

In this appendix we derivea simple lumped model for a lossless transmission line. This model can

be used to predict the excess phasedue to interconnection lines in microwaveintegratedcircuits.

From transmission-line theory, the two-port network representing a transmission line in Fig. B.l

has the following transmission matrix [Lee88]

/l /->

Transmission Line

*2

+

Vi

+

v2

Figure B.l:

\J

Transmission Line represented by a Two-Port Network

/l

cosh (yl)

— sinh (yl)

Z0 shinty/)

cosh(y/)

V2

h
(B.l)

In (B.l), y= a + y'P is the propagation constant a and p are the attenuation constant and phase con

stant, respectively. If the transmission fine is lossless (a = 0), the transmission matrix (B.l) can be

simplified to

cos(p/) yZ0sin(p/)
. 1 . /QM cos(B/)
;—sin(p/) VK

V2

If port 2 is terminatedby a load impedanceZL, the input impedance — is
'1

Zi = Z0
^+;Z0tan(P/)

Z0+jZL tan(p/)

If ZL = 0 (shorted transmission line), the input impedance is purely inductive

105

(B.2)

(B.3)
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Z, =jZ0vm (P/) <=> L, s -^- tan (P/). (B.4)

If zL = oo (open-circuited transmission line), the inputimpedance is purely conductive

Zi =
;tan(PO

<=> C0 3
Zaco

tan(p/) (B.5)

In the following paragraphs we show that the circuitin Fig. B.2 is adequate for modeling a lossless

transmission line provided thatquantity p/ is much less than 1. The transmission matrix for the circuit

of Fig. B.2 can be derived to be

'Vx

lx

2 L*C°
l + s

sCn
2 LSC0

sLs

2 LSC0
l+S —

V2

h

Z0 1
Substituting s =;'co, Ls= — tan(p/), and C0 = —— tan (p/) into (B.6) yields

co Z„co

'Vx

lx

l-|tan2(p/)

y^-tan(p/) l-|tan2(p/)

yz0tan(p/)

l-|tan2(p/)
V2

h

(B.6)

(B.7)

9ir
If p/ (= — /) is much less than 1 or equivalendy, the length / of the transmission line is much less

A.



than the quarter wavelength —

Using (B.8) in (B.7) gives

/i

tan(p/) = (p/)

cos(p/)= 1-|(P/)2

sin(p/) = (PO.

l-y(P02

JZn 1-7(P02
4

;Zo(PO

i-y(P02

Substituting (B.9) and (B.10) into (B.2) gives

'T '"I^ JZ.W) >2

/. jf .->* /2

v2

/2
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(B.8)

(B.9)

(B.10)

(B.ll)

(B.12)

From a comparison between (B.ll) [lumped model] and (B.12) [transmission-line theory] we observe

that if p/ « 1,thelumped model ofFig. B.2 isadequate for modeling a lossless transmission line.



Appendix C - Software Characterization of the Spiral Inductor & Microstrip Line

C.l. Spiral Inductor

/*
* Using the Grover method, this programpredicts the inductance valueof a silicon integratedplanar
* spiral-inductor. The program also predicts the resistivelossand shuntingcapacitanceof the structure.
*

* References:

* (1) Inductance Calculation, F. Grover, 1942.
* (2) "Designof Planar RectangularMicroelectronics Inductors," H. Greenhouse,June 1974.
*

* Usage: spiral [-c -v -a -d -x] [-i <data>] [-o <output>]
*

* Options:
* -c : keep outermost area constant, step down the turn number
* -v : step down both the area and turn number
* -a : consider the air-bridge segment
* -d : print track distance & segment length
* -x : xy coordinates for layout
* -i : data file

* -o : output file
*

* Input Data:
* LI : length of the outermost segment #1
* L2 : length of the outermost segment #2
* W : metal width

* S : metal spacing
* T : metal thickness

* N : turn number
*

* Assumptions:
* (1) Dielectric and metal are non-magnetic materials. Inductancevalue is hence
* independent of the current
* (2) Neglect "skin effect", current is uniformlydistributed. At low frequencies,
* skin depth is significantly larger than the conductor thickness.
* (3) Lumped model: good assumption up to the self-resonant frequency of the
* spiral inductor.
*/

