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Abstract

In thispaper, we describe ourapproach to theoptimization ofquery execution plans in

XPRS, a multi-user parallel database machine based ona shared-memory multiprocessor

and a disk array. The main difficulties in this optimization problem are the compile-time

unknown parameters such as available buffer size and number of free processors, and the

enormous search space of possible parallel plans. We deal with these problems with a

novel two phase optimization strategy which dramatically reduces the search space and

allows run time parameters without significantly compromising plan optimality. In this
paper we present our two phase strategy and give experimental evidence from XPRS

benchmarks that indicate that it almost always produces optimal plans.

1 Introduction

XPRS (extended Postgres on Raid and Sprite) is a multi-user parallel database machine

based on a shared-memory multiprocessor and a disk array. The hardware environment of

XPRS is shown in Figure 1 and an outline of the initial design of XPRS can be found in

[STON88]. The underlining reliable disk array RAID is described in [PATT88].

°This research was sponsored by the National Science Foundation under contract MIP 8715235.



relation striping

Figure 1: The Parallel Environment of XPRS

Shared-memory multiprocessors are a very cost-effective way to achieve high performance.

They have two major advantagesover the shared-nothing architectures [STON86] adopted by

most other parallel database machines such as GAMMA [DEWI86] and BUBBA [COPE88].

First, there are no communication delays because messages are exchanged through shared

memory, and synchronization can be accomplished by cheap, low level mechanisms. Second,

load balancing is much easier because the operating system can automatically allocate the

next ready process to the first available processor. Simulation results in [BHID88] show that

the potential win of a shared-memory system over a shared-nothing system to be as much as

a factor of two.

Database applications are often I/O intensive. In order to keep up with the I/O requests

from multiple CPU's, XPRS uses a disk array to eliminate the I/O bottleneck. All relations

are striped sequentially, block by block, in a round-robin fashion across the disk array to allow

maximum I/O bandwidth.

In this paper, we address the problem of parallel query optimization in a shared-memory

environment and describe the XPRS approach. We will concentrate on two specific issues,



namelydealing with parameters which are unknown at compile time and the large search space

of parallel plans. In a multi-user environment, parameters such as the amount of available

buffer space and number of free processors are unknown at compile time. Therefore, compile-

time optimization must generate plans for an uncertain run-time environment. Second, the

number of possible parallel query execution plans is so enormous that any exhaustive search

algorithm is impractical. As a result, the search space must be heuristically reduced.

Our strategy is to divide query optimization into two phases. The first phase only deals

with sequential query execution plans and fixed parameters and is performed at compile time.

The second phase is performed at run time and finds the optimal parallelization of the best

sequential plan chosen in the phase 1, according to the environment actually present at run

time. Obviously this two-phase optimization approach greatly reduces the plan search space

because it only explores parallel versions of the best sequential plan. In this paper, we will

present experiment results that show that this approach does not compromise optimality of

the resulting parallel query execution plan.

Most previous work on parallel query optimization has been done for a shared-nothing

environment, e.g., [SCHN89, SCHN90]. Earlier work on a shared-memory environment (e.g.,

[BITT83a, RICH87, MURP89]) only considers single operations, mainly joins and sorts. On

theother hand we address theoptimization ofentire queries. [BULT89] outlines sixkeyissues

in query optimization in loosely or tightly coupled multiprocessors with private disks and

sketches the optimization strategy that is being implemented for the KARDAMOM database

machine. However, the paper does not give any details about howto cut downthe size of the

search space of parallel query plans. [MURP91] proposes an algorithm to parallelize a given

sequential plan to achieve minimum duration time with computational resource requirements

less than the given system bounds in a shared-memory environment. It does not address the

problem of how to choose a sequential plan to parallelize, and it assumes that the amount

of available resources is known and therefore the algorithm can not be used at compile time.

Moreover, the algorithm includes testing a series of target duration times starting from the

lower bound and therefore might be too expensive for run-time optimization. In this paper,



we will describe away tohandle unknown parameters at compile time and strategies tochoose
optimal sequential plans and their parallelizations.

