Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PROCESS-FLOW SPECIFICATION AND
DYNAMIC RUN MODIFICATION FOR
SEMICONDUCTOR MANUFACTURING

by

Christopher James Hegarty

Memorandum No. UCB/ERL M91/40

15 April 1991

PROCESS-FLOW SPECIFICATION AND
DYNAMIC RUN MODIFICATION FOR
SEMICONDUCTOR MANUFACTURING

Copyright © 1991
by

Christopher James Hegarty

Memorandum No. UCB/ERL M91/40

15 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

PROCESS-FLOW SPECIFICATION AND
DYNAMIC RUN MODIFICATION FOR
SEMICONDUCTOR MANUFACTURING

Copyright © 1991

by
Christopher James Hegarty

Memorandum No. UCB/ERL M91/40

15 April 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Abstract

This dissertation describes applications of a semiconductor process representation to a fac-
tory control system for a computer-integrated manufacturing (CIM) system. The control system,
which includes work in progress (WIP) and run management systems, uses a distributed heteroge-
nous database to store all information. The database contains information about the fabrication fa-
cility, processes, work in progress, test data, inventory, orders, personnel, and products.

The process representation used by the WIP system is the Berkeley Process-Flow Lan-
guage (BPFL). BPFL is designed to allow all information about a process to be merged into a com-
mon speciﬁcatiori. This information includes the equipment, recipes, and parameters used to
manufacture semiconductors, resource requirements needed for scheduling, and modelling param-
eters required for process simulation. Different programs, called interpreters, read a BPFL program
and perform a task. For example, a process-check interpreter reads a BPFL program and checks that
it does not violate processing rules. The WIP system is another example of an interpreter.

BPFL is an object-oriented language with abstractions defined specifically for semicon-
ductor manufacturing such as lots, wafers, material, equipment, aﬁd wafer profiles. The language
provides control structures designed for common processing activities such as lot splits and merges,
equipment and operator communication, timing constraints, conditional control-flow, and rework
loops. An exception handling mechanism is provided to allow processes to respond to unexpected
conditions (e.g., equipment failure). The language is designed to separate facility-specific informa- ‘
tion from the process specification to make it easier to change equipment in a facility or move pro-
cesses between facilities. BPFL and the WIP system make implementation of feedback and feed-
forward process control possible because data is stored in the shared database and processes coded
in BPFL can access the database.

The WIP system supports equipment interfacing for automatic recipe execution and mon-
" itoring. The system is software fault-tolerant so that computer system failures will not cause loss of
data. The run-management system allows active runs to be modified. For example, process flows
may be edited while a run is active, and lots may be moved between runs. A software version con-

trol system maintains libraries of process-flow procedures to control process revisions.

[This page intentiqnally blank‘]r .

iv

Chapter 1

11
12
1.3
14
1.5
1.6

Chapter 2

21
22
23
24
25
2.6

Chapter 3

31
32
33
34
35
3.6
3.7

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6

Chapter §

5.1
52
53
54
5.5
5.6
5.7
58
59

Contents

Introduction 1
Problem DOmAiNcccvuieeiricesisisncsesessessesscssessessessassnsssasssessesssssens 1
The Berkeley CIM System.. reetenssssnssnessnsssesssssssestesssssrbersernesenn 6
Commercial CIM SYSIEMScoeveeresssessussecsunsrsssessessessassnsessasnssanes 9
Semiconductor Process Representations...........cceeeeeeseessvessnesancanss 11
Process Specification in other INduStriescoccoueeeervercveruersecuenne 23
Summary and Dissertation Qutling.........ccccoceeveruieeerevrvveseensnasaecsene 27
The Berkeley Process-Flow Language and Interpreters 29
The BPFL Approach to Process Specification...........ceeeueceeuneueneee 29
BPFL Program StIUCHUTE...........cccceeetecsueseseesmssesessesaessessssnssnesesnssnsas 30
Equipment ADSITaCtONS........ocveueurueserirenenssennessssesesesssarensssssanasasnes 37
Wafer-State Representationcevensirseresessesessesnasessssesessesnsnens 39
Database ENtLES.........ccoveeremsncsncersnsisesnsressnsassnessessesssssasssesssesaenes 49
SUIMIMATY ..coveenreernsnncisresssacsessisasscssssessesssssessssssssessassassassassnsassansasaes 50
BPFL Statements for Fabrication 51
Equipment COMMUNICALONccveeeerereresnsaerenesesessenesseserassesassasacs 51
Operator COMMUNICAtION.....c.coceeererirreresseressessssasarsnssasssssessesaesnssnane 53
The WIP LOg....ccovniireinirinnsrnsnssesnssesessessessessesnssssssassssssssasosassss 54
EXCEPLONS...ocrerirerrsncncarssssassirisesirisnssssesesessssasessssessssssssssassssasassesae 57
REWOTK....cvererecrenenaineeensisssscsssssssasssssesssssessesssssesssssesssassessessasnsanes 60
CONSLTAINLSevevereerenecsrencnesssnsassosssssasssssesssscssssesssssssassrosnssaassaasassns 64
SUIMMNATY ...coveererecenenenconssssssesessssssssssssssessssssssessssssassessosessssessasssasasss 68
The WIP Run-Management System 69
WIP System ATCRItECIUTEccveeeuirurserreresreessesassnsssssessesnsnssaesees 69
Starting and Controlling @ RUNcccuvuireneeinnenrerneseenernennenesnesaees 72
Browsing Processing HiStory........ccoccveeeeererisninenessessnsesenessesaeseeas 81
Dynamically modifying @ runueceevunsenneneerneseennenensensneseccsesses 84
VErSION COMMTOL....c..cericrerarrecreesenecarensssssssssessasssssssesssessasssassssessassanes 88
SUIMIMATY ...veovereicnnsssnesnsnssssnsssssssssessessesmssessassessessasssesassssssaossasassnse 90
Implementation 93
Processes and Interprocess Communication...........oeeveeeesversesseene 93
WIP Database.......ccccrvrnecrerressssssessisacsacsansssessersasssnssassansssnsssasssassaase 95
The User-Interface ProCesscoceveeerensrrsesseraesneessessessessassnasanaes 98
Translating BPFL t0 LiSp......ccccococvvisinnunnnnnresnnsncesneseesnessesessenns 106
Executing BPFL Codecocvvvuierinieninnnenrernennnnensesseesesascnsnsens 108
Saving RUN SHAte........ccccinieeneiriririnresesserarseeesssnessssesseseesesnsncsssses 112
WIP interpreter OPErationccoccesesesuesessessessssessssasnsosessssasssssnsas 116
Rework, Exception, and Constraint Implementation................... 122
Version CONMOL......ccceeresrcercasssssssisesessessessessssessessassaessessansassassnes 128

5.10

5.11

512
Chapter 6

6.1

6.2

References

Appendix A

Al
A2
A2.1
A3
A3l
A32
A33
Ad
Ad.1
A4.2
Ad43
AS
AS.1
AS.2
AS.3
AsS4
A.6
A6.1
A.6.2
A7
A8
A9
A.10

References

Appendix B

B.1
B.2
B.3

Appendix C

C1
C2
C3

Implementation Environmentcoceeeerveresersessensesaessessnesaaas 133
SUMIMATYc.eoeeerinernesenancirncsiesnsscssesssssessessessiosesssossasssassassssassnes 135
Conclusions 137
Major CONITIDULIONS......ccoveeruirecniresesseresnesenssisessssessesassessessesassass 137
Future RESEAICHccccuievcecrsecerecnsacssrsncasacsuesesssssossssssuesesassncanns 138

141
BPFL Language Reference Manual 145
INrOQUCHON.....cccvicirennnncnssisnsassssnssssssessassessesassssstssessessessasancaness 145
BPFL SYNLAXccccereeerrereeresecesresessesessssssssosasssssssssssssssssassssssssssssses 146
Notational CONVENLONSccccceereereerrcrassnsscessoncsnsssssescsssssassonsesaes 148
Data TYPES ...oerereererencresessssssrcsssnsasssnssesssasssssnssessssesssssesssssssssssaoses 150
Primitive Data TYpPesccercesesesnsusvesenens cesessasssssssenens 150
Data Type Constructors vressrassesssasssensesnestestassesasssssns 152
Classes and Methods........cceeuereceesscsssacsnssssasssssssassessasssssansessassnasne 154
Program Structurec.c.c.... erersesnennenearensessennaerassnsssansnse 156
Definitions and Declarations..........c..ecceeeecerresssssssssonsssessessasessasss 161
Procedure Callscccceveinvinennciinisnscnrissesssssssessssssssssnssssssessessens 163
Procedure Definitionsccceeeeerereecnseesnesesacensssnssssnsssssssosessasse 164
BPFL SEMANLICS......coeeeermecmsasssessencnsassnsscsossssssssssessesssssssessssaoses 165
CONSLANLS.....coceerirrmerrniersunsessssssssssssssssasssssosassesssssssssssessessossrssssses 165
VATADIESccveeuerreensansessenssnsensasssnssasassssssssassnsasassessessessssssnssssssssesses 166
Procedure Calls.... eeeeerasssansressessessestentsssestssssnssstenassane 166
AUTIDULES.......cuceuecrieerenenersisneesnsssssesasssssssassasassssassssassssssssesssssoseas 167
Wafer State REpresentation.........cc.ceuireessneressssessssnrenscnssssssssnseses 168
Creation and Manipulation of PIF objects.ccceveeeeeerueseerunsuenae 173
Snapshot MOdifiCationcceceeceerseernsensccnsensesssssnsnssessisasssessas 176
Wafer and Lot Specification...........ccccevcreesncsenissesnssissesessessenenne 178
EQUIPINENL......coiitraenrnnceiencnnssnrncsussessssesassasassssssssesssssssesssssosesses 183
MALETIALScoveerirrennncrriennressensissennensesnsensesssensesassssssasssssnsaenses 184
Masks, Layers, and LOCAtiONS........cccccoveecrscsessssvnssossuesaessacssecssenens 188

193
BPFL Implementation of Berkeley CMOS Process 195
Top-level flow (CMOS-16.D)ccccecrrreresrcnnccnssccsonssaserenessaessasecses 195
Outline of CMOS Library (Cmos-Lib.b)ccccecveuesunsservrccrarsuncsenrens 201
Litho Library (lith0.D).....cccceeereecrsenccrrcsercnssascrsssonsssssorsssesssanessa 206
ABF Functions 211
INTOAUCHON.......cccceninrecrnnieessnressessssssasasssosssssssssssssssssssessessssssesas 211
Argument and object accesSOr fUNCHONSccceeerveneseerercnerssecsnes 211
Checking User INputccoevvenccnrcrinenisccencsnessscssesecsessesseesnnene 214

C4

Appendix D
D.1
D.2
Appendix E

E.l
E2

Appending Attributes to the WIP 10gcccoveeeneerncnnevennninnenens 217

Database Definition

TN tTOAUCHON . eeeeeeeeecerervssssosssrnssscesesssessssssssssssssesessassesssensssassanseene 219
D INItION ..eeeeercvnreecrrnsecocsnssssssssesssssssecsssssssssassrssssnsssasassssssssessessnnes 219
WIP Interpreter Data Structures

INtLOAUCHOM ... cecveeeeerreeescsseesssssseeecssssesssssssasssessssssssennasssssesssssssssnse 227
SruCture DefINItIONSvveeeccessssrreeeseessssssssssesssnssssssnssnssssesssssssssosss 227

vii

219

227

[This page intentionally blank]

viii -

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:

Figure 1-6:
Figure 1-7:
Figure 1-8:
Figure 1-9: -
Figure 1-10:
Figure 1-11:
Figure 1-12:
Figure 1-13:
Figure 1-14:
Figure 1-15:
Figure 1-16:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4;
Figure 3-5:
Figure 3-6:
Figure 3-7:

List of Figures

Control 100ps in lIthOZTaphy.ccceecererrccssessccsessanseessessacsecsesnsesssessssssesns 3
Critical dimension control in lithography [1]. ...c.cceeevecsrcncrccssnccnccrurcnncannee 4
Information flow in SPR INtEIPIELETS.....covereerrerrerersunsecsuessessacsessessennsaennes 5
Typical IC-CIM fab COMPUING SYSLEML. «..ccecerruerressersunseessnssuessessessassassnssns 6
An example of structured documentation specification. This example
shows the first two steps of the Berkeley cmos-16 process flow [14].......10
BPFL specification eXample.cccceeeersesvesesensuisessensessesassnsseesesnssncssenesaes 12
Fable standard layer hierarchy.ccoeevveeeeescrecsissensecsensensunseessensenseennes 14
FABLE specification eXample.cccceververueseessesersnsrsssessessaessessnasnassasaes 14
Three-level process MOdel.ucueiieiiseninninsennsennsnnssenseessnessessessnesnens 15
PFR specification eXample.coccceveeirreenncsensenernesseseesensessueseesessessossesnes 16
MKS process specification €Xample.cccvevresrenrersecssesseesnessessessnesaessneses 17
Siemens tracker process flow Xample.c..coeveerersensicsessensuessessuesaessesnnens 19
MPL.2 €XAMPIE.cccceeeecrrererrcssesssssessssssssnsssssscsssesssssssossesssssssssssasssnsssseans 20
Hitachi process flow and check rules example.cccceveereerennenvenneneennen 22
APT program €Xample.ccoeeceerreresnsunsensunseesuessessessessasssessasssssessasssennas 24
ALPS specification €Xample........cocevceceerrusnrsenessesseruesensuesessassessessessssaesace 25
Berkeley cmos-16 process flow in BPFL.........ccceveneenennnneinenncsnennnnns 31
BPFL representation of cmos-16 initial StEPS.ceeererueresneresansnerrenesennes 33
With-10t SEMANLICS. cecveeeiressssesresuesessessssesssssesnssassnsssnesnessassasssessassassasnsanss 34
Wet-oxidation procedure OUthine.ccovveeerrerienseesneseenecruenrenseennennannes 34
BPFL Views €XAMPIE.ccceerrrensensesensussesamssissessessassesssessessasssesssessassesseans 35
BPFL view hi€rarchy.ccccoccrnereseeisensunsensinsessussrssnssasssnssnsssessasssessessessane 36
Equipment class hierarchy.cocecevuvnereesunresnisnssenescsreneseessessesssesnens 37
Equipment operation €Xample.ccccoveeerrververesensensensaesancnessessessnesssnnes 37
Equipment definition €Xample...........coceverveneererncrnnresnernesacsensessessassassessesese 38
BPFL material hierarchy........ccceceeeeccnneseencccsesusssssessessssseseessesnesassassesasanes 40
Mask 1ayout eXaAMPIE.cocccerrcerscsssesscssessessessrssessrssessassasssnssnessassaasassasases 41
Procedure to manipulate PIF structures ... 42
Simple wafer profile and corresponding snapshot..........cceeeemecerciineeneene 42
Expose-resist procedure definition.cecvueeeerenensecuennnseersennesuesaenns 45
Exposed wafer block diagram and PIF snapshot.cccceeveermicaannnnnnnenee 46
Develop-resist procedure definition.ccceveerrrevereereesessseenisnsaesssasssnsas 46
Developed wafer block diagram and PIF SDapshot............eeveesressreseesesenne 47
Furnace-run procedure definition.ccuveeeevieenuesresueresnnesnensesnesnesnsanenes 43
Database schema for Tun State.ccoceveeeencremeeinnseessessessessaesreessessesneoneas 49
Database schema for facility deSCIIptON.cccccerensenreseseesneseerassensacsessens 50
With-equipment SEIMANLICS. ...ccvceereeerarsssrsssssessrssessasssssssesssssassssssassssasassssnns 51
Inspect-Resist fTAIME.cccueierreecrsreecssnsesesaescsssssnsssssssssssnesssssassanassssasnas 53
User-dialog Procedure €Xample........coeeeeecssecsuossuessuessansssesansssssssassasases 53
WIP log object class hierarchy.c.coeveeeeenenrensecsenseisnsnessensessasssssssnns 54
Database schema for WIP 10g ObJECtS.ccceceerrerurruernnsuesuesenereessesseesenanes 54
Sample WIP 108 QUETIES.....c.coceererrererrisieseisussessessasssessesssesasssnssssasansssassass 56
Handler-case EXAMPIE. ...ccccevierecrerrvessunsncrsunssuesssecssasssnsessssesssnesssnessnessaases 58

ix

Figure 3-8:
Figure 3-9:
Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:
Figure 4-26:
Figure 4-27:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 5-10:
Figure 5-11:

BPFL condition types.cccccereeceususccsvesesnene eeerereenesenesnesessssseaseasensessnas 59

Defcondition €XAMPIE.......ccccevrericvrnrerisreunsesaesacns veernesssssessssstsassrassrnssase 59
Rework semantics.c.ceoevsevcenes erertessernesaesatenaesasesasestesstesanerresastes 60
Photolithography rework loop and timing cOnStraints..........ceeueeveeneevesnnens 60
Pattern procedure definition.c.ceevervecseesessenssessecsaessasssnsassnssanessnsans 62
Dehydrate-wafers implementation.ccceeeereseceseersessaeans crsssnesatssaees 65
Pattern procedure implementation with COnsStraints.cecceveeveeeeenee 65
Spin-soft-bake iMpleMENtAtioN.ccccerereesusnesersrssesnesenennes ... 67
WIP system architeCture.coceceeceeseccassssessssssssssssssssasonsons cereeresnssasenns 69
RUN-SUMMATY fTAIMIC. .ceeeurrrerrreersenseraesssnesssreessoneessssosssssnsseesssssssessassnssnsassons 70
RUN-SUMMATY REIP. c.corvereenrenrinsensssisacsnssiscerssssssssssassassnsnesaesseessssssseesaesaenne 71
Create-Run fTAITIE.ccceiveerirreereenseessesaesseessesnsessessasssasessnssssssssessossasssssssss 72
CMOS-16 version 1.1 process flow COe.cccvrerreraessesascsssnsssesssssnssnceseses 72
Run-Summary after creation of new run........... creeessensersanesse vesrveeserreneessraene 73
User-dialog request... essesssessrsssressanes 74
Run-Summary after dismissing dialog....... ceeseeseesneseesane 75
Allocate-Lot fTAIME.cccereereereceerersersesarracssressernssnsesssssssssessasesasesasssessses 75
Wafer-Specification fOIML ... ereinenenssesseessnessseessecssseessasssnsesanasses 76
Measure-bulk-resistivity AefiNitiON......cccccerreereereecrnersanecnnersanesssnencns 76
Sonogage frame. reeseneesesessesessnsasssnessansessnnsessnnsasasanns 78
Inconsistent units error message. tressesssassssesassssnnsensasssessanss 78
Comment dialog BOX. ...coverrserrrcisacrnsesessssesasssonsass cesesteressnsesessssesanessssssesasesss 79
Restrict dIAlog DOX. ..ccccviveireennenssnensicnisassnsssnssnsssssssssssessesnnssnesssssessasanens 79
Run-Detail frame....... eeesssssentsstsstessentessesassatsssssasestssstssstssastaresrases 79
Run-Permissions fTAME.cceeeerererreeersaionsenecernneessssansessssasnsesssssnnsssssssse 81
WIP-LOG fTAME...cuiiiiiiinnincniinictiscsisssssecssisssssssasssssssssssssssessssssssasssessasanes 82
Sonogage-Log fTaIMe.cueeeeereerisneessneecsnns reecsresesssessannns 82
Modify-Lots frame........ eeesessentsssestesssatestesassstsssessessttsstesstssstertrssrnss 84
New-Wafers fTaAme.cvviinnnninnnisinsisessnnsssissssisssssissessassesssesssessenes 85
Import-Wafers frame. . cessssesassasess 86
Split-Run frame........cccoveuenn. esesesisassensssssnssssssssensassssssnsns cresssssensesssasasase 86
Modify-Flow frame......... ressssssassssnsssssssrasssnassenes 87
Version-Control fTAIME.ccererrerserersaessessesnsesserneessesssssssssesssssssssssssss 88
Editing 2 process floW...........cccecerersnrumsssaesiessessesssssssssecscssssasasssessesssssssssons 89
Update-Runs fTAIME.cccvirinvininrenicsissisiesnssssissssasssssssssssisssssssssssssssesassns 90
WIP system arChiteCture.cccceerecereacsresccssessassascasassesasscssssanssssssesessacsss 93
WIP database entity-relationship diagram.ccceeecvcecscnensccecscsecrnenncns 95
UI process appliCation SITUCKUTE.ccoceersercsuccsessessoseescsssessnssessessnsaneass 98
Sonogage frame.............. tesessressssssssassssrsssssrnsenarens cereseressassresssssasnsssusansssna 101
Sonogage frame function OULHNE.co.eeerreeecrsenensseeserssrneessssneasesssssens 101
Measurements table activation COAE.ccceceereecnecsnrccneccessssasosaascsessocnes 104
Measure-bulk-resistivity definition.......cccoeerreerrueerrnerrseeecrsraecssanenes 106
BPFL Lisp representation for measure-bulk-resistivity. ... 106
Evaluation frame class hie€rarchy.cccceceeeereceerernnessaccanecassssscscananncs 110
Evaluation €XamPpIES.ccecerreerreenssnnesaessossssssssssnsnsencsscossossosssssssssosses 111
WIP interpreter process main loOP.cccccerceuecerrassnsnnesssscossesasssssasossoseas 116

X

Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure A-1:
Figure A-2:
Figure A-3:
Figure A-4:

Interpreter test code fragment.c.cecveveeernceieieseseeesesnsceacscessssssisnsnsneans 120

Spaghetti stack €Xample.........ceuererererernreneresesreisesnsssnesnsssssansessesssnsanne 122
Rework EXAMPIE. ...ccovveninininerennenririsisniisinsesnsansessesessssensenssnsnesessesssssssssas 123
Handler-case EXAMPIE.c.coeeencererersueserressessessessensaessessessessansasasssssssnes 124
Rework implementation.eeeeveressersesaesnaneas resssssstssessasessssssesssssrosanses 125
Constrain IMPIEMENLAtION.c.coceereruesereereransessesassasasanssessesssessasassnesess 126
EXQAMPIE ENLTY.ooovveemneneniinnsisiresiriresisenesesssssesesssssssssnsassssnssssssssssssasses 148
Bubble diagram for sample Wafer..........eceveruerernnrerernnreserennnsesecnnssessasae 169
Bubble diagram for sample wafer after oxide growth.c.ccceveuereencee. 171
BPFL material hierarchy........cocccivnrineisesnesiesensesnesesssesseeiesssessessasnsas 184

[This page intentionally blank]

Table 1-1:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:
Table 5-7:
Table 5-8:
Table 5-9:
Table 5-10:
Table 5-11:
Table 5-12:
Table 5-13:
Table 5-14:
Table A-1:
Table A-2:
Table A-3:
Table A-4:
Table A-5:
Table A-6:
Table A-7:
Table A-8:
Table A-1:
Table A-2:
Table A-3:
Table A-4:

List of Tables

Trends in wafer fabrication - LSI, VLSI, ULSI [1]. cccoovviinvmminericcniennnnes 1
Run-Summary fTame OPETations.ccouueerersesrersessassnernessisnnsniessssaesecssssasss 71
User-dialog frame OPErationS.......c.coceceersesisessssessesersosessssessssassesssassesasnesnsns 76
Run-Detail frame OPETations.cocovvveesirussesrersesessessessessesassasanasasssssasesns 81
WIP-Log frame operations. terseesssasesessrrsasesnraressasssraseseesresasessranas 82
Log frame OPETations.cccuervesenemsssasenssenesssesesasssssssssssssssnssssasssasaseseses 83
Modify-Lots OPETALONS.ccrvrieeesissessesessesnessesnessassassasssessassassasssssseasaassannes 84
Version-Control OPETAtONS.ccoceereesessessessersessnsssessessnssnsssesnassassnassanas 88
Run table definition and examples.coceceevrereeruernerernernenenieeseenteseeenes 99
User_dialog table definition and example...........cccevereervveruernnnenrcnennee 100
WIP_log table definition and example.co.coecruerrmeeerrereenceesuesurssnisnenneas 104
Simplified evaluation frame definition and example............c.ccceeuenenee.e. 109
Run data structure definition.ccccecceecenseresnsssnssssessseesssseessrecssnecssaseans 112
Evaluation_frame table definition and examples.cccoeeeeeeenceneens. 113
Wafer class definition and example.ccoveereiveiinieninisenesnnennenseeseeenes 114
Wafer table definition and example.coceveerrecrerseiruirnnnreensenseesrersensans 114
Lot class definition and example.coceveveeererereernsresnenressesneruesnesnenenns 115
Lot table definition and example.coeververerrcrnienresnesaessessesseraesnennennns 115
WIP interpreter process evaluation times.coeeeeeresncsnesueneessesansaesens 120
Exception-handler Operations.ceceveeeereerersernnsecsessensuessessusssessessanss 125
Module table definition and examples.........cc.ccueerueencsrnncrensniesenernenanenne 129
Procedure table definition and example.coveevvvveernesensnerennerrennennene 131
Comparison between Common Lisp and BPFL argument lists.............. 165
Example SnapsShot ODJECLS. ...cucuecurerisescssisisuesesisnesesnssesismssesessessnsessessanens 169
Attr-hash SIOt CONLENLS.ccecreucrerrucsersancrcesumscsssecssressessaesssessasssssssasssnns 170
Rev-hash SIOt CONLENLS.coverrirnseisunsressecsressinssnssnnsssessnsssnsssasessesssessnens 170
New SNapshot ODJECES.cccvvcvunsereisisiseismsessusessnnsensuessessesssessessessaesasssenns 171
Attr-hash table for new Snapshot.cccccceervcsnssernserssticseccsunsennsasnnnes 171
Wafer Class AESCIIPLON.ccoerrriesirsensessensnsserssecssesssesssesssessaesssessassansanes 178 -
Lot class desCriptionccoueeercvessees seresnsesetesssesassssstesstssnasesssnssranersneenn 178
Argument acCeSSOT fUNCHOMNS.ccoeviruerarssecsersrecsersrissecssnesseessnsssasssnssasas 212
Object aCCESSOT fUNCHONS. ...cvereeeerrercsaresessesacsessessesasssssessessessessessessesseses 214
Check_format format StNES.ccceceeercerervernsressesunsuesnisseessnssesnessensenns 215
Check_format TEtUIN VALUES.......ccccrerruercrssrarscssrsossssrosssssssssssesssssessssseneres 216

xiii

- [This page :intgnﬁonaﬂy blank] i

xiv .

Acknowledgments

This research has been supported by the National Science Foundation (Grant MIP-
8715557), and the Semiconductor Research Corporation, Philips/Signetics Corporation, Harris
Corporation, Texas Instruments, National Semiconductor, Intel Corporation, Rockwell Internation-
al, Motorola Inc., and Siemens Corporation with a matching grant from the State of California’s MI-
CRO program.

I would like to express my appreciation to all of the members of the Berkeley CIM and
CAM groups, past and present, who made valuable suggestions that contributed to the work de-
scribed in this dissertation. Particular thanks are due to Kuang-Kuo Lin, Norman Chang, and David
Mudie. Thanks also to Lauren Massa for her aid with INGRES installation, and to Jeff Sedayao of
Intel for his help in understanding the capabilities of commercial CIM systems.

Christopher Williams, the creator of BPFL and the author of the core interpreter used to
implement the WIP interpreter, deserves special mention. His programming skills allowed me to
concentrate on developing the BPFL language constructs for fabrication and implementing the user
interface for the WIP system. Christopher provided many valuable insights that contributed greatly
to the work in this dissertation.

My thanks glso to the members of my dissertation committee: Professors Ronald Gronsky,
David Hodges, and Lawrence Rowe. Professor Hodges was my research advisor during the initial
two years of this work. His enthusiastic belief in CIM and his knowledge of semiconductor manu-
facturing were a tremendous aid in deciding what features were important for the work described
in this dissertation. Professor Rowe has been my research advisor for the final two years of this re-
search and my dissertation chairman. His knowledge of software systems, language design, and
commercial software were invaluable in the design and implementation of BPFL and the WIP sys-
tem.

Id also like to thank my parents, Peter and Janette Hegarty, for their support and encour-
agement to do well at whatever I chose and to continue my education.

Finally, my thanks to my wife, Celia. Her encouragement, confidence and sacrifice made

this dissertation possible.

Xv

- [This page intentionally blank]

xvi -

Chapter 1
Introduction

The goal of computer-integrated manufacturing (CIM) is to use computer and information
management technology to integrate and automatically execute manufacturing operations. Two key
elements of a CIM system are a shared, integrated, distributed database and a process-flow repre-
‘sentation suitable for all manufacturing phases. This thesis describes the implementation of a work-
in-progress (WIP) system using a powerful process-flow representation for semiconductor inte-
grated-circuit (IC) manufacturing. This chapter describes the problem domain for IC process-flow
representation, process representation in commercially-available CIM systems, contemporary re-

search into semiconductor process representation, and process representation in other industries.

1.1 Problem Domain

The objective of CIM is to increase producti.vity, information accessibility, and flexibility
to meet changing market or manufacturing conditions. Other objectives include improving the ac-
curacy of data and information collected during manufacture and increasing the transportability of
manufacturing pfocess specifications. Benefits include better predictability and reproducibility,
higher yields, lower inventories, better equipment utilization, and greater throughput.

For the purposes of CIM, manufacturing operations include design, fabrication, and testing.
Although CIM is applicable to any manufacturing process, IC manufacturing is the focus of this
dissertation.

IC manufacturing is a complex pmc;ess and it is becoming more complex due to increasing
process sophistication, shorter design cycles, and shrinking product lifetimes. Table 1-1 shows the
increase in IC fabrication complexity in the decade from 1980 to 1990. The volume of process data
collected per lot (25 wafers) during manufacturing has risen from 100 records to 10 000 records in
the evolution from large scale integration (LSI) to ultra-large scale integration (ULSI). With so
many data records required, some form of automatic collection and monitoring is essential. Today
CIM systems are necessary for efficient manufacture of complex semiconductor products.

A process flow specifies the steps needed to manufacture a product. It is an important com-

ponent of any complex manufacturing process. A process-flow in the IC industry is called a semi-

1

conductor process representation (SPR). The goal of an SPR is that it be complete and facility-
independent. It should also be machine interpretable to aid in process automation. Moreover, an
SPR should be applicable to all stages of manufacturing (i.e., design, fabrication, and testing).
Semiconductor companies may view process-flow representations that are cryptic and hard
to understand as an asset because of the security they provide. A major problem with IC-CIM sys-
tems used in industry is that different SPR’s are used for design and fabrication. Frequently, more
than one specification is used in each domain. This redundant specification is not surprising, given
that the interests and goals of process designers and production staff differ greatly. For example,
process engineers are primarily concemed with developing processes that meet device specifica-
tions (e.g., propagation delay), whereas production staff are primarily interested in high yield. The
unfortunate consequence is that the different specifications are often inconsistent, which can sig-
nificantly reduce productivity. For example, device simulators used by process engineers require
exact numerical information about devices to.be simulated. The information supplied to production
staff is derived from the input to the simulators but often changes are made to accommodate pro-
cessing limitations and correct errors in the original process specification, and these changes are
frequently not made to the original simulation-based specification. Also, the translation of process
specification from design to fabrication is normally done by hand, which is both error-prone and
time consuming. A more serion_ls problem arises because some semiconductor companiés minimize
the interaction between process designers and production staff. Process designers often consider the
design complete when a process description and equipment recipes are delivered to the production

facility. The production staff must re-leam much that the process designers already know before

LS| VLSI uLsl
| Products size in bits (DRAMS) 16K 256K-1M aMm
| Throughput (wafers/month) 10 000 30 000 50 000
Total process steps per lot 100 230400 550
Number of equipment types 40 100 120
Equipment count _ 70 300 400
Number of process conditions 200 800 1 500
Volume of process data per
month (data base records) for
stable production 4x 104 6x 106 2x107
Data base records/lot 100 5 000 10 000

Table 1-1: Trends in wafer fabrication - LSI, VLSI, ULSI [1].

2

the process can be used to manufacture an acceptable product. Since processes tend to evolve as
equipment is updated and more is leamned about the behavior of the process, there is often a need
to transfer the process back into design for further analysis to contribute to new process design.
Consequently the same difficulties are encountered in reverse because process designers are unable
to use production process-flow representations. A single representation is required to solve this
problem.

Another impetus that drives research into process-flow specification is the rapid increase
in the number of process steps indicated in Table 1-1. A crucial advantage of a computer-interpret-
able process-flow specification is that version control systems can be used to coordinate changes in
process flows and code libraries can be used to encourage the re-use of process-flow code.

An SPR includes the sequence of process steps (i.e., processing operations and data collec-
tion operations) required to fabricate a product. It also specifies information about the fabrication
facility (e.g., equipment specifications). An SPR specification of a process flow is used to operate
a fabrication facility (or fab), as input to a simulator, and as input to an equipment scheduler. Con-
sequently information to support activities other than fabrication must be specified. For example,
equipment schedulers need to know the time required to perform each process step.

An SPR must be able to express control flow in the process steps making up a process flow.
For example, processing may be dynamically changed on the basis of data colleg:ted during prior
processing of other lots on the same piece of equipment (i.e., feed-back control) or on the basis of
data collected during prior processing of the same lot (i.e., feed-forward control). Systems that em-
ploy feed-forward and feed-back control are often referred to as control-loops. Control loops allow
process designers to reduce manufacturing variability caused by equipment variations.

An important example of the use of control loops is photolithography in which there are
significant interactions among physical parameters such as mask dimensions, photoresist exposure
time, etching time and gate length in Metal-Oxide-Semiconductor (MOS) processes. A small devi-
ation in an earﬁer step can be corrected by adjusting parameters in a subsequent step. Examples of
control loops in photolithography are shown in Figure 1-1. In conventional photélithography criti-
cal dimension (CD), usually gate width in MOS, is measured. This measurement is used to adjust

the etching step for subsequent lots. A CIM system that employs both feed-forward and feed-back

Process

Mask
Measurement
Resist
Application

Alignment
and Exposure

Development

Resist Pattern
Measurement

Etching

Device Pattern
Measurement

Conventional Feed-forward + Feed-back

m--o--o--o--o--o

Figure 1-1: Control loops in lithography.

control can achieve more control than a conventional system. Feed-forward control can be used be-
tween the measurement of the mask CD and the exposure time, and again between the measurement
of the resist pattern and the etching step. Similarly, feed-back control can be used to adjust the ex-
posure time of subsequent lots based on resist pattern measurements and to adjust the etch time
based on device pattern measurements. An example of the results obtainable with control loops is
shown in Figure 1-2. Critical dimension control was improved by nearly 40 percent because small
errors could be detected and corrected for during processing. In practical terms, an improvement of
this magnitude is important because it reduces the percentage of parts with incorrect CD. Conse-
quently, because CD is a primary factor in determining propagation delay for MOS devices and

faster parts attract premium prices, significant improvements in profitability can be expected.

Conventional System: d=0.06 um r__'—l

CIM System: 9=0.0375 um E

Aberration (um)

! 1 [l

30 40 50
of samples

Figure 1-2: Critical dimension control in lithography [1].

4

Equipment
wiP
Systam <
Operators

- - Simulators (e.g, SIMPL, SUPREM)
Simulation
SPR Input
Generator) L :
Simulation input languages (e.g. PROSE)

Scheduler

Input | ——» Schedulers (e.g. BLOCS
Generator ©g)

Figure 1-3: Information flow in SPR interpreters,

An extreme example of control-loops is the run-by-run control regime that is being ex-
plored by Sachs [2]. Feed-back control can only improve subsequent lots, based on the assumption
that nothing has changed since the measured lot was processed. Feed-forward control, on the other
hand, is particularly important for rapid ramp-up time (i.e., the time it takes a new process to
achieve acceptable yields), which is essential for economic fabrication of small product quantities.
The use of feed-forward control in a production facility requires real-time linkage of lot history and
engineering data, since the information fed forward may be required almost immediately after it is
collected. Support for feed-forward and feed-back control is an essential part of an SPR.

Although SPRs are intended to be used in many ways (e.g., shop floor control, simulation,
scheduling), most prototype SPRs are developed for one application initially and extended to other
uses later. One application of an SPR is in a work-in-process (WIP) system. A WIP system is re-
sponsible for handling operations concemed with the fabrication of products. It controls and
records the movement of production lots through the fab, issues instructions to equipment operators
to execute processing steps (or instructs equipment to execute steps automatically when possible),
allocate resources (€.g., equipment, tracks the inventory of consumables), and maintains a log of
the processing history of products. '

An SPR interpreter executes a specification to accomplish a goal. Different-interpreters ac-
complish different goals by performing different computations on the same specification as shown
in Figure 1-3. For example, commands are issued to people and equipment when a WIP interpreter

executes a process flow. Another interpreter will produce input commands for a process simulator

5

(e.g., SIMPL [3], SUPREM [4]) or a simulation input language (e.g. PROSE [5]) when it executes
the same process flow. A scheduling interpreter generates run timing information for use by a

scheduling system (e.g., BLOCS [6]).

1.2 The Berkeley CIM System
The development of the system described in this dissertation has been influenced by our

vision of a CIM system architecture. This section describes that architecture. The system runs in a
distributed heterogeneous computing environment composed of a variety of computers connected
by a local-area network. A typical fab might use large microcomputers for cell controllers, a large
mini- or mainframe computer for area and factory control, and a collection of workstations and ter-
minals for user interactions. Figure 1-4 shows a typical system. Notice that cell controllers have lo-
cal databases and that the fab has a large shared database server which motivates the need for a
distributed database. Terminals and workstations are provided where appropriate. They can be con-

nected either to a terminal server or to a convenient computer. Equipment is connected to the cell

controllers.
Terminals
w Workstations
Database
Local Area Network

Cell g Cel-l-—_E
Computer — Computer|

Workstation Workstation

® (D

Terminals Workcell Terminals Workcell

Figure 1-4: Typical IC-CIM fab computing system.

6

This architecture suggests a hierarchical structure (i.e., a cell computer is subordinate to an
area computer which is subordinate to a factory computer) but in fact programs on any computer
can access databases and programs running on any other wﬁpumr using an interprocess commu-
nications protocol.

A key component of the system is a shared CIM database that stores all the information
about the design and manufacture of semiconductors. This database contains information about the
manufacturing facility (e.g, rooms and areas, equipment, and utilities), process-flow specifications,
WIP (e.g., lots, wafers, data collected during processing, material, etc.), equipment (e.g., status, rec-
ipes, qualification and maintenance logs, reservations, etc.), test data, product inventory, and or-
ders. While the database is treated logically as a single centralized database, the architecture that
we envision stores data in a distributed heterogeneous database (e.g., Gestalt (7], or INGRES/
STAR [8]). Data will be stored on the computer that optimizes the cost, reliability, and access con-
straints imposed by its use. For example, equipment recipes are stored in databases on the cell com-
puters, test data is stored on area computers in testing, and production schedules are stored on the
factory computer.

A heterogenous distributed DBMS is required for two reasons. First, different applications
in the fab have different data requirements. One DBMS cannot satisfy all these requirements. For
example, the real-time performance and data volume required by some on-line monitoring applica-
tions can only be met today by file systems.

Second, it must be possible to integrate into this architecture existing applications that use
older technology storage systems (e.g., VSAM files and IMS databases). It would be prohibitively
expensive to rewrite all applications because a new CIM system was introduced into the fab. How-
ever, new applications often must access the data managed by older applications. A distributed het-
erogeneous DBMS that provides gateways to different storage systems will allow fab applications
to access new and old data. Consequently, data will be stored in many different systems including
third generation database system, conventional database systems (e.g. relational, network and hier-
archical), and files where appropriate.

A third generation database system is required for many CIM applications. It supports re-

lational data storage and access, an object-oriented data model (i.e., inheritance, user-defined data

types, and methods), and a rules system [9]. An example is the POSTGRES system being devel-
oped at Berkeley [10]. A third generation database system can store and access data that cannot be
stored and accessed easily in a conventional relalionél database. For example, measurements col-
lected during wafer processing are often represented by a sequence of values with units. A third
generation database system can store arrays of user-defined data types (e.g., values with unit des-
ignations) in a table. Conventional DBMS’s do not support these data types.
Although some attempts have been made to use existing programming languages as SPRs,
these efforts have been largely unsuccessful. There are several problems with this approach:
1. Robustness. Since fabrication runs take a long time (e.g., a typical run lasts for
more than a month), it is likely that a computer system failure will occur before
a run is completed. Consequently, all state information about a process must
be saved in non-volatile storage (e.g., on disk) so that a run can be restarted
from its last saved position when the system crashes. Conventional program-
ming language implementations are not designed with this form of recovery in
mind.!
2. Expressability.WSome common operations in semiconductor processing are dif-
ficult to express in a conventional programming language (e.g., timing con-
straints on steps).
3. Dynamic Modification. Fabrication processes run for weeks or months and it
is frequently necessary to modify a process during a run. Such changes are dif-
ficult to make in most programming environments.
Although each of these shortcomings in conventional languages can be solved with sufficient ef-
fort, there is substantial benefit to be gained from using a special-purpose language developed spe-
cifically for SPR. This approach does not preclude translation of the SPR into a conventional

language as a lower-level representation of the process flow.

! Some computer vendors have developed custom languages and programming styles to implement
fault-tolerant programs in an On-Line Transaction Processing (OLTP) environment (e.g., Tandem
(11)).

The SPR used in the Berkeley CIM system is the Berkeley Process-Flow Language
(BPFL). BPFL is a procedural representation of a process flow. Process flows are represented as
textual specifications of the sequence of steps required to manufacture a product.

The CIM database is used by BPFL and its associated interpreters in several ways. First,
BPFL programs themselves are stored in the database. A software version-control system is imple-
mented on top of the DBMS to manage libraries of BPFL procedures and their status (e.g., under
development, approved for use in a particular fab, etc.).

Second, BPFL interpreters use information in the CIM database. For example, the equip-
ment in the fab and its current status is maintained in the database [12]. A scheduler uses this data
to determine which piece of equipment should be allocated to a run. Another example is the WIP
system itself, which stores the state of all active runs in the database so that the system can recover
from a computer failure. Mirrored disks, on-line backup and recovery, and standby spare databases
can reduce the possibility that information is lost and reduce the down time should a failure occur
[13].

Third, BPFL programs store and access data in the CIM database. For example, an event
log that records the start- and end-times of operations, in-process and in-situ measurements collect-
ed during processing, and other processing information is stored in the database. This log can be
accessed by a BPFL procedure to change futire processing based on previously recorded measure-
ments (i.e., feed-forward or feed-back control). In other words, the database is a convenient repos-

itory for data that is shared within a run and between runs.

1.3 Commercial CIM Systems
Traditional SPRs in the semiconductor industry are based either on structured documenta-
tion or run-sheet specifications. They are typically used only for shop-floor control (i.e., WIP sys-
tems).
In a structured documentation system, a printed copy of the process-flow specification,
called a traveller, accompanies the lot carrier and is passed along with it to different workcells. i

Operators follow the instructions on the traveller that describe how the lot should be processed. As

1 Wafers are processed in lots (25 wafers). Lots are transported around the fab in a lot carrier. Op-
erations are performed at workcells, which are clusters of one or more pieces of fabrication equip-
ment.

1.0 Starting Wafers: 18-22 ohm-cm, p-type, <100>
Control wafers: NWELL (p-type), NCH (p-type)
Measure bulk resistivity (ohms-cm) of NWELL on sonogage.
R =

2.0 Initial Oxidation: target = 1000 A
2.1 TCA clean furnace tube.
2.2 Standard clean wafers:
piranha 10 minutes, 10/1 HF dip, spin-dry.
2.3 Wet oxidation at 1000 C:
5 minutes dry 02
10 minutes wet 02
S minutes dry 02
20 minutes dry N2
tox =

Figure 1-5: An example of structured documentation specification.
This example shows the first two steps of the Berkeley cmos-16 pro-
cess flow [14].

each step is completed, the operator indicates that the step was completed and enters data for the
step (e.g., measurements). Most structured documentation systems use computers to store specifi-
cations, but they normally.do not possess the capability to interpret the specifications or collect data
during a run. An example of structured documentation is shown in Figure 1-5. Note that spaces are
available for an operator to write the results of measurements.

A run-sheet system is essentially an interactive traveller. The process-flow specification is
stored in a computer and executed by it. When executed (or “interpreted”), the run-sheet describes
the processing at each workcell, usually in the form of instructions displayed to the equipment op-
erator on a computer terminal, and indicates where the lot should be moved when the step is fin-
ished. Some run-sheet systems issue commands to execute recipes stored in microcomputers that
control the equipment and direct a material movement system to move lots to different workcells
11

Examples of commercial run-sheet systems are WORKSTREAM [15] and PROMIS [16].
Both systems use a similar notation for process flows. In WORKSTREAM, the basic unit of a pro-
cess flow is an operation which is defined as a single process step executed by an operator (e.g.,
“run the SWETOXB recipe in the furnace”). Sequences of operations are grouped into routes. A
product is a sequence of one or more routes required to manufacture an item. The basic unit of a

PROMIS process flow is a recipe. Recipes are subdivided into atomic operations which may be

10

shared among recipes (e.g., ““set the temperature dial to 120 °C”). PROMIS has constructs called
processes and devices which correspond to WORKSTREAM routes and products, respectively.
While WORKSTREAM and PROMIS differ in the details of information specified at each level of
abstraction, the mpresentationg are very similar in scope and power. The SPR provides operator in-
put/output, material movement, and data collection and archiving commands. There is limited sup-
port for control flow, no exception-handling, and no support for activities other than fabrication.
Structured documentation and automated run sheet systems do not automate fabrication.
They track WIP and provide production management information but they do not support equip-
ment integration. Run-sheet specification languages are more powerful than structured documenta-
tion systems because they automate some operations, but they are typically limited to a small, fixed
set of commands that are sequentially executed. These systems do not provide the power and flex-
ibility sufficient to manage the task of IC manufacturing. An SPR is essentially a program for a very
complex system composed of equipment in the fabrication line, the material movement system, and
data stored in databases that describe the factory and processing history. An SPR must have the ex-

tensive power of a full-function programming language.

1.4 Semiconductor Process Representations

Several SPRs have been developed that attempt to overcome the limitations of current com-
mercial systems. These SPRs are described and compared with our approach in this secﬁon.

There are two basic approaches to the design of an SPR: knowledge-based and procedural.
A knowledge-based approach uses a hierarchical, object-oriented data structure to represent a pro-
cess flow. The data structure is composed of objects that 'reptesent operations. An operation can be
an equipment operation, a control operation (e.g., a conditional, looping or procedure call com-
mand), an input/output operation, or a database operation. A class is defined for each operation
which contains attributes or slots that specify the parameters of the operation. A method is defined
on the class that defines the semantics of the operation. The interpreter for a knowledge-based SPR
is implemented by writing a program that traverses the data structure that specifies a process flow
and calls the appropriate method. The method defines appropriate semantics for the operation.

The advantage of the knowledge-based approach is that new operations can be defined as

asubclass of an existing class so that default parameters can be inherited from an existing operation.

11

Other advantages are that the data structure can be conveniently stored in a relational database and
itis relatively easy to write programs that operate on a process flow because it is just a data struc-
ture. It is also relatively easy to make certain modifications to the process flow, such as inserting a
sequence of steps. .

The disadvantage of this approach is that the knowledge-representation system does not in-
clude sophisticated control structure abstractions required to handle unexpected situations (e.g., a
furnace run aborts because of a power failure or a constraint on the maximum time delay before
starting an operation is violated).! The knowledge-based representation emphasizes the correct be-
havior of the process.

A procedural, or programming-language, approach represents a process flow by a program.
A procedural process flow is defined by a collection of procedures that contain conventional pro-
gramming language commands (e.g., variable and data declarations, assignments, control struc-
tures, etc.) interspersed with commands to communicate with equipment, operators and the
database. The process flow is compiled into an abstract syntax-tree [17] which is roughly equivalent
to the data structure in a knowledge-based representation. The interpreter for a procedural SPR is
similar to the interpreter in the knowledge-based approach. However, it implements a full-function
programming language rather than a limited set of primitive operations. The advantage of the pro-
cedural representation is that a full complement of control structures, data structures and program-
ming notations are available. This representation emphasizes both the correct and incorrect
behavior of the process.

The major difference between the two approaches, besides the different aspects of the pro-
cess that they emphasize, is the use of a procedure call with default parameters as opposed to a sub-
class with inheritance to define new operations in terms of existing operations. Both approaches
have essentially the same expressive power. Consequently, the kind of representation is less impor-
tant than the particular constructs and abstractions that are provided.

Before proceeding to consider other SPRs a brief introduction to the SPR used in this dis-
sertation will be presented. BPFL is a programming-language approach to SPR. A simple example
of a BPFL specification appears in Figure 1-6. The figure contains an outline of the BPFL descrip-

! Anecdotal evidence from other programming applications suggests that as many as 50% of the
lines of code deal with unexpected and error situations.

12

defflow anneal-implant (time: = ({30 min), temperature: = {950 degC})
* Anneal implant damage in nitrogen ambient *°
let segments := find-segments-in-lot (material: #m(substrate));
begin
viewcase
when simulation do
end;
when fabrication do
with-equipment furnace of-type 'n2-furnace do
run-recipe(furnace, 'anneal, time: time, temperature: temperature);
end;
end;
segment-material-attribute-in-lot (segments, :implant-annealed) := t;
end;
end;

Figure 1-6: BPFL specification example.

tion for a process step called anneal-implant. This is a standard operation for repairing sub-
strate damage caused by ion implantation. The step has two arguments: t ime and temperature.
A sample of BPFL code using the step is:

n2-anneal (time: (1 hr});
In this case, the t ime argument is set to 1 hour using the units data type (i.e., magnitude and unit
designation enclosed in set braces) to denote dimensioned quantities. The temperature argu-
ment is not supplied in the above example and so it takes on the default value of 950 °C specified
in the procedure definition.

