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Abstract

This paper discusses two schemes for the adaptive control of classes of MIMO
nonlinear systems with parametric uncertainty in their dynamics. First, the problem
of tracking a reference trajectory is considered and an adaptive version of the input-
output decoupling algorithm of [DM87] for general right invertible MIMO systems
is proposed. Then on the basis of some results of [DB90a], [DB90b] on asymptotic
model matching, a scheme is presented for Model Reference Adaptive Control and a
solution is given for input-output linearizable systems. Moreover, the non-adaptive
model matching results are extended to yield a solution to the problem of tracking by
static state feedback.

1 Introduction

In recent years there has been a great deal of research effort in the adaptive control of

nonlinear systems. This research has been primarily focused on SISO systems for which

there exist, broadly speaking, three types of approaches: those relying on the existence of

certain matching or structural conditions for the location of the unknown parameters (see

for example [KKM89], [TKMK89] and [KKM91]), the second relying on certain assumptions

on the type of the nonlinearities in the plant (see for example, [SI89], [NA88], [KTKS91])

•Research supported in part by a McKay lecturership held at Berkeley in September 1990.
Research supported in part by ARO under grant DAAL-88-K-0106 and NASA under grant NAG 2-243.
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and the third using a Lyapunov function for exhibiting stabilization of the non-adaptive

controlled[PP89], [PBPJ90]). While both the first and third approaches mentioned above

are specifically geared to dealing with polynomial, non globally Lipschitz nonlinearities the

structural conditions necessitated in the first approach appear to be restrictive and not easy

to verify. Further, the third approach does not appear to have an easy extension to problems

of adaptive tracking rather than stabilization. In the second category, there is a complete

solution in [SI89] to the problem of adaptive linearization and tracking in SISO systems with

bounded states; there is, however, the assumption that the zero dynamics are exponentially

stable and the nonlinearities are Lipschitz continuous in the domain of applicability of the

schemes. It is our goal in this paper to commence a study of model reference adaptive

control and tracking control of MIMO nonlinear systems. Thus, our approach is closest

in philosophy to that of [SI89]. Specifically, we consider adaptive control of square MIMO

nonlinear systems P of the form

x= }{x)+g{x)u m
y= h(x) [L)

where x(t) € X, an open connected subset of Rn, u(t) € Rm,y(^) € Rm. Further we will

assume that / and the columns of g, namely <#, are analytic vector fields on Rn and the

functions hi are real analytic functions on Rn.

The first topic that we cover is adaptive input-output linearization of general right-invertible

MIMO systems. An adaptive version of the dynamic decoupling algorithm of [DM87] for

dynamic input-output decoupling. In the process, we give a precise characterization of the

prior information needed to build the adaptive controller.

Next, we investigate the problem of general model reference adaptive control of nonlinear

systems. We take advantage of some recent results on (non-adaptive) asymptotic model

matching with stability for general MIMO nonlinear systems ([DB90b], [DB90a], [CDB90],
[GM89]) to begin this program. First, we specialize these results to non-adaptive tracking

using static state feedback for general MIMO nonlinear systems. Then, an adaptive version

of this algorithm is given and the prior information needed to implement the scheme and is

also discussed.

These results on adaptive control of MIMO systems are general in the sense that they need

no specific matching conditions for the parametric dependence of the systems. However,

as in [SI89] some form of exponential attractivity of the zero dynamics is required. The

exponential minimum phase hypothesis of that paper is weakened here to an hypothesis of

exponential attractivity (a precise definition is given in Section 2), which guarantees that

the state variables rendered unobservable by the linearization remain bounded.



A brief outline of this paper is as follows: Section 2 contains a review of the results of

[SI89] on SISO adaptive linearization. The exponential minimum phase hypothesis of [SI89]
is weakened to exponential attractivity of the zero dynamics. Section 3 first contains a

review of the scheme of [DM87] on linearization by dynamic extension. Then an adaptive

version of this algorithm is presented with a statement of the prior information required

for the implementation of the algorithm. In Section 4.1 we review the results of [DB90a],

[CDB90] on non adaptive model matching by static state feedback. Section 4.2 contains some

extension of these results to the derivation of a non-adaptive, static tracking control law.

In section 4.3, adaptive model matching for MIMO nonlinear systems is investigated. The

proof of convergence of the scheme needs an extra condition on the plant: namely, that it

be input-output linearizable (but not necessarily decouplable) by static state feedback. The

algorithm, we conjecture, has a proof of convergence in other more general circumstances as

well. Section 5 contains some concluding remarks.

2 A Review of SISO Adaptive Linearization

One method developed in the literature to solve the tracking problem consists first of input-

output linearizing the system and then applying a linear tracking control. An adaptive

version of this two step tracking control law was proposed in [SI89] for SISO systems. We

recall some results from this paper to allow for a better understanding of the differences with

respect to the MIMO situation illustrated in Section 3.

Consider the system (1) with one input and one output. Let x0 be an equilibrium point of

the undriven system, that is /(xo) = 0, and such that the output is zero at £o, i.e. h(xo) = 0.

We will assume that the system (1) has strict relative degree 7 at x0 [Isi89].

One can choose a new set ofcoordinates {1 = h(x) ,£2 = Ljh(x) ,... ,f7 = Ifj~lh(x) and
77 € Rn~7 such that drug = 0 so as to exhibit the system of (1) in the normal form [Isi89]:

6= 6
6= 6

; (2)

Here a(£,n) = L]/i(a;),6(^,77) = LgLylh(x) and q(t,n) = Lfn.
The zero dynamics are described by the following dynamical system in R71-7:

i7 = ?(0,i?) (3)



The system is said to be (exponentially) minimum phase if the equilibrium point 0 is a

(exponentially) stable equilibrium point of (3). It may be verified using a converse argument

(see [SI89]) that asymptotic tracking with bounded states can be obtained if the system

is exponentially minimum phase. The zero dynamics of (3) are said to be exponentially

attractive to a large enough ball which is C A", if

»?T9(0,i?) < -<*M2 for |t?| > R (4)

Also, q(£, rj) satisfies the following Lipschitz like continuity condition referred to as conic

continuity of q(£,n) in £ uniformly in n:

k«.i?)-*(0,i7)|<*KI (5)

Proposition 2.1 Globally Bounded Tracking

Assume that the normal form of (2) for the system of (1) valid on X. Further assume

that the zero dynamics are exponentially attractive in the sense of (4) and satisfy a conic

continuity condition. Then, with the tracking control law

u= t rt-iu S-Llhi<x>) +Vm +"ifoZT1 " y7"1) +•••+<*y(yM - y)) (6)LgLf h(x) J

it follows that y —• y^ with x bounded so long as y^,ilM, •••iVm1 are bounded.