[GRAE89] proposes ageneral approach for dealing with unknown parameters in compile-

timeoptimization by introducing choose-plan nodes in the query plans that generate multiple

query plans, consequently, the run-time system must go through a decision tree to choose

a plan according to the current system parameters. Although this general approach can be

applied to XPRS, our solutionis much simpler because we are concerned only with unknown

buffer sizes and number of processors. [CORN89] describes a way to integratebuffermanage

ment and query optimization by applying traditional integer programming techniques with

queuing analysis. Many restrictive simplifying assumptions are required in order to formalize

a tractable analytical problem. The paper shows through an example of a three-way nestloop

joins for which the optimal sequential query plan may change if the buffer size changes. How

ever, [CORN89] does not consider hashjoin as a join algorithm. In XPRS, on the other hand,

we always assume that there is enough main memory (approximately the square root of the

size of the smaller join relation[SHAP86]) to use a hashjoin algorithm, which has been shown

to be optimal without the use of indices[SHAP86]. Our results show that with sufficient main

memory to support hashjoins, the choice of the optimal query plan remains very stable with

varying buffer sizes. [ZELL90] points out that inaccurate estimates of intermediate result sizes

can seriously jeopardize the performance of hashjoins. More generally inaccurate estimates

can cause any query plan to have a running time substantially different than that predicated

by the optimizer. In this paper, we assume accurate estimates for all intermediate results. It

is left as a future research topic to explore the impact of uncertainty.

The rest of this paper is organized as follows. Section 2 explores the search space of parallel

query plans and shows the complexity of the problem. Section 3 studies how buffer size

affects the choice of optimal sequential plans, introduces a choose node that can dynamically

switch join or scan methods based on real buffer sizes, and shows that the choice of optimal

sequential plans augmented with choose nodes is insensitive to buffer size changes. Section 4

then discusses the performance of various parallelizations of a sequential plan and justifies our



two-phase optimization approach. Section 5 gives an overview of the whole process of XPRS

parallel query processing, while section 6 concludes the paper and suggests future research.

2 The Space of Parallel Plans

In a uniprocessor environment, a query execution plan (which we call a sequential plan) is a

binary tree consisting of the basic relational operation nodes. In XPRS, the basic operations

include sequential scan, index scan, nestloop join, mergesort join and hashjoin. At

run time, the query executor processes each plan sequentially in a postorder (depth-first)

sequence. Intermediate result generation is avoided by the use of pipelining, in which the

result tuples of one relational operation are immediately processed as the input tuples of the

next relational operation. Figure 2 gives an example of a sequential plan for a four-way join,

A x B ix C m D. The shaded boxes in Figure 2 represent plan fragments in a possible

parallelization of the sequential plan, which we will discuss momentarily. Notice that the

inner relation (the right subtree) of the hashjoin at the root of the plan tree is also a join.

These kinds ofplans are called bushy tree plans. Most conventional query optimizers [SELI79]

only consider left-deep tree plans that do not allow inner relations to be a join in order to

reduce the search space of possible plans.

We call query processing plans that specify a parallel execution parallel plans. Obviously,

each parallel plan is a parallelization ofsome sequential plan and each sequential plan may

have many different parallelizations. Parallelizations can be characterized in the following
three ways.

• Form of Parallelism

There are two forms of parallelism that we can exploit in query processing: intra-

operation parallelism and inter-operation parallelism. Intra-operation parallelism is

achieved by partitioning data among multiple processors and having those processors

execute the same operation in parallel. Inter-operation parallelism is achieved by parti

tioning the query plan and executing different operations in parallel. As we will discuss



Figure 2: Example Execution Plan

in Section 4.1, all of the basic relational operations can achieve intra-operation paral

lelism in a straightforward manner. For example, we can partition the input relation to

a sequential scan at page boundaries and have multiple processes scan different set of

pages in parallel. Moreover, if we have a bushy-tree plan, we might have two operations

that do not depend on each other's output. Therefore they can be executed concur

rently with inter-operation parallelism. For example, the sequential plan in Figure 2

can be parallelized with intra-operation parallelism in each node and inter-operation

parallelism between Ax B and C tx D.

• Unit of Parallelism

Unit ofparallelism refers to the group of operations that is assigned to the same process

for execution. In general it can be any connected subgraph of a plan tree and can range

from a single operation to the whole tree. We also call a unit of parallelism a plan

fragment since it is a "fragment" of a complete plan tree. Each plan fragment will be

executed in a pipelined fashion, and consequently should not contain any "blocking"

between operations. Blocking happens for certain operations, such as hash and sort,



when one operation has to wait for another operation to finish producing all the tuples

before it can proceed. Plan fragments should be chosen so that such blockings only

occur at plan fragment boundaries. For example, the shaded boxes in Figure 2 show

that the sequential plan has three plan fragments with blocking at the boundaries.

