
Copyright © 1991, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



RECEDING HORIZON CONTROL OF LINEAR

SYSTEMS WITH INPUT SATURATION,

DISTURBANCES, AND PLANT UNCERTAINTY

by

E. Polak and T.H. Yang

Memorandum No. UCB/ERL M91/60

1 July 1991



RECEDING HORIZON CONTROL OF LINEAR

SYSTEMS WITH INPUT SATURATION,

DISTURBANCES, AND PLANT UNCERTAINTY

by

E. Polak and T. H. Yang

Memorandum No. UCB/ERL M91/60

1 July 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



RECEDING HORIZON CONTROL OF LINEAR

SYSTEMS WITH INPUT SATURATION,

DISTURBANCES, AND PLANT UNCERTAINTY

by

E. Polak and T. H. Yang

Memorandum No. UCB/ERL M91/60

1 July 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



RECEDING HORIZON CONTROL OF LINEAR SYSTEMS WITH INPUT

SATURATION, DISTURBANCES, AND PLANT UNCERTAINTY*

by
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ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo

rithms, for linear plants with input saturation. The system isanonconventional sampled-data system:

its sampling periods vary from sampling instant to sampling instant, and the control during the sam

pling time is notconstant, but determined by the solution of an open loop optimal control problem.

We show that theproposed moving horizon control system is robustly stable, and that it is capable of

following a class of reference inputs and suppressing a class of disturbances. Experimental results

show that thebehavior of themoving horizon control system is superior to that resulting from alterna

tive control laws.
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1. INTRODUCTION

There isa startling contrast between the considerable difficulty ofconstructing robust, stabiliz
ing feedback control laws for nonlinear or time varying systems by conventional methods, and the

ease with which complex, open loop optimal control problems can be solved (see, e.g. [Kwa.2,

May.2, May.3]). This observation has led to the suggestion that it might be feasible to determine

feedback laws for nonlinear ortime varying systems by repeatedly solving open loop, finite horizon

optimal control problems. Such feedback laws are known asreceding horizon control laws.

Although the concept of receding horizon control isnot new and has been proposed in conjunc

tion with various applications, process control being one of them, it has notalways been realized that

a naive application of thestrategy, in adaptive control for example, canlead to instability. The litera

ture that provides an analysis of the stabilizing properties of moving horizon control lawsdeals with

schemes based on open loop optimal control laws for finite horizon optimal control problems with

quadratic criteria and no control constraints. Thus Kwon and Pearson [Kwo.2], and Kwon, Bruck-

stein and Kailath [Kwo.2] deal with linear time-varying systems, Keerthi and Gilbert [Kee.l] deal

with nonlinear discrete-time systems, and, more recently, Mayne and Michalska have established the

stability properties of nonlinear, continuous-time systems with moving horizon control

[May.2,May.3]; see also Chen and Shaw [Che.l]. None of this work addresses the questions of

robustness (i.e., model errors), inputfollowing anddisturbance rejection, nor does it takeintoaccount

the nontrivial computing time associated with the computation of theopen loop controls.

Now consider a dynamical system modeledby the finite dimensional ODE:

x(t) = h(x(t),u(t)) , (1.1)

where h :R"xRm->R* satisfies the usual assumptions for optimal control (see, e.g.,

[P0I.IJP0L6]), andh(0,0) = 0. Weassume that thestate of thesystem canbemeasured exactly, mat

thecontrol u(t) is bounded, with u(t) e U, a compact, convex set, and that design requirements may

involve some state space constraints on the trajectories of the system. Clearly, if there were no

modeling errors, no disturbances and no inputs, there would be no need for feedback laws to drive the

system from arbitrary states to the origin. Thus, assuming that the time needed to solve a minimum

time optimal controlproblem is less than Tc seconds, that the statex(0) * 0 at time t = 0 is known,

and that oneonly wishes to take the system to the the zero state as quickly as possible, one could (i)

use (1.1) to project the state at time Tc with the control u(t) = 0 for t e [0, Tc], (u) solve a con

strained minimum time, or free-time quadratic integral cost optimal control problem to compute a



control u (•) that can steer the state from x(Tc) to the origin inthe time t, and then (iii) apply the

control u(f) over the interval [Tc ,Tc+t]. Atthe end ofthis interval the system would be returned

to the zero state. To establish a need for supplementing open loop optimal control with a feedback

strategy, suppose that the model(1.1) is somewhat in error either in modeling the actual dynamics or

in failing to include disturbance effects, or both. Then at time Tc, the actual system state

xp(Tc +1) will differ from the projected state x(Tc +1) and hence at time Tc +1, the system
state will notbe the zero state. Thus, in the presence of modeling errors ordisturbances, some form

ofclosed loop strategy must be used.

In this paper we propose a feedback strategy for the simplest case of a linear plant, modeled

with errors, subject to inputs and disturbances, as well as control constraints. This feedback strategy

results inanonconventional sampled-data system: its sampling periods vary from sampling instant to

sampling instant, and the control during the sampling time is not constant, but determined by the
solution of an open loop optimal control problem. We will see that taking into account the time

needed to solve the open loop optimal control problem and modeling errors, complicates matters con

siderably, because the computed optimal control is based on an estimated initial state and corresponds
to amodel that is not an exact representation ofthe plant In Section 2 we introduce our proposed
moving horizon feedback control law, based onControl Algorithm 2.2. InSection 3 weshow that the

proposed moving horizon feedback system isrobustly stable. In Section 4 we study the effect ofdis

turbances, while in Section 5, we establish aclass ofreference inputs that can be tracked asymptoti
cally by our system. Finally, in Section 6, we test illustrate the behavior ofour moving horizon con
trol lawby means of a few simple examples.

