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Abstract

Oversampledsigma-deltaanalog-to-digital conversion has been the
focus of much attention in recent years. Converters based on this
principle havebeen found to be particularly suitedto integrated circuit
implementation, due to their simple structure and robustness to circuit
imperfection. Theanalysis ofthesigma-delta system iscomplicated by
the presence of a discontinuous nonlinear element, with the result that
few rigorous studies of suchconverters haveappeared in the literature.

In this paper westudy the operation of the single-loop sigma-delta
modulator, consisting of a quantizer and a discrete-time integrator in
a feedback loop, with constant input. Our analysis uses the tools of
nonlinear dynamics to derive rigorous descriptions of system behavior.
In particular we focus on the effects of the discontinuous nonlinear
element—the quantizer. In the most basic case the quantizer has two
levels. We show that system behavior in this case is unaffected by
quantizer offsets only if the integrator is ideal. We then study the
effect on system operation of increasing the number of quantization
levels, and explain in quantitative terms the structure of the resultant
input versus average output characteristic.



1 Introduction

Oversampled Sigma-Delta (E —A) modulation1 as a method of analog-to-

digital conversion has been the focus of much attention in recent years, find

ing application in digital signal processing systems, voiceband telecommu

nication systems and commercial compact disc players2. These modulators

convert an analog input into a low-resolution digital representation at a very

high sampling rate. A decoder then decimates and increases the resolution of

the output bit stream—in other words, the decoder uses several low-precision

digital signal representations to generate each high-precision representation.

It has been found that analog-to-digital converters based on this principle
are particularly suited to integrated circuit implementation— the analog cir
cuitry required is simple, performance is insensitive to circuit imperfections,

and the high speeds required by the oversampling process with audio and

other low frequency signals are easily attainable by VLSI technology.
Despite the simple structure of the E —A modulator, the presence of

a discontinuous nonlinear element—a quantizer—in the system means that

the analysis is highly non-trivial. As a result, few rigorous analyses of the

system have been attempted. Most researchers who study the problem begin
by linearizing the nonlinearity and then apply standard linear theory, while
others avoid the analysis altogether and concentrateon simulations.

In the simplest oversampled E - A modulator—the single-loop E —A
system—a one-bit quantizer and a discrete-time integrator are connected

in a feedback loop. This basic structure can be modified by adding more
feedback loops or increasing the number of quantization levels. In this paper
we concentrate only on the single feedback loop structure.

In a recent paper3 we apply the theory of nonlinear dynamics—in par
ticular that of symbolic dynamics4—to the single loop E- A system with



integrator imperfections. The results describe in an exact and rigorous man

ner the effect of these common circuit nonidealities on the behavior of the

modulator, and allow designers to translate resolution specifications into cir

cuit constraints. In this paper we add to that investigation by considering

the effect of nonideal and multilevel quantization on the operation of the

single-loop system with constant input.

With ideal integration and two quantization levels, quantizer offsets have

no significant effect on the operation of the single-loop system. If the inte

grator is nonideal, however, quantizer offsets translate to an effective offset

of the system input. Similarly, increasing the number of quantization levels

in the ideal system has no significant effect. When combined with imper

fect integration, however, this increase changes the form of the input versus

average output characteristic.

After a briefdescription of the ideal single-loop E—A system in Section 2,

in Section 3 we summarize the results of Reference 3 concerning the effect of

integrator imperfection onthis system. In Section 4 weshow howcomparator

offsets in the presence of imperfect integration translate to an effective input
offset. Section 5 introduces multilevel quantization and explains its influence

on the ideal system. In Sections 6, 7 and 8 we consider the effect of multilevel

quantization combined with imperfect integration, first for the case of four

quantizationlevels and later for the general case. Lengthy proofs areconfined
to the Appendices.

2 Ideal single-loop S-A modulator

The single-loop E—A modulator consists of a discrete-time integrator and a
quantizer inside a feedback loop as shown in Figure 1.



Figure 1

In the most basic implementation the quantizer has just two levels, with

Q(un) = sgn(un) = 1 for un > 0

= —1 for u„ < 0

The system is then described by the first order difference equation

un+i = un + x - sgn(un) (1)

The integrator state u and the system input x are discrete-time signals.
In this paper we assume the input to bea constant, so we drop the subscript
on x. This E—A model has been studied by Friedman5 and Gray6,7. They
show that for rational x the output bit stream is periodic with average x,
whereas for irrational x the output is quasiperiodic. From the perspective
of dynamical systems theory, this follows immediately from the fact that the

dynamics of (1) in the region of interest are just those of the well-known ro

tation of thecircle8. This system is not structurally stable, however, and any
infinitesimal perturbation can produce a qualitative change in the dynamics.
In terms of the original E-A system, this means that if any approximations
were made in defining the model (1) then we cannot claim that (1) captures
the dynamical behavior of the real system. A better model is required—one
which takes into account the effect of circuit nonidealities.

