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Abstract

We address the issue of call acceptance and routing in ATM networks. Our

goal is to design an algorithm that guarantees bounds on the fraction of cells lost

by a call. The method we propose for call acceptance and routing does not require

models describing the traffic. Each switch estimates the additional fraction of

cells that would be lost if new calls were routed through the switch. The routing

algorithm uses these estimates. The estimates are obtained by monitoring the

switch operations and extrapolating to the situation where more calls are routed

through the switch. The extrapolation is justified by a scaling property. To reduce

the variance of the estimates, the switches calculate the cell loss that would occur

with smaller buffers. A way to choose the sizes of the small buffers in order to

minimize the variance is discussed. Thus, the switches constantly estimate their

spare capacity. Simulations were performed using Markov fluid sources to test the

validity of our approach.



1 Introduction

Asynchronous transfer mode (ATM) is a form of packet switching that is proposed for

broadband networks. In ATM, data is divided into 53 byte cells that are multiplexed

on a time-slotted channel. When network traffic is bursty, ATM's use of statistical

multiplexing results in an efficient use of bandwidth [1].

ATM uses virtual circuits (VC). Every cellof this call will use the same route. When

a cell arrives at a switch, the switch determines its output link by looking at the VC

number in the header of the cell, and using a lookup table in the switch's memory. The

VC number of every call and the lookup tables of every switch are determined by the

routing algorithm [2].

Virtual circuits share buffers in switches. The method of call acceptance described

in this paper can be used with various switch architectures (e.g. output-buffer, shared-

buffer, Batcher-banyan). If, for example, output buffer switches are used, each output

link of a switch has an associated buffer. When the traffic offered to a link exceeds the

link's capacity, cells begin to accumulate in the buffer. When a cell arrives at a full

buffer, it is lost. We wish to minimize the fraction of cells lost due to buffer overflows to

the point where it is comparable to losses due to transmission errors (10~8). Since cell

losses are rare and delays are small, the statistics of a call does not significantly change

along its virtual circuit. Therefore, we assume that calls of the same type (e.g. video,

speech, etc.), at a given switch, have the same statistics.

Our goal is to design an algorithm that guarantees bounds on the fraction of cells



lost due to buffer overflows. The method we propose does not require models describing

the statistics of the traffic. This contrasts with an algorithm based on a parametric

model that attempts to estimate the parameters from the traffic. We choose the former

approach because realistic models may be complex and slow to fit. We make an analogy

with direct vs. indirect adaptive control. In indirect adaptive control, first a parametric

model is fitted to the observed traffic. The optimal policy for the estimated parameters

is then used. In the direct approach, the quantity to be optimized is measured. The

control actions are selected to optimize future values of this quantity.

Thus, by monitoring the traffic through its buffers, each switch constantly estimates

its spare capacity to accept new calls. The algorithm then routes a call by using these

estimates.

The paper is organized as follows. Section 2 describes the call acceptance and routing

algorithm in some detail. In section 3 we assume the input sources are of the same type,

and prove a predictive scaling property of the probability of buffer overflow in a busy

cycle. We relate this quantity to the fraction of cells lost. In section 4, we describe two

methods of variance reduction. Our simulations are described in section 5. Finally, in

section 6, we discuss a way to handle multiple types of calls with this method and draw

conclusions.



2 Monitor to Infer Network Overflow Statistics (MINO S)

As explained above, we want to estimate the loss probability in the switch buffers. Con

sider a given buffer of size B cells, with N > 0 virtual circuits sharing the buffer, and

served by a fiber with transmission rate c cells/s. Let F(iV, B, c) be the fraction of cells

lost due to buffer overflows. We want to estimate the fraction F(N(1 + e), B,c) of cells

lost when a fraction e more calls are added. From this, we can decide whether or not to

accept a fraction e more calls. In section 3, we show the probability of buffer overflow in

a busy cycle, $, has the following property: for large B,

$(JV(l+£),B,c) « «(JV,B,-£_).

We express F in terms of $ conclude that F has this property as well. Thus, we can

estimate F when a fraction e more calls are added by estimating F with the current

number of calls, Nt and the service rate reduced by the same fraction. To estimate

F(N(1 + e),B, c), a device is added to the switch that calculates the buffer occupancy,

X(t), when the service rate is ^. Thus, when a cell arrives at the buffer, X(t) is

incremented byone. Also, X(t) is decremented by one every ^ seconds when X(i) > 0.