• Degree of Parallelism

Degree of parallelism is the number of processes that are used to execute a plan frag

ment. Presumably we want the degree of parallelism to be as high as possible; however,

excessive parallelism may cause high resource contention, resulting in a loss of perfor

mance as will be shown in Section 4.1. An optimal degree of parallelism must be decided

according to run-time system resource availability to achieve maximum performance.

In this paper only intra-operation parallelism and left-deep tree sequential plans are con

sidered for the following reasons.

• It is much easier to achieve load balancing in intra-operation parallelism because we

can always partition the input data carefully into equal size portions. Load balancing

becomes muchharder with inter-operation parallelism because different operations may

have very different complexity and different sizes of input data.

• Intra-operation parallelism requires less main memory. For example, if we want to

execute two hashjoins with inter-operation parallelism, we need to allocate two hash

tables, while intra-operation parallelism only requires one hash table at a time.

• As our preliminary results will show in Section 4.1, intra-operation parallelism can

achieve the same performance gain as inter-operation parallelism.

A more detailed discussion of the tradeoffs between intra-operation parallelism versus inter-

operation parallelism is deferred to a subsequent paper.

The overallperformance goal of a multiprocessor database machine is to obtain increased

throughput as well as reduced response time in a multiuser environment. The objective



function that XPRS uses for query optimization is a combination of resource consumption
and response time as follows:

cost = resource.consumption + w x responseJime.

Here w is a system-specific weighting factor.

Our optimization problem is to find the parallel plan with minimum cost among all possi

ble parallelizations of all possible sequential plans of a query. Obviously, the search space of

parallel plans is orders of magnitude larger than the search of space of sequential plans; there

fore query optimization by exhaustive search[SELI79] is impractical. The second difficulty is

that many system parameters that affect query execution cost in a multi-user environment

are unknown at compile time. In this paper, we specifically consider two of such parameters:

available buffer size and number of free processors. Buffer size not only affects the buffer

hit rate but also determines the number of batches in a hashjoin[SHAP86]. The number of

free processors determines the possible speedup of query execution. The following two design

hypotheses that we will justify in Section 3 and 4 dramatically simplify the optimization

problem.

For ease of exposition, we assume that the buffer size and number of free processors are

fixed during the entire query execution. As we will describe in Section 5, the operational

prototype only fixes these parameters during the execution of individual plan fragments.

Let BPP(Q, NBUFS, NPROCS) be the best parallel plan for query Q given NBUFS units of

buffer space and NPROCS free processors, BP(Q, NBUFS) be the best sequential plan for Q given

NBUFS units of buffer space, Cost(P} NBUFS) be the cost of a sequential plan P given NBUFS

units of buffer space, and PARALLEL(P) be the set of possible parallelizations of a sequential plan

P.

1. The Buffer-Size-Independent Hypothesis

The choice of the best sequentialplan is insensitive to the amount of buffer space avail

able as long as the buffer size is above the hashjoin threshold, i.e.,

Cost{BP(Q,NBUFS),NBUFS) « Cost{BP{Q, NBUFS'),NBUFS),



where NBUFS # NBUFS',NBUFS > T,NBUFS' > T, and T is the hashjoin

threshold.

As we will discuss in details in the next section, certain exceptions to the above hy

pothesis do exist, however, they can be localized within specific operations and handled

with a mechanism that dynamically chooses the implementation of an operation at run

time according to real buffer sizes.

2. The Two-Phase Hypothesis

The best parallel plan is a parallelization of the best sequential plan, i.e.,

BPP(Q,NBUFS,NPROCS) e PARALLEL{BP{Q,NBUFS)).

We will justify these two hypotheses with expermental results in the following two sections.

3 Effect of Buffer Size on Query Execution Cost

In this section, we study the effect of buffer size on execution cost of sequential plans and

justify the buffer-size-independent hypothesis by running all possible plans for a large num

ber of queries in XP-RS and determining the cost of the best plan for each buffer size. In

general, the cost of a sequential plan is measured by resource consumption, which is a linear

combination of I/O cost and CPU cost as follows,

Cost —#pageJo + c x #tuplesjprocessed.

Here c is another system-specific weighting factor.

Because buffer sizes only affect the I/O cost of query execution, weonly need to measure

the I/O costs of real query executions in experiments to follow. Moreover, we use a LRU

buffer replacement strategy in all the experiments and have all query executions start with

an empty buffer. Before we present these experiments, we must deal with two exceptions by

introducing choose nodes in XPRS plans.



Query: retrieve (tenkl.all) where tenkl.ul => HO and tenkl.ul <= SIO
# I/Os

indexscan

180.00

O.OO 100.00 200.00 300.00
Buffer Size

Figure 3: Cost of SeqScan v.s. IndexScan.