BPFL uses a view mechanism to specify information that is of interest to selected interpret-
ers. For example, code for simulators appears in the simulat ion view and code for the WIP in-
terpreter is in the fabrication view. In addition, BPFL programs maintain a model of wafer
state that is used to check processes for correctness, to store measurements, and to permit the move-
ment of wafers between different runs. The line of code:

segment-material-attribute-in-lot (segments, :implant-annealed) := t;
updates the wafer-state model to indicate that the wafers have been annealed.

BPFL has statements to specify control flow, (e.g., 1f-then) and common abstractions
encountered in processing (e.g., rework loops, timing constraints, etc.). More detail is given in later
chapters.

The earliest attempt to develop a formal process-flow representation was FABLE which is

a procedural SPR [18],[19]. FABLE programs are structured in terms of a hierarchy of layers cor-

13

procsss layer

effect layer

treatment layer

sefttings layer
technician interface computer interface

physical layer
Figure 1-7: Fable standard layer hierarchy.

responding to the level of abstraction of an operation. The layer hierarchy is shown in Figure 1-7.
The process layer represents fabrication operations (e.g., grow-gate-oxide). The effect layer corre-
sponds to operations resulting in a change in the material being processed (e.g., growing an oxide
layer). The treatment layer corresponds to operations performed on wafers to achieve the desired
effect. The settings layer describes equipment settings used to achieve a desired treatment. It has
technician and computer interfaces that describe the operation of equipment in terms appropriate
for use by operator interaction and automatic equipment control, respectively. For example, the
technician interface for a funace includes the required values of recipe parameters and recipes suit-
able for input on the furnace front panel, and the computer interface view includes the equipment
parameters suitable for downloading to the fumace controller. The lowest-level view is the physical
layer, which indicates the appropriate actions to take to tumn settings into physical reality (e.g., a
setting of 900 °C can be achieved by setting the temperature control appropriately).

Higher-level layers are implemented in terms of lower-level layers. For example, a grow-
oxide operation defined at the effects layer is implemented in terms of funace settings defined at
the settings layer. Layers are only permitted to refer to layers of a lower-level of abstraction.

FABLE programs are written in terms of specifications describing each layer and imple-
mentations describing the steps to take to move between layers. Figure 1-8 presents a FABLE def-
inition for diffusion, for both the treatment layer and the treatment-settings interface.

FABLE has not been successful. The strict hierarchy, while attractive for compartmental-

izing the specification of equipment and processes, is too restrictive for use in a real manufacturing

14

Diffusion-Treatments = subclass of Treatment-Library with
specification of (Treatment layer] =
Slow-Push:Operation(wafers: Lot; temp: Temp; environment: Gases);
Diffuse:Operation(wafers: Lot; temp: Temp; duration: Time; ...);
Slow-Pull:Operation(wafers: Lot; temp: Teamp; environment: Gases);
end [Treatment layer];

implementation of (Treatment layer] =
begin
for Furnace use [Technician layer]:;
in
Diffuse =
begin
f := wafers.station ! The furnace the wafers are in
temp-setting := Calculate-Temp-Setting(temp, f);
f.Set-Temp (temp-settings);
end Diffuse;
end (Treatment layer];

Figure 1-8: FABLE specification example.

environment. Furthermore, FABLE was not designed to be used for applications other than a WIP

systém so it makes no allowances for the use of process simulators. It has a limited ability to per-

form safety checks on fabrication operations but it has no notion of wafer state so it cannot base

such checks on the past history of a lot unless the programmer codes it explicitly. It also does not

adequately address the real-time issues encountered in semiconductor processing.

The Process Flow Representation (PFR) is a knowledge-based approach developed at MIT

[20]. PFR is based on a three-level process model shown in Figure 1-9 that is similar to the FABLE
layer hierarchy. The focus of this model is the transformations wafers undergo during processing.

Each operation performed on a wafer is modelled in terms of three levels of information appropriate

OPERATION

S o

water CHANGE-WAFER-STATE Vegler

o

Figure 1-9: Three-level process model.

15

to a particular domain. The change-wafer-state level expresses information about the change a wa-
fer undergoes during an operation. The treatment level describes the physical environment around
the wafer causing the change (e.g., temperature and gas flow in a furnace). The settings level de-
scribes the parameters for an equipment recipe needed to achieve the desired treatment. This model
is also known as a two-stage model in reference to the translations between levels rather than the
levels themselves.

An example of a PFR specification for a fufnace operation is shown in Figure 1-10. The
basic unit of processing is an operation, which has attributes : change-wafer-state,
:treatment, and : settings which correspond to the levels in the basic model. Additional at-
tributes can also be used, such as : t ime-required. The PFR uses these attributes to capture a
declarative description of an operation which is built up hierarchically to form complete process
flows.

The PFR.speciﬂcation is translated into an instance hierarchy in the object-oriented data-
base Gestalt [7]. Each instance in the database has slots corresponding to those present in the PFR
process flow. As with other knowledge-based SPRs, a process flow is executed by traversing .the
object tree that defines it, and acting on the values contained in the slots relevant to the task being
performed. For example, a scheduler may only be interested in the values present in the : t ime-~

required slot. This approach differs from the views approach used in BPFL. An attribute in PFR

(define stress-relief-oxide
(operation
(:documentation
“Stress Relief Oxide to minimize stress effects of nitride deposition®)
(:time-required (:mean (:hours 7 :minutes 15) :range (:minutes 5)))
(:body
(operation
(:permissible-delay :minimal)
(:body
rca-clean
(operation
(:change-wafer-state :
(:oxidation :thickness (:angstroms (:mean 430 :range 20))))
(:treatment :
(furnace-rampup-treatment :final-temperature ...)
cee)
{:settings (:machine GateOxTube :recipe 210)))))
ced)))

Figure 1-10: PFR specification example.

16

is a basic piece of information about a process, whereas a view consists of many attributes designed
to support a particular activity (e.g., the scheduling view in BPFL).

PFR has limited support for control-flow in processes. It has an if operation but does not
currently support loop operations, lot splits and merges and exception handling.

The Manufacturing Knowledge System (MKS) developed at Schlumberger [21] is another
knowledge-based approach to SPR. MKS is built on an object-oriented programming environment,
named Hypemhs§.1 Process flows are represented in terms of steps, which are considered to have
three basic components: a step body, a set of input ports (inports) and a set of output ports (out-
ports). The step body describes the intended function of the step, including specific parameters
(e.g., temperature in an oxidation step), preconditions that must exist before the step may be exe-
cuted (e.g., wafer must be cleaned before being oxidized), and an input-output transformation that
describes what is supposed to happen within the step (e.g., silicon surface will be consumed and an
oxide surface will be added during a thermal oxidation step). Inports define conditions for wafers
entering the process step (e.g., an inport might require that entering wafers must have been cleaned
within the last thirty minutes). Similarly, outports define conditions for entities (e.g., wafers, mate-
rials or status information) leaving the process step (e.g., an output might specify that exiting wafers
are covered in an oxide layer of a certain thickness). All steps are divided into a hierarchy and in-
herit attributes from their parents. '

Complete processes are created by “wiring together” instances of existing process steps. A
unidirectional link is created from an output of one step to an inport of another. Similarly, each in-
port of the newly-defined high-level process is connected through a special link, called a correspon-
dence link, to an inport of one of the steps contained within it. This linking est‘ablishes an
equivalence whereby entities entering an inport of the high-level process are considered to be en-
tering a corresponding inport in a lower-level substep.

An example of an MKS specification of the steps required to prepare a wafer for spin-coat-
ing with resist is shown in Figure 1-11. There is an implicit rework loop between the particle-
inspection and wafer-scrub steps. MKS recbgnizes three step types. First, processing steps

which transform the material being processed. Ports in processing steps are wafer-in and wa-

1 Hyperclass is a trademark of Schlumberger Technologies Inc.
17

[WAFER-IN]

[WAFER-IN]

PHOTORESIST-STRIP

WAFER-IN
PARTICLE-INSPECTION

WAFER-IN
WAFER-SCRUB

WAFER-IN
DEHYDRATION-BAKE
WAFER-OUT

WAFERIN
HMDS-PRIME

[WAFER-OUT]

[WAFER-GUT]
Figure 1-11: MKS process specification example.

fer-out only, as seen in the photoresist-strip step in Figure 1-11. Second, testing/mea-
surement steps which produce information as their primary output, either explicitly or attached to
wafers leaving the step. Third, decision steps sort incoming wafers according to results from previ-
ous testing steps. The particle-inspection step in the figure is an example of a composite
step, consisting of a testing step followed by a decision step. The step has two outports, wafer -
out and reject, and wafers are sorted and transferred to an outport i)ased on the result of a par-
ticle inspection test.

MKS has been used to implement the AESOP diagnostic system [22]. Diagnostic knowl-
edge is represented as a network of causal links that associate effects (e.g., oxide too thick) with
causes (e.g., anomalous temperature reading). Given test data, AESOP employs diagnostic infer-
encing to isolate possible causes of failure and a relative measure of their likelihoods. MKS has also

been used to develop a SUPREM simulator interface.

18

MKS is well-suited for use in process design and simulation; however, it lacks the excep-
tion-handling mechanjsms and timing constraints required for use in fabrication.

Another knowledge-based approach to SPR is used in the Process Design Aid (PDA) de-
veloped at Stanford University [23]. PDA simplifies process synthesis by consolidating the use of
simulation tools. PDA process flows consist of a hierarchical structure of process steps in which
each step is a class instance with inheritance and defaulting of attributes. PDA permits extensive
use of libraries of simulation results and allows for tuning a process based on simulation output and
vice-versa [24]. It is possible to iteratively improve process and simulation parameters with the aim
of achieving greater concordance between simulated and fabricated devices. PDA emphasizes the
careful tuning of existing process steps and tends to view processes from the bottom up, with finely-
crafted lower-level steps.

PDA differs from other knowledge-based approaches in that it makes extensive use of the
prototype-instance objects provided by HyperClass. In this system, each instance of a class itself
forms a unique class which can be specialized. Most object systems are class-instance systems, in
which classes may be redefined but instances may not be specialized beyond their class definitions.
Inheritance in PDA occurs along two hierarchies, known as the is-a hierarchy and the parz-of hier-
archy. The is-a hierarchy corresponds to the class-of relation in a conventional object system. The
part-of hierarchy corresponds to object decomposition and permits specialization of instances,)
users are free to add attributes in any way they desire. This makes the system more flexible than
other knowledge-based systems, but introduces the problem that user attributes may not be inter-
pretable by other PDA tools. PDA has been integrated into the MKS and works with the tools de-
veloped for MKS.

While PDA'’s interface to simulation is probably the best of the systems discussed here, it
too lacks many of the fabrication-specific statements that BPFL possesses. There is no support for
exception-handling or timing constraints.

Another approach to SPR is a graphical language being developed at Siemens to express
process flows for a WIP system [25]. In this approach process flows are represented as trees of pa-
rameterized subprocess plans. The leaves of the trees correspond to actions that can be carried out

directly. Figure 1-12 shows an example of a plan tree for a process flow that is composed of two

19

set SIOMN-1000 sdspi] = 900 4 KEY
maske mi “ sot oxthick = s/sl.grow1/thick

> > sol plan name
/ \ mask = m2 hdatn coloctod]

pec p.o pd p.i

Figure 1-12: Siemens tracker process flow example.

oxidation and two photolithography steps. Each step (or plan) has associated with it a type and a
name. Additional attributes may be attached (e.g., comments may be added, and indicators may be
used to specify that certain data should be collected when a step is executed). For example, the
growox step calls for the measurement of oxide thickness. Parameters are supplied by defining
values used by the atomic processing operations found at the leaves (e. g, the variable mask is as-
signed the value m1 in the s1.b step which is used in the expose operation).

The advantage of a specification like that in Figure 1-12 is that it is very easy to store ina
conventional relational database and may be executed by performing a depth-first traversal of the
plan tree. Since the process-flow interpreter runs as a database application it is very robust. How-
ever, the language does not have the power of a general-pulposé programming language (e.g., it is
not possible to construct conditional statements), and it is only intended for use in a WIP tracking
system. It also has no mechanism for dealing with exceptions, timing constraints or wafer state
checks.

Siemens is also working on a procedural SPR called the Manufacturing Programming Lan-
guage, version 2 (MPL.2) [26]. An example of an MPL.2 process flow is shown in Figure 1-13.
MPL.2 is intended for use with Intelligent Migrating Processes (IMPs). An IMP is a process that
explicitly migrates between computers. When the lot moves to another workeell, the IMP for the
lot is moved to the local computer of that workcell. IMPs can move to different computers and op-
erating systems. An interpreter for IMP programs exists on each machine. Migration between ma-

chines is supported by stopping an IMP on its current machine, encoding the execution state of the

20

moveto (oneof ("wetsink®));
execute ("surface-prep®));

redo = 0; maxredo = 5; result = "bad®;
loop
while (redo <= maxredo) do
moveto ("coaterl®);
execute (“coat+bake®);

endloop;
if (redo > maxredo) then

scrap()
endif;

Figure 1-13: MPL.2 example.

IMP into an external representation that is sent with the code to the target machine, decoding the
state into a format suitable for the new machine, and resuming execution at the statement following
the migration request. Migration to a new machine is specified by the moveto statement as illus-
trated in the figure. While resident on a machine, an IMP may access any of the local resources of
that machine (e.g., the execute statement runs a recipe stored at the local machine). Access to
remote resources is also available through interprocess communication.

MPL.2 is a full-function programming language so complex control flow for operations
such as rework and control loops are easy to implement. The disadvantage is that IMPs dre only
suitable for WIP tracking. While the idea of moving an executing SPR with the lots it controls is
novel, it is not apparent that this approach has any significant advantage over the distributed heter-
ogenous DMBS-based system using cell controllers outlined in section 1.2.

The desire to check processes for correctness before they are used in production has driven
Hitachi to develop a process-flow validation system as part of their Laboratory Automation (LA)
project [27]. The Hitachi system uses a rules-based expert system for process flow debugging and
validation. The system is designed to point out incorrect or questionable conditions in a flow that
could have undesirable effects on wafers or equipment. Process knowledge is grouped into four
types:

1. Process window — Upper and lower limits and allowed conditions (e.g., fur-

nace temperature or gas species allowed in a machine).

21

process flow /((substance resist)(thickness d,)

Surface oxidation . [{mask WELL))
T, °C, t, min, d; nm ‘ ¥~ ((substance Si;N,)(thickness d,))
34
d, nm . l
Uthography a simulation-rule
mask = WELL, dy pm o If the step is P-implantation
N4 dry etching - then add an attribute (dose <specified-value>)
d, nm
P-implantation ((substance resist)(thickness dj)
VgkeV,ngem?2 [{mask WELL)(dose ng))
Ashing |
Peg W, ts min
b check-rule
If the step is ashing
and the ashing time is less than t,
and the surface layer is resist
and the surface layer is implanted more than n,

then output the message "Ashing time should
be longer than or equal to t, min to remove
heavily-implanted (> np cm) resist.”

Figure 1-14: Hitachi process flow and check rules example.

2. Process sequence — Acceptable sequences of operations in a process (e.g., a
fumace operation must be pieceded by a clean). A

3. Wafer-process constraint - Constraints between wafer state and process or
equipment (e.g., contaminated wafers should not be loaded into clean fumnac-
es).

4. Optimum condition — Optimum conditions to fabricate intended structures or
characteristics (e.g., best gas flow rate and temperature for low-stress nitride
deposition).

The first three types of knowledge result in rules that are simple to express and that must be met in
a process for it to work correctly and to avoid equipment damage. The fourth condition concerns
processing at suboptimal conditions. While this is undesirable because it reduces product quality,
it does not result in damage to wafers or equipment. In order to check the process for correctness,
the system maintains a wafer state description similar to that used in BPFL.

An example of process checking is shown in Figure 1-14. The process flow being chécked

is shown on the left of the wafer profile. At the 1ithography step, the wafer schematic is as il-
lustrated in the upper right of the diagram (only the properties of the resist.and Si 3N, regions

of the wafer are shown in the illustration). Each region of the wafer has a series of attribute/value

pairs describing the state. Once the P- implantation step is reached, a simulation rule fires that
instructs the system to add a dose attribute to the exposed regions of the wafer, as reflected in the
state shown in the lower wafer schematic. When the ashing step of the process flow is reached, a
process check rule (in this case, a wafer-process constraint relating the knowledge that heavily-im-
planted resists are difficult to remove) fires and outputs a warning message if tg < tg and ns > ng.
The SPR used in this project is not mentioned in the literature, but it is probably similar to
the representations used in COMETS and WORKSTREAM. However, the system is noteworthy
because it illustrates the importance of process checking and the need to maintain wafer state. Hi-

tachi claim that the process checking system has halved process design time.

1.5 Process Specification in other Industries
This section briefly describes how other industries have dealt with the process specification
problem.

Most industries have focussed on product definition languages with the intention of auto-
mating fabrication based on part descriptions, rather than process-flow languages. This approach
works well in metal parts machining, for example, where flow is almost always sequential (i.e., no
rework) once the task of generating the process plan is complete. One example of a process plan
generator is GARI [28]. GARI is given the design of a mechanical part, and it produces a plan to
machine the part based on rules expressing technological limitations and economic considerations,
such as: ‘

1. If ahole H2 opens onto another hole H1, then machine H1 before H2 (to avoid

damaging the drill),
2. If several operations must be performed on the same machine then try to group
the operations (to reduce cost).
GARI is based on an expert system. Later efforts have linked process plan generators to workcell
programming languages to simplify product testing and improve operator interactions [29).
Process plan generation is of almost no value in the semiconductor industry because it is
very rare that operation order may be altered from that specified by process designers. Automatic
recipe generation for processing equipment is an area of active research [30] but is used to optimize

the processing conditions of a given operation and not to alter the order of operations in the process

23

PARTNO XC CIRCLES
MACHIN/GNSCC, 9,0PTION, 2,0
CLPRNT

CUTTER/0.5

FEDRAT/2.0
TOLER/0.0005
PO=POINT/0,0,0
Cl1=CIRCLE/3,0,0,2
L1=LINE/(3,0,0),(3,1,0)
FROM/PO

GO/C1

AUTOPS

TLLFT, GOLFT/C1,0N, L1
END

FINI

Figure 1-15: APT program example.

flow. Furthermore, recent automatic plan generation projects have run into complexity problems
[31]. As parts become more complex, two basic problems emerge:
1. the combinatorial explosion of the number of possible process plans, and
2. the need to have local knowledge of machining capabilities, dependencies and
the availability of tools, toolblocks and fixtures.

One area where process-flow languages have survived is in the area of numerically con-
trolled (NC) machines. The dominant language for NC machines is APT (Automatically Pro-
grammed Tool) [32] which evolved from a 1955 effort to computerize machine control into a
language with process description capability. Figure 1-15 shows an APT program that defines a cir-
cular contour cut. APT’s age is apparent from the code in the figure. An APT progrﬁm may be run
on many machines because it is run through an APT postprocessor, which generates code for a par-
ticular type of machine. APT programs consists of four basic statement types:

1. Geometric statements that define the part configuration (e.g., lines, planes,

holes).

2. Motion commands to control the path of a cutter.

3. Postprocessor commands which control different machine functions (e.g.,

spindle speed, feedrate).

4. Language control instructions which generate geometric translations, rotations

and diagnostics.

The major problem with APT is that it is an extremely domain-specific language, suited only for

]

Figure 1-16; ALPS specification example.

NC machine use. The requirement for an APT post-processor for each type of machine is a major
drawback. APT contains no constructs to specify complex, parallel processes and is intended to de-
scribe only the actions of an isolated machine. Finally, by today’s standards APT has poor syntax,
does not have sophisticated abstraction mechanisms, and is difficult to read. It is very poorly suited
for use as an SPR.

Recentlj the problems of optimizing machine usage, particularly with industrial robots,
have been studied. These efforts appear to be overcoming many of the shortcomings of APT, since
they employ more advanced software engineering technology and they deal with multiple machines
[33]. However, they remain very domain specific.

The proliferation of domain-specific languages and the diversity of controllers in manufac-
turing (e.g., NC machines, robots, programmable logic controllers, and materials handling systems)
has resulted in efforts to develop systems to manage the entire manufacturing operation [34],{35].
As part of this effort, the National Institute of Standards and Technology (NIST) has developed a
language with somewhat similar goals to the SPR’s outlined in the previous section. ALPS (A Lan-
guage for %cess Specification) {36] is intended principally as an interface between process plan-
ning and production control. During production it is also used to drive production control processes.
ALPS notation is a directed graph, as shown in Figure 1-16. The language provides extensive con-
trol over processing. It allows for alternative sequences and parallel actions which none of the SPRs
considered here can express. ALPS also provides for synchronization between parallel tasks and
between multiple processes. While ALPS has much to recommend it in terms of power and flexi-
bility, it should be noted that at this point ALPS is little more than a prototype language design and

has not yet been implemented. Since ALPS is intended to be useful in a wide range of industries,

25

no detailed syntax beyond the top-level graph notation has been devised. A full-scale implementa-
tion of ALPS will have to await the deployment of a prototype for the manufacturing system control
software in which it is intended to operate [35].

Automating semiconductor manufacturing is especially difficult. Processes in the semi-
conductor industry are complex and poorly understood. Equipment used in semiconductor manu-
facturing tends to be expensive, complex, and unreliable, requiring highly-skilled operators and
technicians. The very short process and product lifetimes mean that typical semiconductor manu-
facturing equipment is never fully debugged. For example, in 10 years commodity DRAM density
has gone from 16K to 1M, which required 4 generations of processes each requiring substantially
more powerful and complex equipment than its predecessor. This situation is particularly true with
respect to machine contamination and long-term reliability. Many pieces of wafer fabrication
equipment are sufficiently specialized that fewer than 100 machines of a given type are ever con-
structed. Such small number of equipment instances makes vendors reluctant to invest in equipment
automation. Consequently, standards for equipment automation are less developed ttian in most in-
dustries.

Another problem is that the cost of clean room space and equipment means that fabs are
often shared by different processes with their own requirements. The need for extreme cleanliness
bbth in terms of particulates and potential cross-contamination accentuates these problems in
shared facilities.

In summary, the dynamic nature of semiconductor processing places much greater de-
mands on automation than in most industries. Another difference between products in a continuous
process, such as the semiconductor industry, and 6ther discrete-part industries is that integrated cir-
cuits are monolithic. In discrete-part industries complex parts are composed of many subcompo-
nents which are assembled to make the final product. For example, a Boeing 747 contains several
million parts, but in the fabrication process, progressively more complex subassemblies are con-
structed until final assembly involves only a few major components. Failure in any one part can
usually be repaired simply by replacing that part. In contrast, semiconductor fabrication involves
just one component (a silicon wafer) which is subjected to a large number of treatments. The result-

ing wafer is divided up into individual circuits (dies) near the end of fabrication. Failure of any one

26

device on a wafer typically results in the loss of one complete die. An abnormality in one of the
treatments the wafer undergoes typically results in the loss of the entire wafer (often the entire lot
of wafers).

For these reasons, research into process plan generation and process-flow languages in oth-

er industries are difficult to apply to the semiconductor industry.

1.6 Summary and Dissertation Outline

This chapter has described the need for a CIM system and the importance of a powerful
SPR. Commercially-available CIM systems ﬁave been reviewed and it has been shown that their
shortcomings are too severe to permit the implementation of powerful operations such as control
loops, timing constraints and exception handling.

The Berkeley approach to CIM has been presented. It is based on a distributed computer
system with multiple levels of control and distributed databases. The system envisaged should be

" flexible enough to cope with the demands of an advanced CIM system.

Two basic approaches to the design of an SPR were discussed: procedural (e.g., FABLE
and BPFL) and knowledge-based (e.g., PFR, MKS, PDA). Each approach has its advantages.
Knowledge-based SPRs are generally easier to maintain and update, but they lack the programming
features (e.g., exception-handling) provided by procedural SPRs.

Process speciﬁcation’techniques in industries other than IC manufacturing were examined.
Most work in process representation has been with process description languages, where the intent
is to automatically generate process plans based on part descriptions. Primitive process-flow lan-
guages are used in NC machine programming. The ALPS language being developed by the NIST
looks promising, but is currently no more than a pépefdesign without an implementation.

This dissertation describes BPFL and a WIP system based on it. Chapter 2 describes BPFL.
Chapter 3 describes statements in BPFL intended primarily for use in fabrication. Chapter 4 dis-
cusses the WIP system, focussing on the run-management system. Chapter 5 describes the imple-
mentation of the WIP system. Lastly, chapter 6 presents conclusions and directions for further

research.

[This pége intenti@nally Blank]

Chapter 2
The Berkeley Process-Flow Language and Interpreters

This chapter describes the structure of a BPFL process flow and abstractions supported by
the language developed to support semiconductor manufacturing. First, the design goals and as-
sumptions that led to BPFL are outlined. Second, the syntax of BPFL and some basic operations
are introduced. Third, BPFL equipment abstractions are described. Fourth, the BPFL wafer-state
representation is discussed. Finally, the database schema designed to represent BPFL programs in
a database are described. BPFL is described by showing examples of a standard CMOS process

flow.

2.1 The BPFL Approach to Process Specification

BPFL is a procedural SPR. The language is designed to allow all information about a pro-
cess to be merged into a common specification. Different programs, called interpreters, execute
BPFL programs and perform specific tasks. For example, a WIP interpreter executes a BPFL pro-
gram and issues instructions to equipment or operators to carry out the necessary steps to fabricate
the product described by the program. A simulation interpreter executes the program and generates
input for simulators that can be run to predict the performance of fabricated devices [37]. Other in-
terpreters can be implemented to perform different tasks such as factory simulation.

This approach minimizes the amount of domain-specific knowledge about particular tasks
required by BPFL. For éxample. if BPFL were capable of describing input sufficient for use with
any simulator, there would be tremendous language overhead in coping with the numerical switch-
es and environment settings for device simulators like PISCES [38]. However, an interpreter writ-
ten to generate input for PISCES (and perhaps other simulators as well) can deal with these details.
There are situations where a BPFL program has to include such information for the use of a partic-
ular simulator or to work around interpreter bugs, but the aim is to minimize the need for this infor-
mation.

The design goals for BPFL are to:

1. provide acommon specification suitable for use in all stages of manufacturing,

2. provide support for a complete specification including lot splits and merges,

29

exception handling, timing constraints, rework loops, feed-forward and feed-
back control, and equipment communication, and
3. separate the facility-specific information from the process specification to

make it easier to update equipment in a fab or move processes to a different

fab.
Knowledge-based approaches are generally weak at handling exceptions and timing constraints.
We believe these features are essential in any SPR intended for use in an environment where the
potential for unexpected errors and mishaps is great.

This chapter describes the BPFL language in detail, including a discussion of the interpret-
ers and some advanced language concepts. Additional information about the features of BPFL in-
tended to support fabrication are discussed in chapter 3. A complete specification for BPFL is given
in Appendix A.

2.2 BPFL Program Structure

This section describes the global structure of a BPFL process flow and the wafer, lot and
view abstractions supported by the language.

The current version of BPFL is implemented as an extension to Common Lisp [39]. Lisp
was chosen as the host language for several reasons. First, it is easy to develop programs that ma-
nipulate other Lisp programs since they are represented using list data structures that can be access-
ed from Lisp. BPFL interpreters operate on BPFL programs so using Lisp simplified their
development. Sécond, Lisp provides a very powerful and flexible framework within which to-ex-
periment with language designs. The current version of BPFL is quite different from the original
version [40] and Lisp greatly reduced the amount of work necessary to make these changes. Fur-
thermore, Lisp has a built-in evaluator that makes it very easy to implement language interpreters
[41]. Lastly, a well-defined and powerful object-oriented programming model, the Common Lisp
Object System (CLOS), was already available. CLOS is used extensively both in the design of the
language and in the implementation of the interpreters.

Although BPFL is a Lisp-based language, the language seen by users is not Lisp. We intend
to provide a user-friendly, forms-based, graphical user-interface. Examples of such interfaces are

the graphical representation of process-flows in the MKS system (see Figure 1-11) [21], the exper-

30

defflow cmos-16 (implant-split: = t)
*U.C. Berkeley Generic CMOS Process (Ver. 1.6 14-April-89)
(2 um, N-well, single poly-Si, single metal)"
begin
step ALLOCATE-WAFERS do ...; .
step WELL-FORMATION do ...;

end;
Figure 2-1: Berkeley cmos-16 process flow in BPFL.

imental user-interface to the process-flow representation developed at Texas Instruments [42], and
the Stanford Graphical Design Toolkit [43].

Currently, users are presented with a block-structured textual language for BPFL. An early
version of BPFL used a Lisp syntax which the intended users (i.e., process engineers) found unsat-
isfactory. Also, Lisp syntax is difficult to read. The block-structured BPFL is easy to translate to
the Lisp syntax and vice-versa.

A process-flow is represented by a BPFL procedure that contains a sequence of steps. Each
step contains a sequence of BPFL procedure calls, BPFL statements, and Common Lisp function
calls. Figure 2-1 shows the top-level of the standard CMOS process that is run in the U.C. Berkeley
microlab. BPFL procedures are defined using the de££1ow definition. This definition has four ar-
guments: the procedure name (e.g., cmos-16), a fonmal argument list (implant-split: =
t), an optional documentation string (*U.C. Berkeley Generic CMOS..."), and a proce-
dure body (begin step ALLOCATE-WAFERS ... end). The procedure body contains a se-
quence of process steps. The Berkeley cmos-16 process-flow has sixteen top-level steps. The first
. step allocates the wafers that will be processed by the run, the second step creates an n-doped well
for the PMOS devices, and so forth.

Step is used primarily for documentation purposes. The first argument to the step state-
ment is a symbol that names the step. Since steps can be nested, the names of all current steps con-
catenated together is used to indicate the position at which an event occurred. This position name
is called a step-path. The step-path is used to identify specific statements in a program when record-
ing information about a run. For example, the step path is recorded whenever a measurement is re-

corded.

31

BPFL provides abstractions to manipulate wafers and lots, since they form the basic units
on which processing is performed. Wafers are represented by CLOS objects, each with a unique
identifier (called a wafer ID) that distinguishes it from all other wafers.! The identifier inscribed
onto the wafer is recorded, and the wafer is assigned a logical number index which is used to iden-
tify it within a run. Wafer indices are integers between 1 and the number of wafers being processed
by the run. Wafer objects also have a data structure associated with them for storing wafer state in-
formation which is described in more detail in section 2.4.

A lotis a named set of wafers. Predefined lot names are supplied for wafers that are intend-
ed for production (product), wafers that are to be scrapped (scrap) and wafers that need rework
(rework)?Z. There is also a lot that contains the wafers currently being operated on (current). A
given wafer may be in several lots at the same time, with the exception that wafers in the scrap
lot may appear only in that lot. BPFL programs can define new lots to hold test wafers or identify
subsets that will receive special processing.

Procedures are provided to create (i.e., initiate) and destroy (i.e., terminate) lots and to add
and remove wafers from lots. A lot split operation can be represented either by creating a new lot
and dividing the wafers between it and the pre-existing lot, or by starting a new run and passing it
a set of wafers. Procedures are also provided to merge lots.

Examples of the use of these lot operations are shown in Figure 2-2. This is the BPFL rep-
resentation of the first two steps in the CMOS-16 process flow shown in Figure 1-5. The first step
allocates wafers. The second step is an initial oxidation that grows an oxide mask used later in the
well definition.

In BPFL, arguments can be passed to procedures either by position or by name. Arguments
passed by name can be passed in any order because thé formal argument name precedes the value
in the call. For example, the bare-silicon-wafer procedure, which creates a specification of
the wafers to be allocated, uses argument passing by name for four arguments: the desired crystal

orientation of the wafer (crystal-£face), the desired resistivity (resistivity), the wafer

! Industrial efforts to establish acommon bar-coding convention for wafers will provide every man-
ufactured wafer with a unique id.

2 since rework operations may nest, rework lots actually take the names rework-1, rework-2,
etc.

32

step ALLOCATE-WAFERS do
let spec := bare-silicon-wafer(crystal-face: 100,
resistivity: [{18 ohm-cm}, {22 ohm-cm}]
quality: 'product, dope: 'p);

begin
allocate-lot (names: '(cmos, nwell, nch),
sizes: list (*product-lot-size*, 1, 1),
snapshot: spec);
end;

/* Wafers in the cmos lot are product wafers */
lot ('product) := lot('cmos);
with-lot 'nwell do
measure-bulk-resistivity (tag: "initial®);
end;
end;

with-lot 'cmos do
step WELL-FORMATION do
step INIT-OX do
wet-oxidation(time: (11 min), temperature: (1000 degC},
target-thickness: (1000 angstrom});
pattern(mask-name: 'NWELL);
end;

end;

Figure 2-2: BPFL representation of cmos-16 initial steps.

quality (quality), and the type of background dopant (dope). The supplied values mirror those
given in Figure 1-5.

The resistivity argument uses a range value. Range values are denoted by using square -
brackets. For example, the construct [1,10] represents the range 1-10. BPFL also supports di-
mensioned quantities (i.e., values with unit designators) through the use of set brackets. For exam-
ple, “1 cm” may be represented as {1 cm}. The resistivity argument specifies a wafer
resistivity between 18-22 ohm-cm.

The next operation creates wafers and assigns them to lots. The name argument specifies
the names of the lots, and the size argument specifies how many wafers to allocate. In this case,
three lots named cmos, nwell, and nch with sizes *product-lot-size*), 1 and 1 respec-
tively are allocated. The snapshot argument specifies the wafer state. Since ‘these are new wafers,

the wafer specification is the result returned by the bare-silicon-wafer procedure. The fol-

! ¥product-lot-size* is a global constant that contains the number of product wafers to allo-
cate for processing in this run.

33

let temp := lot ('current);

begin
lot (‘current) := lot(lot-names);
operations;
lot ('current) := temp;

end;

Figure 2-3: With-1ot semantics.

iowing operation sets the product lot to the cmos lot so that the interpreter knows which wafers
are product wafers and which are test wafers.

The with-1lot statement is used to indicate which lots of wafers are to be treated as cur-
rent. With-1lot changes the value of current for those operations within it. After the with-
lot is complete, current assumes the value it had before. For example, the semantics of:

' with-lot .lot-names do
operations;
end;
are shown in Figure 2-3. The only operation in the with-lot statement is measure-bulk-re-
sistivity. Because the current lot has been set to nwell, this procedure will operate on the
wafer in the nwell lot. This is the final operation in the ALLOCATE-WAFERS step.

The next operation starts the WELL~- FORMATION step. The INIT-OX step (corresponding
to step 2 of Figure 1-5) is nested within the WELL-FORMATION step. 2.1-2.3 in Figure 1-5 are re-
placed by a call on wet -oxidat ion, which is a standard library procedure that performs the nec-
essary wafer and furnace cleans prior to oxidation, and measures the oxide thickness after |
oxidation. Only rarely is an oxidation performed without all three of these operations being required
so it makes sense to define one procedure to do all of them. Step 2 of Figure 1-5 includes specifi-
cation of the required pre-oxidation, post-oxidation, and anneal times whereas the BPFL specifica-
tion in Figure 2-2 does not. This serves as an example of default parameters as described in the
definition of the wet -oxidat ion procedure shown in Figure 2-4. There are seven named argu-
ments: time, temperature, pre-ox-time, post-ox-time, anneal-time, target-
thickness and tag. All except t ime, target-thickness and tag have default values. In
the case of the procedure call in Figure 2-2, the temperature default is overridden but the other
defaults are used. Default parameters simplify process flows. They provide a mechanism to hide
detail while permitting specification of detail if necessary.

defflow wet-oxidation(time:, temperature: = {900 degC},

pre-ox-time: = {5 min}, post-ox-time: = (5 min},
anneal-time: = (20 min), target-thickness:,
tag:)

*Cleans wafers and furnace, performs wet oxidation and measures
oxide thickness on a test wafer in the current lot®
begin
end; .
Figure 2-4: Wet-oxidation procedure outline.
The final operation shown in Figure 2-2 is a call on the procedure pattern, which per-

forms a standard photolithography operation (i.e., coat, expose and develop) using the mask name
supplied (in this case, NWELL). Information about the specified mask is found in the database as
described in section 2.5.

BPFL is a multi-purpose language. While much of the information in a process-flow is rel-
evant to all uses of the flow, there are cases where certain information is relevant only to a particular
application and would be meaningless for others. For this reason, BPFL provides a view mechanism
to indicate which information is appropriate to a particular set of applications. For example, infor-
mation needed to simulate the process (e.g., information about specific device structure) that is not
meaningful to the fabrication process is specified in a simulation view. An example of the use of
views is shown in Figure 2-5. The viewcase statement specifies which operations are visible in
different views. The user-dialog procedure called in the fabrication view in Figure 2-5
presents a query to an operator asking for an oxide thickness measured on the current lot of wafers.
In the simulation view, the operation determines the oxide thickness from the wafer state model

maintained by the simulation interpreter (see section 2.4).

/* In measure-oxide-thickness procedure */

viewcase
when fabrication do
result := user-dialog(frame: ‘nanospec, operation: ’‘measure-oxide-thickhess):;
tox := getf(result, :measured-thickness);
end;

when simulation do
/* Query wafer-state model for oxide thickness */
tox := material-attr(find-surface-segments(...),...);
end;
end;

Figure 2-5: BPFL views example.

35

simpl
simulation

prem3
bpfl SUprem suprem4
. fabrication p
“scheduling

Figure 2-6: BPFL view hierarchy.

BPFL has a hierarchy of views as shown in Figure 2-6. An interpreter specifies which
views of the process flow it wishes to see. Only operations in these views are visible to the inter-
preter. For example, an interpreter that requests a simpl view sees a subset of the operations in the
simulation view. The bpfl view is the implied view for all code. Additional views can be de-
fined if necessary.

The view statement is a special-case version of a viewcase statement. It allows the spec-
ification of code for just one view as in:

view fabrication do
fabrication view operations;
end;
which specifies operations in the fabrication view. Views may also be defined in terms of logical
operations on the defined view names. For example, the following statement:
view (simulation and not (suprem3)):
operations for all simulation views except SUPREM3;
end;
specifies operations for all interpreters supporting the simulation view except those supporting a
suprem3 view.

Since the fabrication view is the view under which device fabrication occurs, it is the pri-
mary view of interest to the WIP system. It is discussed in greater detail in chapter 3.

BPFL process flows access standard libraries of functions using the require declaration.
For example, the pattern procedure is found in the 1itho library, and a process flow uses the
litho library by including the declaration:

require(litho, version: latest);

The version argument indicates which version of the library to use, and is explained in more de-

tail in chapter 4.

36

furna oxidation-furnace wet-oxidation-furnace < tylant
cvd-fumace : tylan2
epi-fumace tylans

dry-oxidation-fumace
etcheriplasma-etcher lam-1 :ty!ans
wet-etch-station lam-2
equipmen technics-c

et-procass-station<sink1
sink2

analytical c-v-probe
E Eellipsometer
cssem

sem
< gecsem

Figure 2-7: Equipment class hierarchy.
2.3 Equipment Abstractions

This section describes the BPFL statements provided to support manufacturing equipment.
The equipment in a fab is described in the database so that equipment-specific operations and set-
tings can be separated from the operations to move lots, communicate with an operator, and per-
form other housekeeping operations. An object-oriented design is used to facilitate the addition of
new types and equipment instances to the system. A subset of the equipment class hierarchy is
shown in Figure 2-7.

Equipment is allocated by using the with-equipmént statement. This statement takes
the name of a specific piece of equipment (e.g., Lam-1), the name of a category of equipment (e.g.,
oven), or a list of the equipment names or categories desired and allocates a free piece of equip-
ment that satisfies the specification. The equipment allocation procedure also implements the
equipment reservation or scheduling polic.y. A CLOS object that represents the allocated equipment
is bound to a variable which can be used in the body of with-equipment. Other users are pro-
hibited from using the equipment while it is allocated. '

After a particular piece of equipment has been allocated, operations are performed either
directly by communicating with the equipment or indirectly by communicating with an operator.
The user-dialog procedure is used to communicate with operators and the run-recipe pro-
cedure is used to communicate with equipment. Figure 2-8 shows a BPFL procedure that imple-

ments a nitride etch operation. The plasma-etch-nitride procedure takes two arguments,

37

defflow plasma-etch-nitride (power:, overetch: = (5 %})
"Remove nitride on wafers®
begin
viewcase
when simulation do
end;
when fabrication éo

with-equipment x of-type 'technics-plasma-etcher do
run-recipe (X, 'etch-nitride, power: etcer, overetch: overetch);

end;
end;
end;
end;

Figure 2-8: Equipment operation example.

power and overetch. The procedure allocates a plasma etcher and executes the appropriate
equipment recipe.

Equii)ment definitions include information about recipes. For example, the definitions for
three instances of equipment type technics-plasma-etcher are shown in Figure 2-9. The
first defequipment describes the basic properties of technics-plasma-etcher. The argu-
ments to defequipment are: the name of the equipment, a list of roor-classes from which this
piece of equipment inherits properties (e.g, et cher), gmd equipment attributes. In this case, the
" only attribute is recipes which takes a list of recipes. Recipes named ash-resist and etch-

nitride are defined. For example, the ash-resist recipe has a default power of 300 Watts and

defequipment technics-plasma-etcher ((etcher),
recipes: (ash-resist: (gases: (#m(oxygen, flow-rate {51.1 sccm))), power: (300 W}
pressure: [{270 mTorr) {280 mTorr}], time: (7 min}),
etch-nitride: (gases: (#m(helium, flow-rate: {13.0 sccm}),
power: {100 W}, ...))
<))

defequipment technics-c ((technics-plasma-etcher),
recipes: (ash-resist: (frame: strip-resist)
etch-nitride: (frame: etch-nitride...)

eee)s

defequipment technics-d ((technics-plasma-etcher),
secs-device: 5,
recipes: (ash-resist: (secs-handler: secs-technics-resist-ash),
etch-nitride: (...)
ced))i

Figure 2-9: Equipment definition example.

38

a default time of 7 minutes. These attributes supplied in the defequipment are defaults which
may be over-ridden by arguments to run-recipe. For example, in Figure 2-8, the values of the
arguments power and overetch override values specified in the equipment definition.

If direct communication with equipment is possible, the WIP system uses Wood’s SECS
server [44] to download and execute recipes. For example, suppose the with-equipment state-
ment in Figure 2-8 allocated technics-d. The defequipment that describes technics-din
Figure 2-9 shows that”it is connected to the network. The secs-device attribute specifies the de-
vice address of the equipment. An additional recipe attribute secs-handler is supplied. This at-
tribute gives the name of a procedure that is responsible for handling equipment communication for
the given recipe. SECS implementations for equipment are often idiosyncratic and in general a
unique handler is required for each type of equipment. In this example, run-recipe willbcall the
procedure secs-technics-resist-ash to handle the communication.

The definition of technics-c in Figure 2-9 does not contain any information about
SECS communication because direct communication with technics-c is not possible. If tech-
nics-cis allocated, run-recipe generates a user-dialog call. The name of the appropriate
user-interface frame for display to the operator is specified by the frame attribute for the required

recipe. More information about the user-interface to the WIP system is presented in chapter 4.

2.4 Wafer-State Representation

An SPR interpreter must maintain a description of the state of wafers. This wafer-state in-
formation is useful for three reasons. First, sanity checks may be performed on wafers before they
undergo certain operations. For example, wafers with’photoresist on them cannot undergo high-
temperature processing so it is important to ensure that any wafers about to undergo 5 high-temper-
ature step have been stripped of resist. Second, wafer-state information is useful as an adjunct to
analytical measurements. An example of this use was seen in Figure 2-5, where the code to measure
oxide thickness for the simulation view was able to query the wafer-state model. Third, wafer-state
information permits wafers to be moved between process flows without loss of information about
the prior treatment of wafers.

BPFL provides abstractions for material specifications, masks, and wafer profiles, in order

to support the wafer-state model.

39

si siicon substrate
amorphous-silicon
oxide
dielectric<
nitride
p-type boror

boron11
n-type phosphorus
arsenic
antimony
gas 02 oxygen
§d’y@2
' wet-02
n2——nitrogen
$h2 ———— hydrogen
silane
phosphine
metal—————— aluminium

organiT resist
acetone

Figure 2-10: BPFL material hierarchy.

A subset of the default class hierarchy for materials is shown in Figure 2-10. Material class-
es have attributes that describe the properties of the material and the names that simulators use for
the material. For example, the class representing polycrystalline silicon is poly, which is defined
by:

defmaterial poly((si), crystal: 'poly, simpl-name "POLY",
suprem-name: "POLY");

The first argument to defmaterial is ‘ (si) ’, which indicates that this material class inherits
properties from the si material class. The crystal argument specifies that this is a polycrystal-
line material. The names used for polycrystalline silicon in the SIMPL and SUPREM simulators
are also given. Materials are specified in BPFL process-flows by using the #m shorthand. For ex-
ample, the value returned by

#m(poly, grain-size: ({1 um}, (10 um}])

is an object describing poly material with a grain size between 1-10 pm.

. -
R POLY
fotetetet METL

\\&&\E\\\\\ B cov

Figure 2-11: Mask layout example.

A wafer-state representation must have some knowledge of the masks used to define the
wafer profile. A simple example will be discussed in order to illustrate the relationship between
masks and wafer profiles. Figure 2-11 shows a simplified view of the layout of an MOS transistor.
Four masking levels are shown: the active device area mask (ACTV), the polysilicon mask (POLY), '
the metal mask (METL), and the contact mask (CONT). Given that a single IC may have over one
million transistors, it is clear that each mask is quite complex and a complete representation of mask
layout would require a prohibitive amount of storage. In the BPFL representation of mask layers,
two attributes are always defined: name and locat ion. Name specifies the name of the mask used
in the process flow (e.g., ACTV), and location specifies a set of design layers that are used to in-
dicate which portions of the wafer the mask covers. Locat ion values are expressed as predicates
that indicate which regions of the mask are clear and which are dark. For example, the expression
NOT (CONT) specifies that the shaded areas of the design layer CONT are inverted, which means
those areas are clear on the mask. In processing terms, if CONT were the contact-definition mask, ‘
NOT (CONT) would be the dark-field contact-definition mask. Mask operations are used as argu-
ments to procedures that perform photolithography operations. An example of a mask definition is:

defmask CONT(dark-field: t, type: chrome);
which specifies a dark-field mask named CONT.

The Boolean operation OR specifies area union and the Boolean operation AND specifies
area intersection. For example, the expression AND (ACTV, POLY) describes the regions of the wa-
fer where polysilicon crosses an active area. This expression represents the transistor gate region in

a typical MOS process. BPFL can assign attributes to regions specified in terms of layout.

41

Function _ Description
find-segments Return a list of segments in the specified snapshot that have the
desired properties.
find-segments-in-lot | Same as find-segments but works with snapshots in a particular

lot.

find-surface-segments | Restrict find-segments lo segments adjacent to ambient.

deposit-in-lot A surface segment with the given attributes is added to all
snapshots.

etch-material-in-lot [All surface segments made of the given material are removed
completely where exposed. _

grow-in-lot A segment with the given attributes is added to all snapshots at the

specified location. Differs from deposit-in-1lot in madifying
underlying silicon segments to reflect their consumption by the new
segment.

split-segments-in-1lot | Segments that overlap the given location are split in each snapshot.
One gew segment is within the specified location, the other is
outside.

Figure 2-12: Procedure to manipulate PIF structures.

Wafer profiles are stored using a simplified version of the Profile Interchange Format (PIF)
[45]). BPFL uses a subset of PIF called naive PIF to represent the adjacency relationships between
materials on a wafer. BPFL interpreters maintain a data structure called a snapshot to describe the
profile of a wafer. For example, the procedure bare-silicon-wafer used in Figure 2-2 creates
a snapshot of a wafer that is composed of a single layer of material (silicon) with values given to
the crystal-face, resistivity, and dope material attributes. Operations are provided to
change snapshots to simulate the effects of processing operations (e.g., depositing material. remov-
ing material, etc.). Grow-in-1ot and etch-material-in-1lot are examples of high-level
procedures for manipulating PIF structures. A list of some of these procedures is given in Figure 2-
12. Snapshots are represented by CLOS objects that are designed to minimize storage overhead. A
complete description of the data abstraction for the BPFL implementation of PIF is given in
Appendix A.

A simple example of a PIF structure is shown in Figure 2-13. The left-hand part of the fig-
ure is a block diagram of the wafer profile <.iescribed by the PIF snapshot. It represents a wafer
(cross-hatched) covered in oxide which has been spin-coated with resist. This particular snapshot
is a good representation of the state of wafers just after being coated with resist within the pattern
operation in Figure 2-2. The ambient layer is a special layer representing the ambient conditions

around the wafer (e.g., room temperature air, 900 °C wet-0,, etc.). Oxide is normally grown on all

42

Ambient

[plediadiadbadiadhadbadiedidi i b |
e
; '
G Ambient _______ 3

Figure 2-13: Simple wafer profile and corresponding snapshot.

surfaces of a Wafer, so the back-side of the wafer is also coated with oxide, although ordinarily the
back-side of the wafer is not shown in a wafer profile diagram.

