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Abstract

In this paper we investigate methods for steering systems with non
holonomic constraints between arbitrary configurations. Early work by
Brockett derives the optimal controls for a set of canonical systems in
which the tangent space to the configuration manifold is spanned by
the input vector fields and their (first order) Lie brackets. Using Brock
ett's result as motivation, we derive suboptimal trajectories for systems
which are not in canonical form and consider systems in which it takes
more than one level of bracketing to achieve controllability. These
trajectories use sinusoids at integrally related frequencies to achieve
motion at a given bracketing level. We define a class of systems which
can be steered using sinusoids (chained systems) and give conditions
to convert arbitrary given systems to this form.
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NONHOLONOMIC MOTION PLANNING: STEERING USING
SINUSOIDS

RICHARD M. MURRAY AND S. SHANKAR SASTRY

1. Introduction

Motion planning for robots has a rich history. The traditional difficulty in plan
ning robot trajectories is the avoidance of obstacles. This problem is referred to
as the piano mover's problem, in which we attempt to move an object (the piano)
through a cluttered environment. This problem is solved by investigating the free
configuration space of the piano—all configurations for which the piano does not
intersect an obstacle. If the start and goal locations of the piano lie in the same
connected component of the free configuration space, the motion planning problem
is solvable.

In recent years there has been a great deal of activity in the generation of effi
cient motion planning algorithms for robots. Most of this work has concentrated
on the global problem of determining a path when the obstacle positions are known
and dynamic constraints are not considered. This has resulted in a rather complete
understanding of the complexity of the computational effort required to plan the
trajectories of robots to avoid both fixed and moving obstacles [8, 25, 19]. Other
approaches include the use of potential functions for navigating in cluttered envi
ronments [22, 21] and compliant motion planning for navigating in the presence of
uncertainty [10, 11, 34].

Our interests in motion planning are not along the lines of the aforementioned
approaches, but are complementary: they involve motion planning in the presence of
nonholonomic or non-integrable constraints. That is, we consider systems in which
there are constraints on the velocities of the robots which cannot be integrated
to give constraints which are exclusively a function of the configuration variables.
These situations arise in a number of different ways and we describe a few of the
sources of their origin:

(1) Mobile robots navigating in a cluttered environment
The kinematics of the drive mechanisms of robot carts result in constraints

on the instantaneous velocities that can be achieved. For instance, a cart
with two forward drive wheels and two back wheels cannot move sideways.
This was first pointed out by Laumond in the context of motion planning
for the Hilare mobile robot [26, 27].

(2) Multifingered hands manipulating a grasped object
If an object is twirled through a cyclic motion that returns the object to its
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path satisfying
velocity constraints

Figure 1. Paths generated by conventional path planners may ig
nore nonholonomic constraints. The straight line path in the figure
indicates the path that a conventional path planner might generate.
The curved path is one which satisfies the kinematic constraints of
the car.

initial position and orientation, and the fingers roll without slipping on the
surface of the object, the fingers do not necessarily return to their initial
configurations. This feature can be used to plan the regrasp of a poorly
grasped object or to choose the nature of this grasp. This application of
nonholonomic motion planning was first pointed out by Li [32, 31] (see
also [35]).

(3) Space robotics
Unanchored robots in space are difficult to control with either thrusters or
internal motors since they conserve total angular momentum. This is anon-
integrable constraint. The motion of astronauts on space walks is of this ilk,
so that planning a strategy to reorient an astronaut is a nonholonomic mo
tion planning problem [45]. Other examples of this effect include gymnasts
and springboard divers.

Nonholonomic constraints arise either from the nature of the controls that can

be physically applied to the system or from conservation laws which apply to the
system. Conventional path planners implicitly assume that arbitrary motion in the
configuration space is allowed as long as obstacles are avoided. If a system contains
nonholonomic constraints, many of these path planners cannot be directly applied.
If we attempt to ignore the constraint, the paths generated by a path planner may
not be feasible (see Figure 1). For this reason, it is important to understand how
to efficiently compute paths for nonholonomic systems.

To be more specific, we are interested in mechanical systems with linear velocity
constraints of the form

(i) LJi(x)x = 0 i = 1, • • • , k
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Here x is the configuration of the system being controlled and wt(x) is a row vector
in Rn. These are constraints on the velocities of the system. In some cases, the
constraints may be explicitly integrable, giving constraints of the form

hi(x) = Ci

for some constant c,-. If this is possible, motion of the system is restricted to a level
surface of hi. Such a constraint is said to be holonomic. By choosing coordinates
for the surface, configuration space methods can be applied. In the instance that
there is only one constraint on the velocity of the system, it's integrability may be
determined by checking the symmetry of the derivative of uji(x). There is no easy
extension of this characterization to the case of multiple constraints.

A constraint is said to be nonholonomic if it cannot be written as an algebraic
constraint in the configuration space. There are many types of nonholonomic con
straints, corresponding to different physical situations.

It will be convenient for us to convert problems with nonholonomic constraints
into steering problems for control systems. Consider the problem of constructing a
path x(t) 6 Rn between a given x0 and Xi subject to k constraints which are linear
in x:

Ui(x)x = 0 i = 1, •• • ,fc

We assume the wt-'s are smooth and linearly independent over the ring of smooth
functions. Formally, these constraints are exterior differential one-forms on Rn.
Specific examples of such systems are given in Section 2.4. Rather than use the
machinery of exterior differential systems, we convert the problem to one in control
theory. Roughly speaking, we would like to convert the constraint specification
from describing the directions in which we can't move to those in which we can.
Formally, we choose a basis for the right null space of the constraints, denoted by
gt(x) € Rn, i = 1, •• • , n —k. The path planning problem can be restated as finding
an input function, u(t) € Rm, such that the control system

x = gi(x)ux + •••+ gm(x)um

is driven from xQ to xi. It will be shown that if the wt's are smooth and linearly
independent (over the ring of smooth functions), then the g^s inherit these proper
ties.

The outline of this paper is as follows: in Section 2, we collect some mathemat
ical preliminaries from the literature on controllability of nonlinear systems and
on classification of free Lie algebras. These are drawn from classical references in
control theory [4, 17, 18, 36, 40] and Lie algebras [15, 43]. In Section 3, using some
outstanding results of Brockett on optimal steering of certain classes of systems as
motivation [5], we discuss the use of sinusoidal inputs for steering systems of first or
der, i.e., systems where controllability is achieved after just one level of Lie brackets
of the input vector fields. Section 4 attempts to expand the domain of applicability
of these results to more complex systems, where several orders of Lie brackets are
needed to obtain the full Lie algebra associated with the input distribution. The
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style of the paper is self-contained so as to make it accessible to both robotics and
control researchers and several examples are sustained through the paper.

A target problem which we set ourselves at the start of this research was that of
parking of a car with N trailers. This problem remains unsolved and indeed has
generated some fascinating new ideas in the field. It is not a "toy problem" since
efforts are underway to automate baggage handling by carts with multiple trailers in
airports (not to mention trucks with multiple trailers). However, it is fair to say that
the study of nonholonomic motion planning is in it's infancy. There have however
been notable contributions by Laumond et al. [29, 30,26,20,28] and by Barraquand
and Latombe [2] on motion planning for mobile robots in a cluttered field. While
this work represents important initial progress, we feel that less computationally
intensive and more insightful approaches are possible by conducting a systematic
research program on motion planning of dynamical systems with nonholonomic
constraints. We are joined by by several complementary efforts, notably those of Li
and co-workers [32,12] and Sussmann and co-workers [24, 42]. We have also applied
the techniques of this paper to steering of space robots using sinusoids in [45].

