
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PROCESS-FLOW SPECIFICATION AND

DYNAMIC RUN MODIFICATION FOR

SEMICONDUCTOR MANUFACTURING

by

Christopher James Hegarty

Memorandum No. UCB/ERL M91/40

15 April 1991

PROCESS-FLOW SPECIFICATION AND

DYNAMIC RUN MODIFICATION FOR

SEMICONDUCTOR MANUFACTURING

Copyright © 1991

by

Christopher James Hegarty

Memorandum No. UCB/ERL M91/40

15 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PROCESS-FLOW SPECIFICATION AND

DYNAMIC RUN MODIFICATION FOR

SEMICONDUCTOR MANUFACTURING

Copyright © 1991

by

Christopher James Hegarty

Memorandum No. UCB/ERL M91/40

15 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

This dissertation describes applications of asemiconductor process representation to a fac

tory control system for a computer-integrated manufacturing (OM) system. The controlsystem,

which includes work in progress (WIP) andrunmanagement systems, uses a distributedheteroge

nous database to store all information. The database contains information about the fabrication fa

cility, processes, work in progress, test data, inventory,orders, personnel, and products.

The processrepresentation used by the WIP system is the Berkeley Process-Flow Lan

guage (BPFL). BPFLis designed to allowallinformation abouta process to be mergedinto acom

mon specification. This information includes the equipment, recipes, and parameters used to

manufacture semiconductors,resource requirements needed for scheduling, and modelling param

etersrequired forprocess simulation. Differentprograms, called interpreters, read a BPFLprogram

andperformatask. Forexample,a process-check interpreterreads aBPFL program andchecks that

it does not violate processing rules. The WIP system is another example of an interpreter.

BPFL is an object-oriented language with abstractions defined specifically for semicon

ductor manufacturing such as lots, wafers, material, equipment, and wafer profiles. The language

providescontrolstructures designed forcommon processing activitiessuch aslot splits andmerges,

equipment and operator communication, timing constraints, conditionalcontrol-flow, and rework

loops. An exception handlingmechanism is providedto allow processesto respond to unexpected

conditions(e.g., equipment failure). The language is designed to separate facility-specific informa

tion from the process specification to make it easierto change equipment in a facility or move pro

cesses between facilities. BPFL andthe WIP system make implementation of feedback and feed

forward processcontrol possiblebecausedata is storedin the shareddatabase and processescoded

in BPFL can access the database.

The WIP system supports equipmentinterfacing for automatic recipe execution and mon

itoring.The system is software fault-tolerant so thatcomputersystem failures will not causeloss of

data. The run-managementsystem allows active runsto be modified. Forexample, process flows

may be edited while a run is active, andlots may be moved between runs. A software version con

trol system maintains libraries of process-flow procedures to control process revisions.

iii

[This page intentionally blank]

IV

Contents

Chapter 1 Introduction..—.—.......1

1.1 Problem Domain 1
12 The BerkeleyOM System 6
L3 Commercial CIM Systems 9
1.4 Semiconductor Process Representations 11
US Process Specification in other Industries 23
1.6 Summary and Dissertation Outline..... 27

Chapter 2 The Berkeley Process-Flow Language and Interpreters29

2.1 The BPFL Approach to ProcessSpecification 29
22 BPFL ProgramStructure 30
23 Equipment Abstractions 37
2.4 Wafer-State Representation 39
2.5 Database Entities 49
2.6 Summary 50

Chapter 3 BPFL Statements for Fabrication 51

3.1 Equipment Communication 51
32 OperatorCommunication 53
33 The WIP Log 54
3.4 Exceptions 57
3.5 Rework 60
3.6 Constraints 64
3.7 Summary 68

Chapter 4 The WIP Run-Management System........ .69

4.1 WIP SystemArchitecture 69
42 Startingand Controlling a Run 72
43 Browsing Processing History 81
4.4 Dynamically modifying a run 84
4.5 Version control ; 88
4.6 Summary 90

Chapter 5 Implementation......................................— 93

5.1 Processesand Interprocess Communication 93
52 WIP Database 95
53 The User-Interface Process 98
5.4 Translating BPFL to Lisp 106
5.5 Executing BPFLcode 108
5.6 Saving Run State 112
5.7 WIP interpreter operation 116
5.8 Rework, Exception, andConstraint Implementation 122
5.9 Version Control 128

5.10 Run Modification 132

5.11 ImplementationEnvironment 133
5.12 Summary 135

Chapter 6 Conclusions................—.....................—.137

6.1 Major contributions 137
62 Future Research 138

References.. 141

Appendix A BPFL Language Reference Manual................................. 145

A.1 Introduction 145

\2 BPFL Syntax 146
A.2.1 Notational Conventions 148

A.3 Data Types 150
A3.1 Primitive Data Types 150
A32 Data Type Constructors 152
A33 Classes and Methods 154

A.4 Program Structure 156
A.4.1 Definitions and Declarations 161

A.4.2 Procedure Calls 163

A.4.3 Procedure Definitions 164

A.5 BPFL Semantics 165

A.5.1 Constants 165

A.5.2 Variables 166

A.5.3 Procedure Calls 166

A.5.4 Attributes 167

A.6 Wafer State Representation 168
A.6.1 Creation and Manipulation of PIF objects 173
A.6.2 Snapshot modification 176
A.7 Wafer and Lot Specification 178
A.8 Equipment 183
A.9 Materials 184

A.10 Masks, Layers, and Locations 188

References.. 193

Appendix B BPFL Implementation of Berkeley CMOS Process 195

B.1 Top-level flow (cmos-16.b) 195
B.2 Outline of CMOS Library (cmos-lib.b) 201
B3 Litho Library (litho.b) 206

Appendix C ABF Functions 211

C.1 Introduction 211

0.2 Argument and object accessor functions 211
C.3 Checking User Input 214

VI

C.4 Appending Attributes to the WIP log 217

Appendix D Database Definition..—... 219

D.1 Introduction 219
D.2 Definition 219

Appendix E WIP Interpreter Data Structures... 227

E.1 Introduction 227
E2 Structure Definitions 227

Vll

[This page intentionally blank]

vm

List of Figures
Figure 1-1: Control loops in lithography 3
Figure 1-2: Critical dimension control in lithography [1] 4
Figure 1-3: Information flow in SPR interpreters 5
Figure 1-4: Typical IC-CIM fab computing system 6
Figure 1-5: An example of structured documentation specification. This example

shows the first two steps of the Berkeley cmos-16process flow [14] 10
Figure 1-6: BPFL specificationexample 12
Figure 1-7: Fable standard layer hierarchy 14
Figure 1-8: FABLE specificationexample 14
Figure 1-9: Three-level process model 15
Figure 1-10: PFR specification example 16
Figure 1-11: MKS process specificationexample 17
Figure 1-12: Siemens tracker process flow example 19
Figure 1-13: MPL.2example 20
Figure 1-14: Hitachiprocess flow and checkrules example 22
Figure 1-15: APT programexample 24
Figure 1-16: ALPS specification example 25
Figure 2-1: Berkeley cmos-16 process flowin BPFL 31
Figure 2-2: BPFLrepresentation of cmos-16 initialsteps 33
Figure 2-3: with-iot semantics 34
Figure 2-4: wet-oxidation procedure outline 34
Figure 2-5: BPFL views example 35
Figure 2-6: BPFLviewhierarchy 36
Figure 2-7: Equipment class hierarchy 37
Figure 2-8: Equipmentoperation example 37
Figure 2-9: Equipment definition example 38
Figure 2-10: BPFLmaterial hierarchy 40
Figure 2-11: Mask layoutexample 41
Figure 2-12: Procedureto manipulate PIF structures 42
Figure 2-13: Simplewaferprofile andcorresponding snapshot 42
Figure 2-14: Expose-resist procedure definition 45
Figure 2-15: Exposed waferblockdiagram and PIF snapshot 46
Figure 2-16: Deveiop-resist procedure definition 46
Figure 2-17: Developed waferblock diagram andPIF snapshot 47
Figure 2-18: Eurnace-run procedure definition 48
Figure 2-19: Database schema forrun state 49
Figure2-20: Database schema forfacility description 50
Figure 3-1: with-equipment semantics 51
Figure 3-2: inspect-Resist frame 53
Figure 3-3: user-dialog procedure example 53
Figure 3-4: WIPlog objectclasshierarchy 54
Figure 3-5: Database schema forWIP logobjects 54
Figure 3-6: Sample WIPlog queries 56
Figure3-7: Handler-case example 58

IX

Figure 3-8: BPFLcondition types 59
Figure 3-9: Defcondition example 59
Figure 3-10: Reworksemantics 60
Figure 3-11: Photolithography rework loop and timingconstraints 60
Figure 3-12: Pattern procedure definition 62
Figure 3-13: Dehydrate-wafers implementation 65
Figure 3-14: Pattern procedure implementation with constraints 65
Figure 3-15: spin-soft-bake implementation 67
Figure 4-1: WIP system architecture 69
Figure 4-2: Run-summaryframe 70
Figure 4-3: Run-Summary help 71
Figure 4-4: create-Run frame 72
Figure 4-5: cmos-16 version 1.1 process flow code 72
Figure 4-6: Run-summary after creation of new run 73
Figure 4-7: user-dialog request : 74
Figure 4-8: Run-summary after dismissing dialog 75
Figure 4-9: Allocate-Lot frame 75
Figure 4-10: Wafer-Specification form 76
Figure 4-11: Measure-bulk-resistivity definition 76
Figure 4-12: sonogage frame 78
Figure 4-13: Inconsistent units error message 78
Figure 4-14: comment dialog box 79
Figure 4-15: Restrict dialog box 79
Figure 4-16: Run-Detail frame 79
Figure 4-17: Run-Permissions frame : 81
Figure 4-18: wip-Log frame 82
Figure 4-19: sonogage-Log frame 82
Figure 4-20: Modify-Lots frame 84
Figure 4-21: New-wafers frame 85
Figure 4-22: import-wafers frame 86
Figure 4-23: split-Run frame 86
Figure 4-24: Modify-Flow frame 87
Figure 4-25: version-control frame 88
Figure 4-26: Editing a process flow 89
Figure 4-27: update-Runs frame 90
Figure 5-1: WIP system architecture 93
Figure 5-2: WIP database entity-relationshipdiagram 95
Figure 5-3: UI process application structure 98
Figure 5-4: sonogage frame 101
Figure 5-5: sonogage frame function outline 101
Figure 5-6: Measurements table activation code 104
Figure 5-7: Measure-bulk-resistivity definition 106
Figure 5-8: BPFL Lisp representation for measure-bulk-resistivity 106
Figure 5-9: Evaluation frame class hierarchy 110
Figure 5-10: Evaluation examples Ill
Figure 5-11: WIP interpreter process main loop 116

Figure 5-12: Interpreter test code fragment 120
Figure 5-13: Spaghetti stack example 122
Figure 5-14: Rework example 123
Figure 5-15: Handler-case example 124
Figure 5-16: Rework implementation 125
Figure 5-17: constrain implementation 126
Figure A-l: Example entry 148
Figure A-2: Bubble diagram for sample wafer. 169
Figure A-3: Bubble diagram for sample wafer afteroxide growth 171
Figure A-4: BPFL material hierarchy 184

XI

[This page intentionallyblank]

Xll

List of Tables

Table 1-1: Trends in wafer fabrication - LSI, VLSI, ULSI [1] 1
Table 4-1: Run-summary frame operations 71
Table 4-2: User-dialog frame operations 76
Table 4-3: Run-Detail frame operations 81
Table 4-4: wiP-Log frameoperations 82
Table 4-5: Logframe operations 83
Table 4-6: Modify-Lots operations 84
Table 4-7: version-control operations 88
Table 5-1: Run table definition and examples 99
Table 5-2: user_diaiog table definition and example 100
Table 5-3: wip_iog table definition and example 104
Table 5-4: Simplifiedevaluation frame definition and example 109
Table 5-5: Run data structure definition 112
Table 5-6: Evaiuation_frame table definition and examples 113
Table 5-7: wafer class definition and example 114
Table 5-8: wafer table definitionand example 114
Table 5-9: Lot class definition and example 115
Table 5-10: Lot table definition and example 115
Table 5-11: WIP interpreterprocessevaluation times 120
Table 5-12: Exception-handler operations 125
Table 5-13: Module table definition and examples 129
Table 5-14: Procedure table definition and example 131
Table A-l: Comparisonbetween Common Lisp and BPFL argument lists 165
Table A-2: Examplesnapshotobjects 169
Table A-3: Attr-hash slot contents 170

Table A-4: Rev-hash slot contents 170

Table A-5: New snapshot objects 171
Table A-6: Attr-hash table for new snapshot 171
Table A-7: wafer class description 178
Table A-8: Lot class description 178
Table A-l: Argument accessor functions 212
Table A-2: Object accessor functions 214
Table A-3: check_format format strings 215
Table A-4: checkformat return values 216

Xlll

[This page intentionally blank]

XIV

Acknowledgments

This research has been supported by the National Science Foundation (Grant MTP-

8715557), and the Semiconductor Research Corporation, Philips/Signetics Corporation, Harris

Corporation,Texas Instruments, NationalSemiconductor, Intel Corporation,Rockwell Internation

al, Motorola hie, and Siemens Corporation with amatching grant from the State ofCalifornia's MI

CRO program.

I would like to express my appreciation to all of the members of the Berkeley CIM and

CAM groups, past and present, who made valuable suggestions that contributed to the work de

scribed in this dissertation. Particularthanks aredue to Kuang-Kuo Lin, Norman Chang, and David

Mudie. Thanks also to Lauren Massa for her aid with INGRES installation, and to Jeff Sedayao of

Intel for his help in understanding the capabilities of commercial CIM systems.

Christopher Williams, the creator of BPFL and the author of the core interpreter used to

implement the WIP interpreter, deserves special mention. His programming skills allowed me to

concentrate on developing the BPFL language constructs for fabrication and implementing the user

interface for the WIP system. Christopherprovidedmany valuable insights that contributed greatly

to the work in this dissertation.

My thanks also to the members ofmy dissertation committee: Professors Ronald Gronsky,

David Hodges, and Lawrence Rowe. Professor Hodges was my research advisor during the initial

two years of this work. His enthusiastic belief in CIM and his knowledge of semiconductor manu

facturing were a tremendous aid in deciding what features were important for the work described

in this dissertation. Professor Rowe has been my research advisor for the final two years of this re

search and my dissertation chairman. His knowledge of software systems, language design, and

commercial software were invaluable in the design and implementation of BPFL and the WIP sys

tem.

I'd also like to thank my parents, Peter and Janette Hegarty, for their support and encour

agement to do well at whatever I chose and to continue my education.

Finally, my thanks to my wife, Celia. Her encouragement, confidence and sacrifice made

this dissertation possible.

xv

[This page intentionally blank]

XVI

Chapter 1
Introduction

The goal of computer-integrated manufacturing (CIM) is to use computer and information

management technology to integrate and automaticallyexecute manufacturing operations. Two key

elements of a CIM system are a shared, integrated,distributed database and a process-flow repre

sentation suitable for all manufacturing phases.This thesis describes the implementation of a work-

in-progress (WIP) system using a powerful process-flow representation for semiconductor inte-

grated-circuit (IC) manufacturing. This chapterdescribesthe problem domain for IC process-flow

representation, process representation in commercially-available CIM systems, contemporary re

search into semiconductor process representation,and process representation in other industries.

1.1 Problem Domain

The objective of CIM is to increase productivity, information accessibility, and flexibility

to meet changing market or manufacturing conditions. Other objectives include improving the ac

curacy of data and information collectedduringmanufactureand increasing the transportability of

manufacturing process specifications. Benefits include better predictability and reproducibility,

higher yields, lower inventories, better equipment utilization, and greater throughput.

For the purposes ofCIM, manufacturingoperations include design, fabrication, and testing.

Although CIM is applicable to any manufacturingprocess, IC manufacturing is the focus of this

dissertation.

IC manufacturing is a complexprocessand it is becomingmore complex due to increasing

process sophistication, shorter design cycles, and shrinking product lifetimes. Table 1-1 shows the

increase in IC fabrication complexity in the decade from 1980 to 1990. The volume ofprocess data

collected per lot (25 wafers) during manufacturing has risen from 100 records to 10 000 records in

the evolution from large scale integration (LSI) to ultra-large scale integration (ULSI). With so

many data records required, some form of automatic collection and monitoring is essential. Today

CIM systems are necessary for efficient manufacture of complex semiconductor products.

A process flow specifies the steps needed to manufacture a product It is an important com

ponent of any complex manufacturing process. A process-flow in the IC industry is called a semi-

1

conductor process representation (SPR). The goal of an SPR is that it be complete and facility-

independent. It should also be machine interpretableto aid in process automation. Moreover, an

SPR should be applicable to all stages ofmanufacturing (i.e., design, fabrication, and testing).

Semiconductor companies may view process-flow representationsthat arecryptic and hard

to understand as an asset because of the security they provide. A major problem with IC-QM sys

tems used in industry is that different SPR's are used fordesign and fabrication. Frequently, more

than one specification is used in each domain. This redundantspecification is not surprising, given

that the interests and goals of process designers and productionstar!differ greatly. For example,

process engineers are primarily concerned with developing processes that meet device specifica

tions (e.g., propagationdelay), whereas productionstaff areprimarilyinterested in high yield. The

unfortunate consequence is that the different specifications areoften inconsistent, which can sig

nificantly reduce productivity. For example, device simulatorsused by process engineers require

exact numerical information about devices to.be simulated.The information supplied to production

staff is derived from the input to the simulatorsbut often changes aremade to accommodate pro

cessing limitations and correct errorsin the originalprocess specification, and these changes are

frequently not made to the original simulation-based specification. Also, the translation of process

specification from design to fabrication is normally done by hand, which is both error-prone and

time consuming. A more serious problem arises becausesome semiconductor companies minimize

the interactionbetween processdesigners andproductionstaff. Processdesignersoften consider the

design complete when a process description and equipment recipes aredelivered to the production

facility. The production staff must re-learn much that the process designers alreadyknow before

LSI VLSI ULSI

Products size in bits (DRAMS) 16K 256K-1M 4M

Throuqhput (wafers/month) 10 000 30 000 50 000

Total process steps per lot 100 230-400 550

Number of equipment types 40 100 120

Equipment count 70 300 400

Number of process conditions 200 800 1500

Volume of process data per
month (data base records) for
stable production 4x104 6x106 2x107
Data base records/lot 100 5 000 10 000

Table 1-1: Trends in wafer fabrication - LSI, VLSI, ULSI [1].

the process can beused to manufacture an acceptable product Since processes tend to evolve as

equipment is updated and more is learned about thebehavior of the process, there is oftenaneed

to transfer the process back intodesign for further analysis to contribute to new process design.

Consequently thesame difficulties are encountered inreverse because process designers are unable

to use production process-flow representations. A single representation is required to solvethis

problem.

Anotherimpetus thatdrives research intoprocess-flow specification is the rapid increase

in the numberof process stepsindicated in Table 1-1. A crucial advantage of a computer-interpret-

able process-flow specification is that version control systems can beusedtocoordinate changes in

process flows andcodelibraries canbe usedto encourage the re-use of process-flow code.

An SPR includesthe sequence of process steps(i.e.,processing operations anddata collec

tionoperations) required to fabricate a product. It also specifies information about the fabrication

facility (e.g.,equipmentspecifications). An SPRspecification of a process flow is used to operate

a fabrication facility (orfab), asinputto a simulator, and asinputto anequipmentscheduler. Con

sequently information to support activities other than fabrication must be specified. For example,

equipment schedulersneed to know the time required to performeach process step.

An SPRmust be ableto express control flowin the process stepsmakingup aprocess flow.

For example,processing may be dynamically changed on the basis of data collected during prior

processing of other lots on the same piece of equipment (i.e., feed-back control) oron the basis of

data collectedduring priorprocessing of the samelot (i.e., feed-forward control). Systems thatem

ploy feed-forward andfeed-back control are oftenreferred to ascontrol-loops. Controlloopsallow

process designersto reducemanufacturing variability causedby equipment variations.

An important exampleof the useof control loops is photolithography in which there are

significantinteractions among physicalparameters suchasmask dimensions, photoresistexposure

time,etching time and gate length inMetal-Oxide-Semiconductor (MOS) processes. A smalldevi

ation in anearlier stepcanbe corrected by adjusting parameters in asubsequent step. Examples of

controlloops in photolithography are shownin Figure 1-1. In conventional photolithography criti

cal dimension (CD), usually gatewidth in MOS, is measured. This measurement is used to adjust

the etchingstep forsubsequent lots. A CIMsystemthat employsboth feed-forward and feed-back

Process Conventional

Mask
Measurement

Resist
Application

O
•

•

•

6

Alignment
and Exposure

Development •

9

Resist Pattern
Measurement

i

•

Q
•

Etching
r?

Device Pattern
Measurement U

Feed-forward + Feed-back

6«'« i

Figure 1-1: Control loops in lithography.

control can achieve more control than a conventional system. Feed-forward control can be used be

tween the measurementofthe mask CD andthe exposuretime, andagainbetween the measurement

of the resist pattern and the etching step. Similarly, feed-back control can be used to adjust the ex

posure time of subsequent lots based on resist pattern measurements and to adjust the etch time

based on device pattern measurements. An example of the results obtainable with control loops is

shown in Figure 1-2. Critical dimension control was improved by nearly 40 percent because small

errorscould be detected and corrected for during processing. In practicalterms, an improvement of

this magnitude is important because it reduces the percentage of partswith incorrect CD. Conse

quently, because CD is a primary factor in determining propagation delay for MOS devices and

faster parts attract premium prices, significant improvements in profitability can be expected.

Conventional System: 9 = 0.06 um
CIM System: 3 = 0.0375 um M

0.20

E o.io

c
o

"I
1

~l
1

§§w§P 1
m i

liPlsasBsaH i
MM™™™Y' i
i&a&kmMfeis&ik! 1

IP , J
c „

— •—

1

.... 1 1 1 .1 1—

0.00

<D
-0.10

-0.20 -

10 20 30

of samples
40

Figure 1-2: Critical dimension control in lithography [1].

50

SPR

WIP
System K

Equipment

Operators

Simulators (e.g. SIMPL, SUPREM)
Simulation

Input
Generator < Simulation input languages (e.g. PROSE)

» Schedulers (e.g. BLOCS)
Scheduler

Input
Generator

Figure 1-3: Information flow in SPR interpreters.

An extreme example ofcontrol-loopsis the run-by-runcontrol regime that is being ex

plored by Sachs [2]. Feed-back control canonlyimprove subsequent lots,based on the assumption

thatnothinghaschanged sincethemeasured lot wasprocessed. Feed-forward control, on the other

hand, is particularly important for rapid ramp-up time (i.e., the time it takes a new process to

achieveacceptable yields),which is essential foreconomic fabrication of small productquantities.

The use of feed-forward controlin a production facility requires real-timelinkage oflot history and

engineering data, sincethe information fed forward may be required almostimmediately afterit is

collected. Support for feed-forward and feed-back control is an essential partof an SPR.

Although SPRs areintendedto be used in many ways (e.g., shop floorcontrol, simulation,

scheduling),most prototype SPRs aredeveloped forone application initially and extended to other

uses later. One applicationof an SPR is in a work-in-process(WIP) system. A WIP system is re

sponsible for handling operations concerned withthe fabrication of products. It controls and

recordsthe movement ofproductionlots throughthe fab, issues instructions to equipment operators

to execute processingsteps (or instructsequipment to execute steps automatically when possible),

allocate resources (e.g., equipment, tracks the inventory of consumables), andmaintains a log of

the processing history of products.

An SPR interpreterexecutesa specificationto accomplish a goal. Different interpretersac

complish different goalsby performingdifferentcomputations on the same specification as shown

in Figure 1-3.Forexample, commands areissuedto peopleandequipment when aWIP interpreter

executes a process flow. Another interpreter will produce input commands for a processsimulator

(e.g., SIMPL [3], SUPREM [4]) or a simulation input language (e.g. PROSE [5]) when it executes

the same process flow. A scheduling interpreter generates run timing information for use by a

scheduling system (e.g., BLOCS [6]).

12 The Berkeley CIM System

The development of the system described in this dissertation has been influenced by our

vision of a CIM system architecture. This section describes that architecture. The system runs in a

distributed heterogeneous computing environment composed of a variety of computers connected

by a local-area network. A typical fab might use large microcomputers for cell controllers, a large

mini- or mainframe computer for area and factory control, and a collection of workstations and ter

minals for user interactions. Figure 1-4 shows a typical system. Notice that cell controllers have lo

cal databases and that the fab has a large shared database server which motivates the need for a

distributed database. Terminals and workstations are provided where appropriate. They can be con

nected either to a terminal server or to a convenient computer. Equipment is connected to the cell

controllers.

terminals

q o
Workstations

a a
qpp

Local Area Network

Cell

Computer

s o
Terminals

O
Workstation

Workcell

Database

Cell

Computer

o o
Terminals

a
Workstation

Workcell

Figure 1-4: Typical IC-CIM fab computingsystem.

This architecture suggests a hierarchical structure (i.e., a cell computer is subordinate to an

areacomputer which is subordinate to a factory computer) but in fact programs on any computer

can access databases and programs running on any other computer using an interprocess commu

nications protocol.

A key component of the system is a sharedCIM databasethat stores all the information

about the design and manufacture of semiconductors. This database contains information about the

manufacturing facility (e.g, rooms and areas,equipment, and utilities), process-flow specifications,

WIP (e.g., lots, wafers, datacollected during processing, material, etc.), equipment (e.g., status, rec

ipes, qualification and maintenance logs, reservations, etc.), test data, product inventory, and or

ders. While the database is treated logically as a single centralized database, the architecture that

we envision stores data in a distributed heterogeneous database (e.g., Gestalt [7], or INGRES/

STAR [8]). Data will be stored on the computer that optimizes the cost, reliability, and access con

straints imposed by its use. For example, equipment recipes are stored in databases on the cell com

puters, test data is stored on areacomputers in testing, and production schedules are stored on the

factory computer.

A heterogenous distributed DBMS is required for two reasons. First, different applications

in the fab have different data requirements. One DBMS cannot satisfy all these requirements. For

example, the real-time performance anddatavolume requiredby some on-line monitoring applica

tions can only be met today by file systems.

Second, it must be possible to integrate into this architecture existing applications that use

older technology storage systems (e.g., VSAM files and IMS databases). It would be prohibitively

expensive to rewrite all applications because a new CIM system was introduced into the fab. How

ever, new applications often must access the datamanaged by older applications. A distributed het

erogeneous DBMS that provides gateways to different storage systems will allow fab applications

to access new and old data. Consequently, data will be stored in many different systems including

third generation database system, conventional database systems (e.g. relational, network and hier

archical), and files where appropriate.

A third generation database system is required for many CIM applications. It supports re

lational data storage and access, an object-oriented datamodel (i.e., inheritance, user-defined data

types, andmethods), anda rules system [9]. An example is the POSTGRES system being devel

oped at Berkeley [10]. A thirdgeneration database systemcanstore andaccess data that cannotbe

stored andaccessed easily in a conventional relational database. For example,measurements col

lectedduring wafer processing are often represented by a sequence of values with units. A third

generation database system canstore arrays of user-defined data types (e.g., values with unit des

ignations) in a table. Conventional DBMS'sdonotsupport these data types.

Althoughsome attempts havebeenmade touseexisting programming languages asSPRs,

these effortshavebeenlargely unsuccessful. There are several problems with this approach:

1. Robustness. Since fabrication runs takealongtime(e.g., atypical runlasts for

more than amonth), it is likely that acomputersystem failure will occurbefore

a run is completed. Consequently, all state information about a process must

be saved in non-volatile storage(e.g., on disk) so that a run can be restarted

from its last savedpositionwhen the systemcrashes. Conventional program

ming language implementations are notdesigned withthis form ofrecovery in

mind.1

2. Expressability. Somecommonoperations insemiconductor processing are dif

ficult to express in a conventional programming language (e.g., timing con

straints on steps).

3. Dynamic Modification. Fabrication processes run for weeks or months and it

is frequently necessary to modify a process during arun. Such changes aredif

ficult to make in most programming environments.

Althougheachof these shortcomings in conventional languages canbe solvedwith sufficientef

fort, there is substantial benefitto be gained from using aspecial-purpose language developed spe

cifically forSPR. This approach doesnot preclude translation of the SPR into aconventional

language as a lower-level representation of the process flow.

Somecomputer vendors have developed custom languages and programming styles to implement
fault-tolerant programs in anOn-Line Transaction Processing (OLTP) environment (e.g., Tandem
[11]).

8

The SPR used in the Berkeley CIM system is the Berkeley Process-Flow Language

(BPFL). BPFLis a procedural representation of a process flow. Processflows are represented as

textualspecifications of the sequence of stepsrequired to manufacture a product.

The CIM database is used by BPFLand its associatedinterpreters in several ways. First,

BPFLprogramsthemselves are storedin the database. A software version-control systemis imple

mented on top of the DBMS to manage librariesof BPFL procedures and their status (e.g., under

development, approved for use in a particular fab, etc.).

Second, BPFL interpreters use informationin the OM database. For example, the equip

ment in the fab and its current status is maintained in the database [12]. A scheduler uses this data

to determinewhichpiece of equipment shouldbe allocated to a run. Anotherexample is the WIP

system itself, which stores the state of all active runs in the database so that the system can recover

from a computerfailure. Mirroreddisks,on-linebackupand recovery,and standby spare databases

can reduce the possibilitythat information is lost and reduce the down time should a failure occur

[13].

Third, BPFL programs store and access data in the CIM database. For example, an event

log that recordsthe start- andend-times of operations, in-process and in-situmeasurements collect

ed during processing, and other processing information is stored in the database. This log can be

accessed by a BPFL procedure to change future processing based on previously recorded measure

ments (i.e., feed-forward or feed-back control). In other words, the database is a convenient repos

itory for data that is shared within a run and between runs.

1.3 Commercial CIM Systems

Traditional SPRs in the semiconductor industry are based either on structured documenta

tion or run-sheet specifications.They are typically used only for shop-floor control (i.e., WIP sys

tems).

In a structured documentation system, a printed copy of the process-flow specification,

called a traveller, accompanies the lot carrier and is passed along with itto different workcells.*

Operatorsfollow the instructions on the travellerthatdescribehow the lot should be processed. As

1Wafers are processed in lots (25 wafers). Lots are transported around the fab ina lot carrier. Op
erations are performed at workcells, which are clusters of one or morepiecesof fabrication equip
ment.

1.0 Starting Wafers: 18-22 ohm-cm, p-type, <100>
Control wafers: NWELL (p-type), NCH (p-type)

Measure bulk resistivity (ohms-cm) of NWELL on sonogage.

R =

2.0 Initial Oxidation: target = 1000 A

2.1 TCA clean furnace tube.

2.2 Standard clean wafers:

piranha 10 minutes, 10/1 HF dip, spin-dry.
2.3 Wet oxidation at 1000 C:

5 minutes dry 02

10 minutes wet 02

5 minutes dry 02

20 minutes dry N2

tox =

Figure 1-5: An example of structured documentation specification.
This example shows the first two stepsof the Berkeley cmos-16 pro
cess flow [14].

each step is completed, the operator indicates that the step was completed and enters data for the

step (e.g., measurements). Most structured documentation systems use computers to store specifi

cations, buttheynormally donotpossess thecapability tointerpret thespecifications orcollect data

during arun. An example of structured documentation isshown in Figure 1-5. Notethatspaces are

available for an operatorto write the results of measurements.

A run-sheet system isessentially an interactive traveller. Theprocess-flow specification is

stored in acomputer and executed by it.When executed (or "interpreted")* the run-sheet describes

the processing ateach workcell, usually inthe form of instructions displayed to the equipment op

erator onacomputer terminal, and indicates where the lotshould bemoved when thestep is fin

ished. Some run-sheet systems issue commands toexecute recipes stored inmicrocomputers that

control the equipment and direct amaterial movement system tomove lots todifferent workcells

[1].

Examples of commercial run-sheet systems are WORKSTREAM [15] and PROMIS [16].

Both systems useasimilar notation for process flows. In WORKSTREAM, thebasic unitof apro

cess flow is an operation which is defined as asingle process step executed by an operator (e.g.,

"run the SWETOXB recipe in the furnace"). Sequences of operations are grouped into routes. A

product is a sequence of one ormore routes required tomanufacture an item. The basic unit of a

PROMIS process flow is a recipe. Recipes are subdivided into atomic operations which maybe

10

shared among recipes (e.g., "set the temperature dial to 120 °C"). PROMIS has constructs called

processesand devices whichcorrespond to WORKSTREAM routes and products, respectively.

While WORKSTREAM and PROMIS differ in the details of information specified at each level of

abstraction, the representationsare very similar in scope and power. The SPR provides operator in

put/output,materialmovement,anddata collectionandarchivingcommands.There is limited sup

port for control flow, no exception-handling, andno supportfor activities other than fabrication.

Structured documentation and automated run sheet systems do not automate fabrication.

They track WIP and provide productionmanagement information but they do not support equip

ment integration. Run-sheet specificationlanguagesare more powerful than structured documenta

tion systemsbecausethey automatesomeoperations, but theyare typicallylimited to a small, fixed

set of commands that are sequentiallyexecuted. These systems do not provide the power and flex

ibilitysufficientto managethe taskof ICmanufacturing. AnSPR is essentiallya program for a very

complexsystemcomposedof equipmentin the fabrication line, thematerialmovementsystem, and

data stored in databases that describe the factory and processing history. An $PR must have the ex

tensive power of a full-function programming language.

1.4 Semiconductor Process Representations

Several SPRs have been developed that attempt to overcome the limitations ofcurrent com

mercial systems.These SPRs are described andcompared with our approach in this section.

There are two basic approaches to thedesignof an SPR:knowledge-basedand procedural.

A knowledge-based approach uses a hierarchical, object-oriented data structure to represent a pro

cess flow.The data structure is composed of objectsthat representoperations. An operation can be

an equipment operation, a control operation (e.g., a conditional, loopingor procedurecall com

mand), an input/outputoperation, or a database operation. A class is defined for each operation

which contains attributesor slots that specifythe parameters of the operation. A method is defined

on the class that defines the semanticsof theoperation. The interpreterfor a knowledge-basedSPR

is implemented by writing a program that traversesthe data structure that specifies a process flow

and calls the appropriatemethod.The methoddefinesappropriatesemantics for the operation.

The advantage of the knowledge-based approach is that new operationscan be defined as

a subclassof an existingclassso thatdefaultparameters canbe inheritedfrom anexisting operation.

11

Otheradvantages arethat the data structure canbe conveniently stored in a relational database and

it is relatively easy to write programs thatoperate on a process flow because it is just a datastruc

ture. It is also relativelyeasy to make certain modifications to the process flow, such as insertinga

sequence of steps.

The disadvantage ofthis approach is thatthe knowledge-representation system does not in

cludesophisticated control structure abstractions required to handle unexpected situations (e.g., a

furnace runaborts because of apower failure oraconstraint onthemaximum timedelay before

starting an operation isviolated).1 The knowledge-based representation emphasizes the correct be

havior of the process.

A procedural, orprogramming-language, approach represents aprocess flowby aprogram.

A procedural process flow is defined by acollection of procedures thatcontain conventional pro

gramming language commands (e.g., variable and data declarations, assignments, control struc

tures, etc.) interspersed with commands to communicate withequipment, operators andthe

database. The process flowiscompiled intoanabstract syntax-tree [17] whichis roughly equivalent

to the data structure in a knowledge-based representation. The interpreter for a procedural SPR is

similarto the interpreter in the knowledge-based approach. However, it implements a full-function

programming language rather thana limited setof primitive operations. The advantage of the pro

cedural representation is thata full complement ofcontrol structures, data structures andprogram

ming notationsareavailable. This representation emphasizes both the correct and incorrect

behavior of the process.

The majordifferencebetweenthe two approaches, besidesthe different aspects of the pro

cessthatthey emphasize,is the useofa procedure call withdefault parameters asopposedto asub

class with inheritance to define new operations in terms of existingoperations. Both approaches

haveessentially the sameexpressive power. Consequently, thekindof representation is less impor

tant than the particular constructs and abstractions that are provided.

Before proceeding to consider other SPRs a brief introduction to the SPR used in this dis

sertation will be presented. BPFLis a programming-language approach to SPR. A simple example

of aBPFLspecification appears in Figure 1-6. The figure contains anoutlineof the BPFLdescrip-

Anecdotal evidence from otherprogramming applications suggests thatas many as 50% of the
lines of code deal with unexpected and error situations.

12

dofflow anneal-implant (time: = {30 min), temperature: = {950 degC})
" Anneal implant damage in nitrogen ambient •

let segments := find-segments-in-lot(material: #m(substrate));
begin

viewcase

when simulation do

end;

when fabrication do

with-equipment furnace of-type 'n2- furnace do
run-recipe(furnace, •anneal, time: t ime, temperature: temperature);

end;

end;

segment-material-attribute-in-lot (segments, : implant-annealed) := t;
end;

end;

Figure 1-6: BPFL specification example.

tion fora process stepcalled anneal-implant. This is a standard operation forrepairing sub

strate damagecausedby ion implantation. The stephastwo arguments: time and temperature.

A sample of BPFL code using the step is:

n2-anneal(time: {lhr});

hi thiscase, the time argument is setto 1hour using theunits data type (i.e., magmtude and unit

designationenclosed in set braces) to denote dimensioned quantities. The temperature argu

ment is not supplied in the above example and so it takes on the default valueof 950 °C specified

in the procedure definition.

BPFLuses aviewmechanism to specifyinformation that is of interestto selectedinterpret

ers. For example, code for simulators appears in the simulation view andcode forthe WIP in

terpreter is in the fabrication view. In addition, BPFL programs maintain amodel of wafer

state that is used to check processes forcorrectness, to store measurements, andto permitthe move

ment of wafers between different runs. The line of code:

segment-material-attribute-in-lot(segments, :implant-annealed) := t;

updates the wafer-state model to indicate thatthe wafers have been annealed.

BPFLhasstatements to specifycontrol flow, (e.g., if-then) andcommon abstractions

encountered in processing (e.g., rework loops, timingconstraints, etc.).More detail is given in later

chapters.

The earliest attemptto develop a formal process-flow representation wasFABLE which is

a procedural SPR [18],[19]. FABLE programs are structured in termsof a hierarchy of layerscor-

13

process layer

effect layer

treatment layer

settings layer
technician interface computer interface

physical layer

Figure 1-7: Fable standard layer hierarchy.

respondingto the level of abstraction of anoperation. The layerhierarchy is shown in Figure 1-7.

The process layer represents fabrication operations (e.g., grow-gate-oxide). The effect layer corre

sponds to operationsresultingin a changein the material being processed (e.g., growing an oxide

layer). The treatment layercorresponds to operations performed on wafersto achievethe desired

effect The settings layer describesequipment settingsused to achieve a desiredtreatment It has

technician and computerinterfacesthat describe the operation of equipment in terms appropriate

foruse by operatorinteractionand automatic equipmentcontrol, respectively. Forexample, the

technicianinterface for a furnace includes the required valuesof recipeparameters and recipes suit

able for input on the furnace front panel, andthe computerinterface view includes the equipment

parameterssuitable for downloading to the furnace controller.The lowest-level view is the physical

layer, which indicatesthe appropriate actions to take to rum settings into physical reality (e.g., a

settingof 900 °C can be achievedby settingthe temperature control appropriately).

Higher-level layers are implemented in terms of lower-level layers. For example, a grow-

oxide operationdefined at the effects layer is implemented in terms of furnace settings defined at

the settings layer. Layers areonly permitted to refer to layersof a lower-level of abstraction.

FABLE programs are written in terms of specificationsdescribing each layer and imple

mentationsdescribing the steps to take to move between layers. Figure 1-8 presents a FABLE def

inition fordiffusion, forboth the treatment layer and the treatment-settings interface.

FABLE has not been successful. The strict hierarchy, while attractive for compartmental

izing the specification ofequipment andprocesses, is too restrictive foruse in a realmanufacturing

14

Diffusion-Treatments = subclass of Treatment-Library with
specification of [Treatment layer] =

Slow-Push:Operation(wafers: Lot; temp: Temp; environment: Gases);
Diffuse:Operation(wafers: Lot; temp: Temp; duration: Time; ...);
Slow-Pull:Operation(wafers: Lot; temp: Temp; environment: Gases);

end [Treatment layer] ;

implementation of [Treatment layer] =

begin
for Furnace use [Technician layer];

in

Diffuse =

begin

f := wafers .station ! The furnace the wafers are in

temp-setting := Calculate-Temp-Setting (temp, f) ;
f.Set-Temp(temp-settings);

end Diffuse;

end [Treatment layer] ;

Figure 1-8: FABLE specification example.

environment Furthermore, FABLE was not designed to be used for applications other than a WIP

system so it makes no allowances for the use of process simulators. It has a limited ability to per

form safety checks on fabrication operations but it has no notion of wafer state so it cannot base

such checks on the past history of a lot unless the programmer codes it explicitly. It also does not

adequately address the real-time issues encountered in semiconductor processing.

The Process Flow Representation (PFR) is aknowledge-based approach developed at MIT

[20]. PFR is based on a three-level process model shown in Figure 1-9 that is similar to the FABLE

layer hierarchy. The focus of this model is the transformations wafers undergo during processing.

Each operation performed on a wafer is modelled in terms ofthree levels of information appropriate

OPERATION

Wafer
In - CHANGE-WAFER-STATE III! Wafer

Out

V p
* Sy

rocess "1|^^^^^
nthesis Jtel^^K

f Procei
i| Simulation j

\j. j. * * TREATMENT llllli
P

Ge

lecipe ''I
deration & llllllillf

If Equipm
1, Simulat

ent "!|
ion J

SETTINGS Bill
' IIIIIISII^^^SIIIIIIII

Figure 1-9: Three-level process model.

15

toaparticular domain. The change-wafer-state level expresses information about the change awa

fer undergoes during an operation. The treatmentlevel describes the physical environment around

the wafer causing the change (e.g., temperature and gas flow ina furnace). The settings level de

scribes the parameters for anequipment recipe needed toachieve thedesired treatmentThis model

is alsoknown as a two-stagemodel in reference to the translations betweenlevels rather than the

levels themselves.

An example of aPFR specification for a furnace operation is shown in Figure 1-10. The

basic unit of processing is an operation, whichhasattributes :change-wafer-state,

:treatment, and :settings which correspond to the levels in the basic model. Additional at

tributes can also beused, such as :time-required. The PFR uses these attributes tocapture a

declarative description of an operation which isbuilt uphierarchically to form complete process

flows.

The PFR specification is translated into an instance hierarchy in theobject-oriented data

base Gestalt [7]. Each instance inthe database has slots corresponding tothose present in the PFR

process flow. As with other knowledge-based SPRs, aprocess flow isexecuted by traversing the

object tree that defines it,and acting onthe values contained inthe slots relevant tothe task being

performed. For example, ascheduler may only be interested inthe values present inthe :t ime-

required slot This approach differs from theviewsapproach used in BPFL. An attribute in PFR

(define stress-relief-oxide
(operation

(:documentation

•Stress Relief Oxide to minimize stress effects of nitride deposition")
(:time-required (:mean (:hours 7 :minutes 15) :range (rminutes 5)))
(:body

(operation

(:permissible-delay :minimal)
(:body

rca-clean

(operation

(:change-wafer-state

(:oxidation :thickness (:angstroms (:mean 430 :range 20))))
(:treatment

(furnace-rampup-treatment :final-temperature ...)
...)

(:settings (:machine GateOxTube :recipe 210)))))
•-.)))

Figure 1-10: PFR specification example.

16

is abasicpieceofinformationabouta process, whereas aview consistsofmany attributes designed

to support a particular activity (e.g., the scheduling view in BPFL).

PFR has limited support for control-flow in processes. It has an if operation but does not

currently support loop operations, lot splits and merges and exception handling.

The Manufacturing Knowledge System (MKS) developed at Schlumberger [21] is another

knowledge-based approachto SPR. MKS is built on anobject-oriented programming environment,

named Hyperclass.1 Process flows are represented in terms ofsteps, which are considered to have

three basic components: a step body, a set of input ports (inports) and a set of output ports (out-

ports). The step body describes the intended function of the step, including specific parameters

(e.g., temperature in an oxidation step), preconditionsthat must exist before the step may be exe

cuted (e.g., wafer must be cleaned before being oxidized), and an input-output transformation that

describes what is supposed to happen within the step (e.g., silicon surface will be consumed and an

oxide surface will be added during a thermal oxidation step). Inports define conditions for wafers

entering the process step (e.g., an inportmight requirethat entering wafers must have been cleaned

within the last thirty minutes). Similarly, outports define conditions for entities (e.g., wafers, mate

rials or status information) leaving the process step (e.g., an output might specify that exiting wafers

are covered in an oxide layer of a certain thickness). All steps are divided into a hierarchy and in

herit attributes from their parents.

Complete processes arecreatedby "wiring together" instances ofexisting process steps. A

unidirectional link is created from an output ofone step to an inport of another. Similarly, each in-

portofthe newly-defined high-level process is connected through a special link, called a correspon

dence link, to an inport of one of the steps contained within it This linking establishes an

equivalence whereby entities entering an inport of the high-level process are considered to be en

tering a corresponding inport in a lower-level substep.

An example ofan MKS specification of the steps required to preparea wafer for spin-coat

ing with resist is shown in Figure 1-11. There is an implicit rework loop between the particle-

inspection and wafer-scrub steps. MKS recognizes three step types. First, processing steps

which transform the material being processed. Ports in processing steps are wafer-in and wa-

1Hyperclass isatrademark of Schlumberger Technologies Inc.

17

IWAFER-INl

I
IWAFER-INl

PHOTORESIST-STRIP

Iwafer-outI

PARTICLE-INSPECTION
IWAFER-INl

WAFER-OUT

DEHYDRATION-BAKE

IWAFER-OUTI

IWAFER-INl

HMDS-PRIME

Iwafer-outT

WAFER-SCRUB

WAFER-OUT

I
IWAFEROUTI

Figure 1-11: MKS processspecificationexample.

f er-out only, as seen in the photoresist-strip step in Figure 1-11. Second, testing/mea

surement steps which produce information as their primary output, either explicitly or attached to

wafers leaving the step. Third, decision steps sort incoming wafers accordingto results from previ

ous testing steps. The particle- inspection step in the figure is an example of a composite

step, consisting of a testing step followed by a decision step. The step has two outports, wafer-

out and re j ect, and wafers are sorted and transferred to an outport based on the result of a par

ticle inspection test

MKS has been used to implement the AESOP diagnostic system [22]. Diagnostic knowl

edge is represented as a network of causal links that associate effects (e.g., oxide too thick) with

causes (e.g., anomalous temperature reading). Given test data, AESOP employs diagnostic infer-

encing to isolate possible causes of failureandarelativemeasureoftheir likelihoods. MKS has also

been used to develop a SUPREM simulator interface.

18

MKS is well-suited for use in process design and simulation; however, it lacks the excep

tion-handling mechanisms and timing constraints required for use in fabrication.

Another knowledge-based approach to SPR is used in the Process Design Aid (PDA) de

veloped at StanfordUniversity [23]. PDA simplifies process synthesis by consolidatingthe use of

simulation tools. PDA process flows consist of a hierarchical structureof process steps in which

each step is a class instance with inheritance anddefaulting of attributes. PDA permits extensive

use oflibrariesof simulation results and allows for tuning a process based on simulation output and

vice-versa [24]. It is possible to iterativelyimprove process andsimulation parameters with the aim

of achieving greater concordance between simulated and fabricated devices. PDA emphasizes the

carefultuning ofexisting process stepsandtendsto view processes fromthe bottom up, with finely-

crafted lower-level steps.

PDA differs from otherknowledge-based approaches in that it makes extensive use of the

prototype-instance objects provided by HyperQass. Inthissystem, each instance of aclass itself

forms a uniqueclass which canbe specialized. Mostobjectsystems are class-instance systems, in

which classesmay be redefinedbut instances may not be specialized beyond theirclassdefinitions.

Inheritance in PDA occurs alongtwo hierarchies, known as the is-a hierarchy and the parr-o/hier-

archy.The is-a hierarchycorresponds to the class-ofrelation in a conventional object system. The

part-ofhierarchycorresponds to object decomposition and permits specializationof instances, so

users are free to add attributes in any way they desire. This makes the system more flexible than

other knowledge-based systems, but introduces the problemthat user attributes may not be inter-

pretable by other PDA tools. PDA hasbeen integrated into the MKS and works with the tools de

veloped for MKS.

While PDA's interface to simulation is probably the best of the systems discussed here, it

too lacks many of the fabrication-specific statements thatBPFLpossesses. There is no support for

exception-handling or timing constraints.