3.1 Execution Cost of Single Operations and Choose Nodes

We have identified two situations in the execution of single operations that may cause problems

with the buffer-size-independent hypothesis. One is choosing between an indexscan using an

unclustered index and a sequential scan. The other is choosing between a nestloop with an

indexscan over the inner relation and a hashjoin.

A sequential scan only needs one buffer page and additional buffer pages do not reduce

query execution cost. However, the cost of an indexscan using an unclustered index is very

sensitive to buffer size. If there is enough buffer space to hold all the pages that need to be

fetched during the indexscan, then we only need to read each of those pages once. Therefore,

with sufficient buffer space, if an indexscan touches less than all pages, it will have lower

cost than a sequential scan. On the other hand, with few buffers, an indexscan may end up

fetching the same page from disk many times and becomes more expensive than a sequential

scan. Figure 3 gives an example of this situation by plotting the cost of each plan versus

buffer size for a selection query on a 10,000-tuple relation from the Wisconsin benchmark.

Obviously, when the two curves cross, we require a mechanism to switch from a sequential
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Query: retrieve (onele.all, tenkl.all) -where onek.ul = tenkl-alO
# 3/Os x lO3

nestloop with indexscan
"nashjoin ~"

O.OO 200.00
Buffer Size

Figure 4: Cost of Nestloop with Index v.s. Hashjoin

scan to an index scan.

In addition, a similar situation occur in choosing between a nestloop with an indexscan

over'the inner relation and a hashjoin. Assuming sufficient buffer space, a nestloop with

indexscan will fetch ultimately all the pages in the outer relation and all the pages in the

inner relation that match some tuple in the outer relation plus a small number of index

pages. On the other hand, a hashjoin will need to fetch all the pages in both the outer and

inner relations. If the join selectivity is small, the nestloop plan may not need to fetch all

the pages in the inner relation and therefore will have a lower cost than the hashjoin plan.

On the other hand, with few buffers, the indexscan in nestloop may have to fetch the same

page many times and cause the nestloop to become more expensive than a hashjoin. Figure 4

shows an example of "cross over" between nestloop with an indexscan and hashjoin.

Tosolve the two "cross over" problems, we introduce two new choose nodes in the query

tree, which can choose between the two join or two scan methods according to run-time buffer

size. With these choose nodes, we now demonstrate experimental evidence that supports the

validity of the buffer-size-independent hypothesis.

11



3.2 Experiments on the Buffer-Size-Independent Hypothesis

In the experiments, we first run a wide variety of benchmark queries using all the possible

execution plans under different buffer sizes and measure the real execution costs and then

calculate the the relative error that results from the buffer-size-independent hypothesis. We

will show that such errors are extremely small.

We have used queries from two benchmarks. The first benchmark is the Wisconsin bench-

mark[BITT83b], a standard for measuring query processing power. We have only used 10

of the 32 queries which are selections and joins. Other queries in the benchmark that in

volve data manipulation are not used in our experiments. Since the Wisconsin benchmark

has no more than 3-way joins and has limited join selectivities, we also developed a random

benchmark generator to generate additional varieties of complex queries.

The relations in our random benchmark have the following POSTQUEL definition:

create r (ual=int4, al=int4, ua20=int4, a20=int4, ua50=int4, a50=int4,

ual00=int4, al00=int4, filling=text)
We generated 10 random relations with cardinalities ranging from 100 to 10,000. All the

integer attribute values are randomly distributed between 0 and 9,999. All the "ua" attributes

are unclustered attributes and all the "a" attributes are clustered attributes. The number

following "ua" or "a" indicates the number of times each value is repeated in the attribute.

For example, each value in "ua20" is duplicated 20 times. We define indices on all the integer

attributes so that the optimizer can always have the choice of generating an indexscan. The

attribute "filling" is a variable length string, and is used to vary the tuple size of different

relations. The generator can make the "filling" attribute 68 bytes or 968 bytes so that resulting

tuple size is 100 bytes or 1000 bytes.

The queries in the random benchmark are generated in the following way. To generate a

random join of k relations, we first randomly choose k relations. Then we start with the first

relation in the chosen list and the rest in the unchosen list. We randomly pick a relation in

the unchosen list, join it with a randomly picked relation in the chosen list on two randomly

chosen attributes and move it from the unchosen list to the chosen list. We repeat this

12



operation until the unchosen list becomes empty; and we have generated a random join on

k relations. Next we generate random selections on the relations. Each relation has a 50%

probability of having a restriction of either an equality condition or inequality conditions

with a lower bound and a upper bound. The target list is also randomly selected from all the

attributes of all the relations with each attribute having 50% probability of being chosen.