The right-hand portion of Figure 2-13 shows a graphical depiction of the PIF snapshot for
this wafer. PIF snapshots are composed of segments, attributes, and boundaries. Segments specify
the infdmation about a region or layer in a profile. They are represented by ovals. This snapshot
has three segments corresponding to the layers in the material. The ambient segment is a system-
supplied segment. For visualization purposes, the segments are shown labelled with the names of
the materials making up the segment.

A boundary specifies that one ségment is adjacent to another segment. Boundaries are rep-
resented by solid lines. The profile in Figure 2-13 has four boundary lines which represent the fact .
that each layer (except silicon) is on top of another and that the backside of the wafer is also
covered with oxide and exposed to the ambient. The direction of the arrow indicates which segment
lies above another segment (e.g, the arrow between resist and oxide points toward oxide be-
cause resist lies above oxide).

The dotted arrows on the boundaries indicate the location predicates that specify where the
boundaries exist. For example, oxide bounds silicon everywhere (since oxide grows on all surfaces
of the wafer), so the predicate is T, which represents the value true. Oxide is exposed to ambient
everywhere except on top of the wafer (where resist lies between it and ambient), so ambient

bounds oxide everywhere except the top (i.e., not (TOP)).

43

Attributes are used to specify properties about the profile (e.g., material name, whether the
resist is exposed, etc.). They are represented by keyword-value pairs. Attributes may be attached to
segments, boundarieé, and other attributes.

Using this data structure, it is possible to query the PIF model for information about the
wafer described in a snapshot. Consider once again the code in Figure 2-2 and assume that the code
is being executed by a WIP interpreter for fabrication. The call on the procedure wet - 6xidat ion
is passed a desired oxide thickness of 100 nm. Within the procedure, a new segment for the grown
oxide will be created and the default oxide thickness will be recorded as a segment attribute:

grow-in-lot (#m(silicon), material: #m(oxide, nominal-thickness:
nominal-thickness)});

where the argument nominal-thickness will have the value {100 nm} at execution time.
Grow-in-1lot is a procedure that simulates the effect of growing a layer of material on all wafers
in the current lot. The first argument to grow-in- 1ot is the specification of the region where the
growth is to occur. #m(silicon) is used in this case because oxide grows on silicon segments
exposed to ambient containing oxygen. Oxide also grows on polysilicon about 2.5 times as fast as

on monocrystalline silicon!, so the following call to grow-in-1ot is also required:

grow—ln—lot(#m(poly), material: #m(oxide, nominal-thickness:
2.5 * nominal-thickness));

Once the oxidation is complete, the oxide thickness will be measured using measure-
oxide-thickness. As seen in Figure 2-5, the operation in the WIP view is to ask an operator to
measure an oxide thickness. The value returned by the operation is stored in a local variable tox.

This value will be assigned to the segment for the oxide:

seg := find-surface-segments-in-lot (material: #m(oxide));
mat := segment-attribute(seg, :material);
material-attribute(mat, :measured-thickness) := tox:

This information is then available for use later in the process flow. It is also available for
analysis by other programs and systems.

Find-surface-segments-in-lot retumns all segments with the specified attributes.
It is possible to supply additional attributes if more selectivity is required. One common attribute

used is the step-path, which is the string formed by concatenating the names of the nested steps at

! The differential oxide growth rate on polysilicon depends on both the dopant concentration in the
polysilicon and the thickness of the oxide. The value 2.5 is often used as a “rule of thumb.”

44

defflow expose-resist (mask-name:)
"Expose wafers "
let layer := find-layer (mask-name); /* Layer corresponding to the mask */
exposure-location := intersect-layers(top-side(),
invert-layer(layer)):

old-segments := nil;
new-segments := nil;
begin
viewcase

when fabrication do
with-equipment s of-type 'stepper do
run-recipe(s, 'expose, mask-name: mask-name) ;
end;
end;
end;
old-segments :=
find-segments-in-lot (material: #m(resist, exposed: nil));
new-segments :=
split-segments-in-lot (old-segments, location: exposure-location);
segment-material-attribute-in-lot (new-segments, :exposed) := t;
end; :

Figure 2-14: Expose-resist procedure definition.

the current execution point. For example, the step-path for the call on wet-oxidationin
Flgure 2-2 is “WELL-FORMATION/ INIT-OX.” Any time a segment is created, the step-path is au-
tomatically added as an attribute, so one way to ensure that the desired segment is obtained is to
specify the step path where it was created:

sgg := find-surface-segments-in-lot (

material: #m(oxide),
step-path: "WELL-FORMATION/INIT-OX");

Consider the same code from Figure 2-2 running in simulation. In this case, the measure-
oxide-thickness procedure will query the PIF data model to extract the simulated oxide thick-
ness and assign it to the local variable tox, assuming the simulator has simulated the oxidation. In
many situations, a time-consuming oxidation simulation is not necessary, and in these cases simu-
lators can query the PIF data model to extract the nominal -thickness assigned by the wet -
oxidation procedure. An example of where the latter might be useful is in a simulator designed
to extract a profile view of part of a wafer, such as SIMPL (3].

A more complex example of PIF will now be presented. Figure 2-14 contains the expose-
resist pfocedure which exposes photoresist in a masking operation. This procedure takes a
mask-name argument which specifies the mask to use. Four local variables are used in the proce-

dure:

45

- >
no{TOP)

: Unexposed Resist l Exposed Resist
. Oxide

. .
NNANNNNEEINNNNNN

Ambient

Figure 2-15: Exposed wafer block diagram and PIF snapshot.

1. layer - the layer describing the specified mask,

2. exposure-location - a specification of the clear areas on the mask,

3. old-segments - a variable to hold the list of PIF resist segments before the

exposure, and

4. new-segments - a variable to hold the list of PIF segments created by the

masking operation.
The clear area is calculated from the dark area specification given in the layer object. The body of
the procedure executes the expose operation and modifies the PIF snapshot. Although it is not en-
forced by the system, it is important that the operations to change the PIF snapshot follow the op-
erations to carry out the fabrication operation so that changes to the snapshot will not have to be
undone if the fabrication operation fails.

The operations that change the PIF snapshot split the resist segment into exposed and un-
exposed segments. If the starting wafer has the profile shown in Figure 2-13, then the resulting pro-
file after the expose-resist operation will be the one appearing in Figure 2-15. The segment
with a resist material attribute has been split into two segments using the split-segment-
in-1lot procedure. One of the resulting segments has the exposed attribute of the material
attribute set to t to reflect the fact that it has been exposed. The location attributes are calculated
by using the mask shading attribute. |

Now consider the definition of the develop-resist procedure in Figure 2-16 which
specifies operations in two views (i.e., simpl and fabrication) to develop the resist. The simpl view

operation generates the SIMPL simulator input for a develop operation. The fabrication view op-

46

defflow develop-resist ()
"Develop resist in lot®
begin
viewcase
when simpl do
simpl-op (*DEVL"®, "ERST") ;
end;
when fabrication do
with-~equipment d of-type 'developer do
run-recipe(d, ‘'develop-resist,
resist-name: material-name(resist-in-lot()));
end;
end;
end;
etch-material-in-lot (#m(resist, negative: nil, exposed: t), t);
etch-material-in-lot (#m(resist, negative: t, exposed: nil), t);
end;

Figure 2-16: Develop-resist procedure definition.

eration executes a particular recipe on a developer. After the operations are specified, the changes
to the wafer state are specified. Resist comes in two types: negative and positive. Negative resist is
removed by development where it is unexposed, and positive resist is removed by development
where it is exposed. In other words, a wafer coated with negative resist will be a photographic neg-
ative image of the exposed mask when developed, and a wafer coated with positive resist will be a
photographic positive image of the exposed mask. In order to accommodate both resist types, two
lines of code are used, one for each resist type. Figure 2-17 shows the wafer block diagram and
snapshot for a developed wafer, assuming negative photoresist.

The SIMPL input-generator interpreter produces the following code when it is run on the
expose-resist and .develop-resist procedures:

EXPO mask-name no ERST

DEVL URST
CooTToTTETTTTTTTTTT 1 OR(nct(TOP) AND(TOP,MASK))
. Ambient . Y 7 .
" | Exposod Resist 1 and(TOP noUMASIC)
M Oxide N
':

(:]

Lo Amblent " _]

Figure 2-17: Developed wafer block diagram and PIF snapshot.

47

The EXPO operation is generated when the expose-resist procedure is interpreted and the
DEVL operation is generated when the develop-resist procedure is interpreted. The mask-
name in the EXPO operation is replaced by the particular name of the mask passed to the procedure.
The no argument specifies that the mask should not be inverted. This value is derived from the
mask object. The ERST argument specifies the SIMPL name for unexposed resist. The DEVL oper-
ation takes one argument, which specifies the resist to be removed, in this case the unexposed resist
URST.

PIF snapshots are also useful for performing sanity checks on the state of wafers. Figure 2-
18 shows a section of code from the furnace-run procedure. The furnace-run procedure is
always called before any furnace operation occurs (i.e., all recipes defined on furnaces are dis-
patched using furnace-run). Photoresist cannot tolerate high temperatures. If a wafer is placed
into a furnace with photoresist on it, the photoresist will decompose, contaminating the furace.
The purpose of the code shown in Figure 2-18 is to abort processing if resist is discovered on wafers
that are about to be placed in a furnace. While this should never happen, in practice mistakes like
this are fairly common, particularly in Application-Specific Integrated Circuit (ASIC) fabs and re-
search fabs where processing volumes are low, several different processes are run, or processes are
subject to rapid change. The ability of BPFL to perform such checks on wafer state provides an ex-
tra degree of safety, but only if used correctly.

One final use for wafer state information is to record the information about the processing
history of wafers. Wafers can be processed to a particular stage using one process flow, and then
transferred to a different process flow with all of the state information maintained. This activity is
quite common in research fabs, although it is never done in production fabs.

The version of PIF available in BPFL is not capable of describing general device structures

on a wafer because it has no notion of segment adjacency in the horizontal plane. This choice was

defflow furnace-run (...)
begin
/* Can’t have resist in the furnace */
i1f find-segments-in-lot (material: #m(resist)) then
raise-exception(...);

end;

Figure 2-18: Furnace-run procedure definition.

48

made to limjt the amount of information contained in a snapshot. For processing purposes, naive
PIF has been adequate for all situations observed, since processing operations never depend on que-
ries of device structure. Physical simulators that require knowledge of two- or three-dimensional |
device structures (e.g., PISCES [38]) cannot be expressed completely in BPFL because additional
information needs to be specified. The logical repository for this information is the CAD database
used by IC designers to specify the circuit being manufactured (e.g., OCT [46]). The information
in the CAD database is used to generate mask detail.

2.5 Database Entities

This section describes the database schema designed to support the statements and data
types described in the previous sections.

Database entities from BPFL can be divided into two main groups. The first group contains
entities required to implement a BPFL program (e.g., process flows, wafer snapshots and lots). The
second group describes the fabrication facility and contains entities that a BPFL program might ac-
cess (e.g., equipment and mask descriptions).

The database schema for run state is shown in Figure 2-19. The run class describes the
basic information about a run: its name, the process flow used by the run, the current run step-path
and the run stack. The stack consists of a description of the process-flow execution state maintained
by the WIP system interpreter discussed in chapter 5. The process - £ 1ow class contains the name
and version of a process flow, as well as a brief description of the flow and maintenance information
about it such as the last modification time, the user responsible for maintaining the process-flow,

and a list of users authorized to use the process flow.

run(name: string, id: integer, process-flow: process-flow*, step-path: string,
stack: stack*);

process-flow(name: string, version: string, id: integer, modification-date: datetime,
maintainer: user*, description: string, authorized-users: user*);
stack (root-frame: frame*, ...);

wafer(run: run*, id: integer, index: integer, scribe: string, snapshot: snapshot¥);
lot (run: run*, id: integer, name: string, wafers: wafer*[(]):

snapshot (run: run*, id: iInteger, name: string, segments: segment*[]);
segment (id: integer, boundaries: boundaries*[], attrs: attrs*(]):
boundary (id: integer, attrs: attrs*[}]):

attr(id: integer, name: string, value: string, attrs: attrs*[]);

Figure 2-19: Database schema for run state.

49

equipment (name: string, parent: equipment(]*, secs-address: integer,
recipes: recipe*(]);
recipe(name: string, attributes: string);

mask-set (name: string, masks: mask*(]):
mask (name: string, type: mask-type, dark-field: logical);

Figure 2-20: Database schema for facility description.

The wafer class includes the wafer name and a pointer to the snapshot description of the
wafer. The 1ot class has pointers to all wafers that belong to that lot. The wafer state information
is stored in four classes called snapshot, segment, boundary and attr, which describe the
PIF entities making up snapshots.

The database description for some classes that describe the facility are shown in Figure 2-
20. The equipment class includes the equipment name, the parent classes of equipment from
which this instance inherits, the secs -address for the equipment, and pointers to equipment rec-
ipes. Recipes are stored in a recipe class with a name and a property list of attribute-value pairs.

Mask-sets are stored in a mask-set class, with a name and pointers to the masks belong-
ing to the set. The mask class includes the mask name, the mask type (i.e., chrome or emulsion)
and a logical value indicating whether or not the mask is dark field. This value is used to determine

the location of the mask.

2.6 Summary

The basic goals of BPFL are to provide a complete, facility-independent process-flow rep-
resentation. BPFL is a Lisp-based procedural language with support for common abstractions en-
countered in processing, such as wafers, lots and equipment. BPFL. uses views to provide domain-
specific information where necessary. A version of PIF is used to maintain wafer state information.

BPFL stores all information about process flows and facilities in a database.

50

Chapter 3
BPFL Statements for Fabrication

This chapter describes BPFL statements to support IC fabrication. Fabrication places spe-
cial demands on an SPR. First, some means of communicating with operators and equipment is re-
quired. Second, events that occur and data collected during processing must be recorded to maintain
run history. Third, errors and unexpected events often occur in processing so an exception-handling
mechanism is required to deal with them. Fourth, rework loops are common in real-world processes
so it is worthwhile to provide a language statement to express them explicitly. Finally, constraints
may be placed on operations (e.g., time limits between operations such as the constraint that a ni-
tride depositionin a LOCOS! step should be started within 30 minutes of completing the preceding
oxidation step).

The statements described in this chapter are normally only used by the WIP interpreter, al-
though timing constraints have obvious applications in scheduling.

3.1 Equipment Communication

BPFL equipment abstractions have already been introduced in chapter 2. The fundamental
equipment allocation and access statement is with-equipment. For example, the following frag-
ment of code:

with-equipment e of-type equipment-specification do
enm;body;

allocates a piece of equipment that satisfies the equipment -specification, assigns that in-
stance of the equipment to the variable e, executes the operations in the body and then deallocates
the equipment. It is important that allocated equipment always be deallocated. The with-equip-
ment statement guarantees that equipment will be deallocated, even if errors occur while process-
'ing the code in body. This is achieved through the use of the Lisp primitive unwind-protect
which guarantees the execution of cleanup operations after a code body even if the body generates

an exception. Figure 3-1 shows the semantics of the with-equipment statement. The code spec-

1 1.0Cal Oxidation Of Silicon is an isolation technique.
51

unwind-protect
e := allocate(equipment-specification);

body ;
cleanup deallocate(e);
end;

Figure 3-1: With-equipment semantics.

iﬁed in the cleanup clause is guaranteed to execute.

Once equiprhent has been allocated, it may be accessed using the Semiconductor Equip-
ment Manufacturers Institute (SEMI) Equipment Communications Standard protocol (SECS). The
BPFL WIP system uses a SECS server developed by Wood [44]. The interface to the server is via
a Common Lisp package [47). For example, the following BPFL code opens a connection with a
particular tube in a Tylan furnace bank:

m := create-message(DMSTREAM, DMCONNECT, needs-reply: t,
device: tylan-address,
body: create-item(ASCII, "furnace 2°));
write-message(m) ;
Create-message is a function provided by the SECS server. The first two arguments to cre-
ate-message specify the STREAM and FUNCTION codes for the message. The stream code iden-
tifies a particular class of messages with similar purposes and the function code identifies a
particular message type within that class of messages. The needs-reply argument is used to in-
dicate whether the SECS server should wait for a reply from the recipient of the message. Device
specifies the SECS device address of the message recipient, in this case the tylan furnace controller.
Body specifies the contents of the SECS message to send. In this example, the body is a SECS
item consisting of the string of characters " furnace 2".

The Write-message function sends the message to the recipient. In this example, the
message is sent to the tylan furnace controller and connects the server to the second tube within the
fumnace bank attached to the controller.

For higher-level equipment access, the run-recipe procedure provided by the WIP in-
terpreter is normally used. This procedure uses the information specified in equipment definitions
stored in the database (see Figure 2-9) to execute high-level procedures to communicate with
equipment. The secs-device and secs-handler equipment and recipe attributes are used for

this purpose as described in section 2.3.

52

Every equipment operation is logged. Log records include the start and end times of the op-
eration. The procedure last -equip-t ime retumns the completion time of the last operation car-
ried out on a lot of wafers by a given type of equipment or recipe. For example, the procedure call:

last-equip-time(lot: 'product, equipment: 'hmds-tank, recipe: 'hmds-coat);
returns the completion time of the last hmds-coat operation performed on wafers in the product
lot. When called without arguments, last-equip-time returns the completion time of the last

equipment operation on the current lot of wafers.

3.2 Operator Communication

The user-dialog procedure can be used to communicate with an operator. In the proto-
type WIP system, this procedure calls an ABF frame. An ABF frame contains two elements: first,
a form through which data can be displayed to or entered by the operator; second, a menu of oper-
ations that he or she can execute [48]. The form describes the operation to be performed and entry
fields in which the operator can enter measurements and status data. The operations provided allow
the operator to abort an operation, signal completion of an operation, check equipment status, and
disconnect from a run.

As an example of user-dialog, consider the inspect -resist procedure used in
photolithography. The operator enters wafer identifiers and inspection results into the form in the
Inspect-Resist frame shown in Figure 3-2. This frame is called by the user-dialog proce-
dure. The data entered by the operator is returned to the procedure as a property list of attribute-
value pairs. The get £ procedure is used to extract attributes from the property list. In this case,
user-dialog returns a value with rework and scrap attributes, which specify which wafers
should be reworked and scrapped, respectively.

Figure 3-3 shows an implementation of the inspect ~resist procedure used in photo-
lithography. The procedure allocates a microscope and asks the operator to inspect each wafer in
the lot. The user-dialog function call resuits in the display of the inspect -resist frame.
The value retumed by user-dialog is queried using get f to extract the rework and scrap

attributes and force rework to occur if necessary.

53

(rﬁLIs WIP (V 1.1, 13 July 1990) Inspect Resisc“\

Run ID: 3 Run Name: trench caps User: gian
Status: waiting Process Flow: cmos-trench Step: litho

Inspect each wafer in the lots CMOS and NWELL.
Enter the wafer scribes of any wafers to be reworked or scrapped
into the tables below.

Wafers to be reworked Wafers to be scrapped
id name id name
S CMOS-2
7 CMOS-4
11 CMOS-8
\‘gelp Lot-Detail Forget End : ‘)

Figure 3-2: Inspect-Resist frame.

3.3 The WIP Log

A BPFL procedure can append records to the CIM database to log events that occur or mea-
surements that are taken during processing. The log is represented by a sequence of CLOS objects
of different classes. Each class represents a different type of event that is being logged. A log record
is called a log'object (LO). Figure 3-4 shows the class hierarchy. Figure 3-5 shows the database
conceptual schema for some different types of log objects. New types of LOs can be defined by
creating a class for the LO types.

defflow inspect-resist ()
"Inspect each wafer and put wafers to be reworked into the rework lot
and wafers to be scrapped into the scrap lot.*
begin
view fabrication do
with-equipment scope of-type 'microscope do
let results := user-dialog(name: 'inspect-resist,
equipment: scope)

begin
wip-log('Resist-Inspect, results);
move-sublot (getf (results, rework:), 'current, ‘rework);
move-sublot (get f (results, scrap:), 'current, 'scrap);
1f lot('rework) then raise-exception('rework);:

end;

end;
end;
end;

Figure 3-3: User-dialog procedure example.

54

Log-Object Analtyical-Equipment-LO anospec-LO
Ellipsometer-LO

Alphastep-LO

Processing-Equipment-LO —Lam-LO m1-LO
: Lam2-LO

Sink-LOYSinld -LO
Sink2-LO

Figure 3-4: WIP log object class hierarchy.

The log is stored in the CIM database as a separate relation that contains information about
each entry (e.g., the time the object was written and the run that wrote it) and a reference to the spe-
cific LO. For example, the inspect -resist procedure mentioned in the previous section writes
a Resist-Inspect-LO to the log that records the status entered by the operator for each wafer
inspected.

A WIP LO includes attributes that allow a user to determine which operation in a process
flow wrote the entry. The process-name attribute specifies the process, the procedure-name
attribute specifies the procedure, and the step-path attribute specifies the step that wrote the en-
try. The t ime attribute specifies the date and time when the object was written, and the tag at-

tribute records a value included in the operation that writes the iog object. The tag attribute is

WIP Log Class
WIP-Log(run-id: integer, log-object: Log-Object*, process-name: string,
procedure-name: string, step-path: string, time: datetime, tag: string):
Analytical Equipment Log Objects
Analytical-Equipment-LO() inherits (Log-Object):;
Nanospec-LO(thickness-array: unit[]) inherits (Analytical-Equipment-LO);
Ellipsometer-LO(thickness-array: unit[]) inherits (Analytical-Equipment-LO);
Alphastep-LO(height-array: unit[]) inherits (Analytical-Equipment-LO);

Processing Equipment Log Objects

Processing-Equipment-LO() inherits (Log-Object);

Lam-LO (wafer-etch-time: datetime, recipe: string, power: unit)
inhkerits (Processing-Equipment-LO);

Laml-LO() inmherits (Processing-Equipment-LO);

Lam2-LO() inmherits (Processing-Equipment-LO); »

Sink-LO(wash-resistivity: unit, piranha-etch-time: unit)
inherits (Processing-Equipment-LO);

Sink6-LO(bhf-etch-time: unit) inherits (Processing-Equipment-LO);

Sink8-LO(poly-etch-time: unit) inmherits (Processing-Equipment-LO);

Figure 3-5: Database schema for WIP log objects.
55

/* retrieve log entries for run 132 */
select *

fram WIP-Log

where run-id = 132

/* retrieve resist-inspect measurements for CMOS-16 runs in
the past 30 days */
select log-object.wafer-status -
froam WIP-Log
where process-name = "CMOS-16" and time 2 today() - "30 days®
and class(log-object) = "Resist-Inspect-LO"

/* calculate the average number of ellipsometer entries written for
each run since the beginning of the year */

select average (log-object)

fram WIP-Log

where time 2 "1 January 1991°
and class(log-object) = °Ellipsometer-LO®

group by run-id

Figure 3-6: Sample WIP log queries.

optional. It can be used to specify a unique string that identifies the log object written by a particular
operation. The string can be used to simplify the predicate required to search the log for all objects
written by the operation.

The WIP-1log procedure is provided to write log entries. The arguments to WIP-1og in-
clude the LO class to be written and a collection of class-specific arguments that record the desired
data. For example, the log operation in the inspect-resist procedure above is:

wip-log('Resist-Inspect, results);
The first argument is the log object class and the class-specific argumentis an array of wafer status
data.

The log can be queried to fetch arbitrary sets of log objects that can be aﬁalyzed to deter-
mine what happened when a process was run. Queries can be executed from an ad hoc query inter-
face, an engineer’s notebook interface [49], or a BPFL program. The engineer’s notebook interface
allows a user to browse the log and create hypertext links to particular entries. A program can access
the log to make decisions based on its past history without having to create special data structures
to save the desired data. In other words, the log acts as an extensible data structure for recording
information about the run that can be queried by the process flow itself.

Figure 3-6 shows three sample log queries specified in an extended version of SQL. The

first query retrieves all log objects written for a specific run. This query creates a data set about the
56

run that can be further analyzed. The second query shows how particular log entries for a collection
of runs can be retrieved. The last query shows how the log can be queried to determine statistics

about équipment usage.

3.4 Exceptions

Errors and unexpected events occur frequently during semiconductor fabrication. For ex-
ample, a fumace may detect an abnormal gas flow during an oxidation operation and abort the op-
eration. An SPR that is unable to cope with such abnormal events is unsuitable for use in a
fabrication environment. This section describes BPFL exception-handling mechanisms.

~ BPFL uses the proposed ANSI standard Common Lisp conditions package [39] to define

exception handlers and raise exceptions. Many exceptions are caught by the WIP interpreter itself
(e.g., exceptions are used in the implementation of constraints which are discussed below). How-
ever, a user may write BPFL code to handle and raise exceptions explicitly. An exception handler
is the routine that is called when a particular error occurs. An error is signalled by raising an excep-
tion which suspends execution of the BPFL program and calls the appropriate handler. The handler
can:

1. change environment,

2. record events,

3. char}ge program execution, or

4. suspend or abort a run.
Note that suspending a run can send a message to the equipment operator, place the run in a queue
that is managed by a process or equipment engineer, or send an email message to the person who
started the run, The action taken is determined by the policy established by a particular fab.

The language statement used to define an exception handler is handlexr-case. It is used

to trap specific exceptions that occur inside a body of code. The syntax of handler-case is:

57

handler-case
body ;
cn-exception var-l := exceptionl do
exceptionl-handler;
end;
on-exception var-2 := exception2 do
exception2-handler;
end;
end;
The semantics of this statement are as follows. The body is executed, and if one of the specified
exception types (e.g., exceptionl, exception2,...) occurs, the specified exception-handler is execut-
ed. An example of the use of handler-case appears in Figure 3-7 which shows the run-rec-
_ipe procedure that downloads and executes a recipe in a piece of equipment. The handler-case

statement deals with equipment errors. The body of the handler-case is the code:

download-recipe(...);
start-recipe(...);

which actually runs the recipe. If an equipment -error exception is raised during the execution
of this code, the handler writes an ently to the log that describes the nature of the error and process-
ing is suspended until an operator corrects the problem. The variable ¢ contains a structure, called
a condition, that describes the error.

The operations available to change control-flow in an exception handler are:

1. Hélt -run - Displays a user-dialog ésking the user to choose the action,

2. Reéignal — passes the exception up to the next higher-level exception han-

dler,
3. Restart-body - Execute the code in the body of the handler-case

again, and

defflow run-recipe(...)
begin

handler-case
download-recipe(...);
start-recipe(...);

on-exception ¢ := equipment-error do
report-error (“Error occurred during run-recipe: ~s°, ¢);
halt-run();
end;
end;
end;

Figure 3-7; Handler-case example.

58

condition serious-condition

bpfl-error: equipment-error ——— secsii-error
. interpreter-efror
waming @

-eror

constraint-violation—— time-constraint-violation

ework

Figure 3-8: BPFL condition types.
4. Ignore-exception - Continue executing the code as if the exception had

not occurred.

If the body of a handler-case or a procedure called in the body contains an exception-
handler for a condition, the lower-level exception handler will be executed. For example, if
start-recipe contains a handler-case for the same condition, an equipment -error ex-
ception signalled within start -recipe will over-ride the handler in Figure 3-7.

The data types that specify a condition form a hierarchy. The most general type of condition
is condition, which has subtypes, serious-condition, warning, constraint-vio-
lation, and rework. The WIP interpreter handles all condition types defined in the Common
Lisp standard [39]. Additional error types are defined by the WIP system, and they are shown in
Figure 3-8.

Exceptions are signalled by using the raise-exception procedure. For example, an
equipment -error exception may be signalled with the following code: |

raise-exception ('equipment-error, machine: 'tylanS,
cause: "calibration failure®);

An exception can be raised explicitly by a BPFL program or in response to an error returned by an
equipment or user-dialog operation.

BPFL process flows can define their own types of conditions using defcondition.
Figure 3-9 shows an example of defining a tylan-error condition for use with tylan furnace

tubes. The condition has two slots: recipe and st ep-number. Since this condition is defined as

defcondition tylan-error ((equipment-error),
*Tylan-specific error, reports furnace details"
recipe;
step-number) ;

Figure 3-9: Defcondition example.

59

asubtype of equipment -error, it inherits slots from equipment -error. Using tylan-er-
ror, an exception with more detail about the cause of the error can be generated:
raise-exception(' tylan-erfor, machine: 'tylan5,
cause: 'calibration-failure, recipe: "SWETOXB®,
step-number: 5);
3.5 Rework
Rework is a common operation in semiconductor processing. A rework loop in BPFL spec-
ifies the processing to be done, a test for correctness (e.g, inspecting wafers for good pattern defi-
nition in photolithography), and operations to execute on a wafer that fails the test. The rework-
loop statement takes the following arguments:
1. the operations to perform (i.e., the rework body),
2. anoperation to test whether the rework body was completed correctly
(rework-test),
3. the number of times to retry the loop bgfore giving up (retry-.count),
4. operations to perform before retrying the operations in the body (rework-
prefix), and
5. aprocedure to call if the retry count is exceeded (retry-£ailure).
The semantics of the rework-1loop statement are shown in Figure 3-10. Body specifies the op-
erations to be performed. The rework-test operation 'tests the wafers and puts the ones tliat re-
quire rework into the rework lot and the ones that cannot be reworked into the scrap lot. It also
returns a value indicating if all wafers passed the test. If some wafers failed the test, the wafers in
the scrap lot are removed from the wafers allocated to the run. The loop is exited if the rework
lot is empty. The retry-count argument is an integer that is decremented each time the rework
loop is executed. If the retry-count is decremented to zero, the retry-£ailure operation is
executed. Otherwise, the rework-prefix is executed and the wafers in the rework lot are pro-
cessed again,
The photolithography flow shown in Figure 3-11 includes an example of rework. The basic
sequence of operations is the following:
1. Dehydrate — dry the wafers to promote resist adhesion. Dehydration is usually

carried out at 120 °C for 20 minutes.

Perform
Operations
¢ Perform
oK Test rework prefix
A
\/Not oK
Deallocate
Set current-lot
SCRAP lot to REWORK lot
YES (REwoRK Iot T
empty? Decrement
¢ NO fotry count
Retry count | NO T
zero?
YES

Coone>

Figure 3-10: Rework semantics.

2. Apply HMDS (Hexamethyldisilazane) - this improves adhesion of resist to
oxides. Wafers are placed in an HMDS ambient for three minutes.

3. Apply resist — photoresist is deposited on the wafers, which are then spun at
high speed to form a uniform layer of resist. Next, the wafers are baked at
120 °C! for one minute to increase the viscosity of the resist layer. Finally, the
resist layer is inspected for uniformity.

4. Expose — the wafers are aligned to a mask and the mask is photographed onto
the resist layer.

5. Develop — the resist on the wafers is developed and the wafers are washed.

6. Inspect— The wafers are inspected to ensure acceptable mask-pattern transfer.
Unsatisfactory wafers are stripped of resist and reworked.

7. Descum — wafers are etched in a low power oxygen plasma to clean up resist

1 Exact temperatures and times depend on the photoresist used. The figures here are for Kodak-820
positive resist.

61

1. :
Dehydrate

) 4

1
2.
Apply HMDS

;s 30 m!n}

3. Spin resist

+
soft bake

resist

4,
Expose

B
Davslop

YES s Inspect:

requires
rework?

NO
y

7.
Descum

——

Hard bake

Figure 3-11: Photolithography rework loop and timing constraints.

deposits left behind on developed areas.

spin-soft-bake (resist: resist);
expose-resist (mask-name: mask-name) ;
develop-resist () ;

62

Hard bake — wafers are baked at 120 °C for thirty minutes (possibly at a higher
temperature for thick resists or resists with high water content) to harden the
resist in preparation for the etching step to follow.

This sequence of operations is known as patterning. A procedure pattern that implements the
rework loop for photolimography is shown in Figure 3-12. The figure also includes timing con-
straints which will be diséussed in a later section. The body of the rework-loop statement is the

The rework-test is the procedure inspect -resist, which puts unacceptable wafers into the
rework and scrap lots. This example introduces an additional complication not considered be-
fore. In double-photo lithography, wafers are patterned even though they are already coated with

resist. For example, double-photo operations are used whenever possible for high-energy or high-

defflow pattern (mask-name:, will-double:, resist: = *default-resist¥*)
*Basic photolithography - coat, expose, develop, descum, bake"
let double-photo := find-surface-segments-in-lot (material: #m(resist));
begin
step PATTERN do
rework-loop
spin-soft-bake(resist: resist);
expose-resist (mask-name: mask-name);
develop-resist();
rework-test inspect-resist();
retries 5;
rework-prefix if not (double-photo) then
strip-resist();
apd; /* rework */
descum-resist () ;
hard-bake-resist (double-photo: (double-photo or will-double));
end; /* step */
end;

Figure 3-12: Pattern procedure definition.

dose implants to provide maximum resist thickness for unimplanted regions of the wafer to limit
substrate damage. If double-photo is required, it is usually inadvisable to strip the resist unless
gross misaligﬂment of the mask is apparent. For this reason, the rework-prefixin this example
is:

fework-prefix if not (double-photo) then strip-resist();
which prevents resist from being stripped if a double-photo operation is in progress. The pat-
. tern procedure quén’es the wafer-state model to determine if double-photo i$ being per-
formed:

laet double-photo := find-segments-in-lot (material: #m(resist));
This line of code assigns a non-nil value to the double-photo variable if there is any resist
present on the wafers before the pattern operation begins.

Occasionally it is necessary to force rework to occur from within the code in the body of a
rework-loop. For example, if wafers are found to be coated with an uneven layer of resist, there
is no point in exposing and developing them because they will fail the inspect -resist test. Re-
work may be started at any time by raising the rework exception which forces the rework:

raise-exception(‘'rework);
The rework and scrap lots must be set up correctly before the exception is raised. Rework can
also be started by an operator if a run is operating within a rework-1loop. This feature is useful

for dealing with error conditions that are not handled directly by the process-flow code.
63

3.6 Constraints

Process flows often specify constraints on operations or between operations. Furthermore,
there are general policy constraints that are imposed on certain types of processes. These constraints
often cannot be checked at any one place in the process flow, because they must be true over a sec-
tion of the flow. In BPFL, constraints are specified as a dynamic scope over which certain predi-
cates must be true. If a constraint is violated, the interpreter raises an exception that will be caught
by a handler that knows how to deal with the situation.

'The constrain statement specifies the constraint, the action to take if the constraint is
violated, and a sequence of statements over which the constraint must hold. For example, the fol-
lowing constraint suspends processing if the temperature in the fab goes above 22 °C:

constrain
body;
when current-temperature() > {22 degC} do
halt-run();
end;
end; ‘
The when clause specifies a constraint predicate which is followed by operations that are executed
if the constraint is violated. Any number of when clauses can be specified in one constrain
statement.

A more complicated example is shown in the photolithography flow in Figure 3-11. The
constraints specified in ovals on the right side of the figure are “rule-of-thumb” timing constraints
used in the Berkeley microlab [14]. The constraints applying to photolithography are the following:

1. After wafers are dehydrated, moisture in the atmosphere will quickly adsorb to

their surface so resist should be applied within thirty minutes.

2. HMDS rapidly evaporates from the surface of wafers so resist should be de-

posited within ten minutes of HMDS application.

3. Wafers should be exposed within two days of coating to prevent problems with

resist adhesion and development caused by water adsorption.

4. Wafers should be developed within one hour of exposure to prevent softening

of the pattern edge due to molecular diffusion across boundaries between ex-

posed and unexposed areas of resist.

5. The hard bake should be completed no more than an hour before the next step

64

is started. This timing constraint is not indicated in Figure 3-11 because the ex-
act time limit on the constraint depends on the subsequent step, and must be
specified outside the scope of the pattern procedure.
The remainder of this section describes how these constraints are specified in BPFL.
The dehydrate-wafers procedure is shown in outline form in Figure 3-13. It is called
by the spin-soft-bake procedure called in pattern. The if statement:

if (min(segment-material-attribute-in-lot (segments, :dehydration-time)) + {30 min)
< current-time()) then

checks the wafer-state information to see if the wafers require dehydration. The segment s vari-
able contains a list of a]l substrate segments of the wafers in the current lot. Substrate segments
are used for the purpose of recording attributes that apply to the whole wafer, such as dehydra-
tion-time and cleanliness. Since segments contains a list, the min procedure is used to
select the earliest dehydration time of the wafers in the lot. If the earliest dehydration-timeis
more than thirty minutes in the past, all wafers are dehydrated.1 The wafer-state model is updated
by the statement: |

segment-material-attribute-in-lot (segments, :dehydration-time) :=
last-equip-time();

which sets the dehydration-t ime to be the completion time of the last equipment operation.
The final statement:

min (segment-material-attribute-in-lot (segments, :dehydration-time));
selects the earliest value from the list of dehydration times retumed by dehydrate-wafers. This

value is important for the operation of the spin-soft-bake procedure to be discussed shortly.

defflow dehydrate-wafers()
* Dehydrates wafers if necessary and returns the dehydration time °
let segments := find-segments-in-lot (material: #m(substrate));
begin
if (min(segment-material-attribute-in-lot (segments, :dehydration-time)) + {30 min}
< current-time()) them
. /* Equipment operations to dehydrate wafers */
segment-material-attribute-in-lot (segments, :dehydration-time) :=
last-equip-time();
end; /* if */
min (segment-material-attribute-in-lot (segments, :dehydration-time)); /* return val */
end;

Figure 3-13: Dehydrate-wafers implementation.

1 An obvious enhancement is to only dehydrate those wafers requiring it.

65

The pattern procedure in Figure 3-14 is the same as the code shown in Figure 3-12 ex-
cept that it implements the timing constraints between the spin-resist, expose, and devel -
op operations using the expression:

when (max-time-between ('spin-soft-bake, 'expose-resist,
{2 day}) or
max-time-between('expose-resist, 'develop-resist,
{1 hour})) do
halt-run("time-constraint-violation in pattern®):
and;
The max-time-between procedure takes two procedure names and a time interval as arguments. 1The
two procedures must be called within the body of the constrain in which the when clause ap-
pears. The constraint implied in the max-time-between procedure is that the time between calling
the first procedure and calling the second procedure must not exceed the last argument. If it is great-
er, the constraint is violated and the halt - run operation is executed. The body of the con-

strain is composed of the operations to execute under the specified constraints.

defflow pattern(mask-name:, will-double:, resist: = *default-resist*)
"Basic photolithography - coat, expose, develop, descum, bake®
let double-photo := find-surface-segments-in-lot (material: #m(resist));
begin :
step PATTERN do
rework-loop
constrain
spin-soft-bake (resist: resist);
expose-resist (mask-name: mask-name) ;
develop-resist();
when (max-time-between ('spin-soft-bake, 'expose-resist,
{2 day}) or
max-time-between ('expose-resist, 'develop-resist,
{1 hour})) do
halt-run("time-constraint-violation in pattern");
end;
end; /* constrain */
rework-test inspect-resist();
retries 5;
rework-prefix if not (double-photo) then
strip-resist();
end;
end; /* rework */
descum-resist () :
hard-bake-resist (Gouble-photo: (double-photo or will-double)):;
end; /* step */
end;

Figure 3-14: Pattern procedure implementation with constraints.

I Max-time-between may take a procedure name, an equipment operation, an absolute time,
or a time interval as arguments.

66

defflow spin-soft-bake(resist: = *default-resist*)
*dehydrate, hmds treat and spin resist onto wafers®
let last-dehyd-time := dehydrate-wafers();
begin
constrain
‘deposit-hmds () ;
deposit-resist (resist: resist);
when max-time-between (last-dehyd-time, 'deposit-resist,

(30 min}) do
last-dehyd-time := dehydrate-wafers():
restart-body () :
end;
when max-time-between ('deposit-hmds, 'deposit-resist,
{10 min}) do
restart-body () ;
end;
end; /* constrain */
end;

ﬁ_gyre 3-15: Spin-soft-bake implementation.
The spin-soft-bake procedure in Figure 3-15 shows how the constraints between

steps 1-3 and 2-3 in the rework loop in Figure 3-11 are specified. The procedure begins by calling
dehydrate-wafers. As has been described, dehydrate-wafers does not dehydrate wafers
unless necessary, but always retumns the earliest dehydration time of wafers in the current lot. The
value retumned by dehydrate-wafers is used in a constraint in spin-soft-bake:

when max-time-between (last-dehyd-time) 'deposit-resist,

{30 min}) do
last-dehyd-time := dehydrate-wafers();
restart-body () ;

end;

The last-dehyd-t ime variable contains the value retumed by dehydrate-wafers. This constraint
forces dehydration if the wafers are not coated within 30 minutes of the last dehydration time.

The constraint between steps 2-3 in the rework loop is implemented by the second when

clause:
when max-time-between ('deposit-hmds, 'deposit-resist,
(10 min}) do
restart-body () ;
end;

The exception handler forces the code in the body of the constrain to be executed again.

The implementation of constraints is discussed in chapter 5.

67

3.7 Summary
Adequate support for fabrication is an important requirement of an SPR. This chapterhas
presented the BPFL statements intended for fabrication. These statements include equipment and

operator communication, exception handling, rework, and timing constraints.

Chapter 4
The WIP Run-Management System

This chapter describes the BPFL WIP system and the un-management system. The chapter
is organized as follows. First, the architecture of the WIP system is reviewed. Then an example of
using the WIP system to start and monitor a run is presented. Third, the interface to the WIP log is
described. Fourth, support for modifying runs in progress is discussed. Finally, the WIP version

control system is described.

4.1 WIP System Architecture

The software architecture of the WIP system is shown in Figure 4-1. The system is com-
posed of many processes that communicate with users, equipment, and the CIM database. The main
process is the WIP inierpreter that executes runs A run corresponds to an execution of a BPFL pro-
cess flow. Each run is represented b§ data structures that contain the run state (e.g.; the next state-
ment to execute, the names and values of local variables created by the program, and data retrieved
from the database). The WIP interpreter executes many runs at the samé time. In other words, it is
a Server process. '

The user interface process(es) support communication with operators. Operators at differ-

ent locations in the fab can communicate with any run by connecting to thé¢ WIP interpreter through

wip
Interpreter

Equipment
Interface

Furnace

Figure 4-1: WIP system architecture.

69

a user interface (Ui) process. BPFL user-dialog commands are sent to the appropriate UI pro-
cess.! The UI process is an Application-By-Forms (ABF) [S0] program in the current prototype.
Every user has a separate UI process, and the WIP system prevents more than one user from con-
necting to any run at the same time.

The UI process uses a terminal-based interface rather than a graphical user-interface (GUI)
because the Berkeley Microlab is equipped with ASCII terminals. The current terminal-based in-
terface will be replaced with a GUI after suitable terminals are installed. Some operations that are
cumbersome to perform with the éun'ent implementation (e.g., moving waférs between runs) are
much easier to perform in a GUI.

The equipment interface (EI) process(es) support communication with equipment. Each EI
process is an instance of Wood's SECS server [44]. An object-oriented SECS interface is defined
within BPFL, and methods are defined. for high-level equipment operations (e.g., run recipe, mon-
itor run, fetch equipment status, etc.). These methods are implemented by remote procedure calls
that invoke SECS commands implemented in the EI process. ’

All processes in the WIP system communicate with the CIM database. The WIP interpreter
checkpoints the states of runs in the database so that other users and programs can access run infor-
mation and active runs can be recovered if a computer or network fails. The UI process uses form
definitions stored in the database and allows the user to bro'w'se the CIM database (é.g., active runs,
WIP logs, etc.). The EI process accesses equipment information stored in the database.

ABF applications use frames as the user-interface. A frame consists of two components: a

Jform that displays information to the user and in which the user enters information, and a menu list-
ing the available operations that the user can execute [48]. The main frame of the UI process is the
Run-Summary frame shown in Figure 4-2.2The top line of all frames in the UI process displays
system information: the system version and the name of the current frame. Most of the screen area

is taken up by a Run-Information table. This table displays a list of runs and information about

!In a low volume fab such as the Berkeley Microlab, a user moves to a different terminal and recon-
nects to the run. In a high volume fab, the WIP system sends the command to the user interface pro-
cess at the appropriate workcell.

2 The names of frames, operations and fields are shown in the text in monospace font with spaces
replaced by hyphens.

70

BLIS WIP 1.1, 13 July 1992 Run Summary

Run Information

Run ID [Name Status lProcess Flow Step Ouner
I “ie—teanch b b | jmassa
sas wai ting salicide gata-oxidation |williams
3 baseline waiting cmos-17 isolation micro
|14 xsection waiting ashback init-ox mudie
S poly control waiting |poly-calibrate |deposition klin
6 ldd waiting ldd-coomos pattern micro

Help Create Connact Defaults Detait WIP-Log Restrict >

Figure 4-2: Run-Summary frame.

them including their status (i.e., running, wait ing, stopped, aborted, fini shed), the pro-
cess flow, the current step, and the run owner.

The bottom line in a frame lists the operation menu. The operations in the Run-Summary
frame are listed in Table 4-1., Every frame in the UI process has a Help operation. The Help op-
eration gives information about keyboard mapping and a description of the frame screen layout and
operations. The top portion of the descriptive text about the Run-Summary frame displayed by the
Help operation is shown in Figure 4-3. The Create operation is used to start a run. Connect dis-

plays the current user-dialog operation for a run. Both operations are described in the next sec-

Operation | Description

Help Displays help screen for the frame.
Create Create a new run.

Connect Connect to an existing run.

Defaults Set up user defaults for the WIP system.
Detail Provide more information about a run.
WIP-Log Display the WIP-Log for a run.

Restrict Enter criteria for runs to display (e.g., only runs owned

by a particular user).

Version Displays process-flow version information.
[Quit Loave the WIP system.

Table 4-1: Run-Summary frame operations.

1 The menu for the Run-Summary frame is too long to fit across the screen, and the Version and
Quit operations do not appear in the menu in Figure 4-2. The '>' character after the Restrict
operation is used to indicate that more operations are available, and ABF provides mechanisms for
viewing them. ‘

71

HELP -- Run Summary frame

lﬁiis is the main screen in the Work in Progress (NIP) application.
From this sereen you can control runs.

The WIP system is intendad to replace run sheet specifications
commonly used in fabs. The run sheet is replaced with a programming
language specification. The WIP system provides an interface to an
interprater vhich executas the specification. This HIP system uses
the Berkeley Process-Flow Language (BPFL) to specify runs. The
advantages of having a programming language specification for runs
include automatic control of processing conditions, logging of
|measurements, better scheduling end equipment utilization, and
intarfaces to process simulators (SUPREM, SRMPLE).

SCREEN LAYCUT
The HIP system displays information in 24x80 lina text screens called

frames. A frame consists of two components: a form that displays
information and into which information may be entered, and a menu

NaxtPage¢*F) PravPage<*G) Edit Find Top Bottom Help End

Figge 4-3: Run-Summary help.

tion. Default s allows the user to set defaults for the UI process that control system behavior (e.g.,
the user can decide which editor to use for process flows). Detail provides more information

about a run. WIP-Log displays the WIP-log for a run as described in section 4.3. Restrict lets
the user establish which runs to display in the Run-Summary frame. Version is used to access

the version-control system described in section 4.5. Quit causes the Ul process to terminate.

4.2 Starting and Controlling a Run

This section describes how a run is created and controlled. When the Creat e operation in
the Run-Summary frame is selected, the Create-Run frame shown in Figure 4-4 is displayed.
The operations available at this frame are Help, List -PFlows, Start-Run and End. The
List-PFlows operation displays alist of the approved process flows. Start -Run creates anew
run. This operation causes the WIP interpreter to begin execution of the process flow. End returns
to the Run-Summary frame.

To start a run, the user enters a run name, a process flow, a mask set and alot size. The
process flow is specified by aname and a versiori. In this example, the user has selected version 1.1
of the cmos-16 process flow and named the run “cmos test.” The initial steps of the process-
flow code are shown in Figure 4-5. The flow has one argument named implant-split. As
shown in Figure 4-4, the Ul process fills in the default value of the argument. The user can modify

the values of any argument if desired.
72

BPFL HIP 1.1, 13 July 1990 Create Run

Run Name: cmos test
Process-Flow MName: cmos-16 Uersion: 1.1

Mask set: eeld3
Lot siza: 20

Process Flow RArguments

name value

FHFLAHT=EFLLT T

Halp List-PFlows Start-Run End

Figure 4-4: Create-Run frame.

After the Start -Run operation is executed by the user, the run will be initialized and the
Ul process displays the Run-Summary frame as shown in Figure 4-6. The new run appears on the

bottom of the list of runs, with status of “starting,” which indicates that the run is being ini-

defflow cmos-16 (implant-split: = t)
"U.C. Berkeley Generic CMOS Process (Ver. 1.6 14-April-89)
(2 um, N-well, single poly-Si, single metal)"
begin
step ALLOCATE-WAFERS do -
let spec := bare-silicon-wafer (crystal-face: 100,
resistivity: [{18 ohm-cm}, {22 ohm-cm}]
cquality: 'product, dope: 'p):
begin
allocate-lot (names: '(cmos, nwell, nch),
sizes: list (*product-lot-size*, 1, 1),
snapshot: spec);
end; "’
/* Wafers in the cmos lot are product wafers */
lot ('product) := lot('cmos);
with-lot 'nwell do
measure-bulk-resistivity(tag: °initial®);
end;
end;

with-lot 'cmos do
step WELL-FORMATION do
step INIT-OX do
wet-oxidation(time: (11 min}, temperature: (1000 degC},
target-thickness: {1000 angstram}):;
pattern(mask-name: °'NWELL);
end;

Figure 4-5: CMOS-16 version 1.1 process flow code.