This function could be realized by a chip. The problem now is to estimate F(N,B,-^)-

which is very small-by monitoring the buffer.

To improve the estimator, the device will estimate the losses for smaller buffers so

as to increase the frequency of buffer overflows, and therefore speed-up the collection of



"important" samples. There is a tradeoff in choosing the size of the small buffers. If

these small buffers are still too large, our estimates will be too slow. However, if these

small buffers are too small, the original system system is over-distorted and we have a

large error when we extrapolate back to B. Let B/k be the size of a small buffer for

some k > 1.

The small buffer estimate, F(iV, f ,7^), is related to F(N,B, ^), in the following

way. We can show (appendix A) that F has the following form:

F(N,B,-^-) = exp(-BW-±-) +o(B)).
Iff 1 -r €.

Taking the e°^ term to be AB*, weobtain estimates of

Because we have three unknowns (A, £,/), we will carry out this estimate for for three

values oik: k0 > ki > fe > 1. These three equations can besolved for A, f and /(TV, ^).

We can then plug in A, { and I(N,7^) into the expression for F(iV, 1?, ^), and thus

compute the desired quantity F(N(l + e),jB,c) « F(N,B, ^).

To summarize the above, the estimation algorithm in the device keeps track of three

"small buffer" occupancy processes with buffers of size B/ki, i = 1,2,3, and service rate

•~. Note that these computations can be done in parallel with the normal operation of



the switch so that the estimates of F(N, £, y^) are constantly available to the routing

algorithm. In section 4 we also describe a way to further reduce the variance of an

estimate of $.

Let us now describe how the routing algorithm can use the above estimates. Denote

by Fn = F(NnyBn,Cn) the current fraction of cells lost at buffer n, for all buffers n in

the network. Assuming a first-come-first-serve queuing discipline in each buffer, Fn is

the fraction of cells lost at buffer n by each call that uses buffer n. If call i uses buffers

1,2,..., m, the fraction of cells lost by that call is 1 - IKUU ~ Fn) ~ En=i Fn-

Now say we are trying to route a new call. Using the above method, buffer n estimates

Fn = F(Nn(l + e),Bn,c„). We attempt to find a path for the new call that satisfies

Gnew > V Fn
nepath

where Gnew is the fraction of lost cells acceptable to the new call. Moreover, the router

must ensure that, by choosing a particular path for the new call, the above constraint is

not violated for any existing, previously routed call i (with guarantee G{) which uses all

or part of that path. If no path is found that satisfies these constraints, the new call is

refused.

The routing policy just described is myopic. More sophisticated strategies should be

investigated. For instance, given statistics about the generation of new calls, one can

formulate a dynamic programming problem which is solved by the optimal policy.



3 A Predictive Scaling Property

Markov fluids are commonly used to model bursty ATM traffic [3]. In this paper we

analyze the two-rate Markov fluid model for simplicity: each call generates cells at two

different deterministic rates. A call will fire cells at one rate for a random exponentially

distributed amount of time after which it will begin to fire at the other rate. The results

given in this section can be extended to m-rate Markov fluid models, with m > 2, as well

as batch Poisson models. For the details of these extensions we refer to a future paper

[4]-

In this section we consider calls of the same type to derive an expression for the

probability of buffer overflow in a busy cycle. We want to find expressions for probabilities

of rare events which leads us to employ the theory of large deviations below. We consider

a given buffer of size B cells, with N two-rate Markov fluid calls sharing the buffer, and

served by a fiber with transmission rate c cells/s.

3.1 The Model

Define the process Y with

dY N

dt Jt=i



where the r* are i.i.d. Markov chains with rate matrix

Qr =
-qo qo

qi -gi

and stationary probabiHties 7r» = qi-i/(qo + (ft), i = 0,1. The state space of the r^'s is

A = {A0,Ai} where A0 - jj < 0 and Ai - ^ > 0. Thus dY/dt is a Markov chain in

the set {zi = i(Ai - ^) + (N - i)(A0 - jf) : ie {0,1,..., JV"}}, and its rate matrix has

components q(i, i + 1) = (N - i)q0, for 0 < i < N, and q{i,i- 1) = iqu for 0 < i < N.

Therefore Y has piecewise linear trajectories with Markov slope.

The traffic intensity of the buffer is p(^) = ^(A07r0 +AXTi) < 1. We are focusing

on the case p«l: the buffer is experiencing heavy traffic.