2. Mathematical Preliminaries

This section collects a variety of results from differential geometry and nonlinear
control theory which will prove useful in studying nonholonomic systems. There are
several good references for the material presented here, although no single book is
adequate. For basic definitions and concepts in differential geometry, see Boothby [3]
or Spivak [39]. A good introduction to nonlinear control theory which includes
many of the necessary differential geometric concepts can be found in Isidori [18]
or Nijmeijer and van der Schaft [36]. We begin with a brief review of differential
geometry for the purpose of fixing notation.

2.1. Differential Geometry. We restrict our attention to a smooth (C°°) n-
dimensional manifold M. Let TXM denote the tangent space to M at a point
x 6 M. A vector field on M is a smooth map which assigns to each point on x € M
a tangent vector f(x) € TXM. In local coordinates, we represent / as a column
vector whose elements depend on x,

Alternatively, if (xj, ••• ,xn) is a set of local coordinates for M, we write

The symbol ^ is to be thought of as a basis element for the tangent space with
respect to a given set of local coordinates. A vector field is smooth if each fi(x) is
smooth; this can be shown to be independent of choice of coordinates.
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nonzero

net motion

Figure 2. A Lie bracket motion

To any vector field we define the flow of a vector field to represent the action of
integration along a vector field. Specifically, <f>{ : M —> M satisfies

jt<f>{(x) =/(<#(*)) x€M
A vector field is complete if its flow is defined for all t. All differentiable vector fields
are locally complete. For each given 2, <f>{ is a local diffeomorphism of M ontoitself
and <f>{ o<f>[ —<#+a for all ty s.

Given two vector fields / and #, we define the Lie bracket as

[/^] = S/-^dx' dx'

We can interpret this quantity using flows. Consider the flow depicted in Figure 2;
the net motion satisfies

(2) #•' o£"' o# o#(*„) = e2[/, <,](*„) + o(«2)-

The Lie bracket is the infinitesimal motion that results from flowing around a square
defined by two tangent vectors. If [/,</] = 0 then / and g commute and it can be
shown that the right hand side of equation (2) is identically zero; i.e., we return to
the starting point. A Lie product is a nested set of Lie brackets, for example,

A distribution assigns a subspace of the tangent space to each point in M in a
smooth way. A special case is a distribution defined by a set of smooth vector fields,
<7i> •** 59m- In this case we define the distribution as

A = span{$rl,..-,0m}

where we take the span over the set of smooth real-valued functions on M. At any
point the distribution is a linear subspace of the tangent space

Ax = span{pi(x), ••• ,£m(x)} C TXM
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A distribution is involutive if it is closed under the Lie bracket:

A involutive <*=>• V/,$r€A, [f,g] 6 A

For a finite dimensional distribution it suffices to check that the basis elements are

contained in the distribution. The involutive closure of a distribution, denoted A, is
the closure of A under bracketing. That is, A is the smallest distribution containing
A such that if /, g € A then [/, g] 6 A.

A submanifold N C M is an integral manifold of A if Ax = TXN at every x.
That is, the distribution spans the tangent space of the submanifold at every point.
A distribution is integrable if at every point x € M there exists a manifold N C M
which is an integral manifold for A. Integral manifolds are related to involutive
distributions by the following theorem:

Theorem 1 (Frobenius). A distribution is integrable if and only if it is involutive.

The following interpretation of Frobenius' theorem is also useful. If A is an
m-dimensional involutive distribution, then locally there exist n — m functions
hi: M —»• R such that integral manifolds of A are given by the level surfaces of
h = (hi,"- ,/in-m)« These level surfaces form a foliation of M. A single level
surface is called a leaf of the foliation.

Associated with the tangent space TXM is the dual space T*M, the set of linear
functions on TXM. Just as we defined vector fields on TXM, on T*M we can define
a one-form: for each x 6 Af, u>(x) G T*M. In local coordinates we represent a
smooth one form as

u(x) = Ui(x)dxi H hun(x)dxn

where each u>,- is smooth. The symbols dxt- represent the basis dual to the basis •£-
on TXM and are defined as

where 6y is the Kronecker delta. A one-form acts on a vector field to give a real-
valued function on M,

A codistribution assigns a subspace of TXM to each x € M.

2.2. Nonlinear Controllability. We begin the study of controllability by con
verting a set of linear velocity constraints into a control system. Consider the
problem of constructing a path x(t) € M between a given Xo and xx subject to the
constraints

u;,-(x)x = 0 i = 1, ••• ,fc

The Ui's are linear functions on the tangent spaces of M, i.e., one-forms. We assume
that the w,-'s are smooth and linearly independent over the ring of smooth functions.
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Proposition 2. There exist vector fields gj(x), j = 1, ••• , n - k that annihilate the
Ui(x)'s (vi(gj) = 0) such that the gt's are smooth and linearly independent over the
ring of smooth functions.

Proof. The w's form a codistribution of dimension A: in Rn. We can choose local
coordinates and a basis such that

n

Ui = dxt + ^2 otiidxt i = 1, •••,k

where an: R —• R is a smooth function. Set

q k t\

*=̂ +!>*«;+*>^ i =l,-,n-k
The flfy's are linearly independent. Furthermore they annihilate the constraint since

^ •gs = (dxi +Er=jk+i (Xudxi) •(^_ +£f=1 _a/0.+fc)_|.)
= cti(j+k) - c<iu+k) = 0

Smoothness of {gj} follows directly from smoothness of ay and hence {wj}. D

We now restrict our attention to drift free control systems of the form

x G M(3) S: x = gi(x)ut + -••+gm(x)um w€ f/c Rm

In view of the previous proposition, we assume that the <fc's are smooth, linearly
independent vector fields on M. We will further assume that their flows are defined
for all time (i.e., &• is complete). We wish to determine conditions under which we
can steer from x0 € M to an arbitrary xx G M by appropriate choice of u(-). We
review the formulation of Hermann and Krener [17], specialized to systems having
the form of equation (3).

A system S is controllable if for any x0,Xi € M there exists a T > 0. and
u: [0,T] —• U such that S satisfies x(0) = x0 and x(T) = xx. A system is small
time locally controllable at x0 if we can reach nearby points in arbitrarily small
amounts of time and stay near to x0 at all times. Given an open set V C M, define

Hv(x0iT) = {x € M: 3 u: [0,T] -> U that steers E from x(0) = x0 to
x(r) = xl and satisfies x(t) € V for 0 < t < T}

1Zv(x0,T) is the set of states which are reachable from x0 in time T that also remain
in V. We also define

Kv(x0,<T)= |J Kv(x0,t)
0<t<T

A system is small-time locally controllable (locally controllable for brevity) if
7£V(£o»< T) contains a neighborhood of x0 for all neighborhoods V of x0 and
T > 0. Define A = {^i, • • • , <7m} and let A be the involutive closure of A. We wish
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/»(*)

/i(»)

Figure 3. Proof of local accessibility. At each step we can find a
vector field which is not in Nk.

to establish the following implications for a given system S, in a neighborhood of a
point:

~KX-TXM =* mtnv(x0i<T)^{} <^> S is locally controllable

This result is referred to as Chow's Theorem [9] and asserts that the drift-free system
£ is controllable if the involutive closure of the vector fields spans TM.

Theorem 3 (Controllability Rank Condition).
If~Kx = TXM for all x is some neighborhood of x0, then for any T > 0 and neigh
borhood V ofx0f mt1lv(xo, <T) is nonempty.