73

BLIS WIP 1.1, 13 July 1890 Run Summary
Run Information

l&m 1D INcme Status IProcess Flow Step - |0mnar
1 BT “iz=traneh Ljmazsa
2 sas salicide gate-oxidation |williams
3 basel ine waiting cmos-17 isolation micro

4 xgsaction waiting ashback init-ox mudie

S poly control waiting |poly-calibrate |[deposition klin

6 ldd waiting ldd-coomos pattern micro

? cmos tast starting |cmos—16 hegarty
Halp Create Connect Daefaults Batail HWIP-Log Restrict >

Fig!re 4-6: Run-Summary after creation of new run.

tialized. Once the run is initialized, the process-flow code begins to execute. The first processing

operation allocates wafers:

allocate-lot (names: '(cmos, nwell, nch),
sizes: list(*product-lot-size*, 1, 1),

snapshot :

spec) ;

When this step is reached, the WIP interpreter executes a user-dialog operation, which sends

a request to the UI process that indicates that the run requires attention. The UI process displays a

dialog box toward the top of the screen as shown in Figure 4-7 which indicates the name of the run

BLIS WIP 1.1, 13 July 1990 Run Summary
Dialog request from run “cmos test”: allocate-lot

R
|Run ID |Name Istotus |Process Flow |Step IOumer
i | I | s b ~iz-trareh atharn Uimassa
2 sas starting |[salicide gate-oxidation |williams
3 baseal ine waiting cmos-17 isolation micro
4 xsaection waiting ashback - |init-ox mudie
S poly control waiting |poly-calibrate |deposition klin
4] ldd waiting \dd-ccomos pattern micro
? cmos test starting |cmos—-16 hegarty

Figure 4-7: User-dialog request.

74

BLIS WIP 1.1, 13 July 1990

Run Information

Run Summary

Run IDIName Istatus Process Flow Istep Ouwner

1 stopped rie-trench Fpattern ljmassa

2 starting |[salicide gate-oxidation |williams

3 waiting cmos-17 isolation miero

4 waiting ashback init-ox mudie

S waiting poly-calibrate |deposition klin

6 waiting ldd~-coomos pattern micro

i i e AL A TE-VIRF EFE

Help Create Connect Defaults DBetail WIP-Log

Restrict >

Figure 4-8: Run-Surmmary after dismissing dialog.

.and a brief message describing the request. The dialog box is dismissed by hitting the return key,

and the run information for “cmos test” is updated to reflect the current status of the run (i.e.,

waiting), as shown in Figure 4-8. A run in the state “wait ing” is suspended pending a response

from the user or equipment. The user can connect to the run so that he or she can respond to the

request.

The user-dialog frame invoked by the run is displayed to the user when he or she connects

to the run. In this example, the Allocate-Lot frame shown in Figure 4-9 is displayed. All user-

BLIS HIP 1.1, 13 July 1580

Run ID: ? Run Name:
Status: waiting Process Flow:

lots as indicated in the tablae.

cmos test
cmos-16

Select wafers with the following specification and use them to make
Ba sure to identify each wafer using
the scriber and enter the scribe mark into the table balow.

Lot Information

Allocate Lot

User: hegarty
Step: ALLOCATE-WRFERS

lot name wafer ®|seribe
well 1 WELL-1
cmos 1 CMOS-1
cmos 2 CM0S-2
cmos 3 CM0OS-3
cmos 4 CcMOS-4
cmos S CMOS~-S
amos |6 CcMOS-6

Help Rawork/Scrap HRAcknowladge Specification Comment End

ﬁgure 4.9: Allocate-Lot frame.

75

BLIS HIP 1.1, 13 July 1990 Allocate Lot

Run ID: ? Run Name: cros test User: hegarty
Status: waiting Process Flow: cmos-16 Step: ALLOCATE-HARFERS

Select wafers with the following specification and use them to make
lots as indicated in the table. Be sure to identify each wafer using
the scriber and enter the scribe mark into the table below.

Lot Information

lot name wafer ®|scribe

por

we

cm

cm Wafer Specification

cm

em| Baek dope: p

cm| Resistivity: ({18 ohm-cm}, {22 ohm-cm}}
em| Crystal face: 120

—| Quality: product

Help End : |

Figure 4-10: Wafer-Specification form.

&ialog frames display information about the run in two lines at the top of the frame and they support
the operations listed in Table 4-2. A user-dialog frame may also support additional operations (e.g.,
the Specification operation in the Allocate-Lot frame shown in Figure 4-9).

The Allocate-Lot frame instructs the user to allocate and name (or scribe) wafers. The
system chooses default scribe names by appending the wafer number within a lot to the name of the
lot (e.g., so the second wafer in lot cmos is named CMOS-2). The specification of the wafers to be
allocated may be displayed in a pop-up form by the Specification operation, as shown in
Figure 4-10. Once the user has scribed the wafers and entered the names into the Lot-Informa-
tiontable, thg Acknowledge operation is executed, which completes the user-dialog, passes the
results back to the WIP interpreter, and the run proceeds.

The next user-dialog operation in the process flow occurs in the measure-bulk-re-
sistivity procedure. The code for measure-bulk-resistivity is shown in Figure 4-11.

In the following discussion, the code in Figure 4-11 will be referred to by the line numbers on the

Operation Description

Help T)isplays help screen for the frame.

Rework/Scrap | Force rework or scrap wafers.
Acknowledge | Respond to the dialog.

Comment Attach a comment to the dialog.

End Return without responding to the dialog.

Table 4-2: User-dialog frame operations

76

left-hand side of the figure. Lines 2-6 query the wafer-state model to extract the nominal bulk re-
sistivity specified in the model, and this value is passed to user-dialog. Lines 10-15 calculate
a range attribute that is used to check values entered by the user. The user-dialog procedure
call is: |

results := user-dialog('sonogage, tag: tag, nominal: nominal,
limits: limits, wafer-id: wafer-id(wafer));

The first argument to user-dialog is the name of the frame to display (i.e., Sonogage). The
tag argument is used to tag the WIP log-object created by the user-dialog. The rest of the ar-
guments are passed to the Sonogage frame. Different frames take different arguments. The So-
nogage frame takes three arguments, nominal, 1limits and wafer-id. Nominal specifies
the expected value of the measurements, 1imits specifies the acceptable range of measureﬁ:ents.
and wafer -id specifies the identifier for the wafer on which the measurements are to be per-
formed.

When the user-dialog is executed and the user connects to the run, the Sonogage frame
shown in Figure 4-12 is displayed. Note that the nominal argument is displayed to the user, telling
the user approximately what measurements to expect. The scribe of the wafer with identifier wa-

fer-id is displayed so that the user knows what wafer to use. The frame is described in more de-

1 defflow measure-bulk-resistivity(tag)
2 let wafer := pick-test-wafer();
3 ss := wafer-snapshot (wafer);

4 seg := first(find-segments(ss, material: #m(substrate));

5 mat := pif-attr-val(seg, :material, ss);

6 nominal := material-attr(mat, :resistivity):;

7 limits := nil;

8 results := nil;

9 begin

10 4if interval-p(nominal) then

11 limits := make-interval (interval-min(nominal) * 0.5,

12 interval-max (nominal) * 2.0)

13 ealse)

14 limits := make-interval(nominal * 0.5, nominal * 2.0):

15 end; .

16 results := user-dialog('sonogage, tag: tag, nominal: nominal,

17 limits: limits, wafer-id: wafer-id(wafer));
18 getf(results, :average) := sigfigs(average(getf(results, :measurements)),3);

19 wip-log('sonogage, results);
20 getf(results, :average);
21 end;

Figure 4-11: Measure-bulk-resistivity definition.

77

BLIS WIP 1.1, 13 July 1880 Sonogage

Run ID: ? Run Name: cmos test User: hegarty
Status: waiting Process Flow: cmos-16 Step: ALLOCATE-WAFERS

Use the sonogage to measure the bulk resistivity of wafer WELL-1.

Expected value is ({18 ochm-cm} {22 ohm-cm} 1.
Enter the raesults into the following table.

bulk resistivity

16.S ohm-cm
21.7 ohm—-cm

Help Rewsrk/Serap Rcknowledge Comment End

Figure 4-12: Sonogage frame.

tail in Chapter 5. Figure 4-12 shows the frame as it appears after the user has entered two measured
values.

The UI process performs edit checks on measurements entered by the user. For example,
the only acceptable units for bulk-resistivity are units with the same dimensions as ohm-cm. If a
user enters a value with different dimensions, an error is signalled. Figure 4-13 shows the error mes-
sage that results if the user enters a value with inconsistent dimensions. Values like {300 Mohm-

km} are acceptable, because the system parses SI! unit specifications.

BLIS HIP 1.1, 13 July 1982 Sonogage

R| Supplied dimension of “"ohm" is inconsistent with the
S| field specification of “ohm-cm"

[§41T FETURH]

Expectaed value is [{18 chm-cm} (22 ohm-cm}l.
Enter the results into the following table.

bulk resistiuitg

16.5 ohm-cm
21.7 ohm=cm

Figure 4-13: Inconsistent units error message.

78

BLIS HWIP 1.1, 13 July 1990 Sonogage

Run ID: ? Run Name: cmos test User: hegarty
Status: waiting Process Flow: cmos—-16 Step: ALLOCRTE-HRFERS
Use the
IBLIS HIP 1.1, 13 July 1890 Comment
Expected value
Enter the resu Enter Comments

Measured using standard cross pattern, clockwise from top to
wafer center.

ahim—om

Help End

Figure 4-14: Comment dialog box.

The run management system can also wam the user if an entered value is outside an allow-
able range. Since the code in Figure 4-11 above passes a 1imits attribute to the user-dialog,
values outside the range specified generate a warning message.

The user may also attach comments to any user-dialog interaction. For example, if the user
wants to make a note of the measurement pattern used to measure bulk resistivity, a comment like
the one sﬁown in Figure 4-14 can be added by selecting the Comment operation. This comment is
attached to the log record associated with the frame when the frame is acknowledged. A run typi-
cally consists of more than 100 individual user-dialog operations like the examples above.

Consider again the Run-Summary frame operations listed in Table 4-1. The Restrict
operation is used to set up what runs to display in the Run-Summary frame. For example, this op-
eration can be used to display only runs belonging to a particular owner or running a certain pro-
cess-flow. Figure 4-15 shows the Restrict pop-up dialog displayed by the Restrict
operation. In this case, the user has entered restrictions to display only runs using the cmos-16 pro-
cess flow and owned by hegarty. '

The Detail operation displays the Run-Detail frame, which provides more informa-
tion about run state, and allows the user to modify the run. Figure 4-16 shows more detail for the

run created in the above example. The top two lines of the frame provide basic information about

1 Syst2me International, the International System of Units.
7

BLIS WIP 1.1, 13 July 1990 Run Summary

Run Information

‘ﬂun ID Iﬂam Status |Pr~ocess Flow Step Cuner
1 Itrench caps stopped 'rle-trench pattern ljmassa
gate-oxidation |williams
IEnter the qualifications for each field: isolation micro
. ini t-ox mudie
rata |deposition klin
Ru: (1] l attern micro
ama - Ve by
Status
|Process Flow = 'cmos—-16°'
Step
Ouwner = 'hegarty'|[]

Help Forget End

Figure 4-15: Restrict dialog box.

run status: the run step-path, the process flow, the mask-set, and the lot-size. The Lots table

on the left displays the names of all lots in the run. The system defines additional lots: rework,

scrap, product and *all-wafers*. The scrap and rework lots are discussed in chapter 2.

The product lot specifies the wafers that contain product, and the *all-wafers* lot contains

all active wafers in the run (i.e., all wafers that have not been scrapped). The table on the right dis-

pléys information about the wafers in the lot selected in the first table. In Figure 4-16, the *all-

wafers* lot is selected.

BLIS WIP 1.1, 13 July 19902

Run Name: cmos test
Process Flow: cmos-16

Run ID: ?
Status: waiting

Process-F low version: 1.1 mask-sat: ldd

Step Path: WELL-FORMATICN/INIT-0X

Cuner: hegarty
INIT-0X

Step:

lot-gize: 20

Lots Wafers in lot *ALL-KAFERS*
id lot name id |wafer scribe
2 SCRAP 1 |NCH-1
S NCH 2 WELL-1
8 WELL 3 CMOS-1
1 2 | e 4 |cMOS-2
11 |cMOS S cMOoS-3
12 |PRODUCT 6 CcHOS-4
? CcMOS-S
Halp Halt Resume WIP-Log Permissions Modify End

Run Detail

Figure 4-16: Run-Detail frame.

80

Operation | Description
Help Displays help screen for the frame.
Halt Stop the run and save the current state.
Resume Restart the run after stopping it.
WIP-Log Display the WIP-Log for this run.
Permissions | Display and update run permissions.
Modify Moadify the run lots or the process flow code. ‘
End Return to the run-summary frame.

Table 4-3: Run-Detail frame operations.

The operations available from the Run-Detail frame are listed in Table 4-3. Halt stops
a run and Resume restarts a stopped run, WIP-Log displays the WIP-log for the run as described
in the next section. Permissions lets the run owner specify which users are allowed to connect
to the run using the Run-Permissions frame shown in Figure 4-17. Modify lets the user'

change an active run and is described in section 4.4.

4.3 Browsing Processing History

The WIP system maintains a record of all events that occur during processing in the WIP
log. Events recorded in the log include user-dialogs, equipment operations, and error or warning
messages, as well as log object records explicitly written by a BPFL procedure.

The UI process allows a user to browse the WIP log of a particular run or group of runs.

Selecting the WIP-Log operation from the Run-Detail frame (Figure 4-16) displays the WIP

BLIS WIP 1.1, 13 July 1980 Run Permissions
Run ID: 7 Run Name: cmos test Quner: hegarty
Status: waiting Process Flow: cmos—-16 Step: INIT-0X

Ruthorized Users

williaoms

Help End

Fig_yre 4-17: Run-Permissions frame.

81

BLIS WIP 1.1, 13 July 1990 WIP Log

Run ID: ? Run Name: cmos test Uger: hagarty
Status: waiting Process Flow: cmos-16 Step: INIT-0X
Event Log
IBun Type Step Tag Time
? CREATE-RUN 01/02/91 17:14
? RLLOCATE-LOT RLLOCATE-WAFERS 01/02/91 17:15
I | e LIS ATE ~LIRFERS

Help Detail Restrict Top Bottom MNextPage(*F) PrevPage(*G> >

Figure 4-18: WIP-Log frame.

iog for a run as shown in Figure 4-18. The WIP log for this particular run has three events recorded
init. |

The operations provided in the WIP-1og frame are shown in Table 4-4. The Detail op-
eration shows more information about the selected event. The Rest rict operation can be used to
enter criteria for the display of events (e.g., only Sonogage events could be displayed). Top, Bot -
tom, Next Page and PrevPage are used to move around within the events displayed in the table.

Figure 4-19 shows the Sonogage-Log frame displayed by choosing the Detail opera-
tion after selecting the Sonogage event in Figure 4-18.! The top two lines of the frame display
information about the run. The two lines below that display information about the WIP log record

Operation | Description

Help Displays help screen for the frame. ‘

Detail Display detail for the selected event.

Restrict Enter criteria restricting display of events (e.g., display
only events of a certain typs).

Top Move to top of table.

Bottom Move to bottom of table.

Next Page Move back one page in table.

PrevPage Move forward one page in table.

End Return to the calling frame.

Table 4-4: WIP-Log frame operations.

! An event is selected by positioning the cursor on the corresponding row in the table.
82

BLIS WIP 1.1, 13 July 1990 Sonogage Log

Run ID: ? Run Name: cmos test Usaer: hegarty

Status: waiting Procaess Flow: emos-16 Stap: INIT-OX

Step Path: ALLOCATE-WAFERS Time: 01-feb-1891 17:22:53
Procedure: MEARSURE-BULK-RESISTIVITY Tag: initial

Notes: Comment availabla.
bulk resistivity measurements from wafer WELL-1:

bulk resistivity

1'3'.5 bt
{21.7 ohm-cm}
{38.9 chm-cm}
{18.9 chm—cm}
{16.1 ohm-cm}

Average measurment: (20.6 ohm-cm}

Help Next Previocus Comment Rework/Scrap End

Figure 4-19: Sonogage-Log frame.

i)eing examined: the step-path and time at which the event was recorded, and the procedure which
wrote the event. A tag string may also be attached to an event, which simplifies queries to retrieve
log records. The tag on this eventis “initial,” as seen in the code in Figure 4-5.

The code that wrote this log record (i.e., the measure-bulk-resistivity procedure
in Figure 4-11) calculated the average values of the sonogage measurements and logged the results
with the code in lines 18-19:

getf (results, :average) := sigfigs(average(getf (results, :measurements)),3);
wip-log('sonogage, results);

The first line of code calculates the average value (to three significant figures) of the measure-
ment s attribute of the values returned by the user-dialog operation. This value is then added
to the results as an average attribute, and the results are recorded in the database using the WIP-

log procedure. The average value is displayed in the Sonogage-Log frame below the table of

measurements.
Operation | Description
Help Displays help screen for the frams.
Next Display the next event.
Previous Display the previous event.
Comment Display comment for this event (if any). |
Rework/Scrap | Display rework or scrap initiated at this event (it any).
End Return to the WIP-Log frame.

Table 4-5: Log frame operations.

83

Every log frame supports the operations listed in Table 4-5. Additional operations are
available from some log frames (e.g., the Allocate-Lot -Log frame has a Specification
operation that is used to display the specification for the allocated wafers). Each log frame has a
field which displays special messages about the event shown in the frame. For example, the event
displayed in the frame in Figure 4-19 has a comment recorded with it, and this information is re-

ported to the user.

4.4 Dynamically modifying a run

The WIP system allows runs to be modified while they are executing. A user can add or
remove wafers, import wafers from another run, split a run into multiple runs, and modify the pro-
cess-flow code used by a run. The Modi £y operation in the Run-Detail frame is used to medify
a run. When this operation is executed, a submenu of four modify operations is displayed. The op-
erations are:

1. Modify-Lots,

2. Split-Run,

3. Change-Flow, and

4. Import-Wafers.

Each of these operations is described in detail below.

Wafers can be moved between lots and removed from a run by using the Modify-Lots
frame shown in Figure 4-20. Table 4-6 lists the operations in the Modi fy-Lot s frame. Wafers can
be removed from a lot or moved to another lot. In this example, wafers from the split-low lot
of the baseline run are to be moved to the split-med lot. A new lot can be created by typing

in a 1ot -name that does not currently exist.

Operation | Description
Help Displays help screen for the frame.
Remove Remove the selected watfer from the lot.
Add _Add the selected wafer to the other lot.
New Create new wafers for the run.
Change-Scribe] Type in a new wafer scribe for the selected wafer.
End Retumn to the Run-Detail frame.

Table 4-6: Modify-Lots operations.

84

BLIS WIP 1.1,

Run ID: 3

13 July 1860

Run Name: basel ine

Status: waiting Process Flow: cmos—17

lot-name: split-low

Iwafer scribe

cMos-4
CHOos-?
CMOS-10
CrMos-13
CMOS-16

CIETNENNNN| Direction

Lt d

Halp Remove Rdd New Change-Seribe End

Modify Lots

Owner: micro
Step: isolation

lot-name: split-med

wafer scribe

CMOS-2
CMOS-5
CHos-8
CcMOS-11
CMOS-14
CHMOS-17

Figure 4-20: Modify-Lots frame.

The New operation allocates new wafers for a run. This operation calls the New-Wafers
frame shown in Figure 4-21. As can be seen in Figure 4-21, the user must specify to which lot to
add the wafers, how many wafers to create, and the BPFL code that retumns the snapshot describing
the new wafers. The user specifies a process-flow name and version, and the code to call within that
flow to generate the snapshot. New wafers may also be added to a run with the allocate-lot

procedure, but the ability to add wafers without altering code is useful when test wafers have been

damaged and new test wafers are required.

Run 1D: 3
Status: waiting

BLIS WIP 1.1, 13 July 1680

Run Name: baseline

Modi fy Lots

Owner: micro

lot-name: S

wafer scri

cMos-?

CH0s-10
CMOS-13
CH0S-16

BLIS WIP 1.1, 13 July 1999
lot-nama: JCH

Process-flow nama: cmos-16

Wafer initialization code.

New Wafers

8 of wafers: 1

version: 1.1

bare-si licon-wafer(crystal-face: 180, dope :'p,
resistivity: [{18 ohm-cm}, {22 chm-cm}], quality: °testd

Help List-Pflows Create Forgat

Figure 4-21: New-Wafers frame.

85

BLIS HIP 1.1, 13 July 1980 Import Wafers

Run ID: 1 Run Nama: foo . Cunar: hegarty
Status: waiting Process Flow: cmos-16 Step: INIT-0X

Enter the name of the run and lot you wish to import wafers from.
run-name: basaline

Run lots lot-nama: split-low
Wafers in lot

lot name

scribae

|neh cMOS-1
cHos-4
cHOS-?
CMOS-10
CMOS-13
CMOS-16

Halp Select-lot ALl One End

Figure 4-22: Import-Wafers frame.

Wafers can be moved between runs using the Import-Wafers frame shown in Figure 4-
22. The Select-Lot operation is used to choose the lots in which to place imported wafers. In
this example, the cmos and product lots of the run created in section 4.2 have been selected. The
run-name and lot-name fields are used to select a lot from another run. The wafers in that lot
are displayed in the Wafers-in-1ot field. In this example, the split-1low lot of run base-
line is displayed. The A11 operation is used to import all wafers from 'the selected lot, and the
One operation is used to import the currently selected wafer in the table. A graphical user-interface
would specify these actions by pointing at the wafer with the mouse and moving it to an icon that
represented the lot.

A run may be split into multiple runs with the Split-Run frame shown in Figure 4-23.
This operation is useful for experimenting with different treatments on wafers that have undergone
identical processing prior to the run split. In this example, the basel ine run is being split into
three runs, each of which will receive a different implant dose. When a run is split, the old run is
halted and the new runs are created with the same lot names as the old run but with no wafers in
any of the lots. Wafers must be moved into the new runs from the original run with the Import-
Wafers frame before the new runs are started.

BPFL process flows may be altered while a run is executing. For example, updates to stan-

dard library procedures (e.g., measure-oxide-thickness) nommally should be incorporated

86

BLIS WIP 1.1, 13 July 1990 Run Detail

Run ID: 3 Run Name: baseline Owner: micro
Status: waiting Process Flow: cmos-17 Step: isolation
Process
IBLIS WIP 1.1, 13 July 1580 Split Run
Step Pa ,)
Enter the names of tha new runs and a brief description.
The new runs will use the same process flow as the old run.
id
—— run name comment
=
S basel ine—low Baseline low implant dosa.
8 basal ine-med Baseline medium implant dose.
10 Sz | irse=hiah Eazeling high implant doss,
11 I
12
14
1 1 L 1 J

Help Create Forget

Figure 4-23: Split-Run frame.

into a flow immediately since library code enforces facility policy. On the other hand, some chang-
es to process-flow code may be impossible to use in an existing run because the run is executing a
section of code between changes to the process-flow which could result in run-time errors. The de-
sired response of the run to changes in its process-flow code are specified using the Modify-Flow
frame shown in Figure 4-24. The Process-Flow in this case is version 1.1 of cmos-16. The

action field specifies how the run responds to changes in code. This field can have one of three

values:
BLIS WIP 1.1, 13 July 1969 Modify Flow
Run ID: 7 Run Name: cmos test Cuner: hegarty
Status: waiting Process Flow: cmos-16 Step: INIT-0X

Procass-Flow Name: Hhos-16
Uersion: 1.1
Rection: static

Librories
name version| action
litho 1.3 latest
ucb-defs 1.2 latest
ucb-materials 1.2 latest
ucb-std 1.2 latest

Help Forgat End

Figure 4-24: Modify-Flow frame.

87

BLIS HIP 1.1, 13 July 1990 Versgion Control
Uersion Information

IName Version Type Remark

ashback 1.0 flow 12.25 um gate-length, raesist ash process
cmos—16 1.8 flow basalina cmos process

wade Lhezzhedd implard splith ophional

cmos=17 1.0 flow new baseline cmos process

\dd-cocmos 1.0 flow contact over oxide cmos, with ldd

Litho 1.0 {ibrary standard resist litho routines

litho 1.1 library added hunt resist support.

litho 1.2 library support for second wafer track.

litho 1.3 library support for ashback 9.25 um gate.
|potly-calibrate |1.0 flow recipe calibration for generator
rie-tranch 1.0 flow reactive ion etch trench formation
salicide 1.0 flow self aligned silicided gate

ucb-dafs 1.0 library facility dafinitions

ucb-dafs 1.1 library added simple secs support.

Help Restrict Detail Co Edit Ci Parse New View >

Figure 4-25: Version-Control frame.

1. Static - The process flow used by the run is never updated,
2. Latest - The process flow used by the run is always updated to the latest ver-
sion available, or -
3. Query - Whenever a new version of a process flow is created, the run owner
is asked whether or not to use the new version.
In this example, the action field has the value ‘static.’ If later versions of cmos-16 become
available while the run is executing, they will not be used.
BPFL process flows can use standard libraries of procedures using the requires decla-
ration. In Figure 4-24, four libraries used by the “cmos test” run are shown in the Libraries
table. The default action for libraries is 1atest. The next section describes how flows and libraries

are created and updated.

4.5 Version control

BPFL supports flows, which contain the top-level code for processing wafers (e.g., cmos -
16), and libraries, which contain standard procedures shared between flows (e.g., measure-
bulk-resistivity). The term module is used to refer to both flows and libraries. BPFL code
may be created and edited using the Version-Control frame shown in Figure 4-25. The oper-
ations provided in the frame are described in Table 4-7. The WIP system uses the Revision Control

System (RCS) to organize and maintain different version of BPFL code [51]. Whenever a user
88

[T bpfl process flow
cmos~-16.b,v $

$Log:
Revision 1.1 91/01/13 @8 31:07 hegarty
added implant-split operatiens

Ravision 1.0 90/10/26 14:40:42 hegarty
Initial revision

/*
require(cmos-lib, version: latest);

dafflow cmos-16<implant-split: =)
“U.C. Barkalay Generic CMOS Process (Ver. 1.6 14-fpril-89)
<2 um, N-well, single poly-Si, single matald”
begin
step ALLOCATE-WARFERS do
let spec := bare-silicon-wafer{crystal-face: 100,
resistivity: ({18 ohn-cm} {22 ohm—-cm})
quality: ‘product, dope: °‘pJ;
begin
allocate-lot(names: ‘(cros, nwall, nch),
sizes: list(*product-lot-size*, 1, 1),
-—==Emass: cmos-1H.b (Cammnr LS b= Tafmmm—— m - m i e e

package is “BPFL"

Figure 4-26: Editing a process flow.

'wishes to modify a module, he or she may check out a module.! Only one person may have a par-
ticular module checked out at any given time. The user can edit the module, run it, and debug it
until satisfied that it is ready for use by others. The flow is then checked in and assigned a version
number. RCS locks flows to prevent simultaneous modification of the same version, and stores the
code modification tree in an efficient way.

As an example of the use of the version control system, if the user checks out version 1.1
of cmos-16 and selects the Edit operation, the user’s default editor (e.g., emacs) is invoked on
the flow as shown in Figure 4-26. The top few lines of the file list RCS information maintained

Operation Description
Help Displays help screen for the frame.
Restrict Enter criteria restricting display.

Detail Display further detail about the selected flow or ot library.
Co Check out a flow or library.

Edit Edit BPFL code

Ci Check in a flow or library.

Parse Parse BPFL code and check syntax.

New Create a new flow or library.

View Examine code without making changes.
Update-Runs | Update code used by runs.

End Return to the run-summary frame.

Table 4-7: Version-Control operations.

1 Each flow has a set of users authorized to run and modify it.

89

BLIS WIP 1.1, 13 July 1990 Update Runs

Enter a module name and version. All runs using the module will be displayed
in the table below.

Module: Name: litho

Varsion: [}
Runs
Id Name Module verslonlrlodule action
1 trench caps 1.3 lataest
2 sas 1.3 latest
3 basel ine 1.3 latest
4 xsaction 1.2 query
S poly control 1.3 latest
|16 ldd 1.1
? cmos test 1.3 latest

Help Run-Betail Force-Update End

Figure 4-27: Update-Runs frame.

about the flow. The require statement indicates that this process-flow will use the latest version
of the the ucb-~std library. The definition of the cmos - 16 process flow appears in the bottom half
of the screen. At this point, the user can modify the code and check it using the Parse operation.
When the user is finished modifying the code, it can be checked in.
 Users can set up the actions for runs using the Modi fy-F1ow frame shown in Figure 4-
24. A lab manager may wish to force all runs to be updated to use a new version of a module. This
is accomplished using the Update-Runs operation. When this operation is selected, the Up-
-date-Runs frame in Figure 4-27 is displayed. The user types in a module name and the runs using
that module are displayed in the Runs table. The user may also type in a module version ifitis
desired to restrict updates to runs using only a particular version of the module. The Run-Detail
operation can be used to display more information about a selected run. Force-Update can be
used to force the selected run to use a new version of the module. Only a user with WIP root per-

mission is able to execute Force-Update on runs owned by other users.

4.6 Summary

The BPFL WIP system is designed to permit the use of BPFL process flows in a fabrication
environment. It is composed of many processes that communicate with users, equipment, and the
CIM database. Runs may be started, executed and modified by a user with a forms-based user-in-

terface process. The WIP system maintains a log of all events that occur while processing a run,
9%

including user-dialogs and error or warning messages. The system uses RCS to organize and main-

tain different versions of BPFL code.

91

[This page intentionally blank]

92

Chapter 5
Implementation

This chapter describes the implementation of the WIP system. First, the process architec-
ture and interprocess communication channels between the processes are described. Second, the
WIP database design is presented. Next, the operation of the User-Interface process is explained,
and the method of defining user frames is described. Fourth, the WIP interpreter process is dis-
cussed, including the methods used to execute BPFL code and save run state in the database. Final-

ly, the run management system is described and the way runs are modified is discussed.

5.1 Processes and Interprocess Communication
The WIP system is composed of three types of processes:
1. the WIP interpreter process,
2.- the User-Interface process (UI process), and
'3. the Equipment Interface process (EI process).
These processes are shown in Figure 5-1. This section describes each process and the communica-

tion between them.

wiP
Interpreter

Equipment
Interface

Furnace

Figure 5-1: WIP system architecture.

93

The WIP interpreter process executes runs. A run corresponds to an execution of a BPFL
process flow. Since the WIP interpreter process is a large Common Lisp program, the process can
execute several runs concurrently. In other words, the WIP interpreter process is a server process.
In order to accomplish this, the WIP interpreter process maintains data structures that describe the
run state (e.g., the next statement to execute, the names and values of local variables created by the
program, and data retrieved from the database) for each run.

The WIP interpreter process uses subsidiary procesées to implement constraints. For exam-
ple, there is a timing constraint server that is responsible for alerting the WIP interpreter process
when a timing constraint expires. In addition, the WIP interpreter process coordinates the activities
of the EI and UI processes.

The WIP interpreter process maintains the state of runs in the database to provide fault-tol-
erance. Fault tolerance is necessary in a WIP system because semiconductor process flows take
weeks or months to exeéute. and it is likely that a computer system failure will occur before a run
is cbmplete. Consequently, all state information about a process must be saved in non-volatile stor-
age so that a run can be restarted from its last saved position when the system crashes. The WIP
interpreter saves the run-state data structures to the database. State is saved whenever a run is
stopped (e.g., while waiting for user input).

The UI process is the user-interface to runs. The UI process reads information about the
state of a run from the database and displays it to the user. Each active user has a Ul process, and
the user can respond to dialogs, examine run state and connect to different runs (i.e., the interface
shown in chapter 4). The Ul process also writes events (e.g., user-dialog events) to the WIP-log in
the database and is responsible for enforcing access control to runs. For example, it must prevent
multiple users from simultaneously connecting to the same run, and it must prevent users from con-
necting to a run that they are not authorized to manipulate.

The EI process controls equipment and writes equipment status information into the data-
base. The EI process is a Common Lisp implementation of the SECS! server developed by Wood

and is described in more detail elsewhere [47].

1 Semiconductor Equipment Manufacturers Institute (SEMI) Equipment Communications Standard
protocol (SECS).

94

The processes communicate either through interprocess communication channels (IPC) or
through the shared CIM database. Intemnet-domain connections (TCP/IP 1y are used for real-time
notification (e.g., a timing constraint expires). Non real-time communication is implemented by the
database. For example, the sequence of operations leading to the display of a dialog-box to the user
as aresult of a user -dialog operation is as follows. When the WIP interpreter process interprets
the user-dialog call, it writes a description of the user-dialog to the database. It then sends a
TCP/IP message to the appropriate UI process for the run. The UI process receives the TCP/IP mes-
sage and displays the specified dialog box. When the user instructs the Ul process to connect to the
run, the information stored in the database by the WIP interpreter process is read and used to display
the user-dialog frame. When the user has filled in the user-dialog frame and is ready to continue the
run, the Ul process writes a WIP-log record to the database and sends a TCP/IP message to the WIP
interpreter process to signal that the run is ready to proceed. The WIP interpreter process then re-

sumes execution of the process flow for the run.

§2 WIP Database
This section describes the data in the CIM database used by the WIP system. Figure 5-2
shows the Entity-Relationship (ER) diagram for the WIP database using Reiner’s notation [52). The
entities described in the WIP database are:
1. Run- The state of a run.
2. Equipment — Processing equipment and utilities.
3. User — A person who uses the fab (e.g., equipment operators, administrators
and technicians).
Wafer — A semiconductor wafer.
Snapshot — A PIF representation of wafer state.
Lot - A group of wafers.
Mask — A stepper photomask.

® N S Lo

Mask set — A collection of masks for a circuit, one for each masking operation
in a process flow.

9. Flow — A top level BPFL process flow.

! Transmission Control Protocol / Internet Protocol.

95

uses contains

:

mask set

'mask

contains

contains

processes

a)
A\

wafer |

pif-snapshot

—<>—9—‘ lo ‘
used by

owned by

| user

¢

U

equipment

%

waiting for

user-dialog

®

g

displays

executes requires
-6—0— process-flow —6—‘—9— module
writes displays '
—0—9— wip-log —6—0— WIP-log frame
®
has current frame e
Legend
has root frame entity
-9—<>— evaluation frame
weak entity
contains frame-id
<} () identifier
Q descriptor
contains
——0—9— material —O— existence dependency
-O— * one-to-one relationship
contains
_0_9_ layer -0— one-to-many relationship
-’- many-mo-rﬁany relationship

user-dialog frame|

Figure 5-2: WIP database entity-relationship diagram.

96

10. Library — A library of BPFL procedures.

11. WIP-log — A WIP-log record.

12. WIP-log frame — An ABF frame used to display a WIP-log record.

13. Evaluation frame — A frame used to interpret BPFL code.

14. Material — A material description.

15. Layer — A PIF layer description.

16. User-dialog — A request from a run for input from a user.

17. User-dialog frame — A frame displayed by a run waiting for input.

The basic ER model consists of three classes of object.é: entities, relationships and attributes. Enti-
ties are the principal data objects about which information is stored: for example, a process-
flow is an entity, as shown in Figure 5-2. A particular occurrence of an entity is called an entity
instance. For example, a particular process flow such as cmos-16 is an instance of the process-
f1low entity.

Relationships represent associations among one or more entities. For example, a run is as-
sociated with the process-f1low it executes. Relationships are described in terms of connectivi-
ty, role and existence. 1 The most common meaning associated with relationships is indicated by the
connectivity between entities: one-to-one, one-to-many, and many-to-many. For example, a run is
associated with one process flow but any process flow may be associated with many runs, so the
connectivity between the run and process-£f1low entities is many-to-one.

A role is the function an entity plays in a relationship. For example, a run executes a process
flow, so the role “executes” defines the function of the run entity in the relationship between run
and process-£f1low. Roles are shown above relationships in Figure 5-2. The role describes the
function that the entity on the right of the relationship plays with respect to the entity on the left of
the relationship.

The existence of some entities depends on the existence of another entity. This is called ex-
istence. Existence of an entity in a relationship is defined as either mandatory or optional. If an in-
stance of either the “one” or “many” side entity must exist for the entity to be included in the

relationship, then it is mandatory. For example, the entity run may or may not be waiting for a

1 Additional relau’onship meanings are defined by Reiner [52] but are not used here.
97

user-dialog, thus making the entity user-dialog in the “waiting for” relationship between
run and user-dialog optional. However, if a user-dialog entity instance exists, a run in-
stance must be waiting for that user-dialog, so the run entity is not optional in the relationship.

Anributes are characteristics of entities that provide descriptive detail about them. For ex-
ample, a run entity has a name attribute. There are two types of attributes: identifiers and descrip-
tors. An identifier (or key) uniquely determines an instance of an entity. A descriptor is used to
specify a non-unique characteristic of a particular entity instance. For example, run-idis an iden-
tifier for a run (since every run has a unique id) but name is a descriptor. In the prototype imple-
mentation, identifiers are integers. .

Entities have internal identifiers that uniquely determine the existence of entity instances,
but weak entities derive their identity from the identity instances of one or more “parent” instances.
For example, an evaluation-frame has no identifier, but derives its identity from the run that
contains it.

The database used in the prototype WIP interpreter process is INGRES [53]. The SLING
package written by Sedayao and Chamness [54] is the application program interface (API) to the da-
tabase system. SLING is an SQL API for Common Lisp. Because there is no way to directly write
CLOS objects to INGRES, database tables are defined for each object type and CLOS methods are
used to write objects to and read objects from the database. Appendix D contains the database table
definitions for the entities shown in Figure 5-2. The WIP-1log-frame and user-dialog-
frame entities are created and maintained by ABF [50] and their definitions do not appear in the
Appendix.

5.3 The User-Interface Process

The architecture of the UI process is shown in Figure 5-3. Each box represents a frame
| within the process. The first line of text in a box is the frame name (e.g., Run-Summary) and the
second line lists the main operations available from the frame (e.g, Create, Connect, . . .,
Version). The frames listed in Figure 5-3 are described in more detail in chapter 4.

The User-dialog and WIP-1og frames are generic frame types. In other words, there
are many frames that are User-dialog or WIP-1og frames. A user-dialog called from

BPFL specifies the name of the User-dialog frame to call. For example, the measure-bulk-

98

Run-Summary _
Create Connect Defaults Detail WIP-Log Restrict Version

| |_‘
User-Dialog Version-Control
Rework/Scrap Acknowledge Comment Restrict Detail Co Edit Ci Parse New View
Create-Run Run-Detail
List-Pflows Start-Run Halt Resume Modify Permissions WIP-Log
— 1 | I
Run-Permissions WIP-Log-Table

Detail Restrict Top Bottom

WiP-log
Rework/Scrap Acknowledge Comment

Modify-Lots Split- Run Modify-Flow | Import-Wafers
Remove Add Change-Scribe New-Wafers Create Forget Create Forget Select-Lot All One

Figure 5-3: UI process application structure.

fesistivity procedure shown in Figure 4-11 calls user-dialog to display the Sonogage
frame. The Sonogage frame is shown in Figure 4-12. The Sonogage-Log frame shown in
Figure 4-19 is a WIP-1og frame which displays the log entry written by the WIP-1og procedure
call at the end of the measure-bulk-resistivity procedure. User-dialogand WIP-1log
frames are described in more detail later in this section.

The main data structures used. by the UI process are the run, user_dialog and
WIP_logtables in the database. The run table contains records that indicate the status of all active
runs. A simplified table definition for the run table and some examples are shown in Table 5-1.1

The notation used in the table is as follows. The first cell in each column has two lines of text. The

run_id status step step_path log_id lock
(integer) | (enumerated) | (string) (string) (integer) | (enumerated)

2 running INIT-OX | START/INIT-OX 2 free

5 waiting PATTERN | NWELL/PATTERN 12 busy

Table 5-1: Run table definition and examples.

1 The run table has many fields as shown in Appendix D.
9

first line is the column name, and the second line is the column type. The remaining rows give ex-
amples of values stored in the table. For example, the name of the first field is run_id and it con-
tains an integer. The run_id field is an integer that uniquely identifies a run. The status field
contains the current run status (e.g., running, waiting, £inished, etc.). The step field con-
tains the name of the current step and the st ep_path contains the current step-path. Both of these
fields are displayed to the user in the Run-Detail frame. The log_id field identifies the se-
quence number of the current WIP-log entry. It is incremented each time a new log record is ap-
pended to the WIP-log. The lock field is used to prevent simultaneous access to a run by multiple
UIPs. Lock is an enumerated field with two allowable values: free and busy. The deadiock pre-
vention mechanism of the database management system is used to ensure mutual exclusion.

The user_dialog table definition is shown in Table 5-2. The run_id and id fields
uniquely identify each entry in the table. The name string contains the name of the user-dialog
frame. The st ep_path contains the run step-path at the time the dialog was saved to the database.
The procedure field contains the name of the BPFL procedure that called user-dialog. The
tag field contains the tag string supplied in the BPFL code, if any. These fields are displayed in
the user-dialog frame. The arguments field contains the arguments for the frame. For exam-
ple, the measure-bulk-resistivity procedure passes the arguments nominal, limits,
and wafer-idto user-dialog. These arguments are stored in the arguments field in the di -
alog table. 1

When the WIP interpreter process evaluates a user-dialog call, it writes the details

about the dialog into the user_dialog table as described above. The example in Table 5-2 illus-

run_id id name step_path proecedure
| (integer) (integer) (string) (string) (string)
2 2 Sonogage START measure-bulk-resistivity
tag arguments
(string) (string)
initial | :wafer-id 2 :nominal [({18 ohm-cm} (22 ohm-cm}] ...

Table §-2: User_dialog table definition and example.

1'The user-dialog call in Figure 4-11 also has a tag argument, which is extracted and passed in
the tag field of the dialog table.)

100

BLIS WIP 1.1, 13 July 1990 Senogage

Run ID: ? Run Name: cmos test User: hegarty
Status: waiting Process Flow: cmos—16 Step: ALLOCATE-KAFERS -

Use the soncgage to measure the bulk resistivity of wafer WELL-1.

Expected value is [{18 ohm-ca} {22 ohm-cm}).
Enter the results into the following table.

bulk resistivity

16.5 ohm—cm
21.7 ohm—cm

Help Rework/Scrap Rcknowledge Comment End

Figure S-4: Sonogage frame.

trates what might be written for the user-dialog call in measure-bulk-resistivity
when called from the process flow in Figure 4-5. When a user connects to a run, the dialog table
is queried to select the current user-dialog for the run. The name field identifies the appropriate
frame to display. The values in the procedure and tag fields are placed into the appropriate
fields on the frame. The arguments field is parsed by the UI process so that the frame code can
access arguments by name. Finally, the frame in the name field is called by the Ul process.

User-dialog frames are written in INGRES Applications By Forms (ABF). Further detail
about ABF may be found in the INGRES ABF/4GL Reference Manual [50]. A frame consists of tw6
components: a form that displays information to the user and in which the user enters information,
and a menu listing the available operations. All user-dialog frames support at least the following
operations: Help, Rework/Scrap, Acknowledge, and Comment. A frame is defined by spec-
ifying the form layout using the forms editor and the operation is coded in ABF 4GL.! The So-
nogage frame is shown in Figure 5-4. The ABF code for the operations in the frame is shown in
Figure 5-5. The code is composed of a sequence of blocks that specify frame initialization and code
for each operation. In the following discussion, the code in Figure 5-5 will be referred to by the line
numbers on the left-hand side of the figure.

1 4GL is shorthand for “Fourth Generation Language.”
101

1/*
2 * Sonogage frame operation code
3%/

4 /* Frame initialization */

5 initialize (changed = integer, temp=text(80), lowr = text(20), highr = text(20),
6 x = integer, measurements.filled = integer, units = text(20)) = {

7 units := .'‘ohm-cm’';

8 wafer_scribe := wafer_scribe(arg_pointer('wafer-id'));

9 /* Determines nominal value for measurements */

10 4if arg_supplied('nominal') != 0 then

11 nominal := make_string('%s.',arg_value('nominal'));
12 else

13 get_forms field ' ' (invisible(nominal)=1);

14 endif;

15 /* Establish limits, if any */
16 if arg_supplied('limits‘') != O then

17 X := arg_pointer('limits');

18 lowr := object_printrep(interval_left (x)):;
19 highr := object_printrep(interval_right(x));
20 else

21 lowr := null;

22 highr := null;

23 endif;

24 /* Prepare the measurements table for the user to enter values */
25 inittable measurements f£ill;

26 };

27 /* Help operation definition */

28 'Help' = {

29 help_forms(subject = 'Sonogage frame', file = ‘sonogage.help’);
30);

31 /* Rework/Scrap operation definition */

32 'Rework/Scrap' = {(

33 callproc handle_rework_scrap;

34 };

35 /* Acknowledge operation definition */

36 'Acknowledge’ (activate = 1) = {

37 callproc start_log;

38 callproc create_log_attr('measurements’);

39 unloadtable measurements

40 {

41 /* append_attr_value: first arg is name of argument, second is
42 value to append, third is the type of value */

43 callproc append_attr_value('measurements',measurements.value,'{}');
4 };

45 callproc finish_log:

46 return;

47 };

48 /* Comment operation definition */
49 'Comment' (activate = 1) = {
50 callframe comment;

511});

52 /* End operation definition */
53 'End’' = {

54 return;

55 };

Figure 5-5: Sonogage frame function outline.

102

The initialize block initializes the values in the form. Line 7 assigns the string *ohm-
cm® to the units variable . ! Line 8 is used to display the name of the wafer (e.g., WELL-1) as
shown in Figure 5-4. The arg_value function retumns the value of the specified argument, in this
case wafer-id. The wafer_scribe function takes a wafer-id and returns the scribe for that wa-
fer. Lines 10-14 are used to fill in the nominal field on the form to indicate to the user the expect-
ed value of the measurement. If a nominal argument is supplied, the arg_supplied function
retums a non-zero value, and the argument value is used to establish the value of the nominal
field. If no nominal argument is supplied, the set_£orms statement is used to make the nomi -
nal field invisible.

The if statement in line 16 is used to determine if a 1imits argument is supplied. The
limits argument is an interval argument that specifies upper and lower limits for the values en-
tered by the user. These upper and lower limits are stored in the 1lowr and highr variables respec-
tively. If the frame has a 1imits argument, the code in lines 17—19 is used to store the limits in
the variables. Otherwise, tﬁese variables are given nﬁll values in lines 21-22 to indicate that range
checking is disabled. Line 25 prepares the measurements table field for the user to enter values.
Table fields are ABF fields that display several rows and columns of data at the same time. The
Sonogage frame has one table field, called measurements, into which the user enters measure-
ments. It appears in Figure 54 as the box in the middle of the frame. It has a single column called
value, which may be accessed by the expression measurements.value.

The code for each operation is specified in an activation block. Activations can be of sev-
eral types. For example, lines 28—30 define an operation named Help which executes the help_-
forms function if the Help menu item is selected. Selecting a menu item is an example of a menu
activation. Similarly, the Rework/Scrap operation defined in lines 32—34 calls the han-
dle_rework_scrap function that puts up a frame suitable for reworking or scrapping wafers.

Lines 3647 define the Acknowledge operation. Acknowledge wri;es a WIP-log
record for this user-dialog. The start_1log function is used to prepare the UI process to write out
values to the log. Line 38 declares that an argument named measurements is to be written to the

log. The unloadtable statement in lines 39—44 loops through all of the rows in the measurements

1 ABF uses single quotes (') to delimit strings. For consistency with usage elsewhere in this disser-
tation, double quotes (*) are used within the body of the text.

103

table field (i.e., where the user types the measured values) and adds the entered measurements to
the measurements argument. The £inish_1log function saves the log to the database and sends
amessage to the WIP interpreter process that the run is ready to proceed. The return statement
is an ABF operation which returns the UI process to the frame that called the Sonogage frame.

By default, all arguments supplied to the user-dialog are written to the log. Arguments can
be removed or their values may be changed by the operation code if desired. A list of ABF functions
supplied for writing user-dialog frames is given in Appendix C. .

The WIP-log frame that corresponds to the User-dialog frame (i.e., Sonogage-
Log) is similar in many ways to the Sonogage frame. Wherever possible, ABF operation code and
forms are shared between frames.

Logs are stored in the WIP_1og table shown in Table 5-3. This table is similar to the
user_dialog table. The only difference is the addition of two fields: user_id and time. Use-
r__id identifies the person who entered the log record and time ‘identiﬁes the date and time at
which the log record was written. The a:;gﬁments field contains field names and values so that
CLOS objects for the WIP log objects illustrated in Figure 3-5 can be created.

The Ul process can perform validity checks on values entered by a user. Measurements en-
tered into the Sonogage frame are checked by the code in Figure 5-6. This code defines an ABF
field activation that is exécuted whenever the type-in cursor is moved out of the value column in
the measurements table field. The inquire_£orms statement in line 3 is used to find out if the
user has changed the value in the current row of the measurements table. If not, the resume next
operation returns control to the user after moving the type-in cursor to the next field in the form. If
the value has been changed, the code in lines 9-16 is used to call the check_format function to

parse and check the entered value.

run_id id user_id name step_path procedure
| (Integer) | (integer) | (integer) | (string) (string) : {string)
2 2 42 Sonogage START measure-bulk-resistivity
tag time arguments
(string) (string)
initiall 2/1/91 9:13| :wafer-id 2 :measurements ...