In appendix A, we show that, in heavy traffic,

•**••••>s -{-*£$&;!»+«*.
This result can be generalized to a case where the state space of the rk is {A0,..., Am_i}

with m > 2 [4].

Asymptotics of Markov fluids in queuing systems are also discussed in [5]. From their

result, we obtain a lower bound for $ (appendix A):

*<".*.«> >- ^(-°'y-t)ii:-1)"^^



From these two inequalities we can conclude that, in heavy traffic,

*(N(l+c),B,c) « *(tf, £,-£_).

For batch Poisson sources, using the results in [6], [7], and [8], we can show $(N,B, c) =

exp(-£J(JV,c) + o(B)) where 7(JV,c) = 7(1, %) [4].

The fraction of cells lost due to buffer overflows, F(N, B, c), can be expressed in terms

of $(N,B,c), the average number of cells lost in an overflowing cycle, D(N, B, c), and

the average number of cells arriving in a cycle, C(N,B,c):

D(P,c)WJI,c)
{ ' ' ; C(N,B,c)

Note that the numerator, D$, is the average number of cells lost in a cycle. We assume

that the rate processes are stationary, and that cycles in which a single cell arrives to an

empty buffer and departs before the next cell arrives are counted.

In finding an expression for C, we ignore the buffer size B because the number of cells

arriving in an overflowing cycle is of the order B and the probability of an overflowing

cycle is of the order exp(—BI). This gives us a contribution to C of approximately

Bexp(-BI) which is negligible for large B. In finding an expression for D we argue

that the value of dY/dt when an overflow occurs is the maximum NAi —c. Also, we

assume a negligible number of cells will be lost after the rate returns to zero. Under

these assumptions, D will have a negligibledependence on B as well (for large B). Thus,
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C/D = o(B). One can heuristically show that C(N,c) « C(l,c/iV) and D(N,c) «

£>(l,c/7V) [4]. We conclude that the fraction of cells lost, F, has the same (N,c) scaling

properties as the probability of buffer overflow, $.

4 Variance Reduction

4.1 Small Buffers

Recall that we proposed using small buffers to increase the frequency of "important"

samples (buffer overflows) in order to reduce the variance of the estimate of F. The

small buffers have sizes £/&,-, i = 1,2,3, with k0 > k\ > k2 > 1. We will now explain a

way to express the quantity we want to estimate

F = F(iV(l +e),5,c)«F(iV,5,^-)«A5-Vfl/

in terms of the small buffer estimates

B c x /B\-* , B
* s wfei^O -H^

i = 0,1,2. Let atj = £-£, e0 = =%f*ga,e, = *M,and7 =log^^/log^C'0^0'')-

Solving for the three unknowns, A, £, and 7, in terms of the F{, and substituting into the



expression for F we get,

\ogF = /ologFo + ZilogFi + MogFz

where /0 = e0 + 7fl2,i, ^1 = 7^0,2, and l2 = e2 + 701,0-

4.2 Analysis of Variance Reduction using Small Buffers

For simpficity we take £ = 0 and consider the variance reduction achieved by using two

small buffers (instead of three) to estimate ft (instead of F). Thus, we estimate

ft = $(iV(l+e),£,c)«$(JV,£,^)«Ae-B/

from the small buffer estimates

ft, = ft(JV,|>r^)«A«p(-|/)

i = 0,2. Substituting for A and 7 we get ft = ft?ft?.

Assume the time to estimate, n, in busy cycles is fixed and the same for both small

buffers. Let <x,- be the standard deviation of the estimate of ft,- so that <j,- = y ft»(l —ft;)/rc

« wft,/n, *= 0,2. Thus, the relative error of the estimate of ft, a/ft, satisfies

<7 (To 02 r(u , x
— < ——e0 + —e2 =: /(fc0, «2)
ft ft0 ft2

10



for <Ti sufficiently small. Note that e0 < 0 and / is an upper bound for cr/ft because we

have ignored the fact that the ft,- are positively correlated.

Minimizing / over (k0, k2) we get that the optimal fc0 is verylarge and the optimal k2

minimizes g(k) = (k —1)\A —A+kJexp(BI/k) —A. Let n* and uta be thenumber of

cycles required to achieve e x 100% relative error with 95% confidence [9] using two small

buffers and direct time averaging respectively. A simple computation yields: Uk/nxA —

g2(k2)exp(—BI). In our simulations, we found A << 1 (which implies the optimal

k2 w 0.4i?7), and BI« 8, so that nk/riTA & 1/17. The speed up factor is actually larger

than 17 because cr/ft < /; using sample standard deviations, we found a speed up was

about 100. Unfortunately, fixing £ = 0 results in estimates of ft that are consistently one

order of magnitude too small. These calculations give us a rule of thumb for choosing

the &,-, i = 0,1,2: choose ko large and k2 small (the tradeoff discussed in section 2).