Proof. The proof is by recursion. Choose fi € A. For ei > 0 sufficiently small,

Nl = {4>{11(x0):0<tl<€1}

is a manifold of dimension 1 which contains points arbitrarily close to Xo; without
loss of generality, we can take Nx C V. Assume Nk C V is a A;-dimensional manifold.
If k < n, there exists x € Nk and /t+1 € A such that /*+1 £ TxNk. If this were
not so then Ar € TxNk for any x in some open set W C Nki which would imply
A|iv C TNk. This cannot be true since dim A* = n > dim AT*. For ek+i sufficiently
small

JVi = {*££ <>..-o0£(*o) :0 < U< %, »= I,-- ,* + 1}
is a k + 1 dimensional manifold. Since e can be made arbitrarily small, we can
assume Nk+i C V.

If k = 7i, Nk C V is an n-dimensional manifold and by construction Nk C
7£v(so> < ex H r c„). Hence 7^v(x0, c) contains an open set. By restricting each
c{ < T/n, we can find such an open set for any T > 0. This proof is illustrated in
Figure 3. •
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Xi € W C Kv(x0)

*0<3EE
nv(w)

Figure 4. Proof of local controllability. To show TZv(xQ) contains
a neighborhood of the origin, we move to any point xx and map a
neighborhood of Xi to a neighborhood of x0 by reversing our original
path.

Theorem 4 (Local Controllability).
mtTZv(x0l<T) is nonempty for all neighborhoods V of x0 and T > 0 <=» £ is
locally controllable at x0.

Proof. The sufficiency follows from the definition of locally controllable. To prove
necessity, we need to show that Hv(x0l<T) contains a neighborhood of x0. Choose
a piecewise constant u: [0,T/2] -*• U such that u steers x0 to some xx € TZv(x0, <
T/2) and x(t) € V. Let <$ be the flow corresponding to this input (as given in the
proof of the previous theorem). Since £ is symmetric, we can flow backwards from
Xi to x0 using u'(i) = -u(T/2 - t), t € [0,T/2]. The flow corresponding to u' is
(<#)-1. By continuity of the flow, there exists W C Kv(x0,T/2) such that xl 6 W
and (4>i)~\W) C V for all t. Furthermore, (^t/2)"1W is a neighborhood of x0.
It follows that TZv(x0i <T) contains a neighborhood of x0 since we can concatenate
the inputs which steer x0 to Xi € W with u* to obtain an open set containing xo.
This is illustrated in Figure 4. •

2.3. Classification of Lie Algebras. We now develop some concepts which allow
us to classify nonholonomic systems. A more complete treatment can be found in
the work of Vershik [13, 44]. Basic facts concerning Lie algebras are taken from
Varadarajan [43]. Let A = span-fyx,--- ,gm} be the distribution associated with
the control system (3). Define G\ = A and

Gi = <jj_i + [Gi,Gi~i]

where

[GuGi-!] = span{fo,fc] :geGuh€ G^}

The set of all G's defines the filtration associated with a distribution. Each G{ is
defined to be spanned by the input vector fields plus the vector fields formed by
taking up to i —1 Lie brackets. The Jacobi identity implies [G,-, Gj] C [C?i, Gi+J_i] C
Gi+j.
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A filtration is regular in a neighborhood U of x0 if

rank Gi(x) = rank Cj,(x0) Vx € U

We say a system is regular if the corresponding filtration is regular. If a filtration
is regular, then at each step of its construction, Gi either gains dimension or the
construction terminates. If rank G,+i = rank Gi then Gi is involutive and hence
Gi+j = Gi for all J' > 0. Clearly rank Gi < n and hence if a filtration is regular,
then there exists an integer p < n such that Gi = G>+i for all i > p + 1. We refer
to p as the degree of nonholonomy of the distribution.

For a regular system, Chow's theorem is particularly easy to prove.

Theorem 5 (Chow's Theorem for Regular Systems).
For a regular system, a path exists between two arbitrary points in an open set
U CM if and only ifGp(x) = TXM « Rn for all x € U.

Proof. (Necessity) Suppose that Gp(x) = R* for k < n. Since the system is regular,
Gp is involutive and Frobenius' theorem implies that Gp is integrable. Let N be the
integrable submanifold for Gp, of dimension k. Since all trajectories of the system
are confined to iV, any x 6 M such that x £ N is not reachable.

(Sufficiency) Given two points x0,X! € Af, we can connect the points with a line
Xo 4- t(xi —Xo). At each point on this line, the reachable states form an open set
(since the system is controllable). Since the line has finite length, it is a compact
set (in the relative topology) and hence we can pick a finite subcover of reachable
sets. Since a path exists between each intersecting pair of this finite subcover, a
path between x0 and Xi exists by concatenating path segments. •

A system (or distribution) satisfying the conditions of the theorem is said to be
maximally nonholonomic. This version of Chow's theorem is considerably weaker
than our previous version, which holds for non-regular systems. If a regular system is
not maximally nonholonomic, then by Frobenius' theorem we can restrict ourselves
to a manifold on which the system is maximally nonholonomic.

It is also useful to record the dimension of each Gi. For a regular system, we
define the growth vector r € Zp+1 as

ri —rank Gi

We define the relative growth vector o € Zp+1 as <r,- = rt —r,-_i and r0 := 0. The
growth vector for a system is a convenient way to represent information about
the associated control Lie algebra. For a distribution with finite rank, the growth
vector is bounded from above at each step. To properly determine this bound, we
must determine the rank of Gi taking into account skew-symmetry and the Jacobi
identity. A careful calculation [37] gives

(4) V, =- ((*)' - £ jV,\
\ J\i,3<i J

i> 1
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Figure 5. A simple hopping robot. The robot consists of a leg
which can both rotate and extend. The configuration of the mech
anism is given by the angle of the body and the angle and length
(extension) of the leg.

where cr,- is the maximum relative growth at the il stage and j\i means all integers
j such that j divides i. If <7,- = a,- for all i, we say A has maximum growth.

2.4. Examples of Nonholonomic Systems. To illustrate the classification of
nonholonomic systems, we present several detailed examples. These examples are
used in later sections as a basis for testing planning algorithms.

Example 1 (Hopping robot). As our first example, we consider a hopping robot
as shown in Figure 5. This robot consists of a body with an actuated leg that can
rotate and extend. We are interested in studying the robot when it is in free flight.
The "constraint" on the system is conservation of angular momentum.

The (ip,l,0) be the body angle, leg extension and leg angle of the robot. For
simplicity, we take the body mass to be 1 and concentrate the mass of the leg, mi,
at the foot. The upper leg length is also taken to be 1, with / representing the
extension of the leg past this point. Since we control the leg angle and extension
directly, we choose them as our inputs. The angular momentum of the robot is
given by

9 + m,(l + l)2{6 + i;) = 0
Thus our equations become

1p = Uj

»

mif74.113

In vector field form we have

9\

92

u2
m,(/+l)3

l+m,(J+l)=

_9 m,(l+l)2 d
dxp l+mi(/+l)2 86
d_
dl

ft = [ft, ft] = 77^77(l+m,('+l)2)2 M
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•*-x

Figure 6. Kinematic model of an automobile. The configuration of
the car is determined by the Cartesian location of the back wheels,
the angle the car makes with the horizontal and the steering wheel
angle relative to the car body. The two inputs are the velocity of the
rear wheels and the steering velocity.

In a neighborhood of / = 0, {<7i,#2» <te} is full rank and hence the hopping robot has
degree of nonholonomy 3 with growth vector (2,3).

Example 2 (Kinematic car). Figure 6 shows an automobile with front and rear
tires. The rear tires are aligned with the car while the front tires are allowed to
spin about the vertical axes. To simplify the derivation, we model the front and
rear pairs of wheels as single wheels at the midpoints of the axles. The constraints
on the system arise by allowing the wheels to roll and spin, but not slip.