Table 5-3: WIP_log table definition and example.

104

1 field measurements.value =

2 {

3 inquire forms row sonogage measurements (changed = change(value));
4 /* changed will be zero if the field has not been edited */

5 4f changed = 0 then

6 resums next;

7 else

8 /* The value in the field has been changed */

9 if lowr is null then

10 /* Recall that initialize block set lowr to null if no limit arg was passed
11 No limits argument passed - check dimensions but not range */
12 X := check_format (measurements.value, ' {float}',units);

13 else

14 /* Limits argument supplied - check diemnsions and range */

15 X := check_format (measurements.value, ' {float}', lowr, highr);

16 endif;

17 if x = 0 then

18 resume next;

19 else

20 resume;

21 endif;

22 endif;

23}

F@m 5-6: Measurements table activation code.

The first argument to check_format is the value to be parsed. The second argument is a
format string that indicates what type of value is expected. Examples include * [integer] *,
“complex”,and " [{float}] " which specify an integer range value (e.g., (1, 10]), acom-
plex number (e.g., (1, 0.5)1!)and a range value of units with floating point type (e.g., [{1.2
um}, {1.4 um}]), respectively. Depending on the format string, check_format may take ad-
ditional arguments. For example, if the value to be checked is a unit, the third argument is a striﬂg
that contains either a dimension (e.g., *ohm-cm*) or a unit value (e.g., "{12.0 ohm-cm}*). If
the third argument is a dimension, check_format checks the dimensionality of its second argu-
ment. If the third argument is a unit value, check_format takes the third argument as a lower
limit of the acceptable value, and takes a fourth argument that is an upper limit.

In the check_format call in line 12 the second argument is * { £1oat },* which speci-
fies a unit with a floating-point number. The third argument is the string *ohm-cm* stored in the
units variable in the initialize block. This function call parses the input value and accepts
a unit value with a floating point number and a unit designator dimensionally equivalent to ohm-

cm.? Standard numerical contagion rules are applied to numbers. For example, if £1oat is speci-

1 The complex number 6+ o is represented by (6,).

105

fied, both integer and floating-point values are acceptable, but complex values are not. The user
need not type the square brackets for intervals or the set brackets for units as they are automatically
inserted in the correct position in the parsed string. The values *{18.2 ohm-cm}", *{300 Mo-
hm*fm}" and "12 nohm-parsec* are all acceptable. Examples of unacceptable values are
“18.2° (1.2, 2.3],"and *{ (12, -4) ohm}". The check_format call inline 15 has a
similar function except that the entered value is also range-checked.

If the value entered by the user meets the required criteria, check_format returns zero.
If the entered value is unacceptable, an appropriate error message is displayed to the user (e.g.,
Figure 4-13) and a negative value is returned. The code in line 18 moves the cursor on to the next
field if no error was encountered while parsing the field. Otherwise, the code in line 20 leaves the

cursor on the field, giving the user an opportunity to correct the problem.

5.4 Translating BPFL to Lisp

This section describes the method by which the WIP interpreter process translates BPFL
code to Lisp.

Recall that early versions of BPFL used a Lisp syntax which the intended users (i.e., pro-
cess engineers) found unsatisfactory. Since the current version of BPFL is block-structured, it must
be translated to Lisp code for t;se with the WIP interpreter process. For example, the Lisp code for
the measure-bulk-resistivity procedure in Figure 5-7 is shown in Figure 5-8. By compar-
ing the code in Figure 5-7 with the code in Figure 5-8 it is possible to see how the translation works.

The defflow construct:

dafflow measure-bulk-resistivity (...)
let ...
begin
end;
is translated into the Lisp expression
. (defflow measure-bulk-resistivity (...) (let* ...))
The first procedure call in the measure-bulk-resistivity procedure is
pick-test-wafer() ;

which is translated into

2 Any value with the same dimensions is acceptable (e.g., “ohm-km®, * (V*m~2) / (A*m) *, etc.)
106

defflow measure-bulk-resistivity (tag)
let wafer := pick-test-wafer():;
ss := wafer-snapshot (wafer) ;
seg := first(find-segments(ss, material: #m(substrate}):
mat := pif-attr-val(seg, :material, ss);
nominal := material-attr(mat, :resistivity);
limits := nil;
results := nil;
begin
if interval-p(nominal) then
limits := make-interval (interval-min(nominal) * 0.5,
interval-max(nominal) * 2.0)
alse
limits := make-interval (nominal * 0.5, nominal * 2.0);
end;
results := user-dialog('sonogage, tag: tag, nominal: nominal,
limits: limits, wafer-id: wafer-id(wafer)):
getf (results, :average) := sigfigs(average(getf (results, :measurements)),3);
wip-log ('sonogage, results);
getf (results, :average) ;
end;

Figure 5-7: Measure-bulk-resistivity definition.

(pick-test-wafer);
In general, Lisp procedure calls differ from block-structured procedure calls as follows. The block-
structured call func (b, ¢, d) is equivalent to the Lisp call (func b ¢ d). The procedure ar-
gument list in the block-structured code is very similar to the argument list in the Lisp code, the
only difference being that the commas between the arguments in the block-structured code have
been replaced with spaces in the Lisp code. This change is generally true of all lists: block-struc-

(defflow measure-bulk-resistivity (&key tag)
(let* ((wafer (pick-test-wafer))

(ss (wafer-snapshot wafer))
(seg (first (find-segments ss :material #m(substrate))))
(mat (pif-attr-val seg :material ss))
(nominal (material-attr mat :resistivity))
(limits nil)
(result nil))

(if (interval-p nominal)
(setf limits (make-interval (* (interval-min nominal) 0.5)
(* (interval-max nominal) 2.0)))
(setf limits (make-interval (* nominal 0.5) (* nominal 2.0))))
(setf results (user-dialog 'sonogage
:nominal nominal :limits limits :tag tag
:wafer-scribe (wafer-scribe wafer)))
(setf (getf results :average)
(sigfigs (average (getf results :measurements)) 3))
(wip-log 'sonogage results)
(getf results :average)
)

Figure 5-8: BPFL Lisp representation for measure-bulk-resistivity.

107

tured lists are comma delimited, whereas Lisp lists are space delimited.
All operations in Lisp are expressed as functions, so operators (e.g., assignment (: =), ad-
dition (+), etc.) are replaced by function calls.! For example, the block-structured statement
a:=b +c;
is translated to
(setf a (+ b c)))
The semicolons that delimit statements in the block-structured code are not required in Lisp.
The only other major difference between the block-structured code in Figure 5-7 and the
Lisp code in Figure 5-8 is that keywords are used differently. Keywords have two uses in BPFL.
First, they specify argument names (e.g., the measure-bulk-resistivity procedure has an
argument named tag). A measure-bulk-resistivity procedure call in the block-structured
code takes the form
measure-bulk-resistivity(tag: "initial®);
The corresponding Lisp function call is
(measure-bulk-resisitivity :tag *initial")
Argument names in block-structured code have the colon placed after the name, but in Lisp the co-
lon is placed before the name.
The other use of keywords in BPFL is as attribute names. For example, the procedure call
material-attr(mat, :resistivity);
uses the keyword : resistivity to access the resistivity attribute of the material object
stored in the variable mat. The colon is placed in front of the name in the block-structured code to

avoid confusion between the two uses of keywords in Lisp.

5.5 Executing BPFL code
This section describes the method by which the WIP interpreter process executes BPFL
code. The WIP interpreter process is based on the core BPFL interpreter written by Williams [37].

The core BPFL interpreter evaluates Lisp expressions and in so doing executes BPFL code.

! By convention, the Common Lisp term for procedure is function. In this dissertation, the term pro-
cedure is always used to describe BPFL code.

108

Siot name — Description — Example
action Pointer to the next function to call to #<function go-funcall>
continue evaluation.
code BPFL lisp code being evaluated. (measure-bulk-resisitivity
:tag *initial®)
cp Index into code indicating current (1)
position of evaluation.
returned-values | Slot to hold values returned by {22.3 ohm-cm}
evaluation when complete.
parent Pointer to next frame in the stack. #§<eval-frame :id 25>
id Integer uniquely identifying the frame. | 26

Table 5-4: Simplified evaluation frame definition and example.

The evaluation of Lisp expressions yields a value. Sometimes the evaluation result is the
same as the expression (e.g., the constant 5 evaluates to 5). In Lisp, this is true of numbers, strings
(e.g., "abc") and keywords. Lisp keywords are symbols whose first character is a colon (e.g.,
:resistivity). Symbols are considered to be the names of variables and evaluate to the values
stored in the variable. Examples of symbols are tag and thickness. Lists are treated as function
calls and they evaluate to whatever the function call returns. Examples of lists are (setf x 5)
and (a b (c 4)).

Lisp code is evaluated as follows. Each time the core interpreter evaluates an expression,
it creates a CLOS object called a frame to control the evaluation.! The frame is discarded when the
evaluation of the expression is complete. For example, when the core interpreter evaluates the pro-
cedure call

(measure-bulk-resisitivity :tag ®“initial®)
a frame is created to évaluate the code. When the code within the procedure is evaluated, other
frames are created. The arguments to a procedure call (e.g., :tag "initial®) must also be evaluat-
ed, which creates additional frames. Consequently, the interpreter maintains a stack of frames. The
top of the stack is the frame evaluating the current expression. This frame is called the current
frame.

A simplified definition of a frame is shown in Table 5-4. Each frame is a CLOS objeét that
has named slots, each of which hold a value. The main slots for controlling the evaluation of BPFL

1 Evaluation frames should not be confused with the INGRES ABF frames used by the UI process.
Evaluation frames are the same as stack frames or activation records in a conventional programming
language. ABF frames denote an interface abstraction.

109

root-frame \ 4
eval-frame

funcall-frame
lex-frame dyn-frame exceptign-frame
rework-frame
- constraint-frame
decls-frame catch-frame
let-frame

lambda-frame

Figure 5-9: Evaluation frame class hierarchy.

;:ode are: action, code, cp, returned-values and parent. The act ion slot contains a
pointer to a function that is to be called to continue evaluation (e.g., #<function go-fun-
call>).! The code slot contains the BPFL code that the frame is evaluating. Cp points to a posi-
tion within the code which indicates the current item in the code being evaluated. The value stored
in cp is alist indicating how many items should be skipped to read the one of interest. For example,
inthelist (a b (c d)),the symbol ais indexed by (0), and the symbol disindexed by (2 1).
In Table 5-4, cp has the value (1), so the item being evaluated is the keyword :tag. The re-
turned-values slot is used to hold values returned by the frame when evaluation is complete.
For example, the measure-bulk-resistivity procedure returns the average of the measure-
ments entered by the user. The parent slot contains a pointer to the frame whose evaluation led
to the creation of this frame. The id slot holds an integer that uniquely identifies the frame.

Most frames contain more slots than indicated in Table 5-4. As mentioned earlier, frames
are CLOS objects and the different frame types form a hierarchy as shown in Figure 5-9. The class
at the base of the frame hierarchy is root - frame. A root - frame is always the first frame cre-
ated when evaluating a BPFL process flow. It serves as the anchor point for the stack of frames cre-
ated as the code is evaluated. Frames further down the hierarchy have additional slots. For example,
eval-frames are used to evaluate procedural code. They have a current -1lot slot that holds
the BPFL lot current. Special BPFL constructs such as rework-1loop and constraint re-

quire special handling during processing and frame types are defined for them.

! The construct #<expr> denotes a pointer to an expr object.

110

The process of evaluation will now be described. A root - frame is created with appro-
priate values stored in the code and act ion slots. The interpreter then calls the function stored in
the act ion slot of the root - frame. This call creates a frame to evaluate the code. The interpreter
repeats this process until the only frame remaining is the original root - frame, at which point
evaluation is complete and the returned-values slot of the root - frame contains the final
result.

A brief example of evaluation will be presented to illustrate how the evaluation process op-
erates. Consider evaluation of the following code:

(if implant-split
(split-lot ‘produ‘ct :into ' (high low med))

The if statement will cause the split-1lot function call to be interpreted if the implant -
split variable has a non-nil value. Assume for this example that implant -split has the value
t (i.e., true). When the interpreter begins to evaluate the if statement, an if-frame is created
which becomes the topmost frame of the evaluation stack, as shown in Figure 5-10 (a). The initial
value of cp is (1), so evaluation begins with the implant-split symbol. The returned-
values slot is unbound, meaning that it contains no value. The act ion slot points to the go-if
function.

The frame is evaluated by calling the function pointed to by the act ion slot (i.e., go-1if).
Go-if evaluates the implant -split variable, places the value in the returned-valuesslot,
and sets the act ion slot to point to the function go-i£2. The frame then appears as in Figure 5-
10 (b).

The frame is evaluated once more by calling the function pointed to by the action slot.

_The action in this case is to examine the value stored in the returned-values slot and, if it is

non-nil, as in this example, execute the code within the if statement (i.e., (split-lot ...)).
Since the code is a function call, the evaluation creates a funcall-frame as shown in Figure 5-
10 (c). This frame becomes the current-frame for the evaluation. Note that the parent slot of the
funcall-frame points to the parent of the if-frame. This is because after the evaluation of
split-lot, the if frame is no longer required, and the parent-frame of the next frame created

after the if-frame is the parent of the if-frame. Consequently, the if-frame is discarded.

111

if-frame
action: #<function go-if>
code: (if implant-split ...)
cp: (1)
returned-values: unbound
id: 25
parent: #<eval-frame :id 24>
(a)
if-frame
action: #<function go-if2>
code: (if implant-split ...)
cp: (2)
returned-values: true
id: 25
parent: #<eval-frame :id 24>
(b}
funcall-frame
action: #<function go-funcall>
code: (split-lot ‘'product :into ' (low med high)
cp: (1)
returned-values: unbound
id: 26
parent: f#i<eval-frame :id 24>

(c)
Figure 5-10: Evaluation examples.

This example is somewhat simplified. More detail about evaluation is presented by Wil-

liams {37].

5.6 Saving Run State

This section describes the means by which the WIP interpreter process saves the state of a
run in the database. Run state is saved whenever a run is suspended (e.g., when waiting for a user
or piece of equipment to complete an operation). Run state is saved for two reasons. First, it pro-
vides a high degree of software fault-tolerance so that run execution will not be disturbed if the
computer system crashes. Second, it is easy to modify a run that has been saved in the database.

The core interpreter described in section 5.5 is well suited for use by the WIP interpreter
process because the iterative evaluation process provides natural points at which to save the state
of the run. A simplified definition of the run structure is shown in Table 5-5. The complete data

structure definition and all subsidiary structures are described in Appendix E. The id slot uniquely

112

Siot name Description
id Integer uniquely identifying the run
current-frame Frame at the top of evaluation stack.
root-frame Frame at the base of the evaluation stack.
bindings Global variable bindings used in the BPFL code.
wafer-lot-state | Pointer to object describing the wafers and lots in the run.
materials Pointer to object describing the run materials.
layers Pointer to object describing run layers.
masks Pointer to object describing run masks.
snapshots Pointer to object describing snapshots used by wafers in the run. |
exception-frames | List of exception frames for exception handling.
module-id-list | Listof id's of BPFL code modules used by the run.

Table 5-5: Run data structure definition.

identifies the run. The current - frame and root - frame slots were described above. The
bindings slot holds global variable and constant bindings (i.e., variables or constants whose val-
ue is accessible from all BPFL code in the run). Examples of global constants are *mask-set *
and *product-lot-size*.! The wafer-1lot-state, materials, layers, masks, and
snapshots slots all contain pointers to data structures that describe entities manipulated by the
run (e.g., materials, masks, etc.) and computation entities (e.g., conditions). Exception-frames
list £rames that correspond to each exception activation. The implementation of exceptions is de-
scribed later in this chapter. The module-id-1ist contains a list of the code modules used by
the run. It is used to update process-flow code.

Recall that CLOS instances are written to the database by methods on each class. Consider,
for example, the methods for saving evaluation frames. Frames are written into the evalua-
tion_frame table defined in Table 5-6. The run_id field contains the integer that identifies the
run to which the frame belongs. Similarly, the frame_id field contains the integer that identifies
the frame within the run. The frame_type field contains the name of the frame class. The remain-

ing slots in the CLOS instance are written into the frame_slots field. Because the width of the

run_id frame_id frame_type frame_slots extend
(integer) | (integer) (string) (string) (integer) |
1 25 if-frame :action #'go-if :cp (1) : ... 0
1 24 funcall-frame] :action #'go-funcall :cp (1) .J. 0

Table 5-6: Evaluation_frame table definition and examples.

1 BPFL has adopted the Lisp convention of using asterisks around the names of global variables.
113

Siot name Description Example
snapshot | Pointer to PIF snapshot describing the wafer state. #<Snapshot :id 3>

id Integer uniquely identifying the wafer within the fab. | 4002
index Integer uniquely identifying the wafer within the run. | 27
scribe String containing the wafer scribe. "NWELL-1"

Table 5-7: Wafer class definition and example.

frame_slots field is limited by the database, it is possible that the field may not be wide enough
to hold all of the siots foragiven frame.! For this reason, an extend field is used to indicate when
a frame definition must occupy multiple rows in the table. The value of extend is an integer, start-
ing at O for the first row describing a given frame, and incremented for each subsequent row.

Frames are written to the database using a method named db-print - frame. The method
takes a frame object as an argument and retums a string that contains the frame slots written out in
a format that can be read back correctly. For example, if the cp slot has the value (1 2), the slot
name and value are writtenas “:cp (1 2)." The action slot in an evaluation frame contains a
pointer to a function. The name of the function is written out instead of the hexadecimal memory
address stored in the pointer because the frame may need té be read into a different version of the
WIP interpreter process which might store the function at a different location in memory. For ex-
ample, the function #<function go-if>iswrittenoutas “:action #'go-if*.The char-
acters #* indicate a Lisp reader macro [39]. Reader macros are used to change the interpretation of
the item that follows them (e.g., the symbol go-i£). The reader macro #* retums a pointer to the
function whose name is the symbol following it. In this case, when the string "# 'go-if" is read,
a pointer to the function go-1if£ is returned.

The same mechanism is used for other slots that are pointers. For example, consider the
parent slot. The value stored in this slot is a pointer to an evaluation frame, so the storage method
represents the frame by the value of the id slot of the frame pointed to by parent. The code slot
is treated specially because of the requirement to change code while a process is running. Dynamic
code modification is discussed in section 5.9.

Frames are read into a WIP interpreter process by creating an instance of the CLOS class

stored in the frame_type slot and passing the contents of the frame_slots field to an ini-

1 The current version of INGRES limits a record to 2 K bytes.
114

run_id id index | snapshot_id scribe

(integer) | (integer) | (integer) (integer) (string)

1 4002 27 3 NWELL-1
Table 5-8: Wafer table definition and example.

tialize-instance method for that class. Initialize_instance sets up the values in the
slots.

Some run data structures in the database must be accessible from the Ul process (e.g., wafer
and lot information). Since the UI process is an ABF application with low-level routines written in
C [55], it is important that the data structures which it must read are easy to access from C. For ex-
ample, BPFL represents wafers and lots as CLOS objects. The slots for the wafer class are shown
in Table 5-7. The database table used to represent this class is the wafers table defined in Table 5-
8. The wafer table can be read by the UI process because each slot is stored in a separate field, and
the value in each field is easy to interpret (i.e., an integer or string).

The slots in the 1ot class are shown in Table 5-9. The bits slot is an integer that inclicafes
which wafers are present in the lot. Recall that each of the n wafers allocated to a run has a unique
index in the range [1, n]. The least-significant bit in bits represents the wafer with an index of
1. The next least-significant bit represent the wafer with an index of 2 and so forth. For example,
the value of bits in the example in Table 5-9 is binary 101001110, so the lot in the example
contains the wafers 2, 3,4, 7, and 9.

This approach to representing the wafers present in a lot is very compact and has much to
recommend it. Because Common Lisp supports integers of arbitrary length, there is no danger of
the number of wafers exceeding the number of bits that can be represented in an integer. However,
neither INGRES nor ABF supports arbitrarily wide integers. Consequently, a different representa-
tion for lots is needed in the database.

The database representation for lots is shown in Table 5-10. The run_id and id fields

uniquely identify the lot. The name field is a string that contains the name of the lot.! Bits is a 32-

Slot name Description Example
id Integer uniquely identifying the lot. 2
bits Integer representing wafers present in the lot. 334

Table 5-9: Lot class definition and example.

115

run_id id name bits Isb

|_(integer) | (integer) (string) (integer) | (integer)
1 1 SPLIT-LOW 334 1

Table 5-10: Lot table definition and example.

bit wide integer field that contains 32 bits of the bits slotinthe 1ot class. If the bits slotis wider
than 32 bits, it is split across multiple rows in the database. The 1sb field in the table specifies the
index corresponding to the wafer represented by the least-significant bit in the bits field.

This approach provides a way to store the arbitrarily long bits slot while making it easy
for the UI process to determine which wafers belong to a lot. This information is needed to display
the lot data to the user as shown in the Run-Detail frame in Figure 4-16.

The WIP interpreter process saves run state whenever a run is suspended. If the system
crashes while a run is suspended, the run can be restored and executed with no loss of data. If the
system crashes during thé brief period in which the‘ state is being saved, recovery depends upon the
database. If the system crashes while a mn is executing, no data is lost, but when the runis restored
it must begin executing code from the point at which it was last saved. For this reason, run state is
always saved in toto. It would be more efficient to save parts of the run staté to the database (e.g.,
the wafer state) immediately any changes'are made to the data structures representing them. How-
ever, this approach makes it impossible to guarantee that execution can always be carried forward

from the last saved state since different parts of the run state have been saved at different times.

5.7 WIP interpreter operation

This section describes the operation of the WIP interpreter process and its interaction with
other components of the WIP system.

The WIP interpreter process is a server process that executes several runs concurrently. The
architecture of the system is based on an event-loop which processes events as they are received.
Events are generated by the UI process, the EI process and the WIP interpreter process itself. The
main loop is shown in Figure 5-11. The first action in the loop is to process any pending events.
The event types and their function are:

1. Start-run - create and begin execution of a run. A start-run event is

! The 1ot class definition in Table 5-9 does not contain a name slot. The WIP interpreter process
maps lot names to the corresponding 1ot class via a hash-table.

116

event queus
YES_°™M
NO‘——I
A
process wait for
events event X
])
K
are there runs
to interpret? /NO
YES
A
interpret
runs

Figure 5-11: WIP interpreter process main loop.

created by the Ul process when the user selects the Start-run operation in
the Create-run frame shown in Figure 4-4.

Suspend-run event — stop execution of a run. For example, the UI process
generates a suspend-run event if the user selects the Halt operation in the
Run-detail frame in Figure 4-16. Similarly, the WIP interpreter process it-
self generates a suspend-run event when a user-dialog is executed.
Restart-run - resume execution of a run.

Run-complete —mark run as finished.

Message — send message to users or equipment. For example, a message is
sent to a user when an error occurs during run processing. The message is ei-
ther sent to the controlling UI process for the run, or if no such Ul process ;ax-
ists, electronic mail is sent to the run owner. Equipment messages are sent to
the appropriate EI process for the specified piece of equipment.
Exception - raise exception. These events are used for rework, constraint,
and general exception handling as will be described in the next section.

Shut down — terminate the WIP interpreter process. This event completes cur-
rent operations, saves the state of all active runs to the database, sends messag-

es to all active users indicating that the WIP interpreter process is terminating,

117

and exits. Such an event is necessary to ensure that all state information is
saved before the WIP interpreter process is shut down.

8. Module- performs an action on a code module. These events are used to force
the WIP interpreter process to perform some action on a BPFL code module.
For example, the version control systém may ask that every run using a partic-
ular module be updated to use a different module. Code modules are described
in section 5.9.

The WIP interpreter process is written so that unauthorized or improper use of events is
prohibited. For example, a user cannot suspend a run for which he or she does not have access per-
mission. Similarly, only shutdown events originating from users with WIP interpreter process
system privileges are executed. These security checks are carried out within the WIP interpreter
process itself because the connections between the various WIP components are not secure.

Events are high-priority items that require attention. Consequently, all pending events are
handled by the WIP interpreter process before any other operations are performed. This approach
was chosen to provide maximum responsiveness to interactive requests. As shown in Figure 5-11,
once the WIP interpreter process has processed all events in the event queue, it continues execution
of active runs. Each active run is advanced by a single function evaluation like the evaluation shown
in Figure 5-10. When the WIP interpreter process has no events to process and no runs to execute,
it sleeps. When an event is received on one of the TCP/IP connections to other WIP system com-
ponents, the WIP interpreter process resumes execution.

The current implementation of the WIP interpreter process is intended for use in a low-vol-
ume development fab such as the UC Berkeley Microlab. In this environment, I;IOSI processing on
arun is carried out by one user. The WIP interpreter process sends all user-dialog requests and mes-
sages to that user. As the user moves within the fab and logs on to different terminals, the WIP sys-
tem sends messages to the terminal where the user is working. The WIP interpreter process uses the
identity of the user processing the lots to determine where to send requests.

In a production fab, lab technicians operate éQuipment in workcells. Workcells receive lots
for processing, perform the necessary operations on the lots, and pass them to the next workcell. In

that environment, when a user-dialog or message is generated, the WIP interpreter process sends a

118

request to the UI process running at the workcell that manages the equipment required for the op-
eration. In other words, the WIP interpreter process uses the location of allocated equipment that
will perform the processing operation. The two modes (i.e., user-centered and equipment-centered)
are not mutually exclusive, and the WIP interpreter process can be configured to chobse between
them as appropriate. For example, user-dialog requests could be sent to equipment locations, but
status messages (e.g., run-complete) might be sent to the user in charge of the run.

The remainder of this section reports on a coarse performance evaluation of the WIP inter-
preter process. Six types of operations were executed to test the performance of the system:

1. create a run,

2. save run state,

3. retrieve run state,

4. interpret a simple loop,

5. interpret a simple loop with a single Lisp function call in it, and

6. interpret a simple loop with a single BPFL procedure call in it.

All tests were performed on a Sun Sparcstation 1 running SunOS 4.0.1 using Allegro Common Lisp
3.1 [56]. The database used was release 6.3 of INGRES [53] running on a local SCSIH disk. Tests
were carried out using the user-time value returned by the Lisp t ime function. Each test was
repeated five times and the average value 'of the measurements was taken.

The time required to create a run using the cmos-16 process flow was 2.81 seconds. The
time required to save run state varies with the size of the run information (e.g., the number of stack
frames), but for a run using cmos-16 with 35 siack frames, 4.53 seconds was required. Retrieving
run state took 3.05 seconds. These operations occur infrequently. For example, run state is saved
only when a run is suspended, which occurs approximately 150 times in the course of executing a
complete cmos-16 process flow. In the very unlikely event that rework could double the number
of run suspensions, and given that the throughput time for the run varies between 2 weeks to 3
months, the WIP interpreter process can expect to spend at worst 0.2% of its time saving and re-

storing run state for any given run. At worst a run might be suspended and restarted S times in one

1 Small Computer Systems Interface.

119

for i := 1 to 100 do
code-body
and;

Figure 5-12: Interpreter test code fragment.

hour, resulting in the WIP interpreter process spending 0.6% of its time saving the state for one

run.l

These results measure the performance of Lisp routines built into the WIP interpreter pro-
cess. Most of the time required to create, save and retrieve run state is consumed by the database
operations. Recall that the database is stored on a a SCSI disk. SCSl is a low-performance interface,

and much faster performance is possible with appropriate hardware. The remaining tests measure

the speed of BPFL code evaluation.

The code fragment used to evaluate interpretation speed is the for loop shown in Figure 5-
12, which executes the code-body code 100 times. Translation of the code to Lisp and subsequent
macro-expansion results in the interpreter executing the following Lisp code:

(let ((i 1))
(declare (type (integer 1 101) i))
(block nil
(tagbody #:92615
(if (> i 100)
(progn (return-£from nil (progn)))
nil)
; code-body
(setg i (1+ 1))
(go #:92615))))))

This code requires 13 evaluations for each execution of the loop, plus the number of evaluations
required for the code-body code. Three different code-bodies were tested. The results are summa-
rized in Table 5-11. The null code-body test indicates that the WIP interpreter process has an aver-

age evaluation time of 7.8 ms for each interpreter evaluation. The code-body in the second and third

Loop body Execution time | Evaluations
(seconds) per loop
Null 10.2 13
Lisp function call 12.1 16
BPFL procedure call 14.9 17

Table 5-11: WIP interpreter process evaluation times.

! The WIP interpreter process does not need to retrieve run state from the database unless it has
crashed and been restarted.

120

tests called the function (loop-test i).Inthe second test, Loop-test was a Lisp function:

(defun loop-test (a)
t)

In the third test, loop-test was a BPFL procedure:

defflow loop-test (a)

begin

t;

end;
In both cases the function takes one argument and returns the value t. The evaluation time for the
WIP interpreter process is dependent on the evaluation performed. For example, the average eval-
uation time calculated from the second test is 7.6 ms, which shows that the Lisp function call is rel-
atively fast and decreases the average evaluation time. The third test has an average evaluation time
of 8.8 ms, indicating that the BPFL procedure call is relatively slow.

As an example of the evaluation time on real code, the measure-bulk-resistivity
procedure in Figure 5-7 was evaluated. The WIP interpreter process took 1.55 seconds to perform
the 190 evaluations required to execute the code. The averége evaluation time was 8.2 ms. Approx-
imately 86% of the execution time was spent in creating evaluation frames, and a further 11% was
sbent in CLOS method calls on evaluation frames. Recoding the interpreter to use Lisp structures
rather than CLOS classes for evaluation frames should result in a ten- to one-hundred fold speed
increase. Recoding the interpreter in C or C++ [57] should result in a one-hundred to one-thousand °
fold speed increase. The code size of the Common Lisp WIP interpreter is 16 megabytes. By recod-
ing in C++, the executable could be reduced to approximately half that size.

To illustrate the significance of the evaluation performance figures, consider the cmos-16
process flow. Execution of the code up to the first implantation step requires 1320 evaluations, for
an execution time of 10.8 seconds. This section of code has 9 user-dialogs or equipment operations,
and takes approximately one day to process in the fab. The execution time of the code is relatively
small compared to the 41 seconds required to save the run state for the 9 times the run is suspended.
The average time spent by the WIP interpreter process saving run state or interpreting code for this
example is 0.06%. This is more than fast enough for use in a research fab. Since the execution time
of the process-flow code can readily be reduced by several orders of magnitude, the execution time

of the code is not significant. However, increasing the speed of database access is essential, not only

121

for the WIP system but for all other CIM applications. A production fab requires a high-perfor-
mance database server.

The WIP interpreter process is very slow compared to most program execution systems.
However, it is fast enough for the tasks it is intended to perform. Complex programs (e.g., numer-
ical analysis routines in recipe generators) are prohibitively slow using the prototype implementa-
tion of the WIP interpreter process. If BPFL process flows require such functionality in the
prototype implementation, there are two approaches to providing it. First, the routines could be
written in another language (e.g., C++ or Lisp) and called from BPFL process flows. The WIP in-
terpreter process uses this approach to implement many standard BPFL procedures (e.g., £ind-
surface-segments, format, etc.). If users adopt this approach for writing process flow code,
the disadvantage is that parts of the process flow are written in a different language. An altenative
approach is to use the simulation interpreter written by Williams [37]. The simulation interpreter
translates BPFL code into pure Lisp which can then be compiled. For example, the simulation iﬁ-
terpreter runs the loop test with the Lisp function éall approximately 78,006 times faster than the
WIP interpreter process. A large part of this speedup is due to the fact that no CLOS object creation
or method calls are involved in the execution of the compiled code. The disadvantage of this ap-
proach is that the simulation interpreter does not permit code modification, saving and restoring run
state, or running the interpreter as a server. However, BPFL utility routines (e.g., to calculate the
parameters for an equipment recipe) could be compiled and called from the WIP interpreter pro-
cess. This approach would only work for procedures that did not need to be suspended (i.e., no
user-dialogor run-recipe procedure calls are permitted). Recoding the interpreter for speed

will make this approach unnecessary.

5.8 Rework, Exception, and Constraint Implementation

The core interpreter is written as a single-threaded process. That is, when BPFL code is
being evaluated, at any time the evaluation stack represents the evaluation of a single fragment of
BPFL code. This situation is illustrated on the left-hand side of Figure 5-13. Boxes represent eval-
uation frames. The first line in a box is the frame type and its id. The remaining lines show the
code being evaluated by the frame. Each frame has at most one parent and one child framHe, indicat-

122

| 1

#<funcall-frame :id 27> #<funcall-frame :id 32> #<funcall-frame :id 57>
(mtrl-attr mat ...) (spin-soft-bake ...) (strip-resist ...)
| curMork
#i<setf-frame :id 26> #i<rework-frame :id 31>
(setf (mtrl-attr mat ...)) (rework ...)
i i
#<progn-frame :id 20> #<progn-frame :id 25>
(defflow ... (defflow ...
(setf (mtrl-attr mat ...)) (rework ...))
H
; }
single-threaded stack spaghetti stack

Figure 5-13: Spaghetti stack example.

ed by an arrow (the parent is at the arrowhead end of the line). For example, frame 20 is the parent
of frame 26, and frame 27 is the child of frame 26.

Rework and constraints complicate this model of execution. For example, whenever a run
is executing BPFL code within a rework-1oop, the user can force rework to occur on a chosen
set of wafers. The semantics of the rework-1loop operation require that the rework lot be pro-
cessed by the rework-prefix code, then given the same treatment as the rest of the wafers.
Figure 5-14 shows an example of rework from the pattern procedure in Figure 3-12. Suppose
that the code being executed is part of the code inside the rework body (e.g., inside the expose-
resist procedure). At this point, the stack looks much like the single-threaded stack on the left-
hand side of Figure 5-13. Suppose that the user raises a rework exception, which causes process-
ing on the current lot to stop and processing on the rework lot to begin. The evaluation of the

code for the current lot is resumed later so the evaluation stack for the current lot must be

rework-loop

/* rework body */

spin-soft-bake (double-photo: double-photo):

expose-resist (mask-name: mask-name);

develop-resist():;

rework-test inspect-resist();

retry-count 5;

rework-prefix if not (double-photo) then strip-resist() end;
end;

Figure 5-14: Rework example.

123

handler-case
download-recipe(...);
start-recipe(...):

ocn-exception c := equipment-error do
report-error ("Error occurred during run-recipe: ~s®, <¢);
halt-run();
end;
end;

Figure 5-15: Handler-case example.

breserved. The rework lot is processed by the rework-prefix code and then by the rework
body. Evaluating the code for the rework lot results in a second stack of frames originating from
the rework frame. At this point, the stack looks like the right hand side of Figure 5-13. The stack
marked current is the code evaluation stack for the current lot, and the stack marked rework
is the code evaluation stack for the rework lot. In other words, the rework- £rame has two child
frames (i.e., frames 32 and 57 are children of frame 31). This situation cannot arise with a single-
threaded stack.

The semantics of rework require that rework branches be merged when the rework lot
reaches the same processing point as the execution path that generated the rework_. For example,
when the execution state of the frame at the top of the stack above frame 57 reaches the same point
as the execution state of the frame at the top of the stack above frame 32, (i.e., the point at which
the rework occurred), the two paths must be merged so that processing can proceed on all of the
active wafers. Given that rework loops can nest and that occasionally multiple rework will be forced
from within the one rework loop (i.e., a rework can be forced while a group of reworked wafers is
being processed), it is clear that the evaluation stack diagram can have multiple branch points and
that a frame can have any number of children.

Rework is an example of exception handling, and the rework-£rame is a special version
of the exception-£frame as shown in Figure 5-9. The exception-handler in the run-recipe
procedure in Figure 3-7, shown in Figure 5-15, will be used as an example of exception handling.
Recall that handler-case executes a body of code with exception handlers defined that will be
called if an exception is raised (see section 3.4). If an equipment -error exception is signalled
within the code in the body of the handler-case, the code in the equipment -error clause is

executed. Several procedures are provided in BPFL that can be used to manipulate a run within an

124

module_1id name code extend
(integer) {(string) (string) (integer)
10 measure-bulk-resistivity| (defflow measure-bulk- 0
resistivity (&key tag ...))

Table 5-14: Procedure table definition and example.
cedures in the database if they have not already been saved.

BPFL procedures are saved in the procedure table shown in Table 5-14. The mod-
ule_id field is an integer that identifies to which code module the procedure belongs. The name
field is a string that specifies the name of the procedure. The code field contains the Lisp code for
the procedure. The extend field is used to store procedures with more code than will fit into one
record.

The code slot in a frame holds the BPFL code being evaluated by that frame. This code is
not saved to the database with the frame, for three reasons. First, the WIP interpreter process stores
procedure code from all BPFL modules in the database separately as described in the next section.
Second, storing the code with the frame is wasteful because during evaluation of a section of code,
many frémes will have code slots that contain fragments of the same BPFL code. Third, modifi-
cation of the code used by a running process is much easier if the code is not stored with the frames.

The database representation of BPFL code stored in the code slots in frames is as follows.
Frames that are created when a procedure is called are called funcall-frames. The code slot
stored in the database for a funcall-£frame is the name of the procedure and the id of the pack-
age to which it belongs. For example, if a funcallb-f rame is created to call the procedure pat -
tern in the litho library version 1.0, Table 5-13 shows that the module_id for the module is 4.
The value stored in the code slot of the frame in the database is (:procedure pattern

:module-id 4).When the frames are recreated from the information stored in the database, the
procedure table in Table 5-14 is used to restore the correct value in the code slot.

During evaluation of pat t ern, evaluation frames will be created with code slots that are
fragments of the code in pattern. For these frames, the value stored in the code slot in the data-
base is a pointer into the code for the procedure. Recall that code pointers are represented by a list

indicating how many items should be skipped to read the one of interest.

131

5.10 Run Modification

This section describes the implementation of dynamic run modification. A user can per-
form modification of an active run. The allowable modifications are: |

1. add or remove wafers,

2. import wafers from another run,

3. split a run into multiple runs, and

4. modify the process flow code used by the run.

Wafer and lot manipulation is specified through the Modi fy-Lots Ul frame shown in Figure 4-
20. Adding and removing wafers and moving them between lots involves a straightforward manip-
ulation of the wafer and lot tables shown in Table 5-8 and Table 5-10, respectively. The only
difficulty is that the WIP interpreter process must prevent the removal of a wafer that is currently
bound to a variable. For example, if a BPFL run is executing the measure-bulk-resistivity
procedure in Figure 4-11 and the wafer variable has a wafer assigned to it, that wafer cannot be
deallocated. In general, the WIP interpreter process disallows the deletion of run structures if those
sﬁucunes are currently referenced by variables or arguments. If this capability is required, a sym-
bolic debugger for BPFL code is necessary. A debugger allows variable and argument values to be
changed after they have been evaluated.

. Importing wafers from another run requires that the snapshots for the wafers be added to
the run structure. PIF attributes for the wafers being imported nommally have to be renumbered to
prevent id conflicts between the snapshots already in the run. Creating new wafers requires the
specification of a BPFL procedure call to establish the initial snapshot for the wafers, as shown in
Figure 4-21.

Splitting a run into multiple runs is implemented by copying the run data structures for each
of the new runs. None of the data structures are shared because each run must be free to modify the
structures independently. Before a run can be split, all pending equipment operations must be com-
plete. In addition, any pending constraints are duplicated for each of the new runs.

The user enters data into the Modi fy-Flow Ul frame shown in Figure 4-24 to indicate
how the WIP interpreter process should respond to code modified in modules used by a run. As ex-

plained in section 4.5, there are three possible responses to changes in the code in a module:

132

1. Static means never update the code in a module,

2. Latest means to always update to the latest version, and

3. Query means to ask the user before updating.
The prototype WIP system imposes two restrictions on code modification. First, it does not allow
procedures that are currently being evaluated to be deleted. Second, it does not allow code that has
already been evaluated to be modified. For example, if the measure-bulk-resistivity pro-
cedure in Figure 4-11 has been evaluated up to the code

results := user-dialog('sonogage, nominal: nominal, limits: limits,
:tag tag wafer-id: wafer-id(wafer));

the WIP interpreter process will disallow any changes to the code before this point. The reason for
this restriction is two-fold. First, itis impossible in general to change the run state to make it appear
as if the run had been executed on the modified code. For example, if the line of code

nominal := material-attr(mat, :resistivity):;

is modified to

nominal := material-attr(mat, :bulk-resistivity);
the value of the nominal variable would have to be updated to reflect this change. Such changes
are impossible to perform with the current system: The second reason for disallowing code changes
before the evaluation point is that it makes it difficult to ensure that the code slots of runs have the
correct code stored in them. If a user modifies code before the evaluation point, the changes in the

procedure are ignored until the next time the procedure is called.

5.11 Implementation Environment

The WIP interpreter process is written in Common Lisp. The programming environment is
Allegro Common Lisp using the Xerox Portable Common Loops (PCL) implementation of CLOS.
Common Lisp is the implementation language for three reasons. First, it is easy to develop pro-
grams in Lisp that manipulate other Lisp programs since a program is represented by list Qata struc-
tures in Lisp. Second, Lisp provides a powerful and ﬂexible framework within which to experiment
with language designs. During the course of this research, many modifications were made to BPFL
and Lisp greatly reduced the amount of work necessary to make these changes. Third, Lisp has a

- built-in evaluator that makes it easy to implement language interpreters.

133

Common Lisp has excellent debugging tools. Code can be compiled with extensive run-
time checking to catch programming errors. Most errors generate precise messages that identify the
source of the problem. Some implementations of other languages (e.g., C or C++) do not provide
the same degree of run-time checking so errors tend to result in program crashes, and the source of
the error must be found by invoking a debugger on the program core file. Error messages are usually
muéh less precise about the source of the error than the Lisp messages.

The disadvantage of Common Lisp is that it is slow. Anecdotal evidence suggests that re-
coding Lisp programs in C results in a 5-10 times increase in execution speéd and 50% reduction
in executable-code size. Much greater speed benefit can be derived in this situation because CLOS
can be replaced with a faster object system. This approach is the likely choice for commercializing
BPFL. Recoding the prototype in C is a relatively easy task compared to writing the system from
scratch in that language. If C or C++ had been used as the implementation language, many of the
changes made to BPFL would have required extensive rewriting of the interpreter.

The experience of writing the WIP interpreter underlines the need for a relational or object-
oriented database and a programming language that can store persistent data types in the database.
For example, the current implementation saves most slots in CLOS instances by concatenating the
names and values of the slots into a large string and writing the string into a field in the database.
This approach was chosen because it simplified writing the methods for storing and retrieving in-
stances. However, database queries cannot be qualified by the values stored in those slots. Slots that
are used in qualifications are saved in separate fields. This is not a significant limitation at present,
but in the future databases will support more data types and many of the concatenated slots could
reasonably be used in qualifications. Ideally, the database and language should permit storage of
complex objects and qualifications on any slot.

The UI process is written in ABF. ABF is essentially C with high-level constructs for cod-
ing UI frames and accessing the database. ABF is a good tcol for those tasks, and since manipulat-
ing frames and accessing the database are the main activities of the Ul process, using ABF was
much simpler than using C. Using Common Lisp was unacceptable because the UI process has to

be small so that many copies of it can run at the same time.

134

However, ABF suffers from a number of limitations that make it difficult to use for writing
large extensible programs. For example, there is no way to declare global constants or variables.
Because ABF is based on C, the limitations of C make some operations (e.g., manipulating units,
complex numbers, or intervals) difficult and inelegant. An object-oriented version of ABF that in-
cluded richer data structure primitives would simplify the implementation of these operations.

The database used in the WIP system is INGRES, a commercial SQL DBMS. It has a pow-
erful set of utilities for managing databases. The main limitation of INGRES for the WIP system is
that it does not support structured data types (e.g., intervals, arrays). The latest version of INGRES
(release 6.4) allows the user to add new data types so it is likely that support for some structured
data types can be added to the WIP database. Furthermore, INGRES now automatically creates

unique entity identifiers which simplifies saving and restoring run state.

5.12 Summary

This chapter has described the operation of the WIP system that is the subject of this dis-
sertation. Communication between the processes that make up the WIP system is via TCP/IP con-
nections and through a shared database. New WIP-1og and User-dialog frames can be
defined by users and added to the user-interface process. The WIP interpreter process executes
BPEL code by interpreting a Lisp version of BPFL. The interpreter saves the state of runs to the

database to provide software fault-tolerance and permit run modification.

135

[This page intentigné.l»ly'b‘lank]i ‘. -

136 ~ .

Chapter 6
Conclusions

The problem this thesis attempts to solve is the development of a WIP system using a pow-
erful SPR to overcome some of the shortcomings of existing systems. Some of these shortcomings
include multiple representations of process flows, limited control flow and exception handling, and
flexible interaction with the other components of a CIM system. This chapter discusses the major

contributions of the work and suggests future research.

6.1 Major contributions

The major contributions of this work are the development of a fault-tolerant WIP system
and the design and implementation of a run management system that allows dynamic modification
of runs. ‘

Much of the power in the WIP system is derived from the capabilities of BPFL. The core
features of the language, including the language notation, materials, unit and interval data types,
and the wafer-state representation were developed by Williams [37]. However, many features of
the language developed for fabrication in this dissertation were designed to solve problems encoun-
tered with early versions of the WIP system. These features include exception handling, constraints,
rework, and some of the high-level abstractions for specifying semiconductor operations.

We believe that the exception-handling facility in BPFL is unique among other SPR lan-
guages. And, as noted §everal times in previous chapters, we also believe that exception handling
is an essential part of an SPR because unexpected situations occur frequently in processing and
there must be some high-level mechanism for dealing with them.

Similarly, constraints give BPFL a unique capability to express the semantics of fabrication
operations not available in most SPRs. Constraints on processing operations, particularly timing
constraints, are common in semiconductor processing. Structured documentation and run sheet sys-
tems provide some mechanism of alerting the user about constraints, but they provide no mecha-
nism to enforce them. MIT’s PFR [20] permits the specification of the time required by an operation
and the permissible delay between operations, but the constrain construct in BPFL provides

both greater flexibility and — more importantly — specifies operations to perform when a constraint

137

is violated. In other words, BPFL captures both the specification of the constraint and the action to
take to recover from a constraint violation. Furthermore, BPFL constraints can be arbitrary, so the
specification of constraints other than timing constraints are feasible (e.g., temperature or humidity
limits in the fab).

The defequipment declaration, and the run-recipe and user-dialog procedures
provide a mechanism for separating facility-specific detail from the process specification. Some
SPRs make little effort to separate the facility and process specifications. We believe that a separa-
tion is required to permit processes to be moved between facilities, which remains one of the big-
gest problems facing the semiconductor CIM community.

The run management system has several important capabilities. First, the version control
system for process flows provides a simple mechanism to track modification to flows and to control
who can use and modify a process flow. Coupled with the ability of the WIP system to dynamically
modify the process-flow code used by an active run, BPFL overcomes a major shortcoming of pro-
cedural SPRs, the inability to easily modify the process used by a run once it has been started.

Other dynamic modification features are the ability to move wafers between runs and split
runs. The ability to move wafers between runs is of great value in a research environment. While
such capability exists with structured documentation and run-sheet systems, a major advantage of
BPFL is that because wafer state is transferred with the wafers, it is possible to prevent improper
treatment of wafers. For example, placing wafers with Ta;05 dielectric into a gate oxidation fur-
nace will seriously contaminate the fumace. Such cccurrences are common when wafers are moved
between processes and no mechanism exists to capture wafer state. The proper use of the BPFL wa-

fer-state model can prevent such accidents.

6.2 Future Research

The current version of BPFL can certainly be improved. A mechanism is needed that al-
lows separate attributes to be associated with an operation in a procedure. For example, the opera-
tions to generate instructions to a user to perform an oxidation must occur within the same body of
code as the PIF commands to update the wafer state. Ideally, the PIF operations should be generated
from the manufacturing specification. Furthermore, the PIF operations should be in a separate body

of code so that they will only be executed if the oxidation is successfully completed.

138

Another capability that BPFL lacks is a mechanism to specify parallel operations, as seen
in ALPS [36]. Such a capability does not appear to be essential in an SPR, although occasionally
parallel-processing is done on an ad-hoc basis, especially in photolithography. Implementation of
parallelism is nontrivial, but it would be a good extension to BPFL.

A complete implementation of Wood’s SECS server (44] for at least one piece of fabrica-
tion equipment is necessary to discover and correct shortcomings in the equipment specification
part of the language. '
| Finally, BPFL could benefit from the addition of in-process and in-situ control loops to the
language. We envisage high-level constructs like those developed for rework and constraints. The
design of such constructs is best carried in concert with research groups familiar with the salient
features of control loops.

BPFL is a relatively untested language whose features have undergone several major revi-
sions. While we are confident that the curnenf version of BPFL is appropriate for the tasks it is de-
gigned to perform, only further experience with the language will tell what other extensions and
revisions are necessary.

The most significant problems with the current system are the user-interface to BPFL and
the computer resources required to run the WIP system. The only representation of BPFL is textual.
Whiie programmers have few problems with the syntax of BPFL, process engineers are not pro-
-grammers, and they have no desire to leamn programming. Consequently, a graphical user-interface
for the specification of BPFL programs is required.