4.3 Variance Reduction using the Kullback-Leibler Distance

We now describe a method to estimate the probability of buffer overflow in a cycle.

Instead of using three small buffers etc., we monitor the peak buffer occupancy in every

cycle (call it Z, for the ztn cycle). Let n be a given number of cycles, and B* = B/k0.

For integers 6 > B —1, define the empirical tail distribution of Z{\

„(b) - I x / Eli 1{S <**} if »=*'-l
PW ~ n \ ££., 1{£ =*} if *>b:

n



Also define

6(AIb) - [ l-^xp(-B*7) if b=B* -1
n"; 1 Aexp(-&7)-Aexp(-(&+l)7) if 6> B*

where we have taken £ = 0. The Kullback-Leibler distance [10] between <j> and p is

tf(A,7) = f) p(6)log^ P{b)

Qr =

tefl-i \0(A,7,6);

The values of A and 7 that minimize Tf are given by

7 = l0H1 +Er^w-^(i-^-i))J ^
A = (l-p(£*-l))exp(£*7).

These expressions for A and 7 can be easily updated at the end of every cycle. Taking

£ 7^ 0 so that K is a function of three parameters, we found no simple closed form solution

to dK/d£ = dK/dl = dK/dA = 0.

5 Simulations

We conducted simulations using the two rate Markov fluid model described above for the

sources to the buffer. The following values were chosen for the parameters: B = 1800

cells, A0 = 0, Ai = 2500 cells/s, c = 15000 cells/s (» 6 Mbps) and

-1.0 10

20 -20
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The number of sources, AT, was varied. We took e = 1/N and N + 1 € {13,14,.., 17}.

The above parameters were chosen so that we would be simulating on-off sources with

burst rates in the Mbps range (1 cell = 53 bytes), and the fraction of overflowing cycles

among non-"trivial" busy cycles was small: a trivial busy cycle being one in which a cell

arrives to an empty buffer and leaves before the next cell arrives (Y < 0 and £r,- > 0).

The values of N were chosen in the above range to simulate heavy traffic conditions:

p(t) = ?*iAi = £ where t = («•<,,*,) = (2/3,1/3).

The first simulation checks the N —c scaling property of section 3 for a finite B

when a large amount of time is available to accurately estimate the F,-, i = 1,2,3. For

iV-fl G 13,..17, we measured F(N + 1,£, c) using direct sample averaging (we stopped

our simulation when the 95% confidence interval estimate of F(N + l,7?,c) was less

than 0.3 [9]). Using three small buffers, we estimated F(N + 1,7?, c) from estimates of

F{ = F(iV, j|, 1+j^_t) using the formulas above with e= l/N (we stopped our simulation

when the 95% confidence interval estimate of F(N, p,1+^-i) was less than 10%). We

used two different sets of three fc,: (20,15,9) and (15,12,9). Figure 1 contains plots of the

logarithm of the fraction of cells lost vs. the number of buffer sources, N + 1. There are

three curves: the measured value of F(N +l,B,c) and the estimate of this value using

three small buffers for the two sets of k. The estimates are both well within an order of

magnitude of the measured value.

In the second simulation, we fixed N + 1 = 13 so that F(N + l,5,c)«5x 10~6 and

ft(JV + l,5,c)«3x 10"9. We ran the simulation for n = 107 busy cycles of the "actual"

13



buffer process (size B). Since the probability of even seeing one overflow in this amount

of time is 30%, an estimate of F from direct sample averages would probably be zero.

Figure 2 shows the performance of the estimate of F using three small buffers for two

sets of k{. In the six trials (abscissa of the graph) of this simulation, no overflows were

observed in the actual buffer. The sample standard deviation was less than the estimate

in every trial.

These two simulations were repeated using four-rate Markov fluids with the following

parameters chosen to have the traffic characteristics described above: B = 1800 cells,

Ki € {0,2000,3000,4000} cells/s, c= 15000 cells/s,

Qr =

-10 10 0 0

20 -30 10 0

0 30 -40 10

0 0 -40 -40

N + l e {9,10,11,12}, and two different sets of three fe: (30,15,5) and (20,15,5). For the

short time simulation, we fixed N + 1 = 9 and the simulation time n = 5 x 107 cycles.