In the experiments, we first have the XPRS query optimizer generate all possible sequential

plans for each query. If a plan is known to be dominated by another plan, it is discarded. For

example, since we know that hashjoin is the best join plan without the use indices (assuming

that our buffer size is above the hashjoin threshold)[SHAP86], we can always remove nestloop

and mergejoin plans which do not use indices from the test plans, which cuts down our

experiment running time substantially. Another example is that mergejoin plans with inner

relation and outer relation exchanged always have the same cost and therefore only one of

them need to be executed. After selecting interesting execution plans, we run each plan with

different buffer sizes varying from the minimum amount of buffer space to make all hashjoins

possible to MAXBUFS, the buffer size that can hold all the relations in main memory. For

each execution we measure the actual execution cost. To avoid the problem of inaccurate

estimate of intermediate result sizes to hashjoin, we always execute the plans that do not

contain hashjoins first and then set the sizes of intermediate results to the real sizes.

From the statistics collected in the experiments, we know for each query, Q, the real

execution cost of each query plan under different buffer sizes, i.e., given any plan P and buffer

size NBUFS, we know Cost(P,NBUFS) and BP(Q,NBUFS). Let BCP(Q,NBUFS) be

the plan obtained by adding appropriate choose nodes to plan BP(Q, NBUFS). Since we

know the cost of all the plans that are only different from BP(Q, NBUFS) in some join or

scan methods, we can also calculate the cost of BCP{Q, NBUFS) under any buffer sizes.

The relative error of the buffer-size-independent hypothesis is computed with the following

formula:

ErroriQ NBUFS) = Cosi(BCP(Q> MAXBUFS), NBUFS) - Cost(BP(Q, NBUFS), NBUFS)
} Cost(BP(Q, NBUFS), NBUFS)

13



Relative Errors of Buffer-Size-Indepcndent Hypothesis
Relative Errors
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Figure 5: Relative Errors of the Buffer-Size-Independent Hypothesis

on the Wisconsin Benchmark

Figure 5 shows the graph of average relative errors of the Wisconsin benchmark queries.

For each query Q, wefirst compute Error{Q, NBUFS) for eachbuffer size, then we compute

the average relative error over the buffer sizes. As we can see from the graph, the first few

queries have 0 error. This is because those are the selection queries and two-way join queries

for which the choose nodes can always choose the optimal plan. Errors occur in the three-way

join queries, but they are never above 4%.

Figure 6 shows the graph of average relative error on the random benchmark. 120 queries

of up to 6-way joins are executed in the experiment. The relative error is averaged over

Queries that have the same number of relations (20 of them each). As we can see from the

graph, the average relative errors remain below 5%.

Thus, two different benchmarks support the buffer-size-independent hypothesis. With

choose nodes we have encapsulated enough of the plan switches required when buffer size

changes so that average relative error is never above 5%.

14
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Figure 6: Relative Errors of the Buffer-Size-Independent Hypothesis

on the Random Benchmark

4 Parallel Execution Cost of Sequential Plans

In this section, we examine the costs ofparallel execution ofsequential plans. In Section 4.1.

we will first discuss how intra-operation parallelism is implemented in XPRS and then show

that intra-operation parallelism can achieve near-linear speedup within the limit of system

resources. Then in Section 4.2 we will present experiment results that support the two-phase
hypothesis.

4.1 Implementations of Intra-operation Parallelism and their Performances

In XPRS, intra-operation parallelism is implemented as follows.

• A sequential scan is trivial to parallelize. We partition the disk blocks and have each

process work on tuples from a different set of disk blocks.

• The basic approach for an indexscan is to partition the scan range into subranges and

have each process scan for tuples within a subrange. We can use the data distribu-

15



tion information in the system catalog to obtain a well-balanced range partition. In

POSTGRES, there is a vacuum daemon process that wakes up periodically and scans

through the entire database archiving out-of-date tuples. As a side effect it updates the

system catalog to record the current data distributions. Range partitioning can also be

facilitated by using the keys in the B-tree root node.

• For a nestloop join, we partition the outer relation and have each process join a portion

of the outer relation with the inner relation.

• Hashjoin parallelization requires a substantial amount of shared memory to hold the

hash table. If we have enough memory for the entire hash table, we use the simple

hashjoin algorithm[SHAP86]. In the build phase we have multiple processes do parallel

inserts into the hash table, and in the probe phase we have multiple processes access

the hash table in parallel. In case the entire hash table cannot fit into main memory,

we use the the hybrid-hashjoin algorithm[SHAP86] to first hash-partition the relations

into batches and then perform simple hashjoins on the batches one by one. Obviously,

each step in a hybrid hashjoin can be easily parallelized.