Another approach to SPR is a graphical language being developed at Siemens to express

process flows foraWIP system [25]. In this approach process flows are represented as treesof pa

rameterized subprocess plans. The leaves of the trees correspond to actionsthat can be carried out

directly. Figure 1-12shows anexampleof a plan tree fora process flow that is composed of two

19

{datacoDoctod}

C usomasKj (use mask)

Figure 1-12; Siemens tracker process flow example.

oxidation and two photolithography steps. Each step (or plan) has associated with itatype and a

name. Additional attributes may be attached (e.g., comments may be added, and indicators may be

used to specify that certain data should be collected when astep is executed). For example, the

growox step calls for the measurement ofoxide thickness. Parameters are supplied bydefining

values used bythe atomic processing operations found at the leaves (e.g, the variable maskisas

signed the value ml inthe si.b step which is used in the expose operation).

The advantage ofaspecification like that inFigure 1-12 isthat it is very easy tostore ina

conventional relational database and may be executed byperforming adepth-first traversal of the

plan tree. Since the process-flow interpreter runs as adatabase application it isvery robust How

ever, the language does not have the powerofageneral-purpose programming language (e.g., itis

not possible to construct conditional statements), and it is only intended for use inaWIP tracking

system. It also has nomechanism for dealing with exceptions, timing constraints orwafer state

checks.

Siemens isalso working on aprocedural SPR called the Manufacturing Programming Lan

guage, version 2 (MPL.2) [26]. Anexample of an MPL.2 process flow isshown inFigure 1-13.

MPL.2 is intended for use with Intelligent Migrating Processes (MPs). AnIMP isaprocess that

explicitly migrates between computers. When the lotmoves to another workcell, the IMP for the

lot is moved to the local computer ofthat workcell. IMPs can move to different computers and op

erating systems. Aninterpreter for IMP programs exists on each machine. Migration between ma

chines issupported bystopping an IMP on its current machine, encoding the execution state ofthe

20

moveto(oneof("wetsink"));

execute(•surface-prep"));

redo = 0; maxredo = 5; result = "bad";

loop

while (redo <= maxredo) do

moveto("coaterl•);

execute("coat+bake");

endloop;

If (redo > maxredo) then

scrap()

endif;

Figure 1-13: MPL.2 example.

IMP into an external representation that is sent with the code to the targetmachine, decoding the

state into a format suitable for the new machine, andresuming execution at the statement following

the migration request Migration to a new machine is specifiedby the moveto statementas illus

tratedin the figure. While resident on amachine, anIMPmay access any of the local resources of

that machine (e.g., the execute statementrunsa recipestoredat the local machine). Access to

remote resources is also available through interprocesscommunication.

MPL.2 is a full-function programming language so complex control flow for operations

such as rework and control loops are easy to implement The disadvantage is that LMPs are only

suitable forWIP tracking. While the ideaofmoving anexecutingSPR with the lots it controls is

novel, it is not apparent that this approach hasanysignificant advantage over the distributed heter

ogenous DMBS-based system using cell controllers outlined in section 1.2.

The desire to check processes forcorrectness beforethey are used in production hasdriven

Hitachi to develop a process-flowvalidation system as partof their Laboratory Automation (LA)

project [27]. The Hitachi system uses a rules-based expert system for process flow debugging and

validation. The system is designed to pointout incorrect or questionable conditions in a flow that

could have undesirableeffects on wafersor equipment Process knowledge is grouped into four

types:

1. Process window - Upper and lower limits and allowed conditions (e.g.„ fur

nace temperature or gas species allowed in a machine).

21

process flow
Surface oxidation

Tj °C, t1 min, d1 nm
Si3N4cVD

cfcnm
Lithography

mask = WELL, d3 \xm
S3N4 dry etching

nm

nplP-impIantation
V5keV, n5cm'2

Ashing
P6W, tg min

((substance resist)(thickness 03)
(mask WELL))
((substance Si3N4)(thicknessd2))

simulation-rule

If the step is P-implantation
then add an attribute (dose <specified-value>)

((substance resist)(thickness d3)
(mask WELL)(dose rig))

1
check-rule

If the step is ashing
and the ashing time is less than t„

and the surface layer is resist
and the surface layer is implanted more than n0
then output the message "Ashing time should

be longerthan or equal to ^ min to remove
heavily-implanted (> no cm'2) resist."

Figure 1-14: Hitachi process flow andcheck rules example.

2. Process sequence - Acceptable sequences of operations in a process (e.g., a

furnace operation must be preceded by a clean).

3. Wafer-process constraint - Constraints between wafer state and process or

equipment (e.g., contaminated wafers should not be loaded into clean furnac

es).

4. Optimum condition - Optimum conditions to fabricate intended structures or

characteristics (e.g., best gas flow rate and temperature for low-stress nitride

deposition).

The first three types ofknowledge result in rulesthat are simple to express andthat must be met in

a process for it to work correctly and to avoid equipment damage.The fourth condition concerns

processing at suboptimal conditions. While this is undesirable because it reduces product quality,

it does not result in damage to wafers or equipment, hi orderto check the process for correctness,

the system maintains a wafer state description similar to that used in BPFL.

An example of process checking is shown in Figure 1-14. The process flow being checked

is shown on the left of the wafer profile. At the lithography step, the wafer schematic is as il

lustratedin the upper right of the diagram (only the properties of the resist.and Si 3N4 regions

of the wafer are shown in the illustration). Each region of the wafer has a series of attribute/value

22

pairs describing thestate. Once the P- implantation step isreached, a simulation rule fires that

instructs thesystem to adda dose attribute to the exposed regions of thewafer, as reflected in the

state shown in the lower wafer schematic. When the ashing step of the process flow is reached, a

process check rule (inthiscase, a wafer-process constraint relating theknowledge thatheavily-im

planted resists aredifficult to remove) fires and outputs a warning message if t6< t0and n5 > ity.

The SPRusedin thisproject is notmentioned in theliterature, but it is probably similarto

the representations used in COMETS and WORKSTREAM. However, thesystem is noteworthy

because it illustrates theimportance ofprocess checking andtheneedto maintain wafer state. Hi

tachiclaimthat the process checking system hashalved process designtime.

1.5 Process Specification in other Industries

Thissection briefly describes how otherindustries have dealtwiththeprocess specification

problem.

Mostindustries havefocussed on product definition languages with the intention of auto

mating fabrication based onpart descriptions, rather than process-flow languages. This approach

works well inmetal parts machining, forexample, where flow is almost always sequential (i.e., no

rework) oncethetaskof generating theprocess plan is complete. Oneexample of a process plan

generator is GARI [28]. GARI is given thedesign ofa mechanical part, andit produces a planto

machine thepartbased onrules expressing technological limitations and economic considerations,

such as:

1. If a holeH2opens ontoanother hole HI, thenmachine HI beforeH2 (to avoid

damaging the drill),

2. If severaloperations mustbeperformed on thesamemachinethen try to group

the operations (to reduce cost).

GARI is based on an expert system. Later efforts have linked process plangenerators to workcell

programming languages to simplify product testing and improve operator interactions [29].

Process plangeneration is of almost novalue in thesemiconductor industry because it is

very rare that operation order may bealtered from that specified byprocess designers. Automatic

recipe generation forprocessing equipment isanarea ofactive research [30] butisused tooptimize

theprocessing conditions ofa given operation and nottoaltertheorderof operations in theprocess

23

PARTN0 XC CIRCLES

MACHIN/GN5CC, 9,OPTION,2,0

CLPRNT

CUTTER/0.5

FEDRAT/2.0

TOLER/0.0005

P0=POINT/0,0,0

Cl=CIRCLE/3,0,0,2

L1=LINE/(3,0,0), (3,1,0)

FROM/P0

GO/C1

AUTOPS

TLLFT,GOLFT/C1,ON,LI

END

FINI

Figure 1-15: APT program example.

flow. Furthermore, recent automatic plan generation projects have run into complexity problems

[31]. As parts become more complex, two basic problems emerge:

1. the combinatorial explosion of the number of possible process plans, and

2. the need to have local knowledge ofmachining capabilities, dependencies and

the availability of tools, toolblocks and fixtures.

One area where process-flow languages have survived is in the areaof numerically con

trolled (NQ machines. The dominant language for NC machines is APT (Automatically Pro

grammed Tool) [32] which evolved from a 1955 effort to computerize machine control into a

language with process description capability. Figure 1-15 shows an APT program that defines a cir

cular contour cut APT's age is apparent from the code in the figure. An APT program may be run

on many machines because it is run through an APT postprocessor,which generates code for a par

ticular type of machine. APT programsconsists of four basic statement types:

1. Geometric statements that define the part configuration (e.g., lines, planes,

holes).

2. Motion commands to control the path of a cutter.

3. Postprocessor commands which control different machine functions (e.g.,

spindle speed, feedrate).

4. Language control instructions which generategeometric translations, rotations

and diagnostics.

The major problem with APT is that it is an extremely domain-specific language, suited only for

24

Figure 1-16: ALPS specification example.

NC machine use. The requirement for an APT post-processor for each type of machine isamajor

drawback. APT contains no constructs to specify complex, parallel processes andis intended to de

scribe onlytheactions of anisolated machine. Finally, by today's standards APThas poor syntax,

does nothave sophisticated abstraction mechanisms, and isdifficult toread. Itisvery poorly suited

for use as an SPR.

Recently theproblems of optimizing machine usage, particularly with industrial robots,

have been studied. These efforts appear tobeovercoming many of theshortcomings of APT, since

they employ more advanced software engineering technology and they deal with multiple machines

[33]. However, they remain very domain specific.

The proliferation ofdomain-specific languages and the diversity ofcontrollers inmanufac

turing (e.g., NC machines, robots, programmable logic controllers, and materials handling systems)

has resulted in efforts to develop systems to manage theentire manufacturing operation [34],[35].

As part of this effort, the National Institute ofStandards and Technology (NIST) has developed a

language with somewhat similar goals to the SPR's outlined inthe previous section. ALPS (A Lan

guage for Process Specification) [36] isintended principally as an interface between process plan

ning and productioncontrol. During production itisalso used todrive productioncontrol processes.

ALPSnotation is adirected graph, as shown in Figure 1-16. Thelanguage provides extensive con

trol over processing. Itallows for alternative sequences and parallel actions which none ofthe SPRs

considered here can express. ALPS also provides for synchronization between parallel tasks and

between multiple processes. While ALPS has much torecommend it interms of power and flexi

bility, it should benoted that at this point ALPS islittle more than aprototype language design and

has notyetbeen implemented. Since ALPS isintended tobeuseful inawide range of industries,

25

no detailed syntax beyond the top-level graph notationhas been devised. A full-scale implementa

tion ofALPS will have to await the deployment ofa prototypeforthe manufacturingsystem control

software in which it is intended to operate [35].

Automating semiconductor manufacturing is especially difficult. Processes in the semi

conductor industry arecomplex and poorly understood.Equipment used in semiconductor manu

facturing tends to be expensive, complex, and unreliable, requiring highly-skilled operatorsand

technicians. The very short process and productlifetimes mean that typical semiconductor manu

facturing equipment is never fully debugged. Forexample, in 10yearscommodity DRAM density

has gone from 16K to 1M, which required4 generationsof processes each requiring substantially

more powerful and complex equipment than its predecessor.This situation is particularly true with

respect to machine contamination and long-term reliability. Many pieces of wafer fabrication

equipment are sufficiently specialized that fewer than 100machines of a given type are ever con

structed. Such small numberofequipment instancesmakes vendors reluctantto invest in equipment

automation. Consequently, standards for equipment automationareless developed than in most in

dustries.

Another problem is that the cost of clean room space and equipment means that fabs are

often sharedby different processes with theirown requirements. The need forextreme cleanliness

both in terms of particulates and potential cross-contaminationaccentuates these problems in

shared facilities.

In summary, the dynamic nature of semiconductor processing places much greater de

mands on automation than in most industries. Another difference between products in a continuous

process, such as the semiconductor industry, and other discrete-part industries is that integrated cir

cuits are monolithic. In discrete-part industries complex partsare composed of many subcompo

nents which are assembled to make the final product. Forexample, a Boeing 747 contains several

million parts, but in the fabrication process, progressively more complex subassemblies are con

structed until final assembly involves only a few major components. Failure in any one part can

usually be repaired simply by replacingthat part. In contrast semiconductor fabrication involves

just one component (a silicon wafer) which is subjected to a large number of treatments. The result

ing wafer is divided up into individual circuits (dies) near the end of fabrication. Failure of any one

26

device ona wafer typically results inthe loss ofone complete die. An abnormality inone ofthe

treatments thewafer undergoes typically results inthe loss of the entire wafer (often theentire lot

of wafers).

Forthese reasons, research into process plan generation andprocess-flow languages inoth

er industriesare difficultto applyto the semiconductor industry.

1.6 Summary and Dissertation Outline

This chapter has described the need for a CM system and the importance ofa powerful

SPR. Commercially-available CIM systems have been reviewed and it has been shown thattheir

shortcomings are too severe topermit the implementation ofpowerful operations such ascontrol

loops, timingconstraints and exception handling.

The Berkeley approach to CIM has been presented. It is based on a distributed computer

system with multiple levels ofcontrol and distributed databases. The system envisaged should be

flexible enoughto cope with the demands of an advanced CIMsystem.

Two basic approaches to the design ofanSPR were discussed: procedural (e.g., FABLE

andBPFL)and knowledge-based (e.g., PFR,MKS, PDA). Each approach has its advantages.

Knowledge-based SPRs are generally easier tomaintain and update, butthey lack the programming

features (e.g., exception-handling) provided byprocedural SPRs.

Process specification techniques inindustries other than ICmanufacturing were examined.

Most work inprocess representation has been with process description languages, where theintent

is to automatically generate process plans based onpart descriptions. Primitive process-flow lan

guages are used inNC machine programming. The ALPS language being developed bythe NIST

looks promising, but is currently nomore than a paper design without an implementation.

This dissertation describes BPFLanda WIPsystembasedon it. Chapter2 describesBPFL.

Chapter 3describes statements inBPFL intended primarily for use infabrication. Chapter 4 dis

cusses the WD? system, focussing ontherun-management system. Chapter 5 describes the imple

mentation of the WIPsystem. Lastly, chapter 6 presents conclusions and directions for further

research.

27

[This page intentionally blank]

28

Chapter 2
The Berkeley Process-Flow Language and Interpreters

Thischapter describes thestructure ofa BPFL process flow andabstractions supported by

the language developed to support semiconductor manufacturing. First thedesign goals and as

sumptions thatledtoBPFL are outlined. Second, the syntax of BPFL and some basic operations

are introduced. Third,BPFL equipment abstractions aredescribed. Fourth, the BPFLwafer-state

representation isdiscussed. Finally, the database schema designed to represent BPFL programs in

a database are described. BPFLis described by showing examples of a standardCMOS process

flow.

2.1 The BPFL Approach to Process Specification

BPFL is a procedural SPR. Thelanguage is designed to allow all information about a pro

cess to be merged into a commonspecification. Different programs, called interpreters, execute

BPFL programs and perform specific tasks. Forexample, a WIP interpreter executes a BPFL pro

gram and issues instructions toequipment oroperators tocarry outthe necessary steps tofabricate

the product described bytheprogram."Asimulation interpreter executes theprogram andgenerates

input forsimulators that canbenmtopredict the performance offabricated devices [37]. Other in

terpreters canbe implemented to perform different tasks such asfactory simulation.

Thisapproach minimizes theamount ofdomain-specific knowledge about particular tasks

required byBPFL. Forexample, ifBPFL were capable ofdescribing input sufficient foruse with

any simulator, there would betremendous language overhead incoping with thenumerical switch

es andenvironment settings fordevice simulators likePISCES [38]. However, an interpreter writ

tento generate input forPISCES (and perhaps other simulators aswell) candealwiththese details.

Thereare situations where a BPFL program hasto include suchinformation for the useof a partic

ularsimulator or to workaround interpreter bugs, buttheaimis to minimize theneedfor this infor

mation.

The design goals for BPFL are to:

1. provide acommon specification suitable foruseinallstages ofmanufacturing,

2. provide support for a complete specification including lot splits and merges,

29

exception handling, timing constraints, rework loops, feed-forward and feed

back control, and equipment communication, and

3. separate the facility-specific information from the process specification to

make it easier to update equipment in a fab or move processes to a different

fab.

Knowledge-based approaches are generally weak at handling exceptions and timing constraints.

We believe these features are essential in any SPR intended for use in an environment where the

potential for unexpected errors and mishaps is great

This chapter describes the BPFL language in detail, including a discussion of the interpret

ers and some advanced language concepts. Additional information about the features of BPFL in

tended to support fabrication are discussed in chapter 3. A complete specification for BPFL is given

in Appendix A.

22 BPFL Program Structure

This section describes the global structure of a BPFL process flow and the wafer, lot and

view abstractions supported by the language.

The current version of BPFL is implemented as an extension to Common Lisp [39]. Lisp

was chosen as the host language for several reasons. First, it is easy to develop programs that ma

nipulate other Lisp programs since they are represented using list data structures that can be access

ed from Lisp. BPFL interpreters operate on BPFL programs so using Lisp simplified their

development Second, Lisp provides a very powerful and flexible framework within which to ex

periment with language designs. The current version of BPFL is quite different from the original

version [40] and Lisp greatly reduced the amount of work necessary to make these changes. Fur

thermore, Lisp has a built-in evaluator that makes it very easy to implement language interpreters

[41]. Lastly, a well-defined and powerful object-oriented programming model, the Common Lisp

Object System (CLOS), was already available. CLOS is used extensively both in the design of the

language and in the implementation of the interpreters.

Although BPFL is a Lisp-based language, the languageseen by users is not Lisp. We intend

to provide a user-friendly, forms-based, graphical user-interface. Examples of such interfaces are

the graphical representation of process-flows in the MKS system (see Figure 1-11) [21], the exper-

30

defflow cmos-16(implant-split: = t)

"U.C. Berkeley Generic CMOS Process (Ver. 1.6 14-April-89)
(2 um, N-well, single poly-Si, single metal)"

begin

step ALLOCATE-WAFERS do

step WELL-FORMATION do

end;

Figure 2«1: Berkeley cmos-16 process flow inBPFL.

imentaluser-interface to theprocess-flow representation developed at Texas Instruments [42],and

the Stanford Graphical Design Toolkit [43].

Currently, usersarepresented witha block-structured textuallanguagefor BPFL.Anearly

versionof BPFLused a Lisp syntaxwhichthe intended users (i.e.,processengineers)foundunsat

isfactory. Also,Lisp syntaxis difficult to read. Theblock-structured BPFLis easy to translate to

the Lisp syntax and vice-versa.

Aprocess-flow is represented byaBPFL procedure thatcontains a sequence of steps. Each

stepcontains a sequence of BPFL procedure calls, BPFL statements, andCommon Lispfunction

calls. Figure 2-1shows thetop-level of thestandard CMOS process thatis runin theU.C.Berkeley

microlab. BPFL procedures aredefined using thedefflow definition. Thisdefinition hasfourar

guments: the procedure name(e.g., cmos-16), a formal argument list (implant-split: =

t), an optionaldocumentation string("U.C. Berkeley Generic CMOS..."), and a proce

durebody (begin step ALLOCATE-WAFERS ... end). The procedure bodycontainsa se

quence ofprocess steps. TheBerkeley cmos-16 process-flow hassixteen top-level steps. Thefirst

stepallocates thewafers thatwill beprocessed bytherun, the second stepcreates ann-doped well

for the PMOS devices, and so forth.

Step is used primarilyfor documentation purposes. The first argument to the step state

ment is a symbol that namesthe step.Sincestepscan be nested,the namesof all current steps con

catenated together is usedto indicate theposition at which aneventoccurred. This positionname

iscalleda step-path. Thestep-path isused to identify specific statements in a program whenrecord

inginformation abouta ran. Forexample, thesteppathis recorded whenever a measurement is re

corded.

31

BPFL provides abstractions to manipulate wafers and lots, since they form the basic units

on which processing is performed. Wafers are represented by CLOS objects, each with a unique

identifier (called awafer ID) that distinguishes it from all other wafers.1 The identifier inscribed

onto the wafer is recorded, and the wafer is assigned a logical number index which is used to iden

tify it within a run. Wafer indices are integers between 1 and the number ofwafers being processed

by the run. Wafer objects also have a data structure associated with them for storing wafer state in

formation which is described in more detail in section 2.4.

A lot is a named set ofwafers. Predefined lot names aresupplied for wafers that are intend

ed for production (product), wafers that areto be scrapped (scrap) and wafers that need rework

(rework)2. There is also alot that contains the wafers currently being operated on (current). A

given wafer may be in several lots at the same time, with the exception that wafers in the scrap

lot may appear only in that lot BPFL programscan define new lots to hold test wafers or identify

subsets that will receive special processing.

Procedures are provided to create (i.e., initiate) anddestroy (i.e., terminate) lots and to add

and remove wafers from lots. A lot split operation can be represented either by creating a new lot

and dividing the wafers between it and the pre-existing lot, or by starting a new ran and passing it

a set of wafers. Procedures are also provided to merge lots.

Examples of the use of these lot operations areshown in Figure 2-2. This is the BPFL rep

resentationof the first two steps in the CMOS-16 process flow shown in Figure 1-5.The first step

allocates wafers. The second step is an initial oxidation that grows an oxide mask used later in the

well definition.

In BPFL, arguments can be passedto procedures eitherby position or by name. Arguments

passed by name can be passed in any order because the formal argument name precedes the value

in the call For example, the bare-silicon-wafer procedure, which creates a specification of

the wafers to be allocated, uses argument passing by name for four arguments: the desired crystal

orientation of the wafer (crystal-face), the desired resistivity (resistivity), the wafer

1Industrial efforts to establish acommon bar-coding convention for wafers will provide every man
ufacturedwafer with a unique id.

2Since rework operations may nest, rework lots actually take the names rework-1, rework-2,
etc.

32

step ALLOCATE-WAFERS do
let spec := bare-silicon-wafer(crystal-face: 100,

resistivity: [{18 ohm-cm}, {22 ohm-cm}]
quality: 'product, dope: 'p);

begin

allocate-lot(names: '(cmos, nwell, nch),
sizes: list(*product-lot-size*, 1, 1),

snapshot: spec);

end;

/* Wafers in the cmos lot are product wafers */
lot(•product) := lot('cmos);
with-lot 'nwell do

measure-bulk-resistivity(tag: "initial");

end;

end;

with-lot 'cmos do

step WELL-FORMATION do

step INIT-OX do

wet-oxidation(time: {11 min}, temperature: {1000 degC},
target-thickness: {1000 angstrom});

pattern(mask-name: 'NWELL);

end;

end;

Figure 2-2: BPFL representation ofcmos-16 initial steps.

quality (quality), and the type ofbackground dopant (dope). The supplied values mirror those

given in Figure 1-5.

The resistivity argument uses arange value. Range values are denoted by using square

brackets. For example, the construct [1,10] represents the range 1-10. BPFL also supports di

mensioned quantities (i.e., values with unit designators) through theuseof setbrackets. For exam

ple, "1 cm" may berepresented as {1 cm}. The resistivity argument specifies awafer

resistivity between 18-22 ohm-cm.

The nextoperation creates wafers and assigns them tolots. The name argument specifies

thenamesof the lots, and the size argument specifies how manywafers to allocate. In this case,

three lots named cmos, nwell, and nchwith sizes *product-lot-size*1,1 and 1respec

tively are allocated. The snapshot argument specifies the wafer state. Since these are new wafers,

thewafer specification is the result returned by the bare-silicon-wafer procedure. The fol-

1*product-lot-size* isa global constant that contains thenumber of product wafers toallo
cate for processing in this run.

33

let temp := lot('current);
begin

lot('current) := lot(lot-names) ;

operations;
lot('current) := temp;

end;

Figure 2-3: With-lot semantics.

lowingoperation sets the product lot to the cmos lot so that the interpreterknows which wafers

are product wafers and which are test wafers.

The with-lot statement is used to indicate which lots of wafers are to be treated as cur

rent. With-lot changes the value of current for those operations within it After the with-

lot is complete, current assumesthe valueit had before. For example, the semanticsof:

with-lot lot-names do

operations;
end;

are shown in Figure 2-3. The only operation in the with-lot statementis measure-bulk-re

sistivity. Because the current lot has been set to nwell, this procedure will operate on the

wafer in the nwell lot This is the final operation in the ALLOCATE-WAFERS step.

Thenext operationstartsthe WELL-FORMATIONstep. The INIT-OX step (corresponding

to step 2 of Figure 1-5)is nested within the WELL-FORMATION step.2.1-2.3 in Figure 1-5are re

placedby a call on wet-oxidation, whichis a standard libraryprocedure that performsthe nec

essary wafer and furnace cleans prior to oxidation, andmeasures the oxide thicknessafter

oxidation. Onlyrarelyis anoxidationperformed without allthree oftheseoperations beingrequired

so it makessenseto defineone procedure to do allof them. Step2 of Figure 1-5includes specifi

cationof the requiredpre-oxidation, post-oxidation, andannealtimeswhereasthe BPFL specifica

tion in Figure 2-2 does not This serves as an example of defaultparameters as describedin the

definitionof the wet-oxidation procedure shownin Figure2-4.There are seven named argu

ments: time, temperature, pre-ox-time, post-ox-time, anneal-time, target-

thickness and tag. All except time, target-thickness and tag have default values. In

the caseof the procedure call in Figure2-2,the temperature default is overridden but the other

defaultsare used. Default parameters simplify process flows. They providea mechanism to hide

detail while permitting specification of detail if necessary.

34

def flow wet-oxidation (time:, tenperature: = {900 degC},
pre-ox-time: = {5 min), post-ox-time: = {5 min),
anneal-time: = {20 min}, target-thickness:,
tag:)

•Cleans wafers and furnace/ performs wet oxidation and measures
oxide thickness on a test wafer in the current lot"

begin

end;

Figure 2-4: Wet-oxidation procedure outline.

The final operationshown in Figure 2-2 is a call on the procedure pattern, which per

forms a standard photolithography operation(i.e., coat, expose and develop) using the mask name

supplied (in this case, NWELL). Information about the specifiedmask is found in the database as

described in section 2.5.

BPFL is amulti-purposelanguage. While much of the information in a process-flow is rel

evant to all uses ofthe flow, there arecases where certain information is relevant only to a particular

application andwould be meaningless forothers. Forthis reason, BPFL providesa viewmechanism

to indicate which information is appropriate to a particular set of applications. For example, infor

mation needed to simulatethe process (e.g., information aboutspecific device structure) that is not

meaningfulto the fabrication process is specified in a simulation view. An exampleof the use of

views is shown in Figure2-5. The viewcase statementspecifies which operations arevisible in

different views. The user-dialog procedure called in the fabrication view in Figure 2-5

presents aqueryto anoperator askingforanoxidethickness measured on the current lot ofwafers.

In the simulation view, the operation determines the oxide thickness from the wafer state model

maintained by the simulation interpreter (see section 2.4).

/* In measure-oxide-thickness procedure */

viewcase

when fabrication do

result := user-dialog(frame: 'nanospec, operation: 'measure-oxide-thickness);
tox := getf (result, :measured-thickness);

end;

when simulation do

/* Query wafer-state model for oxide thickness */

tox := material-attr(find-surface-segments(...),...),-

end;

Figure 2-5: BPFL views example.

35

<simpl

^suprem3
uuu-^ suprem<^

^^... . . ^suprem4
fabncauonv^

^scheduling

Figure 2-6; BPFLview hierarchy.

BPFL has a hierarchy of views as shown in Figure 2-6. An interpreter specifies which

views of the process flow it wishes to see. Only operations in these views arevisible to the inter

preter. For example, an interpreter that requests a s impl view sees a subset ofthe operations in the

simulation view. The bpf1 view is the implied view for all code. Additional views can be de

fined if necessary.

The view statement is a special-case version ofa viewcase statement It allows the spec

ification of code for just one view as in:

view fabrication do

fabrication view operations;

which specifies operations in the fabrication view. Views may also be defined in terms of logical

operations on the defined view names. For example, the following statement

view (simulation and not(suprem3)):
operations for all simulation views except SUPREM3;

end;

specifies operations for all interpreters supporting the simulation view except those supporting a

supremS view.

Since the fabrication view is the view under which device fabrication occurs, it is the pri

mary view of interest to the WIP. system. It is discussed in greaterdetail in chapter 3.

BPFL process flows access standard libraries of functions using the require declaration.

For example, the pattern procedure is found in the litho library, and a process flow uses the

litho library by including the declaration:

require(litho, version: latest);

The version argument indicates which version of the Ubrary to use, and is explained in more de

tail in chapter 4.

36

equipments

/furnace

,etcher<

vet-process-station

^analytical

oxidation-furnace-

cvd-fumace

epi-furnace

•plasma-etcher,

-wet-etch-station

sinkl

sink2

c-v-probe

ellipsometer

sem^r cssem

^\ gecsem

•wet-oxidation-furnace <^- tylanl
^tylan2

dry-oxidation-fumace

lam-1

lam-2

technics-c

X
tylan5

tylan6

Figure 2-7: Equipment class hierarchy.

2.3 Equipment Abstractions

This section describesthe BPFLstatements providedto supportmanufacturing equipment.

The equipment in a fab is described in the database so thatequipment-specific operations and set

tings can be separated from the operations to move lots, communicate with an operator, and per

formotherhousekeepingoperations. An object-oriented designis used to facilitate the additionof

new types andequipment instances to the system. A subsetof the equipment classhierarchy is

shown in Figure 2-7.

- Equipment is allocated by using the with-equipment statement. This statement takes

the name ofa specific piece ofequipment (e.g., lam-1), the name ofa category ofequipment (e.g.,

oven), or a list of the equipment names or categories desired and allocates a free piece of equip

ment that satisfies the specification. The equipment allocationprocedure also implements the

equipmentreservation orscheduling policy.A CLOSobjectthatrepresents the allocated equipment

is bound to a variable which can be used in the body of with-equipxnent. Other users are pro

hibited from using the equipment while it is allocated.

After a particular pieceofequipmenthasbeen allocated, operations are performed either

directly by communicating with the equipment or indirectly by commumcating with an operator.

The user-dialog procedureis used to communicate with operatorsand the run-recipe pro

cedure is used to communicate with equipment. Figure 2-8 shows a BPFL procedure that imple

ments a nitride etch operation. The plasma-etch-nitride procedure takes two arguments,

37

defflow plasma-etch-nitride(power:, overetch: = {5 %})

"Remove nitride on wafers"

begin

viewcase

when simulation do

end;

when fabrication do

with-equipment x of-type 'technics-plasma-etcher do

run-recipe(x,'etch-nitride, power: etcer, overetch: overetch);
end;

end;

end;

end;

' Figure 2-8: Equipment operation example.

power and overetch. The procedure allocates a plasma etcher and executes the appropriate

equipment recipe.

Equipment definitions include information about recipes. For example, the definitions for

three instances of equipment type technics-plasma-etcher are shown in Figure 2-9. The

first defeguipment describes the basic properties of technics-plasma-etcher. The argu

ments to defeguipment are: the name of the equipment, a list of root-classes from which this

piece ofequipment inherits properties (e.g, etcher), and equipment attributes. In this case, the

only attribute is recipes which takes a list of recipes. Recipes named ash-resist and etch-

nitride are defined. Forexample, the ash-resist recipehas a default power of300 Watts and

defequipment technics-plasma-etcher ((etcher),

recipes: (ash-resist: (gases: (#m(oxygen, flow-rate {51.1 seem})), power: {300 W}
pressure: [{270 mTorr) {280 mTorr}], time: {7 min)),

etch-nitride: (gases: (#m(helium, flow-rate: {13.0 seem}),

power: {100 w}, ...))

...));

defequipment technics-c ((technics-plasma-etcher),
recipes: (ash-resist: (frame: strip-resist)

etch-nitride: (frame: etch-nitride...)

• • •) ;

defequliment technics-d ((technics-plasma-etcher),

secs-device: 5,

recipes: (ash-resist: (sees-handler: secs-technics-resist-ash),
etch-nitride: (—)

Figure 2-9: Equipment definition example.

38

a default time of 7 minutes. These attributessupplied in the defeguipment are defaults which

may be over-ridden by arguments to run-recipe. Forexample, in Figure 2-8, the valuesof the

arguments power and overetch override values specified in the equipment definition.

If direct communication with equipment is possible, the WIP system uses Wood's SECS

server [44] to download and execute recipes. Forexample, suppose the with-eguipment state

ment in Figure2-8 allocatedtechnics-d. The defeguipment that describes technics-d in

Figure 2-9 shows that it is connected to the network. The sees-device attribute specifies the de

vice address of the equipment An additionalrecipe attribute sees-handler is supplied. This at

tributegives the name ofaprocedure thatis responsible forhandlingequipment communication for

the given recipe. SECS implementations for equipment areoften idiosyncratic and in general a

unique handleris required foreachtype ofequipment In this example, run- r ecipe will call the

procedure sees-technics-resist-ash to handlethe commumcation.

The definition of technics-c in Figure2-9 does not contain any information about

SECS communication because direct communication with technics-c is not possible. If tech-

nics-c is allocated, run-recipe generatesa user-dialog call. The name of the appropriate

user-interface frame for display to the operator is specified by the frame attribute for the required

recipe. More information about the user-interfaceto the WIP system is presented in chapter 4.

2.4 Wafer-State Representation

An SPR interpreter must maintainadescription of the stateof wafers. This wafer-state in

formation is useful for three reasons. First, sanity checks may be performed on wafers before they

undergo certain operations. Forexample, wafers with photoresist on them cannot undergo high-

temperature processing so it is important to ensure that any wafers about to undergo a high-temper

ature step have been stripped of resist Second, wafer-state information is useful as an adjunct to

analytical measurements. An example ofthis use was seen in Figure 2-5, where the code to measure

oxide thickness for the simulation view was ableto query the wafer-state model. Third, wafer-state

information permits wafers to be moved between process flows without loss of information about

the prior treatment of wafers.

BPFL provides abstractions formaterial specifications, masks, andwafer profiles, in order

to support the wafer-state model.

39

metal-

organic-

•substrate

amorphous-silicon

oxide

phosphorus

arsenic

antimony

'silane

tphosphine

•aluminium

-resist

•acetone

-boron 11

oxygen

hydrogen

Figure 2-10: BPFL materialhierarchy.

A subset ofthe default class hierarchy formaterialsis shown in Figure 2-10. Material class

es have attributesthat describe the properties of the material andthe names that simulators use for

the material.For example, the class representing polycrystalline silicon is poly, which is defined

by:

defmaterial poly((si), crystal: 'poly, simpl-name "POLY",
suprem-name: "POLY") ;

The first argument to defmaterial is4 (si) \ which indicates that this material class inherits

properties from the si material class. The crystal argument specifies that this is a polycrystal

line material. The names used for polycrystalline silicon in the SIMPL and SUPREM simulators

are also given. Materials are specified in BPFL process-flows by using the #m shorthand. For ex

ample, the value returned by

#m(poly, grain-size: [{1 um}, {10 um)])

is an object describing poly material with a grain size between 1-10 urn.

40

fc£

•,%••.»•>•",*••;.V • .*•„V• •••. .*•..
jil^l »l »l » i' •' •' •' i' •'

s>

G3 ACTV

H POLY

m METL

• CONT

Figure 2-11: Mask layoutexample.

Awafer-state representation must have some knowledge ofthe masks used to define the

wafer profile. Asimple example will be discussed in order to illustrate the relationship between

masks and wafer profiles. Figure 2-11 shows asimplified view ofthe layout ofan MOS transistor.

Four masking levels are shown: the active device area mask (ACTV), the polysilicon mask (POLY),

the metal mask (METL), and the contact mask (CONT). Given that asingle IC may have over one

milliontransistors, itisclear that eachmask isquite complex and acomplete representation ofmask

layout would require aprohibitive amount of storage, hi the BPFL representation ofmask layers,

two attributes are always defined: name and location. Name specifies the name ofthe mask used

in the process flow (e.g., ACTV), and location specifies aset of design layers that are used to in
dicate which portions ofthe wafer the mask covers. Locationvalues are expressed as predicates

that indicate which regions ofthe mask are clear and which are dark. For example, the expression

NOT (CONT) specifies that the shaded areas ofthe design layer CONT are inverted, which means

those areas are clear on the mask. In processing terms, if CONT were the contact-definition mask,

NOT (CONT) would be the dark-field contact-definition mask. Mask operations are used as argu

ments to procedures that perform photolithography operations. An example ofamask definition is:

defmaek CONT(dark-field: t, type: chrome);

which specifies a dark-field masknamed CONT.

The Boolean operation OR specifies area union and the Boolean operation AND specifies

area intersection. For example, the expression AND (ACTV, POLY) describes the regions ofthe wa

fer where polysilicon crosses an active area. This expression represents the transistor gate region in

atypical MOS process. BPFL can assign attributes to regions specified in terms oflayout.

41

Function
find-segments

find-segments-in-lot

find-surface-segments

deposit-in-lot

etch-material-in-lot

grow-in-lot

split-segments-in-lot

Description
Return a listof segments in the specified snapshot that have the
desired properties.
Same as find-segments but works with snapshots in a particular
lot.

Restrict find-segments to segments adjacent to ambient.
A surface segment with the given attributes is added to all
snapshots.
All surface segments made of the given materialare removed
completely where exposed.
A segment with the given attributes is added to all snapshots at the
specified location. Differs from deposit-in-lot in modifying
underlyingsilicon segments to reflecttheir consumption by the new
segment.
Segments that overlap the given location are split in each snapshot.
One new segment is withinthe specified location, the other is
outside.

Figure 2-12: Procedure to manipulate PIF structures.

Wafer profiles arestoredusing a simplified versionofthe ProfileInterchange Format(PIF)

[45]. BPFL uses a subset ofPIF called naive PIF to representthe adjacency relationships between

materialson a wafer. BPFL interpreters maintaina datastmcture called a snapshotto describe the

profileofa wafer. Forexample, the procedure bare-silicon-wafer used in Rgure 2-2 creates

a snapshot of a wafer that is composed of a single layerof material (silicon) with values given to

the crystal-face, resistivity, and dope material attributes. Operations are provided to

changesnapshots to simulate the effects ofprocessing operations (e.g., depositing material,remov

ing material, etc.). Grow-in-lot and etch-material-in-lot areexamples of high-level

procedures formanipulatingPIFstructures. A list of some ofthese procedures is given in Figure 2-

12.Snapshots arerepresented by CLOS objectsthatare designedto minimize storage overhead. A

complete description of the data abstraction for the BPFL implementationof PIF is given in

Appendix A.

A simple example of a PIFstmcture is shown in Figure 2-13.The left-hand partof the fig

ure is a block diagram of the wafer profile described by the PIFsnapshot. It represents a wafer

(cross-hatched) covered in oxide which has been spin-coated with resist. This particularsnapshot

is a good representation ofthe stateofwafersjust afterbeingcoatedwith resistwithin the pattern

operation in Figure 2-2.The ambient layeris a special layerrepresenting the ambientconditions

around the wafer (e.g., roomtemperature air, 900 °C wet-02, etc.).Oxide is normallygrownon all

42

Ambient

Resist

k\\\\\\sffi\v^^^i
Oxide

Ambient

^ jt not(TOP)

Figure 2-13: Simplewaferprofileand correspondingsnapshot.

surfaces of a wafer, so the back-side of the wafer is also coated with oxide, although ordinarily the

back-side of the wafer is not shown in a wafer profile diagram.

The right-handportionof Figure 2-13 showsa graphicaldepiction of the PIF snapshot for

this wafer.PIF snapshots are composed of segments, attributes, and boundaries. Segmentsspecify

the information about a region or layer in a profile. They are representedby ovals. This snapshot

has three segmentscorresponding to the layers in thematerial.The ambient segment is a system-

supplied segment. For visualization purposes, thesegments are shownlabelledwith the namesof

the materials making up the segment.

A boundary specifiesthat one segmentis adjacentto anothersegment.Boundaries are rep

resented by solid lines.The profilein Figure 2-13has fourboundary lines whichrepresentthe fact

that each layer (except silicon) is on top of another and that the backsideof the wafer is also

covered with oxide and exposedto the ambient The directionof the arrow indicates which segment

lies above another segment (e.g, the arrow between resist and oxide points toward oxide be

cause resist lies above oxide).

The dotted arrows on the boundariesindicatethe locationpredicates that specify where the

boundaries exist.For example, oxidebounds siliconeverywhere (sinceoxidegrowson all surfaces

of the wafer), so the predicate is T, which represents the value true. Oxide is exposed to ambient

everywhere except on top of the wafer (where resist lies between it and ambient), so ambient

bounds oxide everywhere except the top (i.e., not (TOP)).

43

Attributes are used to specify properties about the profile (e.g., material name, whether the

resist is exposed, etc.). They are represented by keyword-value pairs. Attributes may be attached to

segments, boundaries, and other attributes.

Using this data structure, it is possible to query the PIF model for information about the

wafer described in a snapshot. Consider once againthe code in Figure 2-2 and assume that the code

is being executed by aWIP interpreter for fabrication. The callon the procedurewet - oxidat ion

is passed a desired oxide thickness of 100nm. Within the procedure, a new segment for the grown

oxide will be created and the default oxide thickness will be recorded as a segment attribute:

grow-in-lot(#m(silicon), material: #m(oxide, nominal-thickness:
nominal-thickness));

where the argument nominal-thickness will have the value {100 nm} at execution time.

Grow- in-lot is a procedure that simulates the effect ofgrowing a layer ofmaterial on all wafers

in the current lot The first argument to grow- in-lot is the specification ofthe region where the

growth is to occur. #m(silicon) is used in this case because oxide grows on silicon segments

exposed to ambient containing oxygea Oxide also grows on polysilicon about 2.5 times as fast as

on monocrystalline silicon1, so the following call to grow-in-lot isalso required:

grow-in-lot (#m(poly), material: #m(oxide, nominal-thickness:
2.5 * nominal-thickness));

Once the oxidation is complete, the oxide thickness will be measured using measure-

oxide-thickness. As seen in Figure 2-5, the operation in the WIP view is to ask an operator to

measure an oxide thickness. The value returned by the operation is stored in a local variable tox.

This value will be assigned to the segment for the oxide:

seg := find-surface-segments-in-lot (material: #m(oxide));
mat := segment-attribute (seg, :material);
material-attribute (mat, :measured-thickness) := tox;

This information is then available for use later in the process flow. It is also available for

analysis by other programs and systems.

Find- surface- segment s - in- lot returnsall segments with the specified attributes.

It is possible to supply additional attributes if more selectivity is required. One common attribute

used is the step-path, which is the string formed by concatenating the names of the nested steps at

1The differential oxide growth rate on polysilicon depends on both the dopant concentration in the
polysilicon and the thickness of the oxide. The value 2.5 is often used as a "rule of thumb."

44

defflow expose-resist(mask-name:)
"Expose wafers "

let layer := find-layer (mask-name); /* Layer corresponding to the mask */
exposure-location := intersect-layers (top-side (),

invert-layer(layer));

old-segments := nil;
new-segments := nil;

begin

viewcase

when fabrication do

witn-equlcmant s of-type 'stepper do

run-recipe(s, 'expose, mask-name: mask-name);
end;

end;

end;

old-segments :=
find-segments-in-lot(material: #m(resist, exposed: nil));

new-segments :=

split-segments-in-lot (old-segments, location: exposure-locat ion) ;
segment-material-attribute-in-lot(new-segments, :exposed) := t;

end;

Figure 2-14: Expose-resist procedure definition.

the currentexecution point. Forexample, the step-path for the call on wet-oxidation in

Rgure 2-2 is "WELL-FORMATION/ INIT-OX." Any time a segment is created,the step-pathis au

tomatically added as an attribute, so one way to ensure that the desired segment is obtained is to

specify the step path where it was created:

seg := find-surface-segments-in-lot(

material: #m(oxide),

step-path: "WELL-PORMATION/INIT-OX");

Consider the same code from Figure 2-2 runningin simulation. In this case, the measure-

oxide-thickness procedure will querythe PIFdatamodel to extract the simulated oxide thick

ness and assign it to the local variable tox, assumingthe simulatorhas simulated the oxidation. In

many situations, a time-consuming oxidation simulation is not necessary, and in these cases simu

lators can query the PIF data model to extract the nominal-thickness assigned by the wet-

oxidation procedure. An example of wherethe lattermight be useful is in a simulator designed

to extract a profile view of part of a wafer, such as SIMPL [3].

A more complex example ofPIFwill now be presented. Figure 2-14 contains the expose-

resist procedure which exposes photoresistin a masking operation.This procedure takes a

mask-name argument which specifies the mask to use. Fourlocal variables areused in the proce

dure:

45

Ambient

Unexposed Resist Exposed Resist

Oxide .

Oxide

Ambient

Figure 2-15: Exposed wafer block diagramand PIF snapshot.

1. layer - the layer describing the specified mask,

2. exposure- location - a specification of the clear areas on the mask,

3. old- s egment s - a variable to hold the list of PIF resist segments before the

exposure, and

4. new-segments - a variable to hold the list of PIF segments created by the

masking operation.

The clear areais calculated from the dark areaspecification given in the layer object. The body of

the procedure executes the expose operation and modifies the PIF snapshot. Although it is not en

forced by the system, it is important that the operationsto change the PIF snapshot follow the op

erations to carry out the fabrication operation so that changes to the snapshot will not have to be

undone if the fabrication operation fails.

The operations that change the PIF snapshot split the resist segment into exposed and un

exposed segments. If the starting wafer has the profile shown in Figure 2-13, then the resulting pro

file after the expose-resist operation will be the one appearingin Figure 2-15. The segment

with a resist material attribute has been split into two segments using the split-segment-

in-lot procedure. One of the resulting segments has the exposed attribute of the material

attribute set to t to reflect the fact that it has been exposed. The location attributes are calculated

by using the mask shading attribute.

Now consider the definition of the develop-resi st procedure in Figure 2-16 which

specifies operations in two views (i.e., simpl andfabrication) to develop the resist. The simpl view

operation generates the SIMPL simulator input for a develop operation.The fabrication view op-

46

defflow develop-resist()
"Develop resist in lot"

begin

viewcase

when simpl do
simpl-op ("DEVL", "ERST") ;

when fabrication do

with-equipment d of-type 'developer do
run-recipe(d, 'develop-resist,

resist-name: material-name(resist-in-lot()));

end;

end;

end;

etch-material-in-lot(#m(resist, negative: nil, exposed: t), t) ;
etch-material-in-lot(#m(resist, negative: t, exposed: nil), t) ;

end;

Figure2-16: Develop-resist procedure definition.

eration executes aparticular recipe onadeveloper. Aftertheoperations are specified, thechanges

tothe wafer state are specified. Resist comes intwo types: negative and positive. Negative resist is

removed by development where it isunexposed, and positive resist is removed by development

where it isexposed. Inother words, awafer coated with negative resist willbeaphotographic neg

ative image of the exposed mask when developed, and awafer coated with positive resist willbea

photographic positive image of theexposed mask. Inorder toaccommodate both resist types, two

linesof codeare used, one for each resist type. Figure 2-17 showsthe waferblock diagram and

snapshot fora developed wafer, assuming negative photoresist

The SIMPL input-generator interpreter produces the following code whenit is run on the

expose-resist and develop-resist procedures:

EXPO mask-name no ERST

DEVL URST

Ambient

Exposed Resist i

I Oxide :

i Oxide i
Ambient

OR(not(TOP),AND(TOPtMASK))

Figure2-17: Developed wafer blockdiagram andPIFsnapshot.

47

The EXPOoperation is generated when the expose-resist procedure is interpreted and the

DEVL operation is generated when the develop-resist procedure is interpreted. The mask-

name in the EXPOoperation is replaced by the particularname ofthe mask passed to the procedure.

The no argument specifies that the mask should not be inverted. This value is derived from the

mask object. The ERST argument specifies the SIMPL name for unexposed resist The DEVLoper

ationtakes one argument, which specifies the resistto be removed, in this case the unexposed resist

URST.

PIF snapshots are also useful for performing sanity checks on the state of wafers. Figure 2-

18 shows a section of code from the furnace-run procedure. The furnace-run procedure is

always called before any furnace operation occurs (i.e., all recipes defined on furnaces are dis

patched using furnace-run). Photoresist cannot tolerate high temperatures. If a wafer is placed

into a furnace with photoresist on it the photoresist will decompose, contaminating the furnace.