Since the measured value of ft(N + l,5,c) = 6x 10"10, we get that the probability of

seeing an overflow in one n cycle trial is 30% as above. The results are shown in figures

3 and 4.

We repeated the simulation with two-rate Markov fluid sources to estimate ft using

the method based on minimizing the Kullback-Leibler distance. We fixed N + 1 = 15

so that ft(7V + l,£,c) « xl0~6 and ran the simulation for n = 105 busy cycles. In

the six trials of this simulation plotted in figure 5, one overflow was observed in the

14



actual buffer. The estimates are optimistic but are within an order of magnitude of the

measured value, 10~6. Also, the sample standard deviation was less than the estimate in

every trial. Given this amount of time, the three small buffers estimate was very noisy.

When estimating ft, trivial busy cycles were counted. When these cycles were not

counted, the simulations yielded good results anyway; the values of ft were, of course,

much higher in this case. Note that, if we assume the buffer is an M/M/l queue with

traffic intensity p = 157TiAi/c= 15/18 and approximate ft with the stationary probability

that this M/M/l queue exceeds B, we get ft(N + l,7?,c) « pB » 10~14O-an extremely

poor estimate.

6 Discussion and Conclusions

The above method can be used to handle multiple types of calls sharing a buffer. Say

there are six voice calls (same type) and two video calls currently using the buffer, and

we wish to estimate the effect of adding a video call. Define a new type of call that is

the sum of three voice calls and one video call. Therefore there are two calls of that type

currently using the buffer. Instead of estimating the fraction of cells lost when another

video call is added, we estimate F when another call of that type is added. This, of

course, may be a very conservative estimate of the affect of another video call on the

buffer.

In order to estimate the number of Mips required by one small buffer to estimate

15



Fi, we let the peak arrival rate into the buffer be p x c cells/s. The worst case occurs

during cell loss when we have to handle the buffer occupancy and perform a compare

every (pc + c)'1 seconds, and update the cells lost and cells arrived counters every (pc)-1

seconds. Thus we require 2(pc + c) + 2pc = (4p+ 2)c Mips. For c = 3.5 x 105 cells/s (150

Mbps) and p = 5 we get 7.7 Mips required by one small buffer.

In summary, we have described a call set-up algorithm which monitors the traffic in

a switch buffer and makes quick and direct estimates of the effect of routing more calls

through that buffer on the fraction of cells lost in that buffer. The method is robust:

it has been shown, in principle, to work for batch Poisson and Markov fluid sources.

Finally, simulations were conducted which demonstrated the predictive property of the

algorithm as well as the significant variance reduction, with finite buffer size.

Since many idealizations were made above, experiments on actual networks are clearly

required to determine how useful this method will be.
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7 Appendix A: Scaling Property of $

We can express this rate matrix of dY/dt in terms of z,-, instead of i, to get,

[ f(NA1 -c-zi) =: X(Zi) if z = Zi + A = zi+1
%(-NA0 + c + Zi)=:ii(zi) if z = z{ - A = z{.x
0 else

Q{zi,z) = I

where A = A\ —A0.

Define X(z) = q0(NAa - c - z)/A for all real z in the interval [z0,zN], \(z) = Nq0

for z < zq, and X(z) = 0 for z > z^. Similarly extend the definition of /z to a continuous

17



function on the whole real line. We will use the Markov process R(t), with generator

(£/)(*) = A(*)(/(* +A)-/(a))+,•(*)(/(*-A)-/(«)),

to model the dY/dt process. Note that R and dY/dt will have the same distribution if

the initial values are the same (in the set {zi}).

We assume that the buffer size, B, is large so that, even in heavy traffic, loss prob

abilities are still small. For t € [0,T], define the scaled process RB(t) = B~lR(Bt). In

order to get and expression for the probability of buffer overflow in a busy cycle, we will

use a large deviations result for {RB(t) : t 6 [0,T]} as B —• oo. To this end define the

cumulant of R ([11], p.145):

H(z,a) = \(z)(e°* - 1) + n(z)(e-°* - I).

Let L be the Legendre transform of H with respect to the second variable:

L(z,Q = sup{a(-H(z,a)}.

In the following, we will indicate the dependence of L and H on N and c: L(N,c,z,Q

and H(N,c,z,a) respectively.