The preceding result has been critically examined in the literature but it has not been

appreciated that the condition of (5) is not a global Lipschitz condition on the function

q(£,n) but only bears some resemblance to one such which, in any event, should read:

Witum) - v(t2,m)\ < *I6 -61 + k\vi -m\

Now, for adaptive tracking, assume that the vector fields f,g in (1) and the function h in

(1) are unknown but may be parameterized by finitely many parameters 0* 6 Rl. The exact
nature of the dependence on 6* is not important in what follows. However, to give some

definiteness to the discussion that follows immediately hereafter, we will assume that f,g, h

depend linearly by parameters 6* 6 R' in the form

g(x)= EL %.•(*) (7)

where the vector fields fi,g% and the functions hi are known functions of x. In the equation

(7) above, it follows that, if some of the 0* are known, they are replaced by their values. Now



the linearizing control laws of the previous section are replaced by their estimates depending
A

on the current estimate 9(t) of 0* in accordance with a heuristic known as the certainty

equivalence principle. Thus if the "true" system is known to have relative degree 7 then the

control law is given by

u= JL (-LZh(x) +v) (8)
LgL)-lh(x)

Here LgL'j~1h(x),Lyjh(x) stand for the estimates of LgLj~1h(x),L'fh(x) derived by first
expressing these function in terms of the known vector fields fi,gj and known functions /ijt

and multilinear products of the form 0{... 0m and then replacing the multilinear product by

an estimate of the form 0,-... 0m. We define the multilinear product as a new parameter and

estimate it and v stands for the estimate of the tracking control law given by

v = vlf +<*i(2/m 1- LTl}l) +"' *+Qt(yM -h)

Note that the Lljh(x) are all multilinear functions of 0. Consequently, ifone defines 0 £ Rk
to be the vector of all multilinear products of the 0i up to terms of degree 7, it follows that

the control law of (8) is affine in 0. 1 Defining the parameter error in 0 to be $ := 0 —0*

and the output error to be e = y —yM an easy calculation yields that

e> + Qie7"1 + •••+ ct^e = $TW(x, 0) (9)

for some appropriately defined W(x, 0) 6 Rfc (in order, for W(x, 0) to be a smooth function
of x, we need Ijgl?fxh to be bounded away from 0. Define the (model) transfer function

M(s) = \ (10)

and an augmented error e\ to be

d = e+ (GT(t)M(s)W{x, 0) - M(s)0T(t)W(x, 0)) (11)

Note that the last two terms above are not equal and refer respectively to each component

of W being filtered by M(s) before being multiplied by Q(t) and filtering Q(t)TW(x, 0) by
M(s). If 0 were indeed constant, e\ = e. Now combining (9) with (11) yields

ei = $TM(5)VK(x,0) (12)

It is convenient to denote the filtered regressor M(s)W(x,0) by

Wi{x9&) := M(a)W(x,&)
xThe linear dependence of the control law on a new parameter vector 0 is key to what follows.



Theorem 2.2 Adaptive Tracking

Consider the system of (1) with the vector fields /, g and the function h parameterized as in

(7). Assume that the system can be globally converted into the normal form coordinates of

(2). Further assume that the zero dynamics of the system are exponentially attractive inside

X in the sense of (4) and satisfy the conic continuity conditions of (5).

Then given a bounded trajectory yM with first 7 — 1 derivatives all bounded it follows that

the control law of (8) with the parameter update law

0=*=-rrw^ (13)
yields bounded tracking, i.e. y(t) —• yji/(0 with all the states x bounded.

Remarks:

1. The parameter update law is specified for 0. This neglects the multilinear dependence

of terms inside the vector. However, this is necessitated by the lack of a systematic

theory of nonlinear parameter estimation or identification. In a practical setting, the

following heuristic may be used to speed up the parameter convergence: when the

multilinear parameter, say 0i0j appears to be close to convergence, project it's update

law in the direction of 0i0j. The heuristic is provably convergent if the estimate 0i9j is

close enough to 0*0j (!).

2. In order for the regressor W\ to be bounded it is necessary to confine the parameter

estimates in such a range as to keep LgI?fxh to be bounded away from zero. This
may be achieved by projecting the parameter error estimates into a region where this

is the case.

3. Given the form of the linear error equation there is a large choice available to us for

parameter update laws. We choose the normalized gradient type algorithm of (13) here

for reasons of brevity but we hasten to add that several other normalized algorithms

(such as the normalized least squares will do as well (see [SB89])).

4. The proof of this theorem is a modification of that in [SI89] using the weaker hypotheses

of equations (4, 5).

5. It is useful to note that the prior information required for doing adaptive control of

SISO systems is knowledge of the relative degree 7 of the true plant. The hypotheses of
the theorem are additional: that the true plant be minimum phase and that LgL?f~ h
be bounded away from 0.



3 Adaptive Linearization of General MIMO Systems

As in the case of SISO systems, one could achieve nonadaptive tracking by first input-

output linearizing the given system and then applying a linear tracking control law. In

this instance, if the plant is not input-output linearizable by static state feedback, then a

dynamic compensator is needed and the right-invertibility of the plant ensures the existence

of a dynamically linearizing controller [DM87]. Several algorithms have been proposed in the

literature for the construction of such a compensator and we now recall the one of [DM87].