The purpose ofthe code shown in Figure 2-18 is to abortprocessingif resist is discovered on wafers

that are about to be placed in a furnace. While this should never happen, in practice mistakes like

this are fairly common, particularly in Application-Specific Integrated Circuit (ASIC) fabs and re

search tabs where processing volumes are low, several different processes are run, or processes are

subject to rapid change. The ability of BPFL to perform such checks on wafer state provides an ex

tra degree of safety, but only if used correctly.

One final use for wafer state information is to recordthe information about the processing

history of wafers. Wafers can be processed to a particular stage using one process flow, and then

transferred to a different process flow with all of the state information maintained. This activity is

quite common in research fabs, although it is never done in production fabs.

The version ofPIF available in BPFL is not capableofdescribing generaldevice structures

on a wafer because it has no notion of segment adjacency in the horizontal plane. This choice was

defflow furnace-run (...)
begin

/* Can't have resist in the furnace */

if find-segments-in-lot (material: #m(resist)) then
raise-exception(...);

end;

Figure 2-18: Furnace-run procedure definition.

48

made to limit the amount of informationcontainedin a snapshot For processing purposes, naive

PIF has been adequatefor all situationsobserved,sinceprocessingoperations never depend on que

ries of device structure. Physical simulatorsthat requireknowledge of two- or three-dimensional

device structures (e.g., PISCES [38]) cannot be expressed completely in BPFL because additional

information needs to be specified.The logical repositoryfor this information is the CAD database

used by IC designers to specify the circuit being manufactured (e.g., OCT [46]). The information

in the CAD database is used to generate mask detail.

2JS Database Entities

This section describes the database schema designed to support the statements and data

types described in the previous sections.

Database entities from BPFL can be divided into two main groups. The first group contains

entities required to implement a BPFL program (e.g., process flows, wafer snapshots and lots). The

second group describes the fabrication facility and contains entities that a BPFL program might ac

cess (e.g., equipment and mask descriptions).

The database schema for run state is shown in Figure 2-19. The run class describes the

basic information about a nm: its name, the process flow used by the run, the current run step-path

and the run stack.The stack consists ofa description ofthe process-flow execution state maintained

by the WIP system interpreterdiscussed in chapter 5. The process - f lowclass contains the name

and version ofa process flow, as well as a brief descriptionofthe flow and maintenance information

about it such as the last modification time, the user responsible for maintaining the process-flow,

and a list of users authorized to use the process flow.

run (name: string, id: integer, process-flow: process-flow*, step-path: string,
stack: stack*);

process-flow(name: string, version: string, id: integer, modification-date: datetime,
maintainer: user*, description: string, authorized-users: user*);

stack(root-frame: frame*, ...);

wafer(run: run*, id: integer, index: integer, scribe: string, snapshot: snapshot*);
lot(run: run*, id: integer, name: string, wafers: wafer*[]);

snapshot(run: run*, id: integer, name: string, segments: segment*[]);
segment(id: integer, boundaries: boundaries*[], attrs: attrs*[]);
boundary(id: integer, attrs: attrs*[));
attr(id: integer, name: string, value: string, attrs: attrs*[]);

Figure 2-19; Database schema for run state.

49

equipment(name: string, parent: equipment []*, secs-address: integer,
recipes: recipe*[]);

recipe (name: string, attributes: string);

mask-set (name: string, masks: mask*[]);
mask(name: string, type: mask-type, dark-field: logical);

Figure 2-20: Database schema for facility description.

The wafer class includes the wafer name and a pointer to the snapshot description of the

wafer. The lot class has pointers to all wafers that belong to that lot The wafer state information

is stored in four classes called snapshot, segment, boundary and attr, which describe the

PIF entities making up snapshots.

The database description for some classes that describe the facility are shown in Figure 2-

20. The equipment class includes the equipment name, the parent classes of equipment from

which this instance inherits, the secs-address for the equipment, and pointers to equipment rec

ipes. Recipes are stored in a recipe class with a name and a property list of attribute-value pairs.

Mask-sets are stored in a mask-set class, with a name and pointers to the masks belong

ing to the set. The mask class includes the mask name, the mask type (i.e., chrome or emulsion)

and a logical value indicating whether or not the mask is dark field. This value is used to determine

the location of the mask.

2.6 Summary

The basic goals of BPFL are to provide a complete, facility-independent process-flow rep

resentation. BPFL is a Lisp-based procedural language with support for common abstractions en

countered in processing, such as wafers, lots and equipment BPFL uses views to provide domain-

specific information where necessary. A version ofPIF is used to maintain wafer state information.

BPFL stores all information about process flows and facilities in a database.

50

Chapter 3
BPFL Statements for Fabrication

Thischapterdescribes BPFL statements to support IC fabrication. Fabrication placesspe

cial demands on an SPR. First, some means of communicating with operators and equipment is re

quired. Second, events thatoccurand data collected during processing mustberecorded tomaintain

runhistory. Third,errorsandunexpected events oftenoccurinprocessing so anexception-handling

mechanism is required todealwiththem. Fourth, rework loopsarecommon inreal-world processes

so it is worthwhile to provide a language statement to express themexplicitly. Finally,constraints

maybe placed on operations (e.g., time limits between operations such as the constraint that a ni

tride deposition inaLOCOS*step should be started within 30 minutes ofcompleting the preceding

oxidation step).

The statements described in this chapterare normallyonly used by the WIP interpreter, al

though timing constraints have obvious applications in scheduling.

3.1 Equipment Communication

BPFLequipment abstractions have already beenintroduced inchapter2. The fundamental

equipment allocation andaccess statement iswith-equipment. Forexample, thefollowing frag

ment of code:

with-equipment e of-type equipment-specification do
body;

end;

allocates a pieceof equipment thatsatisfies the equipment-specification, assigns that in

stance of theequipment to thevariable e, executes theoperations in the body andthendeallocates

theequipment It is important that allocated equipment always be deallocated. The with-equip

ment statementguarantees that equipmentwill be deallocated, even iferrors occur while process

ing the code in body. This is achieved throughthe use of the Lisp primitive unwind-protect

which guaranteesthe executionof cleanupoperations aftera code body even if the body generates

anexception. Figure 3-1 showsthesemantics of thewith-equipment statement.The code spec-

1LOCal Oxidation Of Silicon isanisolation technique.

51

unwind-protect

e := allocate(equipment-specification);
body;
cleanup deallocate(e);

end;

Figure 3-1: With-equipment semantics.

ified in the cleanup clause is guaranteed to execute.

Onceequipment hasbeenallocated, it may be accessed usingthe Semiconductor Equip

ment Manufacturers Institute (SEMI) Equipment Communications Standard protocol (SECS). The

BPFL WIP system uses a SECS serverdevelopedby Wood [44]. The interfaceto the server is via

a Common Lisp package [47]. Forexample,the following BPFLcode opens a connectionwith a

particulartube in a Tylan furnace bank:

m := create-message(DMSTREAM, EMCONNECT, needs-reply: t,

device: tylan-address,

body: create-item(ASCII, "furnace 2"));
write-message(m) ;

Create-message is a function providedby the SECS server. The first two arguments to cre-

ate-message specify the STREAM and FUNCTION codes forthe message.The streamcode iden

tifies a particular classof messageswith similar purposes andthe function code identifies a

particularmessage type within thatclassof messages. The needs-reply argument is used to in

dicate whetherthe SECS server should wait forareply from therecipient ofthe message. Device

specifies the SECS device address ofthemessage recipient, in thiscase thetylan furnace controller.

Body specifies the contentsof the SECS message to send. In this example,the body is a SECS

item consisting of the string of characters " furnace 2".

The Write-message function sends the message to the recipient. In this example, the

message is sent to the tylan furnace controller and connects the server to the second tube within the

furnace bank attached to the controller.

Forhigher-level equipment access, the run-recipe procedure providedby the WIP in

terpreter is normally used. This procedure uses the information specified in equipment definitions

storedin the database (see Figure 2-9) to executehigh-level procedures to communicate with

equipment. The sees -device and sees -handler equipment and recipe attributes are used for

this purpose as described in section 2.3.

52

Every equipment operation is logged. Log records include the start and end times of the op

eration. The procedure last-equip-time returns the completion time of the last operation car

ried out on a lot of wafers by a given type of equipment or recipe. For example, the procedure call:

last-equip-time(lot: 'product, equipment: 'hmds-tank, recipe: 'hmds-coat);

returns the completion time of the last hmds-coat operation performed on wafers in the product

lot. When called without arguments, last-equip-time returns the completion time of the last

equipment operation on the current lot of wafers.

32 Operator Communication

The user-dialog procedure can be used to communicate with an operator. In the proto

type WIPsystem,this procedure calls an ABFframe. An ABFframecontains two elements: first,

aform through which data can be displayed to or enteredby the operator, second, a menu of oper

ations that he or she can execute [48]. The form describes the operation to be performed and entry

fields in which the operator can enter measurements andstatus data. The operations provided allow

the operatorto abort an operation, signalcompletion of an operation, check equipmentstatus, and

disconnect from a ma

As an exampleof user-dialog, considerthe inspect-resist procedure used in

photolithography. The operatorenters wafer identifiers and inspection results into the form in the

Inspect -Resist frame shown in Figure 3-2. This frame is called by the user-dialog proce

dure. The data entered by the operator is returnedto the procedure as a property list of attribute-

value pairs. The getf procedure is used to extractattributes from the property list In this case,

user-dialog returns a value with reworlcand scrap attributes, which specify which wafers

should be reworked and scrapped, respectively.

Figure 3-3 shows an implementationof the inspect-resist procedure used in photo

lithography. The procedure allocates a microscope and asks the operator to inspect each wafer in

the lot The user-dialog function call results in the display of the inspect -resist frame.

The value returned by user-dialog is queried using getf to extract the rework and scrap

attributes and force rework to occur if necessary.

53

BLIS WIP <V 1.1, 13 July 1990) Inspect Resist

Run ID: 3

Status: waiting

Run Name: trench caps

Process Flow: cmos-trench

User: gian

Step: litho

Inspect each wafer in the lots CMOS and NWELL.

Enter the wafer scribes of any wafers to be reworked or scrapped

into the tables below.

Wafers to be reworked

id name

5

7

11

CMOS-2

CMOS-4

CMOS-8

Help Lot-Detail Forget End

Wafers to be scrapped

id name

Figure 3-2: Inspect-Resist frame.

3.3 The WIP Log

A BPFL procedurecan appendrecordsto the CIM database to log events that occur or mea

surements that aretaken during processing. The log is represented by a sequence of CLOS objects

ofdifferentclasses. Eachclassrepresents adifferenttype ofeventthatis beinglogged.A log record

is calleda log object (LO). Figure 3-4 showsthe class hierarchy. Figure 3-5 shows the database

conceptual schema for some different types of log objects.New types ofLOs can be defined by

creating a class for the LO types.

defflow inspect-resist()

"Inspect each wafer and put wafers to be reworked into the rework lot
and wafers to be scrapped into the scrap lot."

begin

view fabrication do

with-equipment scope of-type 'microscope do
let results := user-dialog(name: 'inspect-resist,

equipment: scope)
begin

wip-log('Resist-Inspect, results);
move-sublot(getf(results, rework:), 'current, 'rework);

move-sublot(getf(results, scrap:), 'current, 'scrap);

if lot (' rework) then raise-exception(' rework) ;
end?

end;

end;

end;

Figure 3-3: User-dialog procedure example.

54

Log-Object^ Analtyical-Equipment-LO<^^—Nanospec-LO
'EIlipsometer-LO

vAlphastep-LO

^Processing-Equipment-LO ^ Lam-LO^,—Lam1 -LO
^^Um2-LO

*Sink-LO«» Sinkl -LO
^^Sink2-LO

Figure 3-4: WIP log object class hierarchy.

The log is stored in theCIMdatabase asaseparate relation thatcontains information about

eachentry(e.g., the time theobjectwaswritten and therunthatwrote it) and areference to the spe

cificLO. For example, the inspect-resist procedure mentioned in the previous sectionwrites

a Resist- Inspect-LO to the log thatrecords the status entered by the operator foreachwafer

inspected.

A WIP LO includes attributes that allow a user to determine which operation in a process

flow wrote the entry. The process-name attribute specifiesthe process,the procedure-name

attribute specifies the procedure, and the step-path attribute specifies the stepthatwrotetheen

try.The time attribute specifies the date and time whenthe objectwaswritten, and the tag at

tribute records a value included in the operation thatwrites the log object.The tag attribute is

WIP Log Class
WIP-Log(run-id: integer, log-object: Log-Object*, process-name: string,

procedure-name: string, step-path: string, time: datetime, tag: string);
Analytical Equipment Log Objects

Analytical-Equipment-LO() inherits (Log-Object);
Nanospec-LO(thickness-array: unit[]) inherits (Analytical-Equipment-LO);
Ellipsometer-LO(thickness-array: unit/7) inherits (Analytical-Equipment-LO);
Alphastep-LO(height-array: unit/7) Inherits (Analytical-Equipment-LO);

Processing Equipment Log Objects
Processing-Equipment-L0() Inherits (Log-Object) ;
Lam-LO(wafer-etch-time: datetime, recipe: string, power: unit)

inherits (Processing-Equipment-LO) ;

Laml-LO() Inherits (Processing-Equipment-LO);

Lam2-LO() inherits (Processing-Equipment-LO);

Sink-LO(wash-resistivity: unit, piranha-etch-time: unit)
inherits (Processing-Equipment-LO) ;

Sink6-LO(bhf-etch-time: unit) inherits (Processing-Equipment-LO);
Sink8-LO(poly-etch-time: unit) Inherits (Processing-Equipment-LO);

Figure 3-5: Database schema for WIP log objects.

55

/* retrieve log entries for run 132 */
select *

from WIP-Log

where run-id = 132

/* retrieve resist-inspect measurements for CMOS-16 runs in
the past 30 days */

select log-object.wafer-status
from WIP-Log

where process-name = "CMOS-16" and time £ today () - "30 days"
and class (log-object) = "Resist-Inspect-LO"

/* calculate the average number of ellipsometer entries written for
each run since the beginning of the year */

select average(log-object)
from WIP-Log

where time £ "1 January 1991"
and class (log-object) = "Ellipsometer-LO"

group hy run-id

Figure 3-6: Sample WIP log queries.

optional. It canbe usedto specify auniquestring thatidentifies the logobjectwrittenby aparticular

operation. The stringcan be used to simplify the predicate required to search the log for all objects

written by the operation.

The WIP- log procedure is providedto write log entries. The argumentsto WIP- log in

clude the LO class to be written and acollectionofclass-specific arguments that recordthe desired

data. Forexample, the log operationin the inspect-resist procedure above is:

wip-logCResist-Inspect, results) ;

The firstargument is the log object class andthe class-specific argumentis an array ofwafer status

data.

The log can be queried to fetch arbitrary sets of log objects that can be analyzed to deter

mine what happenedwhen a processwas run.Queries canbe executed from an ad hoc query inter

face, anengineer's notebook interface [49], or aBPFLprogram. The engineer's notebook interface

allowsauserto browse the log andcreate hypertextlinks to particularentries. A program canaccess

the log to make decisions based on its pasthistory without having to createspecialdata structures

to save the desired data. In other words, the log acts as an extensible data structure for recording

information aboutthe run thatcanbe queried by the process flow itself.

Figure 3-6 shows three sample log queriesspecified in anextended version of SQL. The

first queryretrieves alllog objectswritten foraspecific nm.This querycreates adata set aboutthe

56

runthat canbe further analyzed.The secondqueryshows how particular log entries for acollection

of runs can be retrieved. The last query shows how the log can be queried to determine statistics

about equipment usage.

3.4 Exceptions

Errors and unexpected events occur frequently during semiconductor fabrication. Forex

ample, a furnace may detect an abnormal gas flow duringanoxidation operationand abortthe op

eration. An SPR that is unable to cope with such abnormal events is unsuitable for use in a

fabrication environment. This section describes BPFL exception-handling mechanisms.

BPFL uses the proposed ANSI standard Common Lisp conditions package [39] to define

exceptionhandlers andraise exceptions. Many exceptions are caught by the WIP interpreter itself

(e.g., exceptions are used in the implementation of constraints which arediscussed below). How

ever, a user may write BPFL code to handleandraise exceptions explicitly. An exception handler

is the routine that is called when a particular erroroccurs. An erroris signalled by raising an excep

tion which suspendsexecution ofthe BPFLprogram andcallsthe appropriate handler.The handler

can:

1. change environment,

2. record events,

3. change program execution, or

4. suspend or abort a run.

Note that suspending a nm can send amessageto the equipment operator, place the run in a queue

that is managedby a process or equipmentengineer, or send an email message to the person who

startedthe run.The action taken is determined by the policy established by a particular fab.

The language statement usedtodefine anexception handler is handler-case. It is used

to trapspecific exceptionsthatoccurinsideabody of code.The syntax of handler-case is:

57

handler-case

body;
on-exception var-1 := exceptionl do

exceptionl-handler;
end;

on-exception var-2 := exception2 do

exception2-handler;
end;

end;

The semantics of this statement areas follows. The body is executed, and if one of the specified

exception types (e.g., exceptionl, exception!,...) occurs, the specified exception-handleris execut

ed. An example of the use of handler-case appears in Figure 3-7 which shows the run-rec

ipe procedure thatdownloadsandexecutesarecipe in apieceofequipment The handler-case

statement deals with equipment errors.The body of the handler-case is the code:

download-recipe(...);

start-recipe(...);

which actuallyruns the recipe. If an equipment -error exceptionis raised duringthe execution

of this code, the handlerwrites an entry to the log thatdescribes the natureofthe errorand process

ing is suspended until an operatorcorrects the problem. The variable c contains a structure, called

a condition, that describes the error.

The operations available to change control-flow in an exception handler are:

1. Halt - run - Displays a user-dialogasking the user to choose the action,

2. Resignal - passesthe exception up to the next higher-level exception han

dler,

3. Restart-body - Execute the code in the body of the handler-case

again, and

defflow run-recipe (...)
begin

handler-case

download-recipe();
start-recipe(...);

on-exception c := equipment-error do

report-error ("Error occurred during run-recipe: -s", c) ;
halt-run();

end;

end;

end;

Figure 3-7; Handler-case example.

58

conditiont: serious-condition bpfl-error^ equipment-error secsii-error

^interpreter-error

>v s

warning
db-error

constraint-violation time-constraint-violation

©work

Figure 3-8: BPFL condition types.

4. Ignore-except ion - Continueexecuting the code as if the exception had

not occurred.

If thebodyof a handler-case or a procedure called in thebodycontains an exception-

handler for a condition, the lower-level exception handlerwill be executed. For example, if

start-recipe contains a handler-case for the same condition, an equipment-error ex

ceptionsignalled within start-recipe willover-ride thehandler in Figure3-7.

Thedatatypes thatspecify acondition form ahierarchy. Themostgeneral typeofcondition

is condition, whichhas subtypes, serious-condition, warning, constraint-vio

lation, and rework. The WIPinterpreter handles all condition types definedin the Common

Lisp standard [39]. Additional error types are defined bytheWIP system, andthey are shown in

Figure 3-8.

Exceptions aresignalled byusing the raise-exception procedure. For example, an

equipment-error exception may be signalledwith the following code:

raise-exception (' equipment-error, machine: ' tylan5,
cause: "calibration failure");

Anexception canbe raised explicitly bya BPFL program or in response to an error returned by an

equipment or user-dialog operation.

BPFLprocess flows can define theirowntypes of conditions using defcondition.

Figure3-9shows an example of defining a tylan-error condition for use withtylanfurnace

tubes. The condition has two slots: recipe and step-number. Since this condition is defined as

defcondition tylan-error ((equipment-error),
"Tyian-specific error, reports furnace details"
recipe;
step-number);

Figure 3-9: Defcondition example.

59

a subtype of equipment-error, it inheritsslots from equipment-error. Using tylan-er-

ror, an exception with more detail about the cause of the error can be generated:

raise-exception('tylan-error, machine: 'tylan5,
cause: 'calibration-failure, recipe: "SWETOXB",
step-number: 5);

3.5 Rework

Rework is a commonoperationin semiconductor processing. A reworkloop in BPFL spec

ifies the processing to be done, a test for correctness (e.g, inspecting wafers for good patterndefi

nition in photolithography), and operations to execute on a wafer that fails the test. The rework-

loop statement takes the following arguments:

1. the operations to perform (i.e., the reworkbody),

2. an operation to test whether the reworkbody was completedcorrectly

(rework-test),

3. the number of times to retry the loop beforegivingup (retry-count),

4. operations to perform before retrying the operations in the body (rework-

prefix), and

5. a procedure to call if the retry count is exceeded (retry- failure).

The semantics of the rework-loop statementare shownin Rgure 3-10. Body specifies the op

erations to be performed. The rework-test operation tests the wafers and puts the ones that re

quire rework into the rework lot and the ones that cannot be reworked into the scrap lot It also

returns a value indicating if all wafers passed the test If some wafers failed the test, the wafers in

the scrap lot are removed from the wafers allocated to the run. The loop is exited if the rework

lot is empty. The retry-count argumentis an integerthat is decrementedeach time the rework

loop is executed.If the retry-count is decremented to zero,the retry-failure operationis

executed. Otherwise, the rework-prefix is executedand the wafers in the rework lot are pro

cessed again.

The photolithographyflowshownin Figure 3-11 includesanexampleof rework.The basic

sequence of operations is the following:

1. Dehydrate - dry the wafers to promote resist adhesion. Dehydration is usually

carried out at 120 °C for 20 minutes.

60

(^START^)

Perform
Operations

\f Perform
rework prefixOK

Test

w Not OK

Deallocate
SCRAP lot

Set current-lot
to REWORK lot

>'
i <

YES
REWORK lot

empty? Decrement
retry count

>
. NO

Retry count
zero?

NO
A

VP<5

JL
DONE

Figure 3-10: Rework semantics.

2. Apply HMDS (Hexamethyldisilazane) - this improves adhesionof resist to

oxides. Wafers are placedin an HMDS ambient for three minutes.

3. Apply resist- photoresist is deposited on the wafers, which are then spun at

high speed to form a uniform layer of resist. Next, the wafers are baked at

120 °C1 for one minute toincrease the viscosity of the resist layer. Finally, the

resist layer is inspected for uniformity.

4. Expose - the wafers arealigned to a mask andthe mask is photographedonto

the resist layer.

5. Develop- the resiston the wafers is developed andthe wafers are washed.

6. Inspect - The wafers are inspected to ensure acceptable mask-pattern transfer.

Unsatisfactory wafers arestrippedof resist and reworked.

7. Descum - wafers are etched in a low power oxygen plasma to clean up resist

1Exact temperatures and times depend on the photoresist used. The figures here are for Kodak-820
positive resist.

61

Strip resist

YES

I

Dehydrate

I

Apply HMDS

3< Spin resist
+

soft bake

4.

Expose

Develop

6. Inspect:
requires
rework?

NO

Descum

Hardbake

£2 day

S1hr

Figure 3-11: Photolithography rework loop and timingconstraints.

deposits left behind on developed areas.

8. Hard bake- wafersare bakedat 120°Cfor thirtyminutes (possiblyat a higher

temperature for thick resists or resists with high water content) to harden the

resist in preparation for the etching step to follow.

This sequenceof operationsis knownaspatterning. A procedure pattern that implementsthe

rework loop for photolithography is shown in Figure 3-12.The figure also includes timing con

straints which will be discussed in a later section.The bodyof the rework- loop statement is the

code:

spin-soft-bake(resist: resist);
expose-resist(mask-name: mask-name) ;

develop-resist() ;

The rework-test is the procedureinspect-resist, whichputsunacceptable wafersinto the

rework and scrap lots. This example introducesan additionalcomplicationnot considered be

fore. In double-photo lithography, wafers are patterned even though they are alreadycoated with

resist For example, double-photooperationsare used wheneverpossible for high-energyor high-

62

defflow pattern(mask-name:, will-double:, resist: = *default-resist*)
"Basic photolithography - coat, expose, develop, descum, bake"

let double-photo := find-surface-segments-in-lot (material: 8m(resist));
begin

step PATTERN do

rework-loop

spin-soft-bake(resist: resist);
expose-resist (mask-name: mask-name);
develop-resist();
rework-teat inspect-resist();
retries 5;

rework-prefix If not (double-photo) then

strip-resist();
end;

end; /* rework */

descum-resist();

hard-bake-resist(double-photo: (double-photo or will-double));
end; /* step */

end;

Figure 3-12: Pattern procedure definition.

dose implants to provide maximum resist thickness for unimplanted regions of the wafer to limit

substrate damage. If double-photo is required, it is usually inadvisable to strip the resist unless

gross misalignment of the mask is apparent Fortius reason,the rework-prefix in this example

is:

rework-prefix If not(double-photo) then strip-resist () ;

which prevents resist from being stripped ifa double-photo operation is in progress. The pat -

tern procedure queries the wafer-state model to determine if double-photo is being per

formed:

let double-photo := find-segments-in-lot(material: #m(resist));

This line of code assigns a non-nil value to the double-photo variable if there is any resist

present on the wafers before the pattern operation begins.

Occasionally it is necessary to force rework to occur from within the code in the body of a

rework- loop. For example, if wafers are found to be coated with an uneven layer of resist, there

is no point in exposing and developing them because they will fail the inspect -resist test Re

work may be started at any time by raising the rework exception which forces the rework:

raise-exception('rework);

The rework and scrap lots must be set up correctly before the exception is raised. Rework can

also be started by an operator if a run is operating within a rework- loop. This feature is useful

for dealing with error conditions that are not handled directly by the process-flow code.

63

3.6 Constraints

Processflows oftenspecify constraints onoperations or between operations. Furthermore,

there aregeneral policy constraints thatareimposed oncertaintypes ofprocesses. Theseconstraints

oftencannotbe checked at anyoneplace in theprocess flow, because they mustbe trueovera sec

tion of the flow. In BPFL, constraints are specified asa dynamic scope overwhich certain predi

cates mustbe true. If a constraint is violated, theinterpreter raises anexception thatwill becaught

by a handler that knows how to deal with the situation

The constrain statement specifies the constraint, the action to take if the constraint is

violated, and a sequence of statements over which the constraint must hold. Forexample, thefol

lowing constraint suspends processing if the temperature in thefab goes above 22 °C:

constrain

body;

when current-temperature() > {22 degC} do
halt-run();

end;

end;

Thewhen clause specifies aconstraint predicate which isfollowed byoperations thatare executed

if theconstraint is violated. Any number of when clauses canbespecified in oneconstrain

statement

A more complicated example is shownin the photolithography flow in Figure 3-11.The

constraints specified in ovalson the rightsideof thefigure are"rule-of-thumb" timing constraints

used intheBerkeley microlab [14]. Theconstraints applying tophotolithography arethefollowing:

1. Afterwafersaredehydrated, moisture in theatmosphere willquickly adsorbto

their surfaceso resistshouldbe applied within thirtyminutes.

2. HMDS rapidly evaporates from the surface of wafers so resist should be de

posited within ten minutes of HMDS application.

3. Wafers should beexposed within twodays ofcoating toprevent problems with

resist adhesion and developmentcausedby water adsorption.

4. Wafers should be developed within onehourofexposure to prevent softening

of the pattern edge due to molecular diffusion across boundaries between ex

posed and unexposed areas of resist.

5. The hardbakeshould be completed no more thananhourbefore the nextstep

64

is started. This timingconstraint isnot indicated in Figure 3-11because the ex

act time limit on the constraint depends on the subsequent step, and must be

specified outside the scope of the pattern procedure.

The remainder of this section describes how these constraints are specified in BPFL.

The dehydrate-wafers procedure is shownin outline form in Figure 3-13. It is called

by the spin-soft-bake procedure called in pattern. The if statement:

if (min(segment-material-attribute-in-lot (segments, :dehydration-time)) + {30 min)
< current-time()) then

checks the wafer-state informationto see if the wafers require dehydration. The segments vari

ablecontains a list of all substrate segmentsof the wafers in the current lot Substrate segments

are used forthe purpose of recording attributes thatapply to the whole wafer, suchas dehydra

tion-time and cleanliness. Since segments contains a list, the min procedure is used to

selectthe earliest dehydration timeof thewafers in thelot If theearliest dehydrat ion-1ime is

more than thirty minutes inthe past, all wafers are dehydrated.* The wafer-state model isupdated

by the statement:

segment-material-attribute-in-lot (segments,:dehydration-time) : =
last-equip-time ();

which sets the dehydration-time to be the completion time of the last equipment operation.

The final statement

min(segment-material-attribute-in-lot(segments,:dehydration-time)) ;

selectsthe earliestvalue from thelistofdehydration timesreturned by dehydrate-wafers. This

value is important for theoperation of the spin- soft -bake procedure to be discussed shortly.

defflow dehydrate-wafers ()
• Dehydrates wafers if necessary and returns the dehydration time •

let segments := find-segments-in-lot(material: #m(substrate));
begin

if (min(segment-material-attribute-in-lot (segments, :dehydration-time)) + {30 min)
< current-time()) then

... /* Equipment operations to dehydrate wafers */
segment-material-attribute-in-lot (segments,:dehydrat ion-time) : =

last-equip-time();
end; /* if */

min (segment-material-attribute-in-lot (segments, :dehydration-time)); /* return val */
end;

Figure 3-13; Dehydrate-wafers implementation.

1An obvious enhancement is toonly dehydrate those wafers requiring it.

65

The pattern procedure in Figure 3-14 is the same as the code shown in Figure 3-12 ex

cept that it implements the timing constraints between the spin-resist, expose, and devel

op operations using the expression:

when (max-time-between (' spin-soft-bake, ' expose-resist,
{2 day)) or

max-time-between (* expose-resist, *develop-resist,
{1 hour})) do

halt-run ("time-constraint-violation in pattern");
end;

The max-time-between procedure takes two procedure names and atime interval as arguments.1 The

two procedures must be called within the body of the constrain in which the when clause ap

pears. The constraint implied in the max-time-betweenprocedure is that the time between calling

the first procedure and calling the second procedure must not exceed the last argument. If it is great

er, the constraint is violated and the halt-run operation is executed. The body of the con

strain is composed of the operations to execute under the specified constraints.

defflow pattern(mask-name:, wi11-double:, resist: = *default-resist*)

"Basic photolithography - coat, expose, develop, descum, bake"
let double-photo := find-surface-segments-in-lot(material: #m(resist));
begin

step PATTERN do

rework-loop

constrain

spin-soft-bake(resist: resist);
expose-resist(mask-name: mask-name);
develop-resist();

when (max-time-between (' spin-soft-bake, 'expose-resist,
{2 day}) or

max-time-between('expose-resist, 'develop-resist,
{1 hour})) do

halt-run("time-constraint-violation in pattern");
end;

end; /* constrain */

rework-test inspect-resist();
retries 5;

rework-prefix if not(double-photo) then

strip-resist();
end;

end; /* rework */

descum-resist();

hard-bake-resist(double-photo: (double-photo or will-double));
end; /* step */

end;

Figure 3-14; Pattern procedure implementation with constraints.

1Max-time-between may take a procedure name, an equipment operation, an absolute time,
or a time interval as arguments.

66

defflow spin-soft-bake(resist: = *default-resist*)
•dehydrate, nmds treat and spin resist onto wafers"

let last-dehyd-time := dehydrate-wafers() ;

begin

constrain

'deposit-hmds();
deposit-resist(resist: resist);
when max-time-between(last-dehyd-time, 'deposit-resist,

{30 min}) do

last-dehyd-time := dehydrate-wafers() ;
restart-body();

end;

when max-time-between('deposit-hmds, 'deposit-resist,
{10 min}) do

restart-body();

end; /* constrain */

end;

Figure3-15: Spin-soft-bake impiementation.

The spin-soft-bake procedure in Figure 3-15 showshow the constraints between

steps 1-3 and 2-3 intherework loop inFigure 3-11 are specified. Theprocedure begins by calling

dehydrate-wafers. As has beendescribed, dehydrate-wafers does notdehydrate wafers

unless necessary, butalways returns the earliest dehydration timeof wafers in thecurrent lot The

value returned by dehydrate-wafers is used in aconstraint in spin-soft-bake:

when max-time-between (last-dehyd-time", 'deposit-resist,
{30 min}) do

last-dehyd-time := dehydrate-wafers() ;

restart-body();

end;

The last -dehyd-1 ime variable contains thevalue returned by dehydrate-wafers. This constraint

forces dehydration if the wafers are notcoated within 30minutes of thelastdehydration time.

The constraint betweensteps 2-3 in the rework loop is implemented by the second when

clause:

when max-time-between ('deposit-hmds, 'deposit-resist,
{10 min}) do

restart-body();
end;

The exception handler forces the code in thebodyof the constrain to be executedagaia

The implementation of constraints is discussed in chapter 5.

67

3.7 Summary

Adequate support for fabrication is an important requirement of an SPR. This chapterhas

presented the BPFL statements intended for fabrication. These statements include equipment and

operator commumcation, exception handling, rework, and timing constraints.

68

Chapter 4
The WIP Run-Management System

Thischapterdescribes theBPFL WIP system and therun-management system. Thechapter

isorganized asfollows. First, the architecture ofthe WIP system is reviewed. Then anexample of

using theWIP system tostart and monitor a run ispresented. Third, theinterface to theWIP logis

described. Fourth, support for modifying runs in progress is discussed. Finally, the WIPversion

control system is described.

4.1 WIP System Architecture

The software architecture of the WIPsystemis shownin Figure 4-1. The system is com

posed ofmany processes thatcommunicate with users, equipment, and theOM database. Themain

process is theWIP interpreter thatexecutes runs. Arancorresponds toanexecution ofa BPFL pro

cess flow. Each run is represented by data structures that containthe run state (e.g.* the next state

ment to execute, the names and values oflocal variables created by the program, and data retrieved

from the database). The WIPinterpreter executes many runs at the sametime. In otherwords, it is

a server process.

Theuserinterface process(es) support communication withoperators. Operators at differ

ent locationsin the fabcancommunicate withanyrunbyconnecting to the WIPinterpreterthrough

Figure 4-1: WIP system architecture.

69

auser interface (UI) process. BPFL user-dialog commands are sent to the appropriate UI pro

cess.1 The UI process is an Application-By-Fonns (ABF) [50] program in the current prototype.
Everyuserhas a separate UI process, andtheWIP systemprevents morethanoneuser from con

necting to any run at the same time.

The UI process usesaterminal-based interface rather than agraphical user-interface (GUI)

because the Berkeley Microlab is equipped with ASCII terminals. The current tenninal-based in

terface willbe replaced with aGUI after suitable terminals are installed. Some operations that are

cumbersome to perform withthecurrent implementation (e.g., moving wafers between runs) are

much easier to perform in a GUI.

The equipment interface (EI) processes) support commumcation withequipment. Each EI

process is aninstance of Wood's SECS server [44]. An object-oriented SECS interface is defined

within BPFL, and methods are defined.for high-level equipment operations (e.g., run recipe, mon

itor run, fetch equipment status, etc.). These methods are implemented by remote procedure calls

thatinvoke SECS commands implemented in theEI process.

All processes intheWIP system communicate with theCIM database. TheWIPinterpreter

checkpoints the states of runs in the database sothatotherusers and programs canaccess runinfor

mation and active runs can be recovered if acomputer ornetwork fails. TheUI process uses form

definitions stored inthe database and allows the usertobrowse the CIM database (e.g., active runs,

WIP logs, etc.).The EI process accesses equipment information stored in the database.

ABF applications useframes astheuser-interface. A frame consists of two components: a

form that displaysinformation to the userandin whichtheuserenters inforaiation, anda menu list

ing theavailable operations that the user can execute [48]. The main frame of the UIprocess is the

Run-Summary frame shown in Figure 4-2.2 The top line ofall frames in the UI process displays

system inforaiation: the system version and the name of the current frame. Most of the screen area

is takenup by a Run-information table. This table displays alistof runs and information about

Ina low volume fab suchasthe BerkeleyMicrolab, ausermoves toa differentterminal andrecon
nects to therun. Inahighvolume fab, theWIPsystem sends thecommand to theuser interface pro
cess at the appropriate workcell.

i
The names of frames, operations and fields are shown in the text in monospace font with spaces

replaced by hyphens.

70

BUS HIP 1.1, 13 July 199(9 Run Summary

Run Information

Run ID Name Status Process Flow Step Owner

lHJ bo t*>=.' n 1HE^^S^Mtrench >zoc<s 1 \f tc-pped t-le-trsncn I

2 sas waiting salicide gate-oxidation wi 1 Mams

3 base Iine waiting cmos-17 isolation micro

4 xsection waiting ashback init-ox mudie

5 poly control waiting poly-calibrate deposition klin

6 Idd waiting Idd-coomos pattern micro

Help Create Connect Defaults Detail UIP-Log Restrict >

Figure 4-2: Run-Summary frame.

themincluding theirstatus (i.e., running, waiting, stopped, aborted, finished), the pro

cess flow, the current step, and the run owner.

The bottom line in a frame lists the operationmenu. The operations in the Run-Summary

frame are listed inTable 4-11. Every frame in the UI process has aHelp operation. The Help op

eration givesinformation about keyboard mapping and adescription of the frame screen layoutand

operations. The top portion of thedescriptive textabout the Run- Summary frame displayed by the

Help operation is shown inFigure 4-3. TheCreate operation isusedto start arun. Connect dis

plays the current user-dialog operation for arun. Bothoperations are described in the next sec-

Qperatlon
Help

Create

Connect

Defaults

Detail

WIP-Log

Restrict

Version

Quit

Description
Displays help screen for the frame.
Create a new run.

Connect to an existing run.
Set up user defaults for the WIP system.
Provide more information about a run.

Display the WIP-Log for a run.
Enter criteria for runs to display (e.g., only runs owned
by a particular user).
Displays process-flow version information.
Leave the WIP system.

Table 4-1: Run-Summary frame operations.

1Themenu for theRun-Summary frame is too long to fit across the screen, and theVers ion and
Quit operations do notappear in themenu inFigure 4-2. The ' >' character after the Restrict
operation is used to indicate that more operations are available, and ABFprovides mechanisms for
viewing them.

71

HELP — Run Summary frame

i^tis is the main screen in the Uork in Progress (UIP> application.
From this screen you can control runs.

The WIP system is intended to replace run sheet specifications
commonly used in fabs. The run sheet is replaced with a programming
language specification. The HIP system provides an interface to an
interpreter which executes the specification. This HIP system uses
the Berkeley Process-Flow Language (BPFL) to specify runs. The
advantages of having a programming language specification for runs
include automatic control of processing conditions, logging of
measurements, better scheduling and equipment utilization, and
interfaces to process simulators <SUPREM, SAMPLE).

SCREEN LAYOUT

The HIP system displays information in 24x80 line text screens called
frames. R frame consists of two components: a form that displays
information and into which information may be entered, and a menu

NextPage<*F> PrevPage<*0> Edit Find Top Bottom Help End

Figure 4-3: Run-Summary help.

tion. Default s allows the user to set defaults for the UIprocessthat control system behavior (e.g.,

the user can decide which editor to use for process flows). Detail provides more information

about a run. WIP-Log displays the WIP-log for a ran as described in section 4.3. Restrict lets

the user establish which runs to display in the Run-Summary frame. Version is used to access

the version-control system described in section 4.5. Quit causes the UI process to terminate.

42 Starting and Controlling a Run

This section describes how a run is created and controlled. When the Create operation in

the Run-Summary frame is selected, the Create-Run frame shown in Figure 4-4 is displayed.

The operations available at this frame are Help, List-PFlows, Start-Run and End. The

List - PFlows operation displays a list of the approvedprocess flows. Start -Run creates a new

ran. This operation causes the WIP interpreter to begin execution of the process flow. End returns

to the Run-Summary frame.

To start a run, the user enters a ran name, a process flow, a mask set and a lot size. The

process flow is specified by a name and a version. In this example, the user has selected version 1.1

of the cmos-16 process flow and named the ran "cmos test." The initial steps of the process-

flow code are shown in Figure 4-5. The flow has one argumentnamed implant-split. As

shown in Figure 4-4, the UI process fills in the default value of the argument The user can modify

the values of any argument if desired.

72

BPFL UIP 1.1, 13 July 1090

Run Name: cmos test

Process-Flow Name: cmos-16

Mask set: eel43

Lot size: 28

version: 1.1

Process Flow Rrguments

value

Help List-PFlows Start-Run End

Figure 4-4: Create-Run frame.

Create Run

Afterthe Start -Run operation is executed by theuser, theran will be initialized and the

UI process displays the Run-Summary frame as shown inFigure 4-6. The new run appears onthe

bottom of the list of runs, with status of"starting " which indicates that the run is being ini-

deffilow cmos-16(implant-split: = t)

•U.C. Berkeley Generic CMOS Process (Ver. 1.6 14-April-89)
(2 um, N-well, single poly-Si, single metal) •

begin

step ALLOCATE-WAFERS do '
let spec := bare-silicon-wafer(crystal-face: 100,

resistivity: [{18 ohm-cm}, {22 ohm-cm}
quality: 'product, dope: 'p);

begin

allocate-lot(names: '(cmos, nwell, nch),

sizes: list(*product-lot-size*, 1, 1),
snapshot: spec);

end;

/* Wafers in the cmos lot are product wafers */

lot('product) := lot('cmos);

with-lot 'nwell do

measure-bulk-resistivity(tag: •initial") ;

end;

end;

with-lot 'cmos do

step WELL-FORMATION do

step INIT-OX do

wet-oxidation(time: (11 min}, temperature: (1000 degC},
target-thickness: {1000 angstrom});

pattern(mask-name: 'NWELL);

end;

Figure4-5: CMOS-16 version 1.1 process flow code.

73

BLIS UIP 1.1, 13 July 1990 Run Summary

Run Information

Run ID Name Status Process Plow Step • Owner

iH
2 starting salicide gate-oxidation williamssas

3 baseline waiting cmos-17 isolation micro

4 xsection waiting ashback init-ox mudie
5 poly control waiting poly-calibrate deposition klin

6 Idd waiting Idd-coomos pattern micro

7 cmos test starting cmos-16 hegarty

Help Create Connect Defaults Detail UIP-Log Restrict >

Figure 4-6: Run-Summary after creation of new run.

tialized. Once the ran is initialized, the process-flow codebegins to execute. The first processing

operation allocates wafers:

allocate-lot(names: '(cmos, nwell, nch),
sizes: list(*product-lot-size*, 1, 1),
snapshot: spec);

When this step is reached, the WIP interpreterexecutesa user-dialog operation, which sends

a request to the UI process that indicates that the run requiresattention.The UI process displays a

dialog box toward the top of the screen as shownin Rgure 4-7 whichindicatesthe name of the ran

BLIS UIP 1.1, 13 July 1990 Run Summary

Dialog request from run "cmos test": a I locate-lot

[IQliaMIl

Run ID Name Status Process Flow Step Owner

OB
2

• —

starting salicide gate-oxidation williamssas

3 baseline waiting cmos-17 isolation micro

4 xsection waiting ashback init-ox mudie

5 poly control waiting poly-calibrate deposition klin

6 Idd waiting Idd-coomos pattern micro

7 cmos test starting cmos-16 hegarty

Figure 4-7: User-dialog request

74

BLIS UIP 1.1, 13 July 199(9

Run ID Name

trench caps
sas

baseline

xsection

poly control
Idd

Run Information

Status

stopped
starting
waiting
waiting
waiting
waiting

Process Flow

rie-trench

salicide

cmos-17

ashback

poly-calibrate
Idd-coomos

Step

pattern
gate-oxidation
isolation

init-ox

deposition
pattern

Help Create Connect Defaults Detail UIP-Log Restrict >

Figure4-8: Rim-Summary after dismissing dialog.

Run Summary

Owner

Ijmassa
willi ams

micro

mudie

klin

micro

and abriefmessage describing the request. Thedialog box is dismissed by hitting thereturn key,

and the raninforaiation for"cmos test" is updated to reflect the current status of the run (i.e.,

waiting), as shownin Figure 4-8.A ran in thestate 'Vaiting" is suspended pending a response

from the userorequipmentThe user can connect to theran sothathe or shecanrespond to the

request.

The user-dialog frame invoked by therun is displayed to theuserwhenhe orsheconnects

to the ran. Inthis example, the Allocate-Lot frame shownin Figure 4-9 is displayed. All user-

BLIS UIP 1.1, 13 July 1990

Run ID: 7 Run Name: cmos test

Status: waiting Process Flow: cmos-16

RI locate Lot

User: hegarty
Step: RLLOCATE-URFERS

Select wafers with the following specification and use them to make
lots as indicated in the table. Be sure to identify each wafer using
the scriber and enter the scribe mark into the table below.

Lot Information

lot name wafer » scribe

SSH^^^ m NgSBHHI
well i UELL-1

cmos i CttOS-1

cmos 2 CKOS-2

cmos 3 CMOS-3

cmos 4 CttOS-4

cmos 5 CHOS-5

cmos 6 CMOS-6

Help Rework/Scrap Rcknowledge Specification Comment End

Figure 4-9: Allocate-Lot frame.

75

BLIS UIP 1.1, 13 July 1999 flI locate Lot

User: hegarty
Step: RLLOCRTE-URFERS

Run ID: 7

Status: waiting
Run Name: cmos test

Process Flow: cmos-16

Select wafers with the following specification and use them to make
lots as indicated in the table. Be sure to identify each wafer using
the scriber and enter the scribe mark into the table below.

Lot Information

Help End

lot name wafer * scribe

Hafer Specification

Background dope: p
Resistivity: [{18 ohm-cm), {22 ohm-cm) 1
Crystal face: ISO
Quality: product

Figure 4-10; Wafer-Specification form.

dialog framesdisplay information aboutthe ranin two lines atthe top ofthe frameandthey support

the operations listed in Table 4-2. A user-dialog framemay alsosupportadditionaloperations (e.g.,

the Specification operation in the Allocate-Lot frame shown in Figure 4-9).

The Allocate-Lot frame instructs the userto allocate and name (or scribe) wafers. The

system chooses default scribe names by appendingthe wafer number within alot to the name ofthe

lot (e.g., so the second wafer in lot cmos is named CMOS-2). The specificationof the wafers to be

allocatedmay be displayed in a pop-up form by the Specification operation, as shown in

Figure 4-10. Once the user has scribed the wafers and entered the names into the Lot-Informa

tion table, the Acknowledge operationis executed, which completes the user-dialog,passesthe

results back to the WIP interpreter,and the run proceeds.

The next user-dialog operation in the process flow occurs in the measure-bulk-re

sistivity procedure. The code for measure-bulk-resistivity is shown in Figure 4-11.

In the following discussion, the code in Figure4-11 will be referred to by the line numbers on the

Operation
Help

Description
Displays help screen for the frame.

Rework/Scrap

Acknowledge

Comment

Force rework or scrap wafers.
Respond to the dialog.
Attach a comment to the dialog.

End Return without responding to the dialog.

Table 4-2: User-dialog frame operations

76

left-hand side of the figure. Lines 2-6 query the wafer-state model to extract thenominal bulk re

sistivity specified inthe model, and this value ispassed touser-dialog. Lines 10-15 calculate

arange attribute that is used to check values entered by theuser. The user-dialog procedure

call is:

results := user-dialog ('sonogage, tag: tag, nominal: nominal,
limits: limits, wafer-id: wafer-id(wafer));

The first argument to user-dialog is thename of the frame to display (i.e., Sonogage). The

tag argument isused to tag the WIP log-object created bytheuser-dialog. The rest of the ar

guments are passed to the Sonogage frame. Different frames take different arguments. The So

nogage frame takesthree arguments, nominal, limits and wafer-id. Nominal specifies

theexpected value of themeasurements, limits specifies theacceptable range of measurements,

and wafer-id specifies the identifier for thewafer on which themeasurements are to be per

formed.

Whentheuser-dialog is executed and the user connects to the run, the Sonogage frame

shown inFigure 4-12 isdisplayed. Note that the nominal argument isdisplayed tothe user, telling

theuser approximately whatmeasurements toexpectThe scribeof thewafer withidentifierwa

fer- id is displayed sothattheuser knows what wafer touse. The frame is described in more de-

1 defflow measure-bulk-resistivity(tag)

2 let wafer := pick-test-wafer() ;
3 ss := wafer-snapshot(wafer);

4 seg := first(find-segments(ss, material: #m(substrate));
5 mat := pif-attr-val(seg, :material, ss);
6 nominal := material-attr(mat, :resistivity);

7 limits := nil;

8 results := nil;

9 begin

10 if interval-p(nominal) then

11 limits := make-interval (interval-min(nominal) * 0.5,

12 interval-max(nominal) * 2.0)

13 else

14 limits := make-interval(nominal * 0.5, nominal * 2.0);

15 end;

16 results := user-dialog('sonogage, tag: tag, nominal: nominal,
17 limits: limits, wafer-id: wafer-id(wafer));

18 getf(results, :average) := sigfigs(average(getf(results, measurements)) ,3);
19 wip-log(*sonogage, results);

20 getf(results,:average);
21 end;

Figure 4-11; Measure-bulk-resistivity definition.