3 Single-loop E-A modulator with leaky in
tegration

In Reference 3 we studied the effect ofintegrator imperfection on the single-
loop E-A system with two quantization levels. The system is now modeled



by the map9,10

un+1 = pun + g.(x - sgn(un)) (2)

In the ideal case p = g = 1. g represents the effect of componentmismatch

in the integrator implementation— it can be greater than or less than one. p
represents integrator leak, typically due to finite op-amp gain, and is always

less than one. (The dynamics of (2) with p > 1 are of interest to students of

nonlinear dynamics, with chaotic motion and an interesting self-similarity in
the bifurcation diagram11.)

A rescaling of the state variable u in (2) eliminates the mismatch factor

g, so without loss of generality g can be set to 1. The results of the study of
the dynamics of (2) for p < 1 can be summarized as follows:

• For a given p, almost all (in the sense of probability theory) inputs
s € (—1,1) give rise to a periodic sequence (or limit cycle) at the
quantizer output. If x > 1 (resp. < -1) the quantizer output is fixed
at 1 (resp. —1).

• Each limit cycle is globally asymptotically stable—i.e. for a given x
and p all initial integrator states lead to trajectories which converge to
the same limit cycle.

• For a given p each limit cycle persists over an interval of x values. The

width of this interval decreases with increasing period of the limit cycle.

• The exact bounds of these intervals can be determined using a simple
procedure, as described in Reference 3.

• Since these intervals have non-zero width, any admissible limit cycle
corresponds to a range of input values. The consequent loss of resolu

tion is a highly nonlinear function of the input.



Figure 2 plots average output over a limit cycle versus input for p = 0.8.

Figure 2

The graph contains a "step" corresponding to each rational output. De

spite the complexself-similarity of the graph—given the name "devil's stair

case" in dynamical systems theory—it is completely described by a simple

algorithmic procedure. Figure 3 plots the region of admissibility in the p—x
plane of the 27 shortest limit cycles^-i.e. those with periods < 9.

Figure 3

Remember that the modulator output consists of a bit stream which will

subsequently be averaged (in some sense) and decimated to retrieve a high
resolution digital representation ofx. This decoder outputwill not in general
equal the average output over a limit cycle, but as the decimation factor

increases (with a simple averaging decoder) these quantities will approach
each other. The loss of resolution due to non-zero step width is clearly
decoder-independent, since all inputs within a step give rise to the same
limit cycle at the output. Given a resolution requirement, a circuit designer
can use the results of Reference 3 to determine the minimum value ofp, and
hence the minimum op-amp gain, consistent with this requirement.

4 Comparator offsets

In this section we extend the results of Section 3 to consider the effects of

offset in the comparator. We will find that comparator offsets translate to
an effective offset in the input a;, and that the component mismatch g can



no longer be neglected. The comparator (?(.) is now given by

Q{un) = a for un > A

= 6 for un < A

with a > b. In practice a and b represent error in the digital-to-analog
converter which lies in the feedback path, but it is convenient for the analysis
to consider this as part of the comparator. Since

QM =*((« +b) +(a - b)sgn(un - A))

(2) is now replaced by

u„+i =pun +g(x - |((a +b) +(a - 6)sflw(un - A))) (3)

un+1 -A=p(«w - A) +(p - 1)A+̂ ^(f_l2_ _5flrn(Un _A))

. ^(a-6)/^-2f^+i£:7:^ \un+1 =pu,, +^-^( 4zr—2 «M«-))

where the new state variable un = un - A. Thus we find that the dynamics
of (3) are identical to those of (2) with x replaced by

x _ 2±5 + ip^llA
* g

a-b

2

Note that the mismatch factor g, which had noeffect in (2) of Section 3, now
affects the effective input offset.



5 Ideal single-loop E-A modulator with mul
tilevel quantization

One commonly proposed extension to the basic modulator topology of Sec
tions 2-4 involves increasing the number of reference levels in the quantizer.

In this section we examine the effect of this procedure on the ideal system.

We consider first the case of 4 quantization levels and then generalize.

With 4 equally spaced quantization levels, the system is modeled by the
mapping

Un+l = un + x - Q(u„) (4)

where

Q(un) = -1 for un < -\

_ i

"~ 3

for -§ < un < 0

for 0 < un < |

= 1 for | < un

This map is plotted in Figure 4.

Figure 4

The quantization studiedhere isof rounding type rather than truncation—

it can easily be verified that the results obtained are independent of this
choice.