Let (x, y, <f>, 9) denote the configuration of the car, parameterized by the location
of the rear wheel(s), the angle of the car body with respect to the horizontal (0),
and the steering angle with respect to the car body (<£). The constraints for the
front and rear wheels are formed by writing the sideways velocity of the wheels:

ft(x + /cos 0) •sin(0 + <j>) - ft(y +1sin 6) •cos(0 + <j>) = 0
x sin 9 —y cos 9 = 0

Written as one forms we have

Wi = sin(0 + <f>)dx —cos(9 + <f>)dy —Icos <f>d9
u>2 = sin 9dx —cos 9dy

Converting this to a control system gives

x = cos 9 Ui
y = sin 9 ux
<i> = u2
9 = j tan <f> Ui

For this choice of vector fields, u\ corresponds to the forward velocity of the rear
wheels of the car and u2 corresponds to the velocity of the steering wheel.
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Figure 7. Kinematic car with trailers. The trailer configuration is
described the the angle the trailer makes with the horizontal, tj). The
rear wheels of the trailer are fixed and constrained to move along the
line in which they point or rotate about their center. The inputs to
the system are the inputs to the tow car: the driving velocity (of the
front wheels) and the steering velocity. This system is an example
of a fourth degree system; higher degree systems can be generated
by adding extra trailers.

To calculate the growth vector, we build the filtration

9i

9i

93 = [9u92]
9a - \9u9z\
9s = [92,93]

= cos0£ + sin0^ + ±tan<£
_ a

a<f>
-1

/ COS3 1
— sin 1

86
a

ICOS3 4> dx
—2tan<ft d

Icos3^ 89

+
cos $ a

l cos3 <j> dy

13

{9i »02><73> 94} are linearly independent when <j> ^ ±ir. Thus the system has degree
of nonholonomy 2 with growth vector r = (2,3,4) and relative growth vector cr =
(2,1,1). The system is regular away from <j> = ±ir, where gi is undefined.

Example 3 (Car with N trailers). Figure 7 shows a car with N trailers at
tached. We attach the hitch of each trailer to the center of the rear axle of the
previous trailer. The wheels of the individual trailers are aligned with the body of
the trailer. The constraints are again based on allowing the wheels only to roll and
spin, but not slip. The dimension of the state space is 4 + N with 2 controls.

We parameterize the configuration by the states of the automobile plus the angles
of each of the trailers with respect to the horizontal. For consistency we will write
0o for the angle of the car. Calculation of the constraints becomes tedious since we
have to write the velocity of the wheels of each trailer, which depend on all previous
trailers. Instead, we choose to use the same inputs as the automobile and calculate
the effect on the trailer angles.

At each trailer, we can write the hitch velocity as the sum of two components:
the velocity in the direction the trailer is pointing and its perpendicular. The
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perpendicular component causes the trailer to spin. Letting v,_i be the forward
velocity of the previous trailer, we have

9i = ^sin^.x-^H-i
v{ = cos(0i_! - 0t>t_i

Aggregating these equations gives

*' =h(fl c°s(^-i - 8j)) sin(^_! - 9i) Ul
The filtration corresponding to the N trailer problem is very complex. For small

values of AT, controllability can be verified directly. For the general case, a very
detailed and well-organized calculation by Laumond [28] shows that the system is
controllable with degree of nonholonomy N + 2 and relative growth vector o =
(2,1,...,1).1

2.5. Philip Hall Bases for Lie Algebras. We will be interested in the sequel
in constructing nonholonomic systems which are canonical in the sense that they
allow for the maximal growth of the filtration associated with a given set of vector
fields A = span{flfi,... ,gm}.

To construct such systems with a given number of inputs and degree of non
holonomy, it is necessary to introduce some additional machinery. In constructing
canonical nonholonomic systems we must observe the fundamental restrictions im
posed by the Lie bracket: skew-symmetry and the Jacobi identity. Our search for
a set of vector fields which have a given degree of nonholonomy is equivalent to
searching for a basis for a free, finitely generated, finite-dimensional Lie algebra.
One basis set for such a distribution is a Philip Hall basis [15, 37]:

Given a set of generators {Xi, ••• ,-Xm}, we define the length of a Lie product
recursively as

l(Xi) = 1 i=l,-..,m
l([A, B]) = 1(A)+ 1(B)

where A and B are themselves Lie products. A Lie algebra is nilpotent if there
exists an integer k such that all Lie products of length greater than k are zero, k is
called the degree of nilpotency. A nilpotent Lie algebra is finite-dimensional. A P.
Hall basis is an ordered set of Lie products H = {B,} satisfying

(PHI) Xi e H, i =!,-••,m

X = COS 0O Wi

y = sin 90 Ui

4> = «2

Oo = y tan (j> i*i

1Laumond uses a slightly different system, obtained by ignoring <f> and choosing «i and
ui tan <f> as inputs. Since setting ui = 0 allows us to steer <f> independently, controllability
for the system given here follows from Laumond's result.
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(PH2) If l(Bi) < l(Bj) then B{ < Bj
(PH3) [Bi, Bj] €Hif and only if

(a) BiyBj € H and Bi < Bj and
(b) either Bj = Xk for some k or

Bj - [BhBr] with BhBr 6 H and Bt < Bi
The proof that a P. Hall basis is a basis for the free Lie algebra generated by
{Xu-- ,Xm} can be found in [15, 37]. The construction above is a clever way
of keeping track of the conditions imposed by the skew symmetry and the Jacobi
identity.

A P. Hall basis with degree of nilpotency k can be constructed from a set of
generators using the definition. The simplest approach is to construct all possible
Lie products with length less than k and use the definition to eliminate elements
which fail to satisfy one of the properties. In practice, the basis can be built in such
a way that only (PH3) need be checked.

Example 4. A basis for the nilpotent Lie algebra of degree 3 generated by {X, Y, Z}
is

X Y Z

[X,Y] [X,Z] [Y,Z]
[X,[X,YU [X,[X,Z]] [Y,[X,Y]] [Y,[X,Z]]
[y,[y,z]] [z,[x,y]] [z,[x,z\] [z,\y,z\]

Note that [X, [Y, Z]] does not appear since

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y]] = 0

and two of the three terms are already present.

Example 5. A larger example, which we will use in the sequel, is a basis for a Lie
algebra of degree 5 with 2 generators:

Bx - B2 : X Y
B3: [X,Y]

B4-B5: [X,[X,Y]] \Y,[X,Y\]
Be-B8: [X,[X,[X,Y]]] F, [*,[*, *]]] [Y, [Y, [X, Y]]]

B9-514: [X,[X,[X,[X,Y]]]] [Y,[X,[X,[X,Y]]]] [Y,[Y,[X,[X,Y]]]]
[Y,[Y,[Y,[X,Y]]]] [[X,Y],[X,[X,Y]]] [[X,Y],[Y,[X,Y]]]

Note that B\z and Bi4 have the form [2?3, B4] and [2?3, jB5], requiring careful checking
of the condition (PH3).

3. Steering Controllable Systems Using Sinusoids

In this section, we investigate methods for steering systems with nonholonomic
constraints between arbitrary configurations. Early work by Brockett derives the
optimal controls for a set of canonical systems in which the tangent space to the
configuration manifold is spanned by the input vector fields and their (first order) Lie
brackets. Using Brockett's result as motivation, we derive suboptimal trajectories
for systems which are not in canonical form and consider systems in which it takes
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more than one level of bracketing to achieve controllability. These trajectories use
sinusoids at integrally related frequencies to achieve motion at a given bracketing
level. Examples and simulation results are presented.