77

BLIS UIP 1.1, 13 July 1999

Run ID: 7

Status: waiting
Run Name: cmos test

Process Flow: cmos-16

Sonogage

User: hegarty
Step: RLLOCRTE-URFERS

Use the sonogage to measure the bulk resistivity of wafer WELL-1.

Expected value is ((18 ohm-cm} {22 ohm-cm}).
Enter the results into the following table.

bulk resistivity

16.5 ohm-cm

21.7 ohm-cm

Help Rework/Scrap Rcknowledge Comment End

Figure 4-12: Sonogage frame.

tail in Chapter5. Figure4-12 shows the frame as it appears afterthe userhas enteredtwo measured

values.

The UI process performs edit checks on measurements entered by the user. For example,

the only acceptable units for bulk-resistivity areunits with the same dimensions as ohm-cm. If a

user enters avalue with different dimensions, anerroris signalled. Figure 4-13 shows the errormes

sage that results if the user enters a value with inconsistent dimensions. Values like {300 Mohm-

km} are acceptable, because the system parses SI1 unit specifications.

BLIS UIP 1.1, 13 July 1999

Supplied dimension of "ohm" is inconsistent with the
field specification of "ohm-cm"

Expected value is £{18 ohm-cm} {22 ohm-cm}].
Enter the results into the following table.

bulk resistivity

16.5 ohm-cm

21.7 ohm-cm

Sonogage

[ZBEIH

Figure 4-13: Inconsistent units error message.

78

BLIS UIP 1.1, 13 July 1990

Run ID: 7 Run Name: cmos test
Status: waiting Process Flow: cmos-16

Sonogage

User: hegarty
Step: RLLCCRTE-UflFERS

Use the sonoga

Expected value
Enter the resu

BLIS UIP 1.1, 13 July 1990

Enter Comments

Comment

Help End

Measured using standard cross pattern, clockwise from top to
wafer center.|

Figure 4-14: Comment dialog box.

The run management system can also warn theuserif anentered value is outside anallow

able range. Sincethecodein Figure 4-11 above passes a limits attribute to theuser-dialog,

values outside the range specified generatea warning message.

Theusermayalso attach comments toany user-dialog interaction. For example, if theuser

wants to make anoteof the measurement pattern usedto measure bulk resistivity, acommentlike

the one shown in Figure 4-14 can beadded by selecting the Comment operation. Thiscomment is

attached to thelogrecord associated with the frame when the frame is acknowledged. A run typi

callyconsists of morethan 100 individual user-dialog operations like the examples above.

Consider again the Run-Summary frame operations listed in Table 4-1. The Restrict

operation isused to setupwhat runs todisplay inthe Run-Summary frame. For example, this op

eration canbe usedto display only runs belonging to a particular ownerorrunning acertain pro

cess-flow. Figure 4-15 shows the Restrict pop-up dialog displayed by the Restrict

operation, hi this case, the userhas entered restrictions todisplay onlyruns using thecmos-16 pro

cess flow and owned by hegarty.

The Detail operation displays the Run-Detail frame, whichprovides more inforaia

tion aboutrunstate, and allows the userto modify the run. Figure 4-16 shows more detail forthe

runcreated in the above example. The top twolinesof the frame provide basicinformation about

1Systeme International, the International System ofUnits.

79

BLIS UIP 1.1, 13 July 1990

Run Information

Run ID Name Status Process Flow

trench caps stopped rie-trench

Enter the qualifications for each field:

Run ID

Name

Status

Process Flow = 'cmos-16'

Step
Owner = 'hegarty*|

Help Forget End

rate

Step

pattern
gate-oxidation
isolation

in it-ox

deposition
pattern

Figure 4-15: Restrict dialogbox.

Run Summary

Owner

Ijmassa
williams

micro

mudie

klin

micro

run status: the run step-path, the process flow, the mask-set, and the lot-size. The Lots table

on the left displays the names of all lots in the run. The system defines additionallots: rework,

scrap, product and *all-wafers*. The scrap andrework lots arediscussed in chapter2.

The product lot specifies the wafers that containproduct, andthe *all-wafers* lot contains

allactive wafers in the run(i.e., allwafersthathavenot beenscrapped). The tableon the rightdis

plays information aboutthe wafers in the lot selectedin the first table. In Figure 4-16, the *all-

wafers* lot is selected.

BLIS UIP 1.1, 13 July 1990 Run DetaiI

Run ID: 7

Status: waiting
Run Name: cmos test

Process Flow: cmos-16

Process-Flow version: 1.1 mask-set: Idd

Step Path: UELL-FORMRTICN/INIT-OX

Lots

Owner: hegarty
Step: INIT-OX

lot-size: 20

id lot name

2

5

8

SCRRP

NCH

UELL

U? H'ALL-UhFERS* i
11

12

CMOS

PRODUCT

Uafers in lot *RLL-URFERS*

id wafer scribe

1 NCH-1

2 UELL-1

3 CMOS-1

4 CHOS-2

5 CHOS-3

6 CHOS-4

7 CMOS-5

Kelp Halt Resume UIP-Log Permissions Modify End

Figure 4-16: Run-Detail frame.

80

Operation
Help

Halt

Resume

WIP-Log

Permissions

Modify

End

Description
Displays help screen for the frame.
Stop the run and save the current state.
Restart the run after stopping it.
Display the WIP-Log for this run.
Display and update run permissions.
Modify the run lots or the process flow code.
Return to the run-summary frame.

Table 4-3: Run-Detail frame operations.

Theoperations available from the Run-Detail frame arelistedinTable4-3. Halt stops

a nm and Resume restarts a stopped run. WIP-Log displays the WIP-log for the run as described

in the next section. Permissions lets the run owner specify which users are allowed to connect

to the run usingthe Run-Permissions frame shown in Figure 4-17.Modify lets the user

change an active run and is describedin section4.4.

4.3 Browsing Processing History

TheWIP system maintains a record of allevents thatoccurduring processing in the WIP

log. Events recorded in thelog include user-dialogs, equipment operations, anderroror warning

messages, as well as log objectrecords explicitly written by a BPFLprocedure.

The UI process allows a userto browse theWIP logof a particular run or group of runs.

Selecting the WIP-Log operation from the Run-Detail frame (Figure 4-16)displays theWIP

BLIS UIP 1.1, 13 July 1990

Run 10: 7 Run Name: cmos test

Status: tsaiting Process Flow: cmos-16

Ruthorized Users

Help End

Run Permissions

Owner: hegarty
Step: INIT-OX

Figure 4-17: Run-Permissions frame.

81

BLIS UIP 1.1, 13 July 1990 UIP Log

Run ID: 7

Status: waiting
Run Name: cmos test

Process Flow: cmos-16

Event Log

User: hegarty
Step: INIT-OX

Run Type Step Tag Time

7

7

CREATE-RUN

RLL0CRTE-L0T RLLOCRTE-URFERS
aanoBSH

01/02/91 17:14
01/02/91 17:15
mjftdUWBBKHgymgyggm^B^B^ HIHAMfcflpiass^EMM

Help Detail Restrict Top Bottom NextPageCF) PrevPage<*G) >

Figure 4-18: WIP-Log frame.

log fora run as shown in Figure 4-18. The WIP log forthis particular runhasthreeevents recorded

in it

The operationsprovided in the WIP-log frame areshown in Table 4-4. The Detail op

erationshows more information aboutthe selectedevent The Restrict operationcan be used to

entercriteriafor the display ofevents (e.g., only Sonogage events couldbe displayed). Top, Bot -

torn, Next Page and PrevPage are used to move around within the events displayed in the table.

Figure 4-19 shows the Sonogage-Log frame displayed by choosingthe Detai 1 opera

tion after selecting the Sonogage event inFigure 4-18.1 The top two lines of the frame display

information aboutthe run. The two linesbelowthatdisplay information aboutthe WIP log record

Operation
Help

Detail

Restrict

•Top

Bottom

NextPage

PrevPage

End

Description
Displays help screen for the frame.
Display detail for the selected event.
Enter criteria restricting display of events (e.g., display
onlyevents of a certain type).
Move to top of table.
Move to bottom of table.

Move back one page in table.
Move forward one page in table.
Return to the calling frame.

Table 4-4: WIP-Log frame operations.

1An event isselected by positioning the cursor on the corresponding row in the table.

82

BLIS UIP 1.1, 13 July 1990 Sonogage Log

Run ID: 7 Run Name: cmos test User: hegarty
Status: waiting Process Float: cmos-16 Step: INIT-OX

Step Path: RLLOCflTE-KflFERS Time: ©l-feb-1991 17:22:S3
Procedure: MERSURE-BULK-RESISTIUITV Tag: initial
Notes: Comment auailable.

bulk resistivity measurements from wafer UELL-1:

bulk resistivity

'tlrllrlHil'U-r™^™
{21.7 ohm-cm)
{30.0 ohm-cm)
{18.9 ohm-cm)
{16.1 ohm-cm)

Rverage measurment: {2(9.6 ohm-cm)

Help Next Previous Comment Rework/Scrap End

Figure 4-19: Sonogage-Log frame.

beingexamined: the step-path and time atwhichtheeventwasrecorded, and the procedure which

wrotethe event A tag string may also be attached to anevent, which simplifies queriesto retrieve

log records. The tagon this event is"initial" asseenin the code in Figure 4-5.

The code thatwrotethis log record (i.e., the measure-bulk-resistivity procedure

in Figure 4-11)calculated the average values of thesonogage measurements and loggedthe results

with the code in lines 18-19:

getf (results, raverage) := sigfigs (average (getf (results, :measurements)) ,3) ;
wip-log('sonogage, results);

The first line ofcode calculates the average value (to three significant figures) of the measure

ments attribute of the valuesreturned by the user-dialog operation. This value is then added

to the results as an average attribute, and the results are recorded in the database using the WTP-

log procedure. The average value is displayed in the Sonogage-Log frame below the table of

measurements.

Operation Description
Help Displays help screen for the frame.
Next Display the next event.

Previous Display the previous event.
Comment Display comment for this event (if any).
Rework/Scrap Displayreworkor scrap initiated at this event (if any).
End Return to the WIP-Log frame.

Table 4-5: Log frame operations.

83

Every log frame supports the operations listed in Table 4-5. Additional operations are

available from some log frames (e.g., the Allocate-Lot-Log frame has a Specification

operation that is used to display the specification for the allocated wafers). Each log frame has a

field which displays special messages about the event shown in the frame. For example, the event

displayed in the frame in Figure 4-19 has a comment recorded with it, and this information is re

ported to the user.

4.4 Dynamically modifying a run

The WIP system allows runs to be modified while they are executing. A user can add or

remove wafers, import wafers from another run, split a nm into multiple runs, and modify the pro

cess-flow code used by a run. The Modify operation in the Run-Detail frame is used to modify

a run. When this operation is executed, a submenu of four modify operations is displayed. The op

erations are:

1. Modify-Lots,

2. Split-Run,

3. Change-Flow, and

4. Import-Wafers.

Each of these operations is described in detail below.

Wafers can be moved between lots and removed from a run by using the Modi fy-Lot s

frame shown in Figure 4-20. Table 4-6 lists the operations in the Modi fy-Lot s frame. Wafers can

be removed from a lot or moved to another lot. In this example, wafers from the split-low lot

of the baseline run are to be moved to the spl i t -med lot. A new lot can be created by typing

in a lot-name that does not currently exist.

Operation Description
Help Displays help screen for the frame.
Remove Remove the selected wafer from the lot.

Add Add the selected wafer to the other lot.

New Create new wafers for the run.

Change-Scribe Type in a new wafer scribe for the selected wafer.
End Return to the Run-Detail frame.

Table 4-6: Modify-Lots operations.

84

Modify LotsBUS UIP 1.1, 13 July 1990

Run ID: 3 Run Name: baseline

Status: waiting Process Flow: coos-17
Owner: micro

Step: isolation

lot-name: split-loo lot-name: split-med

oafer scribe

Direction

wafer scribe

ci^n^^^H CMOS-2

CHOS-4 CHOS-5

CttOS-7 —> CMOS-8

CM0S-10 cnos-ii

CttOS-13 cras-14

CMOS-16 CMOS-17

Help Remove Rdd New Change-Scribe End

Figure 4-20: Modify-Lots frame.

The Newoperation allocates new wafers for arun. This operation callsthe New-Wafers

frame shownin Figure 4-21. As canbe seen in Figure 4-21,the usermust specify to whichlot to

add the wafers, howmanywafers to create, and theBPFL codethatreturns the snapshot describing

thenew wafers. The userspecifies aprocess-flow nameand version, andthe codeto callwithinthat

flow to generate the snapshot New wafers may also be added to arunwith the allocate- lot

procedure, butthe ability to add wafers without altering code isuseful when testwafers have been

damagedand new test wafers are required.

BLIS UIP 1.1, 13 July 1990 Modify Lots

[0: 3 Run Name: baseline Owner: micro

js: waiting

lot-name: S

BLIS UIP 1.1, 13 July 1998 New Uafers

lot-name: JCH • of wafers: 1

Process-flow name: cmos-16 version: 1.1wafer scri

crtos-4

CttOS-7

CttOS-10

CMOS-13

CMOS-16

Uafer initialization code.

bare-si I icon-wafer(crystal-face: 10®, dope : "p,
resistivity: [{18 ohm-cm}, {22 ohm-cm}], quality: 'test>

Help List-Pflows Create Forget

Figure 4-21: New-Wafers frame.

85

BLIS UIP 1.1, 13 July 1990

Run ID: 1

Status: waiting
Run Name: foo

Process Flow: cmos-16

Import Uafers

Owner: hegarty
Step: INIT-OX

Enter the name of the run and lot you wish to import wafers from.

Run lots

lot name

scrap

nch

well

cmos

Help Select-lot Rll One End

run-name: baseline

lot-name: split-low
Uafers in lot

scribe

CMOS-1

CMOS-4

CMOS-7

CM0S-1Q

CM0S-13

CMOS-16

Figure 4-22: Import-Wafers frame.

Wafers can be moved between runsusing the Import-Wafers frame shown in Figure4-

22. The Select-Lot operationis used to choose the lots in which to placeimported wafers. In

this example, the cmos and product lots ofthe runcreated in section4.2 have been selected.The

run-name and lot-name fields are used to select a lot from another run. The wafers in that lot

are displayed in the Wafers-in-lot field. In this example, the split-low lot of run base

line is displayed. The All operation is used to import all wafers from the selected lot, and the

One operation is used to import the currently selected wafer in the table. A graphicaluser-interface

would specify these actions by pointing at the wafer with the mouse and moving it to an icon that

represented the lot.

A run may be split into multiple runs with the Split-Run frame shown in Figure 4-23.

This operation is useful for experimenting with different treatments on wafers that have undergone

identical processing prior to the run split, hi this example, the baseline run is being split into

three runs, each of which will receive a different implant dose. When a run is split, the old run is

halted and the new runs are created with the same lot names as the old run but with no wafers in

any of the lots. Wafers must be moved into the new runs from the original run with the Import-

Wafers frame before the new runs are started.

BPFL process flows may be altered while a run is executing. For example, updates to stan

dard library procedures (e.g., measure-oxide-thickness) normally should be incorporated

86

BLIS UIP 1.1, 13 July 1990

Run ID: 3 Run Nome: baseline

Status: waiting Process Flow: cmos-17

Run DetaiI

Owner: micro

Step: isolation

Process

Step Pa

id

5

8

10

11

12

14

BLIS UIP 1.1, 13 July 1990 Split Run

Enter the names of the new runs and a brief description.
The new runs wi11 use the same process flow as the old run.

run name

line-low

baseline-med

bSi.tj* i iri«-h iah

comment

Baseline low implant dose.
Baseline medium implant dose.

SSBBEEaBHEDE

Help Create Forget

Figure 4-23: Split-Run frame.

intoa flow immediately since library code enforces facility policy. Onthe otherhand, somechang

esto process-flow code maybeimpossible touse inan existing run because therun isexecuting a

section of codebetween changes to theprocess-flow which could result in run-time errors. The de

sired response of theruntochanges initsprocess-flow code are specified using theModify - Flow

frame shown in Figure 4-24. The Process -Flow inthis case is version 1.1 of cmos-16. The

action field specifies how the run responds tochanges incode. This field can have one of three

values:

BLIS UIP 1.1, 13 July 1990 Modify Flow

Run ID: 7 Run Name: cmos test Owner : hegarty

Status: waiting Process Flow: cmos-16 Step: INIT-OX

Process-Flow Name: Jbos-16
Version: 1.1

Retion: static

Libraries

name uersion action

litho 1.3 latest

ucb-defs 1.2 latest

ucb-materials 1.2 latest

ucb-std 1.2 latest

Help Forget End

Figure 4-24; Modify-Flow frame.

87

BLIS UIP 1.1, 13 July 1990 Version Control

version Information

Nome version Type Remark

ashback 1.0 flow 0.25 urn gate-length, resist ash process
cmos-16

cQ3S9HHI
cmos-17

1.0

1.0

flow

flow

baseline cmos process

new baseline cmos process
Idd-coomos 1.0 flow contact over oxide cmos, with Idd
litho 1.0 library standard resist litho routines

Utho 1.1 library added hunt resist support.
litho 1.2 library support for second wafer track.
litho 1.3 library support for ashback 0.25 urn gate.
poly-calibrate 1.0 flow recipe calibration for generator
rie-trench 1.0 flow reactive ion etch trench formation

salicide 1.0 flow self aligned silicided gate
ucb-defs 1.0 library facility definitions
ucb-defs 1.1 library added simple sees support.

Help Restrict Oetai I Cc> Edit Ci Parse New View >

Figure 4-25: Version-Control frame.

1. Static - The process flow used by the run is never updated,

2. Latest -The process flow used by the run is always updated to the latestver

sion available, or

3. Query - Whenever a new version of a process flow is created, the run owner

is asked whether or not to use the new version.

In this example, the action field has the value 'static.' Iflaterversionsof cmos-16 become

available while the run is executing, they will not be used.

BPFL process flows can use standard libraries of procedures using the requires decla

ration. In Figure 4-24, four libraries used by the "cmos test" run are shown in the Libraries

table. The default action for libraries is latest. The next section describes how flows and libraries

are created and updated.

4.5 Version control

BPFL supportsflows, which contain the top-level code for processing wafers (e.g., cmos -

16), and libraries, which contain standard procedures shared between flows (e.g., measure-

bulk-resistivity). The term module is used to refer to both flows and libraries. BPFL code

may be created and edited using the Version-Control frame shown in Figure 4-25. The oper

ations provided in the frame are described in Table 4-7. The WEP system uses the Revision Control

System (RCS) to organize and maintain different version of BPFL code [51]. Whenever a user

|/* bpfI process flow
$Log: cmos-16.b,v $

Revision 1.1 91/01/13 08:31:07 hegorty
added implant-split operations

Revision 1.0 90/10/20 14:40:42 hegarty
Initial revision

/*
require<cmos-lib, version: latest);

defflow cmos-16<implant-split: = t>
"U.C. Berkeley Generic CH0S Process <Uer. 1.6 14-Rpril-89>
<2 urn, N-well, single poly-Si, single metal)"

begin
step RLLOCflTE-URFERS do

let spec := bare-si Iicon-wafer<crystaI-face: 100,
resistivity: I{18 ohm-cra> {22 ohm-cm>]
quality: 'product, dope: 'p);

begin
allocate-lot<names: '(cmos, nwell, nch),

sizes: Iist<*product-lot-size*, 1, 1),
<Common L1sp > Top

package is "BPFL"

Figure 4-26: Editinga process flow.

wishes to modify amodule, he or she may check out amodule.1 Only one person may have apar

ticular modulecheckedout atany giventime.The usercanedit the module, run it, anddebugit

until satisfied thatit is ready for useby others. The flow is then checked inandassigned aversion

number. RCSlocks flows to prevent simultaneous modificationof thesame version, and stores the

code modification tree in an efficient way.

As anexample of theuseof theversion control system, if theuserchecks outversion 1.1

of cmos-16 andselects the Edit operation, theuser'sdefault editor (e.g., emacs) is invokedon

the flow asshownin Figure 4-26. The top few lines of the file list RCS information maintained

Operation Description

Help Displays help screen for the frame.
Restrict Enter criteria restricting display.

Detail Display further detail about the selected flow or library.

Co Check out a flow or library.

Edit Edit BPFL code

Ci Check in a flow or library.

Parse Parse BPFL code and check syntax.

New Create a new flow or library.

View Examine code without making changes.

Update-Runs Update code used by runs.
End Return to the run-summary frame.

Table 4-7: Version-Control operations.

1Each flow hasa set of users authorized to runandmodify it

89

BLIS UIP 1.1, 13 July 1993 Update Runs

Enter a module name and version,

in the table below.

fill runs us ng the module will be displayed

Module: Name: Iitho

Version: |

Runs

Id Name Nodule version Nodule action

1

2

3

4

5

6

7

trench caps
sas

baseIi ne

xsection

poly control
Idd

cmos test

1.3

1.3

1.3

1.2

1.3

1.1

1.3

latest

latest

latest

query

latest

query

latest

Help Run-Detail Force-Update End

Figure 4-27: Update-Runs frame.

about the flow. The require statement indicates that this process-flow will use the latest version

of the the ucb- stdlibrary. The definition ofthe cmos-16 process flow appears in the bottom half

of the screen. At this point* the user can modify the code and check it using the Parse operation.

When the user is finished modifying the code, it can be checked in.

Users can set up the actions for runs using the Modify-Flow frame shown in Figure 4-

24. A lab manager may wish to force all runs to be updated to use a new version of a module. This

is accomplished using the Update-Runs operation. When this operation is selected, the Up

date-Runs frame in Figure 4-27 is displayed. The user types in a module name and the runs using

that module are displayed in the Runs table. The user may also type in a module version if it is

desired to restrict updates to runs using only a particular version of the module. The Run- Detai1

operation can be used to display more information about a selected run. Force-Update can be

used to force the selected run to use a new version of the module. Only a user with WIP root per

mission is able to execute Force-Update on runs owned by other users.

4.6 Summary

The BPFL WIP system is designed to permit the use ofBPFL process flows in a fabrication

environment. It is composed of many processes that communicate with users, equipment, and the

CIM database. Runs may be started, executed and modified by a user with a forms-based user-in

terface process. The WIP system maintains a log of all events that occur while processing a run,

90

includinguser-dialogs anderror orwarning messages. The system uses RCS to organizeandmain

tain different versions of BPFL code.

91

[This page intentionally blank]

92

Chapter 5
Implementation

This chapter describes the implementation of the WIP system. First, the process architec

ture and interprocess communication channels between the processes are described. Second, the

WIP database design is presented. Next, the operation of the User-Interface process is explained,

and the method of defining user frames is described. Fourth, the WEP interpreter process is dis

cussed, including the methods used to execute BPFL code and save run state in the database. Final

ly, the run management system is described and the way runs are modified is discussed.

5.1 Processes and Interprocess Communication

The WIP system is composed of three types of processes:

1. the WIP interpreter process,

2. the User-Interface process (UI process), and

3. the Equipment Interface process (EI process).

These processes are shown in Figure5-1. This sectiondescribeseach process and the communica

tion between them.

Figure 5-1: WIP system architecture.

93

The WIP interpreter process executes runs. A run corresponds to anexecutionof a BPFL

process flow. Since the WIP interpreter process is a large Common Lisp program, the process can

execute severalrunsconcurrently. In otherwords, theWIP interpreter process is a serverprocess.

In orderto accomplishthis, the WIP interpreter process maintains data structures that describe the

runstate(e.g., the next statement to execute, the namesandvaluesof localvariables createdby the

program, and data retrieved from the database) for each run.

The WIP interpreterprocessuses subsidiary processes to implement constraints. Forexam

ple, there is a timing constraint serverthat is responsible for alerting the WIP interpreterprocess

when atiming constraint expires,hi addition, theWIP interpreter process coordinates the activities

of the EI and UI processes.

The WIP interpreterprocessmaintainsthe stateof runsin the database to provide fault-tol

erance. Fault tolerance is necessary in a WIP system because semiconductor process flows take

weeks or months to execute, and it is likely that a computersystem failure will occur before a run

is complete. Consequently, all state informationabouta process must be saved in non-volatile stor

age so that a run can be restarted from its last saved positionwhen the system crashes. The WIP

interpreter saves the run-state datastructures to the database. State is saved whenever a run is

stopped (e.g., while waiting for user input).

The UI process is the user-interface to runs.The UI processreads information about the

state of a run from the database and displays it to the user. Each active user has a UI process, and

the user can respond to dialogs, examine run state andconnect to different runs (i.e., the interface

shown in chapter4). The UI processalso writesevents (e.g., user-dialog events) to the WEP-log in

the database and is responsible for enforcing access control to runs. For example, it must prevent

multiple users from simultaneously connecting to the same run,andit must prevent users from con

necting to a run that they are not authorized to manipulate.

The EI process controls equipment and writes equipment status information into the data

base. The EI process isaCommon Lisp implementation ofthe SECS1 server developed byWood

and is described in more detail elsewhere [47].

1Semiconductor Equipment Manufacturers Institute (SEMI) Equipment Communications Standard
protocol (SECS).

94

The processes communicateeither throughinterprocesscommunication channels (IPC) or

through the shared CIM database. Internet-domain connections (TCP/IP1) are used for real-time

notification (e.g., a timing constraint expires). Non real-time communication is implemented by the

database. Forexample, the sequence of operations leading to the display of a dialog-box to the user

as a result ofa user-dialog operation is as follows. When the WIP interpreterprocess interprets

the user-dialog call, it writes a description of the user-dialog to the database. It then sends a

TCP/IP message to the appropriate UI process for the run.The UI process receives the TCP/IP mes

sage and displays the specified dialog box. When the user instructs the UI process to connect to the

run, the information stored in the database by the WIP interpreterprocess is read and used to display

the user-dialog frame. When the user has filled in the user-dialog frame and is ready to continue the

run, the UI process writes a WIP-logrecordto thedatabaseandsends a TCP/IP message to the WIP

interpreter process to signal that the run is readyto proceed. The WIP interpreter process then re

sumes execution of the process flow for the run.

52 WIP Database

This section describes the data in the CIM database used by the WIP system. Figure 5-2

shows the Entity-Relationship (ER)diagramfor the WIPdatabaseusing Reiner's notation [52].The

entities described in the WIP database are:

1. Run -The state of a run.

2. Equipment - Processing equipment and utilities.

3. User - A person who uses the fab (e.g., equipmentoperators, administrators

and technicians).

4. Wafer - A semiconductor wafer.

5. Snapshot - A PDF representationof wafer state.

6. Lot - A group of wafers.

7. Mask - A stepper photomask.

8. Mask set - A collection ofmasks for a circuit, one for each masking operation

in a process flow.

9. Flow - A top level BPFL process flow.

1Transmission Control Protocol / Internet Protocol.

95

uses contains

rM>^ mask set

run

0 + 0
owned by

allocates

user

-Q—^fc 0 equipment
\equipment-id)

executes

-M> process-flow

writes displays

<^-9-4wjf>iog|| 0 4VHwlp'logframe

requires

has current frame

has root frame

evaluation frame

module

contains

-<•
\frame-id)

contains

material

contains

\®

<V-9-|payer

\e>

\/"~^~~ user-dialog 04^— user-dialog frame

Legend

entity

weak entity

C 3 identifier

Q 3 descriptor

—0— existence dependency

-(y- ' one-to-one relationship

-^k- one-to-many relationship

many-to-many relationship

Figure 5-2; WIP databaseentity-relationship diagram.

96

10. Library - A library of BPFL procedures.

11. WIP-log - A WIP-log record.

12. WIP-log frame - An ABF frame used to display a WIP-log record.

13. Evaluation frame - A frame used to interpret BPFL code.

14. Material - A material description.

15. Layer - A PD7 layer description.

16. User-dialog - A request from a run for input from a user.

17. User-dialog frame - A frame displayed by a run waiting for input

The basic ER model consists of three classes ofobjects: entities, relationships and attributes. Enti

ties are the principal data objects about which information is stored: for example, a process-

flow is an entity, as shown in Figure 5-2. A particular occurrence of an entity is called an entity

instance. For example, a particular process flow such as cmos-16 is an instance ofthe process-

flow entity.

Relationships represent associations among one or more entities. For example, a run is as

sociated with the process-flow it executes. Relationships are described in terms of connectivi

ty, role and existence.1 The most common meaning associated with relationships isindicated bythe

connectivity between entities: one-to-one, one-to-many, and many-to-many. For example, a run is

associated with one process flow but any process flow may be associated with many runs, so the

connectivity between the run and process-flow entities is many-to-one.

A role is the function an entity plays in a relationship. For example, a run executes a process

flow, so the role "executes" defines the function of the run entity in the relationship between run

and process-flow. Roles are shown above relationships in Figure 5-2. The role describes the

function that the entity on the right of the relationshipplays with respect to the entity on the left of

the relationship.

The existence of some entitiesdependson the existence ofanotherentity. This is called ex

istence. Existence of an entity in a relationship is defined as either mandatory or optional. If an in

stance of either the "one" or "many" side entity must exist for the entity to be included in the

relationship, then it is mandatory. Forexample, the entity run may or may not be waiting for a

1Additional relationship meanings are defined byReiner [52] but are not used here.

97

user-dialog, thus making theentity user-dialog in the"waiting for" relationship between

run and user-dialog optional. However, if a user-dialog entityinstance exists, a run in

stance mustbe waitingforthat user-dialog, sothe run entity isnotoptional in the relationship.

Attributes are characteristics of entities thatprovide descriptive detail about them.For ex

ample, a run entity has a nameattribute. There are two types ofattributes: identifiers and descrip

tors.An identifier (or key) uniquely determines an instance of an entity. A descriptor is used to

specify a non-unique characteristic ofa particularentity instance. Forexample, run- id is an iden

tifier fora run(since every runhas a unique id) but name isa descriptor. In the prototype imple

mentation, identifiers are integers.

Entities have internal identifiers thatuniquely determine theexistence of entity instances,

butweak entities derive theiridentity from theidentity instances ofoneormore "parent" instances.

Forexample, an evaluation- frame hasnoidentifier, butderives its identity from the run that

contains it.

The databaseused in the prototype WIPinterpreter process is INGRES [53].The SLING

package writtenby Sedayao andChamess [54] is theapplication program interface (API) to theda

tabasesystem. SLINGis an SQLAPIfor Common Lisp. Because thereis no wayto directlywrite

CLOS objects to INGRES, database tables are defined foreach object type andCLOS methods are

usedto writeobjectsto andreadobjects from thedatabase. Appendix Dcontains thedatabase table

definitions for the entities shown in Figure5-2.The WIP-log-frame and user-dialog-

frame entitiesare createdandmaintained by ABF[50] andtheirdefinitions do not appearin the

Appendix.

53 The User-Interface Process

The architecture of the UI processis shownin Figure 5-3.Each box represents a frame

within the process. The first lineof text in a boxis the frame name (e.g., Run-Summary) and the

secondline lists the main operations available from the frame (e.g, Create, Connect,...,

Version). The frames listedin Figure 5-3aredescribed in more detail in chapter4.

The User-dialog andWIP-log frames aregeneric frame types. In otherwords, there

are many frames that are User-dialog or WIP-log frames. A user-dialog called from

BPFL specifies thenameof the User-dialog frame tocall. Forexample, themeasure-bulk-

98

Run-Summary

Create Connect Defaults Detail WIP-Log Restrict Version

User-Dialog

Rework/Scrap Acknowledge Comment

Version-Control

Restrict Detail Co Edit Ci Parse New View

Create-Run

List-Pflows Start-Run

Run-Detail

Halt Resume Modify Permissions WIP-Log

Run-Permissions WIP-Log-Table

Detail Restrict Top Bottom

WIP-log

Rework/Scrap Acknowledge Comment

Modify-Lots

Remove Add Change-Scribe New-Wafers

Split- Run

Create Forget

Modify-Row

Create Forget

Figure 5-3; UI processapplication structure.

Import-Wafers

Select-Lot All One

resistivity procedure shown in Figure4-11 calls user-dialog to display the Sonogage

frame. The Sonogage frame is shown in Figure 4-12. The Sonogage-Log frame shown in

Figure 4-19 is aWIP- log frame whichdisplays the log entrywrittenby the WIP- log procedure

call atthe end ofthe measure-bulk-resistivity procedure.User-dialog andWIP-log

frames are described in more detail later in this section.

The main data structures used by the UI process are the run, user_dialog and

WlP_log tables in the database. The run table contains records that indicate the status of all active

runs. A simplified table definition for the run table and some examples are shown inTable 5-1.1

The notation used in the table is as follows. The first cell in each column has two lines of text The

runjd
(Integer)

status

(enumerated)

running

waiting

step
(string)

INIT-OX

step_path
(string)

START/INIT-OX

PATTERN NWELL/PATTERN

logjd
(Integer)

12

Table 5-1: Run table definition and examples.

1The run table has many fields as shown in Appendix D.

99

lock
(enumerated)

free

busy

first line is the column name, and the second line is the column type. The remaining rows give ex

amplesofvalues storedin the table. Forexample, thenameof the first field is run_id and it con

tainsan integer.The run_id field is an integerthatuniquelyidentifiesa run. The status field

contains the currentrun status(e.g., running, waiting, finished, etc.).The step field con

tainsthe name ofthe currentstep andthe step_path contains the currentstep-path. Both of these

fields aredisplayed to the user in the Run-Detail frame. The log_id field identifies the se

quence number of the currentWIP-log entry. It is incremented eachtime a new log record is ap

pended to the WIP-log. The lock field is used to preventsimultaneous accessto a run by multiple

UIPs. Lock is an enumerated field with two allowable values: free and busy. The deadlock pre

vention mechanism ofthe database management system is used to ensure mutual exclusion.

The user_dialog table definition is shown in Table 5-2. The run_id and id fields

uniquely identify each entry in the table.The name stringcontainsthe name of the user-dialog

frame. The step_path containsthe runstep-pathat the time the dialogwas saved to the database.

The procedure field contains the name of the BPFL procedure that called user-dialog. The

tag field contains the tag string supplied in the BPFL code, if any. These fields aredisplayed in

the user-dialog frame. The arguments field contains the arguments for the frame. For exam

ple, the measure-bulk-resistivity procedure passes the arguments nominal, limits,

andwafer-id to user-dialog. These argumentsarestoredin the arguments field in the di -

alog table.1

When the WIP interpreterprocessevaluates a user-dialog call, it writes the details

aboutthe dialog into the user_dialog table as described above.The example in Table 5-2 illus-

run_id
(integer)

id
(integer)

name

(string)
Sonogage

step_path
(string)
START

procedure
(string)

measure-bulk-resistivity

tag
(string)

arguments
(string)

initial :wafer-id 2 mominal [{18 ohm-cm) {22 ohm-cm}] ...

Table 5-2: User_dialog table definition and example.

1The user-dialog call inFigure 4-11 also has atag argument, which isextracted and passed in
the tag field of the dialog table.

100

BLIS UIP 1.1, 13 July 1999

Run ID: 7

Status: (Baiting
Run Name: cmos test

Process Flow: cmos-16

Sonogage

User: hegarty
Step: RLLOCRTE-URFERS

Use the sonogage to measure the bulk resistivity of wafer WELL-1,

Expected value is [{18 ohm-cm) {22 ohm-cm}).
Enter the results into the following table.

bulk resist)'Jity

16.5 ohm-cm

21.7 ohm-cm

Help Rework/Scrap Rcknonledge Comment End

Figure 5-4: Sonogage frame.

trates what might be written for the user-dialog call in measure-bulk-resistivity

when called from the process flow in Figure 4-5. When a user connects to a run, the dialog table

is queried to select the current user-dialog for the run. The name field identifies the appropriate

frame to display. The values in the procedure and tag fields are placed into the appropriate

fields on the frame. The arguments field is parsed by the UI process so that the frame code can

access arguments by name. Finally, the frame in the name field is called by the UI process.

User-dialog frames are written in INGRES Applications By Forms (ABF). Further detail

about ABFmay be found in the INGRESABF/4GL Reference Manual [50]. A frame consists oftwo

components: aform thai displays information to the user and in which the user enters information,

and a menu listing the available operations. All user-dialog frames support at least the following

operations: Help, Rework/Scrap, Acknowledge, and Comment. A frame is defined by spec

ifying the form layout using the forms editor and the operation iscoded inABF 4GL.1 The So

nogage frame is shown in Figure 5-4. The ABF code for the operations in the frame is shown in

Figure 5-5. The code is composed ofasequence ofblocks that specify frame initialization and code

for each operation. In the following discussion, the code in Figure 5-5 will be referred to by the line

numbers on the left-hand side of the figure.

14GL is shorthand for "Fourth Generation Language.

101

1 /*

2 * Sonogage frame operation code

3 */

4 /* Frame initialization */

5 Initialize (changed = integer, temp=text (80), lowr = text (20), highr = text(20)
6 x = integer, measurements. filled = integer, units = text(20)) = {
7 units :='ohm-cm';

8 wafer_scribe := wafer_scribe(arg_pointer('wafer-id'));
9 /* Determines nominal value for measurements */

10 if arg_supplied('nominal') != 0 then
11 nominal := make_string (' %s.', arg_value(' nominal'));

12 else

13 set_foniiB field ' ' (invisible(nominal) =1);
14 endif;

15 /* Establish limits, if any */

16 if arg_supplied('limits') != 0 then

17 x := arg_pointer (' limits') ;
18 lowr := object_printrep(interval_left(x)) ;

19 highr := object_printrep(interval_right(x));

20 else

21 lowr := null;

22 highr := null;

23 endif;

24 /* Prepare the measurements table for the user to enter values */
25 inittable measurements fill;

26 };

27 /* Help operation definition */

28 'Help' = {

29 help_forms (subject = 'Sonogage frame', file = 'sonogage.help');
30 };

31 /* Rework/Scrap operation definition */

32 'Rework/Scrap' = {

33 callproc handle_rework_scrap;

34 };

35 /* Acknowledge operation definition */

36 'Acknowledge* (activate = 1) = {

37 callproc start_lcg;

38 callproc create_log_attr('measurements') ;

39 unloadtable measurements

40 {

41 /* append_attr_value: first arg is name of argument, second is
42 value to append, third is the type of value */
43 callproc append_attr_value ('measurements •,measurements.value,'{}');
44 };

45 callproc finish_log;

46 return;

47 };

48 /* Comment operation definition */

49 'Comment' (activate = 1) = {

50 califrame comment;

51 };

52 /* End operation definition */

53 'End' = {

54 return;

55);

Figure 5-5; Sonogage frame function outline.

102

The initialize block initializes the values in the form. Line 7 assigns the string "ohm-

cm" tothe units variable.1 Line 8isused todisplay the name ofthe wafer (e.g., WELL-1) as

shown in Figure 5-4. The arg_value function returns the value of the specified argument, in this

case wafer-id. The waferaseribe function takes a wafer-id and returns the scribe for that wa

fer. Lines 10-14 are used to fill in the nominal field on the form to indicate to the user the expect

ed value of the measurement If a nominal argumentis supplied, the arg_supplied function

returns a non-zero value, and the argument value is used to establish the value of the nominal

field. If no nominal argument is supplied, the set_forms statement is used to make the nomi

nal field invisible.

The if statement in line 16 is used to determine if a limits argument is supplied. The

limits argument is an interval argument that specifies upper and lower limits for the values en

tered by the user. These upper and lower limits are stored in the lowr and highr variables respec

tively. If the frame has a limits argument, the code in lines 17-19 is used to store the limits in

the variables. Otherwise, these variables are given null values in lines 21-22 to indicate that range

checking is disabled. Line 25 prepares the measurements table field for the user to enter values.

Table fields are ABF fields that display several rows and columns of data at the same time. The

Sonogage frame has one table field, called measurements, into which the user enters measure

ments. It appears in Figure 5-4 as the box in the middle of the frame. It has a single column called

value, which may be accessed by the expression measurements. value.

The code for each operation is specified in an activation block. Activations can be of sev

eral types. For example, lines 28-30 define an operation named Help which executes the help_-

f orms function if the Help menu item is selected. Selecting a menu item is an example of a menu

activation. Similarly, the Rework/Scrap operation defined in lines 32-34 calls the han-

dle_rework_scrap function that puts up a frame suitable for reworking or scrapping wafers.

Lines 36-47 define the Acknowledge operation. Acknowledge writes a WIP-log

record for this user-dialog. The start_log function is used to prepare the UI process to write out

values to the log. Line 38 declares that an argument named measurements is to be written to the

log. The unloadtable statement in lines 39-44 loops through all ofthe rows in the measurements

1ABF uses single quotes (') todelimit strings. For consistency with usage elsewhere inthis disser
tation, double quotes (•) are used within the body of the text.

103

table field (i.e., where the user types the measured values) and adds the entered measurements to

the measurements argument The f inish_log function saves the log to the database and sends

a message to the WIP interpreter process that the run is ready to proceed. The return statement

is an ABF operation which returns the UI process to the frame that called the Sonogage frame.

By default, all arguments supplied to the user-dialog are written to the log. Arguments can

be removed or their values may be changed by the operationcode ifdesired. A list ofABF functions

supplied for writing user-dialog frames is given in Appendix C.

The WIP-log frame that corresponds to the User-dialog frame (i.e., Sonogage-

Log) is similar in many ways to the Sonogage frame. Wherever possible, ABF operationcode and

forms are shared between frames.

Logs are stored in the WTP_log table shown in Table 5-3. This table is similar to the

user_dialog table. The only difference is the additionoftwo fields: user_id and time. Use-

r_id identifies the person who entered the log recordand time identifies the date and time at

which the log record was written. The arguments field contains field names and values so that

CLOS objects for the WIP log objects illustrated in Figure 3-5 can be created.

The UI process can perform validity checks on values entered by a user. Measurements en

tered into the Sonogage frame are checked by the code in Figure5-6. This code defines an ABF

field activation that is executed whenever the type-in cursoris moved out of the value column in

the measurements table field. The inquire_forms statement in line 3 is used to find out if the

user has changed the value in the current row ofthe measurements table. If not, the resume next

operation returns controlto the user aftermoving the type-incursor to the next field in the form. If

the value has been changed, the code in lines 9-16 is used to call the check_format function to

parse and check the entered value.

runjd
(integer)

id

(integer)
userjd
(integer)

name

(string)
step_path

(string)
procedure

(string)

2 2 42 Sonogage START measure-bulk-resistivity

tag
(string)

time arguments
(string)

initial 2/1/91 9:13 :wafer-id 2 :measurements ...

Table 5-3: wiP_log table definition and example.

104

1 field measurements.value =

2 {

3 inquire_forms row sonogage measurements (changed = change (value));

4 /* changed will be zero if the field has not been edited */

5 if changed = 0 then
6 resume next;

7 else

8 /* The value in the field has been changed */
9 if lowr is null then

10 /* Recall that initialize block set lowr to null if no limit arg was passed

11 No limits argument passed - check dimensions but not range */
12 x := check_format (measurements.value,' {float}',units) ;

13 else

14 /* Limits argument supplied - check diemnsions and range */

15 x := check_format (measurements.value, •{float}*,lowr,highr);
16 endif;

17 if x = 0 then

18 resume next;

19 else

20 resume;

21 endif;

22 endif;

23 }

Figure 5-6: Measurements table activation code.

The first argument to check__format is the value to be parsed.The second argument is a

format string that indicates what type of value is expected. Examples include " [integer]",

"complex", and " [{float}]" which specify an integer range value (e.g., [1, 10]), a com

plex number (e.g., (1, 0.5)l) and arange value ofunits with floating point type (e.g., [{1.2

urn}, {1.4 urn}]), respectively. Depending on the format string, check_format may take ad

ditional arguments. For example, if the value to be checked is a unit, the third argument is a string

that contains either a dimension (e.g., "ohm-cm") or a unit value (e.g., " {12.0 ohm-cm}"). If

the third argument is a dimension, check_format checks the dimensionality of its second argu

ment If the third argument is a unit value, check_format takes the third argument as a lower

limit of the acceptablevalue, andtakes a fourth argumentthat is an upper limit

In the check_format call in line 12 the second argument is " {float}," which speci

fies a unit with a floating-point number. The third argument is the string "ohm-cm" stored in the

units variable in the initialize block. This function call parses the input value and accepts

a unit value with a floating point number and a unit designator dimensionally equivalent to ohm-

cm. Standard numerical contagion rules areappliedto numbers. For example, if float is speci-

1The complex number o+jco isrepresented by (a, a».

105

fled, both integer and floating-point valuesare acceptable, but complex values are not. The user

need not type the square brackets for intervals or the set brackets for units as they are automatically

inserted in the correct position in the parsed string.The values "{18.2 ohm-cm}", "{300 Mo-

hm*fm}" and "12 nohm-parsec" are all acceptable. Examplesof unacceptable values are

"18.2", "[1.2, 2.3]," and "{(12, -4) ohm}". The check_format callinline 15hasa

similar function except that the entered value is also range-checked.

If the value entered by the user meets the requiredcriteria, check_format returns zero.

If the entered value is unacceptable, an appropriate error message is displayed to the user (e.g.,

Figure 4-13) and a negative value is returned. The code in line 18 moves the cursor on to the next

field ifno error was encountered while parsing the field. Otherwise, the code in line 20 leaves the

cursor on the field, giving the user an opportunity to correct the problem.

5.4 Translating BPFL to Lisp

This section describes the method by which the WIP interpreter process translates BPFL

code to Lisp.

Recall that early versions of BPFL used a Lisp syntax which the intended users (i.e., pro

cess engineers) found unsatisfactory. Since the current version ofBPFL is block-structured, it must

be translated to Lisp code for use with the WIP interpreterprocess. For example, the Lisp code for

the measure-bulk-resistivity procedure in Figure 5-7 is shown in Figure 5-8. By compar

ing the code in Figure 5-7 with the code in Figure 5-8 it is possibleto see how the translation works.

The defflow construct:

defflow measure-bulk-resistivity (...)
let ...

begin

end;

is translated into the Lisp expression

. (defflow measure-bulk-resistivity (...) (let*))

The first procedure call in the measure-bulk-resistivity procedure is

pick-test-wafer();

which is translated into

2Any value with the same dimensions isacceptable (e.g., "ohm-km"," (V*mys2) / (A*m)", etc.)

106

defflow measure-bulk-resistivity(tag)

let wafer := pick-test-wafer();

ss := wafer-snapshot(wafer);

seg := first(find-segments(ss, material: #m(substrate));

mat := pif-attr-val(seg, :material, ss);

nominal := material-attr(mat, :resistivity) ;

limits := nil;

results := nil;

begin

if interval-p(nominal) then

limits := make-interval(interval-min(nominal) * 0.5,

interval-max(nominal) * 2.0)

else

limits := make-interval (nominal * 0.5, nominal * 2.0);

end;

results := user-dialog('sonogage, tag: tag, nominal: nominal,
limits: limits, wafer-id: wafer-id(wafer));

getf(results, :average) := sigfigs(average(getf(results, :measurements)) ,3) ;
wip-log('sonogage, results);

getf(results,:average);

end;

Figure 5-7; Measure-bulk-resistivity definition.

(pick-test-wafer) ;

In general, Lisp procedure callsdiffer fromblock-structured procedure calls as follows. The block-

structured call f unc (b, c, d) is equivalent to the Lisp call (func bed). The procedure ar

gument list in the block-structured code is very similar to the argument list in the Lisp code, the

only difference being that the commas between the arguments in the block-structured code have

been replaced with spaces in the Lisp code. This change is generally true of all lists: block-struc-

(defflow measure-bulk-resistivity (&key tag)
(let* ((wafer (pick-test-wafer))

(ss (wafer-snapshot wafer))
(seg (first (find-segments ss :material #m(substrate))))
(mat (pif-attr-val seg :material ss))
(nominal (material-attr mat :resistivity))
(limits nil)
(result nil))

(if (interval-p nominal)
(setf limits (make-interval (* (interval-min nominal) 0.5)

(* (interval-max nominal) 2.0)))

(setf limits (make-interval (* nominal 0.5) (* nominal 2.0))))

(setf results (user-dialog 'sonogage
: nominal nominal : limits limits :tag tag

:wafer-scribe (wafer-scribe wafer)))

(setf (getf results :average)
(sigfigs (average (getf results :measurements)) 3))

(wip-log 'sonogage results)
(getf results :average)

)

Figure 5-8: BPFL Lisp representation for measure-bulk-resistivity.

107

tured lists are comma delimited, whereas Lisp lists are space delimited.