#include <stdio.h>

#definePI 3.14159

#defineEPSILON 8.854e-14 /*F/cm*/
#define RshMl 50e-3 /* sheet resistance, Ml */
#define RshM2 20e-3 /* sheet resistance, M2 */
#defineCMl 0.029e-15 /* F/umA2, Ml to SUB */
#defineCM2 0.016e-15 /* F/um*2, M2 to SUB */
#define TOX 1.7e-6 /* M2 to SUB */
#define LAMBDA 4

FILE *ifp, *ofp;
int constant=0, vary=0, air=0, verbose=0, coord=0;
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double LI, L2, W, S, T, n, Segment[100];

main(argc, argv)
int argc;
char *argv[];

{
int ifind=0, ofind=0, argn=1,already_print=0;
double Lself, Mplus, Mminus, Lt;
double L, Length, Loss, M2Scap;
double logO. expO, powO, sqrtO;
double AbsO, QO. GMDO;

I* Open user-defined input and output files */
while (argn < argc) {

if (strcmp(argv[argn],"-c") = 0) constant=l;
else if (strcmp(argv[argn],"-v") = 0) vary=l;
else if (strcmp(argv[argn],"-a") == 0) air=l;
else if (strcmp(argv[argn],"-d") ==0) verbose=l;
else if (strcmp(argv[argn],,,-x") == 0) coord=l;
else if (strcmp(argv[argn],"-i") = 0) {

ifp = fopen(argv[++argn], "r");
ifind= 1;

}
else if (strcmp(argv[argn],"-o") == 0) {

ofp = fopen(argv[++argn], "w");
ofind = 1;

}
argn++;

}

I* Open default input and output files*/
if (ifind=0) ifp = stdin;
if (ofind=0) ofp = stdout;

/* Get information about the spiral structure */
fscanf(ifp, "%f\ &L1);
fscanf(ifp, "%f', &L2);
fscanf(ifp, "%F\ &W);
fscanf(ifp, "%f\ &S);
fscanf(ifj), "%f\ AT);
fscanf(ifj), "%r, &n);

fprintf(ofp, "Input DataNn");
fprintf(ofp, "LI = %5.1f (uM)\n", LI);
fprintf(ofp, "L2 = %5.1f (uM)\n\ L2);
fprintf(ofp," W = %5.1f (uM)\n", W);
fprintf(ofp, " S = %5.1f (uM)\n", S);
fprintf(ofp," T = %5.1f (uM)\n", T);
fprintf(ofp," N = %5.1f, %3.1f (max)\n", n, (L1-W)/(2.0*(W+S))+1);

/* Determine xy coordinates for the layoutof the spiral inductor */
if (coord) print_xy();
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/* Convertinputdata from micrometer to centimeter */
Ll=(Ll-W)*le-4;
L2=(L2-W)*le-4;
W=W*le-4;

S=S*le-4;
T=T*le-4;

/* Check for valid structure */
if ((Ll-(n-l)*(W+S))<=(Ll/2.0)) {

printf(" *** Structure violated with %3.Ifcomplete turns ***\n", n);
exit(-l);

}

/♦Start computation */
if ((constant) II (vary)) {

I* determine the maximum turn for the given outermost length */
n=(int) (L1/(2.0*(W+S))+1.0);

}
else if (air) {

/* add air-bridge segment */
n=n+(1.0/4.0);

}

do{

segmentO;
self(&Lself);
pos_mutual(&Mplus);
neg_mutual(&Mminus);
res_loss(&Length, &Loss);
sht_cap(Length, &M2Scap);

Lt=Lself+Mplus-Mminus;

if (!already_print) {
headingO;
already_print=l;

}
fprintf(ofp, "%7.4f %7.4f %7.4f %5.1f %5.1f %4.2f %7.4f %6.1f %5.2f %6.3Ni",

Lself, 2*Mplus,2*Mminus,(Ll+W)*le4, (L2+W)*le4, n, Lt, Length*le4, Loss, M2Scap*lel2);

/* Keep outermost area constant but step down the turn number */
if (constant) n~;

/* Step down both the area and the turn number */
if (vary) {

n~;

L1=L1-2.0*(W+S);
L2=L2-2.0*(W+S);

}
}
while ((n>0.0 && vary) II ((n>0.0) && constant));

fciose(ofp);



/*
* This procedureprints the output heading.
*/
headingO
{

fprintf(ofp, "SnSelf-Ind Pos-Ind Neg-Ind LI L2 Turn Eff-lnd Length Loss CapNn");
fprintf(ofp," (nH) (nH) (nH) (uM) (uM) (nH) (uM) (Ohm) (pF)Nn");