Assume x € (-1,1)—this is the only region of interest since all other

inputs lead to output streams which are fixed at 1 (for x > 1) or -1 (for
x ^ —!)• I* is clear from Figure 4 that all trajectories originating outside
the interval [x - |, a: + |) will eventually enter this interval and that no

8



trajectories can leave the interval. We can confine our interest, therefore, to

the range [x —|, x+ |) of un.
There are 5 possibilities for x:

(ii) -1<X<\

(iii) | < x < 1

(iv) x = -|

(v) -Kf<-j

The one-dimensional maps in the region [x —|,x + |) for cases (i), (ii),
and (iii) are plotted in Figure 5.

Figure 5

Case (i): All states € [0, |) are fixed points of the map, giving rise to an output
stream fixed at Q(u) = |.

Case (ii): The dynamics in this case are identical to those of the ideal system with

binary quantization (or the rotation of the circle) with input |((3x +
1)+ (3x —1)) = 3x, the only difference being that the output takes on

values ±|instead of±1. It follows that for rational input x theoutput
is periodic with average |(3z) = x; for irrational input the output is
quasiperiodic.

Case (iii): Shifting the state variable by | yields that the dynamics of this system
are identical to those of the ideal system of Section 2 with input (3x —
2), the only difference being that the output takes on values 1 and \



instead of 1 and —1 respectively. It follows that for rational input x
the output is periodic with average x\ for irrational input the output
is quasiperiodic.

Since cases (iv) and (v) follow by symmetry from (i) and (iii), the dynam
ics of (4) have been completely explained by comparison with the binary
quantization system (1).

It is clear that this method of analysis generalizes instantly to systems

where the number of quantization levels is other than 4. The one-dimensional

map for the general case (m levels) is sketched in Figure 6.

Figure 6

The only point which is not immediately obvious is the generalization of
the analysis ofcase (iii). Considering theone-dimensional map in thevicinity
ofany general breakpoint q, such as that circled in Figure 6, and repeating
the analysis ofcase (iii) yields that the output is periodic with average value

1 // IN ON 24y((m - l)x - 2q) +
m — 1 m — 1

As in the 2 or 4 level case, it follows that for rational x e (-1,1) the
output is periodic with average equal to x; for irrational x 6 (—1,1) the
output is quasiperiodic. Thus the effect of multilevel quantization on the

ideal E—A system (1) has been explained. For a given rational input a;,
increasing the number of quantization levels changes the form but not the
average value of the limit cycles at the output. For irrational x the output
is quasiperidic with average tending to x.

10
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6 Four level quantization with leaky integra
tion

Now that the dynamics of the S—A modulator with multilevel quantization

arecompletely understood in the ideal case, we studythe effect on thissystem
of leaky integration. We begin by examining the case where the quantizer
has four levels and the system is described by the equation

«n+l = PU„ + 3 - Q(Un) (5)

where

Q(un) = -1 forun<-§

= -| for-|<wn<0

= | for 0 < un < I

= 1 for | < un

with p < 1. Note that we have not yet included the mismatch factor g—this
will be added in Section 8. The one-dimensional map for (5) is plotted in
Figure 7.

Figure 7

The dynamics ofthe map (5) arestudied inAppendix A,where it is shown
that over certain ranges of x the average output is constant, while over the
remaining ranges the dynamics are just those of the binary quantization
system studied in detail in Reference 3. Using the results ofAppendix A, we
can make thefollowing predictions regarding the form oftheaverage output
as a function of the input:

11



• for x € [—5, \) the graph takes on the form of the devil's staircase of
Reference 3 for the appropriate value of p, scaled by a factor of | in
both directions;

• for x e [|, 1- \p) (resp. [-l +§p, -\)) the average output is a constant
\ (resp. -I);

• for x G[1 - |p, §- \p) (resp. [-§ + §p, -1 + |p) the graph once again
takes the form of the devil's staircase of Reference 3 scaled by a factor
of |;

• for x > |- \p (resp. < -§+ \p) the output is a constant 1 (resp. -1).

Figure8 plots the dependence of the average output over a limitcycle on
the input with p = 0.8 and 4 levels of quantization.

Figure 8

This graph was obtained byiterating the map (5) with 20000 input val
ues equally spaced in the interval [-1.5,1.5]. Note that, as predicted by the
analysis, the graph consists of three scaled versions of Figure 2 (the corre
sponding plot from the binary quantization system) joined bysteps at output
values ±\. The regions of admissibility in the p- x plane of all limit cycles
with period < 5 are plotted in Figure 9.