Alloperations in Lispareexpressed as functions, sooperators (e.g., assignment (: =),ad

dition (+), etc.) are replaced by function calls.1 For example, the block-structured statement

a := b + C;

is translated to

(setf a (+ b c)))

The semicolons that delimit statements in the block-structured code are not required in Lisp.

The onlyother majordifference between theblock-structured codein Figure 5-7 and the

Lispcodein Figure 5-8 is thatkeywords areused differently. Keywords havetwouses in BPFL.

First, they specifyargument names(e.g., the measure-bulk-resistivity procedure has an

argument namedtag). Ameasure-bulk-res i s t i vity procedure callin theblock-structured

code takes the form

measure-bulk-resistivity(tag: "initial");

The corresponding Lisp function call is

(measure-bulk-resisitivity :tag "initial")

Argument namesin block-structured codehave thecolon placed afterthename, but in Lisp the co

lon is placed before the name.

The otheruse of keywords in BPFL is as attribute names. Forexample, the procedure call

material-attr(mat, :resistivity);

usesthe keyword : resistivity to access the resistivity attribute of thematerialobject

stored in the variable mat. The colonis placed in front of thename in theblock-structured codeto

avoid confusion between the two uses of keywords in Lisp.

5.5 Executing BPFL code

This sectiondescribes the method by whichthe WIPinterpreter process executes BPFL

code. The WIPinterpreter process is based on thecoreBPFL interpreter written by Williams [37].

Thecore BPFLinterpreter evaluates Lispexpressions andin so doingexecutes BPFLcode.

1By convention, the Common Lisp term for procedure isfunction. Inthis dissertation, the term pro
cedure is always used to describe BPFL code.

108

Slot name Description Example
action Pointer to the next function to call to

continue evaluation.

#<function go-funcall>

code BPFL lisp code being evaluated. (measure-bulk-resisitivity
:tag "initial")

cp Index into code indicatingcurrent
position of evaluation.

(1)

returned-values Slot to hold values returnedby
evaluation when complete.

{22.3 ohm-cm)

parent Pointer to next frame in the stack. #<eval-frame :id 25>

id Integer uniquely identifying the frame. 26

Table 5-4: Simplified evaluation frame definition and example.

The evaluation ofLisp expressions yields a value. Sometimes the evaluation result is the

same as the expression (e.g., the constant 5 evaluates to 5). In Lisp, this is true of numbers, strings

(e.g., "abc") and keywords. Lisp keywords aresymbols whose first character is a colon (e.g.,

:resistivity). Symbols are considered to be the names ofvariables and evaluate to the values

stored in the variable. Examples of symbols aretag and thickness. Lists aretreated as function

calls and they evaluate to whatever the function call returns. Examples of lists are (setf x 5)

and (a b (c d)).

Lisp code is evaluated as follows. Eachtime the core interpreterevaluates an expression,

itcreates aCLOS object called aframe to control the evaluation.1 The frame isdiscarded when the

evaluation of the expression is complete. Forexample, when the core interpreterevaluates the pro

cedure call

(measure-bulk-resisitivity :tag "initial")

a frame is created to evaluate the code. When the code within the procedure is evaluated, other

frames arecreated.The arguments to a procedure call (e.g., :tag -initial") must also be evaluat

ed, which createsadditional frames. Consequently, the interpretermaintains a stack of frames. The

top of the stack is the frame evaluatingthe current expression. This frame is called the current

frame.

A simplified definition ofa frame is shown in Table 5-4. Each frame is a CLOS object that

has named slots, each ofwhich hold a value. The main slots for controlling the evaluation of BPFL

1Evaluation frames should notbeconfused with the INGRES ABFframes used by theUI process.
Evaluation frames arethe same as stack framesor activationrecordsin a conventional programming
language. ABF frames denote an interfaceabstraction.

109

root-frame >.

^ eval-frame

yS ^\^^-^^^^^ —fimcall-frame
lex-tame dy^framT^:\excePtia&!

decls-frame catch-frame

klet-frame
'lambda-frame

Figure 5-9: Evaluation frameclass hierarchy.

rework-frame
constraint-frame

code are: action, code, cp, returned-values and parent. The action slot contains a

pointerto a function that is to be called to continue evaluation (e.g., #<function go-fun-

call^.1 The code slot contains the BPFL code that the frame isevaluating. Cp points toaposi

tion within the code which indicates the currentitem in the code being evaluated. The value stored

in cp is alist indicatinghow many items shouldbe skippedto read the one ofinterest Forexample,

inthelist (a b (c d)), the symbol a is indexed by (0), andthe symbol d is indexed by (2 1).

In Table 5-4, cp has the value (1), so the item being evaluated is the keyword :tag. The re

turned-values slot is used to hold values returned by the frame when evaluation is complete.

Forexample, the measure-bulk-resistivity procedure returns the average of the measure

ments enteredby the user. The parent slot contains a pointer to the frame whose evaluation led

to the creationof this frame. The id slot holds an integerthat uniquely identifies the frame.

Most frames contain more slots than indicated in Table 5-4. As mentioned earlier, frames

are CLOS objects andthe different frame types form ahierarchy as shown in Figure 5-9. The class

at the base of the frame hierarchyis root-frame. A root-frame is always the first frame cre

atedwhen evaluatinga BPFL process flow. It servesasthe anchor point forthe stack of frames cre

ated as the code is evaluated. Frames furtherdown the hierarchyhave additional slots. Forexample,

eval- frames areused to evaluate procedural code.They have a current-lot slot that holds

the BPFL lot current. Special BPFL constructs such as rework-loop and constraint re

quire special handling during processing and frame types aredefined for them.

1The construct #<expr> denotes apointer toan expr object.

110

The process of evaluation will now be described. A root-frame is created with appro

priate values storedin the code andaction slots.The interpreter then calls the function storedin

theaction slotof theroot - frame. Thiscall creates a frame toevaluate thecode. The interpreter

repeats this process until the only frame remaining is the original root - frame, at which point

evaluation is complete and the returned-values slot of the root-frame contains the final

result

A brief exampleofevaluation willbe presented to illustrate how the evaluation process op

erates. Consider evaluation of the following code:

(if implant-split
(split-lot 'product :into '(high low med))

The if statementwill causethe split-lot function call to be interpreted if the implant-

split variable hasanon-nilvalue. Assume fortius examplethat implant-split has the value

t (i.e., true). When the interpreter begins to evaluate the if statement, an if-frame is created

which becomes the topmost frame of the evaluation stack, as shown in Figure5-10 (a). The initial

value of cp is (1), so evaluationbegins with the implant-split symbol. The returned-

values slot is unbound, meaningthat it contains no value.The action slot points to the go-if

function.

The frame is evaluatedby callingthe function pointedto by the action slot (i.e„ go- i f).

Go-if evaluates the implant-split variable, placesthe value in the returned-values slot,

and sets the action slot to pointto the function go-if2. The frame then appears as in Figure 5-

10(b).

The frame is evaluatedonce more by callingthe function pointed to by the action slot.

The action in this case is to examine the value stored in the returned-values slot and, if it is

non-nil, as in this example, execute the code within the if statement (i.e., (spl i t - lot ...)).

Since the code is a function call, the evaluation creates a funcall-frame asshown in Figure 5-

10 (c). This frame becomes the current-frame forthe evaluation. Note that the parent slot of the

funcall-f rame points to the parent of the if-frame. This is because after the evaluation of

split-lot, the if frame is no longer required, and the parent-frame of the next frame created

afterthe if-frame is the parent of the if-frame. Consequently, the if-frame is discarded.

Ill

if-frame

action:

code:

cp:

returned-values:

id:

parent:

if-frame

action:

code:

cp:

returned-values:

id:

parent:

#<function go-if>

(if implant-split ...)

(1)

unbound

25

#<eval-frame :id 24>

(a)

#<function go-if2>

(if implant-split ...)

(2)

true

25

#<eval-frame :id 24>

(b)

funcall-frame

action:

code:

cp:

returned-values:

id:

parent:

#<function go-funcall>

(split-lot 'product :into •(low med high)

(1)

unbound •

26

#<eval-frame :id 24>

(c)

Figure 5-10; Evaluation examples.

This example issomewhat simplified. More detail about evaluation ispresented by Wil

liams [37].

5.6 Saving Run State

This section describes themeans bywhich the WIP interpreter process saves thestate of a

run in the database. Run state is saved whenevera run is suspended (e.g., when waiting for a user

orpiece ofequipment tocomplete an operation). Run state issaved for two reasons. First, it pro

vides ahigh degree ofsoftware fault-tolerance so that run execution will not be disturbed ifthe

computer system crashes. Second, it is easy tomodify a run that has been saved in the database.

The core interpreter described insection 5.5 iswell suited for use bytheWIP interpreter

process because the iterative evaluation process provides natural points atwhich tosave the state

of therun. Asimplified definition of the run structure isshown inTable 5-5. The complete data

structure definition andallsubsidiary structures are described in Appendix E.The id slotuniquely

112

Slot name Description
id Integer uniquely identifying the run
current-frame Frame at the top of evaluation stack.
root-frame Frame at the base of the evaluation stack.
bindings Global variable bindings used in the BPFL code.
wafer-lot-state Pointer to object describing the wafers and lots in the run.
materials Pointer to object describing the run materials.
layers Pointer to object describing run layers.
masks Pointer to object describing run masks.
snapshots Pointer to object describing snapshots used by wafers in the run.

exception-frames List of exception frames for exception handling.
module-id-list List of id's of BPFL code modules used by the run.

Table 5-5: Run data structure definition.

identifies the run. The current-frame and root-frame slots were described above. The

bindings slot holds global variableand constantbindings (i.e., variables or constants whose val

ue is accessible from all BPFL code in the run). Examples of global constants are *mask-set*

and *product-lot-size*.1 The wafer-lot-state, materials, layers, masks, and

snapshots slots all contain pointersto datastructures that describe entities manipulated by the

run (e.g., materials, masks, etc.) andcomputation entities (e.g., conditions). Exception- frames

list frames that correspond to eachexception activation. The implementation of exceptions is de

scribedlater in this chapter. The module-id-list containsa list of the code modules used by

the run. It is used to update process-flow code.

Recall that CLOS instances arewritten to the databaseby methods on each class. Consider,

for example, the methods for saving evaluation frames. Frames are written into the evalua-

t ion_fr ame table defined in Table 5-6. The run_id field contains the integer that identifies the

run to which the frame belongs. Similarly, the f rame_id field contains the integer that identifies

the frame within the run. The f rame_type field contains the name ofthe frame class. The remain

ing slots in the CLOS instance are written into the f rame_slot s field. Because the width of the

runjd
(integer)

framejd
(integer)

frame_type
(string)

frame_slots
(string)

extend
(integer)

l 25 if-frame taction #'go-if :cp (1) : ... 0

l 24 funcall-frame taction #'go-funcall :cp (1) .. 0

Table S^6: Evaluation_frame tabledefinition and examples.

1BPFL has adopted the Lisp convention ofusing asterisks around the names ofglobal variables.

113

Slot name
snapshot

id

index

scribe

Description
Pointer to PIF snapshot describing the wafer state.
Integer uniquely identifying the wafer within the fab.

Integer uniquely identifying the wafer within the run.
String containing the wafer scribe.

Example
#<Snapshot ;id 3>

4002

27

"NWELL-1"

Table 5-7: Wafer class definition and example.

f r ame_slots field is limited by the database, it is possible that the field may not be wide enough

to hold all ofthe slots for agiven frame.l For this reason, an extend field isused toindicate when

a frame definition must occupy multiple rows in the table. The value of extend is an integer, start

ing at 0 for the first row describing a given frame, and incremented for each subsequent row.

Frames arewritten to the databaseusing amethod named db-print - frame. The method

takes a frame object as an argument and returnsa string that contains the frame slots written out in

a format that can be read back correctly. Forexample, if the cp slot has the value (1 2), the slot

name and value are written as ": cp (1 2)." The action slot in an evaluation frame contains a

pointer to a function. The name of the function is written out instead of the hexadecimal memory

address stored in the pointer because the frame may need to be read into a different version of the

WIP interpreter process which might store the function at a different location in memory. For ex

ample, the function #<function go-if> is written out as ": action #' go-if*. The char

acters #' indicate a Lisp reader macro [39]. Readermacros areused to change the interpretation of

the item that follows them (e.g., the symbol go-if). The readermacro #' returns a pointer to the

function whose name is the symbol following it hi this case, when the string "#' go-if" is read,

a pointer to the function go-if is returned.

The same mechanism is used for other slots that are pointers. For example, consider the

parent slot The value stored in this slot is a pointer to anevaluation frame, so the storage method

represents the frame by the value of the id slot of the frame pointed to by parent. The code slot

is treated specially because of the requirement to change code while a process is running. Dynamic

code modification is discussed in section 5.9.

Frames are read into a WIP interpreterprocessby creatingan instance of the CLOS class

stored in the f rame_type slot and passing the contents of the f rame_slots field to an ini-

1The current version of INGRES limits arecord to 2Kbytes.

114

runjd
(integer)

id
(integer)

4002

index
(integer)

27

snapshotJd
(integer!

scribe
(string)

NWELL-l

Table 5-8: Wafer table definition and example.

tialize-instance method forthat class. Initial ize_instance sets up the values in the

slots.

Some rundatastructures in the database must be accessible fromthe UI process(e.g., wafer

and lot information). Since the UI processis an ABF applicationwith low-level routines written in

C [55], it is important that the datastructures which it must read areeasy to access from C. Forex

ample, BPFL represents wafers and lots as CLOS objects. The slots for the wafer class are shown

in Table 5-7. The database table used to represent this class is the wafers table defined in Table 5-

8.The wafer tablecanbe read by the UI process becauseeachslot is stored in a separate field, and

the value in each field is easy to interpret (i.e., an integer or string).

The slots in the lot class areshown in Table 5-9.The bits slot is an integer that indicates

which wafers arepresentin the lot Recallthateachof the n wafers allocated to a run has aunique

index in the range [1,ri\.The least-significantbit in bits representsthe wafer with an index of

1.The next least-significant bit representthe wafer with an index of2 and so forth. For example,

the value ofbits in the example in Table 5-9 is binary 101001110, so the lot in the example

contains the wafers 2,3,4,7, and 9.

This approach to representing the wafers presentin a lot is very compact and has much to

recommend it Because Common Lisp supports integersof arbitrary length, there is no dangerof

the number ofwafers exceeding the number ofbits that canbe representedin an integer. However,

neither INGRES nor ABF supportsarbitrarily wide integers. Consequently, a different representa

tion for lots is needed in the database.

The database representation for lots is shown in Table 5-10. The run_id and id fields

uniquely identify the lot The name field isastring that contains the name of the lot.1 Bi t s isa32-

Slot name
id

bits

Description

Integer uniquely identifying the lot

Integer representing wafers present in the lot.

Example

334

Table 5-9: Lot class definition and example.

115

run_id
(integer)

id

(integer)
name

(string)
bits

(integer)
Isb

(integer)

l 1 SPLIT-LOW 334 l

Table 5-10: Lot table definition and example.

bit wide integerfield that contains 32 bits of the bits slot in the lot class. If the bits slot is wider

than 32 bits, it is split acrossmultiplerowsin the database. The Isb field in the table specifies the

index correspondingto the wafer represented by the least-significant bit in the bits field.

This approach provides a way to store the arbitrarilylong bits slot while making it easy

for the UI process to determine which wafersbelongto a lot. This informationis needed to display

the lot data to the user as shown in the Run-Detail frame in Figure 4-16.

The WIP interpreter process saves run state whenevera run is suspended. If the system

crashes while a run is suspended, the run can be restoredand executed with no loss of data. If the

system crashes during the brief period in which the state is being saved, recovery depends upon the

database. If the system crashes while a run is executing,no data is lost, but when the run is restored

it must begin executing code from the point at which it was last saved. For this reason, run state is

always saved in toto. It would be more efficient to save parts of the run state to the database (e.g.,

the wafer state) immediately any changes are made to the data structures representing them. How

ever, this approach makes it impossible to guaranteethat executioncan always be carried forward

from the last savedstate sincedifferent parts of the runstatehavebeensavedat different times.

5.7 WIP interpreter operation

This section describes the operation of the WIP interpreterprocess and its interaction with

other components of the WIP system.

The WIP interpreter process is a serverprocessthatexecutesseveral runs concurrently.The

architecture of the system is based on an event-loop whichprocesses events as they are received.

Events are generated by the UI process, the EI processand the WIP interpreterprocess itself. The

main loop is shown in Figure 5-11. The first action in the loop is to process any pending events.

The event types and their function are:

1. Start-run - create and begin execution of a run. A start-run event is

1The lot class definition in Table 5-9 does notcontain a name slot The WIP interpreter process
maps lot names to the corresponding lot class via a hash-table.

116

YESV empty? J
Kin —

"

process
events

wait for
event

i i

^

/are there runs\
Interpret? y^o"

YES

interpret
runs

Figure 5-11: WIP interpreterprocess main loop.

created by the UI process when the user selects the Start-run operation in

the Create-run frame shown in Figure 4-4.

2. Suspend-run event - stop execution of a run. For example, the UI process

generates a suspend-run event if the user selects the Halt operation in the

Run-detail frame in Figure 4-16. Similarly, the WIP interpreter process it

self generates a suspend-run event when a user-dialog is executed.

3. Restart-run - resume execution of a run.

4. Run-complete - mark run as finished.

5. Message - send message to users or equipment. For example, a message is

sent to a user when an erroroccurs during run processing. The message is ei

ther sent to the controlling UI process for the run, or if no such UI process ex

ists, electronic mail is sent to the nm owner. Equipment messages are sent to

the appropriate EI process for the specified piece of equipment

6. Exception - raise exception. These events are used for rework, constraint,

and general exception handling as will be described in the next section.

7. Shutdown - terminate the WIP interpreter process. This event completes cur

rent operations, saves the state of all active runs to the database, sends messag

es to all active users indicating that the WIP interpreter process is terminating,

117

and exits. Such an event is necessary to ensure that all state information is

saved before the WIP interpreter process is shut down.

8. Module - performs an action on a code module. These events are used to force

the WIP interpreter process to perform some action on a BPFL code module.

Forexample, the versioncontrolsystem may ask thatevery runusing a partic

ular module be updated to use a different module. Code modules are described

in section 5.9.

The WIP interpreterprocess is written so that unauthorized or improper use of events is

prohibited. Forexample, a user cannot suspenda nm forwhichhe or she does not have access per

mission. Similarly, only shutdown events originating from users with WIP interpreter process

system privileges are executed. These security checksare carried out within the WIP interpreter

process itself because the connectionsbetween the various WIP components arenot secure.

Events arehigh-priorityitems that require attention. Consequently, all pending events are

handled by the WIP interpreter process before anyotheroperations are performed. This approach

was chosen to provide maximum responsiveness to interactiverequests. As shown in Figure 5-11,

once the WIP interpreterprocesshas processed allevents in the event queue, it continues execution

ofactiveruns.Eachactivenm is advanced by asinglefunction evaluation like the evaluationshown

in Figure 5-10. When the WIP interpreter process hasno events to process and no runs to execute,

it sleeps.When an event is received on one of theTCP/IP connections to otherWIP system com

ponents, the WIP interpreter process resumes execution.

The currentimplementation of the WIP interpreter processis intended foruse in a low-vol

ume development fab such as the UC Berkeley Microlab. In this environment most processing on

arunis carried out by one user. The WIP interpreter process sendsalluser-dialog requests andmes

sagesto that user. As the usermoves within the fabandlogs on to different terminals, the WIP sys

tem sends messages to the terminalwhere the useris working.The WIP interpreterprocessuses the

identity of the user processingthe lots to determine whereto send requests.

In a production fab, lab techniciansoperate equipmentin workcells.Workcells receive lots

forprocessing, perform the necessaryoperations on the lots, andpassthem to the next workcell. In

thatenvironment when a user-dialog or message is generated, the WIP interpreter process sends a

118

requestto the UI process running at the workcellthatmanages the equipment required for the op

eration. In other words, the WIP interpreterprocess uses the location of allocated equipment that

will performthe processing operatioaThe two modes(i.e.,user-centered andequipment-centered)

arenot mutually exclusive, and the WIP interpreter processcan be configured to choose between

them as appropriate. For example, user-dialog requests could be sent to equipment locations, but

status messages (e.g., run-complete) might be sent to the user in charge of the run.

The remainder of this section reportson a coarseperformance evaluation ofthe WIP inter

preter process. Six types of operations were executed to test the performance of the system:

1. create a run,

2. save run state,

3. retrieve run state,

4. interpret a simple loop,

5. interpret a simple loop with a single Lisp function call in it, and

6. interpret a simple loop with a single BPFL procedure call in it

All tests were performedon aSun Sparcstation 1running SunOS 4.0.1 using Allegro Common Lisp

3.1 [56]. The database used was release 6.3 ofINGRES [53] running on alocal SCSI1 disk. Tests

were carried out using the user-time value returned by the Lisp time function. Each test was

repeated five times and the average value of the measurements was taken.

The time required to create a runusing the cmos-16 process flow was 2.81 seconds. The

time requiredto save run statevarieswith the size ofthe runinformation (e.g., the number of stack

frames), but for a run using cmos -16 with 35 stack frames, 4.53 seconds was required. Retrieving

nm state took 3.05 seconds. These operationsoccur infrequently. For example, run state is saved

only when a run is suspended, which occurs approximately 150 times in the course ofexecuting a

complete cmos-16 process flow. In the very unlikely event that rework could double the number

of run suspensions, and given that the throughputtime for the run varies between 2 weeks to 3

months, the WIP interpreter process can expect to spend at worst 0.2% of its time saving and re

storing run state for any given run. At worst a run might be suspended and restarted 5 times in one

1Small Computer Systems Interface.

119

for i := 1 to 100 do

code-body

Figure 5-12: Interpreter test code fragment.

hour,resultingin the WIP interpreter process spending 0.6%of its time saving the state for one

run.1

These results measure the performance of Lisp routines built into the WIP interpreterpro

cess. Most of the time required to create, save and retrieve run stateis consumed by the database

operations. Recallthatthedatabase is stored onaaSCSIdisk. SCSIis alow-performance interface,

andmuch faster performance is possiblewith appropriate hardware. The remaining tests measure

the speed of BPFL code evaluation.

The code fragment used to evaluate interpretation speedis the for loop shown in Figure 5-

12, which executes the code-body code 100 times. Translation of the code to Lisp and subsequent

macro-expansion results in the interpreterexecuting the following Lisp code:

(let ((i 1))

(declare (type (integer 1 101) i))
(block nil

(tagbody #:g2615

(if (> i 100)

(progn (return-from nil (progn)))

nil)

; code-body
(setq i (1+ i))

(go #:g2615))))))

This code requires 13 evaluations foreachexecution of the loop, plusthe numberof evaluations

required for the code-bodycode.Three differentcode-bodies weretested.The resultsaresumma

rized in Table 5-11. The null code-body test indicates thatthe WIP interpreter processhas an aver

age evaluation time of7.8ms foreachinterpreterevaluation. The code-body in the secondandthird

Loop body Execution time
(seconds)

Evaluations
per loop

Null 10.2 13

Lisp function call 12.1 16

BPFL procedure call 14.9 17

Table 5-11: WIP interpreter process evaluationtimes.

1The WIP interpreter process does not need to retrieve run state from the database unless it has
crashed and been restarted.

120

tests called the function (loop-test i). In the second test, loop-test was a Lisp function:

(defun loop-test (a)

hi the third test, loop-test was a BPFL procedure:

defflow loop-test (a)
begin

t;

end;

hi both cases the function takes one argumentand returns the value t. The evaluation time for the

WIP interpreterprocess is dependenton the evaluationperformed. Forexample, the averageeval

uation time calculated from the second test is 7.6 ms, which shows that the Lisp function call is rel

atively fast anddecreases the average evaluation time. The thirdtest has an averageevaluation time

of 8.8 ms, indicating that the BPFL procedure call is relatively slow.

As an example ofthe evaluationtime on real code, the measure-bulk-resistivity

procedure in Figure 5-7 wasevaluated. The WIP interpreter process took 1.55 seconds to perform

the 190evaluations required to executethecode. The average evaluation time was 8.2 ms. Approx

imately86% of theexecution time was spent in creating evaluation frames, anda further 11% was

spentin CLOS methodcallson evaluation frames. Recoding the interpreter to use Lisp structures

rather than CLOS classes for evaluation frames should result in a ten- to one-hundred fold speed

increase. Recodingthe interpreter in C orC++ [57] shouldresultin aone-hundred to one-thousand

fold speedincrease. The codesizeoftheCommon LispWIP interpreter is 16megabytes. By recod

ing in C++, the executable couldbe reduced to approximately half that size.

To illustrate the significanceofthe evaluation performance figures, considerthe cmos -16

process flow. Execution of thecode up to the first implantation steprequires 1320 evaluations, for

an execution time of 10.8 seconds. This section ofcode has 9 user-dialogs or equipment operations,

andtakes approximately one dayto process in the fab. The executiontime of the code is relatively

smallcompared to the41 seconds required to savetherun state for the 9 times the runis suspended.

The average time spentby theWIP interpreter process savingrunstate or interpreting code forthis

example is0.06%. This is morethan fast enough for use in aresearch fab. Sincethe executiontime

of the process-flow code canreadily bereduced by several orders of magnitude, theexecution time

ofthe codeisnot significant. However, increasing thespeedofdatabase accessis essential, notonly

121

for the WIPsystembut for all otherCIMapplications. A production fab requires a high-perfor

mance database server.

The WIP interpreterprocess is very slowcompared to most program executionsystems.

However, it is fast enough for the tasks it is intended to perform. Complex programs (e.g., numer

ical analysis routines in recipe generators)are prohibitively slow using the prototype implementa

tion of the WIP interpreter process. If BPFL processflows requiresuch functionality in the

prototype implementation, there are two approaches to providingit. First, the routines could be

written in another language (e.g., C++ or Lisp) and called from BPFL process flows. The WIP in

terpreter process uses this approach to implementmany standardBPFL procedures (e.g., find-

surface-segments, format, etc.). If users adopt this approach for writing process flow code,

the disadvantage is that parts of the process flow are written in a different language. An alternative

approach is to use the simulation interpreter written by Williams [37]. The simulation interpreter

translates BPFL code into pure Lisp which can then be compiled. For example, the simulation in

terpreter runs the loop test with the Lisp function call approximately 78,000 times faster than the

WIP interpreter process. A large partof this speedup is due to the fact that no CLOS object creation

or method calls are involved in the execution of the compiled code. The disadvantage of this ap

proach is that the simulation interpreter does not permit code modification, saving and restoring run

state, or running the interpreter as a server. However, BPFL utility routines (e.g., to calculate the

parameters for an equipment recipe) could be compiled and called from the WIP interpreter pro

cess. This approach would only work for procedures that did not need to be suspended (i.e., no

user-dialogor run-recipe procedure calls are permitted). Recoding the interpreter for speed

will make this approach unnecessary.

5.8 Rework, Exception, and Constraint Implementation

The core interpreter is written as a single-threaded process. That is, when BPFL code is

being evaluated, at any time the evaluation stack represents the evaluation of a single fragment of

BPFL code. This situation is illustrated on the left-hand side of Figure 5-13. Boxes represent eval

uation frames. The first line in a box is the frame type and its id. The remaining lines show the

code being evaluated by the frame. Each frame has at most one parent and one child frame, indicat-

122

#<funcaU-frame :id 27>

(mtrl-attr mat)

#<setf-frame :id 26>
(setf (mtrl-attr mat ...))

#<progn-frame :id 20>
(defflow ...

(setf (mtrl-attr mat ...))

single-threaded stack

#<funcall-frame :id 32>

(spin-soft-bake ...)

#<funcaU-frame :id 57>

(strip-resist ...)

#<rework-frame :id 31>
(rework ...)

#<progn-£rame :id 25>
(defflow —

(rework ...))

spaghetti stack

Figure 5-13: Spaghetti stack example.

ed by an arrow (the parent is at the arrowhead end of the line). For example, frame 20 is the parent

of frame 26, and frame 27 is the child of frame 26.

Rework and constraints complicate this model ofexecution. For example, whenever a run

is executing BPFL code within a rework-loop, the user can force rework to occur on a chosen

set of wafers. The semantics of the rework-loop operation require that the rework lot be pro

cessed by the rework-prefix code, then given the same treatment as the rest of the wafers.

Figure 5-14 shows an example of rework from the pattern procedure in Figure 3-12. Suppose

that the code being executed is part of the code inside the rework body (e.g., inside the expose-

resist procedure). At this point, the stack looks much like the single-threaded stack on the left-

hand side of Rgure 5-13. Suppose that the user raises a rework exception, which causes process

ing on the current lot to stop and processing on the rework lot to begin. The evaluation of the

code for the current lot is resumed later so the evaluation stack for the current lot must be

rework-loop

/* rework body */
spin-soft-bake (double-photo: double-photo) ;
expose-resist (mask-name: mask-name);

develop-resist() ;
rework-test inspect-resist() ;
retry-count 5;

rework-prefix If not (double-photo) then strip-resist () end;

end;

Figure 5-14: Rework example.

123

handler-case

download-recipe(...);

start-recipe(...);
an-exception c := equipment-error do

report-error ("Error occurred during run-recipe: ~s", c) ;
halt-run();

end;

end;

Figure 5-15: Handler-case example.

preserved. The rework lot is processed by the rework-prefix code andthen by the rework

body. Evaluating the code for the rework lot resultsin a second stack of frames originating from

the rework frame. At this point, the stack looks like the righthandside of Figure 5-13. The stack

marked current is the code evaluation stack for the current lot, and the stack marked rework

is the code evaluation stack for the reworklot hi other words, the rework- frame has two child

frames (i.e., frames 32 and 57 are children of frame 31). This situation cannot arise with a single-

threaded stack.

The semantics of rework require that rework branches be merged when the rework lot

reaches the same processing point as the execution path that generated the rework. For example,

when the execution state ofthe frame at the top of the stack above frame 57 reaches the same point

as the execution state of the frame at the top of the stack above frame 32, (i.e., the point at which

the rework occurred), the two paths must be merged so that processing can proceed on all of the

active wafers. Given that rework loops cannest andthatoccasionallymultiple rework will be forced

from within the one rework loop (i.e., a rework can be forced while a group of reworked wafers is

being processed), it is clear that the evaluation stack diagram can have multiple branch points and

that a frame can have any number of children.

Rework is an example ofexception handling, and the rework- frame is a special version

of the exception-frame as shown in Figure 5-9. The exception-handler in the run-recipe

procedure in Figure 3-7/shown in Figure 5-15, will be used as an example of exception handling.

Recall that handler-case executes a body of code with exception handlers defined that will be

called if an exception is raised (see section 3.4). If an equipment-error exception is signalled

within the code in the body of the handler-case, the code in the equipment-error clause is

executed. Several procedures are provided in BPFL that can be used to manipulate a run within an

124

module_id

(Integer)

name

(string)

code

(string)

extend

(integer)

10 measure-bulk-resistivity (defflow measure-bulk-
resistivity (&key tag ...))

0

Table 5-14: Procedure table definition and example.

cedures in the database if they have not already been saved.

BPFL procedures are saved in the procedure table shown in Table 5-14. The mod-

ule_id field is an integerthat identifies to which codemodulethe procedurebelongs.The name

field is a stringthatspecifies thenameof theprocedure. The code fieldcontainsthe Lisp codefor

theprocedure. The extend field is used to store procedures withmore code thanwillfit intoone

record.

The code slot in a frameholds the BPFLcodebeing evaluated by that frame. This code is

not saved to the database with the frame, for three reasons. First, the WIP interpreter process stores

procedure code from allBPFL modules inthe database separately asdescribed inthe next section.

Second, storing thecode with theframe iswasteful because during evaluation of a section of code,

many frames will have code slots that contain fragments of the same BPFL code. Third, modifi

cationofthecodeused bya running process ismuch easier if thecodeisnotstored withtheframes.

The database representation ofBPFL code stored inthe code slots inframes isas follows.

Frames thatarecreated when a procedure is called arecalled funcall-frames. The code slot

stored in the database for a funcall-frame is the name of the procedure and the id of the pack

age towhich it belongs. Forexample, if a funcall-frame iscreated tocalltheprocedure pat

tern in thelitholibrary version 1.0, Table 5-13 shows thatthemodule_id for themodule is 4.

The value stored in the code slot of the frame in the database is (: procedure pattern

:module-id 4). Whenthe frames are recreated fromthe informationstored in the database, the

procedure table in Table5-14is usedto restore thecorrectvalue in the code slot

During evaluationofpattern, evaluation frames willbecreated withcode slotsthatare

fragments of thecode inpattern. Forthese frames, the value stored inthe code slotin thedata

base isa pointer into the code for the procedure. Recall that code pointers are represented bya list

indicating how manyitemsshould be skipped to readtheone of interest

131

5.10 Run Modification

This section describes the implementation of dynamic run modification. A user can per

form modification of an active nm. The allowable modifications are:

1. add or remove wafers,

2. import wafers from another run,

3. split a run into multiple runs, and

4. modify the process flow code used by the run.

Waferandlot manipulation is specified through the Modify-Lots UI frame shownin Figure4-

20.Addingand removing wafers andmoving them between lots involves a straightforward manip

ulation of the wafer and lot tables shown in Table 5-8 and Table 5-10, respectively. The only

difficultyis that the WIP interpreterprocessmust prevent the removal of a wafer that is currently

bound to a variable. Forexample, if a BPFL runis executingthe measure-bulk-resistivity

procedure in Figure 4-11 and the wafer variable has a waferassigned to it, that wafer cannot be

deallocated. In general, the WIP interpreterprocessdisallowsthe deletion of run structures if those

structures are currently referenced by variables or arguments. If this capability is required, a sym

bolic debugger for BPFL code is necessary. A debugger allows variable and argument values to be

changed after they have been evaluated.

Importing wafers from another run requires that the snapshots for the wafers be added to

the run structure. PIF attributes for the wafers being imported normally have to be renumbered to

prevent id conflicts between the snapshots already in the run. Creating new wafers requires the

specification of a BPFL procedure call to establish the initial snapshot for the wafers, as shown in

Rgure 4-21.

Splitting a run into multiple runs is implemented bycopyingthe nm data structures for each

of the new runs. None of the data structures are shared because each run must be free to modify the

structures independently. Before a run can be split, all pending equipment operations must be com

plete. In addition, any pending constraints are duplicated for each of the new runs.

The user enters data into the Modify-Flow UI frame shown in Figure 4-24 to indicate

how the WIP interpreter process should respond to code modified in modules used by a nm. As ex

plained in section 4.5, there are three possible responses to changes in the code in a module:

132

1. Stat ic means never update the code in a module,

2. Latest means to always update to the latest version, and

3. Query means to ask the user before updating.

Theprototype WIP system imposes two restrictions oncode modification. First, it does notallow

procedures thatare currently being evaluated tobedeleted. Second, it does notallow code thathas

already beenevaluated to be modified. Forexample, if themeasure-bulk-resist ivity pro

cedure in Rgure 4-11 has been evaluated up to the code

results := user-dialog('sonogage, nominal: nominal, limits: limits,
:tag tag wafer-id: wafer-id(wafer));

theWIPinterpreter process will disallow any changes to thecodebefore thispoint The reason for

this restrictionis two-fold. First,it is impossible in general to changethe nm state to makeit appear

as if the run had been executed on the modified code. For example, if the line of code

nominal := material-attr (mat, :resistivity);

is modified to

nominal := material-attr(mat, :bulk-resistivity);

the value of the nominal variable would have to be updated to reflect this change. Such changes

areimpossible toperform withthecurrent system; Thesecond reason fordisallowing codechanges

before theevaluation pointis thatit makes it difficult toensure thatthe code slotsof runshavethe

correct code stored in them. If a user modifies code before the evaluation point, the changes in the

procedure are ignoreduntil the next time the procedure is called.

5.11 Implementation Environment

TheWIPinterpreterprocess iswritten inCommon Lisp. Theprogramming environment is

Allegro Common Lispusing theXerox Portable Common Loops (PCL) implementation of CLOS.

Common Lispis theimplementation language forthree reasons. First,it is easyto develop pro

grams inLispthatmanipulate other Lisp programs since aprogram is represented bylistdatastruc

turesinLisp.Second, Lispprovides apowerful andflexible framework within whichtoexperiment

withlanguage designs. During thecourse of this research, many modifications weremadeto BPFL

andLispgreatly reduced theamount of work necessary to make these changes. Third,Lisphas a

built-in evaluator that makes it easy to implement language interpreters.

133

Common Lisp has excellent debugging tools. Code can be compiled with extensive run

time checking to catch programmingerrors. Most errors generate precisemessages that identify the

source of the problem. Some implementations of otherlanguages (e.g., C or C++) do not provide

the same degree of run-time checking so errors tend to resultin program crashes, andthe sourceof

the errormustbe found by invoking adebuggeron the program core file.Errormessages areusually

much less precise about the source of the error than the Lisp messages.

The disadvantage of Common Lisp is that it is slow. Anecdotal evidence suggests that re

coding Lisp programs in C results in a 5-10 times increase in execution speed and50% reduction

in executable-code size. Much greater speedbenefitcanbe derived in this situation becauseCLOS

canbe replaced with a faster object system.This approach is the likely choice forcommercializing

BPFL. Recoding the prototype in C is a relativelyeasy task comparedto writing the system from

scratchin that language. If C or C++ had been used as the implementation language,many of the

changes made to BPFL would have requiredextensive rewritingof the interpreter.

The experienceofwritingthe WIP interpreterunderlines the need forarelational orobject-

orienteddatabase and a programminglanguage thatcanstorepersistentdatatypes in the database.

Forexample, the current implementation savesmost slotsin CLOS instances by concatenating the

names and values of the slots into a large string and writing the string into a field in the database.

This approach was chosen because it simplified writing the methods for storing and retrieving in

stances.However, database queriescannotbe qualifiedby the valuesstoredin those slots. Slots that

areused in qualifications aresaved in separate fields.This is not a significant limitation at present,

but in the future databaseswill support more datatypes and many of the concatenated slots could

reasonably be used in qualifications. Ideally, the database and language shouldpermit storage of

complex objects and qualifications on any slot

The UI process is written in ABF. ABF is essentiallyC with high-level constructs for cod

ing UI frames and accessing the database. ABF is a good tool for those tasks, and since manipulat

ing frames and accessing the database are the main activitiesof the UI process, using ABF was

much simpler than using C. Using Common Lisp was unacceptable because the UI process has to

be small so that many copies of it can nm at the same time.

134

However, ABF suffers from a number oflimitations that make it difficult to use for writing

large extensible programs. For example, there is no way to declare global constants or variables.

Because ABF is based on C, the limitations of C make some operations (e.g., manipulating units,

complex numbers, or intervals) difficult and inelegant An object-oriented version of ABF that in

cluded richer data structure primitives would simplify die implementation of these operations.

The database used in the WIP system is INGRES, a commercial SQL DBMS. It has a pow

erful set ofutilities for managing databases. The main limitation of INGRES for the WIP system is

that it does not support structured data types (e.g., intervals, arrays). The latest version of INGRES

(release 6.4) allows the user to add new data types so it is likely that support for some structured

data types can be added to the WIP database. Furthermore, INGRES now automatically creates

unique entity identifiers which simplifies saving and restoring nm state.

5.12 Summary

This chapter has described the operation of the WIP system that is the subject of this dis

sertation. Communication between the processes that make up the WD? system is via TCP/IP con

nections and through a shared database. New WIP- log and User-dialog frames can be

defined by users and added to the user-interface process. The WIP interpreter process executes

BPFL code by interpreting a Lisp version of BPFL. The interpreter saves the state of runs to the

database to provide software fault-tolerance and permit run modification.

135

[This page intentionallyblank]

136

Chapter 6
Conclusions

The problem this thesis attempts tosolve isthe development ofa WIP system using apow

erfulSPRto overcome someof theshortcomings ofexisting systems. Someof theseshortcomings

include multiple representations ofprocess flows, limited control flow and exception handling, and

flexible interaction withtheothercomponents of a CIM system. Thischapterdiscusses themajor

contributions of the work and suggests future research.

6.1 Major contributions

The majorcontributions of thiswork arethedevelopment of a fault-tolerant WIPsystem

and thedesign and implementation ofa run management system that allows dynamic modification

of runs.

Much of thepower in theWIP system is derived from the capabilities of BPFL. The core

features of thelanguage, including thelanguage notation, materials, unitandinterval datatypes,

and thewafer-state representation were developed byWilliams [37]. However, many features of

thelanguage developed forfabrication inthisdissertation were designed to solve problems encoun

tered with earlyversions ofthe WIP system. These features include exceptionhandling, constraints,

rework, and someof the high-level abstractions for specifying semiconductor operations.

Webelieve that theexception-handling facility in BPFL is unique among otherSPRlan

guages. And, asnoted several times inprevious chapters, we also believe that exception handling

is anessential part of anSPR because unexpected situations occur frequently inprocessing and

there must be some high-level mechanism for dealing with them.

Similarly, constraints give BPFL aunique capability toexpress thesemantics of fabrication

operations notavailable inmost SPRs. Constraints onprocessing operations, particularly timing

constraints,arecommonin semiconductor processing. Structureddocumentationand run sheet sys

tems provide some mechanism of alerting the user about constraints, butthey provide nomecha

nismtoenforce them. MITs PFR[20] permits thespecificationofthetimerequired byanoperation

and thepermissible delay between operations, but the constrain construct in BPFL provides

both greater flexibility and - more importantiy - specifies operations toperform when aconstraint

137

is violated. In other words, BPFL captures both the specification ofthe constraintand the action to

take to recover from a constraint violation. Furthermore, BPFL constraints can be arbitrary, so the

specification ofconstraints other than timing constraints are feasible (e.g., temperature or humidity

limits in the fab).

The defequipment declaration, and the run-recipe and user-dialog procedures

provide a mechanism for separating faculty-specific detail from the process specification. Some

SPRs make little effort to separatethe facility and processspecifications. We believe that a separa

tion is required to permit processes to be moved between facilities, which remains one of the big

gest problems facing the semiconductor CIM community.

The run management system has several important capabilities. First, the version control

system for process flows provides asimple mechanism to trackmodification to flows and to control

who can use and modify a process flow. Coupled with the ability ofthe WIP system to dynamically

modify the process-flow code used by an active ran, BPFL overcomes a major shortcoming of pro

cedural SPRs, the inability to easily modify the process used by a run once it has been started.

Other dynamic modification features arethe ability to move wafers between runs and split

runs. The ability to move wafers between runs is of great value in a research environment While

such capability exists with structured documentation and run-sheet systems, a major advantage of

BPFL is that because wafer state is transferred with the wafers, it is possible to prevent improper

treatment of wafers. For example, placingwafers with Ta205 dielectric into a gate oxidation fur

nace will seriously contaminate the furnace. Such occurrences arecommon when wafers aremoved

between processes and no mechanism exists to capturewafer state.The properuse ofthe BPFL wa

fer-state model can prevent such accidents.

62 Future Research

The current version of BPFL can certainly be improved. A mechanism is needed that al

lows separate attributes to be associated with an operation in a procedure. For example, the opera

tions to generate instructions to a user to perform anoxidation must occur within the same body of

code as the PIF commands to update the wafer state. Ideally, the PIFoperationsshould be generated

from the manufacturing specification. Furthermore, the PIFoperationsshould be in a separatebody

of code so that they will only be executed if the oxidation is successfully completed.

138

Another capability thatBPFL lacks is amechanism to specifyparallel operations, asseen

in ALPS [36]. Suchacapability does notappear to be essential in anSPR, although occasionally

parallel-processing isdone onan ad-hoc basis, especially inphotolithography. Implementation of

parallelism is nontrivial, but it would be a good extension to BPFL.

A complete implementation ofWood's SECS server [44] for atleast onepiece of fabrica

tion equipment is necessary to discover and correct shortcomings in the equipment specification

partof the language.

Finally, BPFL could benefit from theaddition of in-process and in-situ control loops to the

language. We envisage high-level constructs likethose developed for rework and constraints. The

design of such constructs isbest carried inconcert with research groups familiar withthesalient

features of control loops.

BPFL is a relatively untested language whose features have undergone several major revi

sions. While we areconfident that the current versionof BPFL is appropriate for the tasks it is de

signed to perform, only further experience withthelanguage willtellwhat other extensions and

revisions are necessary.

The most significant problems withthecurrent systemare theuser-interface to BPFLand

the computer resources required torun the WIP system. Theonlyrepresentation of BPFL istextual.

While programmers have few problems withthesyntax of BPFL, process engineers are not pro

grammers, and theyhave nodesire tolearn programming. Consequently, agraphical user-interface

for the specification of BPFL programs is required.

The speed of theWIP system implemented in Common Lisp is adequate for low-volume

use. In ahigh-volume fab it is likely thatgreater speed wouldbe required. An obviousway to im

prove thespeed of thesystem istore-implement theinterpreter inCorC++ for commercialization.

CommonLisp is anexcellent prototyping environment, and hadC++ beenused forthe prototype

implementation thelanguage could nothave been developed asrapidly asit has been. However,

working from the Common Lispimplementation, it should be relatively easyto reimplement the

interpreter in C++, and thetimerequired toevaluate aBPFL process flow could bereduced by sev

eral orders of magnitude. Furthermore, thecode sizeof theWEP interpreter should decrease by

139

about50%. The time required to save andrestore ranstate in the database shouldnot be significant

if a high-performance database server is used.

The UI processhasseveral shortcomings. The biggestproblems arethatit needsagraphical

user-interface and a more sophisticatedlog browsing interface, like the CIM browser application-

specific query interface [61]. This would greatly improvethe accessibility ofthe informationstored

in the WIP-log. Lastly, anobject-oriented database wouldsimplify the developmentofan interface

to specify queries on structured datatypes such asunits.Forexample, this would make it possible

to select all sonogage records with measurements between a certain range, which is impossible

with the current implementation.

Implementation of a scheduling interpreter basedon BLOCS [6] is important in order to

ensurethat BPFL can express the informationrequired forscheduling. A BPFL interface to a CAD

database such asOCT [46] would greatiyimprove the usefulnessofmasks andlayers. Forexample,

it would make possiblethe automatic calculation of area open foretching, an important factor for

determining etch rate in load-sensitive etch processes.

Equally important if BPFLis to be accepted by ausercommunity is that the usefulness of

BPFLbe proven in a production environment. A test thatwould proveinvaluable in determining

the worth of the languageand its WIP system would be transferring a process from one fab to an

other fab, rewriting only the facility-specification code.

140

References

[1] W. C. Holtonet. al.,Japanese Technology Evaluation Program PanelReporton CIM and
CADfor the SemiconductorIndustry inJapan, Science Applications International
Corporation, (McLean VA), Dec. 1988.

[2] E. Sachs,S. Ha,A. Hu,A. Ingolfsson andR. Guo,"Run by Run Process Control,"Talk given
at 1990 SRC/DARPAIC-CIM Workshop, (Berkeley, CA), Aug. 1990.

[3] K. Lee and A. R. Neureuther, "SIMPL-2 (SIMulated Profiles from the Layout - version 2),"
in 1985 Symposium on VLSI Technology, (Kobe, Japan), pp. 64-65, May 1985.

[4] C. P. Ho, J. D Plummer, S. E. Hansen, and R. W. Dutton, "VLSI process modeling -
SUPREM-nr, IEEETrans. ElectronDevices, vol ED-30, no. 11, pp 1438-1452, Nov. 1983.

[5] A. S. Wong, "An IntegratedGraphicalEnviroment for Operating IC Process Simulators,"
Electronics Research Lab. Memo 89.67, U.C. Berkeley, May 1989.

[6] R. Glassey, "An Overview of BLOCS/M: The Berkeley Library of Objects for Control and
Simulation of Manufacturing," 1989 DARPAISRC Workshop on Integrated Factory
Managementfor IntegratedCircuits(IFM-IC), (College Station, TX), pp. 81-94, Nov. 1989.

[7] M. L. Heytens and R. S. Nikhil, "GESTALT: An expressive database programming system,"
ACM SIGMOD Record, vol. 18, no. 1, pp 54-67, Mar. 1989.

[8] Distributed Ingres Manual, Ingres Corp, Alameda, California, June 1989.

[9] M. R. Stonebraker, E. Hanson and C. H. Hong, "The Design of the POSTGRES Rules
System," IEEEConf. Data Engineering, Los Angeles, CA, Feb. 1987.

[10] M. R. Stonebraker andL. A. Rowe, "The Design ofPOSTGRES," Proc. 1986ACM-SIGMOD
Conf. on Managment ofData, (Washington, DC), June 1986.