We change notation slightly to refer to the process P as So. The following algorithm starts

at k = 0 and with state variable xe = x.

Step 1 Let r,- be the relative degree of the i th output of Efc, i.e. the largest integer such

that

L9jLljhi{xe) = 0 V/ <n - 1 VI < j < m

and for all xe near x%. Define the decoupling matrix Ak(xe) to have its ij th entry

««(*) = L9}Lrj-lhi{xe)

and denote its normal or generic rank by s*. If s* = rn, stop.

Step 2 If Sk < m, assume that the first Sk rows of Ak(xe) are linearly independent at each

point of an open, dense set of Xe (this can always be achieved by a permutation of the

components of the output). Apply the regular static state feedback

u = ak{xe) + (3k(xe)v (14)

with ajt,/?jk analytic functions of xe such that the decoupling matrix of £* with the control

law of (14) is of the form

This may be achieved by choosing ajt,/3fc to be solutions of the equations

dL^hix'ttfix6) +g(xe)ak(xe)) = 0 VI < i < sk

and

dLr}i-lh(xe){g{xe)Pk(xe))j = 8ij VI < i < sk l<j<m

where (g(xe)j3k(xe))j denotes the j th column of the matrix g(xe)/3(xe).
Step 3 There exist qk columns of A\{xe) (without loss of generality the first qk) with two or

more non zero elements. Put an integrator in series with qk corresponding input channels,

i.e. define the dynamic extension of Sjt composed with (14) as

ti = Vi (15)



for i = I,...,?*. Let E*+i be the new system obtained by composing E* with (14) and

(15), new inputs Ui,..., u7fc, uqfc+i,..., um and return to step 1 to resume the procedure with

k «— k + 1 and the new state variables xe <— {xe} U {£•}.

D

At each step of the previous algorithm, the following dynamic compensator is applied

Ck =V

* au = ak(xe) + /?fc(xe)
vw

where *;' = col^,... ,vqk),v" = col(u9fc+i,... ,t>m),Cjfc = col(Ci,...,C«J- In tne preceding
algorithm, the use of ak to cancel part of the drift in the k th step of the algorithm is not

strictly essential and its non usage may help simplify the adaptive version of the algorithm.

Moreover, in order to simplify the adaptive version of the algorithm, at each step k, an

integrator can be added to each of the first s& inputs (rather than #*). This could lead to a

dynamic decoupling compensator which is not necessarily of minimal dimension.

If the original system is right invertible, then the procedure converges in a finite number of

steps to a system, denoted Ee, having vector relative degree (rj,... ,r^). Let (/e,pe, he) be

the triple characterizing £e, xe = (x, Q its state, ue its input and ye its output. Construct

a local change of coordinates <j>{x) = (£,n) with { = col(&) by setting

ti = col (h?(x°), Lf.hi{x%..., Lrjrlh<i(x<))
:= col (&&...,£:)

and using some complementary coordinates n. Then, Ee takes the standard form ([Isi89],

pg. 240):
v= q(t,v) + p{t,v)ue

«(= &

Crf-l — Grf

fori = l,...,mand

for 1 < i,j' < m and

'?->!.«/Jl-l,«««,>») = if}i>i m-\t,n))

for 1 <i <m. At this point, asymptotic tracking may be obtained by first applying to (16)
the decoupling and linearizing control law and then the standard linear tracking control law.



For the adaptive version of this scheme, we consider the case where the dynamics of the

plant depend on unknown parameters as

x= f(x,e-)+g(x,9-)u
y= h(x,0-) (U>

We assume that E is right invertible for the true value of the parameter 0*. In this instance,

the form of the equation (16) is replaced by one of the form:

i= q(S,r),n + p&ri,0*)ue

y't= a
Now the nonadaptive tracking law is of the form

ue = (Ae)~\-be +
Vm +<*\i(yTMi ~ fr;-i) +*'' +Qiri(ym - £})

) (19)

where the polynomials sr* + aiisr,?~1 + h at>? are all Hurwitz.

Prior Information required for adaptive control

The variables Ae,&e,£f are all functions of the unknown parameter 0*. Also, the matrices

ctkiflk defined at the A; th step of the dynamic decoupling algorithm are functions of 9*. To

estimate these one needs the knowledge of the relative degrees r; of the system Ejt at every

step in the procedure above. In particular we need to know the vector relative degree of the

system with dynamic extension Ee at the last step namely (rj,... ,rjjj is known. 2
Moreover, we need to assume that the integers s* representing the rank of the decoupling

matrices Ak representing the number of integrators to be added at each step in the dynamic

decoupling algorithm described above are known and independent of 0. Also, it will need to

be assumed that the s* columns which contribute to the rank of Ak are also known to be

independent of 0.

From this prior information it is possible to compute ctk,fik as a function of 0. As in the

SISO case, we will assume that it is possible to choose a new parameterization 0 € R* such
that all of the variables (Ae)"1,(i4e)"16e,f1-,ajt,^ depend linearly on 0.

2This is the counterpart to the assumption frequently made in the context of linear adaptive control
of MIMO adaptive systems that the Hermite form of the plant is known (see, for example, Section 6.3 of
[SB89]).



The adaptive version of the dynamic state feedback control law follows by using certainty

equivalence in estimating ctk,Pk- As a consequence, the normal form equation (18) takes the

form

ii= 3+«>i(*e,S)$

CM= ^ +̂ f_l(f,0)^ (20)
tf = a

with $ = 0 —0* denoting the parameter error. Note the presence of regressors at each step

of equation (20). This is caused by the fact that the a*, 0k are no longer exact when 0 ^ 0*.