The speed of the WIP system implemented in Common Lisp is adequate for low-volume
use. In a high-volume fab it is likely that greater speed would be required. An obvious way to im-
prove the speed of the system is to re-implement the interpreter in C or C++ for commercialization.
Common Lisp is an excellent prototyping environment, and had C++ been used for the prototype
implementation the language could not have been d_evelopcd as rapidly as it has been. However,
working from the Common Lisp implementation, it should be relatively easy to reimplement the
interpreter in C++, and the time required to evaluate a BPFL process flow could be reduced by sev-
eral orders of magnitude. Furthermore, the code size of the WIP interpreter should decrease by

139

about 50%. The time required to save and restore run state in the database should not be significant
if a high-performance database server is used.

The Ul process has several shortcomings. The biggest problems are that it needs a graphical
user-interface and a more sophisticated log browsing interface, like the CIM browser application-
specific query interface [61]. This would greatly improve the accessibility of the information stored
in the WIP-log. Lastly, an object-oriented database would simplify the development of an interface
to specify queries on structured data types such as units. For example, tlns would make it possible
to select all sonogage records with measurements between a certain range, which is impossible
with the current implementation.

Implementation of a scheduling interpreter based on BLOCS [6] is important in order to
ensure that BPFL can express the information required for scheduling. A BPFL interface to a CAD
database such as OCT [46] would greatly improve the usefulness of masks and layers. For example,
it would make possible the automatic Ealculation of area open for etching, an important factor for
determining e,tch. rate in load-sensitive etch processes.

Equally important if BPFL is to be accepted by a user community is that the usefulness of
BPFL be proven in a production environment. A test that would prove invaluable in determining

the worth of the language and its WIP system would be transferring a process from one fab to an-

other fab, rewriting only the faciﬁty-speciﬁcaﬁon code.

140

References

[1] W. C. Holton et. al., Japanese Technology Evaluation Program Panel Report on CIM and
CAD for the Semiconductor Industry in Japan, Science Applications International
Corporation, (McLean VA) , Dec. 1988.

[2] E. Sachs, S. Ha, A. Hu, A. Ingolfsson and R. Guo, “Run by Run Process Control,” Talk given
at 1990 SRC/DARPA IC-CIM Workshop, (Berkeley, CA), Aug. 1990.

[3]1 K. Lee and A. R. Neureuther, “SIMPL-2 (SIMulated Profiles from the Layout - version 2),”
in 1985 Symposium on VLSI Technology, (Kobe, Japan), pp. 64—-65, May 1985.

{4] C. P. Ho, J. D Plummer, S. E. Hansen, and R. W, Dutton, “VLSI process modeling —
SUPREM-III", IEEE Trans. Electron Devices, vol ED-30, no. 11, pp 1438-1452, Nov. 1983.

[5] A. S. Wong, “An Integrated Graphical Enviroment for Operating IC Process Simulators,”
Electronics Research Lab. Memo 89.67, U.C. Berkeley, May 1989.

[6] R. Glassey, “An Overview of BLOCS/M: The Berkeley Library of Objects for Control and
Simulation of Manufacturing,” 1989 DARPA/SRC Workshop on Integrated Factory
Management for Integrated Circuits (IFM-IC), (College Station, TX), pp. 81-94, Nov. 1989.

[7] M. L. Heytens and R. S. Nikhil, “GESTALT: An expressive database programming system,”
ACM SIGMOD Record, vol. 18, no. 1, pp 54-67, Mar. 1989.

(8] Distributed Ingres Manual, Ingres Corp, Alameda, California, June 1989.

[9] M. R. Stonebraker, E. Hanson and C. H. Hong, “The Design of the POSTGRES Rules
System,” IEEE Conf. Data Engineering, Los Angeles, CA, Feb. 1987.

[10] M. R. Stonebraker and L. A. Rowe, “The Design of POSTGRES,” Proc. 1986 ACM-SIGMOD
Conf. on Managment of Data, (Washington, DC), June 1986.

[11] P. A. Bernstein, “Transaction Process Monitors,” Comm. of the ACM, vol. 33, no. 11, pp 75—
86, Nov. 1990

[12] D. C. Mudie and N. H. Chang, “FAULTS: An Equipment maintenance and Repair System,”
Proc. 1990 IEEE/CHMT International Electronics Manufacturing Technology Symposium,
(Washington, DC), Oct. 1990.

[13] C. J. Date, An Introduction to Database Systems (Volume 1I), (Reading, MA), Addison-
Wesley, 1984.

[14] W. G. Oldham, A. R. Neureuther, Y. Shacham and F. Dupois, “Berkeley CMOS Process: A
User Guide,” Electronics Research Lab. Memo 84.26, U.C. Berkeley, Oct. 1984.

(151 CAM Systems for Smart Shop Control, Consilium, Mountain View, California, 1986.

[16] The PROMIS System: Controlling the Journey to Factory Automation. Promis Systems Corp.,
Toronto, Canada, 1987.

[17] A. Aho, R. Sethi and J. Ullman, Compilers: principles, techmques and tools, Addison-
Wesley, Reading MA, 1986.

[18] H. L. Ossher and B. K. Reid, “Fable: A Programming-Language Solution to IC Process
Automation Problems,” ACM-SIGPLAN Notices 18, no. 6, pp 137-148, Jun. 1983.

[19] H. L. Ossher and B. K. Reid, “Specification for Manufacturing,” Proc. 2nd Annual IC
Assembly Automation Conference, Jan. 1986.

141

[20] D. S. Boning and M. B. Mcllrath, Guide to the Process Flow Representation Version 2.0,
unpublished report, Aug. 1990.

[21] J. Y. Pan, J. M. Tenenbaum and J. Glicksman, “A Framework for Knowledge-Based
Computer-Integrated Manufacturing,” IEEE Trans. Semiconductor Manufacturing, vol. 2,
no. 2, pp 33-46, May 1989.

{22] J. P. Dishaw and J. Y. Pan, “AESOP - A simulation-based knowledge system for CMOS
process diagnosis,” IEEE Trans. Semiconductor Manufacturing, vol. 2, no. 3, pp 94-103,
Aug. 1989. ’

[23] J. S. Wenstrand, H. Iwai, and R. W. Dutton, “A Manufacturing-oriented Environment for
Synthesis of Fabrication Processes,” Proc. 1989 ICCAD Digest of Technical Papers, pp 376—
379, Nov. 1989.

[24] J. S. Wenstrand, W. T. Wong and R. W. Dutton, “Simulation-based Process Specification,”
Proc. SRC Techcon ‘90 Conf., (San Jose, CA), pp 451454, Oct. 1990.

[25] Voorhees, E. M., “A Work-In-Progress Tracking System for Experimental Manufacturing,”
Proc. Second Int. Conf. on Data and Knowledge Systems for Manufacturing and Engineering,
(Gaithersburg, MD), pp 190-197, Oct. 1989.

[26] D. Wolfson, Personal Communication., Siemens Corporate Research, Princeton, NJ, Nov.
1990.

[27] K. Funakoshi and K. Mizuno, “A Rule-Based VLSI Process Flow Validation System with
Macroscopic Process Simulation,” IEEE Trans. on Semiconductor Manufacturing, vol. 3, no.
4, pp 239-246, Nov. 1950.

[28] Y. Descotte and J. C. Latombe, “GARI: A Problem Solver that Plans how to Machine
Mechanical Parts,” IJCAI No. 7, pp 766-772, Aug. 1981

[29] A. Costa and M. Garetti, “Design of a Control System for a Flexible Manufacturing Cell,”
" Journal of Manufacturing Systems, vol. 4, no. 1, Jan. 1984

[30] K. K. Lin and C. J. Spanos, “Statistical Equipment Modeling for VLSI Manufacturing: an
Application for LPCVD,” IEEE Trans. on Semiconductor Manufacturing, vol. 3, no. 4, pp
216-229, Nov. 1990.

[31] S. Adiga, Personal Communication, IEOR Dept., University of California Berkeley, Dec.
1990.

[32] C. H. Chang and M. A. Melkanoff, NC machine programming and software design, Prentice
Hall, New York, 1989.

[33] O. Z. Maimon, “A Generic Multirobot Control Experimental System,” Journal of Robotic
Systems, vol. 3, no. 4, pp 451-466, Sep. 1986.

[34] A. W. Naylor and R. A. Volz, “Design of Integrated Manufacturing System Control
Software,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 17, no. 6, pp 881-897, Nov.
1987.

[35] S. A. Ray, “A Modular Process Planning System Architecture,” presented at IEE Integrated
Systems Conf., (Atlanta, Ga), Nov. 1989.

[36] B. A Catron and S. R. Ray, “ALPS — A Language for Process Specification,” submitted to
International Journal of Computer Integrated Manufacturing.

[371 C. B. Williams, A Process-Flow Specification Language for Manufacturing Semiconductor
Integrated Circuits. Ph.D. thesis, University of California at Berkeley, in preparation.

142

[38] M. R. Pinto, C. S. Rafferty, and R. W. Dutton, “PISCES II: Poisson and continuity equation
solver,” Stanford University, Integrated Circuits Lab, Tech. Rep., Sept. 1984.

[39] G. L. Steele, Common Lisp: The Language, second edition, Digital Press, 1990.

[40] C. B. Williams and L. A. Rowe, “The Berkeley Process-Flow Language: Reference
Document,” Electronics Research Lab. Memo 87.73, U.C. Berkeley, Oct. 1987.

[41] L. A. Rowe, Process-Flow Workshop Report, unpublished report, Oct. 1990.
[42] R. Hartzel, Personal Communication, Texas Instruments, Dallas, TX, Jan.1989.

[43] S. Tang and E. Wood, “An Object-Oriented Design Toolkit for CIM,” presented at 1990 SRC/
DARPA IC-CIM Workshop, (Berkeley, CA), Aug. 1990.)

[44] E. J. Wood, H. Schenck and J. Wijaya, “Networking and Object-Oriented Coding for SECS
Communication,” Proc. Automated IC Manufacturing Symp., Fall Electrochemical Society
Meeting, Oct. 1987.

[45] S. G. Duvall, “An Interchange Format for Process and Device Simulation,” IEEE Trans. on
CAD, vol. 7, no. 7, pp 741-754, Jul. 1988.

[46] R. L. Spickelmeir, P. Moore, and A. R. Newton, A Programmer’s Guide to Oct., Electronics
Research Lab. Memo, U.C. Berkeley.

[47] J. L. Mohammed, Common Lisp Implementation of SECS II Protocol, Schlumberger
Technologies, July 1990.

[48] L. A. Rowe, “Fill-in-the-Form Programming,” Proc. 11th Int. Conf. on Very Large Data
Bases, Aug. 1985.

[49] B. Becker, D. Mudie and L. A. Rowe, “A Paper-Free Replacement for an Engineer’s
Laboratory Notebook,” Talk given at 1990 SRC/DARPA IC-CIM Workshop, (Berkeley,
CA), Aug. 1990.

[50] Ingres ABF/4GL Reference Manual, Ingres Corp, Alameda, California, June 1989.

[51] W.F. Tichy, “RCS — A System for Version Control,” Software — Practice and Experience, vol.
15, no. 7, pp. 637—654, July 1985.

[52] T. J. Teorey, Database Modeling and Design: The Entity-Relationship Approach, Morgan
Kaufmann, San Mateo CA, 1990.

[53] Using Ingres Through Forms and Menus, Ingres Corp, Alameda, California, June 1989.

[54] D. Charness and L. A. Rowe, “CLING/SQL — Common Lisp to Ingres/SQL Interface,”
Electronics Research Lab. Memo 90.40, U.C. Berkeley, May 1950.

[55] B. W. Kemighan and D. M. Ritchie, The C Programming Language, (Englewood Cliffs, NJ),
Prentice-Hall, 1978.

[56] Allegro COMMON LISP User Guide, Franz Inc., Bérkeley, California, Dec. 1989

[57] B. Stroustrup, The C++ Programming Language, (Reading, Massachusetts), Addison-
Wesley, 1986.

[58] M. E. Lesk, Lex - A Lexical Analyzer Generator, Computing Science Technical Report No.
39, 1975, AT&T Bell Laboratories, Murray Hill NJ 07974.

[59] S. C. Johnson, Yacc: Yet Another Compiler Compiler, Computing Science Technical Report
No. 32, 1975, AT &T Bell Laboratories, Murray Hill NJ 07974.

143

[60] S. I Feldman, “MAKE - A Program for Maintaining Computer Programs,” Software —
Practice and Experience, April 1989.

[61] B. C. Smith and L. A. Rowe, “An Application-Specific Ad Hoc Query Interface,” Electronics
Research Lab. Memo 90.106, U.C. Berkeley, May 1990

[(62] Franz Inc, Common Lisp: The Reference, Digital Press, 1989.

144

Appendix A
BPFL Language Reference Manuall

A.1 Introduction

This document is a reference manual for the Berkeley Process-Flow Language (BPFL). It
describes the current version of BPFL for people who want to code processes or write interpreters.

Specifications written in BPFL describe the fabrication of semiconductor devices. Fabrica-
tion requires many processing steps to be performed in a fixed sequence. The word process is com-
monly used to describe two different aspects of fabrication. The first usage refers to the entire
sequence of operations that result in a working device (e.g., a “0.35 pm CMOS process”™). The sec-
ond usage refers to an operation within the sequence (i.e., a processing step), usually associated
with one piece of equipment (e.g., an oxidation process, an implantation process, or a photolithog-
raphy process).

A BPFL process is composed of a sequence of smaller processes. A complete process spec-
ification, like “0.35 pm CMOS,” is called a process flow. In a BPFL process-flow specification,
processes are represented by procedures.

The fabrication unit from a process design viewpoint is a wafer. In practice, processing is
performed on a set of wafers, called a /o. During a processing step, the wafers in a lot may be treat-
ed serially or in parallel, depending on the equipment used. A lot and its controlling process spec-
ification is called a run. In a typical fabrication facility, several runs, each at a different stage of
completion, will be under the control of one process specification. Within a run a lot may be divided
into sub lots, each of which can be processed separately from the rest.

The intent of BPFL is to represent all information about a fabrication process that will be
needed by any application programs during the design, manufacture, and testing of semiconductors.
Because different applications need different kinds of information, a process flow actually specifies
several different views of a process. Most application programs will be interpreters that extract in-

formation from a BPFL process flow description according to the needs of the application.

1 This document is based on [1].

145

BPFL is an extension to Common Lisp. The reference manual for Common Lisp is Steele’s
Common Lisp: The Language [2). It is expected that BPFL will be used in an environment that re-
lies on a database. Consequently, some of the constructs in the language are used to create database
objects that other parts of the language access.

The remainder of this document describes BPFL. It is organized as follows. The next sec-
tion describes the syntax of BPFL. The third section describes the language semantics. The remain-

ing sections describe BPFL objects and procedures for manipulating objects.

A.2 BPFL Syntax

BPFL has a block-structured syntax similar to Pascal, The block-structured notation is con-
verted to Lisp syntax for execution by a BPFL interpreter.

Lisp has a functional representation that is simpler than the typical representation of a
block-structured language. All Lisp code is represented as lists A list is enclosed in parentheses and
elements in a list are separated by spaces. Lisp code consists of function calls and special forms.
For exdmple:

(format t "growth rate = * (log 1.23)) .
is a call to the function format that prints messages. This call has three arguments. Each of the

arguments is evaluated before the function is called. The first two arguments (t and "growth
rate = “")are self-evaluating. The result of evaluating a self-evaluating object is the object itself.
The third argument, “ (1og 1.23)” is a function call. It is evaluated and the result of the evalua-
tion is passed to format. So the function call to format becomes

(format t "growth rate = * 0.0899051114)
Special forms look just like function calls but they evaluate their arguments differently. For

example, the Lisp code:

(if (> a b)
(format t *a is bigger than b"))

prints “a is bigger than b” if the value of variable a is larger than the value of b. The argu-
ments to if are not evaluated in the standard way, because if they were, the format function
would be called before the if statement is executed. The format function should not be called
unless the expression (> a b) is true. So if evaluates its first argument and only evaluates the

second argument if the first argument it true.

146

BPFL has functions, called procedures, that correspond to Lisp functions. A BPFL proce-
dure call for the Lisp format function cali above is:

format (t, "growth rate = *, log(1.23))
The procedure name is moved outside the parentheses, which now contain a list of the arguments

to the procedure. The arguments are separated by commas instead of spaces. As with Lisp, the ar-
guments to BPFL procedures are evaluated before the procedure is called.

Instead of function calls and special forms, block-structured languages use procedure calls
and statements. Procedure calls and statements are called operations. Statements use a special syn-
tax involving tokens. For example, the BPFL if statement corresponding to the Lisp if special
form above is:

if a > b then
format (t, "a is bigger than b")
end;

This operation “reads” more like a natural language rather than a functional representation. The use
of tokens (e.g., 1£ and then) to delimit parts of the i£ special form makes the function of each
part obvious. The disadvantage of this approach is that the if special form has a very different syn-
tax than a procedure call, which makes code parsing more difficult. By convention, tokens are writ-
ten in boldface. The tokens in the if statement are: if, then, else, and end.

BPFL expressions use infix notation (e.g., 2 > b) instead of the Lisp functional (or prefix)
notation (e.g., (> a b)). This is true of all numerical operators (e.g., +, -) and logical operators
(e.g., >, <). While infix notation is easier to read, it has the disadvantage that ambiguity can exist
in the interpretation of an expression. For example, the expression:

b+c*d
could mean either (b + c¢) * dorb + (c * d).InLisp, no such ambiguity exists. The first

meaning is writtenas (* (+ b c) d) and the second meaning is written (+ b (* ¢ d)).
BPFL uses the standard rules of operator precedence to resolve ambiguity in expressions. Parenthe-
ses may be used to override the operator precedence rules.

Assignment in Lisp is carried out with the set £ function. The code fragment

(setf ¢ (* a b))
assigns the value of a * b to the variable c. BPFL replaces the assignment special form setf

with a conventional assignment statement. BPFL code for the same operation is:

147

c :=a * b;

Note also that BPFL uses semicolons (“ ;) to separate procedure calls and statements. For exam-
ple, the semicolons in

a :=4d * e;
format(t, *a = ~s~%7, a):

separate the assignment statement from the procedure call. Separators are not required in Lisp.
Common Lisp uses keywords both as argument names and as self-evaluating symbols.

Keywords are symbols that begin with a colon (e.g., : thickness, :direction). In BPFL, key-

words are used only as self-evaluating symbols. Argument names are specified by symbols that end

with a colon as described in the section on BPFL semantics.

A.z.l Notational Conventions
A number of special notational conventions are used in this document. The notation is de-
rived from Common Lisp: The Reference [3]. Procedures, variables, named constants and state-
ments are described in entries using a distinctive typographical format. An example of an entry is
shown in Figure A-1. The first line of each entry is a header line. On the left-hand side of the header
line is the entry name and on the right-hand side is the entry type (i.e., procedure, variable,
constant,definition,or statement). Each entry is followed by a list of one or more of the
following sections:
1. Usage. This section contains a template showing how the entry is used. Entries
for data types do not usually include a Usage section. More information about
the syntax of usage sections is given below.
2. Description. This section describes the entry. Every entry has a description
section.
3. Examples. This section contains examples of code illustrating how the entry is
used. More information about examples is given below.
4. See Also. This section contains references to other entries that either assist in
understanding the current entry or have closely-related functionality.
The usage section describes the way a statement or procedure is used. Literal code is pre-
sented in courier (e.g., the name of a procedure). Tokens are printed in bold-courier (e.g.,

the with-1lot, do and end tokens used in the with-2lot statement.). [talic is used to indicate

148

placeholders that are replaced with literal BPFL code(e.g., lot-spec in with-1ot). Placeholder
names are used for illustration. They are referred to in the description section for the entry.
The usage section uses the following special characters to represent optional and repeating
elements of an entry:
1. Brackets ([]) contain optional arguments; what is inside may appear zero or
one times.
2. Braces ({}) parenthesize what they contain, but if followed by a *, the con-
tents may appear zero or more times, and if followed by a +, may appear one
or more times.
3. A vertical bar | separates mutually-exclusive choices within braces or brack-
ets.

The examples section contains samples of code to illustrate the use of the construct de-

with-lot [Statement]
Usage with-lot lot-spec do
{operation; } +
ond;

Description With-1lot is used to evaluate operations with the current lot set to the lots
specified in lot-spec. Lot-spec is either a quoted symbol that is the name of a lot, a quoted
list of lot names, or a variable whose value is a lot.

Examples
with-lot 'cmos do
std-wet-oxidation(time: {9 min}, temp: {1000 degC}):;
end;
=t
with-lot ' (cmos nwell) do
std-nitride-deposition(thickness: {1000 Angstrom});
end;
=t
1l := lot('product);
= #<Lot>
with-lot 1 do
begin
measure-oxide-thickness();
etch-oxide();
end;
=t

Figure A-1: Example entry.

149

scribed in the entry. They are intended to show the features and use of the construct and do not nec-
essarily represent the best programming style. The character = represents evaluation. For
example, the entry:

2 + 5
= 7

means that the sample code 2 + 5 evaluatesto 7.
Sometimes the result of evaluation is an error. The notation used to indicate an error is the
word ERROR. For example,

Examples 5 / 0
= ERROR .
Occasionally values are printed, and the notation used to indicate what is printed is the word

PRINTS. For example,

Examples format(t, "Print some output®);
=» PRINTS Print some output
Sometimes the result of evaluation is a complex structure or object. In general, objects are

represented by:

#<object-class [attributes) >
Object-class is the name of the class to which the object belongs. Antributes is an optional list of

one or more attributes of the object. Attributes are usually shown if they are an aid to identifying
the purpose of an object. For example, in the following code fragment:

Examples (lot 'product)
= #<lot :id 5>

the result of the evaluation is a 1ot object with id of 5.
A.3 Data Types
BPFL supports primitive built-in data types such as integers and constructors that can cre-

ate composite or structured data types such as lists.

A3.1 Primitive Data Types
The primitive data types supported by BPFL are all available in Common Lisp. For a fur-

ther discussion of the data types discussed in this section, see Common Lisp: The Language, chaptér
2.

integer [Data type]

Description The integer data type is intended to represent mathematical integers.

150

Examples 0, 1, +256, -10000

ratio [Data type]

Description The ratio data type allows the exact representation of numbers such as one-third.
The denominator must be strictly positive and have no leading sign.

Examples 1/2, 1/3, -7/8, 15/17

float [Data typel

Description BPFL supports the single and double-precision formats described in Common
Lisp: The Langudge.
Examples 0.0, OE+0, 3.134-5, 3.0le-1, -0.0001le+S.

boolean [Data Type]

Description The boolean data type has two possible values t and nil, corresponding to the

 Boolean va}ues true and false respectively.

symbol : [Data typel

Description A symbol is a sequence of printable characters without any special delimiters.
The characters may be alphanumeric or any characterin the string “-* /@$%"°? 1 &_<>.~".
Symbol names may have any number of characters. Anything that cannot be interpreted as
a number is a symbol. Symbols are used to name variables and procedures.

The quote function can be used to retﬁm the symbeol itself, rather than the result of
evaluating the symbol. Quote can be abbreviated to the straight quote character (')

Examples oxidation, x, wombat, std-wet-oxidation, lumberjack
See Also quote

keyword - [Data type]

Description A keyword has the same syntax as a symbol, except that the first character of its
print representation is a colon (* :**). Keywords differ from symbols in that they seif-eval-
uate, meaning that the value returned by a keyword is the keyword itself.

Examples :oxidation, :zorkmid, :thickness, :gbd

string [Data type]

Description A string is a sequence of printable characters delimited by double quotes ().

A printable character is any non-control character in the ASCII character set. If the back-

151

slash character (“\"") appears in a string, the following character is included in the string,
even if that character is a backslash or a double quote. The case of characters is significant.
Control characters (including newlines) appearing in strings are ignored.

Examples *string®, “*Hi!\"* °I'm a lumberjack and I'm ok"
A32 Data Type Constructors

These types have structures and print representations that include other data types.

list (Data type]

Description A list is printed as a left parenthesis (“ (™) followed by zero or more values of
valid BPFL types, followed by a right parenthesis (*) ”). Elements of the list are separated
from one another by commas (*, *). Newlines between elements are ignored. The empty
list (() ™) is synonymous with the symbol nil. Parentheses need not be delimited by
spaces.

Examples- (a, b, ¢), (1,2,3), (), (a,(b,c)) ((a))

complex numbers [Data type]

Description BPFL represents complex numbers in cartesian form, with non-complex real and
imaginary parts. Parts may be integer, rational or float.
Complex numbers are represented by the characters #C followed by a list of the real
and complex parts. '

Examples #C(1, 2), #C(1.2, 5.6), #C(1/2, 1/2)

unit (Data type]

Description A unit value consists of a magnitude (an integer, ratio, floating point, or complex
number) and a unit expression (a symbol). The units supported by BPFL are based on
Syst2me International (SI). Si uses seven base units: m (meter), kg (kilogram), s (second),
A (ampere), K (kelvins), cd (candela), and mol (mole). BPFL contains definitions for the
seven base units and a large number of compound units derived from these base units. Com-
pound units are specified by a magnitude and a unit expression Forexample, 1 angstrom
is 1.0x10™*° m. Units multiplied together can be separated by a dash (**-") or an asterisk
(“*"). For example, “ohm-m" (a unit of resistivity) is ohm-m. The unit designator should

contain one slash (*/”) to separate the numerator and denominator units. For example,

152

“meters per second” is m/ s. If there is no numerator part, (e.g., “per second”), the unit des-
ignator begins with a slash (e.g., /sec). Unit prefixes are letters that can be typed in front
of a unit name to indicate powers of ten. For example, mA means “milliampere” (1073 a).
All SI unit prefixes are supported except | which is represented by u. Unit exponentiation
is represented by a unit followed by a circumflex (*“~”) and a real number exponent. The
unit “square meter” is represented as m*2. Parentheses can be used to group units for ex-
ponentiation and division (e.g., kg*m”~2/ (A*s”3)). A unit value is printed as {number
unit-expression} . Two unit-expressions that have the same dimensionality (i.e., that have
identical representations in base units) are dimensionally consistent. For example, A*ohm
and V have the same base unit representation (i.e., kg*m~2/ (A*s”3)) and are dimension-
ally consistent. Dimensionally consistent units can be compared, added and subtracted.

Examples {1000 A), {20 um}, {10.1 Mohm}, {2.99792el0 cm/s},
{0.0259 vV}, (1.05458e-34 J-s)

interval [Data type]

Description An interval value consists of two numbers or two dimensionally-consistent unit
values. Complex number interval types are not supported. The first item in an interval
should be less than or equal to the second item. An interval is printed as (item-1, item-
2]. The comma separating the items is optional, but is always printed on output.

Examples (o, 1/21, [-1.0, 1.0], ({10 um}, {20 um}]

object : [Data type]

Description An object contains one or more named subparts called slots. Each slot may con-
tain a value with a different type. Objects may be assigned to variables, passed as argu-
ments to procedures, or returned as the result of a procedure. An object belongs to a class,
which defines the slor names and method names. If a class defines a particular slot, then
each instance of that class (i.e., each object belonging to that class) can store a value under
the name of that slot. Certain procedures, called access procedures, return values stored in
the slots of an object.

Methods are procedures. Several related classes will use the same method name, but
each will bind a different procedure to that name. Thus, when the method name is invoked

on an object, the procedure used will be determined by the class of the object. Many, but

153

not all, BPFL objects are stored in a database. Some predefined classes and objects are sup-
plied in the language.
Objects have the following print representation:

#<object-class [attributes] > .
Object-class is the name of the class to which the object belongs. A#ributes is an optional

list of one or more attributes of the object. Attributes are usually written if they are an aid

to identifying the purpose of an object. The print representation of an object is not generally

readable, meaning that the print representation does not normally contain enough informa-
tion to allow BPFL to reconstruct the object from the print representation. All objects have

a print-object method defined on them.

Examples Make a PIF snapshot
ss := bare-silicon-wafer (resistivity: [{100 ohm-cm} {1000 ohm-cm}],
dope: ‘'n, orientation: ‘100,
quality: ‘product);
= #<Snapshot>
Make a wafer object
w := make-wafer(scribe: °“MONTY", snapshot: ss);
= #<Wafer :id 1>
format (t, "Wafer is ~a", w);
= Wafer is #<Wafer :id 1>
format (t, “Wafer is ~a®", wafer-scribe(w));
= PRINTS Wafer is MONTY
See Also snapshots, segments, attributes, classes and methods

A3.3 Classes and Methods
BPFL supports user-defined classes and methods.

defclass [Definition]
Usage defclass name
[docstr]
(inherits (superclass-list)]
slots {[classvar] name [:= exprl;}+
end;

Description Defclass defines a class called name. Docstr is an optional documentation
string. Any number of superclasses from which this class inherits may be specified. Inher-
itance precedenée is determined by the order in which the superclass-list names are sup-
plied. Any number of slots may be defined. Each slot has a name and an optional initial

value expr that is used to set the value of the slot if it is not specified at the time of class

154

instance creation. If the classvar keyword is specified for a slot, that slot is a class vari-
able for the class (i.e., the slot has the same value for all instances of the class). Slots are
accessed by an accessor function whose name is the concatenation of the class name with
the slot name, separated by a hyphen. For examplé, in a class named moscv a slot named
cmin can be accessed by the moscv-cmin function.

Defclass defines two default methods for every class. Print -object prints a
nonreadable version of a class instance, and make-instance creates a class instance.

Examples

defclass moscv
*MOS capacitance voltage data®
slots na; /* silicon doping conc */
dielectric := #m(oxide); /* insulator material */
measured; /* measured (i,v) pairs */
frequency; /* Frequency of measurement */
end;
=t
X := make-instance(‘moscv, na: {1.0el3 /cm™2});
= #<moscv>
moscv-dielectric(x);
= #<material oxide>

defmethod [Declaration]
Usage defmethod name (class-name, arg-list)
[let (var [:= expr];}+]
begin
{operation; } +
end;

Description Defmethod defines a method called name on the class named class-name. The
method takes the arguments specified in arg-list. During the method execution, the class

instance on which the method is executed is bound to the local variable self.
Examples

defmethod measure (moscv, frequency: = {1 Hz});
begin .
with-equipment e of-type 'cvprobe-station do
moscv-measured(self) :=
run-recipe (e, ‘'measure-cv, frequency: frequency);
end;
moscv-frequency(self) := frequency;
end;
X := make-instance('moscv, na: {1l.0el3 /cm”™2});
= #<moscv>
neasure(x, frequency: {1 kHz});
= {1 kHz)
moscv-measured (x)

155

= #i<array>
A4 Program Structure
Statements are BPFL constructs that control the order of code execution. Every BPFL
statement corresponds to a Common Lisp function éall, special form or macro that is created when

the BPFL code is parsed to Lisp. The rest of this section introduces each of the BPFL statements.

constrain [Statement]

Usage constrain
{operation; } +
{when expr do
{operation; }+
end; }+
end;

Description Executes operations in a context where various constraints are enforced. If the

constraint is violated, the operations in the appropriate when clause are executed.

Examples /* A fatuous example */
constrain
wet-oxidation(time: (40 min}, temperature: {1000 degC});
sleep({1 day}); /* Stop the run for one day */
pattern(mask-name: ‘'NWELL);

when max-time-between(‘'wet-oxidation, ‘'pattern, {1 hr}) do
halt-run(®"Constraint violated!®);

end;
‘and ;
= PRINTS Constraint violated!
for-each [Statement]
Usage . for-each var in list do .
{operation; } +
end;

Description Executes the operations once for each element of /is¢. During the first iteration of

the operations, var is bound to the first element of /is¢. During subsequent iterations, var is

bound to subsequent elements.
Examples

let result := nil;

begin

for-each x in '("abc®, °fumble", “test") do
push(length(x), result);
end;
result;
end;
= (4, 6, 3)

156

handler-case [Statement]

Usage handler-case
.{operation; } +
(on-exception var := condition-type do
{operation ; } +
end;}
end;

Description Handler-case executes statements in a context where various specific excep-

) tion-handlers are defined. If during the execution of the operations a condition is signalled
for which there is an appropriate exception clause defined (i.e., the condition has type con-
dition-type), then the exception-handler for that condition is executed. During execution of
the handler, the variable var is bound to the condition.

Examples
defcondition tylan-error((), program, step-number);
= #<condition>
handler-case)
raise-exception('test, program: "SWETOXB", step-number: 10);
on-exception c. := test do .
format (nil, "Error during furnace run, recipe ~a, step ~a."
tylan-error-program(c), tylan-error-program(c));
aend;
end;
= "Error during furnace run, recipe SWETOXB, step 10.*
See Also defcondition

if ' [Statement]

Usage if expression then
{operation; } +
[else
{operation; }+1]
end;

Description Evaluates and retumns the result of the operations following then if expression
is true, otherwise evaluates and returns the result of the operations following else.

Examples
nominal := [1, 2];
if interval-p(nominal) then
make-interval (0.5 * interval-min(nominal),
2.0 * interval-max(nominal))
else
make-interval(0.5 * nominal, 2.0 * nominal);
end;
= [0.5, 4]

157

let [Statement]

Usage let (var := expr;)+
- bagin
{operation; } +
end;

Description Let is used to evaluate operations within the context of specific variable bind-
ings. Let returns the value retumed by the last operation. Any number of variable bindings
may be established. Var is the name of the variable to be bound, and expr is an expression
that is evaluated to establish the value of var.

Examples
let t := (0.1 um};
etch-rate := {10 nm/min};
etch-time := nil;
begin
etch-time := oxide-thickness / oxide-etch-rate;
format (nil, "Etch time is ~s”,etch-time);
end;
= PRINTS "Etch time is {10 min}"*

rework-loop) [Statement]

Usage rework
{operation; } +
[rework-test expr]
[rework-prefix operation]
{retry-count expr]
[retry-failure operation]
end;
Description Executes operations in a context where the operations, called the rework body,
may be executed multiple times. Rework has four optional clauses:
1. Rework-test is a procedure that is called after each execution of the rework
body.
2. Rework-prefix is an operation that is executed before the rework body is
executed.
3. Retry-count is an integer expression that returns the maximum number of
iterations of the rework body.
4. Retry-failure is anoperation that is executed if the retry-count is ex-
ceeded.

Before the rework body is executed, the retry-count expression is evaluated. Then the

158

rework body is executed. Next, the rework-test expression is evaluated. If it returns
nil, the rework loop is terminated. If it returns any other value, the following actions oc-
cur: First, retry-count is decremented. If it is less than zero, the retry-£failure op-
eration is executed; otherwise, the rework-prefix operation is executed, and then the
rework-body operation is executed again. The whole process repeats from the rework-
test evaluation. '
A program can force a rework by raising a rework exception.
Examples

lat i := 1;
rework-loop

format(t, *i = ~s,");

i:=1i+1;

rework-test i < 3
retry-count 10

end;
= PRINTS i =1, i = 2
step {Statement]
Usage step name do
{operation; } +
end;

Descriprion Step names the operations enclosed within it for documentation purposes.

Examples /* step-path() returns a string that contains the current
step path for the flow */
step 'NWELL do
step 'IMPLANT do
step-path();
end;
end;
= °"NWELL/IMPLANT"

See Also step-path

view [Statement]
Usage view viewspec do
{operation;)} +
end;

Description View is a shorthand version of viewcase useful when only one view needs to
be specified.
Examples

view simulation do)
/* assign nil lots to test lots */
lot ('NWELL) := nil;

159

lot (*NCH) := nil;
end;

viewcase [Statement]

Usage viewcase
{when viewspec do
{operation ; } +
end; }+
end;

Description Viewcase is used to control the execution of sections of BPFL code depending

on what capabilities an interpreter possesses. A viewspec is a predicate of views.

Examples
viewcase
when fabrication do
develop-resist (mask-name: mask-name);
end;
when simpl do
simpl-op (*DEVL"*, "ERST") ;

end;
end;
See Also view
while [Statement]
Usage while expr do
{operation; } +
end;

Description Executes the operations until expr retuns nil. If expr returns nil when first
evaluated, the operations will not be executed.

Examples
let i :
J
begin
while i > 1 do
j=3+ 1i;
i=1i-1;
end;
format(t, *j = ~s°, 3j);
end;

4
0

~e =e

= PRINTS j = 9

. with-equipment [Statement]

Usage with-equipment var of-type equipment-spec do
{operation; } +
end;

Description With-equipment is used to execute operations with an allocated piece of

160

equipment. An object representing a piece of equipment satisfying equipment-spec is as-
signed to var. The equipment is allocated before the operations are executed and deallocat-
ed after they are completed. Equipment-spec is a symbol representing the name of a piece
of equipment to be allocated.

Examples Assume that a spinner called y1-mt i -spinner has been defined.

with-equipment e of-type 'spinner do
format (nil, "allocated ~s", e);

end;
=» PRINTS "allocated #<equipment :name yl-mti-spinner>*
with-lot [Statement]
Usage with-lot lot-spec do
{operation; } +
end;

Description With-1lot is used to evaluate operations with the current lot set to the lots
specified in lor-spec. Lot-spec is either a quoted symbol that is the name of a lot, a quoted
list of lot names, or a variable whose value is a lot.

Examples
with-lot ‘'cmos do
std-wet-oxidation(time: (9 min}, temp: {1000 degC});
end;
=t
with-lot ' (cmos nwell) do
std-nitride-deposition(thickness: {1000 Angstrom});
end; '
=t
1l := lot('product);
= #<Lot>
with-lot 1 do
begin
measure-oxide-thickness();
etch-oxide(); ’
end;
=t

A4.1 Definitions and Declarations
Definitions and declarations supply information about a program. They are useduto specify
entities in a facility, global variables and constants, and process procedure libraries in a process

flow.

defglobal [Definition]

Usage defglobal name := expr;

161

Description Defglobal is used to define a global variable. Name is a symbol that names the
variable. Expr is evaluated and the value returned by it is stored in the variable.
By convention, the names of global variables begin and end with asterisks (“*”). The
use of global variables in discouraged.

Examples
defglobal *resist-thickness* := {1.0 um};
= (1.0 um}
regsist-thickness := {5 km};
= (5 km}
See Also defconstant

defconstant [Definition]

Usage defconstant name := expr;
Description Defconstant defines a global constant. Name is a symbol that names the con-
stant. Expr is evaluated and the value returned by it is the constant.
By convention, the names of global constants begin and end with asterisks (**”). It is
illegal for a user to attempt to change the value of a constant defined with defconstant,

or to attempt to redefine it using another defconstant.

Examples
defconstant *permittivity* := {8.85418e-14 F/cm}
= {8.85418e-14 F/cm}
permittivity := 12.5;
= ERROR
defconstant *permittivity* (1 / (*permeability* * (*c*)"2));
= ERROR
See Also defglobal

require _ [Declaration]

Usage require (library-name, [version: version]);

Description Require is used to indicate that a BPFL code module uses the procedures and
declarations in a code library. Library-name is the name of the library to"use. Version is a
string or symbol that indicates what version of the library to use. If version is a string con-
taining an RCS revision number or a revision tag, that version of the module is used. If ver-
sion is a symbol, the latest version of the module is used and the symbol determines what
action BPFL will take if a new version of the module is created. The allowable symbols are:

1. Static - the library code is never updated,

162

2. Latest - the library code is always updated whenever a new version is
checked in.

3. Query - whenever a new version of the library is checked in, the user is asked
if the library should be updated.

Examples Use version 1.1 of the 1itho library.

require(litho, version: "1.1%);

Use the ucb-std library with version tag "contact.”

require (ucb-std, version: "contact®);

Use the latest version of 1itho and query the user for updates
require(litho, version: query);

A42 Procedure Calls
Procedure calls are represented as a symbol followed by a list of arguments enclosed in pa-
rentheses. The symbol is the name of the procedure to be called. The list comprises the actual ar-
guments to the procedure. There are two kinds of arguments: positional and named. For positional
arguments, each element in the actual argument list corresponds to an argument in the formal argu-
ment list. The order of the elements of the list is significant when assigning actual valﬁes to the for-
mal arguments of the procedure being called. For named arguments, the elements of the list are used
in pairs. The first member of a pair must be a name. The second member is the argument value. The
argument value is passed as the named argument. The order in which arguments are given is not
significant because formal arguments are assigned by name. It is an error for a named argument to
have a name and no value.
If both positional and named arguments are to be passed to a procedure, then the positional
arguments must appear first in the list.
Examples
lot-name(l); /* one positional argument */
set-union('(a,b,c), '(d,e,f)); /* two positional arguments */
- /* two named arguments */
std-wet-oxidation(time: (11 min}, temp: {900 degC});
/* a positional argument and a named argument */

sort (list, descending: t);
getf (result, :rework); /* two positional arguments */

163

A.4.3 Procedure Definitions

defflow ‘ [Definition]

Usage defflow name ((arg-list})
[docstring]
[let (var := expr;}+]
begin
{operation; } +
end;

Description Defflowis used to define BPFL procedures. The global symbol name is given
a procedure definition. Docstring is an optional string that is used to document the proce-
dure. Local arguments for the procedure may be defined in the optional let statement.
Any number of local variable bindings may be established. Var is the name of the local
variable to be bound, and expr is an expression that is evaluated to establish the value of
var. Arg-list is the formal argument list. The body of the procedure is given by the opera-
tions appearing between the begin and end.

Examples Here is a procedure that computes powers of two using a recursive algorithm.
defflow rpower-of-two (n)

begin
if n = 0 then
1;
else
rpower-of-two(n - 1);
end;

= rpower-of-two
rpower-of-two(3)

= 8
rpower-of-two(24)

= 16777216

A43.1 Argument Declarations

The argument-declaration defines the formal arguments. Positional arguments are speci-
fied by symbols. Named arguments are specified by the name of the argument. The was-sup-
plied function can be used to tell if a named argument has been passed. Was-supplied takes
an argument name and returns the value nil if the argument was not passed, and t if it was.

Named arguments can also have default values. Each named argument variable-specifier
has the following syntax:

name: { = initexpr }

name names the variable. Initexpr is an optional initialization expression that is used to initial-

164

Common Lisp BPFL Description

(a bec) (a,b.c) Three positional arguments.

(&key (a S) b ¢) (a: = 5,b,c) Three named arguments, with a default value of
5 for the first argument.

(a b c &key test) (a,b,c,test:) | Three positional arguments and one named
argument.

(&key (test t test- | (test: = t) One named argument with a defauit value and a

supplied)) was-supplied variable.

Table A-1: Comparison between Common Lisp and BPFL argu-
ment lists.

ize the variable. Further discussion of the argument-declaration list is found in the section on se-
mantics. Table A-1 contains examples of how Common Lisp and BPFL argument lists differ. BPFL

does not support optional positional arguments.

A432 Procedure Body

The procedure body is a boundary that defines the scope of local variables and control flow.
Local variable names do not affect the user of the same name in other procedure bodies. Control of
the execution sequence within the procedure body is restricted to that procedure. Control may not
be transferred to another procedure except by calling a procedure, exiting the current procedure

body, or raising an exception. The procedure body is composed of statements and proéedure calls.

A5 BPFL Semantics

This section describes the semantics of BPFL that must be preserved by all interpreters. In-
terpreters can provide additional functionality as long as these basic semantics are not violated.

| Each step in a process specifies an operation to be carried out according to the process spec-
ification. The interpreter analog to a step is evaluation. Evaluation produces a resuit value for each
expression and statement. For example, the result of evaluating a variable is the value of the vari-
able. The next three sub-sections describe the behavior of constants, variables and procedure calls

when they are evaluated.

AS.1 Constants
Constants evaluate to the value they denote (i.e., they self-evaluate). When a number (e.g.,
integer, ratio, floating point or complex) is evaluated, the result value is just the number (except that
integral valued ratios may be converted to integers during evaluation. Strings, unit values, intervals,
and keywords also self-evaluate. The symbols t and nil, representing the Boolean values true and
165

false respectively, are the only self-evaluating symbols.

AS52 Variables

Any symbol that is not a keyword can have a value. This value is returned when the symbol
is evaluated. If the symbol has not had a value assigned to it, an error results. The assignment op-
erator : = is used to set the value of a symbol. The quote special procedure may be used to retum
a symbol as the result of evaluation rather than the symbol’s assigned value.

There are two classes of variables: local and global. The formal arguments of a procedure
are local variables. Local storage is allocated to hold the value of the actual argument. The same
symbol can be used in different procedures to name a local variable. These variables (i.e., storage
locations) are distinct. Thus, a éymbol has an assigned value for each procedure that it is used in. A

value must be assigned in each procedure before the variable can be used.

AS5.3 Procedure Calls

There are two types of procedures that can be called: built-in procedures (i.e., those imple-
mented directly by an interpreter, such as user-dialog) and user-defined procedure (i.e., a pro-
cedure defined by def £ 1ow). The actual arguments to a procedure are determined in the same way
for all types of procedures, except for special built-in procedures.

The evaluation of a procedure call is composed of the following steps:

1. Evaluate actual arguments,

2. Determinate the procedure to be called,

3. Initialize formal arguments and local variables, and

4. Execute the procedure body.

Each argument is evaluated and the result becomes an argument to the procedure. In the case of
named arguments, only the value is evaluated. The division between positional and named argu-
ments is determined before evaluation begins (i.e., it is syntactically determined).

If the procedure name is not recognized by the interpreter as a built-in procedure, it is as-
sumed to be a user-defined procedure. If no user-defined procedure with that name exists, an error
is raised.

Once a procedure body has been found for execution, the actual arguments are assigned to

the formal arguments of the procedure. BPFL argument passing is almost identical to Common Lisp

166

argument passing, with one difference. The was-supplied function is used to determine if a
named variable was passed to a procedure. Was-supplied takes the name of an argument and
retumns t if it was passed and nil otherwise. Comnion Lisp was-supplied variables perform the
same function.

After the formal arguments have been initialized, the local variables defined in the let part
of the def £ 1ow are initialized in order of specification. If an initialization expression is given, the
operation is evaluated and the result is used to initialize the variable. Otherwise, the variable is ini-
tialized to nil. Initialization expressions may reference any local variable (or formal argument)
that has already been initialized.

Once the arguments and local variables have been initialized, the procedure is evaluated.

When evaluation of the procedure body is complete, the procedure returns.

AS4 Attributes

Objects in BPFL have attributes. For example, a mask has a 1ocat ion attribute. Many
objects in BPFL form a hierarchy (e.g., materials and equipment). Objects in a hierarchy inherit at-
tributes from their parents or superclasses. For example, in the material definitions:

defmaterial silicon ((), atomic-weight: 28);
defmaterial si ((silicon), monocrystal;ine: t);
defmaterial si29 ((si), atomic-weight: 29);

The silicon material has a single attribute at omic-weight with a value of 28. Si has two
attributes, at omic-weight and monocrystalline, with values 28 and t respectively. Si29
also has two attributes, but the value for at omic-weight is 29, because the value supplied in the
definition for si29 overrides the value inherited from si.

The above example is for simple attributes. Simple attributes have just a single value asso-
ciated with them. For example the integer 28 is the value for the atomic-weight attribute for
si. Attributes can also be complex. Complex attributes have attributes attached to them. For exam-
ple, in the equipment definition:

defequipment spinner ((i.
recipes: (spin-on-resist: (frame: spinner),

strip-resist: (frame: spinner),
develop-resist: (frame: spinner, spin-dry: t))):

spinner is an equipment definition with one attribute, recipes. Recipes has three attributes:

spin-on-resist, strip-resist, and develop-resist. Each of these attributes in tum

167

has attributes. Spin-on-resist, strip-resist and develop-resist all have frame at-
tributes, and develop-resist also has a spin-dry attribute.

Complex attributes inherit recursivel)". For example, if another piece of equipment is de-

defequipment yl-mti-spinner ((spinner),
recipes: (spin-on-resist: (program: 1, frame: mti-spin),
strip-resist: (program: 3),
develop-resist: (program: 70)));

recipes still has three attributes (i.e., spin-on-resist, strip-resist, and develop-
resist), but each of those attributes has a new attribute named program. The frame attribute
of spin-on-resist has thé value mti-spin.

Suppose a BPFL procedure defines two material instances!:

ml := #m(poly nominal-thickness: {100 nm},
dopant: #m(phosphorus);

m2 := #m(poly nominal-thickness: {200 nm)}
dopant: #m(phosphorus));

Comparing the two materials with the = operator returns ni 1, because the materials have different
values for the nominal -thickness attribute. However, if m2 is defined as

m2 = #m(poly dopant: #m(phosphorus))
thenml = m2 retumns t, because ml and m2 have identical values for attributes that both of them

possess.

A.6 Wafer State Representation

BPFL maintains wafer-state representation by using a version of the Profile Interchange
Format (PIF [4]). The state of a wafer is represented by a snapshot. Snapshots are composed of
three types of objects: boundaries, segments and attributes. Snapshots are also objects.