Figure 9

Between the regions of admissibility of the fixed points we see skewed
versions of Figure 3 (the corresponding plot from the binary quantization
system). Atp = 1 the widths of all steps shrink to zero, and the analysis of
Section 5 is applicable. The difference between input and average output is

12



seen to be due to two features—non-zero step width and divergence of the

step centers from their ideal values. Figure 10 shows the resultant input-error

plot for p = 0.99.

Figure 10

The Taylor series method of Reference3 can be used to explain the under

lyingpiecewise-linear nature of the graph. Note that one effect of increasing

the number of quantization levels has been to decrease the width of the

widest step, and therefore improve the resolution, by a factor of jf-. Also,
the greatest loss of resolution is no longer in the neighborhood of the origin,
but rather in the neighborhood of ±|.

The importance of this analysis is that it provides an exact relationship

between integrator leak and loss of resolution for a single-loop system with

four quantization levels. A system designer can, given a certain resolution

requirement, use these results to find the minimum allowable p, and hence

the minimum op-amp gain, if four quantization levels are to be used. The

next section generalizes these results to the case where m quantization levels

are used.

7 Multilevel quantization with leaky inte
gration

In this section we generalize the analysis of the last section to cover the case

where the number ofquantization levels is greater than 4. Since the concepts

involved in the proof are essentially those of Section 6, we state the results

here and give a summary of the proof in Appendix B. The quantizer Q(.)
now has m levels, so the system is described by

un+i = pun + x - Q(un) (6)

13



where

= ^r for^r<"n<^r

= 1 for^<un

= —1 for un < m-2

m-1

with p <l. The one-dimensional map for (6) is plotted in Figure 11.

Figure 11

Using the results of Appendix B, we can make the following predictions
regarding the form of the average output as a function of the input:

• The output is fixed at

1 for 1+ (1 -p)=5f<x

-1 for x<-l-(l-p)mE2

• The widest steps occur at average values of

_L_ for -JL^ < x < 2z2e
m—1 m—1 — ^ m—1

-f- for 2z2£ < x < Zzifi
m-l m-1 — ^ m-1

-JL- for §=^f < x < 11^
m-1 m-1 — ^ m-1

14



for -2z2£<aj<
m-1 ""• m-1 — * ^ 7n~^T

• Between these steps the graph takes on the form of the devil's staircase

of Reference 3 for the appropriate valueof p, scaled by a factor of -—

in both directions.

Figure 12 plots the dependence of the average output over a limit cycle
on the input with p = 0.8 and 8 levels of quantization.

Figure 12

Once again, this graph should be compared with Figure 2. Note that

with m quantization levels instead of2 the width of the widest step has been

decreased by a factor of *g£. The greatest loss of resolution now occurs at
output values ±^Ef, k= 1,2,..., y - 1.

8 Effect of component mismatch factor

We conclude with a briefdiscussion of the effect of the component mismatch

factor g. With the inclusion of this factor the single-loop S —A system is
described by the difference equation

un+1 = pun + g.(x - Q(un)) (7)

With just two levels of quantization the state variable un can be scaled to

eliminate g from the equation, so the dynamics are independent of g. This
is no longer the case when the number of quantization levels exceeds two.

15



We begin by studying the dynamics of (7) with g < 1 and four levels of

quantization. The generalization to m levels is straightforward, as in Section

7 where the g = 1 case was studied, and for this reason will not be carried

out here. Once again we state the results in this section and givea summary

of the proof in Appendix C.

With g < 1 and four quantization levels we find once again that over

certain ranges of x the average output is constant, while over the remaining

ranges the dynamics are just those of the binary quantization system. The

graph of average output over a limit cycle versus input takes the following
form:

• for x e [—J, |) the form of the graph is that of the devil's staircase of
Reference 3 for the appropriate value of p, scaled by a factor of 1 in

both directions;

• for x € [J, *=%**) (resp. ["^ff"',-!)) the average output is a con
stant | (resp. -i);

• for x € [2=jEfc£, 2=2*3*) (regp [.a^^azJEJ*) the graph once
again takes the form of the devil's staircase of Reference 3 scaled by a
factor of 1 and shifted;

• for x > 2"23y3ff (resp. < -2z?£t2£) the output is a constant 1 (resp.
-1).

With g > 1 and four levels of quantization the dynamics are identical to

those of the g < 1 system for all inputs outside the range

hi. -¥) Ufe. I) U[-2=g*, -=^M) " [=2g*, *=$*) (8)
For inputs within this range, the analysis is complicated by the appearance
of two qualitatively new features. Recall that for g < 1 the output for any

16



giveninput x (after a possible transient) takes on at most two values. Recall

also that for g < 1 more than one limit cycle can be admissible for certain

values of x, but that all must have the same average value. With g > 1 and

x in the range (8) neither of these facts is true.