Thus the error equations for the tracking errors et- = j/,- —y\ji are given by

d =Mi(sK(z%0)$ +... +M;'^ (21)

where

M{{s)= —^-—r*_, '•
s « +ans « +—+a,r«

.,l7 x ar<~2+Ofiiar<"3+-+ot,(rc_2)
M2l5; = —w~—r«-i, ,—'— (99^

M*e = -7? ^—l
* s • +0,13 « +—+Olr«

I

Note that all the transfer functions Mj are proper, stable transfer functions. The first point
of business is to define an augmented error to simplify the form of the error equation. To

this end, we define

eu = a +(M{(s)w\)6(t) - Mi(s)(w[Q(t)) +... +(M;f(s)<f)0(<) - M*rf(s)K?0(*)) (23)

It is easy to see that the augmented error is of the form

ei, = Wi(*e,0)$ (24)

where Wt(xe, 0) = M{(s)w[(xe, 0) H \- M*e(s)w\.e(xe, 0) is a filtered regressor. Repeating
this procedure for each of the outputs yields an augmented error equation of the form

e1 = W1(xeie)^

with ei 6 Rm so that the same update law as before, namely,

*-*-i+«%iro (25)
10



may be used. There are some differences in the construction of this augmented error from

the SISO case. The first difference is in the fact that the parameter error may show up in

several places in the normal form of the extended system and not just in the equations for £e.

This is necessitated by the fact that in an adaptive version of the procedure described above,

ctk,Pk need to be estimated. The second difference is in the construction of the augmented

error, even for the i th output, different regressors are filtered by different transfer functions.

Now, however under the same hypothesis as in Theorem 2.2, the same theorem holds. There

is however one difference in the proof from the SISO case, namely that the zero dynamics

are indeed driven by the input ue in the MIMO case. As a consequence, as in the case of

the proof of Theorem 3.3 we need to insist that the initial conditions of the states xe, the

initial parameter error $(0) and the tracking output yM and their appropriate derivatives

are small enough so as to guarantee the conclusions of the theorem.

Example

Consider the following example of a two input two output system with one unknown param

eter modified slightly from [DBGM89]:

Xi = X3W1 + 0*X$X\U2 + X4

x2 = *3

x3 = U\ + 0*X\U2
X4 = U2

yi

h
=

X4

0
+

X3 0*X3Xi
1 0mxl

with Aq(x) having rank 1. Choosing Po(x) to be

1 -0*xi
0 1

and Ci = V\ yields for xe = {x} U {fi} the equations

Xl = X3C1 + X4
x2 = X3

£3= Ci
X4 = v2

(1 = vi

11

(26)

y\ = xi

2/2 = x2

We first give the non-adaptive control law. Following the algorithm above we differentiate

the outputs y\ once and y2 twice to obtain

Ui

U2



As far as the normal form variables are concerned we now have fJ = Xi, f\ = x2i (2 = x3» £2 =
£4 + ^3Cij?3 = &• Differentiating the outputs again we get

y[2)
iyi3)

and now, we see that the control law

Vi

v2

C?
0

+
x3 1

1 0

w2

Vi

v2

—Cl + wl ~ X3W2

yields a decoupled and linearized system y[ ' = w\,y2 ' = w2.
For the adaptive version of this algorithm, we use the prior information that the ranks of

Ao,A\ are 1,2 respectively. We also assume that the integrator is placed on the first channel

after the first step. There is only one unknown parameter 0 and it enters the control law

linearly through 0o(x) alone. We choose the control input at the first step to be

u2

-0Xi
1

Ci
l>2

Using the integrator on channel 1 we get the state equation obtained from using J3o rather
than /?o

£1 = X3C1 + X4 — 0X3X1V2
x2 = X3

x3 = Ci - <j>xxv2
X4 = v2

Ci = ^!
A

Here <j> = 0 —0*. Defining f/ as before and noting that the choice of control law at Step

1 of the algorithm above does not need knowledge of the parameter 0 yields the following

perturbed normal form

£1= f2 ~ <i>xzxiv2
£]= m- <l>xiCiv2
$= e2
£2= (l- ^1^2
£3 = U>2

This establishes the nature of the perturbation in the normal form discussed above.

4 Model Reference Control of MIMO Systems

In this section we first review the results of [DB90a], [CDB90] on stable nonadaptive model

matching using static state feedback. We use these results then to propose a solution for

determining a static state feedback for achieving asymptotic tracking. Finally, we give an

adaptive version of both the model reference and tracking schemes.

12



4.1 Nonadaptive Asymptotic Model Matching: a Review

Consider the plant P to be a square, nonlinear plant of the form (1). Define G(x) :=

span{<7i(x),... ,flfm(^)} (over the ring of analytic functions) and assume that the dimension

of the distribution G is m for all x € X. Consider also a model M of the form

Z- faf(z) + gMl(x)Vi + ••• +gMm(x)vT
yM\ = hMi(z)

yMm = hMm(z)

(27)

Here z £ Xm, an open subset of RnM. It will cause no confusion to refer to the collection

of vector fields [g\fi •••9Mm] as gM. We will need to assume that f\f,gM are analytic vector
fields and that h^ is an analytic function. The notation j/a/(0 is used to mean the output

of the model starting from state zq at 0 if there is no need to highlight the dependence on

the initial state.

An extended system E£ is associated with the plant and model as follows:

xE = fE(xE) + g(xE)u + p(xE)v
yE= hE(xE)

with state (xE)T := (xT,zT) € X x Xm, inputs tz,v and

A**) =

Further define

Im{z) ,g(*E) = 9(z)
0

,pW =

hE(xE) = h(x) - hM(z)

0

9m(z)

(28)

gE(xE) =\g(xE) p(xB)}
Also, define the dynamical system with state xE, input u and output yE described by the
triple (fE,g, hE) to be E. Now, consider a point xE = (xo, z0) which is an equilibrium point
of fE and also produces zero output for the system E, i.e.