Attributes have two slots: a name and a value. The value stored in an attribute can be of any
type. Boundaries have two slots: upper and lower. These contain pointers to segments above and
below the boundary, Segments have no slots; they are objects to which attributes and boundaries
are attached by reference. The association between segments, attributes and boundaries is done with
a snapshot. Snapshots have four slots. Parent is a pointer to the snapshot that was used in the cre-

ation of this snapshot. Segments is a list of segments within a snapshot. Antr-hash is a hashtable

! 4m is shorthand for the material procedure that creates material instances.
168

ambient
fi<Segment -1>

A
w

------------ —
§#<An::lncaﬁon8>
g

substrate
#<Segment 4>

Figure A-2: Bubble diagram for sample wafer.
which contains references to all objects in a snapshot. The key to attr-hash is an object (i.e., a

boundary, segment or attribute) and the value returned is a list of attributes and boundaries attached
to the object. Rev-hash is a hash table that maps attributes is a snapshot to the list of objects that the
attributes are attached to.
For example, consider, the snapshot created by the procedure call:
ss := bare-silicon-wafer (

resistivity: [(18 ohm-cm}, {22 ohm-cm}], dope: 'p,
crystal-face: '100, quality: ‘'product);

Figure A-2 shows the PIF bubble diagram for the wafer state represented by the snapshot stored in
the ss variable. The parent sl<’>t of ssisnil, because this is a new snapshot. It would be non-
nil only if the snapshot were a modified version of an older snapshot. This situation arises when

some wafers that share the same snapshot are processed differently from other wafers with the same
snapshot. Table A-2 contains a description of all of the objects in the snapshot. Every object has an

identifier (id) that is unique within a given run. For example, the segment describing the ambi -

Object Description

#<Segment -1> The ambient segment.

#<Snapshot 2> The snapshot describing the wafer.

#<Attr :origin-step 3> | An attribute describing the step-path at which the snapshot was
created.

#<Segment 4> The silicon segment.

#<Boundary 5> The boundary between silicon and ambient .

#<Attr :material 6> The material attribute attached to the silicon segment.

#<Attr :origin-step 7> | An attribute describing the step-path at which the silicon segment
was created.

#<Attr :location 8> The location of the boundary between the silicon and ambient
segments.

Table A-2: Example snapshot objects.

169

Key Vaiue

#<Segment -1> (#<Boundary 5>)

#<Snapshot 2> (#<Attr :origin-step 3>)

#<Attr :origin-step 3> nil

#<Segment 4> (#<Attr :origin-step 7> #<Attr :material 6>
#<Boundary 5>)

#<Boundary 5> (#<Attr :location 8>)

#<Attr :material 6> nil

#<Attr :origin-step 7> |nil

#<Attr :location 8> nil

Table A-3: Attr-hash slot contents.

ent has an id of -1. System-detined objects (such as ambient) have negative ids. System-de-

fined objects are maintained by the BPFL interpreter and the user may not alter them. User-defined
objects are numbered sequentially from 1 upward. For example, the snapshot object has an id of
2. Every time a snapshot or segment is created, the BPFL interpreter attaches an origin-step

attribute to the snapshot or segment. This is done so that the user can see when particular parts of
the snapshot were created.

The segment s slot contains a list of the segments in the snapshot, in reverse order to
which they were created. In this example, segment s has the value (#<Segment 4> #<Seg-
ment -1>).The contents of the at tr-hash slot for the snapshot are shown in Table A-3. For
example, the ambient segment has the boundary between the two segments attached to it, because
the boundary exists between ambient and another segment. Likewise, the snapshot has an ori-
gin-step attribute attached to it.

Table A-4 shows the contents of the rev-hash table. This table contains an entry for ev-
ery attribute in a snapshot. The entry is a list of the objects to which the attribute is attached. This
information can be deduced from the contents of the at tr-hash table, but rev-hash makes

many PIF queries easier to implement.

Key Value
#i<Attr :origin-step 3> g#<Snagshot 2>)
#<Attr :material 6> (#<Segment 4>)

f#i<Attr :origin-step 7> (#<Segment 4>)
#<Attr :location 8> {#<Boundary 5>)

Table A-4: Rev-hash slot contents.

170

Consider executing the PIF operation:

grow-in-lot (#m(substrate), material: #m(oxide),
nominal-thickness: {100 nm});

This operation adds a new segment of oxide above the silicon in the wafer. The new PIF snapshot
for the wafer is shown in Figure A-2. Assuming that the grow-in-1ot operation is applied to
only some of the wafers with the snapshot in Figure A-3, it is necessary to create a new snapshot
for those wafers that are to have oxide grown on them. The result of executing grow-in-1ot cre-
ates a new snapshot #<Snapshot 9>. The parent slot of this snapshot is #<Snapshot 2>.
The new snapshot shares the original attributes of the parent snapshot if possible. Table A-5 lists
the objects for the new snapshot. Note that the ségments and attributes of the parent snapshot are
retained wherever possible. For example, the 1ocat ion attribute describing the boundary be-
tween substrate and oxide in the new snapshot is the same attribute used in the original snap-
shot to describe the boundary between subst rate and ambient, because oxide will only grow
at that boundary. Table A-6 shows the at tr-hash slot for the snapshot after the operation.

As an example of querying the snapshot, suppose we wanted to find all oxide segments
on the surface of the wafer. Since surface segments have the property of being adjacent to the am-
bient segment, one approach to solving this query is to get the value of attached boundaries for

- the ambient segment using the at tr-hash table, and to return the list of segments in the 1ower

ambient
#<Scgment -1>

#<Boundary 14>
g
8
v

oxide
#<Segment 11>

#i<Boundary 16>
g
8
vl

substrate
#<Scgment 4>

Figure A-3: Bubble diagram for sample wafer after oxide growth.

171

Object Description

#<Segment -1> The ambient segment.

#<Segment 4> The silicon segment.

#<Attr :material 6> The material attribute attached to the silicon segment.

#<Attr :origin-step 7> An attribute describing the step-path at which the silicon
segment was created.

#<Attr :location 8> The location of the boundary between the silicon and
oxide segments.

#<Snapshot 9> The snapshot describing the wafer.

#<Attr :origin-step 10> An attribute describing the step-path at which the snapshot
was created.

#<Segment 11> The oxide segment.

#<Attr :material 12> The material attribute attached to the oxide segment.

8<Attr :nominal-thickness 13pThe nominal-thickness attribute afttached to the oxif
segment.

#<Boundary 14> The boundary between oxide and ambient .

#<Attr :origin-step 15> An attribute describing the step-path at which the oxide
segment was created.

#<Boundary 16> The boundary between silicon and oxide.

#<Attr location 17> The location of the boundary between the silicon and
ambient segments.

Table A-5: New snapshot objects.
slot of each boundary. ‘I'he BPFL procedure find-surface-segments-in-1lot performs this

operation on all snapshots for wafers in the current lot:

segs := find-surface-segments-in-lot(ss);
Find-surface-segments can be instructed to return only segments with particular attributes.

Key Value
#<Segment -1> (#<Boundary 14>)
#<Segment 4> (#<Boundary 16> #<Attr :origin-step 7> #<Attr
:material 6>)
#<Attr :material 6> nil
§<Attr :origin-step 7> nil
#<Attr :location 8> nil
#<Snapshot 9> (#<Attr :origin-step 10>)
#<Attr :origin-step 10> nil
#<Segment 11> (#<Boundary 16> #<Attr :origin-step 15>

#<Boundary 14> #<Attr :nominal-thickness 13>
#<Attr :material 12>)

#<Attr :material 12> nil

f#<Attr :nominal- nil

thickness 13>

fi<Boundary 14> (#<Attr location 17>)
f#<Attr :origin-step 15> | nil

| #<Boundary 16> (#<Attr :location 8>)
#<Attr location 17> nil

Table A-6: Attr-hash table for new snapshot.

172

For example, to find all oxide surface segments:

segs := find-surface-segments-in-lot(ss,
material: #m(oxide));

The variable segs contains a list of all oxide surface segments. Ordinarily only one such segment
would exist, but it is possible to restrict the search to find segments at a particular location using
the procedure £ind-surface-segments-at-1location. In general, the userneeds to specify
enough information about the desired segment to ensure that it is unique if only one segment is re-
quired. The procedure pif-attr-val retumns the value associated with any pif attribute. So the
procedure call:

pif-attr-val-in-lot(segs, :nominal-thickness, ss);
retumns a list of all the nominal-thickness attributes for the surface oxide segments. If only

one of the values in the list is required (e.g., the maximum oxide thickness on the surface), a pro-
cedure can be used to obtain the desired value (e.g., the max procedure could be used to extract the
maximum value from the list).

The remainder of this section lists BPFL procedures for creating, modifying and querying
snapshots and PIF objects.

A.6.1 Creation and Manipulation of PIF objects.

make-root-snapshot [Procedure]

Usage make-root-snapshot ()
Description Creates a PIF description of a snapshot with no objects. Objects must be created

and attached using other PIF procedures

make-segment [Procedure]

Usage make-segment ()
Description Creates a PIF segment. The segment is not part of any snapshot until explicitly
attached using add-segment.

make-boundary [Procedure]

Usage make-boundary (segl, seg2);

Description Creates a boundary between the two segments segl and seg2.

173

make-pif-attr

[Procedure]

Usage make-pif-attr (name, value);

Description Creates a pif attribute with the specified name and value.

snapshot-p [Procedure]
pif-attr-p [Procedure]
segment-p (Procedure]
boundary-p {Procedure]
pif-object-p [Procedure]

Usage snapshot-p(arg) ;
pif-attr-pl(arg):;
segment-p(arg) ;
boundary-p(arg) ;
pif-object-plarg);

Description These procedures return t if arg is of the appropriate type; otherwise, retumnil.

For example, snapshot-p retums t if arg is a snapshot. Pif-object-p retumns t if

arg is a snapshot, pif attribute, segment or boundary.
Examples

ss := make-root-ss();
= #<snapshot>
snapshot-p(ss);

=t
boundary-p(ss);
= nil
pif-object-p(ss);
=t
add-segment [Procedure]
Usage add-segment (ss, seg);
Description Adds the segment seg to the snapshot ss.
bind-boundary [Procedure]

Usage bind-boundary(ss, b [,oldb]);

Description Adds the boundary b to the snapshot ss. If a third argument oldb, which must be

aboundary in ss, is speciﬁed, then b replaces oldb in the snapshot. The segments above and

below oldb are attached to b.

174

snapshot-parent [Reader]

snapshot-attr-hash ’ [Reader]

snapshot-rev-hash [Reader]

snapshot -segments [Reader]
Usage snapshot-parent (ss) ;

snapshot-attr-hash(ss) ;
snapshot-rev-hash(ss) ;
snapshot-objects (ss) ;

Description These procedures return the appropriate slots for the snapshot ss.

snapshot-objects {Procedure]

Usage snapshot-objects (ss) ;

Description This procedure returns a list of all of the PIF objects in the snapshot ss.

object-in-ss [Procedure]

Usage object-in-ss (ss, 0bj) ;

Description Retums t if the pif object obj is in the snapshot ss, otherwise nil.

bound-pif-attrs [Procedure]

Usage bound-pif-attrs(ss, obj);

Description Retums a list of all pif objects in snapshot ss that are bound to the pif object obj.

boundary-upper [Reader]
boundary-lower [Reader]
Usage boundary-upper (b) ;

boundary-lower (b) ;

Description These procedures return the appropriate slots for the boundary b.

pif-attr-name (Reader]
pif-attr-value [Reader]
Usage pif-attr-name (attr) ;

pif-attr-value(attr) ;

Description These procedures return the appropriate slots for the pif attribute attr.

pif-attr-val (Acessor]

Usage pif-attr-val(ss, obj, name, [, defaultl);
pif-attr-val(ss, obj, name) := val;

Description This procedure accesses the value of an attribute bound to a pif object.

175

The first usage retumns the value of the attribute named name attached to the PIF object obj
in the snapshot ss. If no such attribute exists, the value default is retarned. If default is not
supplied and the attribute does not exist, nil is returned.

The second usage sets the value of the specified attribute to val.

remove-pif-object [Procedure]

Usage remove-pif-object (ss, obj);
Description ‘This procedure removes the PIF object obj from the snapshot ss. Obj and all at-

tributes attached to it are removed.

A.62 Snapshot modification

etch-segment [Procedure]
etch-segment-in-1lot [Procedure]
Usage etch-segment (ss, s, loc);

Description Etch-segment removes the segment s at the location /oc in the snapshot ss.

lot-snapshots [Procedure]

Usage lot-snapshots ({lot-name}) ;
Description Retums a list of snapshots used by wafers in the specified lots. If no lot names

are supplied, the current lot is assumed.

segments-in-1lot [Procedure]

Usage segments-in-lot ({lot-name}) ;
Description Retumns a list of all segments in snapshots for wafers in the specified lots. If no

lot name is supplied, the current lot is assumed.

176

find-segments [Procedure]

find-surface-segments [Procedure]

find-surface-segments-at-location [Procedure]

find-segments-in-1lot [Procedure]

find-surface-segments-in-lot [Procedure]

find-surface-segments-at-location-in-lot [Procedure]
Usage find-segments (ss (,name: value}*);

find-surface-segments(ss (,name: value}*);
find-surface-segments-at-location(ss, loc {,name: value}*);
find-segments-in-1lot (name: value {.,name: value}*) ;
find-surface-segments-in-lot (name: value {,name: value}*);
find-surface-segments-at-location-in-lot (loc,

name: value {,name: value}*); .

Description These procedures retum a list of segments with attributes matching those sup-
plied. Any number of attribute name, value pairs may be passed to these procedures.
Find-segments retumns all segments in the snapshot ss with attributes named name and
value value. Find-surface-segments retums all segments in the snapshot with the
specified attributes on the surface of the wafer. Find-surface-segments-at-loca-
tion retums all surface segments at the location loc.

Find-segments-in-1lot, find-surface-segments-in-1lot,and find-
surface-segments-at-location-in-lot areidentical to the above procedures

but operate on all snapshots in the current lot.

deposit-in-lot [Procedure]

Usage deposit-in-lot(loc {,name: value}*) ;
Description This procedure deposits a segment on all wafers in the lot at the location /oc. The
segment will have the specified attributes attached to it.

grow-in-lot [Procedure]

Usage grow-in-lot (mat (,name: value}*);

Description This procedure simulates growing a segment on top of segments with material at-

tribute mat.

etch-material-in-1lot [Procedure]

Usage etch-material-in-lot (mat, loc) ;

Description This procedure etches all surface segments of material mat. The segments are re-

177

“Slot Description
snapshot Pointer to PIF snapshot describing the wafer state.

id integer uniquely identifying the wafer in a fab.
index Integer uniquely identifying the wafer in a run.
scribe String containing the wafer scribe

Table A-7: Wafer class description.

moved at location /oc.

A.7 Wafer and Lot Specification

BPFL represents wafers using the wafer class described in Table A-7. Wéf er has four
slots:

1. snapshot is a pointer to a PIF snapshot describing the wafer (see section

A.6.1).,

2. idis an integer that uniquely identifies the wafer in the fab,

3. index is an integer that uniquely identifies the wafer in the run, and

4. scribe is a string containing the wafer name.

Wafers are created using the initialize-wafer procedure. For example,

w := initialize-wafer (snapshot: make-root-ss(),
scribe: °"CMOS-1");

creates a wafer with a new snapshot and a scribe of "*CMOS-1." Allocate-wafers does not
have an index argument, and the index and id slots in the wafer class are generated automat-
ically by the BPFL interpreter. Once a wafer is created, a user may not change any of the values in
the slots. Normally, wafers are created using the allocate-1lot procedure described below.

Lots are represented using the 1ot class shown in Table A-8. Lot has two slots:

1. id, which contains a unique integer for the lot, and

2. bits, which is an integer that is used to indicate which wafers are present in

the lot.

The least-significant bit in bits is used to represent the wafer with index of 1. The next least-

Slot Description
| id Integer uniguely identifying the lot.
bits Integer regresenting wafers present in the lot.

Table A-8: Lot class description

178

significant bit is used to represent the wafer with index of 2 and so forth. For example, if the value
of bits is 35, the lot contains the wafers with indices 1, 2, and 6 (35 in binary is 100011). Lots
are created using the allocate-lot procedure. Every lot is also associated with a name, which

is a symbol used to name the lot.

initialize-wafer [Procedure]

Usage initialize-wafer(scribe: string,
snapshot: ss5);

Description This procedure creates a wafer object with the specified scribe and snapshot

slots.

Examples
w := initialize-wafer(scribe: “TEST",
snapshot: bare-silicon-wafer());
= #<Wafer :id 1>
wafer-scribe(w);

= "TEST®
wafer-id [Reader]
wafer-index [Reader]
wafer-scribe [{Reader]
wafer-snapshot [Reader]
Usage wafer-id(w);

wafer-index(w) ;
wafer;-scribe (w);
wafer-snapshot (w) ;

Description These procedures return the values in the id, scribe and snapshot slots for
the wafer object w respectively.
Examples

w := initialize-wafer(scribe: “TEST",
snapshot: bare-silicon-wafer());
= #<Wafer :id 1>
wafer-snapshot (w) ;
= #<Snapshot :id 20>
wafer-id(w);

=1
indexed-wafer [Procedure]
Usage indexed-wafer (i) ;

Description 'This procedure returns the wafer with the index i.

Examples
indexed-wafer(l);
= #<Wafer :id 1>

179

deallocate-wafer [Procedure]

Usage deallocate-wafer(w) ;

Description Deallocate-wafer removes the wafer w from the wafers in a run

allocate-lot [Procedure]

Usage allocate-lot (names: lot-name-list,

sizes: lot-size-list,
snapshot: ss);

Description ‘This procedure allocates wafers and creates lots using the wafers. Lot-name-list
is a list of symbols that are used to name the lots. Lot-size-list is a list of integers giving the
size of each of the created lots. Lot-name-list and lot-size-list must be the same length. The
n'l element of each list gives the name and size of the n' lot, respectively. Ss is a snapshot
that specifies the initial state of the wafers. Allocate-1lot retumns a list of the created
lots.

Allocate-1lot is intended to be a high-level interface for users to enter the names
of BPFL wafers. Other procedures are provided to move wafers between lots.

Examples allocate-lot (names: '(cmos, nwell, nch),

sizes: '(20, 1, 1),

snapshot: bare-silicon-wafer());
= (#<lot :id 1> #<lot :id 2> #<lot :id 3>)

lot-name [Reader]

lot-id [Reader]

lot-bits [Reader]
Usage lot-name (lot) ;

lot-id(lot) ;
lot-bits(lot) ;

Description These procedures return the respective attribute for the lot object.

create-lot [Procedure]

Usage create-lot (symbol) ;

Description Create-lot allocates anew empty lot named symbol. It is an error if a lot with
the name symbol already exists.

Examples.

create-lot ('wombat) ;
=» #<lot :id 5>
create-lot('wombat) ;

180

= ERROR

lot [Procedure]

Usage lot (symbol) ;

Description
This procedure returns the 1ot object for the lot with name symbol. If no such lot exists,
nil is returned.

Examples

lot('cmos);
= #<lot :id 1>

lot('foo0);
= nil
sublot-p [Procedure]
Usage sublot-p(lotl, lot2);

Description This procedure returns t if Jot] is a sublot of lot2. Lotl 1 is considered to be a sub-

lot of lot2 if every wafer in lot! is also in lor2.

lot-from-spec [Procedure]

Usage lot-from-spec([name: symboll, {lot | wafer} {,lot | ,wafer}*);

Description This procedure creates a new lot from a list of 1ot and wafers. If a name argument
is passed, the name of the new lot is symbol.

Examples

lot-from-spec(name: 'foo, lot('cmos), lot('nwell));
= #<lot :id 4>

sublot-p(lot(‘'cmos), lot('foo));
=t

current-lot [Procedure]

Usage current-lot();
Description This procedure returns a list of the names of the lots in the current lot.

Examples
with-lot '(cmos, nwell) do
current-lot();

end;
=» (cmos, nwell)
deallocate-lot [Procedure]
Usage deallocate-1ot (lot) ;

Description This procedure deallocates the specified lot.
181

Examples
1 := lot('cmos);
= #<lot :id 1>
deallocate-lot(1l);
= t
lot ('cmos);
= nil

lot-indexes . [Procedure]

Usage lot-indexes(lot) ;

Description ‘This procedure returns a list of all the indexes of the wafers in lot.

Examples
1l := lot(‘'cmos);
= #<lot :id 1>
lot-indexes (1) ;
= (1, 2, 3 ... 19, 20)

add-to-lot - (Procedurel]

Usage add-to-lot (I, {(,lot | ,wafer}+);
Description Add-to-lot adds the supplied wafer or lot objects to the lot /.
Examples

lot-indexes (lot('cmos));

= (1, 2, 3 ... 19, 20)
lot-indexes (lot('nwell));

= (21, 25)
add-to-lot (lot ('cmos), lot('nwell));

= (1, 2, 3 ... 19, 20, 21, 25)

split-lot . [Procedure]

Usage split-lot(l, into: ({(,lot-name}+));
split-lot(l, into: ((,lot-name, lot-size}+)) ;

Description Split-1lot splits the lot / into a number of sublots. The sublots can be specified
in two ways. In the first case, a list of lot-names is ‘passed, and the wafers in / are split and -
placed into the lots. The order in which wafers are split is as follows. The first wafer is put
into the first lot. The second wafer is put into the second lot. If there are j lots, the j+1 wafer
in / is put into the first lot, and so forth.

In the second case, a list of lor-names and lot-sizes are supplied. Wafers with the given
names are created and the correct number of wafers is moved into them. It is an error if the
sum of the lot-size arguments does not equal the size of /.

Examples
split-lot('cmos, into: '(high, med, low));

182

= (#<lot :id 4>, #<lot :id 5> #<lot :id 6>)

merge-lots . [Procedure]

Usage merge-lots(lotl, lot2, name: symbol);
Description This procedure creates a new lot named symbol, which includes of all of the wa-
fers in lot] and lot2. Symbol can be the same as the name of lot! or los2, in which case the

new lot replaces the old lot.

subtract-lots [Procedure]

Usage subtract-lots(lotl, lot2, name: symbol);
Description This procedure creates a lot named symbol and fills it with wafers in /ot/ but not
in lor2. Symbol can be the same as the name of lot! or lor2, in which case the new lot re-

places the old lot.

move-sublot [Procedure]

Usage move-sublot (I, from, t0);

Description This procedure removes the wafers in lot / from the lot from into the lot to.

pick-wafer () [Procedure]
pick-test-wafer() [Procedure]
Usage pick-wafer();

pick-test-wafer();
Description These procedures return a wafer from the current lot. Pick-wafer retumns
any wafer from the current lot, whereas pick-test -wafer retumns a waferin current

but not in product.

A8 Equipment
Equipment is defined using defequipment. Database objects are created to represent

equipment in a facility.

defequipment [Definition]

Usage defequipment name ((superclasses),attributes) ;
Description Defequipment is used to define the interface to fabrication equipment for

BPFL. Name is a symbol used to name the equipment. Superclasses is a list of names of an

183

equipment definition from which attributes will be inherited. Attributes is alist of attribute-

value pairs for the equipment.

Examples

defequipment nanospec ((),
recipes: (measure-oxide-thickness: (frame: nanospec)));

allocate [Procedure]
deallocate [Procedure]
Usage allocate (equipment-spec) ;
deallocate (equip-obj) ;

Description These procedures allocate apd deallocate equipment. Equipment-spec is the
name of an equipment class or a list of names. Allocate retums an object describing a
piece of equipment that is a member of the equipment instances described by equipment-
spec. If no suitable equipment is found, nil is retumed. Deallocate takes an object de-
scribing a piece of equipment and deallocates it. It is an error to deallocate equipment that
is not allocated for the current run.

The use of these procedures in user code is discouraged. With-equipment handles
equipment allocation and deallocation, and guarantees that equipment is deallocated if a
Tun encounters an error.

Examples

X := allocate('spinner);

= #<equipment mti-spinner-1>
deallocate(x);

=t
deallocate(x);

= BRROR

A9 Materials

Materials form a hierarchy. A partial listing of the material hierarchy is shown in Figure A-
4. Each material class in the hierarchy has a unique name that is a BPFL symbol. When a material
class is defined, a parent material is supplied. Materials also have attributes. When a material class
is defined, the new material inherits attributes from its parent. Material definitions also include a
list of default-attributes that can be used to override inherited values or to define new attributes. For
example, the silicon material class is defined as

defmaterial si((), suprem-name: "SILICON"};
defmaterial silicon((si), crystal: t);
defmaterial poly((si), simpl-name: "POLY",

184

si silicon substrate
amorphous-silicon

oxide

dielactric<
- nitride

beron—————--boron11

p-type

n-type phosphorus
arsenic
antimony

gas 02 oxygen
Xd‘y@a
wet-02
n2——nitrogen
h2 = hydrogen
silane
phosphine

metal aluminium

organi resist
acatone
Figure A-4: BPFL material hierarchy.
suprem-name: “POLY");

In this case, the material has parent si, and one attribute crystal. Materials inherit default at-

tributes from their parent, and attributes defined lower down the hierarchy override definitions
higher up. For example, the poly material has suprem-name and simpl-name attributes with | .
the value “POLY." The value of the suprem-name attribute defined for material si has been over-
ridden. '

Once material has been defined, the material procedure may be used to create a material
object. Additional attributes may be attached to the material object, and the default values supplied
in the material definition may be overridden For example, to create a material object of class sil-
icon, the code

material (poly, grain-size: [{1 um}, {10 um}])

creates a poly material object with an additional attribute grain-size. The material procedure may
be abbreviated to #m.

185

defmaterial [Definition]

Usage defmaterial name ((superclasses) ,attributes) ;

Description Defmaterial is used to define a material for use in a process flow. Name is a
symbol used to name the material. Superclassés is a list of the names of material from
which this material inherits attributes. Artributes is a list of attribute names and values.

Examples

/* Material with no superclasses */)
defmaterial silicon ((), atomic-weight: 28);

material [Procedure]
#m [Procedure]

Usage material (name, attributes) ;
#m(name, attributes) ;

Description The material procedure creates a material object of class name and with the
specified attributes. Material may be abbreviated to #m. The material object inherits any

attributes present in the superclasses.

known-material-name [Procedure]

Usage known-material-name (symbol) ;
Description This procedure returns t if symbol is the name of a material class; otherwise nil.

Examples
known-material-name (' foo) ;
= nil
defmaterial ((), foo);
= #<material foo>
known-material-name ("’ foo);

= t
material-attr [Procedure]
Usage material-attr(mat, attr(default]);

Description ‘This procedure returns the value of the attribute arr for the material object mat.
If astr is not an attribute of the material, default is returned. If default is not supplied, nil
is returned.

Examples
defmaterial ((si), poly, grain-size: [{5 um}, {10 um}]);
= #<material poly>
material-attr (#m(poly), :grain-size);
= [(5 um}, (10 um)]

186

material-attr(#m(poly), :foo, 0);

= 0
material-attrs [Prpcedure]
Usage material-attrs(mat) ;

Description This procedure returns the names and values of all attributes of material mat. At-

tributes of the superclasses of mat are not included in the list.

add-material-attrs [Procedure]

Usage add-material-attrs(mat (,attribute-name: attribute-value}+) ;
Description This procedure creates a new material instance of the same class as mat, but with
new attribute names and values as specified. If mar already has an attribute with the same

name as an attribute to be added, the new value replaces the old value

remove-material-attrs [Procedure]

Usage remove-material-attrs (mat (, :attribute-name}+) ;
Description ‘This procedure creates a new material instance of the same class as mat, but with

the specified attributes removed.

material-supers-list [Procedure]

Usage material-supers-1list (mat) ;
Description This procedure returns a list of all of the material classes higher up the material
hierarchy than mat. The first element of list of the material class highest up the hierarchy.

mtrl-class-match (Procedure]

Usage mtrl-class-match(ml, m2);
Description This procedure retumns t if m/ and m2 have the same material class, or if the class

of one is the ancestor of the class of the other: otherwise nil.

Examples
mtrl-primary-match(#m(poly :annealed t), #m(poly)):
=t
mtrl-primary-match(#m(poly), #m(silicon));
=t
mtrl-primary-match(#m(poly), #m(oxide));
= nil

187

material-p [Procedure]

Usage material-p (obj) ;
Description Retums t if obj is a material object; otherwise nil.

Examples
material-p(#m(poly));
=t
m := 56.4;
material-p(m);
= nil

A.10 Masks, Layers, and Locations

A mask is defined using defmask. Masks have the following attributes: dark-field,
type and edge. If dark-fieldis t, the mask is a dark-field mask and it shades that portion of
the mask which is the logical inverse of the layer defining the mask. Type describes the type of
mask, either chrome or emulsion. Edge describes the physical location of the edges of masks.
For example, the clear-field emulsion METL mask is defined as

defmask METL(type: emulsion);
and the chrome dark-field contact-definition mask is defined as:

defmask CONT(dark-field: t, type: chrome);
The edge slot will ultimately be used to interface with a CAD database of mask data, but for now

BPFL permits simple specification of the relationships between masks. This is achieved by speci-
fying whether or not masks intersect (i.e., overlap). The default is that masks intersect, but masks
may be declared to be disjoint (i.e., have no region in common) or one mask may be declaréd to be
contained within another mask. For example, the CONT mask is contained within the METL mask,
(i.e., every part of a wafer covered by CONT is also covered by METL). This fact may be indicated
with the code

declare-contained-mask (CONT, METL);
Masks are declared to be disjoint with the procedure declare-disjoint-mask.

BPFL uses layers to describe regions of the wafer in terms of masks. For example, given a
POLY mask and an ACTV mask:

defmask ACTV(type: emulsion);
defmask POLY(type: emulsion);

a suitable layer to express a region of the wafer that may be probed to determine active-area sheet-

resistance is defined by

188

) deflayer PROBE-ACTIVE(and(ACTV, not(POLY))):
That is, the active area not covered by polysilicon. Whenever a mask is defined using defmask, a

layer with the same name as the mask is also defined.

Layers have four attributes: name, position, edge and location. The layer name is simply
the symbol defining the layer. For example, the name of the layer defined in the above example is
PROBE-ACTIVE. The layer position is the definition of the layer in terms of physical masks. For
example, the position for the layer defined above is and (ACTV, not (POLY)). Layer edges are a
logical expression of the edges of the layer in terms of the edges and areas of the masks making up
the layer. For example, the edge attribute of the PROBE-ACTIVE layer is

OR (AND (ACTV, (EDGE POLY)),AND(NOT (POLY), (EDGE ACTV))
This expression means that the edges of the PROBE-ACTIVE layer are made up of the sum of two

sets of edges. The first set is the edge of the POLY layer inside the ACTV layer (i.e., AND (ACT-
V., (EDGE POLY)). The second set is the edge of the ACTV layer outside the POLY layer (i.e.,
AND (NOT (POLY) , (EDGE ACTV)).

The location slot is very similar to the position slot. The difference is that locations are dy-
namic and their values change depending upon the masks that have been used to expose the wafer.
For example, consider the PROBE-ACTIVE layer definition, and suppose the wafer has been pat-
tened with the ACTV mask but not yet pattemed with the POLY mask. The PROBE-ACTIVE layer
has location attribute

ACTV
because the wafer has not yet been patterned with the POLY mask, so the expressions involving

POLY are ignored. That is, locations are created by evaluating positions with unused masks set to
don’ t-care conditions.

Locations are used for two reasons. First, in PIF wafer-state representations they indicate
where certain properties hold on a wafer. Second, they are used to indicate where measurements
should be taken. For example, a measurement of gate oxide thickness could be expresseq as:

measure-oxide-thickness (location: #1({PROBE-ACTIVE)):;
The location attribute of the layer argument is passed to the user to indicate where the mea-

surement should be taken. The measured value is then stored in the wafer-state representation and

the location is used to indicate where the measurement was taken.

189

BPFL reduces location expressions whenever possible. For example, since CONT is de-
clared to be inside the METL layer, the location expression AND (METL, CONT) is reduced to the
expression CONT, assuming that the wafer has been exposed to the METL and CONT masks. Like-
wise, OR (METL, CONT) is reduced to the expression METL. If layers are disjoint, as are NWELL
and PWELL defined above, the expression AND (NWELL, PWELL) evaluates to nil. Layer reduc-
tion is used whenever possible to simplify location expressions. For example, if a location attribute
evaluates to nil, then that location does not exist on the wafer. This property is used to delete sec-

tions of PIF descriptions that are completely removed during processing.

defmask [Definition]

Usage defmask name [(attributes)] ;

Description Defmask is used to define a mask for use in a process flow. Name is a symbol
used to name the mask. Atributes is an optional list of attributes for the mask. It is expected
that other attributes will be defined to support interfaces to CAD tools such as OCT [5].

Examples Definitions for a clear-field NWELL and POLY masks, and for dark-field CONT mask.
defmask NWELL (location: NWELL);
defmask POLY (location: POLY);
defmask CONT (location: not (CONT));

See Also deflayer

known-mask-name [Procedure]

Usage known-mask-name (symbol) ;
Description Retumns t is symbol is the name of a mask; otherwise nil.

Examples
known-mask-name (' POLY) ;
=t
known-mask-name (' foo) ;
= nil

mask [Procedure]

Usage mask (symbol) ;

Description Returns the mask object with name symbol. It is an error if no such mask object
exists.

Examples
mask (' CONT)

= #<mask CONT>
mask (' foo)

190

= ERROR

mask-name [Reader]

Usage mask-name (m) ;

Description Retumns the name of the mask object m.

Examples
m := mask('POLY);
mask~-name (m) ;
= POLY

mask-attr _ (Procedure]

Usage mask-attr(m, :attr-name) ;
Description Retumns the value of the attribute named attr-name from the mask object m.
Examples

mask-attr (mask('CONT), :dark-field);
=t

mask-attr(mask('CONT), :type);
= emulsion

deflayer : [Definition]

Usage deflayer name ([location]);
Description Deflayer is used to deﬁne a layer for use in a process flow. Name is a symbol
"used to name the layer. Location is an optional location specifier for the layer. This can be
used to define the relationships between layers and masks.

Examples Define a single layer
deflayer NWELL;
deflayer CONT;
deflayer POLY;
Define a layer for probing contact cuts above the well.
deflayer CONT-PROBE and(CONT,NWELL) ;
See Also defmask

known-layer-name (Procedure]

Usage known-layer-name (symbol) ;

Description Retums t if symbol is the name of a layer; otherwise nil.

Examples
known-layer-name (' POLY)
= #<layer POLY>
known-layer-name (' foo)
= nil

191

layer [Procedure]
#1 {Procedure]

Usage layer (symbol) ;
Description Retumns the layer object with name symbol. 1t is an error if symbol is not the name

of a known layer. Layer may be abbreviated as #1.

Examples
layer ('NWELL) ;
= f#i<layer NWELL>

#1('POLY);
= f#i<layer POLY>
#1(*'foo);
=> ERROR
merge-layers [Procedure]
intersect-layers [Procedure]
invert-layer [Procedure]
Usage merge-layers (layer (, layer}+);

intersect-layers (layer {, layer}+);
invert-layer (layer) ;

Description Merge-layers retums a layer describing the union of the layer arguments.
Intersect-layers retums a layer describing the intersection of the layer arguments.
Invert-layer retamns a layer describing all regions of the wafer outside layer.

Examples)
merge-layers (#1(ACTV), #1(GATEOX));
= #<layer ATCV>
intersect-layers (#1(ACTV), #1(GATEOX));
= fi<layer GATEOX>
invert-layer (#1 (ACTV));
= #i<layer NOT(ACTV)>

layer-name (Reader] .

layer-definition B [Reader]

layer-location [Reader]

layer-edges [(Reader]
Usage layer-name (layer) ;

layer-definition (layer) ;
layer-location (layer) ;
layer-edges (layer) ;

Description Retum the slots from the /gyer object

Examples
1 := #1(GATEOX):;
layer-name (1) ;
=> GATEOX
layer-location(l);

192

=> and(ACTV, not(POLY))
layer-edges(1l);
= #<edge OR(AND(ACTV, (EDGE POLY)),
AND(NOT(POLY) , (EDGE ACTV)))>

References
[1] C. B. Williams and L. A. Rowe, “The Berkeley Process-Flow Language: Reference
Document,” Electronics Research Lab. Memo 87.73, U.C. Berkeley, Oct. 1987.
[2] G. L. Steele, Common Lisp: The Language, second edition, Digital Press, 1990.
[3] Franz Inc, Common Lisp: The Reference, Digital Press, 1989.

{4] S. G. Duvall, “An Interchange Format for Process and Device Simulation,” /EEE Trans. on
CAD, vol. 7, no. 7, pp 741-754, Jul. 1988.

[5] R. L. Spickelmeir, P. Moore, and A. R. Newton, A Programmer’s Guide to Oct., Electronics
Research Lab. Memo, U.C. Berkeley.

193

[This page intentionally blank]

194

Appendix B
BPFL Implementation of Berkeley CMOS Process

B.1 Top-level flow (cmos-16.b)

require (cmos-1lib, version: latest);

defflow cmos-16(implant-split: = t)
“U.C. Berkeley Generic CMOS Process (Ver. 1.6 14-April-89)
(2 um, N-well, single poly-Si, single metal)*
begin
step ALLOCATE-WAFERS do
let spec := bare-silicon-wafer(crystal-face: 100,
resistivity: [{18 ohm-cm}, {22 ohm-cm}],
quality: ‘product, dope: 'p);
begin
allocate-lot (names: '(cmos, nwell, nch),
sizes: list(*product-lot-size*, 1, 1),
snapshot: spec);
end;
/* Wafers in the cmos lot are product wafers */
lot('product) := lot('cmos);
with-lot 'nwell do
measure-bulk-resistivity(tag: “initial®);
end;
end;

with-lot ‘cmos do
step WELL-FORMATION do
step INIT-O0X do
wet-oxidation(time: {11 min)}, temperature: {1000 degC},
target-thickness: {1000 angstrom});
pattern(mask-name: 'NWELL); '
end;
step WELL-IMPLANT do
with-lot '(cmos, nwell) do
implant (species: #m(P), dose: {4.0el2 /cm™2},
energy: {150 keV});
anneal-implant();
etch-oxide(etchant: #m(BHF, dilution: 5/1));
strip-resist();
step DRIVE-IN do
well-drive (temperature: {1150 degC}, time: {4 hr},
anneal-time: (5 hr});
measure-oxide-thickness(location: #1(NWELL));
measure-oxide-thickness(location: invert-layer (#1(NWELL)));
with-lot ‘'nwell do
etch-oxide(etchant: #m(BHF, dilution: 5/1));
measure-sheet-resistance(location: #1(NWELL));

195

end;
end;
end;
end;
end;

step ACTIVE-AREA do
with-lot '(cmos, nwell) do
etch-oxide(etchant: #m(BHF, dilution: 5/1));
constrain
dry-oxidation(time: {28 min), temperature: {950 degC}):;
with-lot 'nwell do
measure-oxide~-thickness(tag: *LOCOS PAD");
etch-oxkxide(etchant: #m(HF), dewet: t);
end;
nitridation(thickness: {1000 angstrom});

when max-time-between('dry-oxidation, ‘nitridation, {20 min}) do
etch-oxide(etchant: #m(HF), dewet: t);
restart-body () ;
end;
end;
end;
pattern(mask-name: 'ACTV, will-double: t):
etch-nitride(etchant: #m(nitride-etch-plasma, power: {50 W}));
pattern(mask-name: 'PFIELD);
end;

step FIELD-IMPLANT do
implant (species: #m(Bll), dose: (1.0el3 /cm™2},
energy: (100 keV});
anneal-implant();
strip-resist();
wet-oxidation(temperature: (950 degC}, time: hms("3:20:00%),
location: invert-layer (#1(ACTV)));
with-lot ' (cmos, nwell) do
etch-nitride (etchant: #m(phosphoric-acid,
temperature: {145 degC})):
dry-oxidation(temperature: {950 degC}, time: {28 min});
end;
end;

step THRESHOLD-ADJUST do
let species := #m(B1ll);
energy := (30 keV};
midrange := (1.2el2 /cm™2};
delta := {0.lel2 /cm"2};
begin
if implant-split then
split-lot('cmos, into: '(low, medium, high),
order: 'random);
with-lot ‘high do
implant (species: species, dose: midrange + delta,
energy: energy):;

196

end;
with-lot ‘medium do
implant (species: species, dose: midrange, energy: energy):
end;
with-lot 'low do
implant (species: species, dose: midrange - delta,
energy: energy):
end;
else
implant (species: species, dose: midrange, energy: energy):
end;
anneal-implant();
end;
end;

step GATE-FORMATION do
constrain

/* Constraint body */

with-lot '(cmos, nwell, nch) do
dry-oxidation(target-thickness: {25 nm), time: {40 min},

temperature: {950 degC}):

end;

with-lot ‘'nwell do
measure-oxide~thickness();

end;

with-lot ‘'nch do
measure-oxide-thickness();

end;

with-lot 'cmos do
deposit-doped-poly (thickness: {450 nm});
/* deposit-doped-poly allocates a lot named poly

with a poly control wafer in it */
end;

when max-time-between('dry-oxidation,
'deposit-doped-poly,
{20 min}) do
etch-oxide(location: #1(ACTV), dewet: t);
restart-body () ;
end;
end;
end;

step GATE-DEFINITION do
pattern(mask-name: 'POLY);
etch-poly (etchant: #m(poly-etch-plasma));
strip-resist();

end;

step REOXIDATION do
with-lot ' (cmos, nwell, nch, poly) do
wet-oxidation(time: {30 min), temperature: {850 degC});
end;
with-lot 'nwell do

197

measure-oxide-thickness();
end;
with-lot 'nch do
measure-oxide-thickness();
end;
with-lot 'poly do
measure-oxide-thickness();
end;
end;

step NCHANNEL-S/D do
pattern(mask-name: 'N-S/D);
with-lot '(cmos, nch) do
implant (species: #m(As), energy: (160 keV},
dose: {5.0el5 /cm"2});
end;
strip-resist();
with-lot '(cmos, nwell, nch) do
anneal-implant (temperature: {950 degC}, time: hms("01:15:00"));
end;
end;

step PCHANNEL-S/D do
pattern(mask-name: 'P-S/D);
with-lot ' (cmos, nwell) do
implant (species: #m(Bll), dose: {2.0el5 /cm"2},
energy: {50 keV});
end;
strip-resist();
with-lot '(cmos, nwell, nch) do
anneal-implant (temperature: (900 degC}, time: (15 min});
measure-oxide-thickness (location: #1(P-S/D));
end;
end;

step REFLOW-GLASS do
with-lot 'cmos do
deposit-psg (predoped-thickness: (200 nm},
doped-thickness: {500 nm},
postdoped-thickness: (100 nm},
temperature: (450 degC});
end;
with-lot ' (cmos, nwell, nch, psg) do
densify-psg(time: (30 min}, temperature: {950 degC});
end;
with-lot 'nwell do
measure-sheet-resistance(location: #1(TOP), tag: "P-S/D%);
end;
with-lot ‘'nch do
measure-sheet-resistance(location: #1(TOP), tag: "N-S/D*);
end;
deallocate-lots (' (nwell, nch, poly)):
end;

198

step CONTACT do
pattern(mask-name: ‘'CONT);
etch-oxide (etchant: #m(oxide-etch-plasma), location: #1(CONT));
rework-loop
etch-oxide(etchant: #m(BHF, dilution: 10/1), location: #1(CONT),
thickness: {10 nm});
rework-test contact-probe(location: #1(CONTACT-TEST));
end;
strip-resist (etchant: #m(oxygeg-plasma));
end;

step BACK-SIDE-ETCH do
spin-soft-bake();
hard-bake-resist (double-photo: t);
spin-soft-bake():;
constrain
hard-bake-resist();
etch-oxide (etchant: #m(BHF), dewet: t, location: #1(BACK-SIDE));
etch-poly (etchant: #m(phosphoric-acid),
location: #1(BACK-SIDE));
etch-oxide(etchant: #m(BHF), dewet: t, location: #1(BACK-SIDE));
when max-time-between ('hard-bake-resist, ‘'etch-oxide,
{30 min}) do

restart-body () ;
end;
end; .
strip-resist(etchant: #m(oxygen-plasma));
end;

step METALLIZE do
deposit-al(thickness: {600 nm});
pattern(mask-name: 'METL, resist: #m(wx-235));
etch-al();
strip-resist(etchant: #m(oxygen-plasma));
test (*Metal integrity tests");

end;

step SINTER do
fast-sinter();
end;

step PRE-PASSIVATION-TEST do
test(*2 um NMOS & PMOS devices and capacitors");
end;

astep PASSIVATION do
deposit-pecvd-oxide(thickness: ({700 nm}, {800 nm}]);
deallocate-lots('pecvd);
pattern(mask-name: 'PASSIV);
etch-oxide(etchant: #m(oxide-etch-plasma));
strip-resist(etchant: #m(oxygen-plasma));

end;

199

step FINAL~-TEST do
test(*Final functional test®);
end;
end;
end;

defflow test (description)
“Puts up a form requesting device test. Description is
descriptive text indicating what is to be tested*
let result := nil;
begin
/* There is no form to display in this case because test
devices and results depend on the circuit being fabricated.
Use frame type general to display rudimentary information and
permit the user to enter comments */
result := user-dialog('general, heading: "cmos probe test",
description: description);
wip-log('general, result);
end;

200

B.2 Outline of CMOS Library (cmos-lib.b)

The following is a list of the top-level declarations in the cmos-1ib library, and a brief

description of the arguments and actions of functions called by the cmos-16 process flow.

require (material, version: latest);

require (pif-wafer, version: latest);

raequire (equipment, version: latest);

require (physical-constants, version: latest);
require(litho, version: latest);

require (ucb-std, version: latest);

defflow wet-oxidation(time:, temperature: = {900 degC},
pre-ox-time: = {5 min)}, post-ox-time: = {5 min},
anneal-time: {20 min}, target-thickness:,
tag:)
*Cleans wafers and furnace, performs wet oxidation and measures
oxide thickness on a test wafer in the current lot*®
begin

end;

defflow dry-oxidation(time:, temperature: = {900 degC},
anneal-time: = {20 min}, target-thickness:,
tag:)
"Cleans wafers and furnace, performs dry oxidation and measures
oxide thickness on a test wafer in the current lot*®
begin

end;

defflow nitridation(thickness:, temperature: = {800 degC})
*Cleans wafers, grows nitride and measures nitride thickness
on a test wafer in the current lot*

begin :

end;

defflow implant (species:, dose:, energy:, tag:)
"Implants wafers and performs anneal"
begin

end;

201

defflow n2-anneal(time:, temperature:)
“Nitrogen anneal for specified time and temperature®
begin

end;

defflow anneal-implant(time: = (30 min), temperature: = {950 degC})
"Calls n2-anneal with specified time and temperature suitable
for standard implant anneals®

begin

end;

defflow well-drive(time:, temperature: = {1150 degC},
anneal-time:, target-thickness:, tag:)
*"Performs wet oxidation to drive in well®
begin

end;

defflow deposit-doped-poly(time:, temperature: = (650 degC}, thickness:
*Doped poly deposition. Performs deposition at specified time
and temperature or at time required to achieve specified thickness
based on deposition rate from equipment log.
Allocates a lot poly with one control wafer.®

begin

end;

defflow deposit-undoped-poly(time:, temperature: = {650 degC),
thickness:)
“Undoped poly deposition. Performs deposition at specified time
and temperature or at time required to achieve specified thickness
based on deposition rate from equipment log.
Allocates a lot poly with one control wafer.®
begin

end;

defflow deposit-pecvd-oxide(time:, temperature: = {250 degC},
thickness:)
“Pecvd oxide deposition. Performs deposition at specified time
and temperature or a time required to achieve specified thickness
based on deposition rate from equipment log.*
begin

end;

202

defflow deposit-al (thickness:)
“Sputter Al of the desired thickness®
begin

end;

defflow deposit-psg(temperature: = (450 degC},

predoped-thickness:, predoped-time:,
doped-thickness:, doped-time:,
postdoped-thickness:, postdoped-time:)

"Deposits PSG in three layers.

First an undoped layer of thickness predoped-thickness,

second a doped layer of thickness doped-thickness,

third an undoped layer of thickness postdoped-thickness.

The arguments predoped-time, doped-time and postdoped-time
can be used to specify absolute deposition times*"
begin

end;

defflow densify-psg(time:, temperature:)
"Wet oxidation to densify glass®
begin

end;

defflow fast-sinter(time: = {20 min}, temperature: = {400 degC})
"*Sinter wafers with no rampup*®
begin

end;

/* The following functions each measure a physical quantity.
The wafer-state is queried to determine expected values, if
any. A test wafer is used if one exists in the current lot,
otherwise a product wafer is used */

defflow measure-oxide-thickness (tag:, location:)
begin

end;

203

defflow measure-bulk-resistivity(tag:, location:)
begin

end;

defflow measure-sheet-resistance(tag:, location:)
begin

end;

defflow measure-poly-thickness(tag:, location:)
begin

end;

defflow measure-nitride-thickness(tag:, location:)
begin

end;

/* The following functions each etch a particular material on
the wafers in the .current lot. Each takes at least the following
arguments:
etchant, thickness, overetch, location

Etchant is a material used for the etching (e.g.,
#m(nitride-etch-plasma) or #m(phosphoric-acid) to etch
nitride.

Thickness is the thickness of material to etch. It is
ordinarily NOT used because snapshots are queried to determine
the thickest exposed layer of material and that thickness is
etched. .

Overetch is added to thickness to be etched. Normally expressed
as a percentage. Etch functions usually have a default
value for overetch (e.g., {10 %}).