We consider systems of the form

(6) * = ^i(*)«i + "- + flfm(*)ttm ar€Rn, «€Rm

with {gi} a set of smooth, linearly independent vector fields in some neighborhood
of the origin. We also assume that the system is regular (as defined in Section 2.3)
and hence has a well-defined degree of nonholonomy and growth vector.

3.1. First Degree Systems. Control systems in which the first level of brackets
together with the input vector fields span the tangent space at each configuration
arise in many areas. In classical mechanics, systems with growth vector r = (n—1,n)
are called contact structures [1], A version of the Darboux theorem asserts that for
these systems the corresponding constraint can be written as

dx$ = x2dx\

(using the notation of exterior differential forms). In R3 and using control system
form, this becomes

Xt = tti

(7) x2 = u2
X3 = X2U\

Brockett considered a more general version of this system [5]; we review his results
here. Consider a control system as in equation (6) that is maximally nonholonomic
with growth vector (m,n) = (m,m(™+1^). We would like to find an input u(t) on
the interval 0 to 1 which steers the system between an arbitrary initial and final
configuration and minimizes

f1 \u\2dt
Jo

This problem is related to finding the geodesies associated with a singular Rie-
mannian metric (Carnot-Caratheodory metric). To solve the problem, Brockett
considers a class of systems which have a special canonical form. An equivalent
form, which is more useful for our purposes, is

/gN *i = «,- i = l,---,m
* ' iij = XiUj i < j

.We see that if m = 2, this is exactly the contact system (7). It can be shown that
the input vector fields and their pairwise brackets span Rn and hence the system is
controllable with degree of nonholonomy equal to 1.

To find the optimal input between two points, we construct the Lagrangian

m

(9) i(x, x) = ^ X? + Yj ^ij^ij ~ Xi*i)
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Here we have used the fact that ut = x,-. The A^-'s are the Lagrangian multi
pliers associated with the constraint imposed by the control system. Substituting
equation (9) into the Euler-Lagrange equation

d_dL_dL
dt dx dx

it can be shown that the input must satisfy

u = eAtw0

where A is a constant skew-symmetric matrix. Thus the inputs are sinusoids at
various frequencies. Unfortunately, even for very simple problems, determining A
and u0 given an initial and final configuration is very difficult.

A great deal of simplification occurs if we consider moving between configurations
where x,(l) = x,(0). In this instance the eigenvalues of A must be multiples of 27r
and Brockett showed that the optimal inputs are sinusoids at integrally related
frequencies, namely 2tt, 2 •2tt, •••, y •2ir. This simplifies the problem tremendously
and for many examples reduces the search to that of finding u0. We use this result
to propose the following algorithm for steering systems of this type:

Algorithm 1. (Steering first-order canonical systems).

1. Steer the x,-'s to their desired values using any input and ignoring the evo
lution of the Xij 's.

2. Using sinusoids at integrally related frequencies, find uQ such that the input
steers the xtJ's to their desired values. By the choice of input, the x^'s are
unchanged.

The resulting trajectories are suboptimal but easily computable and have several
nice properties which we will explore.

Example 6. We consider as an example a kinematic hopping robot, as shown in
Figure 5. This example has been studied by Li, Montgomery and Raibert [33] using
holonomy methods. We wish to reorient the body of robot while in midair and bring
the leg rotation and extension to a desired final value. The kinematic equations of
the robot (in center of mass coordinates) can be written as

^ = iti

/ = u2

where we have used units such that the mass of the body is 1 and the length of the
leg at zero extension is also 1. The last equation is a consequence of conservation
of angular momentum. Expanding the equation using a Taylor series about / = 0

x mt • 2toj . /n

e=-TT^*-oT^y'Ul +oil)Ul
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Figure 8. Nonholonomic motion for a hopping robot. Using sinu
soidal inputs, the leg angle and extension return to their starting
values but the body angle goes a net rotation.

This suggests a change of coordinates, a = 9+ i^^-V> to put t*ie e<luations in tne
form

V> = tii
/ = u2

_ 2mi
a = (1+m,)' /tti + 0(1)UX = f(l)Ui

This equation has the same form locally as the canonical system in equation (8).
Using this as justification, we attempt to use our proposed algorithm to steer the

full nonlinear system. Since we control the if) and / states directly, we first steer
them to their desired values. Then using sinusoids in the tj) and / inputs,

Ux

u2

= ai sin ut
= a2cos ut

we steer 9 to its desired value. By construction, this last motion does not affect the
final values of tf) and /. To include the effect of nonlinearity in the first vector field,
harmonic analysis can be used. Since / is periodic, we expand / using its Fourier
series,

an
f(— sin ut) = /?i sin ut + fi2 sin 2ut + • • •

u

Integrating d over one period, only the first term in the expansion contributes to
the net motion

«(?) = o(0) +/
./o

= a(0) +
- S u
•*10L
u2

sin ut +
a-ifc

u

sin ut sin 2ut + dt

Figure 8 shows the trajectory for the last motion segment; tp and / return to their
initial values but a (and hence 9) experiences a net change. To compute the required
input amplitudes, we plot fii as a function of a2 and choose a2 such that ^^ =
01-00- Using this procedure, we can (locally) steer between any two configurations.



NONHOLONOMIC MOTION PLANNING 19

3.2. Second Degree Systems. We next consider systems in which the first level
of bracketing is not enough to span Rn. We begin by trying to extend the previous
canonical form to the next higher level of bracketing. Consider a system which can
be expressed as

x,- = Ui i = 1, • • •, m
(10) iij = XiUj i < j

±ijk = XijUk (mod Jacobi identity)

Because Jacobi's identity imposes relations between certain brackets, not all x^*
combinations are possible. This is analogous to limiting the sy's according to

[ft> [9j,9k]] + [ty, [9k,9i]] + [ft* lgt,9j] = 0-

Using the calculation in equation (4) shows that this system has relative growth
vector (m>m(™-1Mm+1Mm-1)). Constructing the Lagrangian (with the same in
tegral cost function) and substituting into the Euler-Lagrange equations does not
result in a constant set of Lagrange multipliers. As a consequence, we cannot solve
the optimal control problem in closed form.

We can however extend and apply our previous algorithm as follows:

Algorithm 2. (Steering second order canonical systems).
1. Steer the x^'s to their desired values. This causes drift in all other states.
2. Steer the xt;'s to their desired values using integrally related sinusoidal in

puts. If the iih input has frequency ut then xfj- will have frequency compo
nents at Ui±Uj. By choosing inputs such that we get frequency components
at zero, we can generate motion in the desired states.

3. Use sinusoidal inputs a second time to move all previously steered states in
a closed loop and generate motion only in the sy* directions. This requires
careful choice of the input frequencies so that w,- ±Uj ^0 but u;,- ± Uj ± uk
has zero frequency components.

Example 7. To illustrate the algorithm, we consider the motion of a front wheel
drive car as shown in Figure 6. The kinematics of this mechanism where derived in
the last chapter and can be written as

x = cos 9 U\

en) i = sin"ui
v ' 4> = u2

9 = jtan^i/i

In this form, ux does not control any state directly. We use a change of coordinates
and a change of input to put the equations in the form

x = Vi Vi = cos 01*i
j> = v2 v2 —u2
a — tan <f> Vi a = sin 0
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Figure 9. Sample trajectories for a car. The trajectory shown is
a three stage path which moves the unicycle from x = —5, y = 1,
0 = 0.05, 4> = 1) to (0, 0.5, 0, 0). The first three figures show the
states versus x; the bottom right figures show the inputs as functions
of time.