/E(x£) = 0, hE(xE) = Q

Now, assume that

Assumption Al : (Regularity of E)

xE is a regular point for the zero dynamics algorithm applied to E (regular in the sense of
[Isi89], page 302).
Actually, the assumption Al is a sufficient condition in order to apply the zero dynamics

algorithm to the system E around x^. Let Mk denote the submanifold defined at step k

13



of the algorithm and Mm denote the zero dynamics manifold obtained at the conclusion of

the algorithm; there further exists a unique smooth control uq : M* —• Rm so as to make

M* invariant, i.e. fE(xE) + g(xE)u0 is tangent to Mm. The vector field fE(xE) + g(xE)u0
A A A

restricted to M* is referred to as the zero dynamics of E. It can also be shown that M* can

be expressed in a neighborhood of xE as

Mm = {xE € X x XM : Hm(xE) = 0}

The following theorem uses the procedure of the zero dynamics algorithm to solve the model

matching problem as follows [DB90a], [CDB90]:

Theorem 4.1 Stable Model Matching

Consider the system of (28) and assume that there exists an xE such that

1. Al holds,

2. E is minimum phase at xE, and

3. span {p(xE)} C TxEMk+ span {g(xE)} in a neighborhood of xE in M* for all k.

Then, there exist neighborhoods U ofxo and Um of zq, an integer v, a compensator Q defined

by
X= a(x,x) + b{x,x)v /29x
u = c(x,x) + d(x,x)v

for appropriately defined analytic a, 6,c, d and x G R", a function F : U x Um —* R" and a

constant L € R+ such that

a) If v(t) = 0 then the point (xo, Xo := -^(^o^o)) is an asymptotically stable equilibrium
point of the closed loop P o Q, i.e. of the system

x= f(x)+9{x)c(x,x)
X= a{x,x)

b) If \v(t)\ < L for allt>0 then

lim yPoQ(x, F(x, 2), t) - yM{z, t) = 0

for all (x,z) eU xUm-

Remarks:

1. In view of the propositions of [Isi89], Appendix B.2 the fulfillment of (a) above guar

antees that given e > 0 there exist <$, K such that if |(x(0),x(0))| < &and \v(.)\ < K,

then |(x(*),xM)l < c for all <> 0.
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2. The proof of the preceding theorem in the previously mentioned references is construc

tive and the compensator may be shown to be of the form

X= fht(x)+9M(x)v (30)
u= u(x,x,v)

initialized at xo = zq, i.e. xo = F(x0lz0) = z0. As a consequence we have that

x(t) = z(t) and one may define the control law in terms of xE alone rather than x, x, z
as

u(xE,v) := u(xE,v) + M-l(xE)KH'(xE) (31)

where M{xE) e Rmxm := dH'(xE)g(xE) and u*(xE,v) := u0(xE) -f ux{xE)v is the
unique solution u of the equation

dH*(xE)(fE(xE) + g(xE)u + p(xE)v) = 0

so that

u0(xE) = M-l(xE)dH\xE)fE{xE)

and

ux{xE) = M-\xE)dHm(xE)p{xE)

Further K £ Rmxm is chosen to stabilize part of the system dynamics as specified

below.

Let xo (respectively, xE) be an equilibrium of P (respectively, E) such that h(xo) = 0
(respectively, hE(xE) = 0). Then it is shown in [DB90a] that because of the structure of E,
the following two assumptions are equivalent

Assumption Al' : (Strong Regularity of E)

E is right-invertible and (xE, yE = 0) is a locally strongly regular pair for E (strongly regular
in the sense of [DBG90]).

Assumption A2 : (Strong Regularity of P)

P is right-invertible and (xo, y = 0) is a locally strongly regular pair for P.

Clearly A2 ^ Al as well. Weaker hypotheses than A2 are also sufficient for our purposes, for

example the regularity hypothesis of [Isi89], pg. 302 where in (ii) the constancy of rank is to

be assumed in a neighborhood of xo in X. For simplicity, we will use A2 in what follows. If

in Theorem 3.1, the hypothesis Al is replaced by A2, then one can construct a local change
A

of coordinates (£,»7, z') = \P(x, z) with z' = z —z§, $(xo, z0) = 0 and £ = Hm(x, z) such that

the plant with the controller of equation (30) has the form (see [DB90a]):

z'= fM{z' + zo) + gM(z' + z0)v (32)
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where the matrix A is rendered Hurwitz by appropriate choice of K in (31). The states £

contain in particular the output errors as some of their entries. Also the functions q\ and p\

satisfy some extra conditions, namely

t\ - n d(l

and

ft(0,iy,*') =0-^(0,0,0) =0

MO.i/^'JsO

Further, the dynamical system
z' = fM[z' + z0) ,„„*
V= V(0,t/,2') ^

represents the zero dynamics of E and the system

77 = 0(0,77,0) (34)

represents the zero dynamics of P. The zero dynamics manifold of E is now given by

#• = {«.*,*') lf = o}

The form (33) of the zero dynamics of the system E shows that it is minimum phase if the

zero dynamics of P and the undriven model dynamics are asymptotically stable.

4.2 Nonadaptive Tracking by Static State Feedback

The decomposition (32) can be used to extend the proof of Theorem 4.1 to cover the case
A

where, instead of assuming the asymptotic stability of the zero dynamics of E, one assumes

that the variables z' are bounded by a sufficiently small constant and that the zero dynamics

of P is asymptotically stable. This can then be usefully applied to solve trajectory tracking as

a special case of the model matching problem in which the desired trajectory yM is generated

by a model consisting of chains of integrators driven by the appropriate derivatives of the yMi-

Move precisely, define m to be the essential order of the i th output of the plant y,- as defined

in [GM89]. Then, define the model to be matched to have state z = col (z,-,i = 1,... ,m)

with dynamics
Z%\ = Zi2

Z{2 — Ziz

(35)
Zim = Vi

yMi = zn

We need to verify that this model corresponding to j/j£j' = ut- satisfies the hypothesis 3
of Theorem 3.1. Indeed, applying the zero dynamics algorithm to EE corresponds to the
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application of the inversion algorithm to P with y = yM- If one chooses /z,- to be the largest

derivative of yt- which appears in the inversion algorithm, it follows that the largest derivative

of yMi which appears in the zero dynamics algorithm is yjjjj . Thus, it follows from thechoice
of the model of (35) above that dHkp = 0 for k < km. At km the satisfaction of the third

hypothesis of Theorem 3.1 is guaranteed by the fact that at this step (by Assumption A2)

the matrix dHmg is invertible. Consequently, the choice of the model guarantees that

span{/3(xE)} C TssMk + span{g(xE)}

for all k < k*. An interesting by-product of this calculation is that in this case the form of

the equations (32) is somewhat simplified in that the term p\ no longer exists since terms in

v occur only at k = k* in the equations for { and are, in any event, cancelled by the choice

of the control law to yield:

£= At + tofai,*)
z' = fM(z' + zo)+gM(z, + z0)v (36)
V= il>(t,y,zf) + <l)((,Ti,z')v

For the next theorem, define \i = max,//,-.