• A sort can be parallelized in a similar way to an index scan. First, we partition the entire

range of the sort key into subranges such that each subrange contains approximately

the same number of tuples according to the current database statistics. Then, we do

a parallel scan to redistribute tuples according to the subranges and have each process

sort tuples within a subrange independently. Last, we attach these sorted segments

together and form an entire sorted relation.

• Mergejoin can be parallelized in a similar way as sort.

Note that parallel hashjoin is the only operation with a critical section. It requires parallel

access to a shared hash table when multiple processes insert tuples into the same hash bucket

simultaneously. To minimize the probability of conflict, the number of hash buckets should

be large compared to the degree of parallelism.

16



Query: retrieve (tenkl.all) where tenkl.ul > 64T and tenkl.ul •< 1648
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Figure 7: Speedup of Parallel Sequential Scan: small tuples

[DEWI86] has shown that intra-operation parallelism can achieve near-linear speedup

in response time in a shared-nothing environments. We briefly show the same near-linear

speedup inXPRS inashared-memory environment. Inaddition, we show performance varying

the number of disks and number ofprocesses independently and also the degradation resulting
from excessive parallelism.

Currently XPRS is operational on a Sequent Symmetry running the Dynix operating sys

tem with 12 CPU's connected viaan 80MB/s bus and 5 disks controlled by 3 disk controllers

In the experiments, we created the two 10,000-tuple relations from the Wisconsin Bench

mark, tenkl and tenk2. Because the tuple sizes in the Wisconsin Benchmark relations are

relatively small, we also created another 10,000-tuple relation, Itenkl, which has the same

fields as tenkl except that each tuple is filled to 1,000 bytes by an extra string field. Appro
priate indices were created according to the benchmark specification. All the relations are

striped across a set of disks using a simple mod function, i.e., block x, is stored on disk (x
mod number ofdisks). For example, if we only use two disks, then all the odd number blocks
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Figure 8: Speedup of Parallel Sequential Scan: large tuples

will be on one disk and all the even number blocks will be on the other. The relations are

also partitioned among the parallel scan processed with a simple mod function, i.e., process

i scans block x such that x mod number of processes = i. Before each execution, the file

system cache is always cleared so that no blocks of the test relations are left in memory. All

the processes are pre-forked so that process startup overhead is negligible.

We have measured the speedup ofparallel sequential scans and joins on the above relations

varying the number of processes and number of disks. Sample results are presented in Figure 7-

10. In Figure 7, because the tuples are small, we can see that the scans are completely CPU-

bound and disk striping does not make much difference in performance. As a result, parallel

scans and joins achieve close-to-linear speedup up to 12 processors. Further parallelism causes

severe performance degradation. The drop in the speedup curve results from the extra context

switches and virtual memory overhead generated when the number of processes exceeds the

number of processors. In addition, a process holding the shared buffer pool lock might be

descheduled and the convoy problem[BLAS79] will occur.

18
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Figure 9: Speedup of Parallel Index Scan: small tuples

In Figure 8,because the tuples are large, the scans are I/O-bound and disk striping does

show a large win. In addition, we see a drop in the speedup when the number ofprocesses

exceeds the number of disks. In our partitioning scheme, when we have fewer processes

than disks, the access pattern on each disk is sequential. Consequently normal file system
readahead will prefetch the next disk block to be processed. When there are more processes

than disks, the access pattern to each disk becomes random and the file system readahead

is ineffective. In Figure 8 we also notice that speedup does not scale up exactly with the

number of disks. This is because of contentions on the disk channels when we have more

disks than channels. Because we only have 3 disk controllers, we get disk channel contention

in the 4-disk and 5-disk cases, thereby limiting the speedup. In Figure 9, we can see that

index scans are I/O-bound and the speedup curves become flat very quickly.

Figure 10 shows the speedup of hashjoins and nestloop joins. We can see that the speedup
of joins is very similar with that of scans and the synchronization overhead for accessing the
shared hash table in hashjoin is negligible. In Figure 7- 10 there are precipitous dropoffs when

the number ofprocesses exceeds the number ofprocessors. In a multi-user environment there
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Figure 10: Speedup of Parallel Hashjoin and Nestloop

will be multiple commands concurrently being processed, and the effective parallelism is the

sum of the degree of parallelism of the individual command. It is important to ensure that

this sum does not exceed the number of processors, and the XPRS algorithms are sketched

in Section 5.