As before, the linear portion of the nonlinearities matches the canonical system and
we can include the effects of the nonlinearities using Fourier series techniques.

An example of the algorithm applied to the car is given in Figure 9. The first
portion of the path, labeled A, drives the x and <f> states to their desired values
using a constant input. The second portion, labeled B, uses a periodic input to
drive 0 while bringing the other two states back to their desired values. The last
step brings y to its desired value and returns the other three states to their correct
values. The Lissajous figures that are obtained from the phase portraits of the
different variables are quite instructive. Consider the portion of the curve labeled
C. The upper left plot contains the Lissajous figure for x, <f> (two loops); the lower
left plot is the corresponding figure for x, 0 (one loop) and the open curve in x,y
shows the increment in the y variable. The very powerful implication here is that
the Lie bracket directions correspond to rectification of harmonic periodic motions
of the driving vector fields and the harmonic relations are determined by the degree
of the Lie bracket corresponding to the desired direction of motion. This point has
also been made rather elegantly by Brockett [6] in the context of the rectification
of mechanical motion.
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4. Chained Systems

We now study more general examples of nonholonomic systems and investigate
the use of sinusoids for steering such systems. As in the previous section, we try to
generate canonical classes of higher order systems, i.e., systems where more than
one level of Lie brackets is needed to span the tangent space to the configuration
space. We show that in full generality it is difficult to use sinusoids to steer such
systems. This leads us to specialize to a smaller class of higher order systems,
which we refer to as chained systems, which can be steered using sinusoids. We
give sufficient conditions under which systems can be transformed into a chained
canonical form and show the procedure applied to several illustrative examples.

4.1. Maximum Growth Canonical Systems. Using a P. Hall basis, it is pos
sible to construct vector fields which have maximum growth; at each level of brack
eting the dimension of the filtration grows by the maximum possible amount. More
specifically, we wish construct a set of vector fields {Xi} such that when the vector
fields are substituted into the expressions for the P. Hall basis elements, the result
ing set of vector fields is linearly independent. The method of construction used
here is due to Grayson and Grossmann [14]; similar results can be found in the work
of Sussmann [41]. We present only the 2-input case for simplicity.

An important property of a P. Hall Basis is that each basis element has a unique
representation as a set of nested Lie products

(12) Bi = [Bu,[Bi„---[Bil,Xi].--]}

Given a P. Hall basis element B = [Bi, Bj], weconvert it into this form by recursively
expanding Bj. We associate with each such basis element a vector a,- 6 Zn which
indicates the number of times each basis element occurs in the expansion (12).
Thus cti(k) is the number of times Bk appears in the expansion for B{. From the
properties of a P. Hall basis, it is clear that a,(fc) = 0 if k > i.

Given a P. Hall basis H —{Bu ••• , Bn} we construct a vector field on Rn using
coordinates x € Rn. Assume B{ = Xi for i = 1,- •• ,m. Given a,- associated with
Bi, i > m, we define

xa* = Hx?ia)

3

Theorem 6 (Maximal growth 2 input systems [14]).
Fix k > 1 and let n be the rank of the free, nilpotent Lie algebra of order k with 2
generators. Then

l~ dxx 2" dxifeatdxt
generate a free, nilpotent Lie algebra (of vector fields) of order k at the origin.
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The vector fields generated by this theorem are extensions of the canonical forms
we have seen for degree of nonholonomy 1 and 2. The degree of nonholonomy for
these vector fields is identical to the order of nilpotency. One way to interpret and
gain insight into this formula is to note that a Lie product

[«.„[*.,, —[flu,*d]

corresponds to a vector field obtained by taking the derivative of the components
of X2 with respect to xtl,Xi0, ••• ,xlfc. The coefficients of X2 are chosen such that
taking this derivative leaves 1 in the ^ term.

Example 8. Consider the two input example given previously, but with order of
nilpotency 4 instead of 5. The system generated by Theorem 6 is

Xi = tii X

x2 = u2 Y

X3 = XiU2 IX,Y]
x4 = \x\u2 ix,[x,n
is = X\X2U2 [Y,[X,Y]]
ie = \x\u2

\x\x2u2
1 2\xYx\u2

[X,[X,[X,Y]]]
if = [Y,[X,[X,Y]]]
x8 = [Y,[Y,[X,Y]]]

We can now ask ourselves if it is possible to steer these canonical systems using
sinusoids. Although the form of the system is different from that we used in Sec
tion 3.2, the same approach can be used to steer xx through x5. That is, sinusoids at
the same frequency and proper phase give motion in x3 and sinusoids at frequency
1 and 2 give motion in x4 and x5 (switching the input frequency switches between
x4 and x5). This can be verified by direct calculation.

Steering in the x6 —x8 directions is more difficult. Consider the effect of using
two simple sinusoids as inputs, Ux = acosuit and u2 = bsmu2t. In order to prevent
motion in lower level brackets, we must have Ui ^ ±u2, ui ^ ±2u2, u2 ^ ±2o>i.
Assuming these relationships hold, we get the following frequency components in
the derivatives of the dynamic system:

x6 : Ui± u2 3a;! ± u2
x7: Ui 2u>i 2u2 2ui ± 2u2
XS ' U2 U\± U2 U\ ± Zu2

By choosing frequencies such that the derivative has a term at frequency 0, we get
motion in that coordinate. Thus u2 = Zui gives motion in x6 (only) and ux = 3w2
gives motion in x8 (only).

Based on these calculations, it would appear that choosing 2u;i = 2u2 would give
motion in x7. This is in fact the case, but we also get motion in the x3 direction.
It is not possible to get motion only in the X7 direction using simple sinusoids. A
direct calculation verifies that adjusting the phasing of the inputs does not resolve
this dilemma. It may still be possible to steer the system using combinations of
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sinusoids at different frequencies for each input or using more complicated periodic
functions (such as elliptic functions, see [7]).

Rather than explore the use of more complicated inputs for steering nonholo
nomic systems, we consider instead a simpler class of systems. The justification for
changing the class of systems is simple—most of the systems encountered as exam
ples do not have the complicated structure of our canonical example. Thus there
may be a simpler class of systems which is both steerable using simple sinusoids
and representative of systems in which we are interested. This is the topic of the
next subsection.

4.2. Chained Systems. Consider a two input system of the following form:

x0 = «i yo = u2

&i = yoUi (yi := -Xi)
x2 = XitAi y2 = 2/1W2

(13) x3 = x2Ui y3 = 2/2^2

*n» = snr_iUi yny = yny-iu2

or more compactly

o- XUi + Yu2 n *q2

where 3/1 := —xx to account for skew-symmetry of the Lie bracket. We refer to this
system as a two-chain system. The first item is to check the controllability of these
systems. To this end, denote iterated Lie products as ad^Y:

ad*Y = [X, Y] ad^y = [X,ad^Y] = [X, [X, ••• , [X, Y] •••]]

Lemma 7 (Lie bracket calculations).
For the vector fields in equation (13)

a4* = (-D*jfe k>1

Proof. By induction. Since the first level of brackets is irregular, we begin by
expanding [X, Y] and [X, [X, Y]].

[X,Y] = (jL +y^ +Zx^^ +Zyi-^)-

= °-«r
[X,[X,Y]] = X(-£) +£(X) =0+£;
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Now assume that ad*Y = (-1)*^. Then

ad-K =[XMW =(-1)' (*(£)- JLfi3C>) =(-D axt+i
The proof for adyJT is identical using the facts [Y, X] = —[X, Y] and 3/1 := -x^ •

Proposition 8 (Controllability of the two-chain system).
The two-chain system (13) is maximally nonholonomic (controllable).