Theorem 4.2 MIMO Asymptotic Tracking

Assume that Assumption A2 above holds and that P is minimum phase at xo- Then, there

exist constants 6i,62 and a compensator Q of the form

u= c(x, yM, 2/m, ..., y{M~1]) +d(xi yM, yM,---, y{M~1])v (37)

such that

1- Ify\f(t) = 0 the closed loop system PoQ is asymptotically stable with equilibrium point

Xo.

2. When supt>0(\yM(t)l..., Ij/mHOI) <*i> and \xo\ < <*2 then

lim yp^(t) = yM(t)

Proof: It is an extension of the proof of Theorem 3.1. Define the compensator Q by the
formula of (30) above with the states of the model replaced by the appropriate derivatives

of yM- Then, by the discussion above, there exist a set of new local coordinates such that

the controlled plant is described by equations of the form of (36) with the added linearityof
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the model. Since the plant is minimum phase at xo, it follows from the Lemma of page 442

[Isi89] that the equilibrium (f, n) = 0 of the system

£= A( +qi{{,ri,Q) rw
*= *({,*, 0) W

is asymptotically stable. Further, from the lemma on page 444 of [Isi89], it follows that given

e > 0, 36i(e),62(e) and V(e) such that for the system of (36)

|«0)|, lv(o)| < «,, |*'(.)| <«,, \v(.)\ <v* |f(01, W)\ <«

Now, following the proof of Lemma 3.1 of [CDB90] we consider the system

( = M + 9i((,n,^) (39)

The matrix A is Hurwitz and by the assumptions on (71 and the bounds on |((0I> 1*7(01 ^

follows that

l<?i(£,>7,z')l<M<0KI

for some continuous function ki(e) with &i(0) = 0 (roughly speaking, q\ is higher order in f

and both £, r\ are of order e). Now, using the Gronwall inequality on (39) it follows that

l«*)l < |«0)|c-^-°*"<£M'

where /? is a bound on the rate of convergence of the equation

and a is a constant. &i, V are as described above. From the properties of fci it follows that

for e small enough and V small enough

0-ak1(e)>O

so that

lim £(<) = 0

This completes the proof since the output errors yPo® —yM are among the state variables £.
D

Example

To illustrate the implications of the assumptions Al' and A2, we consider a simple, con

ceptual example of a three-input three-output system taken from [Isi89], pp. 304-307. In

principle, the model for tracking needs to be chosen by determining the essential orders of the
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outputs. In point of fact, we will determine the essential orders during the course of verifying
the hypothesis A2. We assume that the model is of the form (35) with the integers //,- to be
determined. Thus, we start with the extended system outputs yf —y,- —yMi = yi —zn for
i = 1,2,3. M0 is now defined to be {xE £ X x Xm :yE = 0}. By the regularity hypothesis
AT, it is a manifold of codimension 3. For the next step in the algorithm, differentiate these
outputs to yield

yE = Lfhi - z12 + Lghiu = 0
y2 = Ljh2 - z22 + Lgh2u = 0
yE = Ljh3 - z32 + Lgh3U = 0

Similar to the example in [Isi89], it is assumed that Lgh3(x) = 0 and that Lgh has rank 1
around xo so that Lgh2(x) = —7(x)L5/ii(x) for some analytic function 7. Thus, we define

Mi = {xE e M0 : 7(x)(£//i1 - z12) + (Ljh2 - z22) := M*) ~ 7(x)zu - z22 = fa{x,z) =
0; L/h3 —Z32 := fafe) —232 = <t>3(x, z) —0}. Now differentiating 02> 03 we obtain

<f>2 = Lf</>2 - 1/7*12 - 7213 - 223 +(Lg<l>2 ~ LgJZi2)u
<j>3 = Lf<t>3 —Z33 +Lg(f>3U

Similar to the example in [Isi89], it is assumed that the matrix

Lghi
Lg<f>2

. ^5^3 .

has rank 2 around xo. Now Assumption Al' implies that the matrix

Lgh\
Lg(f>2 - (Lg7)zn

Lg(j>3
A A

has rank 2 around xo,20 = 0. As a consequence there exist functions £i(x, z),62(x,z) such

that SxLghi + 82[Lg<l>2 - (Lgi)zi2] + Lg<t>3 = 0. Thus, we have that M2 = {xE € Mi :
Si[Lfhi - Z12] + S2[Lf(j)2 - Lf~fz12 - 7213 - 223] + Lj<j>3 - 233 := ^3(zE) = 0}. This implies
in particular also that Lg~f is in the row span of Lgh\,Lg<j>2. Further it is easy to see that

£i(x,0) = 8\{x),82(x,z) = ^(x) where the functions £1,^2 are as in the example of [Isi89].
Further, define $3 as

i>z{xE) = 8\Ljhi + 62Lj<j>2 + Lj(/>3

so that $3(x,0) = i>3{x) and ^3 = ^3 —*z for some suitably defined matrix *. Now,
differentiating ^3 we get the coefficient of u to be of the form of Lgi>3-\- ** 2 for some
suitable matrix **. Like in the example of [Isi89], we assume that the matrix

Lgh\
Lg(j>2
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has constant rank 3 around x0. Now, Assumption A2 implies that the following matrix

multiplying u
Lghi

Lgj>2 - LglZ\2
_ L503(X,2) + **2

A A

also has rank 3 around (xo,0). Therefore the algorithm terminates at this point, Mm = M2
AAA

and can be locally described as the zeroset of the functions /i,(x)—2,1, <j>2(x, 2), foix, 2), ip3(x,z).
An easy calculation shows that at the end of the algorithm we are left with the derivatives

of 213,223,233. Thus, a suitable choice of model for the purpose of tracking is 2,3 = v,- for

i = 1,... ,3. This is consistent with the independent calculation of the essential orders of

the plant to be 3,3,3.