Figure 13

Figure 13 plots averageoutput overa limit cycle versus input for p = 0.8

and g = .7, 1 and 1.3. (These values are not, of course, typical of those

encountered in any real E—A system.) In Figure 14 regions ofFigure 13 are

magnified in order to display the form of the g = 1.3 characteristic.

Figure 14

This graph cannot be described bya simple self-similar algorithmic struc

ture as in the g < 1 case. We can, however, derive bounds on the character

istic — this is again explained in Appendix C.

Finally, weconsider the effect ofusing truncation-type quantization rather

than rounding. In Section 5 it was pointed out that the behavior of the ideal

single-loop E —A system with multilevel quantization is independent of the

nature of the quantization—i.e. if truncation is used instead of rounding the
dynamics are unaffected. With leaky integration this is no longer the case.

Figure 15

As can be seen from Figure 15, if Qt(.) represents m-level truncation and
Q(.) represents m-level rounding, then

Q«K) = <?(u„ - jAj)

17



Using truncation instead of rounding, therefore, the system is represented by
the difference equation

un+i = pun + g.(x - Qt(un))

un+1 =pun +g.(x- Q(un - ^-))

K+i - =b) =pK - sbr) +*=k +*(* - Q(un - ^r))
«„+! =j>6„ +g.((x + jtLy) - Q(un))

The effect of using truncation instead of rounding has been to introduce
an effective input offset of f~\\.

r fl("»-i)

9 Concluding remarks

Using techniques from the field of nonlinear dynamics, we have described
the effect of nonideal and multilevel quantization on the single-loop E—A
modulator with constant input. Offset in a two-level quantizer has been
shown to affect the operation of the modulator only in conjunction with
leaky integration. The net result of such offset is to introduce an effective

offset of the system input. With perfect integration, increasing the number
ofquantization levels beyond two changes the form but not the average value
ofthe limit cycles observed at the output. Once again, the behavior changes
when integrator imperfections are taken into account. When the component
mismatch factor g is less than or equal to one almost all (in the sense of
probability theory) inputs give rise to limit cycles at the quantizer output.
These limit cycles take on at most two values. In certain cases it is possible
for two or more stable limit cycles to be admissible for a given input, but
in each of these cases the average value of every such admissible limit cycle
is the same. The graph plotting average output over a limit cycle versus

18



input consists of a numberof scaled versions of the corresponding curve from

the binary quantization system. It can easily be derived by combining the
analysis of Section 7 with the algorithmic procedure of Reference 3. With

g > 1 the above analysis applies over all but four intervals of the input x.
Over these intervals it is not possible to describe the input versus average
output characteristic by a simple self-similar structure. We can, however,
bound the characteristic as explained in Section 8.
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11 Appendix A

In this Appendix we study the dynamics of the map (5), plotted in Figure
7, i.e.

«n+l = pun + X - Q(un)

where

Q(un) = -1 for un < -§

= -\ for -§ < un < 0

= \ for 0 < un < |

= 1 for | < un

Once again, it is natural to consider several different ranges of the input x:

Case (i): x > §- \p

19



All initial conditions give rise to a fixed word stream of 1 at the quan

tizer output.

Case (ii): —| < x < \

All trajectories eventually enter the interval [a; —1+ |p, x + 1 —\p)
and, having entered, can never leave. We therefore confine our interest

to this interval, without loss of generality.

Given an initial condition in the range [—|, |), the dynamics are just
those of the binary quantization system with the same value of p and

input 3x. The analysis of Reference 3 is, therefore, immediatelyappli

cable. The output takes on values ±| instead of ±1, so for these initial
conditions the average output is one-third of the average output of the

binary quantization system with input 3x.

If p > 0.5 then all trajectories enter the region [—|, |), and the above
analysis is completely general. With p < 0.5, however, the dynamics

are more complicated. If

p(x +1- \p) +x - 1< -§ and p(x - 1+ \p)+x+1> §

1+p ~ 1+p

then it is easily verified that all points in the region [x - 1+ |p,-|) U
[j, x + 1 —|p) tend to a fixed point of period 2 giving the output
sequence 1,—1,1,—1,.... The second iterate of the one-dimensional

map in this case is sketched in Figure Al.

Figure Al

20



Note that since

lz£±i£ <iiiz*l
i+p i+p

all points in the interval [-§, |) eventually yield the period 2 output
sequence |, —|,... for these values of x. This is the first case where two
asymptotically stable limit cycles, with different basins of attraction,

occur in our system. The averageoutput is the same—zero—over both

limit cycles.