Proof. There are 2n —1 coordinates in (13) and the 2n —1 Lie products

{X, Y, adjrY, adrX} t > 1, j > 2

are independent using Lemma 7. We require j > 2 since adyX = -ad^Y and hence
those Lie products can never be independent. •

To steer this system, we use sinusoids at integrally related frequencies. Roughly
speaking, if we use tti = sint and u2 = cos Art then xx will have components at
frequency k —1, x2 at frequency A; —2, etc. x* will have a component at frequency
zero and when integrated we get motion in x* while all previous variables return
to their starting values. In the y variables, all frequency components will be of the
form m •A: ± 1 and hence we get no motion for A; > 1. (For A; = 1,3/1 and xx are the
same variable). We make this precise with the following algorithm.

Algorithm 3.

1. Steer x0 and y0 to their desired values.
2. For each Xk, k > 1, steer x* to its final value using Ui = a sin t,u2 = bcos kt,

where a and 6 satisfy

x*(27r)-x*(0) =^^.27T
3. For each 3/*, k > 2, steer yk to its final value using Wi = 6 cos kt, u2 = a sin t,

where a and 6 satisfy

»(2») - ft(0) =^^•2*
Proposition 9. Algorithm 3 can steer (13) to an arbitrary configuration.

Proof. The proof is constructive. It suffices to consider only step 2 since step 3 can
be proved by switching x and y in what follows. We must show 2 things:

(1) moving xfc does not affect ij, j < k
(2) moving Xk does not affect 3/y, j = 1, ••• , ny

To verify that using U\ = asint, u2 = bcos kt produces motion only in xk, we
integrate the x states. If Xj|._i has terms at frequency Ui, then x* has corresponding
terms at Ui ± 1 (by expanding products of sinusoids as sums of sinusoids). Since the
only way to have x,(2^r) ^ x,(0) is to have x,- have a component at frequency zero,
it suffices to keep track only of the lowest frequency component in each variable;

Jb+1 0
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higher components will integrate to zero. Direct computation starting from the
origin yields

x0 = a(l —cost)

xi = |̂ sin*<sin<=^^
*2 = £*(ri^sin(*-2)*+.--

r f akb .^k = / l^I^sin2i +---)^=2^Iib!^ +
xfc(27r) = Xjb(O) + (affi bn and all earher x,'s are periodic and hence X;(27r) = x,(0),
i < k. If the system does not start at the origin, the initial conditions generate
extra terms of the form x,_i(0)«2 in the ith derivative and this integrates to zero,
giving no net contribution.

To show that we get no motion in the y variables, we show that all frequency
components in the y's have the form mk ± 1 where m is some integer. This is true
for 3/1 := —Xi from the calculation above. Assume it is true for 3/,-:

Vi+\ = Vtu2

= y^ a(m) sin(roA: ± l)t •cos kt
m

= X) ^T^(sin((m +1)A; ±l)t +sin((m -l)k±l)t)
m *

Hence y,-+l only has components at non-zero frequencies m'k ± 1 and therefore
Vi(2n) = 3/i(0). •

To include systems with more than two inputs, we replicate the structure of (13)
for each additional input. Let hkj represent the motion corresponding to the Lie
product ad^.Xj. In the two input case, x* = h\x and yk = hk2. The following
system on Rn is the m-chain system:

h°j = Uj j = l,--- ,m
(14) fy = h?Uj i > j and h}{ := -h}j

hk. = hkrlu'tij nij u3

Proposition 10 (Multi-chain system controllability).
The multi-chain system of (14) is maximally nonholonomic and can be steered using
sinusoids.

Proof. The system (14) can be rewritten

h = X1U1 + --> + Xmum
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with

i<3

Given any two Xt,Xj, their Lie product expansions only involve terms of the form
hkj for some A;. But this is precisely the vector fields from Lemma 7 and hence

a4jT, =(-!)* d
dhtj

Taking these terms for all possible i,j,k we get a set of independent Lie products
just as in the proof of Theorem 8.

To show that the system can be steered using sinusoids, pick any i,j € {1, • ••, m},
i < j. Fix ut = 0 for all / ^ i,j. The resulting system is identical to (13) can be
steered using algorithm 3. By choosing all possible combinations of i and j, we can
move to any position. •

4.3. Non-canonical Chained Systems. We would like to extend the class of
systems which we can steer by including systems which have similar structure to
equation (13), but with additional nonlinearities. The following example illustrates
the limitations of using sinusoidal inputs for this purpose. Consider the system

Xi = U\

x2 = u2

x3 = (x2 + ex^)ui
X4 = (23 + €xl)Ui
X5 = X2t*i

This satisfies our definition of a chained system with a single chain: a.dgig2, k =
0,1,2,3 together with g2 forms a basis for R5.

If we apply inputs Ui = sin t and u2 = cos3/, we get the following motion, starting
from x = 0

xx(2ir) = 0
x2(27r) = 0
x3(2?r) = 0
x4(27r) = -Trio*

\5^2
*5(2ir) = Ya + 2-5 x 10 €

The reason for this perturbation in x2 is that the (small) nonlinear terms cause zero
frequency components to appear in x2. Hence we cannot use simple sinusoids to
steer this system as before.

Nonetheless, there are many special instances where sinusoids are an important
tool. For example, we were able to steer the automobile with sinusoids, despite the
nonlinearities. Since the automobile had degree of nonholonomy 2, the problems
present in the previous example do not occur. Another example is a system which
has the chained canonical form until the last coordinate. In this case, harmonic
analysis is needed when finding the motion at the last step of the algorithm and
zero frequency terms do not appear in any previous coordinates.
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It may also be possible to use feedback transformation to convert certain systems
into chained canonical form. This is similar to the technique used in nonlinear con
trol to convert a nonlinear system into a linear one by using a change of coordinates
and state feedback. Similar efforts have been used by Lafferriere and Sussmann [23]
to convert systems into nilpotent form for use with their planning algorithm. It is
interesting to note that in several of their examples, the converted systems were also
in chained canonical form. We study this possibility in detail in the next section.

Finally, sinusoids may be useful for steering systems which are not locally in
canonical form. The minimal structure necessary to attempt motion generation
using sinusoids is a triangular system. A system is triangular if we can find a set of
coordinates h = (h°,h\--- ,h?) <= Rm»Xffl»x'"xm» = Rn such that

h° = v v £ Rmo

hl = f2(h°)v
h2 = flh^h^v

h? = p(h°,"-,hP-l)v

The triangular form was necessary in our examples to insure that the differential
equations driven by sinusoidal inputs could be integrated in a stepwise fashion.

4.4. Converting Systems to Chained Form. In this section we introduce a
set of sufficient conditions for determining if a system can be converted to chained
form. This set of conditions gives a constructive method for building a feedback
transformation which accomplishes the conversion. We concentrate on the two input
case with a single chain.