Location is a layer indicating which region of the wafer
the user should use for endpoint detection. This argument
is only used if the thickness argument is supplied. If the
etchant is a liquid and the back-side of the wafers
have thickness equal to the thickest exposed layer of material,
location takes the value #1(BACK-SIDE) */

defflow etch-oxide(etchant:, thickness:, overetch: = {10 %)}, location:,
dewet:)
"Dewet is used to force complete removal of exposed oxide
The following sanity checks are performed:
Warning generated if wet etches occur after
poly is deposited. :
Error generated if wafers with exposed metal
are wet etched.*
begin

end;

defflow etch-nitride(etchant: = #m(phosphoric-acid), thickness:,
' overetch: = {5 %}, location:)
begin

end;

defflow etch-poly(etchant: = #m(poly-etch-plasma), thickness:,
overetch: = {5 %}, location:)
begin

end;

-

defflow etch-al(etchant: = #m(al-wet-etcher), thickness:,
overetch: = {5 %}, location:)
begin

end;

205

B.3 Litho Library (litho.b)

defmaterial developer ((organic));
defmaterial kodak932 ((developer));
defmaterial mif ((developer));

defmaterial resist ((organic), exposed: nil);
defmaterial kodak-820 ((resist),
negative: nil,
spin-speed: (4600 rpm},
prebake-temp: [{95 degC}, {100 degC}],
prebake-time: (30 s},
exposure: {130 mJ/cm"2},
developer: #m(kodak932, concentration: (50 %},
temperature: {22 degC},
time: [(30 s}, {60 s}]),
hard-bake: (temp: {120 degC), time: {20 min},
double-photo: (temp: (150 degC}, time: {30 min}))):

defmaterial wx-235 ((resist),

negative: nil,

spin-speed: (4000 rpm},

prebake-temp: (110 degC},

prebake-time: {30 s},

exposure: {140 mJ/cm”2},

developer: #m(mif, concentration: {33 %},
temperature: {90 degC},
time: {90 s)),

hard-bake: (temp: {100 degC}, time: (20 min},

double-photo: (temp: {100 degC}, time: {30 min})));

defequipment developer ((),
recipes: (develop: (frame: develop-resist),
strip: (frame: strip-resist)));

defequipment wafer-track ((),
recipes: (spin-soft-bake: (frame: spin-soft-bake)));

defequipment stepper ((),
recipes: (expose: (frame: expose-resist))):;

defflow pattern(mask-name:, will-double:, resist: = *default-resist*)
"Basic photolithography - coat, expose, develop, descum, bake®
let double-photo := find-surface-segments-in-lot (material: #m(resist));
begin
step PATTERN do
rework-loop
constrain
spin-soft-bake(resist: resist);
expose-resist (mask-name: mask-name);

206

develop-resist();
when (max-time-between('spin-soft-bake, 'expose-resist,
{2 day}) or
max-time-between ('expose-resist, 'develop-resist,
{1 hour})) do
halt-run(*time-constraint-violation in pattern*®);
end;
end; /* constrain */
rework-test inspect-resist();
ratry-count 5S;
rework-prefix if not (double-photo) then
strip-resist();
end;
end; /* rework */
descum-resist();
hard-bake-resist (double-photo: (double-photo or will-double));
end; /* step */
end;

defflow spin-soft-bake(resist: = *default-resist¥)
"dehydrate, hmds treat and spin resist onto wafers"®
let last-dehyd-time := dehydrate-wafers();
begin
constrain
deposit-hmds () ;
deposit-resist(resist: resist);
when max-time-between(last-dehyd-time, 'deposit-resist, {30 min}) do
last-dehyd-time := dehydrate-wafers();
restart-body(); g '
end;
when max-time-between('deposit-hmds, 'deposit-resist, {10 min}) do
restart-body();
end;
end; /* constrain */
end;

defflow dehydrate-wafers()

"Dehydrate wafers if necessary and return the dehydration time.®
let segments := find-segments-in-lot(material: #m(substrate));
begin

view fabrication do

if (min(segment-material-attribute-in-lot (segments,
:dehydration-time))
+ (30 min)}) < current-time() then
with-equipment o of-type ‘oven do
run-recipe (o, 'dehydrate-wafers);
segment-material-attribute-in-lot (segments,
:dehydration-time) := last-equip-time();
end;
end;
end;

207

min (segment-material-attribute-in-lot (segments, :dehydration-time));
end;

defflow deposit-hmds ()
"Coat the wafers with hmds*®
begin
user-dialog('hmds-coat);
end;

defflow deposit-resist(resist: = *default-resist*)
“Coat the wafers with resist*
begin
view fabrication do
with-equipment track of-type ‘wafer-track do
run-recipe(track, 'spin-soft-bake,
resist-name: material-name(resist)):
end;
end;
deposit-material-in-lot(resist);
end;

defflow expose-resist (mask-name:)
“Expose wafers *
let layer := find-layer (mask-name); /*Layer corresponding to the mask */
exposure-location := intersect-layers(top-side(),
invert-layer (layer));
old-segments := nil;
new-segments :
begin
viewcase
when fabrication do
with-equipment stepper of-type 'stepper do
run-recipe(stepper, 'expose, mask-name: mask-name);
end;
end;
end;
old-segments :=
find-segments-in-lot(material: #m(resist, exposed: nil)):
new-segments :=)
split-segments-in-lot (old-segments, location: exposure-location);
segment-material-attribute-in-lot (new-segments, :exposed) := t;
end;

defflow develop-resist ()
“Develop resist in lot®
begin
viewcase
when simpl do
simpl-op(*DEVL", "ERST") ;
end;

208

when fabrication do
with-equipment d of-type 'developer do
run-recipe(d, ‘'develop-resist,
resist-name: material-name(resist-in-lot()));
end;
end;
end;
etch-material-in-lot (#m(resist, negative: nil, exposed: t), t);
etch-material-in-lot (#m(resist, negative: t, exposed: nil), t);
end;

defflow hard-bake-resist(double-photo:, time:, temperature:)
"Hard bakes resist. Uses parameters in resist definition unless
time and temperature arguments are supplied*

begin
let resist := resist-in-lot();
bake-attr := material-attr(resist, :hard-bake);
bake-time := nil;

bake-temp := nil;
segments := find-segments-in-lot(material: #m(resist));
begin ’ :
if double-photo then)
bake-attr := getf(bake-attr, :double-photo);
end;
if (was-supplied(time) and was-supplied(temperature)) then
/* Arguments are used, so must check type */
assert (unit-with-dimensions-p(time, "s*),
"Must be a unit.quantity with dimensions of time",
time);
assert (unit-with-dimensions-p(temperature, "K*),)
"Must be a unit quantity with dimensions of temperature®,
temperature) ; .
bake-time := time;
bake-temp := temperature;
alse
bake-time := getf(bake-attr, :time);
bake-temp := getf(bake-attr, :temp);
end;
view fabrication do
user-dialog('hard-bake, time: bake-time, temp: bake-temp);
end;
segment-material-attribute-in-lot (segments, :last-bake-time) :=
current-time();
end;
end;

defflow inspect-resist()
"Inspect each wafer and put wafers to be reworked into the rework lot
and wafers to be scrapped into the scrap lot.*
begin
view fabrication do
with-equipment scope of-type 'microscope do

209

let results := user-dialog(name: °'inspect-resist,
equipment: scope);

begin
wip-log('Resist-Inspect, results);
move-sublot (getf (results, :rework), 'current, 'rework):;
move-sublot (getf (results, :scrap), ‘current, 'scrap):
if lot('rework) then

raise-exception('rework) ;

end;

end;

end;
end;
end;

defflow strip-resist(etchant: = #m(acetone))
“Removes resist from wafers in the current lot*
let equip-type := ‘'developer;

begin
if etchant = #m(oxygen-plasma) then
equip-type := ‘'resist-plasma-etcher
end; ’ :

view fabrication do
with-equipment s of-type equip-type do
run-recipe (s, ‘strip, etchant: etchant);
end;
end;
etch-material-in-lot (#m(resist),t);
end;

defflow resist-in-lot() i
“Utility routine that returns the resist on the wafers in
the current lot. Signals an error if more than one type of
resist is present"
let last-resist := nil;
ss := lot-snapshots();

begin
for-each seg in find-segments-in-lot(material: #m(resist)) do
this-resist := pif-attr-val(seg, :material, ss); o
1f last-resist then
if material-name(last-resist) != material-name(this-resist) then
halt-run(*Two different types of resist on wafers: ~a and ~a“,
last-resist, this-resist);
end;
end;
last-resist := this-resist;
end;
last-resist;
end;

210

Appendix C
ABF Functions

Cl1 Iniroduction

This document describes the functions for accessing compound BPFL data types from
ABF, and for manipulating dialog and WIP-1og records. The first section outlines the functions
for accessing frame arguments. The second section describes the function used to check data en-
tered by a user, and the third section discusses functions available from within’user-dialog
frames to append attributes to the WIP-log.

C.2 Argument and object accessor functions

The WIP interpreter passes frame arguments to the UI process via the database. Each argu-
ment has a name and a value. For example, the user-dialog call

user-dialog('sonogage, wafer-id: 1,
nominal: [{1 ohm-cm)}, (10 ohm-cm}]);

calls the sonogage frame with two arguments named wafer-id and nominal. The values of
the arguments are 1 and [{1 ohm-cm}, {10 ohm-cm}] respectively.
The WIP interpreter automatically passes a 1ot argument to every user-dialog frame.
The value of this argument is a list of the names of the lots making up the current lot. For exam-
ple, the code
with-lot '(cmos, nwell) do

user-dialog('spin-soft-bake);
end;

calls the spin-soft-bake frame with one argument named lot with a value of (cmos,
nwell).

All of the functions discussed in this section can be used in user-dialog and WIP-1log
frames. Frame arguments may be read and attributes may be appended to the WIP-log in user-
dialog frames. WIP-log attributes may be read in WIP-1og frames.

As an example of the available accessor functions, suppose a frame is called with the fol-
lowing arguments:

211

Accessor function | _ Description
arg_supplied (name) | Retumns 1 if the-argument named name has been passed to the
_frame; otherwise 0.
arg_value (name) Retumns a string containing the print representation of the
argument name. If the argument has not been passed to the
frame, retums null.
arg_pointer (name) Retums a pointer to the object describing the argument name. If

the argument has not been passed to the frame, returns null.
Table A-1: Argument accessor functions.

user-dialog(frame, recipe-name: "SWETOXB*,
step-number: 5,
target-thickness: [(85 nm}, {90 nm}],
temperature: {1000 degC},
equipment-list: (tylanl, tylan2));

All functions discussed below will be assumed to execute in the ABF code for the frame called by
the user-dialog.

The arg_supplied function is used to determine whether or not an argument has been
passed to a frame. Arg_supplied takes a single string argument containing the name of the de-
sired frame argument, and returns 1 if the argument exists and O if it does not. For example,

arg_supplied('recipe-name');
=1

arg_supplied('foo');
=0

The arg_value function returns a string containing the value of an argument. It returns a null
string if no such argument exists.

arg_value('equipment-list');

= '(tylanl, tylan2)'

arg_value('foo');
= null

The argument accessor functions are summarized in Table A-1.

ABF programs do not have functions to manipulate compound BPFL data types (see
Appendix A, section A.3.2), so argument values are manipulated by object accessor functions. The
arg_pointer function returns a pointer to an object describing an argument. This pointer can be
assigned to an ABF integer variable which can be passed to object accessor functions. For ex-
ample, the integer_ob3j function returns the integer value of the object pointed to by its argu-

ment:

212

/* Assume x is an integer variable */
X := arg_pointer('step-number');
integer_obj (%) ;

=5

Similarly string_obj and £1oat_obj access string and floating-point numbers respectively. If

an incorrect accessor function is used (e.g., string_obj is used to access the value of an integer

object), an error message is displayed and the accessor function returns nul1. The object_type
function returns a string that describes the type of an object:

object_type(arg_pointer('step-number'));

= 'integer' '
object_type (arg_pointer(‘equipment-list'));
= 'list’

There is one situation in which an incorrect accessor function will yield a correct result: it is legal
to use float_obj to access the value of an integer object. For example,

float_obj (arg_pointer('step-number'))
= 5.0

Accessors are provided to select parts of a compound object. These functions return point-
ers to the selected part of the object. For example, intervals have two accessors, interval_left
and interval_right:
X := arg_pointer('target-thickness');
object_type(interval_left(x));
= ‘unit’

Units also have two accessor functions, unit_magnitude and unit_dimension.

X := interval_left(arg_pointer('target-thickness'));
integer_obj (unit_magnitude(x));

= 85

string_obj (unit_dimension(x));

= Imnl

Complex numbers have complex_real and complex_imag accessor functions for ac-
cessing the real and imaginary components of a complex number respectively.

Lists can be of any depth and length. The 1ist_length function returns the length of a
list object passed to it. For example,

list_length(arg_pointer ('equipment-list'});
= 2

Elements in lists are accessed by the 1ist_elt function, which returns a pointer to the object de-
scribing the element. The function call 1ist_elt (x,n) where x is a pointer to a list object and

n is an integer less than or equal to the length of the list pointed to by x accesses the n' element of

213

Accessor function _ Description
object_type (obj) Returns a string containing the type of cbject pointed to by obj. The
possible return values are: 'integer, float', ‘complex’, ‘interval’, ‘'unit' and
‘list'. Null is returned ifobj does not point to an abject.
object_printrep (obj)| Returns a string containing a print representation for the object pointed
to by obj. Null is returned if obj does not point to an object.

integer_obj (obj) Returns an integer, float or string value for the abject pointed to by obj.
float_obj (obj) If the object has the wrong type, returns null except under the following
string_obj (obj) condition: if obj points to an integer object, £1oat_obj returns a floating

point number with the same value as the integer.

interval_left (obj) | If obj points to an interval object, returns a pointer to the left or right part
interval_right (obj) | of the interval respectively. If obj does not peint to an interval, returns
null. .

unit_magnitude (obj) | If obj points to a unit object, returns a pointer to the magnitude or
unit_dimension (obj) | dimension of the interval respectively. If obj does not point to a unit,
returns null.

list_length(obj) If obj points to a list object, 1ist_length returns an integer value for thg
list_elt (obj, 1) length of the list. List_elt returns the ith element of the list object pointed
to by obj. If obj does not point to a list object or if i is greater than the
length of the list, null is returned.

Table A-2: Object accessor functions.

the list. For example,

string_obj(list_elt(arg_pointer('equipment-list'),1));
=» 'tylanl'

Any object can be converted to a string with the object_printrep function. This func-
tion returns a string containing a print representation of an object. This is useful if an object is to be
displayed in an ABF field. For example,

X := interval_left(arg_pointer('target-thickness'));
object_printrep(x);
= '{85 nm}'

The object accessor functions are listed in Table A-2.

C.3 Checking User Input

Since ABF does not directly support compound data types, all compound data types are en-
tered into string fields. Therefore, a mechanism must be provided to perform syntax checks on val-
ues entered by users. For example, if a user types the string "18.2.2 ohm-cm* into a field, it
must be possible for the program to report an error and force the user to correct the entry.

Check_format is the function used to check the syntax of values. It also performs range
checking on interval types and dimension checking of unit types. It takes a variable number of ar-
guments. The first argument is always the value to be checked and the second argument is a format

string that specifies the type of quantity to be checked. For example, the function call:
214

Format String Parses
0 Any unit. (6.9, (18 ohm-cm}, {(0.1, 0.2) ohm})
{integer} Integer unit,
{float} Floating point unit,
{complex} Complex_unit.
[Any interval,
[integer] Integer interval.
(float] Floating point interval.
() Unit interval.
| l{integer}) | Integer unitinterval.
[{float}] Floating point unit interval.

Table A-3: Check_format format strings.

check_format (value, " []°);
checks the syntax of the string stored in the value variable. It returns 0 if the string is correctly
formatted to be a unit type and a negative integer if the string is not correctly formatted. For exam-
ple:

value := *15.0 ohm-cm®;

check_format (value,®(]%);

= 0

check_format ("82.2.2 ohm-cm®, *[]");
= -1

The acceptable format strings and the data types they parse are listed in Table A-3. The user does
not have to type the unit and interval delimiters (i.e., {} and []). For example, both the string
“{1.2 ohm-cm}" and the string “1.2 ohm-cm" are acceptable if parsed with a format string
Cof {float}" or " {complex}". Furthermore, intervals of unit type can be entered by using an
implicit dimension of the left-hand side of the interval. For example, if the user wishes to enter a
string denoting an interval of 1 micron to 22.5 microns, any of the follqwing strings is acceptable:

"[{1 um} (22.5 um)}"
“{1 um} {22.5 um)*
“l um 22.5 um®
#1-22.5 um"

Further arguments are passed to check_format to perform dimension checking of unit
types and range checking of interval types. Dimension checking is accomplished by supplying a
third argument that is a string containing the desired dimensions. For example:

check_format (£, *{float}"”, "ohm-cm*) ;
checks the string stored in the f variable and returns 0 if it is a floating point unit type with dimen-

sions of ohm~-cm. If the value of £ is *18.2 ohm-cm", check_format returns 0. If the value

of fis "18.2 m", check_format retums a negative integer. Dimensions are only checked for

215

[Return Value Description
0 No error.
-1 Malformed input string.
-2 Malformed dimension.
-3 Invalid number type.
-4 Inconsistent units.
-5 Out of range.

Table A-4: Check_format return values.
dimensional consistency, so if £ has the value *18.2 V-m/kA" check_format retums O be-

cause ohm-cm and V-m/kA are consistent dimensions.
Range checking is accomplished by providing two extra arguments to check_format.
For example:

check_format (f, " {float}*, "1 ohm-cm®,*100 ohm-cm®);
checks the value of £ and retums O if it is a floating point unit with dimensions of ohm-cm and a

value between 1-100 ohm-cm. If the value of £ is one of the following:
1.2 ohm-cm

56.7 ohm-cm
99 ohm-cm®

check_format returns 0. On the other hand, if £ has the value “0.1 .ohm-cm" or"9 v-m/
kA", check_format retums a negative value.

Check_format does not alter the string it parses. If the string fails a parse, check_for-
mat always displays an error message indicating the reason for the error and retumns a negative in-
teger. The possible return values for check_format and their descriptions are shown in Table A-
4, The values returned by check_format are normally used by ABF programs to force the user
to enter a correct value. In other words, ABF programs are usually written to fbrce the user to cor-
rect errors in entered values before moving on to the next operation. This is not always desirable.
For example, suppose a user is measuring some quantity (e.g., bulk resistivity) and types that value
into a field with check_£format used to check thé range of the entered value. If the user enters a
value outside the acceptable range (i.e., check_format retums -5), it is often better to simply
wam the user that the value is out of range and accept the value, because it is possible that the en-
tered value has been correctly typed by the user but that the range specified in the check is too nar-

ow.

216

C.4 Appending Attributes to the WIP log

All arguments passed to a user-dialog frame are written to the WIP-log record for the user-
dialog frame and become attributes in the WIP-log entry. In addition, users may append new at-
tributes to the WIP-log. For example, the nanospec frame is used to enter measurements of film
thickness, and a measurements attribute is added to the WIP-log for the nanospec.

Attributes are added to the WIP-log with the create_log_attr function. This function
takes a single argument that is the name of the desired attribute to be added. For example, the fol-
lowing function call adds a measurements attribute to the WIP-log:

create_log_attr('measurements');

An error message is generated if an attribute with the same name already exists.

Attributes created with create_log_attr have no value. Attribute values can be set by
using the set_attr_value function. This function takes three arguments:

1. the name of the attribute whose value is to be set,

2. the value to be assigned to the attribute, and

3. the value type.
For example, the following function call sets the value of the measurement attribute to a unit val-
ue of {18.2 ohm-cm}:

set_attr_value('measurements', ‘'18.2 ohm-cm', '{}');

The third argument is used by set_attr_value to parse the value passed to it and make sure it
has the correct syntax.

Lists can also be assigned to attributes. The current implementation does not permit lists to
be elements of lists, so an attribute list is a simple list of string, integer, floating point, complex,
unit or interval values. Values are appended to an attribute list by using the append_attr_val-
ue function. This function takes the same arguments as set_attr_value. Values appear in the
list in the same order in which they are appended using append_at tr_value. For example, the
following sequence of calls creates a measurements attribute with value of ({18.2 ohm-cm}
{21.0 ohm-cm} {23.9 ohm-cm}):

create_log_attr('measurements');

append_attr_value('measurements','18.2 ohm-cm', '{}');
append_attr_value('measurements','21.0 ohm-cm', '{}');
append_attr_value('measurements', '23.9 ohm-cm', '{}'):;

217

Normally list attributes are created by using the ABF unloadtable statement to append values
from a table field into an attribute.

218

Appendix D
Database Definition

D.1 Introduction

This document contains Common Lisp code to create the database used by the WIP system.
Ingres does not allow hyphens in table or field names, so an underscore (_) is used instead. The

WIP interpreter accesses the database through CLING/SQL [54].

D.2 Definition

;7 The following defvar creates constants for field lengths and writes the .h
;; file used by ABF programs.

(defvar *DB-BUFFER-LENGTH*
(let ((m 0))
(with-open-file (out *wip-db.h" :direction :output :if-exists :supersede)

(dolist (dd ' ((*DB-FRAME-TYPE-LENGTH* 40)
(*CB~FRAME-SLOTS-LENGTH* 1500)
(*DB-BINDINGS-LENGTH* 1500)
(*DB-FUNCTION-NAME-LENGTH* 100)
(*DB-PACKAGE-NAME-LENGTH* 100)
(*DB-FUNCTION-CODE-LENGTH* 1500)
(*DB-PACKAGE-~USE-LENGTH* 100)
(*DB-STEP-PATH-LENGTH* 200)
(*DB-LOG-ARG-LENGTH* 500)
(*DB-LOG-NAME-LENGTH* 40)
(*DB-LOG-TAG-LENGTH* 40)
(*DB-LOG-PROC-LENGTH* 40)
(*DB-WAFER~SPEC-LENGTH* 100)
(*DB-WAFER-SCRIBE-LENGTH* 10)
(*DB-REWORK~STACK-LENGTH* 200)
(*DB-EQUIP-NAME-LENGTH* 30)
(*DB-EQUIP-PROG-NAME-LENGTH* 30)
(*DB-EQUIP-PROG~DESCRIP-LENGTH* 60)
(*DB-REWORK -FRAME- ID-LENGTH* 20)
(*DB-COMMENT-LENGTH* 60)
(*DB-PF-ARG-NAME-LENGTH* 20)
(*DB-PF-ARG-DEF-LENGTH* 20)
(*DB-PF-TYPE-LENGTH* 10)
(*DB-PF-NAME-LENGTH* 20)
(*DB-PF-VERSION-LENGTH* 20)
(*DB-PF-COMMENT-LENGTH* 80)
(*DB-PF-FILE-NAME-LENGTH* 30)
(*DB-PF-STATE-LENGTH* 20)
(*DB-RUN-NAME-LENGTH* 20)
(*DB-RUN-STATUS-LENGTH* 10)
(*DB-RUN-STEP-LENGTH* 10)
(*DB-RUN-LOCK-LENGTH* 10)
(*DB-USER-NAME-LENGTH* 20)

219

m)

(*DB-MAIL-ADDRESS-LENGTH* 40)
(*DB-UDEFAULT-LENGTH* 20)
(*DB-MASK~SET-NAME-LENGTH* 20)
(*DB-MASK-NAME-LENGTH* 20)
(*DB-MASK-TYPE-LENGTH* 20)
(*DB-MASK-LOCATION-LENGTH* 20)

(*DB-MATERIAL-PRIMARY-LENGTH* 20)
(*CB-MATERIAL-REST-LENGTH* 100)
(*DB-PIF-TYPE-LENGTH* 20)
(*DB-PIF-ATTR-NAME-LENGTH* 20)
(*DB-PIF-ATTR-VALUE-LENGTH* 80)
(*DB-SNAPSHOT-SEGMENTS-LENGTH* 80)
(*DB-SNAPSHOT-HASH-LENGTH* 80)
(*DB-LOT-NAME-LENGTH* 20)
(*DB-LOT-BITS-LENGTH* 10)
(*DB-WAFER-SCRIBE-LENGTH* 20)
(*DB-LAYER-NAME-LENGTH* 20)
(*DB-LAYER-DEFN-LENGTH* 40)
(*DB-LAYER-CACHE-LENGTH* 20)

)

(eval (cons 'defconstant 4dd))

(format out "#define ~a (~a)~%"
(convert-to-c-name (first 4d))
(second dd))

(setf m (max m (second dd)))))

))

;; This function creates the db tables

.o
L

(defun create-db-tables ()

(db-create-table 'run
Y ((run_id i4 not-null)

(db-modify 'run

'cbtree

(status (varchar , *DB-RUN-STATUS-LENGTH*))
(step (varchar ,*DB-RUN-STEP-LENGTH*))
(step_path (varchar , *DB-STEP-PATH-LENGTH*))
(log_id i4 not-null)

(lock (varchar ,*DB-RUN-LOCK-LENGTH*))
(owner_id i4 not-null)

{name (varchar ,*DB-RUN-NAME-LENGTH*))
(cf_id i4 not-null)

(rf_id i4 not-null)

(obj_id_gen i4 not-null)

(layer_seq i4 not-null)

(mask_set_id i4 not-null)

(mask_seq i4 not-null)

(pif_print_seq i4 not-null)

(pf_id i4 not-null)

(lot_size i4 not-null)))

:on ' (run_id)
:unique ‘vyes)

(db-create-table 'evaluation_frame
* ((run_id i4 not-null)

(frame_id i4 not-null)

220

(extend i4 not-null)
(frame_type (varchar , *DB~FRAME-TYPE-LENGTH*)
with-null)
(frame_slots (varchar ,*DB-FRAME-SLOTS-LENGTH*)
with-null))
:duplicates nil)

(db-modify 'evaluation_frame
‘cbhtree
:on ' (run_id frame_id extend)
:unique 'ves)

(db-create-table 'user_dialog
* ((run_id i4 not-null)

(id i4 not-null)
(extend i4)
(name (varchar ,*DB-LOG-NAME-LENGTH*))
(arguments (varchar , *DB-LOG-ARG-LENGTH*))
(step_path (varchar , *DB-STEP-PATH-LENGTH*))
(tag (varchar , *DB-LOG-TAG-LENGTH*))
(procedure (varchar » *DB-LOG-PROC-LENGTH*))))

(d>-modify 'user_dialog
'cbhtree
son ' (run_id id extend)
:unique ‘'yes)

(db-create-table 'wip_log

Y ((run_id i4 not-null)
(id i4 not-null)
(extend i4 not-null)
(user_id i4 not-null)
(name (varchar , *DB-LOG-NAME-LENGTH*))
(time date)
(step_path (varchar , *DB-STEP-PATH-LENGTH*))
(comment_p i4 not-null)
(tag (varchar 20))
(procedure (varchar 40))
(arguments (varchar , *DB-LOG-ARG-LENGTH*))))

(db-modify 'wip_log
'cbtree
:on ' (run_id id extend)
:unique 'yes)

(db-create-table 'wip_log_comment
*((run_id i4 not-null)
(id i4 not-null)
(line_num i4 not-null)
(comment (varchar ,*SQL-COMMENT-LENGTH*))))

(db-modify 'wip_log_comment
'cbtree
:on '(run_id id line_num)
:unique 'yes)

(db-create-table 'wip_user ; can’t call the table user because
; of sgl syntax conflict.
*((id i4 not-null)

221

(name (varchar ,*DB-USER-NAME-LENGTH*))
(address (varchar ,*DB-MAIL-ADDRESS-LENGTH*))
(editor (varchar ,*DB-UDEFAULT-LENGTHY))
(status (varchar , *DB-UDEFAULT-LENGTH*))
(tracing (varchar 3))

(runidq (varchar ,*DB-UDEFAULT-LENGTH*))
(nameq (varchar , *DB-UDEFAULT-LENGTH*))
(statusq (varchar , *DB-UDEFAULT-LENGTH*))
(proc_flowg (varchar ,*DB-UDEFAULT-LENGTH*))
(stepqg (varchar , *DB-UDEFAULT-LENGTH*))
(ownerq (varchar , *DB-UDEFAULT-LENGTH*))))

(db-modify 'wip_user
‘cbtree
son '(id)
:unique ‘'yes)

(db-create-table 'run_user
' ((run_id i4 not-null)
(user_id i4 not-null)))

(db-modify 'run_user
'cbtree
:on ' (run_id user_id)
:unique ‘yes)

(db-create-table ‘'mask_set
*((id i4 not-null)
(name (varchar ,*DB-MASK-SET-NAME-LENGTH*))))

(db-modify ‘mask_set
‘cbtree
:on ‘'id
:unique ‘yes)

(db-create-table 'mask
* ((mask_set_id i4 not-null)
(id i4 not-null)
(number i4 not-null)
(extend i4 not-null)
(name (varchar , *DB-MASK-NAME-LENGTH*) not-null)
(type (varchar ,*DB-MASK-TYPE-LENGTH*) not-null)
(location (varchar , *DB-MASK-LOCATION-LENGTH*) not-null)))

(db-modify 'mask
‘cbtree
:on ' (mask_set_id id)
:unique 'yes)

(db-create-table ‘material
Y ((run_id i4 not-null)
(id i4 not-null)
(extend i4 not-null)
(primary (varchar ,*DB-MATERIAL-PRIMARY-LENGTH*))
(rest (varchar ,*DB-MATERIAL-REST-LENGTH*))))

(db-modify 'material
‘cbtree
:on ' (run_id id extend))

222

(db-create-table 'layer
* ((run_id i4 not-null)
(id i4 not-null)
(name (varchar ,*DB-LAYER-NAME-LENGTH*) not-null)
(extend i4 not-null)
(definition (varchar ,*DB-LAYER-DEFN-LENGTH*) not-null)
(cache (varchar ,*DB-LAYER-CACHE-LENGTH*) not-null)))

(db-modify °'layer
'cbtree
ton ' (run_id iqd)
:unique 'yes)

(db-create-table ‘'lot
Y ((run_id i4)
(id i4)
(extend i4)
(name (varchar ,*DB-LOT-NAME-LENGTH*))
(bits i4)
(1sb i4)))

(db-modify 'lot
'cbtree
:on ' (run_id id)
:unique ‘'ves)

(db-create-table 'wafer
Y ((run_id i4)
(id i4)
(extend i4)
(ndex i4) ; can't use index since it is SQL token
(snapshot_id i4)
(scribe (varchar , *DB-WAFER-SCRIBE-LENGTH*))))

(db-modify ‘'wafer
‘cbtree
:on ' (id)
:unique ‘'yes)

(db-create-table 'pif
Y ((run_id i4)
(print_name i4)
(type (varchar ,*DB-PIF-TYPE-LENGTH*))))
(do-modify 'pif
'cbtree
:on ' (run_id print_name)
sunique 'vyes)

(db-create-table 'pif_snapshot
* ((run_id i4)
(print_name i4)
(extend i4)
(parent i4)
(segments (varchar , *DB-SNAPSHOT-SEGMENTS-LENGTH*))
(attrhash (varchar , *DB-SNAPSHOT-HASH-LENGTH*))
(revhash (varchar , *DB-SNAPSHOT-HASH-LENGTH*))
))

223

(db-modify 'pif_snapshot
'cbtree
:on 'run_id)

(db-create-table 'pif_ boundary
Y ((run_id i4)
(print_name i4)
(upper i4)
(lower i4)))

(db-modify 'pif_boundary
‘cbtree
:on ' (run_id))

(db-create-table 'pif_attr
* ((run_id i4)
{(print_name i4)
(extend i4)
(name (varchar ,*DB-PIF-ATTR-NAME-LENGTH*))
(value (varchar ,*DB-PIF-ATTR-VALUE-LENGTH*))))

(db-modify 'pif_attr
'cbtree
:on '(run_id))

(db-create-table 'process_flow
*((id i4 not-null)
(name (varchar ,*DB-PF-NAME-LENGTH*) not-null)
(current_version (varchar , *DB-PF-VERSIO!\J-LI}'NGI‘H*))

(db-modify ‘'process_flow
‘cbtree
:on '(id)
:unique 'yes)

(db-create-table 'module
*((id i4 not-null) .

(type (varchar ,*DB-PF-TYPE-LENGTH*) not-null)
(version (varchar , *DB-PF-VERSION-LENGTH*))
(version_tag (varchar , *DB-PF-VERSION-LENGTH*))
{name (varchar ,*DB-PF-NAME-LENGTH*) not-null)
(comment (varchar ,*DB-PF-COMMENT-LENGTH*))
(time date)
(status (varchar , *DB-PF-STATE-LENGTHY*))
(user_id i4)
(owner_id i4 not-null)
(use_counter i4 not-null)
(file (varchar ,*DB-PF-FILE-NAME-LENGTH*) not-null)))

(db-modify 'module
‘cbtree
:on ' (id)
:unique ‘yes)

(db-create-table 'pf_ccmment
*((pf_id i4 not-null)
(line_num i4 not-null)

224

(comment (varchar , *DB-PF-COMMENT-LENGTH*))))

(db-modify 'pf_camment
'cbtree
:on '(pf_id line_num)
:unique 'yes)

(db-create-table 'pf_arg
* ((pf_id i4 not-null)
(arg_num i4 not-null)
(name (varchar , *DB-PF-ARG-NAME-LENGTH*))
(default_value (varchar , *DB-PF-ARG-~DEF-LENGTH*))))

(db-modify 'pf_arg
'cbtree
son ' (pf_id arg_num)
:unique 'yes)

(db-create-table 'procedure
* ((module_id i4 not-null)
(extend i4 not-null)
(name (varchar , *DB-FUNCTION-NAME-LENGTH*)
with-null)
(code (varchar , *DB-FUNCTION-CODE-LENGTH*)
with-null)))

(db-modify 'procedure
'cbtree
:on ' (pf_id name extend)
:unique 'yes)

[This page intentionally blank]

226

Appendix E

WIP Interpreter Data Structures

E.1 Introduction

This document contains Common Lisp definitions for some of the structures and classes

used to represent run state. Complete definitions of all data structures may be found in the WIP in-

terpreter source code.

E.2 Structure Definitions

(defstruct run
current-£frame

root-frame

id

(object-id-generator 0)
(current-log-id 0)

(bindings (bpfl-bindings-init))
(rework-lot-id-generator 0)
exception-frames

module-id-list
step-path

(wafer-lot-state

(bsys: :make-wafer-lot-state))
(materials

(bsys: :make-material-state))
(layers

(bsys: :make-layer-state))
(masks

(bsys: :make-mask-state))
snapshots
)

(defclass ROOT-FRAME ()
((action .
taccessor frame-action
:initarg :action
:initform #'go-root)
(next-action
:accessor frame-next-action
:initarg :next-action
sinitform #'go-root)
(code
:accessor frame-code
:initarg :code
:initform nil)
(cp

. e Ne Se we .

me So we we =

~

.
’

.
'

The evaluation frame at the top
of the stack

The evaluation frame at the stack
base

Integer identifying this run

Generator for object ids

Generator for WIP-log ids

Global variable bindings

Rework lot id generator

List of frames at the base of
exception branches :

Modules used by the run

Current step-path

Representation of wafers and lots

the dispatch function

lisp (list) code

position with code

227

:accessor frame-cp
:initarg :cp
sinitform (list 1))
(returned-values ; list of values from child frame
saccessor frame-returned-values
:initarg :returned-values
:initform nil)
(children
:accessor frame-children
:initform nil)
(id
saccessor frame-id
s:initarg :id
:initform (incf (run-object-id-generator *CURRENT-RUN*)))
))

(defclass EVAL-FRAME (root-frame)
((parent ; the frame that created this one
:accessor frame-parent :
:initarg :parent
:initform nil)

(parent-cp
:accessor frame-parent-cp
:initarg :parent-cp)

(code-package

:accessor frame-code-package
:initarg :code-package)

(lex-bindings ; the lexical stack
taccessor frame-lex-bindings
:initarg :lex-bindings)

(recipient ; the frame to receive eval result
:accessor frame-recipient '
:initarg :recipient)

(current-lot-name

saccessor frame-current-lot-name
:initarg :current-lot-name))
)

(defstruct WAFER-LOT-STATE
(lot-defns (let ((h (make-hash-table :test #'eq)))
(setf (gethash 'bpfl::*ALL-WAFERS* h)
(make-lot :id 1))

h)) . ; Lot-defns is hash table. Key is
; lot-name, value is lot-struct.
; Key is wafer-id, value is wafer
; object
(last-wafer 0) ; Wafer index generator
(last-lot 1)) ; Lot id generator

(wafer-hash (make-hash-table))

(Gefclass LOT ()
((id :reader lot-id
:initarg :lot-id
:initform (incf (*LAST-LOT*)))
(bits 0))

(defclass WAFER ()
((snapshot :accessor wafer-snapshot
:initarg :snapshot)

(id :reader wafer-id
tinitarg :id)
(index :reader wafer-index
:initarg :index
:initform (incf (*WAFER-INDEX*)))
(scribe :reader wafer-scribe
:tinitarg :scribe))

(defstruct MATERIAL-STATE
(known-materials (make-hash-table :test #'eq)))

(defclass MATERIAL ()
((primary :reader material-primary
tinitarg :primary)

(attrs :reader material-attrs-slot ; material attributes
:initarg :attrs)

(list :reader material-list ; generator for material
:initarg :list))

(:default-initargs :attrs nil :list '(*?")))

material name (symbol)

~e

(defclass LAYER ()
((CUBES :reader layer-cubes
:initarg :cubes)
(PRINT-FORM :accessor layer-print-form
:initform nil))

(defstruct LAYER-STATE

KNOWN-LAYERS ; plist layer-name -> original definition
LAYER-CACHE ' ; plist layer-name -> precomputed cubes
*LAYER-NUM-NAME * ; alist layer-number -> name

(*LAYER-SEQ* 0) ; stacking order of layers

)
;1 default system layer definitions

(Geflayer :TOP nil)
{defsysvar *TOP-SIDE* (layer :top))

(defbpfl TOP-SIDE ()
top-side)

(defclass MASK ()
((NAME :reader mask-name
:initarg :name)
(ATTRS :reader mask-attrs
:initarg :attrs)
(SEQ :reader mask-seq
:initform (incf (*mask-seq*))))
(:default-initargs :location nil))

(defstruct MASK-STATE
KNOWN-MASKS ; plist name -> mask object

229

(*MASK-SEQ* 0) ; stacking order of masks
)

;; A place-holder class. Defines what can have PIF-ATTR's attatched to it.
(defclass PIF ()
((PRINT-NAME :reader pif-print-name
:initarg :print-name))
(:default-initargs :print-name (incf (*pif-print-seq*))))

;; Binding environment for attributes and boundaries.
;; All associations between objects are within the context of a snapshot .

!
; A snapshot is attached to each wafer of interest to represent its
; current state.

~ So we

.
’

{Qefclass SNAPSHOT (pif)
:; the most recent checkpoint for this snapshot.
((PARENT :reader snapshot-parent
:initarg :parent)
;: a cache of component segments
(SEGMENTS :accessor snapshot-segments
:initarg :segments)
;; key is object, value is list of attatched attrs and boundaries.
;; objects are present in the snapshot if present in this table.
(ATTR-HASH :reader snapshot-attr-hash
:initform (make-hash-table :test #'eq))
;7 key is attr, value is list of objects attatched to it in this ss.
(REV-HASH :reader snapshot-rev-hash
:inicform (make-hash-table :test #'eq)))
(:default-initargs :
:parent nil :segments nil))

(defclass SEGMENT (pif) ‘
;; Segments exist to have things attached to them

0

; Boundaries may be used at most once in a snapshot.
;; Attributes may be attatched to distinct objects within a snapshot.

(defclass PIF-ATIR (pif)
((NAME :reader pif-attr-name
:initarg :name)
(VALUE :reader pif-attr-value
:initarg :value))
(:default-initargs :value nil))

(defclass BOUNDARY (pif)
;; these 'attributes' on a boundary are required
((UPPER :reader boundary-upper
:initarg :upper)
(LOWER :reader boundary-lower
:initarg :lower))

230

handler-case
rework-body;
if (not rework-test) then
signal-exception (' force-rework) ;
end;
on-exception ¢ := force-rework do
/* invoke rework */
decrement count;
if count < 0 then
retry-failure
else
push-rework-branch() ;
with-lot 'rework begin
rework-prefix;
restart-body () ;
end;
end;
end;
cn-exception c := merge-rework do
/* merge rework branches */
merge-rework-branches () ;
ignore-exception() ;
end;
end;

Figure 5-16: Rework implementation.

;axception handler (see Table 5-12). Ignore-exception discards the exception and continues
execution as if it had never occurred. Restart -body forces the code within the body of the han-
dler-case to be executed again. Resignal forces the exception to be handled by the next high-
- er-level exception handler in the code. In other words, the exception is passed to a higher-level
section of code. Halt - run displays a user-dialog that allows the user to decide which of the above
actions to take.

Rework is implemented using handler-case as shown in Figure 5-16. Two exception-
handlers are defined in Figure 5-16: force-rework and merge-rework. The body of the han-
dler-case executes the body of the rework-~1loop statement (i.e., rework-body), followed by

the rework-test. If the test fails, it raises a force-rework exception. This exception can also be

Operation Description
ignore-exception | Continue run execution.
restart-body Restart the code in the body of the handler-case.
resignal Pass the exception up to the next higher-level exception handler in the code.
halt-run Save run, display user-dialog allowing the user to chose the desired action.

Table 5-12: Exception-handler operations.

125

raised within the rework-body code from the UI process or by a raise-except ion procedure
call.

When a force-rework exception is raised, the code in the force-rework handler is
executed. The first action is to decrement the rework-count and halt the run if the count is ex-
ceeded. The current execution frame state is saved using push-rework-stack, and the current-
lot is set to rework. Then the code in rework-prefix is executed before the code within the
rework-body is executed again. When the WIP interpreter process detects that the execution points
of two or more rework branches are the same, it signals a merge-rework exception which merges
the rework branches, and execution is allowed to continue.

Constraints are also implemented by the exception mechanism. For example, the following
constraint:

constrain
constraint-body;

when testl do
case-codel;
end;
when test2 do
case-code2;
end;
end;

is implemented by the code in Figure 5-17. The first action is to set up the constraints specified in
the constraint tests (e.g., est] and test2). This code communicates with a subsidiary program, called
a constraint-server, to enforce the constraints. When constraints are violated, the server sends a
constraint-violation signal to the WIP interpreter process which causes the code in the

constraint-violation clause to execute. Once the constraint-body is complete, the con-

handler-case
setup-constraints (testl, test2);
constraint-body;
remove-constraints(testl, test2);
on~-exception ¢ := constraint-violation
if testl then
case-codel;
end;
if test2 then
case-code2;
end;
end;
end;

Figure 5-17: Constrain implementation.

126

straints are removed.

As an example of a constraint server, consider the implementation of timing constraints.
When the WIP interpreter process executes a constrain statement, it first sets up the constraints.
For example, in the pattern procedure in Figure 3-14, the timing constraint test is:

when (max-time-between('spin-on-resist, 'expose-resist, {2 day})

or max-time-between('expose-resist, 'develop-resist, {1 hour})) do
halt-run("time-constraint-violation in pattern®);

end; .
The setup action for this constraint is that the spin-on-resist, expose-resist and devel -
op-resist procedures are tagged to indicate that they are used in constraints. The WIP interpret-
er process then proceeds to execute the code in the body of the constrain. The WIP interpreter
process examines the tag when spin-on-resist is called. The tag indicates that the procedure
is used in a max-t ime-between timing constraint which causes the WIP interpreter process to
send a message to the timing-constraint server indicating that a timer of 2 days duration should be
started.

If the WIP interpreter process reaches the expose-resist procedure before the timer
expires, the tag on expose-resist causes the WIP interpreter process to send a message to the
server telling it to cancel the timer, thus removing the timing constraint.

On the other hand, if the timer expires before the WIP interpreter process reaches the ex-
pose-resist procedure, the server signals a timing-constraint exception and the code in the do-
clause is executed.

Constraints can also be expressed in terms of an absolute starting time. For example, the
constraint in the spin-on-resist procedure in Figure 3-15 is:

when max-time-between(last-dehyd-time, 'resist-coat, {30 min}) d&o
last-dehyd-time := dehydrate-wafers();

lot ('rework) := lot('current);
raise-exception('rework) ;
end;

which uses a variable as the first argument to max-t ime-between. In this case, the setup action
for the constraint is to start a timer that is set to expire 30 minutes after the value in last -dehyd- .
time and tag the resist-coat procedure. As before, the constraint is removed if the resist-

coat procedure is called before the timer expires.

127

The final timing constraint implemented in the prototype system is based on equipment ac-
cess times. For example, the constraint
when (max-time-between (last-equip-time(equipment: ‘spinner),
last-equip-time (equipment: 'stepper), (2 day})
or max-time-between(last-equip-time(equipment: 'stepper),
last-equip-time('equipment: developer), {1 hour})) do
halt-run("time constraint violation in patterm"):
end;
is similar to the constraint in Figure 3-14, except that the endpoints of the permissible delay are
written in terms of equipment access times. The setup action for constraints involving equipment
access times tags the equipment named in the constraint. When certain equipment activity occurs
(e.g., the equipment is deallocated), any active constraint on the equipment is used to start a timer
if the equipment is specified as the start-time of the constraint, or to halt a timer if the equipment is
specified as the end time of a constraint.
To illustrate how other types of constraints may be implemented, consider the constraint
in the following code:

constrain
when current-temperature() > {22 degC) do halt-run(); emnd;
end;
This constraint could be implemented if a temperature sensor existed that can be read by a program.
The setup action for the constraint is to instruct the server to signal the WIP interpreter process if
the temperature exceeds 22 °C. The server could periodically read the temperature sensor and raise

an exception if it exceeded 22 °C.

5.9 Version Control

The run management system in the UI process handles version control for process flows
and run modification. Although these operations are invoked through the UI process, they are im-
plemented by the WIP interpreter process. This section describes the version control system. Run
modification is discussed in the next section.

Process flows are stored in text files that are managed by the Revision Control System
(RCS) [51). RCS locks BPFL modules to prevent simultaneous modification of the same module
by different people. In addition, it stores the code modification tree in an efficient way so that mul-
tiple versions can be maintained. The system supports two types of modules: flows and libraries.
Flows contain a BPFL procedure definition with the same name as the flow. When a run is created,

128

id name type version | version_tag | user_id | ownmer_id
(integer) (string) (stri% (string) (string) (integg) (mtgger) ‘
2 cmos-16 flow 1.0 initial 5
3 cmos-16 flow 1.1 split 42 5
4 litho library 1.0 initial 42 5
time comment
(datetime) (string)

2/1/91 09:15]| baseline cmos initial definition
2/5/91 11:22} added lot-split operations
2/5/91 11:22] standard kodak 820 resist lithography

Table 5-13: Module table definition and examples.

a flow is specified (e.g., cmos-16) and the run is started by calling the BPFL procedure with the
same name as the flow. A library contains procedures and definitions that are used in process flows.
The name of a library is normally chosen to identify the purpose of the procedures in the library
(e.g., the 1itho library contains procedures used in photolithography).

RCS manages module locking by forcing users to check-out a module before they are per-
mitted to modify it. When the user has completed modification, the module must be checked-in be-
fore another user can check it out.

Summary information about modules and versions is stored in the module table shown in
Table 5-13. The id field stores an integer that uniquely identifies each module. The name field
contains the name of the module, and the type field indicates whether the module is a flow or a
library. The version field contains the RCS revision number of the module. The version_tag
field can be used to assign a mneménic version string (e.g., version 1. 0 may have a version tag of
init ialj. For checked-out modules, the user_id field contains the id of the user who has the
module checked out. The owner_id field contains the id of the user who is responsible for main-
taining the module. Only the module owner can change module permissions. The t ime field con-
tains the last modification time of the module and the comment string gives a brief description of
the module.

Every module has a list of users who are authorized to modify it. Flows also have a list of
users who are permitted to start a run using the flow.

When a module is checked out, it is still available for use in runs unless the owner requests

otherwise. When a module is checked in, the new code in the module can either be written on top

129

of the old code, or a new module can be created. For example, if the user who has checked out
cmos-16 version 1. 1 in Table 5-13 checks in the code, he or she can either overwrite the old
cmos-16 version 1.1 with the new code or create a new version. The version of the new code in
this case will be 1. 2, assuming that version 1. 1 is the latest revision of cmos-16. If version 1.2
already exists, the new module will be cmos-16 version 1. 1. 1 in accordance with RCS conven-
tions.
Libraries simplify management of BPFL software because they provide a mechanism for
sharing commonly used procedures across different process flows. For example, the 1itho library
is used by most BPFL process flows, and it would be wasteful and inconvenient to maintain a copy
of the same code in each process flow. A further advantage is that changes to the code in a library
need only be made in one location. All runs using that library will use the new code.
A module indicates that it uses another library with the requires declaration. For exam-
ple, a library that uses the equipment library might contain the code:
requires (equipment, version: latest);
The version argument indicates what version of the library to use, as explained in chapter 4.
When a run is created, requires declarations are used to load all required libraries into the data-
base so that the run can use them.
When a run is started, the following action occurs for the flow and all libraries used by the
flow:
1. The UI process copies the flow used by the run into a file, and converts it to
Lisp using a parser written in Lex [58] and Yacc [59]. The conversion from
block-structured code to Lisp is described in more detail earlier in this chapter
(see section 5.4).

2. The Lisp code is then parsed again by the WIP interpreter process for further
syntax checking and macro expansion [39] in Lisp, and written to a file. Func-
tions in the macro-expanded file are saved in the database. All other top-level
declarations (e.g., defmaterial) are evaluated and the results of the evalu-
ation are added to the definitions for the run.

The Ul process uses Make [60] to prevent unnecessary parsing or macro-expanding of modules that

have already undergone this process. Likewise, the WIP interpreter process only saves module pro-
130

	ERL-91-40 (1 of 3)
	ERL-91-40 (2 of 3)
	ERL-91-40 (3 of 3)