Finally, consider thecase where p < 0.5 and x G f- i I)\pi±£zi£ IZ£±M_)
* •• 3' 3' '!• 1+P ' 1+D '

Suppose x < *[+pT the other case can be handled by the same
argument. Since all points in [a; - 1 + |p, -|) map into the inter
val [—|,x + 1 —|p), and all trajectories originating in the interval
[|,x + 1- \p) eventually enter the interval [-§, |), the relevant dy
namics inthis case are just those oftheregion [— |, |), as studied above.

Case (iii): | < x < 1 - \p

We can without loss of generality consider the dynamics only in the

interval [x - 1+ \p,x + \). An analysis similar to that of Case (ii)
yields that there is a stable fixed point in the range [0, |) which at
tracts all trajectories if x£ [1+^J*, ^^). For all other values of x
trajectories originating in the range [0, |) tend to the fixed point, while
those originating in [x - 1+ \p,0) U[|, x+ \) tend to a fixed point
of period 2 giving output 1, -|,.... The average output is \ in either
case.

Case (iv) l-|p<o;<|-|p

The one dimensional map in the region of interest is plotted in Figure
A2

21



Figure A 2

By a translation and scaling, we find that the dynamics are equivalent
tothose ofthe binary quantization system with input 3(x—1+|p), with
the output taking on values 1 and \ instead of 1 and —1 respectively.
A little algebraic manipulation yields that the average output of this
system is |(2+ average output of the binary quantization system with
input (3a; + 2p - 4)).

All other values of x can be handled by symmetry, so we have a complete
understanding of the dynamics of (5).

12 Appendix B

In this Appendix wederive thedependence ofaverage outputoninput for the
general multilevel quantization system of Section 7. We willpresent a sketch
of the proof, as it is similar to that of the four level system of Appendix A.
The difference equation to be studied is equation (6), plotted in Figure 11,
i.e.

un+i =pun + x-Q(un)

where

= 1 for^2<„„

= _ ttt for Irr < un < 0m— 1 m—1 — n ^

22



= -1 for Un < -2=i
" m—1

with p < 1.

It is clear that for x > 1+ ^"^"^ (resP- ®< -1 - (1"p)[.m"2)) the
output word stream is fixed at 1 (resp. —1).

Consider now the case -^ < x < ^. For initial conditions G
[— m^T'm^i") *ke dynamics are just those of the system with two quanti
zation levels and input (m - l)x. For all remaining initial conditions, the
only other possibilities are the limit cycles

-2_ 2_ for i-api-P < x ^ i-2Pi-P
m-1 m-1 IOT m-1 l+£ ^ X < m-11+p
_5_ L_ f ..l^l-p. < l-4pl-p
m-1 m-1 1U1 m-1 1+p — X ^ m-1 1+7

1 - 1 for -H"-2)"^ < a; < i-fo-folzEm-1 1+p — ** ^ m-1 1+p

Theaverage output is thesame inany ofthese cases, so theaverage output as
a function of x overthis interval takeson the by now familiar devil's staircase
form, scaled by -~.

7 J m—1

By shifting the state variable, this analysis can be applied to the case

4 m1-i2A?P - x < 4*t!-i2*p- Simply transform the state variable utou-
-^. The above analysis can then be applied, with x shifted by 4k~2kP,

J m—1

For initial conditions G [^, ^±2) the dynamics are those of the binary
quantization system, with output values ^±1 and 2£=I For all remaining
initial conditions, the only other possibilities are the limit cycles

m-1 m-1 m-1 1+p ^ m-1 — * ^ m-1 1+p ~ m-1
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1 4fc-m+l £ l-(m-2-2fc)pl-p . 4fc-2fcp <x < l-(m-2-2fc)pl-p . 4k-2kp (•* j ^ n\
m-1 1U1 m-1 1+p ^ m-1 — X ^ ^S=l l+£ + m-l O1 * > UJ

4H"»;1 _1 for _l~(m-2+2A;)pl-p . 4fc-2fcp ^ ^ l-(m-2+2fc)pl-P , 4fc-2fcp /-f r ^ nx
m-1 x xw m-1 1+p T m-1 — x ^ m-1 1+p ^ m-1 V11 K <• U/

Once again the average output over this interval takes on the devil's staircase

form, with x shifted by ^2*£ and the output shifted by m^-.
Now consider the case ^ < x < |=2e. There is then a fixed point

£ [0> m^r) which attracts all trajectories in this interval. For all remaining
initial conditions, the only other possibilities are the limit cycles

3 !__ fn_ 1+3P-2P2 < ^ 3-p
m-1 m-1 IOr (m-l)(l+p) ^ X< (m-l)(l+p)

5 _ 3 r l+5p-4p2 <s ^ 3-3p+2p2
m-1 m^T tOT (m-fHlTp) ^ * < (m-lfoTp)

1 2=21 for l+(m-l)p-(m-2)p2 < 3-(m-3)p+(m-4)p2
m-1 IOr (m-l)(l+p) ^ X< (m-l)(l+p)

The average output is ^^ for any of these possibilities.
To complete the analysis, consider the case 4fc+1~2*P < x < 4fc+3-(2fc+2)P

m—1 — m—1 '

fc = ±l,±2,...±2^.