[11] P. A. Bernstein, 'Transaction Process Monitors," Comm. ofthe ACM, vol. 33, no. 11, pp 75-
86, Nov. 1990

[12] D. C. Mudie and N. H. Chang, "FAULTS: An Equipment maintenance and Repair System,"
Proc. 1990IEEE/CHMT International Electronics Manufacturing Technology Symposium,
(Washington, DC), Oct 1990.

[13] C. J. Date, An Introduction to Database Systems (VolumeII), (Reading, MA), Addison-
Wesley, 1984.

[14] W. G. Oldham, A. R. Neureuther, Y. Shacham and F. Dupois, "Berkeley CMOS Process: A
User Guide," Electronics Research Lab. Memo 84.26, U.C. Berkeley, Oct 1984.

[15] CAM Systemsfor Smart Shop Control, Consilium, Mountain View, California, 1986.

[16] ThePROMIS System:Controlling theJourney toFactoryAutomation. Promis Systems Corp.,
Toronto, Canada, 1987.

[17] A. Aho, R. Sethi and J. Ullman, Compilers: principles, techniques and tools, Addison-
Wesley, Reading MA, 1986.

[18] H. L. Ossher and B. K. Reid, "Fable: AProgramming-Language Solution to IC Process
Automation Problems," ACM-SIGPLAN Notices 18, no. 6, pp 137-148, Jun. 1983.

[19] ILL. Ossher and B. K. Reid, "Specification for Manufacturing," Proc. 2nd Annual IC
Assembly Automation Conference, Jan. 1986.

141

[20] D. S. Boning and M. B. Mcllrath, Guide to theProcessFlow Representation Version 2.0,
unpublished report, Aug. 1990.

[21] J. Y. Pan, J. M. Tenenbaum and J. Glicksman, "A Framework for Knowledge-Based
Computer-Integrated Manufacturing," IEEE Trans. Semiconductor Manufacturing, vol. 2,
no. 2, pp 33-46, May 1989.

[22] J. P. Dishaw and J. Y. Pan, "AESOP-A simulation-based knowledge system for CMOS
process diagnosis," IEEE Trans. Semiconductor Manufacturing, vol. 2, no. 3, pp 94-103,
Aug. 1989.

[23] J. S. Wenstrand, H. Iwai, and R. W. Dutton, "A Manufacturing-oriented Environment for
Synthesis ofFabrication Processes," Proc. 1989ICCADDigestofTechnical Papers, pp 376-
379, Nov. 1989.

[24] J. S. Wenstrand, W. T. Wong and R. W. Dutton,"Simulation-based ProcessSpecification,"
Proc. SRC Techcon '90 Conf., (San Jose, CA), pp 451^54, Oct. 1990.

[25] Voorhees, E. M., "A Work-in-Progress Tracking System forExperimental Manufacturing,"
Proc. SecondInt.Conf.onData andKnowledgeSystemsfor Manufacturing andEngineering,
(Gaithersburg, MD), pp 190-197, Oct 1989.

[26] D. Wolfson, Personal Communication., Siemens Corporate Research,Princeton,NJ, Nov.
1990.

[27] K. Funakoshi and K. Mizuno, "A Rule-BasedVLSI Process Flow Validation System with
Macroscopic Process Simulation," IEEE Trans, onSemiconductorManufacturing, vol. 3,no.
4, pp 239-246, Nov. 1990.

[28] Y. Descotte and J. C. Latombe, "GARI: A Problem Solver that Plans how to Machine
Mechanical Parts," UCAI No. 7, pp 766-772, Aug. 1981

[29] A. Costaand M. Garetti, "Design of a Control System for a Flexible Manufacturing Cell,"
Journal ofManufacturing Systems, vol. 4, no. 1, Jaa 1984

[30] K. K. Lin andC. J. Spanos, "Statistical Equipment Modeling forVLSI Manufacturing: an
Application forLPCVD," IEEE Trans, onSemiconductor Manufacturing, vol. 3, no. 4, pp
216-229, Nov. 1990.

[31] S. Adiga, Personal Communication, IEOR Dept, Universityof California Berkeley, Dec.
1990.

[32] C. H. ChangandM. A. Melkanoff,NCmachine programming andsoftware design, Prentice
Hall, New York, 1989.

[33] O. Z. Maimon, "A Generic Multirobot Control Experimental System," Journal of Robotic
Systems, vol. 3, no. 4, pp 451-466, Sep. 1986.

[34] A. W. Naylor andR. A. Volz, "Designof Integrated Manufacturing System Control
Software," IEEE Trans, on Systems, Man,andCybernetics, vol. 17,no. 6, pp 881-897, Nov.
1987.

[35] S. A. Ray,"A Modular Process Planning System Architecture," presented at IEE Integrated
Systems Conf., (Atlanta, Ga), Nov. 1989.

[36] B. A Catron andS. R. Ray,"ALPS - A Language forProcess Specification," submitted to
International Journal ofComputer Integrated Manufacturing.

[37] C. B. Williams, A Process-Flow Specification Languagefor Manufacturing Semiconductor
Integrated Circuits. Ph.D. thesis,University of California at Berkeley, in preparation.

142

[38] M. R. Pinto, C. S. Rafferty, and R. W. Dutton, "PISCES II: Poisson and continuity equation
solver," Stanford University, Integrated Circuits Lab,Tech. Rep., Sept. 1984.

[39] G. L. Steele, Common Lisp: The Language, second edition, Digital Press, 1990.

[40] C. B. Williams andL. A. Rowe, "The BerkeleyProcess-Flow Language: Reference
Document" Electronics Research Lab. Memo 87.73, U.C Berkeley, Oct. 1987.

[41] L. A. Rowe, Process-Flow Workshop Report, unpublished report, Oct. 1990.

[42] R. Hartzel, Personal Communication, Texas Instruments, Dallas, TX, Jan. 1989.

[43] S.Tang and E.Wood, "An Object-Oriented Design Toolkit for QM," presented at1990 SRC/
DARPAIC-CIM Workshop, (Berkeley, CA), Aug. 1990.

[44] E. J. Wood, H. Schenckand J. Wijaya, "Networking and Object-Oriented Coding forSECS
Communication,"Proc.Automated ICManufacturing Symp., FallElectrochemicalSociety
Meeting, Oct 1987.

[45] S. G. Duvall, "An Interchange Format for Process and DeviceSimulation," IEEE Trans, on
CAD, vol. 7, no. 7, pp 741-754, Jul. 1988.

[46] R. L. Spickelmeir, P. Moore, and A. R. Newton, AProgrammer's Guide to Oct., Electronics
Research Lab. Memo, U.C. Berkeley.

[47] J. L. Mohammed, Common LispImplementation of SECS IIProtocol, Schlumberger
Technologies, July 1990.

[48] L. A. Rowe, "Fill-in-the-Form Programming," Proc. 11th Int. Conf. on Very LargeData
Bases, Aug. 1985.

[49] B. Becker, D. Mudie and L. A. Rowe,"A Paper-Free Replacement foranEngineer's
Laboratory Notebook," Talkgiven at 1990 SRC/DARPA IC-CIM Workshop, (Berkeley,
CA), Aug. 1990.

[50] Ingres ABF/4GL Reference Manual, Ingres Corp, Alameda, California, June 1989.

[51] W. F. Tichy, "RCS - A System for Version Control," Software - Practice andExperience, vol.
15, no. 7, pp. 637-654, July 1985.

[52] T. J. Teorey, Database Modeling andDesign: The Entity-Relationship Approach, Morgan
Kaufinann, San Mateo CA, 1990.

[53] Using Ingres Through Forms and Menus, Ingres Corp, Alameda, California, June 1989.

[54] D. Chamess and L. A. Rowe,"CLING/SQL - CommonLisp to Ingres/SQL Interface,"
Electronics Research Lab. Memo 90.40, U.C. Berkeley, May 1990.

[55] B.W. Kemighan and D.M. Ritchie, The CProgramming Language, (Englewood Cliffs,NJ),
Prentice-Hall, 1978.

[56] Allegro COMMON USP User Guide, Franz Inc., Berkeley, California, Dec. 1989

[57] B. Stroustrup, The C++ Programming Language, (Reading, Massachusetts), Addison-
Wesley, 1986.

[58] M. E. Lesk, Lex- A Lexical Analyzer Generator, Computing Science Technical Report No.
39,1975, AT&T Bell Laboratories, Murray Hill NJ 07974.

[59] S. C. Johnson, Yacc: Yet Another Compiler Compiler, ComputingScience Technical Report
No. 32,1975, AT &T Bell Laboratories, Murray Hill NJ 07974.

143

[60] S. I Feldman, "MAKE - A Program for Maintaining Computer Programs," Software -
Practice and Experience, April 1989.

[61] B. C. Smith and L. A. Rowe, "An Application-Specific Ad Hoc Query Interface,"Electronics
Research Lab. Memo 90.106, U.C. Berkeley, May 1990

[62] Franz Inc, CommonLisp: The Reference, DigitalPress, 1989.

144

Appendix A

BPFL Language Reference Manual1

A.1 Introduction

This documentis a reference manual for the Berkeley Process-Flow Language(BPFL).It

describes the currentversion of BPFL forpeople who wantto codeprocesses or writeinterpreters.

Specifications written inBPFL describe the fabrication ofsemiconductor devices. Fabrica

tion requires many processing steps tobeperformed ina fixed sequence. The word process iscom

monly used todescribe two different aspects offabrication. The first usage refers to the entire

sequence ofoperations that result ina working device (e.g., a "0.35 umCMOS process"). The sec

ond usage refers to anoperation within the sequence (i.e., a processing step), usually associated

with one piece ofequipment (e.g., anoxidation process, animplantation process, or a photolithog

raphy process).

A BPFLprocess iscomposed ofa sequence ofsmallerprocesses. Acomplete processspec

ification, like "0.35 um CMOS,"is calledaprocessflow. In a BPFLprocess-flow specification,

processes are representedby procedures.

Thefabrication unitfrom a process design viewpoint is a wafer. In practice, processing is

performed onasetofwafers, called a lot. During aprocessing step, thewafers ina lotmay betreat

ed serially or in parallel, depending ontheequipment used. Alot andits controlling process spec

ification is called a run. In a typical fabrication facility, several runs, eachat a different stage of

completion, will beunderthecontrol ofone process specification. Within aranalotmay bedivided

into sub lots, each of which can be processed separately from the rest.

The intentof BPFLis to represent all information abouta fabrication process that will be

needed byanyapplication programs during the design, manufacture, andtesting ofsemiconductors.

Because different applications need different kinds ofinformation, aprocess flow actually specifies

several different views ofaprocess. Most application programs will be interpreters that extract in

formation from a BPFLprocess flow description according to theneedsof the application.

1Thisdocument is basedon [1].

145

BPFL is an extension to CommonLisp.The reference manualfor CommonLisp is Steele's

Common Lisp: The Language [2]. It is expectedthat BPFLwill be used in an environment that re

lieson a database.Consequently, someof the constructs in thelanguage areusedto createdatabase

objects that other parts of the language access.

The remainder of this document describes BPFL. It is organized as follows. The next sec

tiondescribes the syntaxof BPFL. The thirdsection describes thelanguage semantics. The remain

ing sections describe BPFLobjects andprocedures formanipulating objects.

A2 BPFL Syntax

BPFL has a block-stractured syntax similar to Pascal. The block-stractured notation is con

verted to Lisp syntax for execution by a BPFL interpreter.

Lisp has afunctional representation that is simpler than the typical representation of a

block-stractured language. AllLispcodeis represented asUsts A Ust isenclosedinparenthesesand

elements in a list are separated by spaces. Lispcodeconsists ofJunctioncalls and specialforms.

For example:

(format t "growth rate = " (log 1.23))

is a call to the function format thatprints messages. ThiscaU hasthree arguments. Eachof the

arguments is evaluated before the function is called.The first two arguments(t and "growth

rate = *•) are self-evaluating. The resultof evaluating a self-evaluating object is the object itself.

The third argument," (log 1.23)" is a function call. It is evaluated and the result of the evalua

tion is passed to format. So the function caUto format becomes

(format t "growth rate = " 0.0899051114)

Special formslookjust like functioncallsbuttheyevaluatetheirargumentsdifferently.For

example, the Lisp code:

(if (> a b)

(format t "a is bigger than b"))

prints "a is bigger than b"if the value of variable a is larger than the value of b. The argu

ments to if are not evaluated in the standard way, because if they were, the format function

would be called before the if statement is executed. The format function should not be called

unless the expression (> a b) is true. So if evaluates its first argumentand only evaluates the

second argument if the first argument it true.

146

BPFLhas functions, calledprocedures, thatcorrespond to Lisp functions. A BPFL proce

dure call for the Lisp format function call above is:

format(t, "growth rate = "f log(1.23))

The procedure name is moved outside theparentheses, which now containa list of the arguments

to the procedure. The arguments are separated by commas instead of spaces. As withLisp, the ar

gumentsto BPFLprocedures are evaluated beforethe procedure is called.

Insteadof function calls andspecialforms, block-stractured languagesuseprocedure calls

and statements. Procedure calls and statements are caUed operations. Statements use a special syn

tax involving tokens. For example, theBPFL if statement corresponding to the Lisp if special

form above is:

if a > b then

format(t, "a is bigger than b")

end;

Thisoperation "reads"moreUke a natural language rather thana functional representation. Theuse

of tokens (e.g., if and then) to delimit partsof the if special form makesthe function of each

partobvious. Thedisadvantage of thisapproach is thatthe if special form hasa verydifferent syn

taxthana procedure call,which makes code parsing more difficult By convention, tokens arewrit

ten in boldface. The tokens in the if statement are: if, then, else, and end.

BPFL expressions use infix notation (e.g., a > b) instead of theLispfunctional (orprefix)

notation (e.g., (> a b)). This is trae of all numerical operators (e.g., +, -) and logical operators

(e.g., >, <). While infix notationis easierto read, it has the disadvantage that ambiguitycan exist

in the interpretation of an expression. For example, the expression:

b + c * d

could mean either (b + c) * dorb + (c * d).In Lisp, no such ambiguity exists. The first

meaning is written as (* (+ b c) d) and the second meaning is written (+ b (* c d)).

BPFLuses the standardrales of operatorprecedence to resolveambiguityin expressions. Parenthe

ses may be used to override the operatorprecedencerules.

Assignment in Lisp is carried out with the setf function. The code fragment

(setf c (* a b))

assignsthe value of a * b to the variable c. BPFLreplaces the assignmentspecial form setf

with a conventional assignment statement BPFL code for the same operation is:

147

c := a * b;

Note also that BPFL uses semicolons (";") to separate procedure calls and statements. For exam

ple, the semicolons in

a := d * e;

format(t,"a = -s~%", a);

separate the assignment statement from the procedure call. Separators are not required in Lisp.

Common Lisp uses keywords both as argument names and as self-evaluating symbols.

Keywords are symbols that begin with a colon (e.g., : thickness, :direct ion), hi BPFL, key

words are used only as self-evaluating symbols. Argument names are specified by symbols that end

with a colon as described in the section on BPFL semantics.

A.2.1 Notational Conventions

A number of special notational conventions are used in this document The notation is de

rived from CommonLisp: TheReference [3]. Procedures, variables, named constants and state

ments are described in entries using a distinctive typographical format An example of an entry is

shown in Figure A-1. The first line ofeach entry is a header Une. On the left-hand side of the header

line is the entry name and on the right-hand side is the entry type (i.e., procedure, variable,

constant, definition, or statement). Each entry is followed by aUst ofone or more of the

following sections:

1. Usage. This section contains a template showing how the entry is used. Entries

for data types do not usually include a Usage section. More information about

the syntax of usage sections is given below.

2. Description. This section describes the entry. Every entry has a description

section.

3. Examples. This section contains examples ofcode illustrating how the entry is

used. More information about examples is given below.

4. See Also. This section contains references to other entries that either assist in

understanding the current entry or have closely-related functionality.

The usage section describes the way a statement or procedure is used. Literal code is pre

sented in courier (e.g., the name of a procedure). Tokens are printed in bold-courier (e.g.,

the with-lot, do and end tokens used in the with-lot statement.). Italic is used to indicate

148

placeholders that are replaced withliteral BPFL code(e.g., lot-spec in with- lot). Placeholder

names areused for illustration. They are referred to in the description section for the entry.

The usage section usesthe following special characters to represent optional andrepeating

elements of an entry:

1. Brackets ([]) containoptional arguments; what is inside may appearzero or

one times.

2. Braces ({}) parenthesize what they contain, but if followed by a *, the con

tents may appear zero or more times, and if foUowed by a +, may appear one

or more times.

3. A verticalbar I separates mutually-exclusive choices within bracesor brack

ets.

The examples sectioncontains samples of codeto illustrate the use of the construct de-

with-lot [Statement]

Usage with-lot lot-spec do
{operation; }+

end;

Description With- lot is usedto evaluate operations with the current lot set to the lots

specified in lot-spec. Lot-spec is either aquoted symbol thatis the name of alot, aquoted

Ust of lot names, or a variable whose value is a lot.

Examples
with-lot 'cmos do

std-wet-oxidation(time: {9 min}, temp: {1000 degC});

end;

=> t

with-lot '(cmos nwell) do

std-nitride-deposition(thickness: {1000 Angstrom});

end;

^ t

1 := lot('product);

^ #<Lot>

with-lot 1 do

begin

measure-oxide-thickness();

etch-oxide();

end;

=> t

Figure A-l: Example entry.

149

scribed in the entry. They are intended to showthe featuresanduse of the constract and do not nec

essarily represent the best programming style. The character =>represents evaluation. For

example, the entry:

2 + 5

^ 7

means that the sample code 2 + 5 evaluates to 7.

Sometimes the result of evaluation is an error. The notation used to indicate an error is the

word ERROR. For example,

Examples 5/0
=> ERROR

Occasionally values are printed, and the notation used to indicate what is printed is the word

PRINTS. For example,

Examples format(t, "Print some output");
=> PRINTS Print some output

Sometimes the result of evaluation is a complex structure or object. In general, objects are

represented by:

%<object-class [attributes] >

Object-class is the name of the class to which the object belongs. Attributes is an optional list of

one or more attributes of the object Attributes are usuaUy shownif they are an aid to identifying

the purpose of an object For example, in the following code fragment:

Examples (lot 'product)
=> #<lot :id 5>

the result of the evaluation is a lot object with id of 5.

A3 Data Types

BPFL supports primitive built-in data types such as integers and constructors that can cre

ate composite or structured data types such as lists.

A3.1 Primitive Data Types

The primitivedata types supported by BPFLare all available in CommonLisp. For a fur

therdiscussionof the data typesdiscussedin thissection,see Common Lisp: The Language, chapter

2.

integer [Data type]

Description The integer data type is intended to represent mathematical integers.

150

Examples 0, 1, +256, -10000

ratio [Data type]

Description The ratio data type allows theexactrepresentation ofnumbers such as one-third.

The denominator must be strictiy positive and have no leading sign.

Examples 1/2, 1/3, -7/8, 15/17

float [Data type]

Description BPFL supports the singleanddouble-precision formats described in Common

Lisp: The Language.

Examples 0.0, 0E+0, 3.13d-5, 3.01e-l, -0.0001e+9.

boolean [Data Type]

Description The boolean data type hastwo possible values t andni1, corresponding to the

Boolean values true dudfalse respectively.

symbol • [Data type]"

Description A symbol is a sequence of printable characters without any specialdelimiters.

The characters may be alphanumeric oranycharacterin the string"-*/@$% A?!&_<>.-".

Symbol names may have any numberofcharacters. Anything that cannot be interpretedas

a number is a symbol. Symbols areused to name variables and procedures.

The quote function can be used to return the symbol itself, ratherthan the result of

evaluatingthe symbol Quote can be abbreviated to the straightquote character(')

Examples oxidation, x, wombat, std-wet-oxidation, lumberjack
See Also quote

keyword [Data type]"

Description A keywordhasthe same syntax asasymbol,except thatthe first character of its

printrepresentation is acolon (":"). Keywords differ from symbols in that they self-eval

uate, meaning that the value returned by a keyword is the keyword itself.

Examples roxidation, izorkmid, :thickness, :qbd

string [Data type!

Description A stringis a sequence of printable characters delimitedby double quotes ("" ")•

A printable character is any non-control character in the ASCII character set If the back-

151

slashcharacter ("\") appears in a string, thefollowing character is included in the string,

even if thatcharacteris a backslash or a double quote. Thecaseof characters is significant.

Control characters (including newlines)appearing in strings are ignored.

Examples "string", "\"Hi!\»" "I'm a lumberjack and I'm ok"

k32 Data Type Constructors

Thesetypes havestructures andprintrepresentations thatinclude otherdata types.

list [Data type]

Description Alistisprinted asaleftparenthesis (" (") foUowed byzero ormore values of

valid BPFL types, foUowed bya right parenthesis (") ").Elements of theUst areseparated

fromone anotherby commas (", ")•Newlines between elements are ignored. The empty

Ust (" () ") is synonymous with thesymbol nil. Parentheses need notbe delimited by

spaces.

Examples (a, b, c), (1,2,3), (), (a,(b,c)) ((a))

complex numbers __ [Data type]

Description BPFL represents complex numbers incartesian form, withnon-complex real and

imaginary parts. Parts may be integer, rational or float.

Complex numbers are represented by the characters #C foUowed by aUst of the real

and complex parts.

Examples #C(1, 2), #C(1.2, 5.6), #c(l/2, 1/2)

unit [Data type]

Description A unitvalue consists of amagnitude (an integer, ratio, floating point orcomplex

number) andaunit expression (asymbol). The units supported by BPFL are based on

Systeme International (SI). Si uses seven base units: m(meter), kg (kilogram), s (second),

A (ampere), K(kelvins), cd (candela), and mol (mole). BPFL contains definitions for the

sevenbase units and alarge numberof compoundunits derived from these base units. Com

pound unitsare specified by amagnitude and aunitexpression For example, 1 angstrom

is LOxior10 m. Units multipUed together can be separated by adash ("-") oranasterisk

("*"). For example, "ohm-m" (a unitof resistivity) is ohm-m. The unitdesignator should

contain one slash ("/") to separate the numerator and denominator units.Forexample,

152

"meters per second" ism/s. Ifthere isnonumerator part, (e.g., "per second"), the unit des

ignator begins with aslash (e.g., /sec). Unit prefixes are letters that can be typed in front

ofaunit name to indicate powers often. For example, mA means "milhampere" (10 "3 A).

AU SI unitprefixes are supported except u. which is represented by u. Unit exponentiation

is represented by aunitfoUowed by acircumflex ("AM) and areal number exponent. The

unit"square meter" is represented as mA2. Parentheses can beused to group units for ex

ponentiation and division (e.g., kg*mA2/ (A*s/S3)). A unit value is printed as {number

unit-expression). Two unit-expressions that have the same dimensionaUty (i.e., that have

identical representations inbase units) are dimensionalty consistent. For example, A*ohm

and Vhave the samebase unit representation (i.e„ kg*m/N 2/ (A*sA3)) andare dimension-

aUy consistent. DimensionaUy consistent units can becompared, added and subtracted.

Examples {1000 A}, {20 um), {10.1 Mohm), {2.99792el0 cm/s),
{0.0259 V), {1.05458e-34 J-s)

interval [Data type]

Description An interval value consists of two numbers ortwo dimensionaUy-consistent unit

values. Complex number interval types are notsupported. The first itemin aninterval

should be lessthan orequal to thesecond item. An interval is printed as [item-1, item-

2]. The comma separating the items is optional, but is alwaysprinted on output

Examples [0, 1/2], [-1.0, 1.0], [{10 um), {20 um}]

object " [Data type]

Description An object contains one ormore named subparts caUed slots. Each slotmaycon

taina value with a different type.Objects maybe assigned to variables, passed as argu

ments to procedures, orreturned as the result of aprocedure. An object belongs to a class,

which defines the slot names and method names. If a class defines a particular slot then

eachinstance ofthatclass (i.e., each objectbelonging to thatclass) canstoreavalueunder

thename of thatslot. Certain procedures, caUed access procedures, return values stored in

the slots of an object

Methods are procedures. Several related classes willuse the same method name, but

each wiU bindadifferent procedure tothat name. Thus, whenthemethod name is invoked

on an object, the procedure used wiU bedetermined by the class of theobject. Many, but

153

notall, BPFLobjectsarestored in a database. Some predefined classes andobjectsaresup-

pUed in the language.

Objects have the following print representation:

#<object-class [attributes] >

Object-class is thename of theclass to which the object belongs. Attributes is anoptional

Ust of one or moreattributes of theobject Attributes are usuaUy written if theyare an aid

toidentifying thepurpose ofanobjectThe print representation ofanobject isnotgeneraUy

readable, meaning that theprintrepresentation does notnormaUy contain enoughinforma

tion to aUowBPFL to reconstruct the object from the print representation.AU objects have

a print-object method defined on them.

Examples Make a PIF snapshot
ss := bare-silicon-wafer(resistivity: [{100 ohm-cm} {1000 ohm-cm}],

dope: *n, orientation: '100,
quality: 'product);

=» #<Snapshot>

Make a wafer object
w := make-wafer (scribe: "MONTY", snapshot: ss) ;

=* #<Wafer :id 1>

format(t, "Wafer is -a", w);

=> Wafer is #<Wafer :id 1>

format (t, "Wafer is -a", wafer-scribe(w)) ;
^ PRINTS Wafer is MONTY

See Also snapshots, segments, attributes, classes and methods

A33 Classes and Methods

BPFL supports user-defined classes and methods.

defclass [Definition]
i

Usage defclass name
[docstr]
[inherits {superclass-list)]
slots {[classvar] name [:= expr];} +

end;

Description Defclass defines a class caUed name. Docstr is anoptional documentation

string. Any number of superclasses from which this class inherits maybe specified. Inher

itanceprecedence is determined by theorderin which the superclass-list names are sup-

pUed. Anynumber of slotsmaybe defined. Each slothasa name andanoptional initial

value expr that is usedto set the value of theslot if it is notspecified at the timeof class

154

instance creation. If the classvar keyword is specified for a slot, that slot is a class vari

able for the class (i.e., the slot has the same value for all instances of the class). Slots are

accessed by an accessor function whose name is the concatenation of the class name with

the slot name, separatedby a hyphen. Forexample, in a class named moscv a slot named

cmin can be accessed by the moscv-cmin function.

Defclass defines two default methods for every class. Print-object prints a

nonreadable version of a class instance, and make- instance creates a class instance.

Examples
defclass moscv

"MOS capacitance voltage data"

slots na; /* silicon doping cone */
dielectric := #m(oxide); /* insulator material */

measured; /* measured (i,v) pairs */

frequency; /* Frequency of measurement */

end;

=> t

x := make-instance('moscv, na: {1.0el3 /cm^2});

^ #<moscv>

moscv-dielectric(x);

=> #<material oxide>

defmethod [Declaration!

Usage defmethod name {class-name, arg-list)
[let {var [:= expr];) +]
begin

{operation; }+
end;

Description Defmethod defines amethod caUed name onthe class named class-name. The

method takes the arguments specified in arg-list. During themethod execution, theclass

instance on which the method is executed is bound to the local variable self.

Examples
defmethod measure (moscv, frequency: = {1 Hz});

begin
with-equipment e of-type 'cvprobe-station do

moscv-measured(self) :=

run-recipe(e, 'measure-cv, frequency: frequency);

end;

moscv-frequency(self) := frequency;

end;

x := make-instance('moscv, na: {1.0el3 /cm/v2});

=> #<moscv>

measure(x, frequency: {1 kHz});

=> {1 kHz}

moscv-measured(x)

155

=> #<array>

A.4 Program Structure

Statements are BPFL constructs that control the order of code execution. Every BPFL

statement corresponds to a Common Lispfunction caU, special form ormacro that is created when

the BPFLcode is parsedto Lisp.The restof thissection introduces eachof the BPFLstatements.

constrain [Statement]

Usage constrain
{operation;}*
{when expr do

{operation; }+
end;}+

end;

Description Executes operations in a context where various constraints areenforced. If the

constraint is violated, the operations in the appropriate when clause are executed.

Examples /* A fatuous example */
constrain

wet-oxidation(time: {40 min}, temperature: {1000 degC});

sleep({l day}); /* Stop the run for one day */

pattern(mask-name: 'NWELL);

when max-time-between('wet-oxidation, 'pattern, {1 hr}) do

halt-run("Constraint violated!");

end;

end;

^ PRINTS Constraint violated!

for-each [Statement]

Usage for-each var in list do
{operation;}*

end;

Description Executes the operations once for each element of list. During the first iteration of

the operations, var is bound to the first element of list. During subsequent iterations, var is

bound to subsequent elements.

Examples
let result := nil;

begin

for-each x in '("abc", "fumble", "test") do

push(length(x), result);
end;

result;

end;

=> (4, 6, 3)

156

handler-case [Statement]

Usage handler-case
{operation;}*
(on-exception var := condition-type do

{operation; } +
end;}

end;

Description Handler-case executes statements inacontext where various specific excep

tion-handlers are defined. If during theexecution of theoperations acondition is signaUed

for whichthere is anappropriate exception clause defined (i.e., the condition hastype con

dition-type), then the exception-handler for that condition isexecuted. During execution of

the handler, the variable var is bound to the condition.

Examples
defcondition tylan-error((), program, step-number);

=> #<condition>

handler-case

raise-exception('test, program: "SWETOXB", step-number: 10);
on-exception c- := test do

format(nil,"Error during furnace run, recipe -a, step -a."
tylan-error-program(c), tylan-error-program(c));

end;

end;

=> "Error during furnace run, recipe SWETOXB, step 10."
See Also defcondition

if [Statement]

Usage if expression then
{operation;}*

[else

{operation;} +]
end;

Description Evaluates and returns the result of the operations foUowing then if expression

is true, otherwise evaluatesand returns the resultof the operations foUowing else.

Examples
nominal := [1, 2] ;
if interval-p(nominal) then

make-interval(0.5 * interval-min(nominal),
2.0 * interval-max(nominal))

else

make-interval(0.5 * nominal, 2.0 * nominal);

end;

=> [0.5, 4]

157

let [Statement]

Usage let {var := expr;} +
begin

{operation;}*
end;

Description Let is used to evaluate operations within the contextof specific variable bind

ings. Let returns thevaluereturned by thelastoperation. Any numberofvariable bindings

may be estabUshed. Var is the nameof thevariable to be bound, and expr is anexpression

that is evaluated to establish the value of var.

Examples
let t := {0.1 um);

etch-rate := {10 nm/min};
etch-time := nil;

begin

etch-time : = oxide-thickness / oxide-etch-rate;
format(nil,"Etch time is -s",etch-time);

end;

=> PRINTS "Etch time is {10 min}"

rework-loop [Statement]

Usage rework
{operation;}*
[rework-test expr]
[rework-prefix operation]
[retry-count expr]
[retry-failure operation]

end;

Description Executes operations in a context where the operations, caUed the rework body,

may be executed multiple times. Rework has fouroptionalclauses:

1. Rework-test is a procedure that is caUed aftereachexecution ofthe rework

body.

2. Rework-prefix is an operation thatis executed beforethe reworkbody is

executed.

3. Retry-count is an integerexpressionthat returns the maximum number of

iterations of the rework body.

4. Retry-failure is anoperation thatis executedifthe retry-count is ex

ceeded.

Before the reworkbody is executed,the retry-count expression is evaluated. Then the

158

rework body is executed. Next, the rework-test expression is evaluated. If it returns

nil, the rework loop is terminated. If it returns any other value, the following actions oc

cur First, retry-count is decremented. If it is less than zero, the retry- failure op

eration is executed; otherwise, the rework-prefix operation is executed, and then the

rework-body operation is executed again. The whole process repeats from the rework-

test evaluation.

A program can force a rework by raising a rework exception.

Examples
lot i := l;

rework-loop

format(t, "i = ~s,");

i := i + 1;

rework-test i < 3

retry-count 10

end;

=> PRINTS i = 1, i = 2

step [Statement]

Usage step name do
{operation;} +

end;

Description Step names the operations enclosed within it for documentation purposes.

Examples /* step-path() returns a string that contains the current
step path for the flow */

step 'NWELL do

step 'IMPLANT do

step-path();

end;

end;

=> "NWELL/IMPLANT"

See Also step-path

view [Statement]

Usage view viewspec do
{operation;) +

end;

Description View is a shorthand version of viewcase useful when only one view needs to

be specified.

Examples
view simulation do

/* assign nil lots to test lots */

lot('NWELL) := nil;

159

lot('NCH) := nil;

end;

viewcase [Statement]

Usage viewcase
(when viewspec do

{operation-, }+
end;}+

end;

Description Viewcase is usedto control theexecution of sections of BPFL codedepending

on whatcapabilities aninterpreter possesses. A viewspec is a predicate of views.

Examples
viewcase

when fabrication do

develop-resist(mask-name: mask-name);

end;

when simpl do
simpl-op("DEVL","ERST");

end;

end;

See Also view

while " [Statement]

Usage while expr do
{operation;} +

end;

Description Executes the operations until expr returns ni1. If expr returns ni1 when first

evaluated, the operations will not be executed.

Examples
let i := 4;

j := 0;
begin

while i > 1 do

j = j + i;
i = i - 1;

end;

format(t, "j = ~s", j);
end;

=* PRINTS j = 9

with-equipment [Statement]

Usage with-equipment var of-type equipment-spec do
{operation; }+

end;

Description With-equipment is used to execute operations with anallocated piece of

160

equipment. An object representing a piece of equipment satisfying equipment-spec is as

signed to var.The equipment is allocated before the operations are executed and deallocat

ed after they are completed.Equipment-spec is a symbol representing the name of a piece

of equipment to be allocated.

Examples Assumethat a spinnercalledy1-mt i -spinner has been defined,
with-equipment e of-type 'spinner do

format(nil, "allocated ~s", e) ;

end;

=> PRINTS "allocated #<equipment :name yl-mti-spinner>"

with-lot [Statement]

Usage with-lot lot-spec do
{operation;}*

end;

Description With- lot is used to evaluate operations with the current lot set to the lots

specified in lot-spec. Lot-spec is either a quoted symbol that is the name of a lot, a quoted

list of lot names, or a variable whose value is a lot

Examples
with-lot 'cmos do

std-wet-oxidation(time: {9 min), temp: {1000 degC});

end;

=> t

with-lot '(cmos nwell) do

std-nitride-deposition(thickness: {1000 Angstrom});

end;

=> t

1 := lot('product);

=» #<Lot>

with-lot 1 do

begin

measure-oxide-thickness() ;

etch-oxide();

end;

=> t

A.4.1 Definitions and Declarations

Definitions and declarations supply information about a program. They are used to specify

entities in a facility, global variables and constants, and process procedure libraries in a process

flow.

defglobal [Definition]

Usage defglobal name := expr;

161

Description Defglobal isused todefine aglobal variable. Name isasymbol that names the

variable. Expr is evaluated and thevalue returned by it is stored in thevariable.

By convention, thenames of global variables begin and end withasterisks ("*")• The

use of global variables in discouraged.

Examples
defglobal *resist-thickness* := {1.0 urn) ;

=> {1.0 um}

resist-thickness := {5 km);

=> {5 km)

See Also defconstant

defconstant [Definition]

Usage defconstant name := expr;

Description Defconstant defines aglobal constant Name is asymbol that names thecon

stant Expris evaluated andthe value returned by it is the constant.

By convention, thenames of global constants begin and end with asterisks ("*"). It is

illegal for auserto attempt tochange thevalue of aconstant defined withdefconstant,

or to attempt to redefine it using anotherdefconstant.

Examples
defconstant *permittivity* := {8.85418e-14 F/cm)

=> {8.85418e-14 F/cm)

♦permittivity* := 12.5;
=» ERROR

defconstant *permittivity* (1 / (*permeability* * (*c*)yv2));
=> ERROR

See Also defglobal

require [Declaration]

Usage require {library-name, [version: version]);

Description Require isused to indicate that aBPFL code module uses the procedures and

declarations in acode library. Library-name is the name of thelibrary to use. Version is a

string orsymbol that indicates what version of thelibrary touse. If version is a string con

taining an RCSrevision numberorarevision tag, that version of the module isused. If ver

sion is asymbol, thelatest version of the module is used and the symbol determines what

action BPFL will take ifa new version ofthe module is created. The allowable symbols are:

1. Stat ic - the library code is never updated,

162

2. Latest - the library code is always updated whenever a new version is

checked in.

3. Query - whenever a new version of the library is checked in, the user is asked

if the library should be updated.

Examples Use version 1.1of the 1itho 1ibrary.
require(litho, version: "1.1");
Use the ucb-std library with version tag "contact."
require(ucb-std, version: "contact");
Use the latest version of litho and query the user for updates
require(litho, version: query);

A.4.2 Procedure Calls

Procedure calls are represented as a symbol followed by a list of arguments enclosed in pa

rentheses. The symbol is the name of the procedure to be called. The list comprises the actual ar

guments to the procedure. There are two kinds of arguments: positional and named.For positional

arguments, each element in the actual argument list corresponds to an argument in the formal argu

ment list The order of the elements of the list is significant when assigning actual values to the for

mal arguments ofthe procedure being called. Fornamed arguments, the elements ofthe list are used

in pairs. The first memberofa pair must be a name. The second member is the argument value. The

argument value is passed as the named argument The order in which arguments are given is not

significant because formal arguments are assigned by name. It is an error for a named argument to

have a name and no value.

If both positional and named argumentsare to be passed to a procedure, then the positional

arguments must appear first in the list

Examples
lot-name(1); /* one positional argument */
set-union('(a,b,c), '(d,e,f)); /* two positional arguments */

/* two named arguments */

std-wet-oxidation(time: {llmin}, temp: {900 degC});

/* a positional argument and a named argument */

sort(1ist, descending: t);

getf(result,:rework); /* two positional arguments */

163

A.4.3 Procedure Definitions

defflow [Definition]

Usage def flow name ({arg-list})
[docst ring]

[lot {var := expr;} +]
begin

{operation; }+
end;

Description Def f low is used to define BPFL procedures. The global symbol name is given

a procedure definition. Docstring is an optional string that is used to document the proce

dure. Local arguments for the proceduremay be defined in the optional let statement.

Any number of local variable bindings may be established. Var is the name of the local

variable to be bound, and expr is an expression that is evaluated to establish the value of

var. Arg-list is the formal argument list The body of the procedure is given by the opera

tions appearing between the begin and end.

Examples Here is a procedure thatcomputes powers of two using arecursive algorithm,
defflow rpower-of-two (n)
begin

if n = 0 then

1;
else

rpower-of-two(n - 1) ;

end;

^ rpower-of-two

rpower-of-two(3)

=> 8

rpower-of-two(24)

=> 16777216

AA3.1 Argument Declarations

The argument-declaration defines the formal arguments. Positional arguments are speci

fied by symbols. Named arguments are specified by the name of the argument The was-sup

plied function can be used to tell if a named argumenthas been passed. Was-supplied takes

an argument name and returns the value nil if the argument was not passed, and t if it was.

Named arguments can also have default values. Each named argument variable-specifier

has the following syntax:

name: { = initexpr }

name names the variable. Initexpr is an optional initialization expression that is used to initial

ly

Common Lisp BPFL Description

(a b c) (a,b,c) Three positional arguments.

(&key (a 5) be) (a: = 5#b,c) Three named arguments, with a default value of
5 for the first argument.

(a b c &key test) (a,b,c,test:) Three positional arguments and one named
argument.

(&key (test t test-
supplied))

(test: = t) One named argument with a default value and a
was-supplied variable.

Table A-1: ComparisonbetweenCommonLisp and BPFL argu
ment lists.

ize the variable. Further discussion of the argument-declaration list is found in the section on se

mantics. Table A-1 containsexamplesof howCommonLisp andBPFL argument lists differ. BPFL

does not support optional positional arguments.

AA3.2 Procedure Body

The procedurebodyis a boundarythatdefinesthe scopeoflocal variables and control flow.

Local variable names do not affect the user of the same name in other procedure bodies. Control of

the execution sequence within the procedure body is restricted to that procedure. Control may not

be transferred to another procedure except by calling a procedure, exiting the current procedure

body, or raising an exception. The procedurebody is composedof statements and procedure calls.

A.5 BPFL Semantics

This section describes the semantics of BPFL that must be preserved by all interpreters. In

terpreters can provide additional functionality as long as these basic semantics are not violated.

Each step in a process specifies an operation to be carried out according to the process spec

ification. The interpreter analog to a step is evaluation. Evaluationproduces a resultvaluefor each

expression and statement For example, the resultof evaluatinga variable is the value of the vari

able. The next three sub-sections describe the behavior of constants, variables and procedure calls

when they are evaluated.

A.5.1 Constants

Constants evaluate to the value they denote (i.e., they self-evaluate). When a number (e.g.,

integer, ratio, floating pointor complex)is evaluated,the resultvalue isjust the number (except that

integralvalued ratiosmay be converted to integers duringevaluation.Strings, unit values, intervals,

andkeywordsalso self-evaluate. The symbolst andni1, representingthe Booleanvalues true and

165

false respectively, are the only self-evaluating symbols.

A.5.2 Variables

Any symbol thatisnotakeyword canhave avalue. This value is returned when the symbol

is evaluated. If the symbolhas not had a value assigned to it, anerrorresults. The assignment op

erator : = is used to set the value of a symbol. The quote specialprocedure may be used to return

a symbolas the resultof evaluation rathermanthesymbol's assigned value.

There are two classes of variables: local and global.The formal arguments of a procedure

are local variables. Local storageis allocated to holdthevalue of the actualargument. The same

symbol canbe used in different procedures to name a local variable. These variables (i.e., storage

locations) aredistinct Thus,a symbol hasan assigned value foreachprocedure thatit is used in. A

value must be assignedin each procedurebeforethe variable can be used.

A.5.3 Procedure Calls

There aretwotypes of procedures thatcanbecalled: built-in procedures (i.e., those imple

mented directly by an interpreter, such as user-dialog) and user-defined procedure (i.e., a pro

cedure defined by defflow). Theactual arguments toaprocedure aredetermined in thesameway

for all typesof procedures, exceptfor special built-in procedures.

The evaluationof a procedurecall is composed of the following steps:

1. Evaluate actual arguments,

2. Determinate the procedure to be called,

3. Initialize formal arguments and local variables, and

4. Execute the procedure body.

Each argument isevaluated and the result becomes anargument tothe procedure. Inthe case of

named arguments, only thevalue is evaluated. The division between positional and named argu

ments is determinedbefore evaluationbegins(i.e., it is syntactically determined).

If theprocedure name is not recognized bythe interpreter as a built-in procedure, it is as

sumed to be a user-defined procedure. If no user-defined procedure withthatnameexists, an error

is raised.

Once a procedure body has been found for execution, the actual arguments areassigned to

the formal arguments oftheprocedure. BPFL argument passing isalmost identical toCommon Lisp

166

argument passing, with one difference. The was-supplied function is used to determine if a

named variable was passed to a procedure. Was-supplied takes the name of an argument and

returns t if it was passed and nil otherwise. Common Lisp was-supplied variables perform the

same function.

Afterthe formalargumentshave been initialized,the localvariablesdefined in the let part

of the def flow areinitialized in orderof specification.If an initialization expression is given, the

operationis evaluated andthe result is used to initializethe variable. Otherwise, the variableis ini

tialized to nil. Initializationexpressionsmay reference any local variable (or formal argument)

that has already been initialized.

Once the arguments and local variables have been initialized, the procedure is evaluated.

When evaluation of the procedure body is complete, the procedure returns.

A.5.4 Attributes

Objects in BPFL have attributes.Forexample, a mask has a location attribute. Many

objects in BPFL form ahierarchy (e.g., materials andequipment). Objects in ahierarchy inheritat

tributes from their parents or superclasses. Forexample, in the material definitions:

defmaterial silicon ((), atomic-weight: 28);
defmaterial si ((silicon), monocrystalline: t);
defmaterial si29 ((si), atomic-weight: 29);

The silicon material has a single attribute atomic-weight with a value of 28. Si has two

attributes, atomic-weight and monocrystalline, with values 28 and t respectively. Si29

also has two attributes, but the value for atomic-weight is 29, because the value supplied in the

definition for si29 overrides the value inherited from si.

The above example is for simple attributes. Simple attributes have just a single value asso

ciated with them. Forexample the integer 28 is the value for the atomic-weight attribute for

si. Attributes can also be complex. Complex attributes have attributes attachedto them. For exam

ple, in the equipment definition:

defequipment spinner ((),
recipes: (spin-on-resist: (frame: spinner),

strip-resist: (frame: spinner),
develop-resist: (frame: spinner, spin-dry: t))) ;

spinner is an equipment definition with one attribute, recipes. Recipes has three attributes:

spin-on-resist, strip-resist, and develop-resist. Each of these attributes in turn

167

has attributes. Spin-on-resist, strip-resist and develop-resist all have frame at

tributes, and develop-resist also has a spin-dry attribute.

Complex attributes inherit recursively. For example, if another piece ofequipment is de

fined:

defequipment yl-mti-spinner ((spinner),
recipes: (spin-on-resist: (program: 1, frame: mti-spin),

strip-resist: (program: 3),
develop-resist: (program: 70)));

recipes stillhas three attributes (i.e., spin-on-resist, strip-resist, anddevelop-

resist), buteach of those attributes has a new attribute named program. The frame attribute

of spin-on-resist has the value mti-spin.

Suppose aBPFL procedure defines two material instances1:
ml := #m(poly nominal-thickness: {100 nm},

dopant: #m(phosphorus);

m2 := #m(poly nominal-thickness: {200 nm}
dopant: #m(phosphorus));

Comparing the two materials with the =operator returns nil, because the materials have different

values for the nominal-thickness attribute. However, if m2 is defined as

m2 = #m(poly dopant: #m(phosphorus))

thenml = m2 returns t, because ml andm2 haveidentical values for attributes that both of them

possess.

A.6 Wafer State Representation

BPFL maintains wafer-state representation byusing a version of the Profile Interchange

Format (PIF [4]). The state ofa wafer is represented by a snapshot. Snapshots are composed of

three types ofobjects: boundaries, segments and attributes. Snapshots are also objects.

Attributeshave two slots: a name and a value. The valuestoredin an attributecan be of any

type. Boundaries have two slots: upper and lower. These contain pointers tosegments above and

below theboundary, Segments have noslots; they are objects towhich attributes and boundaries

are attached byreference. The association between segments, attributes and boundaries isdone with

a snapshot. Snapshots have four slots. Parent isa pointer tothe snapshot that was used in the cre

ation ofthis snapshot Segments isa listofsegments within asnapshot. Attr-hash isa hashtable

1 #m is shorthand forthe material procedure that creates material instances.

168

#<Attr docation 8>

Figure A-2: Bubble diagram for sample wafer.

which contains references to all objects in a snapshot. The key to attr-hash is an object (i.e., a

boundary, segment or attribute) and the value retumed is alist of attributes and boundaries attached

to the object Rev-hash is a hash table that maps attributes is a snapshot to the list ofobjects that the

attributes are attached to.

For example, consider, the snapshot createdby the procedure call:

ss := bare-silicon-wafer(

resistivity: [(18 ohm-cm}, {22 ohm-cm}], dope: 'p,
crystal-face: '100, quality: 'product);

Figure A-2 shows the PIFbubble diagram for the wafer state represented by the snapshot stored in

the ss variable. The parent slot of ss is nil, because this is a new snapshot It would be non-

nil only if the snapshot were a modified version of an older snapshot This situation arises when

some wafers that share the same snapshot areprocessed differently from other wafers with the same

snapshot Table A-2 contains a descriptionof allofthe objects in the snapshot. Every object has an

identifier (id) that is unique within a given run. For example, the segment describing the ambi-

Oblect Description

#<Seqment -1> The ambient segment.

#<Snapshot 2> The snapshot describing the wafer.

#<Attr :origin-step 3> An attribute describing the step-path at which the snapshot was
created.

#<Segment 4> The silicon segment.

#<Boundary 5> The boundary between silicon and ambient.

#<Attr :material 6> The material attribute attached to the silicon segment.

#<Attr -.origin-step 7> An attribute describing the step-path at which the silicon segment
was created.

#<Attr :location 8> The locationof the boundary between the silicon and ambient
segments.

Table A-2: Example snapshot objects.

169

Value

(#<Boundarv 5>)

(#<Attr ;origin-step 3>)

Key
#<Segment -1>

#<Snapshot 2>

#<Attr :origin-step 3> nil

(#<Attr :origin-step 7> #<Attr rmaterial 6>
#<Boundary 5>)

#<Segment 4>

(#<Attr ;location 8>)#<Boundary 5>

#<Attr ;material 6> nil

#<Attr ;origin-step 7>

#<Attr :location 8>

nil

nil

Table A-3: Attr-hash slot contents.

ent has an id of -1. System-defined objects (such as ambient) have negative ids. System-de

fined objects are maintained bythe BPFL interpreter and the user may not alter them. User-defined

objects are numbered sequentially from 1upward. For example, the snapshot objea has an id of

2. Every time asnapshot or segment iscreated, the BPFL interpreter attaches an origin- step

attribute to the snapshot or segment This isdone so that the user can see when particular parts of

the snapshot were created.