Our preliminary experiment results have shown that intra-operation parallelism scales

linearly until CPUs or disk channels are exhausted. As a result, there seems little reason to

explore inter-operation parallelism. As further evidence for this observation, we present the

results in Figure 11. Here we report the time to perform six independent hashjoins, which

are executions of (tenkl tx tenk2) with varying degrees of parallelism. When the total degree

of parallelism is n, we compare the the time to execute the six hashjoins sequentially, each

with intra-operation parallelism of n versus executing k hashjoins concurrently (2 < k < 6)

each with intra-operation parallelism n/k. As we can see, performance is best for k = 1.

Seemingly multiple parallel hashjoins incur more virtual memory overhead because of the

parallel accesses to separate hash tables.
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Figure 11: Intra-operation Parallelism v.s. Inter-operation Parallelism

4.2 Experiments on the Two-Phase Hypothesis

The experiments that werun to justify the two-phase hypothesis are similar to those described

in Section 3.2. We have used the queries from the Wisconsin benchmark and the random

benchmark. Foreach test query, we first generate all the possible sequential plans as described

in Section 3.2. We ran eachplan withvarying degrees ofintra-operation parallelism and buffer

sizes. The degree ofparallelism is varied from 1to 12 (thenumber ofprocessors in oursystem)

and the buffer size is varied in the same way asin Section 3.2. For each execution ofa plan, P,

with NBUFS buffers and NPROCS processes, we measure the resource consumption and

response time, and compute the cost of the execution, Cost(P, NBUFS, NPROCS). Let

BP(Q, NBUFS) be the best sequentialplan with buffer size NBUFS. The relative error of

the two-phase hypothesis is calculated with the following formula:
Error(Q, NBUFS, NPROCS) =

Cost(BP(Q, NBUFS), NBUFS, NPROCS) - min{P) CostjP, NBUFS, NPROCS)
min{P} Cost(P, NBUFS, NPROCS)

Because the cost of parallel plans depends on the system-specific weighting factor, w, we
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Figure 12: Relative Errors of the Two-phase Hypothesis

on the Wisconsin Benchmark

need to calculate errors for different values w.

Figure 12 shows the average relative error of the Wisconsin benchmark queries. For each

query, Q, the relative error, Error(Q, NBUFS, NPROCS), is averagedover all combinations

of NBUFS and NPROCS. As we can see, for small values of w, the relative errors are near

0. For large values of w, the relative error never exceeds 8%.

Figure 13 shows the average relative error of the random benchmark. Due to the enormous

of computing resources demands of this experiment, we have only run queries of up to 3-way

joins from the random benchmark. As we can see, the average relative error never exceeds

6%.

5 XPRS Query Processing

Based on our two hypotheses, we can deal with compile-time unknown parameters and the

enormous search space of parallel plan optimization by the following two-phase algorithm.

• Phase 1. Find the optimal sequential plan assuming the entire buffer pool is avail

able, i.e., find BP(Q, ALLBUFS) where ALLBUFS is the size of the whole buffer
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Figure 13: Relative Errors of the Two-phase Hypothesis

on the Random Benchmark

pool. Add appropriate choose nodes to BP(Q, ALLBUFS) to get a modified plan

BCP(Q, ALLBUFS).

• Phase 2. Find the optimal parallelization of the optimal sequential plan, i.e., find

min{cost(PP, NBUFS, NPROCS) \PP £ PARALLEL(BCP(Q, ALLBUFS))}

where NBUFS and NPROCS are the run-time available buffer size and the number

of free processors.

Because we have a fixed buffer size ALLBUFS in Phase 1, it can be performed at com

pile time. Phase 2 still has to be performed at run time, because it takes the run-time

parameters NBUFS and NPROCS into account and tries to dynamically determine the

best parallelization of the sequential plan chosen in Phase 1.

Figure 14gives an overall architecture ofXPRS query processing. The XPRS optimizer is

a modified version of the POSTGRES optimizer with a postprocessor that uses cost functions

similar to those in [SHAP86, MACK89] to determine if two join or scan methods (specifically

sequential scan versus unclustered index scan and nestloop with index versus hashjoin) may

have "cross over" points in their cost curves versus buffer size. If such points exist, the
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Figure 14: The Architecture of XPRS Query Processing

postprocessor will modify the optimal plan generated by the optimizer by adding appropriate

choose nodes.