Once again, we apply a shift of -^ to find that the above analysis is
applicable, giving an output of period 1 or 2 with average 2i±I

13 Appendix C

In this Appendix westudy the dynamics of the map (7), i.e.

un+1 = pun + g.(x - Q{un))
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where

Q{un)= -1 forun<-§

= -§ for-|</wn<0

= J for 0 < un < I

= 1 for | < un

We begin with the case g < 1:

Case (i): a > 2=^2

All initial conditions give rise to a fixed word stream of 1 at the quan
tizer output.

Case (ii): -| < x < |

All trajectories eventually enter the interval [g(x —1)+|p,g(x+1) —|p)
and, having entered, can never leave. We therefore confine our interest

to this interval, without loss of generality.

Given an initial condition in the range [—|, |), the dynamics are just
those of the binary quantization system with the same value of p and
input 3a;. The analysis of Reference 3 is, therefore, immediately appli
cable. The output takes on values ±1 instead of ±1, so for these initial

conditions the average output is one-third of the average output of the
binary quantization system with input 3x.

If p > ^ —1 then all trajectories enter the region [— |, |), and the
above analysis is completely general. With p < 2a —1, however, the
dynamics are more complicated. If

-2 + 3^-3^ + 2^ -2 + Zg - 3gp+ 2f
3*(l+p) ~X< 3flf(l +p)
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then all initial conditions in the region [g(x —1) + |p,—|) u [|, g(x +
1) ~ 3P) teno^ to a nxe(i point of period 2 giving the output sequence
1,-1,1,-1,....

Note that since

-2 + 3g-3gp + 2y» |(1 -p)
3^(1+p) 1+p

all points in the interval [-|, |) eventually yield the period 2 output
sequence I, -I,... for these values of x. Once again, although there
are two admissible limit cycles for these values of x, the average output
is the same—zero—over both limit cycles.

Finally, consider the case wherep < &-1 and x € \—h MU—=2±28=2flEfc2EL ~2+3g-3qp+2p' x
r 2 l 3'3^\L 3g(l+p) ' 3ff(l+p) /

Suppose x < -~2+^(-y^ —the other case can be handled by the
same argument. Since all points in [g(x - 1) + \p, -§) map into the
interval [-§,g(x +1) - §p), and all trajectories originating inthe inter
val [|, g(x +1) - \p) eventually enter the interval [-§, |), the relevant
dynamics in this case are just those of the region [-§, |), as studied
above.

Case (iii): \<x< 2z§E±2

We can without loss of generality consider the dynamics only in the
interval \g(x - 1) + \p,g{x + |)). An analysis similar to that of Case
(ii) yields that there is a stable fixed point in the range [0, |) which
attracts all trajectories if x£['"ggffi'*, ^). For all other values
ofx trajectories originating in the range [0, |) tend to the fixed point,
while those originating in [g(x - 1) + |p,0) U[\,g(x + \)) tend to a
fixed point of period 2 giving output 1, -I,.... The average output is
| in either case.
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Case (iv) 2=|2±a < x < 2-2p+3g

By a translation and scaling, we find that the dynamics are equivalent
to those of the binary quantization system with input -(§p + gx —
\g —|) with the output taking on values 1 and \ instead of 1 and
—1 respectively. A little algebraic manipulation yields that the average
output of this systemis 1(2+ average output of the binary quantization
system with input |(|p +gx - \g - |).

Allother values of x can behandled by symmetry, so we have a complete
understanding of the dynamics of (7) for g < 1.

With g > 1 and four levels of quantization the dynamics are identical to

those of the g < 1 system for all inputs outside the range

We will examine the dynamics for x e [3^,3) — the dynamics in the
other three intervals follow from this by translation and symmetry. The
one-dimensional map in the region of interest is shown in Figure CI.

Figure CI

The difference between this and previous examples is that it is now pos
sible for g(x + \) to exceed §, giving 3 possible output values in the region of
interest. If g> 1+§it is possible that g(x +i) >| and %+g(x -1) <-1,
giving 4possible output values inthe region ofinterest. Since such parameter
values would be unreasonable in the context ofour single-loop S-A system,
we restrict our attention to the case g < 1+ |.