4.3 Model Reference Adaptive Control for a Class of MIMO
Systems

In the previous section, it was shown that, under the hypotheses of Theorem 4.1, the output

of the plant P controlled by (30) (with u of the form of (31)) asymptotically tracks the

output of the model M. In this section, we will present an adaptive version of that Theorem

for P belonging to the class of systems input-output linearizable by state feedback. ([Isi89],

p. 267). We consider systems of the form of equation (1) with the added feature that the

dynamics of the plant depend on certain unknown parameters 0* € R', i.e.

x= f{x,P)+g{x,P)u /4m
y= h(x,B*) [W)

The assumption A2 of the previous section is assumed to hold for the true value of the plant

parameter. Carrying forward the dependence on 0 through the derivation of the compensator

(30) will yield the manifold H*(xE,0) and the control law of (31), namely

u(xE,v,0m) := u*{xE,v,0*) + M~l{xE ,0m)KHm(xE,0*) (41)

Hypotheses Needed for Adaptive Control

The assumption that we can indeed determineH*(xE,0*) as a function of 0* contains within
it some assumptions about the structure of the plant. Indeed, one needs that at every step

in the zero dynamics algorithm modified as described above for stable, model matching, the

manifold M*, described as the zero set of the function Hk(xE,0), satisfies the condition that

d&k(xE,9)g(xE,0)
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has a left null space of constant dimension as a function of 0 since the new function Hk+i is
defined to be Hk along with

lk(xE,0)dHk(xE,0)fE(xE,0)

where jk(xE,0) is a basis for the left null space ofdHk{xE,0)g(xE,0). Note that the model
is assumed to be known and independent of 9.

Adaptive Control Law

By looking at the form of the control law of (41), we see that if one assumes that

u*(xE, v,*•), M(xE, 0*), H*(xE, 0*)

can be reparameterized to depend linearly on some new parameter 0, then the control law

can be linearly parameterized as

u(xE, v,0m) = u(xE, v) + Wi(xE, u,0*)0* (42)

for an appropriately defined matrix W\(xE, u,0*) G Rmx* and parameter vector 0* € R*.
Actually both u and W\ are affine in v. As a consequence of (42), the adaptive model

matching control law is given by

u(xE,u, B(t)) := u(xE, v) + Wx(xE, v, 0)0(*) (43)

Denoting the parameter error $(t) = &(t) —0* € R* the following modification of (36) will
be obtained

£= ^ + 9i(^*?^,)+Pi(fJ*?^> + ^2(^r7,2',t;,0)$
z'= fM(z' + z0) + gM{z' + zo)v (44)
r\ = W, V, z') + <t>& 7?, 2> + Wi((, 7/, 2', tj,0)$

The dependence of the matrices Wi, W3 on the data, and for that matter on W\ above, is

involved. The equations (44) are affine in $ as a consequence of the linear parameterization

of the control law by the unknown parameter 0. Note that when $ = 0 the equations (44)

reduce to (36).

We are not as yet able to give a stability proof for a parameter update law derived on

the basis of a composite Lyapunov function involving the system of equation (44) and an

equation for $. There appear to be two reasons for this difficulty:

1. The nonadaptive proof as presented in Theorem 3.2 is not a one step proof based on

the use of a Lyapunov function.
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2. Though the terms q\ and p\ in the differential equation for f satisfy the conditions

91(0,77,2') =0 ^(0,0,0) =0pi(0,77,2') =0
they are sufficiently complicated so as to not allow for a simple construction of a

Lyapunov function for the {, 77 system.

However, there at least two special cases for which an adaptive scheme can be derived:

1. W2 = 0. This case corresponds to the situation when the parameter variation is a

disturbance which is rejected by the non-adaptive control law. In this instance, no

parameter update is necessary. This case will not be treated in what follows for its

obvious simplicity. It is however, important to guarantee that the 77 variables remain

bounded since they are driven by the parameter error $, if boundedness of all the state

variables is an issue.

2. <?i = 0 and p\ = 0.

qi = 0 in the case that the plant P is input-output linearizable by regular static state

feedback. To see this, the following two facts are useful:

Fact 1 P is input-output linearizable by static state feedback if and only if E is.

Fact 2 qi = 0 if and only if E is linearizable by static state feedback.

Indeed, from studying the application of the zero dynamics algorithm to E as in

[DB90a] it may be shown that q\ = 0 is equivalent to requiring that the matrices

whose rows span the orthogonal complement to LgHk(xE) at each step k do not de
pend on xE. In other words, q\ = 0 if and only if

ra,nkicLgHk(xE) = Rr&nkL§Hk(xE) (45)

where the left hand side is the rank over the field K, of meromorphic functions of xE and
Rrank denotes the dimension of the real vector space spanned by the rows of L§Hk(xE).
But (45) is equivalent to the input-output linearizability of E and this proves Fact 2.

For pi = 0 the model M has to fulfill a structural condition, which is explained in what

follows: suppose that xE is regular for the controlled invariant distribution algorithm
[Isi89], p.237, applied to E. Then, one can define A* as being the maximal (fE,g)
invariant distribution contained in ker dhE. A sufficient condition for the solvability

of the model matching problem is

span (p) C A* + span (g) (46)
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(46) can also be expressed as an equality between the structures at infinity of the plant
and the extended system E£. If (46) holds, then dHkp = 0 at each step k and pi = 0
in the (44). Also, condition (46) implies hypothesis 3 of Theorem 4.1. Further, if M

is linear and P is input-output linearizable by static state feedback (46) is a necessary
and sufficient condition for the solution of the model matching problem [DBI86].