}

/*
* Thisprocedure determines thesegment lengths inthespiral inductor.
*/

segmentO
{

int i, y;

Segment[l]=Ll;
Segment[2]=L2;
for(i=3;i<=(4*n);i++){

if(((i+l)%2)=0){
/* odd-numbered segments */
if ((air) &&(i=4*n)) Segment[i]=Ll-((int)n-l)*(W+S)+(W+S);
else {

y=(i+l)/2;
Segment[i]=Ll-(y-2)*(W+S);

}
}
else {

/* even-numbered segments */
y=i/2;
Segment[i]=L2-(y-l)*(W+S);

}
}

if (verbose) {
printf("\nSegmentLengths (uM)\n");
for(i=l;i<=(4*n);i++){

printf(" s[%2d] =%5.1f\n", i, Segment[i]*le4);
}

}
}

I*
* This function returns the absolute value.

*/
double Abs(value)
double value;

Ill
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{
if (value < 0.0) value=(-value);
return (value);

}

/*
* This function determines the geometric mean distance between two segments.

*/
double GMD(d,W)
double d,W;

{
double gmd, r;

r=d/W;

gmd=log(d);
gmd=gmd-l .0/(12.0*pow(r,2.0));
gmd=gmd-1.0/(60.0*pow(r,4.0));
gmd=gmd-1.0/(168.0*pow(r,6.0));
gmd=gmd-l .0/(360.0*pow(r,8.0));
gmd=gmd-1.0/(660.0*pow(r,10.0));
gmd=exp(gmd);

}

return(gmd);

/*
* This function determines the mutual-inductance parameter Q.
*/

double Q(Length, gmd)
double Length, gmd;
(

double q;

if(Length=0.0)q=0.0;
else {

q=log((Length/gmd)+sqrt(1.0+pow((Length/gmd),2.0)));
q=q-sqrt( 1.0+rjow((gmd/Length),2.0));
q=q+(gmd/Length);

}

}

retum(q);

/*
* This procedure determines the self inductance of the straight-line segments.
*/

self(Lself)
double *Lself;
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{
int i, count=0;

*Lself=0.0;
for(i=l;i<=(4*n);i++){

*I^lf=*I^elf+(2.0*Segment[i])*(log(2.0*Segment[i]/(W+T))+.50049+(W+Tl/(3.0*Segment[i]));
count++;

}
if (verbose) printf("\nNumber of Self-Inductance Terms = %5dSn", count);

I*
* This procedure determines the positive mutualinductance between all the
* parallel segments that have the same currentdirection.
*

* General: 2M = M(l+m-delta) + M(delta) - M(l-delta) - M(m-delta)
* Special Case: 2M = M(m+p) + M(m+q) - M(p) - M(q)
*/
pos_mutual(Mplus)
double *Mplus;

{
int i, j, k, count=0;
double d, p, q, m, Mmp, Mp;
double 1,delta, Mlmd, Md, Mid, Mmd;

if (verbose) {
printf("\nDistance between Track Centers (uM)\n");
for (i=l; i<=(int) ((n-l)*4); i++) {

j=(int)(4*n-i)/4;
for (k=l; k<=j; k++) {

if((air)&&(i+4*k==4*n)){
d=k*(W+S);
delta=Segment[(int)(4*n-2)]+(k-l)*(W+S);
printf(" d[%2d,%2d] = %5.1f delta = %5.1f\n", i, (int) (4*n),d*le4,delta*le4);

}
else {

d=k*(W+S);
p=q=k*(W+S);
printf(" d[%2d,%2d] =%5.1f p=%5.1f q=%5.1iNn",i,(i+4*k),d*le4,p*le4,q*le4);

}
}

}
}

*Mplus=0.0;
for (i=l; i<=(int) ((n-l)*4); i++) {

j=(int)(4*n-i)/4;
for (k=l; k<=j; k++) {

if ((air) && (i+4*k=4*n)) {
d=k*(W+S);
l=Segment[i];
m=Segment[(int) (4*n)];
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delta=Segment[(int)(4*n-2)]+(k-l)*(W+S);
Mlmd=2.0*(l+m-delta)*Q(0+m-delta),GMD(d,W));
Md=2.0*delta*Q(delta,GMD(d,W));
Mld=2.0*AbsO-delta)*Q(AbsO-delta),GMD(d,W));
Mmd=2.0*Abs(m-delta)*Q(Abs(m-delta),GMD(d,W));
*Mplus = *Mplus+2.0*((Mlmd+Md-Mld-Mmd)/2.0);
count++;