Proposition 11 (Converting systems to two-chained form).
Consider a controllable system

x = gi(x)ux + g2(x)u2,

with g\, g2 linearly independent and smooth and having the special form

*(*) = slr + E^stt*)*!-
9*(*) = n=2SJ(z)a!-

(by appropriate change of basis, if necessary). Define

A0 := span{#i,02, ad^ g2, •••,ad£~2 g2}
Ai := span{p2, ad<,t g2, ••• ,ad^" g2}

If for some open set U, Ao(x) = Rn for all x G U C Rn and Ai is involutive on U,
then there exists a local feedback transformation

£ = <£(x) u = f3(x)v
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such that the transformed system is in chained form:

L = vi
6 = v2

6 = 6^i

Proof. Since Ai is an involutive distribution of dimension n —2, there exists a
function h such that dh •A2 = 0and dh •ad£~2 g2 ^ 0. Define the map <f>: x •-• f as

6 =
&

Xi

= j;,-1*

£n-l
= A

To verify that <j> is a valid change of coordinates, we use the fact that

L[f,9]h = LfL9h ~ LgLSh

so that

= (-iHxhxj-J^o
and iadfc ?3/i = 0 for Ar < n —2 by the same reasoning. Using this calculation,

1 0 ••• 0

dx

dh

dL»:2h

dLgih

^A0 =
dx

±a(x)

0

* ±a(x)

where a(x) = L3iLn~2h ^ 0.
Evaluating the derivatives of the coordinate transformation, we define

Vi = Ml

v2 = (Lng;lh)Ul + (Lg2Ln9~2h)u2 '

Since L92L^~2h ^ 0, this change of inputs is invertible and the resulting system is
in chained form. •

This proposition gives a set of sufficient conditions for converting a system with
relative growth vector o = (2,1, •••, 1) into chained form. In order to apply the
results, however, we must modify the original inputs to the system such that one
of the states is controlled directly by the input. Such a change of input is always
possible due to the assumption that the input vector fields are linearly independent.
This change of input is not unique.
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One corollary to Proposition 11 is that all systems with relative growth vector
o —(2,1) can be converted to chained form. This is a direct consequence of the
fact that all 1 dimensional distributions are involutive.

Example 9. Consider as our first example, the kinematic model of an automobile.
The equations governing the motion of the system were derived in section 2.4:

x = cos 9 u\
, , y = sin 9 u\
(15) 1v ' <j> = u2

9 — y tan $i*i

To convert the system to chained form, we first scale the inputs so that ux enters x
directly. Reusing the symbol U\, the kinematics become:

x = Ui

y — tan 9 U\
4> = u2
9 = y sec9 tan <f> Ui

Choose the y position of the car as the function h; it is easy to verify that this func
tion satisfies the conditions of Proposition 11. The resulting change of coordinates
is

f! = X Ui = Vi
f2 = ysec3 9tan <j> u2 = —ysin2 <f> sin 9vi + ycos2 9cos3 <f>v2
f3 = tan 9

And the transformed system has the form:

L = Vi
(2 = v2
£3 = 6»i
£4 = &Vi

This system can now be steered using the sinusoidal algorithm of the previous
section or another method, such as Lafferriere and Sussmann's algorithm for gen
erating motions for nilpotent systems. The motion is implemented as a feedback
pre-compensator which converts the v inputs into the actual system inputs, u. This
feedback transformation agrees the that used in Lafferriere and Sussmann to nilpo-
tentize the kinematic car example. Their formulation of the feedback transformation
was not presented, although it seems clear that a similar approach must have been
used.

Figure 10 shows the results of using chained form to steer an automobile. These
trajectories are qualitatively similar to those in Figure 9, but do not require the
calculation of Fourier coefficients for determining open loop trajectories.
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Figure 10. Sample trajectories for a car using chained form.

Example 10 (Car with N trailers). Consider first the case of a car pulling a
single trailer. The equations of motion are identical to those of the car, with an
additional equation specifying the motion of the attached trailer:

9\ = sin(0o - 9i)ui

By solving the partial differential equations in the statement of the proposition
above, it can be shown that the function

1 + sin 0i
h(y,91) = y-\og(-

COS 0i •)

generates a chained set of coordinates. Again we can locally steer the trailer using
sinusoidal inputs or other methods.

When additional trailers are added, the distribution Ax is no longer involutive
and hence the procedure outlined above does not apply. Since the conditions in
the proposition are only sufficient conditions, this does not mean that a car with
N trailers cannot be steered using sinusoids. But a more complicated change of
basis would be required in order to convert the vector fields to the necessary form.
This example points out the weaknesses of the theorem and provides directions for
future research.

5. Discussion and Future Work

Most current nonholonomic motion planners rely on special system structure to
generateefficient motions. In some cases the structure is very specific, as evidenced
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by the large number of path planners for car-like robots using the special form of
the kinematics for that system. More general path planners, such as the one pro
posed by Lafferriere and Sussmann [23], require that either the system be nilpotent
or that an iterative procedure be used. In the non-nilpotent case, the iterative al
gorithm generates very complex paths which can steer arbitrarily close to the goal
only at the cost of additional complexity. The results of Section 3 are somewhat
complimentary—the methods can easily be applied to certain systems which are
not nilpotent, but the general case requires a restrictive canonical form.

Research in efficient motion planning for general nonholonomic systems can pro
ceed in many ways. More general conditions under which a distribution can be
represented by a nilpotent or chained basis would clarify the extent to which partic
ular algorithms can be applied. On the other hand, new approaches using metric or
other properties of nonholonomic distributions might lead to path planners which
work for more general classes of systems. Computational approaches such as those
proposed by Barraquand and Latombe [2] might also be extended to handle higher
dimensional systems with very few structural requirements.

The work in nonholonomic motion planning thus far has been primarily in the
generation of open loop trajectories. Closed loop control of nonholonomic systems
is very difficult, in part because of fundamental restrictions which prohibit the
existence of smooth feedback controllers which asymptotically stabilize a point.
Indeed, one can show using the results of Brockett, Sontag [4, 38] that the class of
nonholonomic systems is not stabilizable by smooth state feedback. Nonetheless,
it is vital to introduce closed loop control for these systems to account for initial
condition and modeling errors, noise, and other effects that are encountered in any
real implementation. Figure 11 shows an example of the effects of initial condition
errors on parallel parking maneuvers for an automobile.

A possible approach to the control of nonholonomic systems is the study of con
trollability along a reference trajectory. If we are given a desired state trajectory,
we would like to construct a controller which stabilizes the system to this trajec
tory. The simplest example of such a controller is a control law for steering a car
down the road. While the car is moving, it is quite easy to linearize the system and
design linear feedback controllers which cause the car to stay aligned with a given
trajectory. In fact, if the car is moving at a constant velocity, Ui = vc, then we can
write

x = gi(x)ve + g2(x)u2
= f(x) -r g2(x)u2

Furthermore, this system is completely controllable as a nonlinear system. Methods
for extending these results to more complicated systems are currently being pursued.

The development of closed loop controls may allow simplifications in planning
for nonholonomic systems. Rather than attempt to find an input which steers us
between the initial and desired locations, we might construct a piecewise feasible
trajectory which connects the two points. We then apply a feedback controller
about the piecewise feasible segments to implicitly define the input u. To illustrate
this approach, we consider a parallel parking maneuver as shown in Figure 12. This
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Figure 11. Affects of initial condition errors on open loop paths.
The gray line shows a parking maneuver for an automobile. The
solid path is the trajectory which is followed when the initial steering
wheel angle of the car is off by 0.5 radians (approximately 3 degrees).

Figure 12. Parallel parking maneuver using piecewise feasible seg
ments (gray lines) and closed loop control.
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controller was constructed by using piecewise linear state feedback for each feasible
segment.

Finally, we consider the problem of planning for systems with a nonzero drift
vector field:

* = f(x) + 9(x)u
The planning problem for this system is to steer between two equilibrium points of
the system using u. If the equilibrium points lie on a connected manifold and the
system is controllable at each point along the manifold, this problem can be solved
for very general systems (see [16] for a specific example). However, if the start and
goal position are not connected by an equilibrium manifold, it is not clear how to
proceed. Although the existence of a trajectory is guaranteed by the appropriate
controllability conditions, construction of a trajectory for systems with drift is still
an open problem.
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