Define the set of trajectories of RB that result in an overflow at time BT in the first

18



busy cycle:

T*(T) = {z £C1[<j,T] : f z(t)dt =B~1> [Uz{t)dt>-B-2 Vue(0,T)}.
Jo Jo

By the large deviations result in [12] we get,

$(N,B,c) < exp(-£7(W,c) + o(£))

where

I(N,c) = inf inf / L(N,c,z(t),z(t))dt.

Note that jVA1_c is the shortest possible time to overflow. Since L > 0, we can replace

T*(T) in the expression for I(N,c) by

T(T) = {z eCl[0,T] : f z(t)dt =B~\z(0) =0,z(t) >0 a.e. t€(0,T)}
JO

where a.e. abbreviates "for almost every".

Because L is the supremum of Hnear functions of {z,z) (Legendre transform above),

L is a convex function of (z,z). Thus, by Jensen's inequality,

£L(N,c,z(t),z(t))dt >TL(N,c,^j\(t)dt,^£z(t)dt) =TL(N,c,-^T,^P-)

where, in the last twoequalities, wehaveused z € T(T). Now weassumed that the traffic

intensity p(^) < 1, which is equivalent to A(0) < p,(Q). This implies that fi(z) > \(z)
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for all z > 0.

Claim: For aU z e T(T), tf L{N,c,z{t),z(t))dt > TL{N,c, ^,0).

Proof: z(T) > 0 and Jensen's inequality above imply that it suffices to show that

L(N,c,(BT)-\e) > L(N,c,(BT)-\0) for all e > 0. Since pi(BT)-1) > A((BT)"1),

H{N,c,(BT)-\-a) > H(N,c,(BT)-l,a) for all a > 0. This implies that

a* = argsup{-i7(JV,c,(£r)-\a)} > 0.
a€R

Thus, for all e > 0,

L(N,c,(BT)-\e) = sup{ae- H(N,c,{BT)-\a)}
a€R

> a*e-H(N,c,(BT)-\a*)
> -H(N,c,{BT)-\a*)
= L(N,c,(BT)-\0)

as desired.

Thus we have found a lower bound for B x I(N,c):

BxI(N,c) > J{N,B,c):= inf BTL(N,c,{BT)-\0) = inf SL(N,c,S-\0).

Given the expressions for A and p. above, it is easy to see that H(N,c,z,a) = N

H(l,c/N,z/N,a). This in turn imphes that L(N,c,z,z) = N • L(l,c/N,z/N,z/N).

Therefore,
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J(N,B,c) = inf NSL(l,^,±0) =J(l,B,±-)
ns>tzSvr N NS N

and

*(iV,B,c) < exp(-J(l,B,^) +0(B))

which is the desired scahng property for an upper bound of $. One can show this (N, c)

scaling property for m > 2 rate Markov fluid sources as wellusing a similar approach [4].

We can show directly that

w,,4. Biw-m t<w

Under heavy traffic (p « 1 & A(0) « p(0)) we can approximate

Thus, under heavy traffic,

Having an upper bound for $ we now show a lower bound. Define the buffer process,

X, with dX/dt(t) = £2Li rk(t) - cl{X(t) > 0}. Anick et al [5] show that the stationary

probability of {X(t) > B] is

•>(-*%mH®+".
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Define the "actual" buffer process, /?, defined with d0/dt(t) = EfcLir*(t)l {/?(*) < B} -

c\{P{t) > 0}. We take X(0) = Y(0) = 0(0). Consider a typical busy cycle of the buffer,

starting at the time zero, followed by an idle cycle. That is, define S > T > 0 such that

0(0-) = 0,0(0) = l,/3(t) > 0 Vi G (0,T), and 0(t) = 0 Vi G [T,5). Thus

«* (-^(y-if)(lr-(?)))+°(b)) =p{x(<) >b} typicai*€[°'s)
< ?{X(t) > B} typical t G [0,T]
= P{Y(t) > B} typical t G [0,T]

Note that X, Y and 0 all agree up to the end of the busy cycle (T) or an overflow,

whichever comes first. X and Y agree up to the end of the busy cycle.
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Figure 1: Large Time, 2 Rate Sources
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Figure 2: Small Time, 2 Rate Sources
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Figure 4: Small Time, 4 Rate Sources
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PHI x 10
6 Probability of Buffer Overflow in a Busy Cycle
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Figure 5: Small Time, 2 Rate Sources
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