1
else {

d=k*(W+S);
p=k*(W+S);
m=Segment[i+4*k];
Mmp=2.0*(m+p)*Q((m+p),GMD(d,W));
Mp=2.0*p*Q(p,GMD(d,W));
♦Mplus = *Mplus+2.0*(Mmp-Mp);
count++;

}
}

}
if (verbose) printf("\nNumber of Positive Mutual-Inductance Terms = %5a\i", count);

}

/*
* This procedure determines the negative mutual inductance between all the
* parallel segments that have the opposite current direction.
*

* General: 2M = MO+m-delta) + M(delta) - M(l-delta) - M(m-delta)
* Special Case: 2M = M(m+p) + M(m+q) - M(p) - M(q)
*/
neg_mutual(Mminus)
double *Mminus;

{
int i, j, k, count=0;
double d, p, q, m, Mmp, Mmq, Mp, Mq;
double 1,delta, Mlmd, Md, Mid, Mmd;

if (verbose) {
printf("\nDistance between Track Centers (uM)\n");
for (i=l; i<=(int) (n*4-2); i++) {

j=(int)(4*n+2-i)/4;
for (k=l; k<=j;k++) {

if ((air) && (i+4*k-2==4*n)) {
d=Segment[i+l]-(k-l)*(W+S);
delta=Segment[(int) (4*n)]+(k- 1)*(W+S);
printf(" d[%2d,%2d] = %5.1f delta = %5.1f\n", i, (int) (4*n), d*le4, delta*le4);

}
else {

d=Segment[i+l]-(k-l)*(W+S);
p=k*(W+S);
q=(k-l)*(W+S);
printfC d[%2d,%2d] = %5.1f p = %5.1f q = %5.1f\n", i, (i+4*k-2), d*le4, p*le4, q*le4);

}



}

*Mminus=0.0;
for (i=l; i<=(int) (n*4-2); i++) {

j=(int) (4*n+2-i)/4;
for (k=l; k<=j; k++) {

if ((air) && (i+4*k-2=4*n)) (
d=Segment[i+l]-(k-l)*(W+S);
l=Segment[(int) (4*n)];
m=Segment[i];
delta=Segment[(int)(4*n)]+(k-l)*(W+S);
Mlmd=2.0*a+m-delta)*Q((l+m-delta),GMD(d,W));
Md=2.0*delta*Q(delta,GMD(d,W));
Mld=2.0*Abs(l-delta)*Q(Abs(l-delta),GMD(d,W));
Mmd=2.0*Abs(m-delta)*Q(Abs(m-delta),GMD(d,W));
*Mminus = *Mminus+2.0*((Mlmd+Md-Mld-Mmd)/2.0);
count++;

}
else {

d=Segment[i+l]-(k-l)*(W+S);
p=k*(W+S);
q=(k-l)*(W+S);
m=Segment[i+4*k-2];
Mmp=2.0*(m+p)*Q((m+p),GMD(d,W));
Mmq=2.0*(m+q)*Q((m+q),GMD(d,W));
Mp=2.0*p*Q(p,GMD(d,W));
Mq=2.0*q*Q(q,GMD(d,W));
♦Mminus = *Mminus+2.0*((Mmp+Mmq-Mp-Mq)/2.0);
count++;

}
}

}
if (verbose) printf("\nNumber of Negative Mutual-Inductance Terms = %5a>n", count);

}

/*
* This procedureaccumulates the sheet resistance in the segments.
*/
res_loss(Length, Loss)
double *Length, *Loss;

{
int i;

*Length=W;
for (i=l; i<=4*n; i++) *Length = *Length+Segment[i];
if (air)

*Loss=(RshM2*(*Length-Segment[i-l])/W)+(RshMl*Segment[i-l]/W);
else

*Loss=RshM2*(*Ungth/W);

}
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/*
* Thisprocedure determines the parasitic capacitance from themetal segments to thesubstrate.
*/
sht_cap(Length, M2Scap)
double Length, *M2Scap;

(
int i=4*n;

/* Determine cap per unit area using parallel-plate formula */
*M2Scap=(3.9*EPSILON)/(TOX*le2); /*F/cmA2*/
*M2Scap=(*M2Scap)/le8; /* F/umA2 */