We can explain the structure of theorbits in the following manner. With
two quantization levels the orbits at the output are of the form

-5(!)a,-Hf)a'-3(5)°s--- (9)
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with any two of the a,- differing by no more than 1. The details of this

structure are contained in Reference 3.

• For ^ < x < 2g|±g Some of the.|-|| blocks of these orbits are
replaced by |-|l-| blocks, as sketched in Figure C2.

Figure C2

• For &J8? ^ *<aaSg3»T the 34 i sequence is no longer admissi
ble, and all orbits are of the form (9) with the |-|| blocks replaced
by |-|l-| blocks.

• For 2-ffi^gf <x< ^tfgtf+ff the 1-|1 sequence has become
admissible, and some of the \ -\ 1-\\ blocks from the previous case are
replaced by |-|l-ll-| blocks. Note that this case occurs only when

*aSg# <b i-e- when g> ^

• For *2®£gtf * *<*-*%&&&? the B^B sequence
is no longer admissible, and all orbits are of the form (9) with the
\-\\\ blocks replaced by \-\ 1-\ 1-\ blocks.

sequence has become admissible, and some of the \ -\ 1-\ 1-\ \ blocks
o 3 3 3 3

from the previous case are replaced by i-Il-Il-ll-I blocks. Note

that this case occurs only when a"fi^^%Jj^ <|, i-e. when
y -' p*-p«+p2-p+i •

The pattern is clear, and allows us to place bounds on the input versus
average output characteristic. The inequality analysis of Reference 3 can be

applied to the orbits of form (9) with the \~\ \ blocks replaced by \-\ 1-i
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(or higher order substitutions, as above). In this way the bounds of admis

sibility of each of these orbits can be obtained. Corresponding to each such
substitution the input versus average output characteristic can be plotted in

the appropriate input interval, as derived above. The resultant plot provides
bounds on the average value of a limit cycle observed at the output.
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List of Figures

Figure 1: Blockdiagram of ideal single-loop S—A system. The modulator consists
of a discrete-time integrator and a quantizer inside a feedback loop, x is the
input to the modulator and u the input to the quantizer.

Figure 2: Average output over a limit cycle plotted versus dc input x. This graph
corresponds to the single-loop systemwith twoquantization levels and p = 0.8.

Figure 3: Regions of admissibilityof the 27 shortest limit cycles — i.e. those with
period < 9 — for 0 < p < 1.

Figure 4: One-dimensional map of (4)— un+i = un + x - Q(un) —with four quan
tization levels.

Figure 5: One-dimensional map of (4) in the region [x - |,x + |) for (i) x = ^;
(ii) -| < x < |; and (iii) | < x < 1.

Figure 6: One-dimensional map of (4)— un+1 = un + x - Q(un) —with m quan
tization levels.

Figure 7: One-dimensional map of (5)— un+1 = pun + x - Q(un) —with four
quantization levels.

Figure 8: Average output over a limit cycle plotted versus dc input x. This graph
corresponds to the single-loop system with p = 0.8, g = 1 and four quantization
levels. Compare to Figure 2.

Figure 9: Regions ofadmissibility of all limit cycles with period < 5for 0 < p < 1,
g = 1 and four quantization levels. The shaded regions are the regions of
admissibility of the fixed points ±1 (dark grey) and ±| (light grey). Between
these can be seen skewed versions of the tongues from Figure 2.

Figure 10: Error between input and average output over a limit cycle for p= 0.99,
g = 1 and four quantization levels.

Figure 11: One-dimensional map of (6)— un+1 = pun + x - Q(un) —with m
quantization levels.



Figure 12: Average output over a limit cycle plotted versus dcinput x. This graph
corresponds to the single-loop system with p = 0.8, g = 1 and eightquantization
levels. Compare to Figure 2.

Figure 13: Average output over a limit cycle plotted versus dc input x G[—1.6,1.6].
This graph corresponds to the single-loop system with four quantization levels,
p = 0.8 and g = 1, 0.7 and 1.3.

Figure 14: Average output over a limit cycle plotted versus dc input x G[0.15,0.4].
This graph corresponds to the single-loop system withfour quantization levels,
p = 0.8 and g = 1 and 1.3.

Figure 15: m-level (a) rounding and (b) truncation quantization functions.

Figure Al: Second iterate of the one-dimensional map (5) for THp~7p2 < x <
k-p+y* 1+p

i+p *

Figure A2: One-dimensional map of (5) for 1- \p < x < §- \p.

Figure CI: One-dimensional map of (7) for g > 1 and ~£ < x < k

Figure C2: One-dimensional map of (7) for g > 1 showing the appearance of the
| -| 1-| blocks.
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