Thus, to summarize these discussions, we see that p\ = 0 is a consequence of (46),

which, in the case of P being input-output linearizable and M linear is the necessary

and sufficient condition for the solvability of the model matching problem. Further,

the input-output linearizability of P guarantees that p\ = 0.

Now, if pi, (ji are both identically zero, the form of the equations (44) is

i= i^ + WaK.i^'.w.d)*
z' = fM{z' + z0)+gM{z' + z0)v (47)

i? = lK£, i?i *') + *K, i?, *> + Witf, 1> *'' u> ®)$

Now, choose P > 0 to be the positive definite solution to the equation ATP+PA = —I.
Define e = P£, Since the f variables are precisely the variables H(xE,®*) it follows
that e is not available for measurement. However, we have assumed that the variable

A — ft

#(x , 0*) depends linearly on the parameters. As a consequence, we may estimate e

by

e = PH(xE,G)

and we have in addition that e = e + Wi(xE)$. Loosely speaking

e = P(sI-A)-1(W2&TJ,z\v,e)$)

where the hybrid notation refersto the convolution betweenthe respective time domain

functions. We also need to define the augmented error

e, = «- P(sl - A)-\Wt((,v, z',v,0)0) + (/>(«/ - A)"1Wi({, t,, *',«, ©))©

An easy calculation yields that

d = {P(sl - A)"1 Wi({, iy, 2;, w, 0)}$ + Wi({, 77,2;)$ (48)

Defining a new regressor

W2 := {P(5/ - A)"lW2} + W4

so that

d = 1^2^

From this form of the regressor the following theorem is obtained using the same
techniques as in the proof of Theorem 2.2
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Theorem 4.3 Model Reference Adaptive Control for Input-Output Lineariz

able Plants

Consider the system of (40) and the model of (35). Assume that A2 above holds and
xE is a regular point for the controlled invariant distribution applied to E. Suppose
that the zero dynamics of P are exponentially attractive inside X and that P is input-

output linearizable by static state feedback. Further, assume that the model is such that
(46) holds for the true plant in a neighborhood ofxE. Then, under reparameterization
with the control law of (43) the system E can be expressed as in equation (47) with
A Hurwitz. Assume that the vector fields 7/>({,77,2'),<£(f,77,2'), W3(£,7?,2',v,0) are
Lipschitz continuous in their variables on X x Xm o.nd v 6 Rm. Further, assume that

W2, W4 have bounded derivatives with respect to £, 77,2', 0.

Consider the update law
W2ex

1+ trace{W2TW2)

with the augmented error defined as in equation (48).

Under this update law, the compensator Q defined as in (30) initialized at the same

initial state as the model, with input u as in (43), is such that

lim yPoQ(x, 2, t) - yM(z, t) = 0

for all (x,2) in a neighborhood o/xo,20 provided that

\v(t)\ <L Vt > 0
|*(*)| < *i V* > 0

l*o|,|*(0)|<«2

for suitable constants 8\)82,L.

Remarks

• A sufficient condition for \z(i)\ < 8\ is that the model be asymptotically stable

and |2o|, \v(t)\ are sufficiently small.

• The condition (46) has to be assumed to be satisfied for the true plant and model.

This is a hypothesis in addition to the prior information utilized earlier.

As in the non-adaptive case, this theorem can be usefully applied to the problem of adaptive

tracking by static state feedback. The condition (46) can always be satisfied by an appro
priate choice of the integers //,•; in particular, by choosing /j,- to be the essential order of the

i th output. The preceding theorem specializes as follows:
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Theorem 4.4 Adaptive tracking for input-output linearizable plants
Consider the system of (40) and the model of (35). Assume that A2 above holds. Suppose
that the zero dynamics of P are exponentially attractive inside X and that P is input-output
linearizable by static state feedback. Then, under reparameterization with the control law
of (43) the system E with the model of (35) can be expressed as in equation (47) with A
Hurwitz. Assume that the vector fields il>{t„n,z'),<f>(tt,'q,z'),W3(^Tiyz,,v,®) are Lipschitz
continuous in their variables on X x Xm and v € Rm. Further, assume that W2,W4 have

bounded derivatives with respect to {,77,2', 0.

Consider the update law

<j> = *'* r. (50)
1+ trace{W2TW2) V ;

with the augmented error defined as in equation (48). Under this update law, the control law

of (43) yields asymptotic tracking, with bounded states, provided that

sup(|yM(OI.....|yw _1WI) < *i and\xo\,\$(0)\ < 82
t>o

for suitable constants 8i,82.

Remark: The knowledge of the integers m is priorinformation needed for adaptive tracking,

in addition to the prior information listed above for the zero dynamics algorithm.

5 Conclusions

This paper has investigated twoschemes for the adaptive controlof MIMO nonlinear systems:

• Adaptive Linearization by Dynamic Compensation. Here the underlying non-adaptive

algorithm used dynamic extension repeatedly to make the augmented system have
vector relative degree. At this point, it was possible to linearize (and decouple) the
system.

• Model Reference Adaptive Control by Static State Feedback Here the underlying non-

adaptive control law used static state feedback of the states of the plant and the
model. The model reference scheme also had a specialization to a tracking controller,

by a suitable choice of the model.

The proof of convergence of the adaptive linearization by dynamic compensation is com
plete. The proof of convergence in the case of model reference adaptive control by static
state feedback needed the assumption that the plant was input-output linearizable by static
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state feedback. Thus, our results in the context of adaptive static state feedback model

matching represent a first step towards a general theory of Model Reference Adaptive Con
trol for MIMO nonlinear systems. Of course, in a more complete theory, we will also need a

theory of adaptive observers to dispense with the necessity of using state feedback (for some

recent work on this problem, which we have not discussed in the current paper see [Mar90],

[KKM90]).
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