/* Consider total area of spiral inductor, appears too large */
*M2Scap=((Ll+W)*(L2+W)*le8)*CM2;

I*Considereffective area, seemsabout right. Alsoadd fringing effects, 25% to 30% of total cap */
if (air)

*M2Scap=((Length-Segment[i])*W*le8)*CM2+(Segment[i]*W*le8)*CMl;
else

*M2Scap=(Length*W* le8)*CM2;
*M2Scap=(*M2Scap)* 1.25;

}

I*
* This procedure determines the XY coordinates for the layout of the spiral inductor.
*/

print_xy0
{

inti,Lls,L2s, Ws, Ss;

printf("\nSegment (xl,yl) (x2,y2)W);
Lls=(int) (L1*LAMBDA);
L2s=(int) (L2*LAMBDA);
Ws=(int) (W*LAMBDA);
Ss=(int) (S*LAMBDA);
for (i=l; i<=(int) n; i++) {

if (i=i) printf("%4d (%3d,%3d) ", (i-l)*4+l, 0, L2s-(i-l)*(Ws+Ss));
else printf("%4d (%3d,%3d) ", (i-l)*4+l, (i-2)*(Ws+Ss), L2s-(i-l)*(Ws+Ss));
printf("(%3d,%3d)Nn", Lls-(i-l)*(Ws+Ss), L2s-i*(Ws+Ss)+Ss);

printf("%4d (%3d,%3d) ", (i-l)*4+2, Lls-(i-l)*(Ws+Ss), L2s-(i-l)*(Ws+Ss));
printf("(%3d,%3d)W, Lls-i*(Ws+Ss)+Ss, (i-l)*(Ws+Ss));

printf("%4d (%3d,%3d) ", (i-l)*4+3, Lls-(i-l)*(Ws+Ss), (i-l)*(Ws+Ss));
printf("(%3d,%3d)\n", (i-l)*(Ws+Ss), i*(Ws+Ss)-Ss);

printf("%4d (%3d,%3d) ", (i-l)*4+4, (i-l)*(Ws+Ss), (i-l)*(Ws+Ss));
printf("(%3d,%3d)\n", i*(Ws+Ss)-Ss, L2s-i*(Ws+Ss));

}
}
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C.2. Microstrip Line

* This program determines the effectivecharacteristic impedanceand wavelengthof a microsuip line.
* It also determines the shorted-stub inductanceand the open-stub capacitance.
*

* References:

* (1) Microwave Circuit Analysis and AmplifierDesign, S. Liao, 1987.
* (2) "Principles of Microstrip Design", A. Tam, June 1988.

* Usage: strip [-ml -m2 -ga] -w <width> -1 <length> -f <frequency> [-o <output>]

* Options:
* -ml: microstrip line made of Ml metal

-m2 : microsuip line made of M2 metal
-ga : microstrip line using GaAs technology
-o : output file

* Input Data:
* -w : width in micrometer

* -1 : length in micrometer
* -f : frequency
*/

#include <stdio.h>

#definePI

#define Eo

#define C

#define EOx

#define ESi

#define EGaAs

#defineMlCAP

#defineM2CAP

FILE *ifp, *ofp;

main (argc, argv)
int argc;
char *argv[];

{
int

double

double

double

double

3.14159

8.854e-12

3.0e8

3.9

11.7

13.1

0.029e-15

0.016e-15

/* velocity of light in vacuum, m/s */
/* relative dielectric constant of oxide */
/* relative dielectric constant of silicon */
/* relative dielectric constant of GaAs */
/* parasitic cap from Ml to Sub */
I* parasitic cap from M2 to Sub */

ifind, ofind, argn=l, SiMl=0, SiM2=0,GaAs=0;
W, Length, Freq, T, H, CpA, Er;
Weff, Eeff, Zo, Coeff, Lambda;
Leff, Ceff, Sig, Par;
absO, logO. expO, powQ, sqrtO, tanQ;

/* Open user-defined input and output files*/
while (argn < argc) {

if (strcmp(argv[argn],"-ml") = 0) SiMl=l;
. if (strcmp(argv[argn],"-m2") == 0) SiM2=l;

if (strcmp(argv[argn],"-ga") == 0) GaAs=l;
if (strcmp(argv[argn],"-w") == 0)

sscanf (argv[++argn], "%f', &W);
if (strcmp(argv[argn],,,-r) = 0)
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}

sscanf (argv[++argn], "%f\ ALength);
if (strcmp(argv[argn],"-F) = 0)

sscanf (argv[++argn], "%r, &Freq);
if (strcmp(argv[argn],"-i")= 0) {

ifp = fopen(argv[++argn], "r");
ifind= 1;