The parallelizer takes a sequential plan and decomposes it into a set of plan fragments,

decides the degrees of parallelism for each fragment and a processing schedule for all the frag

ments, then passes a collection of parallel versions of the first plan fragment to. the parallel

executor, which distributes the versions to a number of POSTGRES backend processes ac

cording to the degree of parallelism determined by the parallelizer. The multiple POSTGRES

backend processes execute the versions in parallel and send an acknowledgements back to the

parallel executor after they finish executing. The parallel executor will notify the parallelizer

that another plan fragment is needed.

The XPRS parallelizer is the key mechanism for exploiting parallelism. It first decomposes

the sequential plan into plan fragments. Obviously larger plan fragments will cause less

temporary relation overhead. However the size of a plan fragment is limited by blocking edges

in the plan tree. As we mentioned earlier in the paper, we draw a blocking edge between two

operations if one operation has to wait for the other operation to finish producing all the
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Figure 15: An Example of Initial Plan Fragments

tuples before it can start. All edges coming out of a sort node or a hash node are blocking

edges. Initially, the parallelizer will decompose a sequential plan tree across blocking edges

and get a unique set of the largest possible plan fragments. An example of this decomposition

is shown in Figure 15.

The size ofplanfragments are also constrained by the run-time available buffer space. For

example, a plan fragment can contain as many as two hashjoins, i.e., one hash probe node

followed by a hash build node, as in fragment 2in Figure 15. Any additional hashjoins would

introduce blocking edges into the fragment. Execution of fragment 2 in Figure 15 would

require the minimum memory requirement for both hashjoins, i.e., approximately the square

root of the size ofA plus the square root of the size ofA ix B. If the XPRS parallelizer cannot

obtain that much memory, it will decompose the plan fragment into two smaller fragments

between the hash probe node and the hash build node, save the intermediate results of the

hash probe into a temporary relation and the following hash build node will read from the

temporaryrelationafter the previous hashprobeisfinished. Subsequent to the decomposition,

we only need enough memory for one hashjoin at a time.
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The parallelizer also decides the degree of parallelism for each plan fragment which is

constrained by the disk bandwidth and number, of free processors. The performance curves in

Section 4.1 have shown the consequences of excessive parallelism; and the XPRS parallelizer

determines the degree of parallelism for a plan fragment as follows.

Let P be the total number of processors in the system, LA be the system load average, D be the

number of disks, B be the bandwidth of a single disk measured by number of blocks per second, IOj be

the estimated number of disk blocks that the fragment will access, and Tj be the estimated sequential

execution time of the fragment.

degree of parallelism —min(max(l, P —LA), (D x B)/(IO f/Tf)).

Since LA is the average number of ready processes in the system, P —LA is the number

of free processors. The XPRS parallelizer only schedules as many backends as there are free

processors. D x B is the total bandwidth that the disk array provides and IOf/Tj is the

number of I/O requests each process will issue per second. Therefore (D x B)/(IOf/Tf)

is the number of processes that would saturate the total disk bandwidth. According to the

formula, if a query is I/O bound, the parallelizer will allocate all the disk bandwidth to the

query. Based on our experiment results as in Figure 8 and 9, there are no severe performance

penalties when we use too many processes which saturate the disk bandwidth, i.e., we see

a relatively flat speedup curve after the disks are saturated. This is because that the total

amount of I/O remains the same even though the disk bandwidth is saturated by too many

parallel processes, and after the disk bandwidth is saturated, the disks serve the I/O requests

at a constant rate. Therefore, our strategy will not cause performance degradation in the

whole system.

6 Conclusion

In this paper, we have described our approach to the optimization of parallel query execu

tion plans in a shared-memory multiprocessor environment. We have presented experimental

results that justify our two-phase optimization approach, which reduces the complexity of
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parallel query optimization without significantly compromising optimality of the resulting

parallel plan. The first phase of of our two-phase optimization is a conventional query op

timization with a fixed buffer size that finds the optimal sequential plan augmented with

appropriate choose nodes that are encapsulated in each individual operation. The second

phase finds the best parallelization of the sequential plan obtained from the first phase ac

cording to run time system enironment. Our approach achieves run-time flexibility while still

doing most of the optimization at compile time.

As future work, we will study the tradeoffs between intra-operation parallelism and inter-

operation parallelism more closely and look into the scheduling and memory allocation issues

in processing multiple queries submitted by different users in parallel. In the experiments

presented this paper, we have assumed perfect estimates of intermediate result sizes and uni

form data distribution. The effects of inaccurate size estimates and skewed data distributions

also need to be studied more carefully.
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