The segments slot contains alistof the segments inthe snapshot in reverse order to

which they were created. In this example, segments has the value (#<Segment 4> #<Seg-

ment -1>). The contents of the attr-hash slot for the snapshot are shown in Table A-3.For

example, the ambient segmenthas the boundary betweenthe two segments attached to it, because

the boundary exists between ambient and another segment Likewise, the snapshot has an ori-

gin- step attribute attached to it

Table A-4 showsthe contents of the rev-hash table. This table contains anentry forev

ery attribute in asnapshot. The entry is alist ofthe objects to which the attribute is attached. This

information canbe deduced from the contents of the attr-hash table, but rev-hash makes

many PIF queries easier to implement.

Kev Value

#<Attr :origin-step 3> (#<Snapshot 2>)

8<Attr material 6> (#<Segment 4>)

#<Attr :origin-step 7> (#<Segment 4>)

#<Attr :location 8> (#<Boundarv 5>)

Table A-4: Rev-hash slot contents.

170

Consider executing the PIFoperation:

grow-in-lot(#m(substrate), material: #m(oxide),

nominal-thickness: {100 nm});

This operation adds a new segment of oxide above the silicon in the wafer. The new PIF snapshot

for the wafer is shown in Figure A-2. Assuming that the grow- in- lot operation is applied to

only some of the wafers with the snapshot in Figure A-3, it is necessary to create a new snapshot

for those wafers that areto have oxide grown on them. The result ofexecuting grow- in-lot cre

ates a new snapshot #<Snapshot 9>.The parent slot of this snapshot is #<Snapshot 2>.

The new snapshot shares the original attributesof the parent snapshot if possible. Table A-5 lists

the objects for the new snapshot Note that the segments and attributes of the parent snapshot are

retained wherever possible. For example, the location attribute describing the boundary be

tween substrate and oxide in the new snapshot is the same attribute used in the original snap

shot to describe the boundary between substrate and ambient, because oxide will only grow

at that boundary. Table A-6 shows the attr-hash slot for the snapshot after the operation.

As an example of querying the snapshot suppose we wanted to find all oxide segments

on the surface of the wafer. Since surface segments have the property ofbeing adjacent to the am

bient segment, one approach to solving this query is to get the value of attached boundaries for

the ambient segment using the attr-hash table, andto returnthe listof segments in the lower

#<Attr Jocation 8>

fkAttr dotation 17>

Figure A-3: Bubble diagram for sample wafer after oxide growth.

171

Object

#<Segment -1>

#<Seqment 4>

#<Attr rmaterial 6>

#<Attr :origin-step 7>

#<Attr :location 8>

#<Snapshot 9>

#<Attr :origin-step 10>

#<Segment 11>

#<Attr :material 12>

#<Attr :nominal-thickness 13

#<Boundary 14>

#<Attr :origin-step 15>

#<Boundary 16>

#<Attr location 17>

Description

The ambient segment.

The silicon segment.

The material attribute attached to the silicon segment.

An attributedescribingthe step-path at which the silicon
segment was created.

The location of the boundary between the silicon and
oxide segments.

The snapshot describing the wafer.
An attribute describing the step-path at which the snapshot
was created.

The oxide segment.

The material attribute attached to the oxide segment.

>The nominal-thickness attribute attached to the oxi
segment,

The boundary between oxide and ambient
An attribute describing the step-path at which the oxide
segment was created.
The boundary between silicon and oxide
The location of the boundarybetween the silicon and
ambient segments.

Table A-5: New snapshotobjects.

slotot eachboundary. The BPFLprocedure find- surface- segment s - in- lot performs this

operation on all snapshots forwafersin the current lot:

segs := find-surface-segments-in-lot(ss) ;

Find- surface- segments canbe instructed to return only segmentswith particular attributes.

Kev Value

#<Segment -1> (#<Boundary 14>)

#<Segment 4> (#<Boundary 16> #<Attr :origin-step 7> #<Attr
rmaterial 6>)

#<Attr :material 6> nil

#<Attr :origin-step 7> nil

#<Attr :location 8> nil

#<Snapshot 9> (#<Attr rorigin-step 10>)

#<Attr :origin-step 10> nil

#<Segment 11> (#<Boundary 16> &<Attr rorigin-step 15>
#<Boundary 14> 8<Attr :nominal-thickness 13>
#<Attr rmaterial 12>)

#<Attr rmaterial 12> nil

#<Attr :nominal-

thickness 13 >

nil

#<Boundarv 14> (#<Attr location 17>)

#<Attr :origin-step 15> nil

#<Boundary 16> (#<Attr rlocation 8>)

#<Attr location 17> nil

Table A-6: Attr-hash table for new snapshot.

172

For example, to find all oxide surface segments:

segs := find-surface-segments-in-lot(ss,

material: #m(oxide));

The variable segs contains a list of all oxide surface segments. Ordinarily only one such segment

would exist, but it is possible to restrict the search to find segments at a particular location using

the procedure find- surface-segments -at- location. In general, the userneeds to specify

enough information about the desired segment to ensure that it is unique if only one segment is re

quired. The procedure pif-attr-val returns the value associated with any pif attribute. So the

procedure call:

pif-attr-val-in-lot(segs, :nominal-thickness, ss) ;

returns a list of all the nominal-thickness attributes for the surface oxide segments. If only

one of the values in the list is required (e.g., the maximum oxide thickness on the surface), a pro

cedure can be used to obtain the desired value (e.g., the max procedure could be used to extract the

maximum value from the list).

The remainder of this section lists BPFL procedures for creating, modifying and querying

snapshots and PDF objects.

A.6.1 Creation and Manipulation of PIF objects.

make-root-snapshot [Procedure]

Usage make-root-snapshot()

Description Creates a PIF description of a snapshot with no objects. Objects must be created

and attached using other PIF procedures

make-segment [Procedure]

Usage make-segment ()

Description Creates a PIF segment. The segment is not part of any snapshot until explicitly

attached using add- segment.

make-boundary [Procedure]

Usage make-boundaryUegi, seg2);

Description Creates a boundary between the two segments segl and seg2.

173

make-pif-attr

Usage make-pif-attr (name, value);

Description Creates a pif attribute withthespecified name and value.

snapshot-p

pif-attr-p

segment-p

boundary-p

pif-object-p

Usage snapshot-p (org);
pif-attr-p (org) ;
segment-p[org) ;
boundary-p(arg) ;
pif-object-p (org) ;

[Procedure]

[Procedure]

[Procedure]
[Procedure]

[Procedure]

[Procedure]

Description These procedures return t iforg isofthe appropriate type; otherwise, return ni1.

For example, snapshot-p returns t iforg isasnapshot Pif-object-p returns t if

org is a snapshot, pif attribute, segment orboundary.

Examples
ss := make-root-ss();

^ #<snapshot>

snapshot-p(ss);

=> t

boundary-p(ss);
^ nil

pif-object-p(ss);
=> t

add-segment

Usage add-segment {ss, seg);

Description Adds the segment seg to the snapshot ss.

bind-boundary

[Procedure]

[Procedure]

Usage bind-boundary {ss, b [,oldb]);

Description Adds the boundary b tothe snapshot ss. Ifathird argument oldb, which must be

aboundary inss,isspecified, then breplaces oldb inthe snapshot The segments above and

below oldb are attached to b.

174

snapshot-parent [Reader]

snapshot-attr-hash [Reader]

snapshot-rev-hash [Reader]

snapshot-segments [Reader]

Usage snapshot-parent {ss);
snapshot-attr-hash (ss);
snapshot-rev-hash {ss);
snapshot-objects(w) ;

Description These procedures return the appropriate slots for the snapshot ss.

snapshot-objects [Procedure]

Usage snapshot-objects(M) ;

Description This procedure returns alist of allof the PIF objectsin the snapshot ss.

object-in-ss [Procedure]"

Usage object-in-ss {ss,obj);

Description Returns t if the pif object obj is in the snapshotss, otherwise ni1.

bound-pif-attrs [Procedure]

Usage bound-pif-attrs (ss, obj);

Description Returnsa list of all pif objects in snapshot ss thatarebound to the pif object obj.

boundary-upper [Reader]
boundary-1ower [Reader]

Usage boundary-upper(ft);
boundary-lower(b);

Description These procedures return the appropriate slots for the boundaryb.

pif-attr-name [Reader]
pif-attr-value [Reader]

Usage pif-attr-name (attr);
pif-attr-value (attr) ;

Description These procedures return the appropriate slots for the pif attribute attr.

pif-attr-val [Acessor]

Usage pif-attr-val (ss, obj, name, [, default]);
pif-attr-val (ss, obj, name) :- val;

Description This procedure accesses the valueof anattribute bound to a pif object.

175

The first usage returns thevalue of theattribute named name attached to thePIF object obj

inthesnapshot ss. If no such attribute exists, the value default is returned. If default is not

supplied andthe attribute doesnotexist,nil is retumed.

The second usage sets the value of the specifiedattribute to val.

remove-pif-object _____ [Procedure]

Usage remove-pif-object (ss, obj);

Description Thisprocedure removes thePIF object obj from the snapshot ss.Objand all at

tributes attached to it are removed.

A.6.2 Snapshot modification

etch-segment " [Procedure]
etch-segment-in-lot [Procedure]

Usage etch-segment (ss, s, loc);

Description Etch- segment removes thesegment s atthelocation loc in the snapshot ss.

lot-snapshots [Procedure]

Usage lot - snapshots ({lot-name)) ;

Description Returns alistof snapshots used by wafers inthe specified lots. If nolotnames

aresupplied, the current lot is assumed.

segments-in-lot [Procedure]

Usage segments-in-lot({lot-name});

Description Returns alistof all segments insnapshots for wafers inthe specified lots. Ifno

lot name is supplied,the current lot is assumed.

176

find-segments [Procedure]
find-surface-segments [Procedure]
find-surface-segments-at-location [Procedure]
find-segments-in-lot [Procedure]
find-surface-segments-in-lot [Procedure]
find-surface-segments-at-location-in-lot [Procedure]

Usage find-segments (ss (, name: value)*);
find-surface-segments (ss {.name: value}*);
find-surface-segments-at-location(w, loc {,name: value}*);
find-segments-in-lot (name: value {jname\ value}*);
find-surface-segments-in-lot(name: value {jiame: value}*);
f ind-surface-segments-at-location-in-lot (loc,

name: value (jnamex value)*);

Description These procedures return a list of segments with attributes matching those sup

plied. Any number of attribute name,value pairsmay be passed to these procedures.

Find- segments returns all segments in the snapshot ss with attributes named name and

value value. Find-surface-segments returns all segments in the snapshot with the

specified attributeson the surfaceofthe wafer. Find-surface- segments-at- loca

tion returns all surface segments at the location loc.

Find-segments-in-lot, find-surface-segments-in-lot, and find-

surface-segments-at-location-in-lot are identical to the above procedures

but operate on all snapshots in the current lot

deposit-in-lot [Procedure]

Usage depos it- in- lot (loc (, name: value }*);

Description This proceduredeposits a segment on allwafers in the lot at the location loc. The

segment will have the specified attributes attached to it

grow-in-lot [Procedure]

Usage grow-in- lot (mat (, name: value }*);

Description This procedure simulates growing a segment on top of segments with material at

tribute mat.

etch-material-in-lot [Procedure]

Usage etch-material-in-lot(mat, loc);

Description This procedure etches all surface segments ofmaterial mat. The segments are re-

177

Slot Description

snapshot Pointer to PIF snapshot describing the wafer state.

id inteqer uniquely identifyingthe wafer in a fab.

index Integer uniquely identifyingthe wafer in a run.

scribe String containing the wafer scribe

Table A-7: Wafer class description.

moved at location loc.

A.7 Wafer and Lot Specification

BPFL represents wafers using the wafer class described inTable A-7. Wafer has four

slots:

1. snapshot is a pointerto a PIF snapshot describing the wafer (see section

A.6.1).,

2. id is an integer that uniquely identifies the wafer in the fab,

3. index is an integerthat uniquely identifies the wafer in the run, and

4. scribe is a string containing the wafer name.

Wafers are createdusingthe initialize-wafer procedure. For example,

w := initialize-wafer(snapshot: make-root-ss(),
scribe: "CMOS-1");

creates a wafer witha newsnapshot anda scribe.of "CMOS-1." Allocate-wafers does not

have an index argument, and the index and id slots inthewafer class aregenerated automat

ically bythe BPFL interpreter. Once awafer iscreated, auser may not change any ofthe values in

the slots. Normally, wafers arecreated using the allocate-lot procedure described below.

Lots are represented using the lot class shown inTable A-8. Lot has two slots:

1. id, which contains a unique integer for the lot, and

2. bits, which is an integer thatis used to indicate which wafers arepresent in

the lot

The least-significant bit in bits is used to represent the wafer with index of 1.Thenextleast-

Slot Description

id Integer uniquely identifying the lot.

bits integer representing wafers present in the lot.

Table A-8: Lot class description

178

significant bit is usedto represent the waferwith index of 2 and so forth. Forexample,ifthe value

ofbits is 35, the lot contains the wafers with indices 1,2, and 6 (3 5 in binary is 100011). Lots

are createdusing the allocate- lot procedure. Every lot is also associated with a name, which

is a symbol used to name the lot.

initialize-wafer [Procedure!

Usage initialize-wafer (scribe: string,
snapshot: ss) ;

Description This procedure creates a wafer object with the specified scribe and snapshot

slots.

Examples
w := initialize-wafer(scribe: "TEST",

snapshot: bare-silicon-wafer()) ;

=* #<Wafer :id 1>

wafer-scribe(w);

=> "TEST"

wafer-id [Reader]

wafer-index [Reader]

wafer-scribe [Reader]

wafer-snapshot [Reader]

Usage wafer-id(w);
wafer-index(w);
wafer-scribe(w);

wafer-snapshot(w);

Description These procedures return the values in the id, scribe and snapshot slots for

the wafer object w respectively.

Examples
w := initialize-wafer(scribe: "TEST",

snapshot: bare-silicon-wafer());

=> #<Wafer :id 1>

wafer-snapshot(w);

=> #<Snapshot :id 20>

wafer-id(w);

=> 1

indexed-wafer [Procedure]

Usage indexed-wafer (i) ;

Description This procedure returns the wafer with the index /'.

Examples
indexed-wafer(1);

=> #<Wafer :id 1>

179

deallocate-wafer [Procedure]

Usage deallocate-wafer(w);

Description Deal locate-wafer removes the wafer w from the wafers in a run

allocate-lot [Procedure]

Usage allocate-lot (names: lot-name-list,
sizes: lot-size-list,
snapshot: ss) ;

Description This procedure allocates wafers andcreates lots using the wafers. Lot-name-list

is alist of symbols thatare usedto namethelots.Lot-size-list is alist of integers giving the

size ofeach ofthe created lots. Lot-name-list and lot-size-list must be the same length. The

n*element ofeach list gives the name and size ofthe n*lot respectively. Ss isasnapshot

that specifies the initialstateof the wafers. Allocate-lot returns a list of the created

lots.

Allocate-lot is intended to be a high-level interface for users to enter the names

of BPFL wafers. Other procedures are provided to move wafersbetween lots.

Examples allocate-lot (names: '(cmos, nwell, nch),
sizes: ' (20, 1, 1),

snapshot: bare-silicon-wafer());
=> (#<lot :id 1> #<lot :id 2> #<lot :id 3>)

lot-name

lot-id

lot-bits

Usage lot -name (lot);
lot-id (tor) ;
lot-bits (lot);

Description These procedures return the respective attribute for the lot object

[Reader]

[Reader]
[Reader]

create-lot [Procedure]

Usage crea.te-lot (symbol);

Description Create- lot allocates anewemptylotnamed symbol. It is anerror if alot with

the name symbol already exists.

Examples
create-lot('wombat);

=> #<lot :id 5>

create-lot('wombat);

180

=> ERROR

lot [Procedure]

Usage lot (symbol);

Description

This procedure returns the lot object for the lot with name symbol. If no such lot exists,

nil is returned.

Examples
lot('cmos);

=> #<lot :id 1>

lot('foo);

=> nil

sublot-p [Procedure]

Usage sublot-p(lotl, 2ot2);

Description This procedure returns t if lotl is a sublotof lotl. Lotll is considered to be a sub-

lot of lotl if every wafer in lotl is also in lotl.

lot-from-spec [Procedure]

Usage lot-from-spec ([name: symbol], {lot I wafer} {,lot I .wafer)*);

Description This procedure creates anew lot from alist oflot and wafers. If a name argument

is passed, the name of the new lot is symbol.

Examples
lot-from-spec(name: 'foo, lot('cmos), lot('nwell));

=> #<lot :id 4>

sublot-p(lot('cmos), lot('foo));

=> t

current-lot [Procedure]

Usage current-lot();

Description This procedure returns a list of the names of the lots in the current lot.

Examples
with-lot •(cmos, nwell) do

current-lot();

end;

=> (cmos, nwell)

deallocate-lot [Procedure]

Usage deallocate-lot (lot) ;

Description This procedure deallocates the specified lot.

181

Examples
1 :=s lot ('cmos) ;

=> #<lot :id 1>

deallocate-lot(1);

=> t

lot('cmos);

=> nil

lot-indexes [Procedure]

Usage lot - indexes (lot);

Description This procedure returns alistof all theindexes of thewafers in lot.

Examples
1 :s= lot ('cmos) ;

=> #<lot :id 1>

lot-indexes(1);

=> (1, 2, 3 ... 19, 20)

add- to- lot ___ [Procedure]

Usage add-to-lot(/, {,lot I ,wafer)+);

Description Add-to-lot adds thesupplied wafer orlotobjects to thelot /.

Examples
lot-indexes(lot('cmos));

=> (1, 2, 3 ... 19, 20)

lot-indexes(lot('nwell));

=* (21, 25)

add-to-lot(lot('cmos),lot('nwell)) ;

=> (1, 2, 3 ... 19, 20, 21, 25)

split-lot • [Procedure]

Usage split- lot (/, into: ({, lot-name} +));
spl i t - lot (/, into: ({, lot-name, lot-size}+));

Description Split - lot splits the lot/into anumberofsublots. The sublots can bespecified

intwoways. In the first case, alistof lot-names ispassed, and the wafers in / are split and

placed into the lots. The order inwhich wafers are split isas follows. The first wafer isput

into the first lot The second wafer isputinto thesecond lot Ifthere are;lots, the;+l wafer

in / is put into the first lot and so forth.

In the secondcase,alist of lot-names andlot-sizes are supplied. Wafers with the given

names arecreated and the correctnumber ofwafers is moved into them. It is an errorif the

sum of the lot-size argumentsdoes not equal the size of /.

Examples
split-lot('cmos, into: '(high, med, low));

182

(#<lot :id 4>, #<lot :id 5> #<lot :id 6>)

merge-lots [Procedure]

Usage merge-lots (lotl, lotl, name: symbol);

Description This procedure creates a new lot named symbol, which includes of all of the wa

fers in lotl and lotl. Symbol can be the same as the name of lotl or lotl, in which case the

new lot replaces the old lot.

subtract-lots [Procedure]

Usage subtract - lots(/ofi, lotl, name: symbol);

Description This procedure creates a lot named symboland fills it with wafers in lotl but not

in lotl. Symbol can be the same as the name of lotl or lotl, in which case the new lot re

places the old lot

move-sublot [Procedure]

Usage move-sublot (/, from, to);

Description This procedure removes the wafers in lot / from the lotfrom into the lot to.

pick-wafer() [Procedure]
pick-test-wafer() [Procedure]

Usage pick-wafer() ;
pick-test-wafer();

Description These procedures retum a wafer from the current lot Pick-wafer returns

any wafer from the current lot whereas pick-test-wafer returns a wafer in current

but not in product.

A.8 Equipment

Equipment is defined using defequipment. Database objects are created to represent

equipment in a facility.

defequipment [Definition]

Usage defequipment name ((superclasses), attributes);

Description Defequipment is used to define the interface to fabrication equipment for

BPFL. Name is a symbol used to name the equipment. Superclasses is a list ofnames ofan

183

equipment definition from which attributes will beinherited. Attributes is a listof attribute-

value pairs for the equipment.

Examples
defequipment nanospec ((),

recipes: (measure-oxide-thickness: (frame: nanospec)));

allocate [Procedure]

deallocate [Procedure]

Usage allocate (equipment-spec);
deallocate (equip-obj);

Description These procedures allocate and deallocate equipment Equipment-spec is the

name of an equipment class or a listof names. Al locate returns anobject describing a

pieceof equipment that is a member of theequipment instances described by equipment-

spec. Ifnosuitable equipment is found, nil isretumed. Deallocate takes anobject de

scribing a piece ofequipment and deallocates it. It is anerror to deallocate equipment that

is not allocated for the current run.

The useof these procedures inusercode is discouraged, with-equipment handles

equipment allocation and deallocation, and guarantees that equipment isdeallocated if a

run encounters an error.

Examples
x := allocate('spinner);

=> #<equipment mti-spinner-1>
deallocate(x);

=> t

deallocate(x);

=> ERROR

A.9 Materials

Materials form a hierarchy. Apartial listing of the material hierarchy is shown in Figure A-

4. Eachmaterial classin thehierarchy hasa unique name thatis a BPFL symbol. When a material

class isdefined, aparentmaterial issupplied. Materials also have attributes. When amaterial class

is defined, the new material inheritsattributes fromits parent. Material definitionsalso include a

listofdefault-attributes thatcanbeused tooverride inherited values ortodefine new attributes. For

example, the silicon material class is defined as

defmaterial si((), suprem-name: "SILICON");
defmaterial silicon((si), crystal: t) ;

defmaterial poly((si), simpl-name: "POLY",

184

metal-

organio

amorphous-silicon

oxide

' substrate

-boron11

phosphorus

arsenic

antimony

sitane

phosphine

•aluminium

-resist

•acetone

oxygen

Figure A-4: BPFL material hierarchy.

suprem-name: "POLY");

In this case, the material has parent si, and one attributecrystal. Materials inherit default at

tributes from their parent and attributes defined lower down the hierarchy override definitions

higher up. For example, the poly material has suprem-name and simpl-name attributes with

the value " POLY." The value ofthe suprem-name attribute defined for material s i has been over

ridden.

Once material has been defined, the material proceduremay be used to create a material

object. Additional attributes may be attachedto the materialobject and the default values supplied

in the material definition may be overridden Forexample, to create a material object of class s i 1-

icon, the code

material(poly, grain-size: [{1 urn), {10 urn)])

creates a poly material object with an additionalattribute grain-size. The material procedure may

be abbreviated to #m.

185

defmaterial [Definition]

Usage defmaterial name ((superclasses), attributes);

Description Defmaterial isused todefine amaterial for use in aprocess flow. Name is a

symbol used to name thematerial. Superclasses is alistof thenames of material from

which this material inherits attributes. Attributes is a list of attribute names and values.

Examples
I* Material with no superclasses */
defmaterial silicon ((), atomic-weight: 28);

material [Procedure]
#m [Procedure]

Usage material (name, attributes);
#m{name, attributes);

Description The material procedure creates amaterial object of class name and with the

specified attributes. Material maybeabbreviated to #m. Thematerial object inherits any

attributes present in the superclasses.

known-material-name [Procedure]

Usage known-material-name (jymfo?/);

Description This procedure returns t if symbol isthe name ofamaterial class; otherwise ni1.

Examples
known-material-name('foo);

=> nil

defmaterial((),foo);

=> #<material foo

known-material-name('foo);

=> t

material-attr [Procedure]

Usage material-attr (mat, attr[default]);

Description This procedure returns the value of the attribute attr for the material object mat.

If attr is not anattribute of the material, default is returned. If default is not supplied,ni1

is retumed.

Examples
defmaterial((si), poly, grain-size: [[5 urn), {10 urn)]);

^ #<material poly>
material-attr(#m(poly), :grain-size) ;

=> [{5 urn), {10 urn)]

186

material-attr(#m(poly), :foo, 0);
=> 0

material-attrs [Procedure]

Usage material-attrs (mat) ;

Description This procedure returns the namesandvalues of all attributes ofmaterialmat. At

tributes of the superclasses of mat arenot included in the list

add-material-attrs [Procedure!

Usage add-material-attrs (mat {, attribute-name: attribute-value) +) ;

Description This procedure creates anew material instanceofthe same class as mat,but with

new attribute names and values as specified. If mat already has an attribute with the same

name as an attribute to be added, the new value replaces the old value

remove-material-attrs [Procedure]

Usage remove-material-attrs (mat (, :attribute-name) +);

Description This procedure creates anew material instanceofthe same class as mat, but with

the specified attributes removed.

material-supers-list [Procedure]

Usage material-supers-list (mat) ;

Description This procedure returns a list of allof the materialclasses higher up the material

hierarchythan mat.The firstelement of list of the materialclass highest up the hierarchy.

mtrl-class-match [Procedure]

Usage mtrl-class-match (mi, ml);

Description This procedure returnst ifmi andml have the same material class, or ifthe class

of one is the ancestor of the class of the other otherwise nil.

Examples
mtrl-primary-match(#m(poly :annealed t), #m(poly));

=> t

mtrl-primary-match(#m(poly), #m(silicon));
=> t

mtr1-primary-match(#m(poly), #m(oxide)) ;
^ nil

187

material-p [Procedure]

Usage material-p (obj);

Description Returns t if obj is a material object otherwiseni1.

Examples
material-p(#m(poly));

=> t

m := 56.4;

material-p(m);
=* nil

A.10 Masks, Layers, and Locations

A mask is defined using defmask. Masks have the following attributes: dark- field,

type and edge. If dark- field is t, the mask is a dark-field mask and it shades that portion of

the mask which is the logical inverseof the layerdefining the mask. Type describesthe type of

mask, either chrome or emulsion. Edge describes the physicallocationof the edgesof masks.

For example, the clear-field emulsion METL mask is defined as

defmask METL(type: emulsion);

and the chrome dark-field contact-definition mask is defined as:

defmask CONT(dark-field: t, type: chrome);

The edge slot will ultimately be used to interface with a CAD database ofmask data, but for now

BPFLpermits simple specification of the relationships between masks. This is achievedby speci

fying whether or not masks intersect (i.e., overlap).The default is that masks intersect, but masks

may be declaredto be disjoint (i.e.,haveno regionin common) or onemaskmay be declaredto be

contained within another mask. For example, the CONT mask is contained within the METL mask,

(i.e.,everypart of a wafercoveredby CONT is alsocovered by METL). This fact may be indicated

with the code

declare-contained-mask(CONT, METL);

Masks are declared to be disjoint with the procedure declare-dis joint-mask.

BPFL uses layers to describe regions of the wafer in terms of masks. For example, given a

POLY mask and an ACTV mask:

defmask ACTV(type: emulsion);

defmask POLY(type: emulsion);

a suitable layer to express a region of the wafer that may be probedto determineactive-area sheet-

resistance is defined by

188

deflayer PROBE-ACTIVE(and(ACTV, not(POLY)));

That is, the active area not covered by polysilicon. Whenever a mask is defined using defmask, a

layer with the same name as the mask is also defined.

Layers have four attributes: name,position, edge and location. The layer name is simply

the symbol defining the layer. For example, the name of the layer defined in the above example is

PROBE-ACTIVE. The layer position is the definition of the layer in terms of physical masks. For

example, the position for the layer defined above is and (actv, not (poly)). Layer edges are a

logical expression of the edges of the layer in terms of the edges and areas of the masks making up

the layer. For example, the edge attribute of the PROBE-ACTIVE layer is

OR(AND(ACTV, (EDGE POLY)),AND(NOT(POLY), (EDGE ACTV))

This expression means that the edges of the PROBE-ACTIVE layer are made up of the sum of two

sets ofedges. The first set is the edge of the POLY layer inside the ACTVlayer (i.e., AND (ACT-

V, (EDGE POLY)). The second set is the edge of the ACTVlayer outside the POLYlayer (i.e.,

AND (NOT (POLY) , (EDGE ACTV)).

The location slotis very similar to the position slot The difference is that locations are dy

namic and their values change depending upon the masks that have been used to expose the wafer.

For example, consider the PROBE-ACTIVE layer definition, and suppose the wafer has been pat

terned with the ACTV mask but not yet patterned with the POLYmask. The PROBE-ACTIVE layer

has location attribute

ACTV

because the wafer has not yet been patterned with the POLYmask, so the expressions involving

POLY are ignored. That is, locations arecreatedby evaluating positions with unused masks set to

don' t-care conditions.

Locations areused for two reasons. First in PIF wafer-state representations they indicate

where certain properties hold on a wafer. Second, they areused to indicate where measurements

should be taken. Forexample, a measurementof gateoxide thickness could be expressed as:

measure-oxide-thickness (location: #1 (PROBE-ACTIVE)) ;

The location attribute of the layer argument is passed to the user to indicate where the mea

surement should be taken. The measured value is then stored in the wafer-state representation and

the location is used to indicate where the measurement was taken.

189

BPFL reduces location expressions whenever possible. For example, since CONT is de

clared to be inside theMETL layer, thelocation expression AND (METL, CONT) is reduced to the

expression CONT, assuming that the wafer has been exposed to the METL and CONT masks. Like

wise, OR (METL, CONT) is reduced to theexpression METL. If layers are disjoint asare NWELL

and PWELL defined above, theexpression AND (NWELL, PWELL) evaluates toni1. Layer reduc

tion isused whenever possible tosimplify location expressions. For example, if alocation attribute

evaluates to ni1, then thatlocation doesnotexiston the wafer. This property is used to deletesec

tionsof PIF descriptions that are completely removed during processing.

defmask [Definition]

Usage defmask name [(attributes)];

Description Defmask isused todefine amask for use inaprocess flow. Name isasymbol

used toname themask. Attributes isan optional listof attributes for themask. Itisexpected

thatother attributes will be defined to support interfaces to CADtools suchasOCT [5].

Examples Definitions for aclear-field NWELL and POLY masks, and for dark-field CONT mask.
defmask NWELL (location: NWELL);
defmask POLY (location: POLY);
defmask CONT (location: not(CONT));

See Also deflayer

known-mask-name [Procedure]

Usage known-mask-name (symfo?/) ;

Description Returns t is symbol is the name of amask; otherwise ni1.

Examples
known-mask-name('POLY);

=> t

known-mask-name(* foo);

=> nil

mask _ [Procedure]
Usage mask (symbol);

Description Returns the mask object with name symbol. Itis an error if no such mask object

exists.

Examples
mask('CONT)

=> #<mask CONT>

mask('foo)

190

=> ERROR

mask-name [Reader]

Usage mask-name (m);

Description Returns the name of the mask object m.

Examples
m := mask('POLY);

mask-name(m);

^ POLY

mask-attr [Procedure]

Usage mask-attr (m, :attr-name);

Description Returns the value of the attribute named attr-name from the mask objectm.

Examples
mask-attr(mask('CONT), :dark-field);

=> t

mask-attr(mask('CONT), :type);
=> emulsion

deflayer [Definition]

Usage deflayer name ([location]);

Description Def1ayer is usedto definealayerforuse in a process flow. Name is a symbol

used to name the layer. Location is anoptional location specifierfor the layer.This canbe

used to define the relationships betweenlayers andmasks.

Examples Define a single layer
deflayer NWELL;

deflayer CONT;

deflayer POLY;

Define a layer for probingcontactcuts above the well
deflayer CONT-PROBE and(CONT,NWELL);

See Also defmask

known-layer-name [Procedure]

Usage known-layer-name (symbol);

Description Returns t if symbol is the nameof a layer, otherwiseni1.

Examples
known-layer-name(•POLY)

^ #<layer POLY>

known-layer-name('foo)

^ nil

191

layer

#1

[Procedure]
[Procedure]

Usage layer (symbol);

Description Returns the layer object with name symbol. Itis an error if symbol isnot the name

of a known layer. Layer may be abbreviated as #1.

Examples
layer('NWELL);

=» #<layer NWELL>

#1('P0LY);

=> #<layer POLY>

#l('foo);

=> ERROR

merge-layers

intersect-layers

invert-layer

[Procedure]
[Procedure]

[Procedure]

Usage merge-layers (layer (, layer)*);
intersect-layers (layer (, layer)+);
invert - layer (layer);

Description Merge- layers returns alayer describing the union of the layer arguments.

Intersect-layers returns alayer describing theintersection of the layer arguments.

invert- layer returns alayer describing all regions of thewafer outside layer.

Examples
merge-layers (#'l.(ACTV), #1 (GATEOX)) ;

=» #<layer ATCV>
intersect-layers(#1(ACTV), #1(GATEOX)) ;

^ #<layer GATEOX>

invert-layer(#l(ACTV));
=> #<layer NOT(ACTV)>

layer-name

layer-definition
layer-location

layer-edges

Usage layer-name (layer);
layer-definition (layer);
layer- locat ion (layer);
layer-edges (layer) ;

Description Retum the slots from the layer object

Examples
1 := #1(GATEOX);

layer-name(l);
=> GATEOX

layer-location(l) ;

192

[Reader]

[Reader]

[Reader]

[Reader]

=> and(ACTV, not(POLY))

layer-edges(1);

=» #<edge OR(AND(ACTV,(EDGE POLY)),

AND(NOT(POLY),(EDGE ACTV)))>

References

[1] C. B. Williams and L. A. Rowe, "The Berkeley Process-Flow Language: Reference
Document" Electronics Research Lab. Memo 87.73, U.C. Berkeley, Oct. 1987.

[2] G. L. Steele, Common Lisp:The Language, second edition, Digital Press, 1990.

[3] Franz Inc, Common Lisp: TheReference, Digital Press, 1989.

[4] S. G. Duvall, "An Interchange Fonnat for Process and Device Simulation," IEEETrans, on
CAD, vol. 7, no. 7, pp 741-754, Jul. 1988.

[5] R. L. Spickelmeir, P. Moore, and A. R. Newton,AProgrammer's Guide to Oct.,Electronics
Research Lab. Memo, U.C. Berkeley.

193

[This page intentionally blank]

194

Appendix B

BPFL Implementation of Berkeley CMOS Process

B.l Top-level flow (cmos-16.b)

require(cmos-lib, version: latest);

dofflow cmos-16(implant-split: = t)
"U.C. Berkeley Generic CMOS Process (Ver. 1.6 14-April-89)
(2 um, N-well, single poly-Si, single metal)"

begin

step ALLOCATE-WAFERS do

let spec := bare-silicon-wafer(crystal-face: 100,

resistivity: [{18 ohm-cm} , {22 ohm-cm)],
quality: 'product, dope: 'p);

begin

allocate-lot(names: '(cmos, nwell, nch),

sizes: list(*product-lot-size*, 1, 1),
snapshot: spec);

end;

/* Wafers in the cmos lot are product wafers */
lot('product) := lot(*cmos);

with-lot 'nwell do

measure-bulk-resistivity(tag: "initial");
end;

end;

with-lot 'cmos do

step WELL-FORMATION do

step INIT-OX do

wet-oxidation(time: {11 min), temperature: {1000 degC),
target-thickness: {1000 angstrom});

pattern(mask-name: 'NWELL);

end;

step WELL-IMPLANT do

with-lot •(cmos, nwell) do

implant (species: #m(P), dose: {4.0el2 /ciri'v2)/

energy: {150 keV));

anneal-implant();

etch-oxide(etchant: #m(BHF, dilution: 5/1));

strip-resist();

step DRIVE-IN do

well-drive(temperature: {1150 degC}, time: {4 hr),

anneal-time: {5 hr});

measure-oxide-thickness(location: #1(NWELL));

measure-oxide-thickness (location: invert-layer(#1 (NWELL))) ;
with-lot 'nwell do

etch-oxide(etchant: #m(BHF, dilution: 5/1));

measure-sheet-resistance(location: #1(NWELL));

195

end;

end;

end;

end;

end;

Step ACTIVE-AREA do

with-lot '(cmos, nwell) do

etch-oxide(etchant: #m(BHF, dilution: 5/1));

constrain

dry-oxidation(time: {28 min}, temperature: {950 degC});
with-lot 'nwell do

measure-oxide-thickness(tag: "LOCOS PAD");

etch-oxide(etchant: #m(HF), dewet: t) ;

end;

nitridation(thickness: {1000 angstrom});

when max-time-between('dry-oxidation, 'nitridation, {20 min}) do
etch-oxide(etchant: #m(HF), dewet: t);

restart-body();

end;

end;

end;

pattern(mask-name: 'ACTV, will-double: t) ;
etch-nitride (etchant: #m(nitride-etch-plasma, power: {50 W})) ;

pattern(mask-name: 'PFIELD);

end;

step FIELD-IMPLANT do

implant (species: #m(Bll), dose: {1.0el3 /cm>N2},

energy: {100 keV});

anneal-implant();

strip-resist();

wet-oxidation(temperature: {950 degC}, time: hms("3:20:00"),
location: invert-layer(#1(ACTV)));

with-lot '(cmos, nwell) do

etch-nitride(etchant: #m(phosphoric-acid,
temperature: {145 degC}));

dry-oxidation(temperature: {950 degC}, time: {28 min});
end;

end;

step THRESHOLD-ADJUST do

let species := #m(Bll);

energy := {30 keV};

midrange := {1.2el2 /cm",2};

delta := {0.1el2 /cmA2};

begin

if implant-split then

split-lot('cmos, into: '(low, medium, high),
order: 'random);

with-lot 'high do

implant(species: species, dose: midrange + delta,
energy: energy);

196

end;

with-lot 'medium do

implant(species: species, dose: midrange, energy: energy);
end;

with-lot 'low do

implant(species: species, dose: midrange - delta,

energy: energy);

end;

else

implant(species: species, dose: midrange, energy: energy);
end;

anneal-implant();

end;

end;

step GATE-FORMATION do

constrain

/* Constraint body */

with-lot '(cmos, nwell, nch) do

dry-oxidation(target-thickness: {25 nm}, time: {40 min},
temperature: {950 degC});

end;

with-lot 'nwell do

measure-oxide-thickness();

end;

with-lot 'nch do

measure-oxide-thickness() ;

end;

with-lot 'cmos do

deposit-doped-poly(thickness: {450 nm});
/* deposit-doped-poly allocates a lot named poly

with a poly control wafer in it */

end;

when max-time-between('dry-oxidation,
'deposit-doped-poly,

{20 min}) do

etch-oxide(location: #1(ACTV), dewet: t);

restart-body();

end;

end;

end;

step GATE-DEFINITION do

pattern(mask-name: 'POLY);

etch-poly(etchant: #m(poly-etch-plasma));

strip-resist();

end;

step REOXIDATION do

with-lot '(cmos, nwell, nch, poly) do

wet-oxidation(time: {30 min}, temperature: {850 degC});

end;

with-lot 'nwell do

197

measure-oxide-thickness() ;

end;

with-lot 'nch do

measure-oxide-thickness() ;

end;

with-lot 'poly do
measure-oxide-thickness();

end;

end;

step NCHANNEL-S/D do

pattern(mask-name: 'N-S/D);

with-lot '(cmos, nch) do

implant(species: #m(As), energy: {160 keV},
dose: {5.0el5 /cmA2});

end;

strip-resist();
with-lot '(cmos, nwell, nch) do

anneal-implant(temperature: {950degC}, time: hms("01:15:00"));
end;

end;

step PCHANNEL-S/D do

pattern(mask-name: 'P-S/D);
with-lot '(cmos,. nwell) do

implant(species: #m(Bll), dose: {2.0el5 /cm/v2},
energy: {50 keV});

end;

strip-resist() ;
with-lot '(cmos, nwell, nch) do

anneal-implant(temperature: {900 degC}, time: {15 min});
measure-oxide-thickness(location: #1(P-S/D));

end;

end;

step REFLOW-GLASS do

with-lot 'cmos do

deposit-psg(predoped-thickness: {200 nm},
doped-thickness: {500 nm},
postdoped-thickness: {100 nm},
temperature: {450 degC});

end;

with-lot '(cmos, nwell, nch, psg) do

densify-psg(time: {30 min}, temperature: {950 degC});
end;

with-lot 'nwell do

measure-sheet-resistance(location: #l(TOP), tag: "P-S/D");

end;

with-lot 'nch do

measure-sheet-resistance(location: #1(T0P), tag: "N-S/D");

end;

deallocate-lots('(nwell, nch, poly));

end;

198

step CONTACT do

pattern(mask-name: 'CONT);
etch-oxide(etchant: #m(oxide-etch-plasma), location: #1(C0NT));

rework-loop

etch-oxide(etchant: #m(BHF, dilution: 10/1), location: #l(CONT),

thickness: {10 nm});

rework-test contact-probe(location: #1(CONTACT-TEST)) ;

end;

strip-resist(etchant: #m(oxygen-plasma));

end;

step BACK-SIDE-ETCH do

spin-soft-bake();
hard-bake-resist(double-photo: t) ;

spin-soft-bake();

constrain

hard-bake-resist();

etch-oxide(etchant: #m(BHF), dewet: t", location: #1(BACK-SIDE));
etch-poly(etchant: #m(phosphoric-acid),

location: #1(BACK-SIDE));

etch-oxide(etchant: #m(BHF), dewet: t, location: #1(BACK-SIDE));

when max-time-between('hard-bake-resist, 'etch-oxide,

{30 min}) do

restart-body();

end;

end;

strip-resist(etchant: #m(oxygen-plasma));

end;

step METALLIZE do

deposit-al(thickness: {600 nm}) ;
pattern(mask-name: 'METL, resist: #m(wx-235));

etch-al();

strip-resist(etchant: #m(oxygen-plasma));

test("Metal integrity tests");

end;

step SINTER do

fast-sinter();

end;

step PRE-PASSIVATION-TEST do

test ("2 urn NMOS & PMOS devices and capacitors");

end;

step PASSIVATION do

deposit-pecvd-oxide(thickness: [{700 nm}, {800 ran}]);
deallocate-lots('pecvd);

pattern(mask-name: 'PASSIV);

etch-oxide (etchant: #m(oxide-etch-plasma)) ;

strip-resist(etchant: #m(oxygen-plasma));

end;

199

step FINAL-TEST do

test("Final functional test");

end;

end;

end;

defflow test (description)

"Puts up a form requesting device test. Description is
descriptive text indicating what is to be tested"

let result := nil;

begin

/* There is no form to display in this case because test
devices and results depend on the circuit being fabricated.
Use frame type general to display rudimentary information and

permit the user to enter comments */

result := user-dialog('general, heading: "cmos probe test",

description: description);

wip-log('general, result);

end;

200

B.2 Outline of CMOS Library (cmos-lib.b)

The following is a list of the top-level declarations in the cmos - lib library, and a brief

description of the arguments and actions of functions called by the cmos-16 process flow.

require(material, version: latest);

require(pif-wafer, version: latest);

require(equipment, version: latest);

require(physical-constants, version: latest);
require(litho, version: latest);

require(ucb-std, version: latest);

defflow wet-oxidation(time:, temperature: = {900 degC),

pre-ox-time: = {5 min), post-ox-time: = {5 min),

anneal-time: = {20 min), target-thickness:,

tag:)

"Cleans wafers and furnace, performs wet oxidation and measures

oxide thickness on a test wafer in the current lot"

begin

• • •

end;

defflow dry-oxidation (time:, temperature: = {900 degC),
anneal-time: = {20 min), target-thickness:,

tag:)

"Cleans wafers and furnace, performs dry oxidation and measures

oxide thickness on a test wafer in the current lot"

begin

• • •

end;

defflow nitridation(thickness:, temperature: = {800 degC))

"Cleans wafers, grows nitride and measures nitride thickness

on a test wafer in the current lot"

begin

• • •

end;

defflow implant(species:, dose:, energy:, tag:)
"Implants wafers and performs anneal"

begin

• * •

end;

201

defflow n2-anneal(time:, temperature:)

"Nitrogen anneal for specified time and temperature"

begin

• • •

end;

defflow anneal-implant (time: = {30 min), temperature: = {950 degC))
"Calls n2-anneal with specified time and temperature suitable

for standard implant anneals"

begin

• • •

end;

defflow we11-drive(time:, temperature: = {1150 degC),
anneal-time:, target-thickness:, tag:)

"Performs wet oxidation to drive in well"

begin

• • •

end;

defflow deposit-doped-poly(time:, temperature: = (650 degC), thickness:)
"Doped poly deposition. Performs deposition at specified time
and temperature or at time required to achieve specified thickness
based on deposition rate from equipment log.
Allocates a lot poly with one control wafer."

begin

• • •

end;

defflow deposit-undoped-poly(time:, temperature: = {650 degC),
thickness:)

"Undoped poly deposition. Performs deposition at specified time
and temperature or at time required to achieve specified thickness
based on deposition rate from equipment log.
Allocates a lot poly with one control wafer."

begin

end;

defflow deposit-pecvd-oxide(time:, temperature: = {250 degC),
thickness:)

"Pecvd oxide deposition. Performs deposition at specified time
and temperature or a time required to achieve specified thickness
based on deposition rate from equipment log."

begin

end;

202

defflow deposit-al(thickness:)

"Sputter Al of the desired thickness"

begin

• • •

end;

defflow deposit-psg(temperature: = (450 degC),
predoped-thickness:, predoped-time:,

doped-thickness:, doped-time:,
postdoped-thickness:, postdoped-time:)

"Deposits PSG in three layers.

First an undoped layer of thickness predoped-thickness,

second a doped layer of thickness doped-thickness,

third an undoped layer of thickness postdoped-thickness.

The arguments predoped-time, doped-time and postdoped-time
can be used to specify absolute deposition times"

begin

• • •

end;

defflow densify-psg(time:, temperature:)

"Wet oxidation to densify glass"

begin

• • •

end;

defflow fast-sinter(time: = {20 min), temperature: = {400 degC))

"Sinter wafers with no rampup"

begin

end;

/* The following functions each measure a physical quantity.

The wafer-state is queried to determine expected values, if
any. A test wafer is used if one exists in the current lot,

otherwise a product wafer is used */

defflow measure-oxide-thickness (tag:, location:)

begin

• • *

end;

203

defflow measure-bulk-resistivity (tag:, location:)
begin

• • •

end;

defflow measure-sheet-resistance(tag:, location:)

begin

• • •

end;

defflow measure-poly-thickness(tag:, location:)
begin

• • •

end;

defflow measure-nitride-thickness(tag:, location:)

begin

• • •

end;

/* The following functions each etch a particular material on
the wafers in the.current lot. Each takes at least the following
arguments:

etchant, thickness, overetch, location
Etchant is a material used for the etching (e.g.,
#m(nitride-etch-plasma) or #m(phosphoric-acid) to etch
nitride.

Thickness is the thickness of material to etch. It is
ordinarily NOT used because snapshots are queried to determine
the thickest exposed layer of material and that thickness is
etched.

Overetch is added to thickness to be etched. Normally expressed
as a percentage. Etch functions usually have a default
value for overetch (e.g., {10 %)).

Location is a layer indicating which region of the wafer
the user should use for endpoint detection. This argument
is only used if the thickness argument is supplied. If the
etchant is a liquid and the back-side of the wafers
have thickness equal to the thickest exposed layer of material,
location takes the value #1(BACK-SIDE) */

204

defflow etch-oxide(etchant:, thickness:, overetch: = {10 %}, location:,
dewet:)

"Dewet is used to force complete removal of exposed oxide
The following sanity checks are performed:
Warning generated if wet etches occur after
poly is deposited.