}
else if (strcmp(argv[argn],"-o") = 0) {

ofp = fopen(argv[++argn], "w");
ofind = 1;

}
argn++;

I*Open default input and output files */
if (ifind—0) ifp = stdin;
if (ofind==0) ofp = stdout

if(SiMl){
T=0.675; H=0.8;
CpA=MlCAP;Er=EOx;

}
elseif(SiM2){

T=1.8;H=1.7;
CpA=M2CAP; Er=EOx;

}
else if (GaAs) {

T=1.8;H=200.0;
CpA=0.0; Er=EGaAs;

/* Determine the effective width, Eqns. (6-l-8a) & (6-l-8b) */
if ((T/H >= .005) && (W/H >= 1.0/(2.0*PI)))

Weff=W+(T/PI)*(1.0+log(2.0*H/T));
else if ((T/H >= .005) && (W/H <= 1.0/(2.0*PI)))

weff=w+(T/pi)*(i.o+iog(4.o*pi*\vyr));
elseWeff=W;

/* Determine the effective relative dielecuic constant, Eqns. (6-1-2) & (6-1-3) */
if(Weff/H<=1.0)

Eeff=(Er+1.0)/2.0 + ((Er-1.0)/2.0)*(powa^
else

Eeff=(Er+1.0)/2.0 + ((Er-1.0)/2.0)*pow(1.0+12*H/Weff,-0.5);

fprintf(ofp," Input DataW);
fprintf(ofp," W = %5.1f (uM, conductor width)\n", W);
fj)rintf(ofi)," L =%5.1f (uM, conductor length)\n", Length);
fi)rintf(ofp," T =%5.1f (uM, conductor thickness)\n", T);
fj)rintf(of5)," H =%5.1f (uM, dielectric thickness)Nn", H);
fj)rintf(ofp," Er = %5.1f (relative dielectric constant)Nn", Er);
fprintf(ofp," Weff = %5.1f (uM, effective conductorwidth)\n", WefQ;
fprintf(ofp," Eeff = %5.1f (effective dielecuic constant)\n\n",Eeff);



/* Determine the characteristic impedance, Eqns. (6-1-6) & (6-1-7) */
if(Weff/H<=1.0)

Zo=(60.0/sqrt(Eeff))*log(8.0*H/Weff+0.25*Weff/H);
else

Zo=(120.0*PI/sqrt(Eeff))/(Weff/H + 1.393 + .667*log(Weff/H+ 1.444));

/* Determine the wavelength, Eqns. (6-1-4) & (6-1-5) */
if(Weff/H>=0.6)

Coeff=(1.0/sqrt(Er))*sqrt(Er/(1.0f0.63*(Er-1.0)*pow(Weff/H,.1255)));
else

C()eff=(1.0/sqrt(Er))*sqrt(Er/(1.0+0.60*(Er-1.0)*pow(Weff/H,.0297)));
Lambda=Coeff*C/Freq;

/* Convert the conductor length from micrometer to meter */
Length=(Length* le-6);

I* Shorted-stub inductance */
Leff=(Zo/(2.0*PI*Freq))*tan(2.0*PI*Length/Lambda);

/* Open-stub capacitance */
Ceff=(1.0/(2.0*PI*Freq*Zo))*tan(2.0*PI*Length/Lambda);

/* Parallel parasitic cap calculation. Use the original width in the computation */
Par=(Eeff*Eo)*(W/H)*Length;

/* Signetics parasiticcap calculation */
Sig=l .25*CpA*(Length* le6)*W;

fprintf(ofp, "Characteristic Impedance = %4.1f\n", Zo);
fprintf(ofi>, "Frequency =%7.1e\n", Freq);
fprintf(ofp, "Wave Length = %8.2e\n", Lambda);
fprintf(ofp, "Shorted-stub Inductance = %5.3f (pH)Nn", Leff* lel2);
fj>rintf(ofi>, "Open-stub Capacitance =%5.3f (fF)\n'\ Ceff*lel5);
fprintf(ofp, "Parallel-Plate Cap. = %5.3f (fF)\n", Par*lel5);
f^rintf(ofJ>, "Signetic-Process Cap. =%5.3f (fF)\n", Sig* lei5);

}
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