Error generated if wafers with exposed metal
are wet etched."

begin

• • •

end;

defflow etch-nitride(etchant: = #m(phosphoric-acid), thickness:,
overetch: = {5 %}, location:)

begin

end;

defflow etch-poly(etchant: = #m(poly-etch-plasma), thickness:,
overetch: = {5 %}, location:)

begin

• ♦ •

end;

defflow etch-al(etchant: = #m(al-wet-etcher), thickness:,

overetch: = {5 %), location:)
begin

• • •

end;

205

B.3 Litho Library (litho.b)

defmaterial developer ((organic));
defmaterial kodak932 ((developer));

defmaterial mif ((developer)) ;

defmaterial resist ((organic), exposed: nil);
defmaterial kodak-820 ((resist),

negative: nil,
spin-speed: {4600 rpm),
prebake-temp: [{95 degC), {100 degC)],
prebake-time: {30 s),
exposure: {130 mJ/cm/v2},
developer: #m(kodak932, concentration: {50 %},

temperature: {22 degC),
time: [{30 s}, {60 s)]),

hard-bake: (temp: {120 degC), time: {20 min),
double-photo: (temp: {150 degC), time: {30 min})));

defmaterial wx-235 ((resist),

negative: nil,
spin-speed: {4000 rpm),
prebake-temp: {110 degC),
prebake-time: {30 s},
exposure: {140 mJ/cm/v2),
developer: #m(mif, concentration: {33 %},

temperature: {90 degC),

time: {90 s}),

hard-bake: (temp: {100 degC), time: {20 min),
double-photo: (temp: {100 degC), time: {30 min})));

defequipment developer ((),
recipes: (develop: (frame: develop-resist),

strip: (frame: strip-resist)));

defequipment wafer-track ((),
recipes: (spin-soft-bake: (frame: spin-soft-bake)));

defequipment stepper ((),
recipes: (expose: (frame: expose-resist)));

defflow pattern(mask-name:, will-double:, resist: = *default-resist*)
"Basic photolithography - coat, expose, develop, descum, bake"

let double-photo := find-surface-segments-in-lot (material: #m(resist));
begin

step PATTERN do

rework-loop

constrain

spin-soft-bake(resist: resist);
expose-resist(mask-name: mask-name);

206

develop-resist();

when (max-time-between('spin-soft-bake, 'expose-resist,
{2 day}) or

max-time-between('expose-resist, 'develop-resist,
{1 hour})) do

halt-run("time-constraint-violation in pattern");
end;

end; /* constrain */

rework-test inspect-resist();
retry-count 5;

rework-prefix if not (double-photo) then
strip-resist();

end;

end; /* rework */

descum-resist() ;

hard-bake-resist(double-photo: (double-photo or wi11-double));
end; /* step */

end;

defflow spin-soft-bake(resist: = *default-resist*)
"dehydrate, hmds treat and spin resist onto wafers"

let last-dehyd-time := dehydrate-wafers();
begin

constrain

deposit-hmds();

deposit-resist(resist: resist);

when max-time-between(last-dehyd-time, 'deposit-resist, {30 min}) do
last-dehyd-time := dehydrate-wafers();
restart-body();

end;

when max-time-between('deposit-hmds,'deposit-resist, {10 min}) do
restart-body();

end;

end; /* constrain */

end;

defflow dehydrate-wafers()

"Dehydrate wafers if necessary and return the dehydration time."
let segments := find-segments-in-lot(material: #m(substrate)) ;
begin

view fabrication do

if (min(segment-material-attribute-in-lot(segments,
Rehydration-time))

+ {30 min}) < current-time() then
with-equipment o of-type 'oven do

run-recipe(o, 'dehydrate-wafers);

segment-material-attribute-in-lot (segments,
Rehydration-time) := last-equip-time();

end;

end;

end;

207

min(segment-material-attribute-in-lot (segments, Rehydration-time));

end;

defflow deposit-hmds()

"Coat the wafers with hmds"

begin

user-dialog('hmds-coat);

end;

defflow deposit-resist(resist: = *default-resist*)

"Coat the wafers with resist"

begin

view fabrication do

with-equipment track of-type 'wafer-track do

run-recipe(track,'spin-soft-bake,
resist-name: material-name(resist));

end;

end;

deposit-material-in-lot(resist) ;

end;

defflow expose-resist(mask-name:)

"Expose wafers "

let layer := find-layer(mask-name); /*Layer corresponding to the mask */

exposure-location := intersect-layers (top-side(),
invert-layer(layer));

old-segments := nil;

new-segments := nil;

begin

viewcase

when fabrication do

with-equipment stepper of-type 'stepper do
run-recipe(stepper, 'expose, mask-name: mask-name);

end;

end;

end;

old-segments :=

find-segments-in-lot(material: #m(resist, exposed: nil));
new-segments :=

split-segments-in-lot(old-segments, location: exposure-location);

segment-material-attribute-in-lot (new-segments, :exposed) := t;
end;

defflow develop-resist()

"Develop resist in lot"

begin

viewcase

when simpl do

simpl-op("DEVL","ERST");
end;

208

when fabrication do

with-equipment d of-type 'developer do
run-recipe(d, 'develop-resist,

resist-name: material-name(resist-in-lot ()));
end;

end;

end;

etch-material-in-lot(#m(resist, negative: nil, exposed: t), t) ;
etch-material-in-lot(#m(resist, negative: t, exposed: nil), t);

end;

defflow hard-bake-resist(double-photo:, time:, temperature:)
"Hard bakes resist. Uses parameters in resist definition uniess
time and temperature arguments are supplied"

begin

let resist := resist-in-lot();

bake-attr := material-attr(resist, :hard-bake);
bake-time := nil;

bake-temp := nil;

segments := find-segments-in-lot(material: #m(resist)) ;
begin

if double-photo then

bake-attr := getf(bake-attr, :double-photo);
end;

if (was-supplied(time) and was-supplied(temperature)) then
/* Arguments are used, so must check type */
assert(unit-with-dimensions-p(time,"s"),

"Must be a unit,quantity with dimensions of time",
time) ;

assert (unit-with-dimensions-p(temperature, ".K"),
"Must be a unit quantity with dimensions of temperature",
temperature);

bake-time := time;

bake-temp := temperature;
else

bake-time := getf(bake-attr, :time);
bake-temp := getf(bake-attr, :temp);

end;

view fabrication do

user-dialog('hard-bake, time: bake-time, temp: bake-temp);
end;

segment-material-attribute-in-lot (segments, :last-bake-time) :=
current-time();

end;

end;

defflow inspect-resist()

"Inspect each wafer and put wafers to be reworked into the rework lot
and wafers to be scrapped into the scrap lot."

begin

view fabrication do

with-equipment scope of-type 'microscope do

209

let results := user-dialog(name: 'inspect-resist,
equipment: scope);

begin

wip-log('Resist-Inspect, results);
move-sublot(getf(results, :rework), 'current, 'rework);
move-sublot(getf(results, :scrap), 'current, 'scrap);
if lot('rework) then

raise-exception('rework);

end;

end;

end;

end;

end;

defflow strip-resist(etchant: = #m(acetone))
"Removes resist from wafers in the current lot"

let equip-type := 'developer;

begin

if etchant = #m(oxygen-plasma) then

equip-type := 'resist-plasma-etcher

end;

view fabrication do

with-equipment s of-type equip-type do

run-recipe(s,'strip, etchant: etchant);

end;

end;

etch-material-in-lot(#m(resist),t);

end;

defflow resist-in-lot()

"Utility routine that returns the resist on the wafers in
the current lot. Signals an error if more than one type of
resist is present"

let last-resist := nil;

ss := lot-snapshots();

begin
for-each seg in find-segments-in-lot(material: #m(resist)) do

this-resist := pif-attr-val(seg, :material, ss);
if last-resist then

if material-name(last-resist) != material-name(this-resist) then
halt-run("Two different types of resist on wafers: ~a and -a",

last-resist, this-resist) ;

end;

end;

last-resist := this-resist;

end;

last-resist;

end;

210

C.1 Introduction

Appendix C

ABF Functions

This document describes the functions for accessing compound BPFL data types from

ABF, and for manipulating dialog and WIP- log records.The first section outlines the functions

for accessing firame arguments.The second sectiondescribes the function used to check data en

tered by a user, and thethird section discusses functions available from within user-dialog

frames to appendattributes to the WIP-log.

C2 Argument and object accessor functions

TheWIP interpreter passes frame arguments totheUIprocess viathedatabase. Eachargu

ment has a name and a value. For example, the user-dialog call

user-dialog('sonogage, wafer-id: 1,
nominal: [{1 ohm-cm), (10 ohm-cm}]);

calls the sonogage frame with two arguments namedwafer-id and nominal. The values of

thearguments are 1 and [{1 ohm-cm}, {10 ohm-cm}] respectively.

TheWIPinterpreter automatically passes a lot argument toevery user-dialog frame.

Thevalue of thisargument is a listofthenames of thelots making up the current lot Forexam

ple, the code

with-lot •(cmos, nwell) do
user-dialog('spin-soft-bake);

end;

calls the spin-soft -bake frame withone argument named lot witha valueof (cmos,

nwell).

Allof thefunctions discussed in thissection canbeused in user-dialog andWIP-log

frames. Frame arguments may beread and attributes may beappended to the WIP-log in user-

dialog frames. WIP-log attributesmay be read in WIP-log frames.

As an example of the available accessor functions, suppose a frame is called withthe fol

lowing arguments:

211

Accessor function

arg_supplied (name)

arg_value (name]

arg_pointer (name)

Description

Returns 1 if the argument named name has been passed to the
frame;otherwise 0.
Returnsa string containing the print representation of the
argument name. If the argument has notbeen passed to the
frame, returns null.
Returns a pointer to the object describing the argument name. If
the argument has not been passed to the frame, returns null.

Table A-1: Argumentaccessor functions.

user-dialog(frame, recipe-name: "SWETOXB",
step-number: 5,
target-thickness: [{85 nm}, (90 nm}],
temperature: {1000 degC},
equipment-list: (tylanl, tylan2));

All functions discussed below will be assumed to execute in the ABF code for the frame called by

the user-dialog.

The arg_supplied function is usedto determine whether ornot anargument hasbeen

passed to a frame. Arg_supplied takes asingle string argument containing the name of the de

sired frame argument, and returns 1if the argument exists and 0 if it does not. For example,

arg_supplied('recipe-name') ;

=> 1

arg_supplied('foo*);
=> 0

The arg_value function returns a string containing thevalue of anargument It returns a null

string if no such argument exists.

arg_value('equipment-list') ;
=> '(tylanl, tylan2)'

arg_value('foo');

=> null

The argument accessor functions aresummarized in Table A-1.

ABF programs donothave functions to manipulate compound BPFL data types(see

Appendix A, section A.3.2), soargument values are manipulated byobject accessor functions. The

arg_pointer function returns apointer toanobject describing anargument. This pointer can be

assigned to an ABF integer variable which can bepassed toobject accessor functions. For ex

ample, the integer_obj function returns theinteger value of theobject pointed to by its argu

ment:

212

/* Assume x is an integer variable */
x := arg_pointer('step-number');
integer_obj(x);
=> 5

Similarly string_obj and f loat_obj access string and floating-point numbers respectively. If

an incorrect accessor function isused (e.g., string_obj isused to access the value ofan integer

object), an error message isdisplayed and the accessor function returns null. The object_type

function returns astring that describes the type of an object:

object_type(arg_pointer('step-number'));
=> 'integer'

object_type(arg_pointer('equipment-list'));
=> 'list'

There isone situation inwhich an incorrect accessor function will yield acorrect result: it islegal

to use f loat_obj to access thevalue of an integer object. For example,

float_obj(arg_pointer('step-number'))
=> 5.0

Accessors are provided toselect parts ofacompound object These functions return point

ers to theselected part of the objectFor example, intervals have twoaccessors, interval_left

and interval_right:

x : = arg__pointer (' target-thickness ') ;
object_type(interval_left(x));
=> 'unit'

Units also havetwo accessor functions, unit_magnitude and unit_dimension.

x : = interval_left (arg_pointer (' target-thickness')) ;
integer_obj(unit_magnitude(x));
^ 85

string_obj(unit_dimension(x)) ;
=> 'nm'

Complexnumbers haveconplex_real and conplex_imag accessor functions forac

cessing the real and imaginary components of acomplex number respectively.

Lists can beof any depth and length. The list_length function returns the length of a

list objectpassed to it For example,

list_length(arg_pointer('equipment-list'));
=> 2

Elements inlists are accessed bythe list_elt function, which returns apointer tothe object de

scribing the element. The function call list_elt (x, n) where x isapointer toalist object and

n isan integer less than orequal tothe length ofthe list pointed toby x accesses the n* element of

213

Accessor function

object_type(ofy")

object_printrep(o&y)

integer_obj (obj)
float_obj (obj)
string_obj (obj)

interval_left (obj)
interval_right (obj)

unit_magnitude(od/)
unit_dimension (obj)

list_length (obj)
list_elt (obj, i)

Description
Returns a stringcontaining the type ofobject pointedto by obj. The
possiblereturn valuesare: Integer*, float', 'complex', 'interval', 'unit' and
'list'. Null is retumed Wobi does not point to an object.
Returns a stringcontaining a print representation forthe object pointed
to by obj. Null is returned ifobj does not point to an object.
Returns an integer, floator stringvalue for the object pointed to by obj.
If the object has the wrong type, returns null except under the following
condition: ifobj points to an integer object, f loat_obj returns a floating
point number with the same value as the integer.
If obj pointsto an interval object, returns a pointer to the left or right part
of the interval respectively. If obj does not pointto an interval, returns
null. .

If objpoints to a unitobject, returns a pointerto the magnitude or
dimension of the interval respectively. If objdoes not point to a unit,
returns null.

If obj points to a list object, list_length returns an integervalue for th€
length ofthe list. List_elt returns the /'th element ofthe list object pointed
to byobj. If obj does notpoint to a list objector if / is greater than the
lengthof the list, null is returned.

Table A-2: Object accessor functions.

the list. For example,

string_obj (list_elt (arg_pointer (' equipment-list') , 1)) ;
=> 'tylanl'

Anyobjectcan beconverted to a stringwiththe object_printrep function. This func

tionreturnsa stringcontaining a print representation of anobject Thisis usefulif anobject is to be

displayed in an ABF field. For example,

x := interval_left(arg__pointer (' target-thickness ')) ;

object_printrep(x);

=> '{85 nm)'

The object accessor functions are listed in Table A-2.

C3 Checking User Input

Since ABF does not directly supportcompounddata types,all compound data types are en

teredintostringfields. Therefore, a mechanism mustbeprovided to perform syntax checks on val

uesenteredby users. For example, if a usertypes thestring "18.2.2 ohm-cm" into a field, it

must be possible for the programto reportan error and force the user to correctthe entry.

Check_format is the functionused to checkthe syntaxof values. It also performs range

checking on interval typesand dimension checking of unittypes. It takes a variable numberof ar

guments. Thefirst argument is always thevalue tobechecked andthesecond argument is aformat

string that specifies the typeof quantity to be checked. Forexample, the function call:

214

Format String Parses

{) Any unit. (e.g.t {18 ohm-cm), {(0.1, 0.2) ohm})
(integer) Integer unit.
(float) Floating point unit.
(complex) Complex unit.
[] Any interval.
[integer] Integer interval.
[float] Floating point interval.
[()] Unit interval.

[{integer)] integer unit interval.
[{float}] Floating point unit interval.

Table A-3: Check_format formatstrings.

check_format(value,"[]");

checks the syntax of the string stored inthe value variable. It returns 0 if the string is correctly

formatted to be aunittypeand anegative integer if thestring isnotcorrectly formatted. For exam

ple:

value := "15.0 ohm-cm";
check_format(value,"[]");
=> 0

check_format ("82.2.2 ohm-cm", "[]");

=> -1

The acceptable format strings and the data typesthey parse are listedin Table A-3. The userdoes

nothave to typetheunitand interval delimiters (i.e., {} and []). For example, boththestring

"{1.2 ohm-cm}" and the string "1.2 ohm-cm" are acceptable if parsed with a format string

of "{float}" or "{complex}". Furthermore, intervals of unit type can beentered by using an

implicit dimension of the left-hand side of the interval For example, if theuser wishes to enter a

string denoting aninterval of 1micron to 22.5 microns, any of the following strings is acceptable:

"[{1 urn} {22.5 um}"
"{1 um} {22.5 urn}"
"1 um 22.5 um"

"1-22.5 um"

Further arguments are passed to check_format to perform dimension checking of unit

types and range checking of interval types. Dimension checking is accomplished by supplying a

third argument that is astring containing the desired dimensions. For example:

check_format(f,"{float}","ohm-cm");

checks thestring stored inthe f variable and retums 0 if it is a floating point unittype withdimen

sionsof ohm-cm. If the valueof f is "18.2 ohm-cm", check_format retums 0. If the value

of f is "18.2 mM, check_format returns anegative integer. Dimensions are onlychecked for

215

Return Value Description

0 No error.

-l Malformed input string.

-2 Malformed dimension.

-3 Invalid number type.

-4 Inconsistent units.

-5 Out of range.

Table A-4: Check_format retum values.

dimensional consistency, soif f has the value "18.2 V-m/kA" check_format retums 0 be

cause ohm-cm and V-m/kA are consistent dimensions.

Range checking is accomplished by providing twoextra arguments to check_format.

For example:

check_format(f,"{float}","1 ohm-cm", "100 ohm-cm");

checksthe value of f and retums0 if it is a floating point unitwith dimensions of ohm-cm anda

value between 1-100 ohm-cm. If the value of f is one of the following:

"1.2 ohm-cm"

"56.7 ohm-cm"

"99 ohm-cm"

check_format returns 0. On the otherhand, if f hasthevalue "0.1 ohm-cm" or "9 V-m/

kA", check_format retums a negative value.

Check_format doesnot alter the string it parses. If the string fails aparse, check_for

mat always displays an error message indicating the reason for the error and returns anegative in

teger. Thepossible return values for check_format and their descriptions are shown inTable A-

4.The values retumed by check_format are normally used by ABFprograms to force theuser

to entera correct value, hi otherwords, ABF programs are usually written to force the userto cor

rect errors in entered values before moving onto thenextoperatioa This is not always desirable.

For example, suppose auser ismeasuring some quantity (e.g., bulk resistivity) and types that value

into a field with check_format used to check the range of the entered value. If the userentersa

value outside theacceptable range (i.e., check_format returns -5), it isoften better to simply

warn the userthatthe valueis outof range and accept the value, because it is possible thatthe en

tered valuehasbeencorrectly typedby the user but that therange specified in the check is too nar

row.

216

C.4 AppendingAttributes to the WIP log

Allarguments passed to a user-dialog frame arewritten to the WIP-log record for the user-

dialog frame and become attributes inthe WIP-log entry. Inaddition, users may append new at

tributes to the WIP-log.For example,the nanospec frame is used to enter measurementsof film

thickness, and a measurements attribute is added to the WIP-log for the nanospec.

Attributes are added to the WIP-log with the create_log_attr function. This function

takes a single argument that is thename of the desired attribute to be added. Forexample, thefol

lowingfunction call addsa measurements attribute to the WIP-log:

create_log_attr ('measurements •);

Anerrormessage is generated if an attribute with thesame name already exists.

Attributes created with create_log_attr have novalue. Attribute values canbesetby

usingthe set_attr_value function. This function takes three arguments:

1. the name of the attribute whose value is to be set,

2. the value to be assigned to the attribute, and

3. the value type.

Forexample, the following function call sets the value ofthe measurement attribute to a unit val

ue of {18.2 ohm-cm}:

set_attr_value('measurements•,•18.2 ohm-cm', '{}');

The thirdargument is usedby set_attr_vaiue to parse the value passedto it andmakesure it

has the correct syntax.

Lists canalso beassigned toattributes. Thecurrent implementation doesnotpermit liststo

beelements oflists, so anattribute list is a simple listofstring, integer, floating point, complex,

unitor interval values. Values areappended toanattribute listby using the append_attr_val-

ue function. This function takes the same arguments as set_attr_value. Values appear in the

listin thesame order inwhich they arc appended using append_attr_value. Forexample, the

followingsequenceof calls createsa measurements attributewithvalue of ({18.2 ohm-cm}

{21.0 ohm-cm} {23.9 ohm-cm}):

create_log_attr('measurements');

append_attr_value (' measurements', '18.2 ohm-cm', '{} ')
append_attr_value ('measurements ', '21.0 ohm-cm', '{} ')
append_attr_value (' measurements ', '23.9 ohm-cm', '{}')

217

Normally list attributes are created by using theABFunloadtable statement to append values

from a table field into an attribute.

218

Appendix D

Database Definition

D.l Introduction

Thisdocument contains CommonLispcode tocreate thedatabase usedbytheWIP system.

Ingresdoes not allow hyphens in tableor fieldnames, so an underscore (_) is used instead.The

WIP interpreteraccessesthe database through CLING/SQL [54].

D.2 Definition

The following defvar creates constants for field lengths and writes the
file used by ABF programs.

(defvar *DB-BUFFER-LENGTH*

(let ((m 0))

(with-open-file
(dolist (dd '(

out "wip-db.h" :direction :output
♦DB-FRAME-TYPE-LENGTH* 40)

DB-FRAME-SLOTS-LENGTH 1500)

DB-BINDINGS-LENGTH 1500)

DB-FUNCTION-NAME-LENGTH 100)

DB-PACKAGE-NAME-LENGTH 100)

♦IB-FUNCTION-CODE-LENGTH* 1500)

DB-PACKAGE-USE-LENGTH 100)
DB-STEP-PATH-LENGTH 200)

DB-LOG-ARG-LENGTH 500)

DB-LOG-NAME-LENGTH 40)
♦DB-LOG-TAG-LENGTH* 40)

DB-LOG-PROC-LENGTH 40)

DB-WAFER-SPEC-LENGTH 100)

♦DB-WAFER-SCRIBE-LENGTH* 10)

DB-REWORK-STACK-LENGTH 200)

♦DB-EQUIP-NAME-LENGTH* 30)

DB-EQUIP-PROG-NAME-LENGTH 30)

DB-EQUIP-PROG-DESCRIP-LENGTH 60)

DB-REWORK-FRAME-ID-LENGTH 20)

♦DB-COMMENT-LENGTH* 60)

DB-PF-ARG-NAME-LENGTH 20)

DB-PF-ARG-DEF-LENGTH 20)
DB-PF-TYPE-LENGTH 10)

DB-PF-NAME-LENGTH 20)

♦DB-PF-VERSION-LENGTH* 20)

DB-PF-COMMENT-LENGTH 80)

DB-PF-FILE-NAME-LENGTH 30)

DB-PF-STATE-LENGTH 20)

♦DB-RUN-NAME-LENGTH* 20)

DB-RUN-STATUS-LENGTH 10)
DB-RUN-STEP-LENGTH 10)

♦DB-RUN-LOCK-LENGTH* 10)

DB-USER-NAME-LENGTH 20)

219

:if-exists :supersede)

(*DB-MAIL-ADDRESS-LENGTH* 40)

(*DB-UDEFAULT-LENGTH* 20)

(*DB-MASK-SET-NAME-LENGTH* 20)

(*DB-MASK-NAME-LENGTH* 20)

(*DB-MASK-TYPE-LENGTH* 20)

(*DB-MASK-LOCATION-LENGTH* 20)

(*DB-MATERIAL-PRIMARY-LENGTH* 20)
(*DB-MATERIAL-REST-LENGTH* 100)

(*DB-PIF-TYPE-LENGTH* 20)

(*DB-PIF-ATTR-NAME-LENGTH* 20)

(*DB-PIF-ATTR-VALUE-LENGTH* 80)

(*DB-SNAPSHOT-SEGMENTS-LENGTH* 80)

(*DB-SNAPSHOT-HASH-LENGTH* 80)

(*DB-LOT-NAME-LENGTH* 20)

(*DB-LOT-BITS-LENGTH* 10)

(*DB-WAFER-SCRIBE-LENGTH* 20)

(*DB-LAYER-NAME-LENGTH* 20)

(*DB-LAYER-DEFN-LENGTH* 40)

(*DB-LAYER-CACHE-LENGTH* 20)

)

m)

(eval (cons 'defconstant dd))

(format out "#define -a (~a)~%"

(convert-to-c-name (first dd))

(second dd))

(setf m (max m (second dd)))))

))

;; This function creates the db tables

7 i

(defun create-db-tables ()

(db-create-table 'run

x((run_id i4 not-null)
(status (varchar ,*DB-RUN-STATUS-LENGTH*))

(step (varchar ,*DB-RUN-STEP-LENGTH*))

(step_path (varchar ,*DB-STEP-PATH-LENGTH*))

(log_id i4 not-null)
(lock (varchar ,*DB-RUN-LOCK-LENGTH*))

(owner_id i4 not-null)

(name (varchar ,*DB-RUN-NAME-LENGTH*))

(cf_id i4 not-null)

(rf_id i4 not-null)

(obj_id_gen i4 not-null)

(layer_seq i4 not-null)

(mask_set_id i4 not-null)

(mask_seq i4 not-null)
(pif_print_seq i4 not-null)
(pf__id i4 not-null)

(lot_size i4 not-null)))

(db-modify 'run
*cbtree

:on '(run_id)

:unique 'yes)

(db-create-table 'evaluation_frame

x((run_id i4 not-null)

(frame_id i4 not-null)

220

(extend i4 not-null)

(frame_type (varchar ,*DB-FRAME-TYPE-LENGTH*)
with-null)

(frame_slots (varchar ,*DB-FRAME-SLOTS-LENGTH*)
with-null))

:duplicates nil)

(db-modify 'evaluation^rame
'cbtree

:on '(run_id frame__id extend)
:unique 'yes)

(db-create-table *user_dialog
x((run_id i4 not-null)

(id i4 not-null)

(extend i4)

(name (varchar ,*DB-LOG-NAME-LENGTH*))
(arguments (varchar ,*DB-LOG-ARG-LENGTH*))
(step_path (varchar ,*DB-STEP-PATH-LENGTH*))
(tag (varchar ,*DB-LOG-TAG-LENGTH*))

(procedure (varchar ,*DB-LOG-PROC-LENGTH*))))

(db-modify 'user_dialog
'cbtree

:on '(run_id id extend)
:unique 'yes)

(db-create-table 'wip_log
x((run_id i4 not-null)

(id i4 not-null)

(extend i4 not-null)

(user_id i4 not-null)

(name (varchar ,*DB-LOG-NAME-LENGTH*))
(time date)

(step_path (varchar ,*DB-STEP-PATH-LENGTH*))
(comment_p i4 not-null)

(tag (varchar 20))

(procedure (varchar 40))

(arguments (varchar ,*DB-LOG-ARG-LENGTH*))))

(db-modify 'wip_log

'cbtree

:on '(run_id id extend)

:unique 'yes)

(db-create-table 'wip_log_comment
N((run_id i4 not-null)

(id i4 not-null)

(line_jium i4 not-null)

(comment (varchar ,*SQL-COMMENT-LENGTH*))))

(db-modify *wip_log_comment
'cbtree

:on '(run_id id line_num)
:unique 'yes)

(db-create-table 'wip_user ; can't call the table user because
; of sql syntax conflict.

x((id i4 not-null)

221

(name (varchar ,*DB-USER-NAME-LENGTH*))
(address (varchar ,*DB-MAIL-ADDRESS-LENGTH*))
(editor (varchar ,*DB-UDEFAULT-LENGTH*))
(status (varchar ,*DB-UDEFAULT-LENGTH*))
(tracing (varchar 3))
(runidq (varchar ,*DB-UDEFAULT-LENGTH*))
(nameq (varchar ,*DB-UDEFAULT-LENGTH*))
(statusq (varchar ,*DB-UDEFAULT-LENGTH*))
(proc_flowq (varchar ,*DB-UDEFAULT-LENGTH*))
(stepq (varchar ,*DB-UDEFAULT-LENGTH*))
(ownerq (varchar ,*DB-UDEFAULT-LENGTH*))))

(db-modify 'wip_user
'cbtree

:on '(id)

:unique 'yes)

(db-create-table 'runjuser
*((run_id i4 not-null)
(user_id i4 not-null)))

(db-modify 'runjuser

'cbtree

:on '(run_id user_id)

:unique 'yes)

(db-create-table 'maskjset
%((id i4 not-null)

(name (varchar ,*DB-MASK-SET-NAME-LENGTH*))))

(db-modify 'mask_set

'cbtree

:on 'id

:unique 'yes)

(db-create-table 'mask
x((mask_set_id i4 not-null)

(id i4 not-null)

(number i4 not-null)

(extend i4 not-null)
(name (varchar ,*DB-MASK-NAME-LENGTH*) not-null)
(type (varchar ,*DB-MASK-TYPE-LENGTH*) not-null)
(location (varchar ,*DB-MASK-LOCATION-LENGTH*) not-null)))

(db-modify 'mask

'cbtree

:on '(mask_set_id id)

:unique 'yes)

(db-create-table 'material
x((run_id i4 not-null)

(id i4 not-null)

(extend i4 not-null)
(primary (varchar ,*DB-MATERIAL-PRIMARY-LENGTH*))
(rest (varchar ,*DB-MATERIAL-REST-LENGTH*))))

(db-modify 'material

'cbtree

:on '(run_id id extend))

222

(db-create-table 'layer
x((run_id i4 not-null)

(id i4 not-null)

(name (varchar ,*DB-LAYER-NAME-LENGTH*) not-null)
(extend i4 not-null)

(definition (varchar ,*DB-LAYER-DEFN-LENGTH*) not-null)
(cache (varchar ,*DB-LAYER-CACHE-LENGTH*) not-null)))

(db-modify 'layer

'cbtree

:on '(run_id id)

:unique 'yes)

(db-create-table 'lot

"((run_id i4)
(id i4)

(extend i4)

(name (varchar ,*DB-LOT-NAME-LENGTH*))
(bits i4)

(lsb 14)))

(db-modify 'lot

'cbtree

:on '(run_id id)

:unique 'yes)

(db-create-table 'wafer

x((run_id i4)
(id i4)

(extend i4)

(ndex i4) ; can't use index since it is SQL token
(snapshot_id i4)

(scribe (varchar ,*DB-WAFER-SCRIBE-LENGTH*))))

(db-modify 'wafer

'cbtree

:on '(id)

:unique 'yes)

(db-create-table 'pif

N((run_id i4)
(print_name i4)

(type (varchar ,*DB-PIF-TYPE-LENGTH*))))
(db-modify 'pif

'cbtree

:on '(run_id print_name)
:unique 'yes)

(db-create-table 'pif_snapshot
%((run_id i4)

(print_name i4)

(extend i4)

(parent i4)

(segments (varchar ,*DB-SNAPSHOT-SEGMENTS-LENGTH*))
(attrhash (varchar ,*DB-SNAPSHOT-HASH-LENGTH*))
(revhash (varchar ,*DB-SNAPSHCT-HASH-LENGTH*))
))

223

(db-modify 'pif_snapshot

*cbtree

:on 'run_id)

(db-create-table *pif_boundary

x((run_id i4)

(print_name i4)

(upper i4)

(lower i4)))

(db-modify 'pif_boundary

'cbtree

:on '(run_id))

(db-create-table 'pif_attr

v((run_id i4)

(print_name i4)
(extend i4)

(name (varchar ,*DB-PIF-ATTR-NAME-LENGTH*))

(value (varchar ,*DB-PIF-ATTR-VALUE-LENGTH*))))

(db-modify 'pif_attr

'cbtree

:on '(run_id))

(db-create-table 'process_flow

x((id i4 not-null)

(name (varchar ,*DB-PF-NAME-LENGTH*) not-null)

(current_version (varchar ,*DB-PF-VERSION-LENGTH*))))

(db-modify 'process_flow
'cbtree

:on '(id)

:unique 'yes)

(db-create-table 'module

x((id i4 not-null)
(type (varchar /*DB-PF-TYPE-LENGTH*) not-null)

(version (varchar ,*DB-PF-VERSION-LENGTH*))

(version_tag (varchar ,*DB-PF-VERSION-LENGTH*))

(name (varchar ,*DB-PF-NAME-LENGTH*) not-null)

(comment (varchar ,*DB-PF-CCMMENT-LENGTH*))

(time date)

(status (varchar ,*DB-PF-STATE-LENGTH*))

(user_id i4)

(owner_id i4 not-null)

(use_counter i4 not-null)

(file (varchar ,*DB-PF-FILE-NAME-LENGTH*) not-null)))

(db-modify 'module

'cbtree

:on '(id)

:unique 'yes)

(db-create-table *pf_comment

N((pf_id i4 not-null)
(line_num i4 not-null)

224

(comment (varchar ,*DB-PF-CCMMENT-LENGTH*))))

(db-modify 'pf_comment
'cbtree

:on '(pf_id line_num)

:unique 'yes)

(db-create-table 'pf_arg

*((Pf_id i4 not-null)
(argjium i4 not-null)

(name (varchar ,*DB-PF-ARG-NAME-LENGTH*))

(default_value (varchar ,*DB-PF-ARG-DEF-LENGTH*))))

(db-modify 'pf_arg

'cbtree

:on '(pf_id arg_num)
:unique 'yes)

(db-create-table 'procedure

x((module_id i4 not-null)
(extend i4 not-null)

(name (varchar ,*DB-FUNCTION-NAME-LENGTH*)
with-null)

(code (varchar ,*DB-FUNCTION-CODE-LENGTH*)

with-null)))

(db-modify 'procedure

'cbtree

:on '(pf_id name extend)

:unique 'yes)

)

225

[This page intentionally blank]

226

Appendix E

WIP Interpreter Data Structures

E.1 Introduction

Thisdocument contains Common Lispdefinitions forsomeof the structures andclasses

used to represent run state. Complete definitions ofalldata structures may befound in the WIP in

terpreter source code.

EJ, Structure Definitions

(defstruct run

current-frame

root-frame

id

(object-id-generator 0)
(current-log-id 0)

(bindings (bpf1-bindings-init))
(rework-lot-id-generator 0)
exception-frames

module-id-list

step-path

(wafer-lot-state

(bsys::make-wafer-lot-state))
(materials

(bsys::make-material-state))
(layers

(bsys: :make-layer-state))
(masks

(bsys: :make-mask-state))
snapshots

)

(defclass ROOT-FRAME ()
((action

:accessor frame-action

:initarg :action
:initform #*go-root)

(next-action

:accessor frame-next-action

:initarg :next-action
:initform #•go-root)

(code

:accessor frame-code

:initarg :code
:initform nil)

(cp

The evaluation frame at the top
of the stack

The evaluation frame at the stack

base

Integer identifying this run
Generator for object ids
Generator for WIP-log ids

Global variable bindings
Rework lot id generator

List of frames at the base of

exception branches

Modules used by the run

Current step-path

; Representation of wafers and lots

; the dispatch function

; lisp (list) code

; position with code

227

:accessor frame-cp

:initarg :cp

:initform (list 1))

(returned-values ; list of values from child frame

:accessor frame-returned-values

:initarg :returned-values
•.initform nil)

(children

:accessor frame-children

:initform nil)

(id

:accessor frame-id

:initarg :id
:initform (incf (run-object-id-generator *CURRENT-RUN*)))

))

(defclass EVAL-FRAME (root-frame)

((parent ; the frame that created this one

:accessor frame-parent
rinitarg :parent
:initform nil)

(parent-cp

:accessor frame-parent-cp

:initarg :parent-cp)
(code-package

:accessor frame-code-package

:initarg :code-package)

(lex-bindings ; the lexical stack

:accessor frame-lex-bindings

:initarg :lex-bindings')
(recipient ; the frame to receive eval result

:accessor frame-recipient

:initarg :recipient)
(current-lot-name

:accessor frame-current-lot-name

:initarg :current-lot-name))

)

(defstruct WAFER-LOT-STATE

(lot-defns (let ((h (make-hash-table :test #'eq)))
(setf (gethash 'bpfl::*ALL-WAFERS* h)

(make-lot :id 1))

h))

(wafer-hash (make-hash-table))

(last-wafer 0)

(last-lot 1))

(defclass LOT ()

((id :reader lot-id

:initarg :lot-id

:initform (incf (*LAST-LOT*)))
(bits 0))

(defclass WAFER ()

((snapshot :accessor wafer-snapshot
:initarg :snapshot)

Lot-defns is hash table. Key is

lot-name, value is lot-struct.

Key is wafer-id, value is wafer

object

Wafer index generator

Lot id generator

228

(id :reader wafer-id

:initarg :id)
(index :reader wafer-index

:initarg :index

:initform (incf (*WAFER-INDEX*)))
(scribe :reader wafer-scribe

:initarg :scribe))

(defstruct MATERIAL-STATE

(known-materials (make-hash-table :test #'eq)))

(defclass MATERIAL ()

((primary :reader material-primary ; material name (symbol)
:initarg :primary)

(attrs :reader material-attrs-slot ; material attributes
:initarg :attrs)

(list :reader material-list ; generator for material
:initarg :list))

(:default-initargs :attrs nil :list '("?")))

(defclass LAYER ()

((CUBES :reader layer-cubes
:initarg :cubes)

(PRINT-FORM :accessor layer-print-form
:initform nil))

)

(defstruct LAYER-STATE

KNOWN-LAYERS . piist layer-name -> original definition
LAYER-CACHE ; plist layer-name -> precomputed cubes
LAYER-NUM-NAME ; alist layer-number -> name
(*LAYER-SEQ* 0) ; stacking order of layers
)

;; default system layer definitions

(deflayer :TOP nil)
(defsysvar *TOP-SIDE* (layer :top))

(defbpfl TOP-SIDE ()
top-side)

(defclass MASK ()

((NAME :reader mask-name

:initarg :name)
(ATTRS :reader mask-attrs

:initarg :attrs)
(SEQ :reader mask-seq

:initform (incf (*mask-seq*))))
(:default-initargs :location nil))

(defstruct MASK-STATE

KNOWN-MASKS . piist name -> mask object

229

(*MASK-SEQ* 0) ; stacking order of masks

)

;; A place-holder class. Defines what can have PIF-ATTR's attatched to it.

(defclass PIF ()

((PRINT-NAME :reader pif-print-name
:initarg :print-name))

(:default-initargs :print-name (incf (*pif-print-seq*))))

;; Binding environment for attributes and boundaries.
;; All associations between objects are within the context of a snapshot.
;; A snapshot is attached to each wafer of interest to represent its
;; current state.

(defclass SNAPSHOT (pif)
;; the most recent checkpoint for this snapshot.
((PARENT :reader snapshot-parent

:initarg :parent)

;; a cache of component segments

(SEGMENTS -.accessor snapshot-segments

:initarg :segments)
;; key is object, value is list of attatched attrs and boundaries.
;; objects are present in the snapshot if present in this table.
(ATTR-HASH :reader snapshot-attr-hash

:initform (make-hash-table :test #'eq))

;; key is attr, value is list of objects attatched to it in this ss.
(REV-HASH :reader snapshot-rev-hash

:initform (make-hash-table :test #'eq)))

(:default-initargs

:parent nil :segments nil))

(defclass SEGMENT (pif)
;; Segments exist to have things attached to them

0

)

Boundaries may be used at most once in a snapshot.
Attributes may be attatched to distinct objects within a snapshot.

(defclass PIF-ATTR (pif)
((NAME :reader pif-attr-name .

:initarg :narae)

(VALUE :reader pif-attr-value
:initarg :value))

(:default-initargs :value nil))

(defclass BOUNDARY (pif)
;; these 'attributes' on a boundary are required
((UPPER :reader boundary-upper

:initarg :upper)

(LOWER -.reader boundary-lower

:initarg :lower))

)

230

handler-case

reworJc-Jboay;

if (not rewor/c-test) than

signal-exception('force-rework);

an-exception c := force-rework do

/* invoke rework */

decrement count;

If count < 0 then

retry-failure
else

push-rework-branch() ;
with-lot 'rework begin

reworfc-prefix;

restart-body();

end;

on-exceptlon c := merge-rework do
/* merge rework branches */

merge-rework-branches();
ignore-exception();

end;

end;

Figure5-16: Reworkimplementation.

exception handler (see Table 5-12). Ignore-exception discards theexception andcontinues

execution as if it had never occurred. Restart -body forces the code within the body ofthe han

dler-case to beexecuted again. Resignal forces theexception to be handled by the nexthigh

er-level exception handler in thecode. Inother words, theexception is passed to a higher-level

sectionof code.Halt - run displays a user-dialog thatallows theusertodecidewhichof the above

actions to take.

Rework is implemented using handler-case as shown in Figure 5-16. Twoexception-

handlers aredefined inFigure 5-16: force-rework andmerge-rework. Thebodyof the han

dler-case executes the bodyof the rework-loop statement (i.e., rework-body), followed by

the rework-test. If the test fails, it raises a force-rework exception. This exception can also be

Operation
ignore-exception

restart-body

resignal

halt-run

Description

Continue run execution.

Restart the code in the body of the handler-case.
Pass the exception up to the next higher-level exception handler in the code.
Save run, display user-dialog allowing the user to chose the desired action.

Table 5-12: Exception-handler operations.

125

raisedwithin the rework-body code from the UI processor by a raise-exception procedure

call.

When a force-rework exception is raised, the code in the force-rework handler is

executed. The first action is to decrement the rework-count and halt the run if the count is ex

ceeded. The current execution frame state is saved using push-rework-stack, and the current-

lot is set to rework. Then the code in rework-prefix is executed before the code within the

rework-body is executed again. When the WIP interpreter process detects that the execution points

oftwo Or more rework branchesarethe same, it signals amerge-reworkexception which merges

the rework branches, and execution is allowed to continue.

Constraints arealsoimplemented by the exception mechanism. Forexample, the following

constraint:

constrain

constraint-body;

whan testl do

case-codel;

end;

when test2 do

case-code2;

end;

end;

is implemented by the code in Figure5-17. The firstactionis to set up the constraintsspecified in

the constraint tests (e.g., testl and testl). This code communicates with asubsidiary program, called

a constraint-server, to enforce the constraints. When constraints are violated, the server sends a

constraint-violation signal to the WIP interpreterprocess which causes the code in the

constraint-violation clause to execute. Once the constraint-body is complete, the COn-

handler-case

setup-constraints(testl,test2) ;
constraint-body;

remove-constraints(testl, test2) ;

an-exception c := constraint-violation

if testl then

case-codel;

end;

if test2 then

case-code2;

end;

end;

end;

Figure 5-17: constrain implementation.

126

straints are removed.

As an example of a constraint server, consider the implementation of timing constraints.

When the WIP interpreterprocess executes a constrain statement, it first sets up the constraints.

For example, in the pattern procedure in Figure 3-14, the timing constraint test is:

When (max-time-between ('spin-on-resist, 'expose-resist, (2 day))
or max-time-between ('expose-resist, 'develop-resist, {1 hour})) do

halt-run("time-constraint-violation in pattern");
end;

The setup action for this constraint is that the spin-on-resist, expose-resist and devel

op-resist procedures aretagged to indicate that they areused in constraints. The WIP interpret

er process then proceeds to execute the code in the body of the constrain. The WIP interpreter

process examines the tag when spin-on-resist is called. The tag indicates that the procedure

is used in a max-1 ime-between timing constraint which causes the WIP interpreter process to

send a message to the timing-constraint server indicating that a timer of2 days duration should be

started.

If the WIP interpreter process reaches the expose-resist procedure before the timer

expires, the tag on expose-resist causes the WIP interpreter process to send a message to the

server telling it to cancel the timer, thus removing the timing constraint.

On the other hand, if the timer expires before the WIP interpreter process reaches the ex-

pose-resist procedure, the server signals a timing-constraint exception and the code in the do *

clause is executed.

Constraints can also be expressed in terms of an absolute starting time. For example, the

constraint in the spin-on-resist procedure in Figure 3-15 is:

when max-time-between(last-dehyd-time, 'resist-coat, {30 min}) do

last-dehyd-time := dehydrate-wafers();

lot(* rework) := lot('current);

raise-exception('rework);

end;

which uses a variable as the first argument to max-time-between. In this case, the setup action

for the constraint is to start a timer that is set to expire 30 minutes after the value in last -dehyd-

time and tag the resist-coat procedure. As before, the constraint is removed if the resist-

coat procedure is called before the timer expires.

127

The final timing constraint implementedin the prototypesystem is based on equipment ac

cess times. For example, the constraint

when (max-time-between(last-equip-time(equipment: 'spinner),

last-equip-time(equipment: 'stepper), {2 day})
or max-time-between(last-equip-time(equipment: 'stepper),

last-equip-time('equipment: developer), {lhour})) do
halt-run("time constraint violation in pattern");

end;

is similar to the constraint in Figure 3-14, except that the endpoints of the permissible delay are

written in terms of equipment access times. The setup action for constraints involving equipment

access times tags the equipment named in the constraint. When certain equipment activity occurs

(e.g., the equipment is deallocated),any activeconstrainton the equipmentis used to start a timer

if the equipment is specified as the start-timeof the constraint, or to halt a timer if the equipment is

specified as the end time of a constraint

To illustrate how other types of constraintsmay be implemented,consider the constraint

in the following code:

vihen current-temperature() > {22 degC} do halt-run(); end;
end;

This constraint could be implemented if a temperaturesensor existed that can be read by a program.

The setup action for the constraint is to instruct the server to signal the WIP interpreterprocess if

the temperature exceeds 22 °C. The server could periodically read the temperaturesensor and raise

an exception if it exceeded 22 °C.

5.9 Version Control

The run management system in the UI processhandlesversioncontrol for process flows

and run modification. Althoughthese operations are invoked throughthe UI process, they are im

plemented by the WIP interpreterprocess.This sectiondescribes the version control system. Run

modification is discussed in the next section.

Process flows are stored in text files that are managed by the Revision Control System

(RCS) [51]. RCS locks BPFL modules to preventsimultaneous modificationof the same module

by different people. In addition, it stores the code modificationtree in an efficient way so that mul

tiple versions can be maintained.The system supports two types of modules:flows and libraries.

Flows contain a BPFL proceduredefinitionwiththe samename as the flow. Whena run is created,

128

id
(integer)

name

(string)
type

(string)
version

(string)
versiontag

(string)
userid

(integer)
ownerid

(integer)

2 cmos-16 flow 1.0 initial 5

3 cmos-16 flow l.i split 42 5

4 litho library 1.0 initial 42 5

time
(datetime)

2/1/91 09:15

2/5/91 11:22

2/5/91 11:22

comment

(string)
baseline cmos initial definition

added lot-split operations

standard kodak 820 resist lithography

Table 5-13: Module table definition and examples.

a flow is specified (e.g., cmos-16) and therunis started by calling the BPFL procedure with the

samenameasthe flow. A library contains procedures anddefinitions thatareused in process flows.

The name of alibrary is normally chosen to identifythe purpose of the procedures in the library

(e.g., the litho library contains procedures used in photolithography).

RCS manages module lockingby forcing users to check-out a module before they are per

mittedto modify it. When theuserhascompleted modification, the modulemust be checked-in be

fore another user can check it out

Summary information about modules and versions is stored in the module table shownin

Table 5-13. The id field storesan integerthatuniquely identifies each module. The name field

contains the name of the module, and the type field indicates whether the module is a flow or a

library. The version fieldcontains theRCS revisionnumber of the module.The version_tag

fieldcanbe used to assignamnemonicversion string (e.g„ version 1.0 may have a versiontagof

initial). Forchecked-out modules, the userJLd field contains the id of the user who has the

module checked out The owner_id field containsthe id of the user who is responsible for main

taining the module.Only the module ownercan change modulepermissions. The time field con

tains the last modification time of the module andthe comment string gives a brief description of

the module.

Every module hasalist of users who are authorized to modify it Hows alsohave alist of

users who are permitted to start a run using the flow.

When a module is checked out, it is still available for use in runs unless the owner requests

otherwise. When a module is checked in, the new code in the module can either be written on top

129

of the old code, or a new module can be created. Forexample, if the user who has checked out

cmos-16 version 1.1 in Table 5-13 checks in the code, he or she can either overwrite the old

cmos -16 version 1.1 with the new code or create a new version. The version of the new code in

this case will be 1.2, assuming that version 1.1 is the latest revision of cmos -16. If version 1.2

already exists, the new module will be cmos-16 version 1.1.1 in accordance with RCS conven

tions.

Libraries simplify management of BPFL software because they provide a mechanism for

sharingcommonly used procedures acrossdifferent process flows. Forexample, the 1i tho library

is used by most BPFL process flows, and it would be wasteful andinconvenient to maintain a copy

of the same code in each process flow. A further advantageis that changes to the code in a library

need only be made in one location. All runs using that librarywill use the new code.

A module indicates that it uses anotherlibrary with the requires declaration. For exam

ple, a library that uses the equipment librarymight contain the code:

requires(equipment, version: latest);

The version argument indicates what version of the library to use, as explained in chapter 4.

When a run is created, requires declarations areused to load all required libraries into the data

base so that the run can use them.

When a run is started, the following action occurs for the flow and all libraries used by the

flow:

1. The UI process copies the flow used by the run into a file, and converts it to

Lisp using a parser written in Lex [58] and Yacc [59]. The conversion from

block-structured code to Lisp is described in more detail earlier in this chapter

(see section 5.4).

2. The Lisp code is then parsed againby the WIP interpreterprocess for further

syntax checking and macro expansion [39] in Lisp, and written to a file. Func

tions in the macro-expanded file are saved in the database. All other top-level

declarations (e.g., defmaterial) are evaluated and the results of the evalu

ation are added to the definitions for the run.

The UI processuses Make [60] to preventunnecessary parsing ormacro-expanding ofmodules that

have already undergone this process. Likewise, the WIP interpreter process only saves module pro-

130

	ERL-91-40 (1 of 3)
	ERL-91-40 (2 of 3)
	ERL-91-40 (3 of 3)