2. STRUCTURE OF THE MOVING HORIZON CONTROL LAW.

We assume that the plant is alinear-time-invariant (LTI) system, with bounded inputs and an
input disturbance, described by the differential equation

5^0 =A'§'(0+B'Gi(0 +d<0). (2.1a)

rf(t) =CH'(t), (2.ib)

where the state %?{t) e R\ the control ueU, with



tf4{K€LJ[0,~)jfo|_<;C||} , (21c)

c e (0,<»), and thedisturbance deLJLO,^). Consequently, Ap e R^*" andB* <= RBXi\ We

will denote the solution of (2.1a) at time t, corresponding to the initial state %g at time /r> and the

combined inputu +d, by i*(r ,t0,$g,u +d).

The function of the moving horizon control law is to ensure robust stability and "reasonable"

reference input r(t) tracking, suppress disturbances d(t), while taking into account the fact that the

plant inputs are bounded, asin (2.1c), aswellasvarious amplitude constraints on transients.

We assume that the disturbance d(t) cannot be measured and that the matrices Ap, Bp and Cp

are known onlyto some tolerance. Hence themoving horizon control lawmustbe developed using a

plant model, of the same dimension as (2.1a),

4(0 =A5(0+B(u (?) +3 (0). (2.2a)

T1(0 =C%(t), (2.2b)

whereA e JR.nxntB e Rnxm,andC€ R^*" are approximations toAP,BP and Cp, and 3(f) is

an estimate of d(t). When d(t) can not beestimated, we set 3 (0 =0. We will denote the solution

of (2.2a) at time f, corresponding tothe initial state xo at time r0, and the combined input u+3, by

x(t ,t0,x0,u +3).

Assumption 2.1. We will assume that (A , B) is a controllable pair, and that (C ,A) is an observ

able pair. •

Let the subspace Sx c R" be defined by

Sx= {xg 1Rn\xeR(B),AxeR(B)) . (2.3a)

where R(X) denotes the range space of the matrix X. Let H be a matrix whose columns are a basis

for Sx. We will show in Section 5 that, when there areno constraintson the control uQ, given any

continuously differentiable function s(t), with values in Sx, there exists an input us(t) such that for

any initial state £<>, l£(f 10, £o, us) - s (t)l -» 0 as t -> «». Let S denote the set of continuously dif

ferentiable functions s : R -» Sx. Hence, the reference inputs which can be tracked asymptotically,

under the best of conditions are those in the set R = C S. We will therefore assume that the reference

inputs to be tracked are in R. We will use the following characterizationof elements r e R, because

it may help to alleviate the effects of the control constraint. Let C = CH and let G be a matrix



whose columns area a basis for the null space of C. Then any reference input r e R can be

expressed as follows:

r(0 = C*(0, (2.3b)

where s(t)kH(CTC)fCTr(t) (f denotes the Penrose pseudo inverse) is continuously differenti-
able.

We can now define the error dynamics that will be used in defining and analyzing ourcontrol

law. Suppose that a reference input r e R is given. Let xp(0 =5P(0-*(0. and let

x(t) ££(r) - s(t). Then the plant error dynamics are given by

xp(t) =Apxp(t) +Bp(u(t)+d(t))+fp(t), (2.4a)

yp(t)=Cpxp(t), (2.4b)

where/''(r) 4-i(0 +Aps(t). Similarly, the model error dynamics become

i(O=Ac(O+*0<(O+3(O)+/(O, (2.4c)

y(0 =Cx(0, (2.4d)

where/(0^-i(0+As(0.

We will denote the solution of system (2.4b) by x(t, t0,x0, u+3 ). Given any time tk we

will let xk s x(tk, fo, xo, u+3). Assuming that the control law computation takes at most Tc time
units, we can now propose a simple, aperiodic sampled-data feedback law, in the form of an algo
rithm which, during each sampling period, solves an optimal control problem P(xft, tk, r) of the
form

Pfok.fc.r): /min{g°(M.t)lgl'(M,x)^0, i =1,2,... ,/lr

i^.x]^(U,t)^0'J=:l '2. «« tf .T€fo+rc.*+f]) ,(2.5a)

where 0<Tc <T < «>, and the constraint functions are defined by

*'(«.T)£A'(x(T,4,j%,iO). /=0,l,...,/,-l, (2.5b)

gl\u ,%) =\x(z,tk ,xk ,u)?-a2lxk\2, (2.5c)



V(.u,t) = h'(x(t,tk,xk,u),t),j = l,...,l2-l, (2.5d)

tf\u ,0 =\x(t ,tk,xk.u)l2-P2UAI2, (2.5e)

where the constraint functions (2.5c,e) with a <= (0,1), Pe [1, ~), are used to ensure robust stability

and input tracking, while the other functions, h'1, hj:R" ->R are convex, locally Lipschitz con

tinuously differentiable functions that can be used to ensure other performance requirements.

We are now ready to state our control algorithm that defines the moving horizon feedback con

trol system.

Control Algorithm 22.

Data: f0 =0,fi =Tc,U[t0ttl](t)BQtx0e B„. Tc and f such that 0<T <Tc < f <«>.
p

StepO: SeU=0.

Stepl: Aw=fA,

(a) Obtain a measurement or estimate of the state xl =xp(tk) and denote the resulting

value by xk.

(b) Compute an estimate, 3 (0, ofthe disturbance d(t) for t e [tk, rA+1], if possible; else,

set3 (0 =0.

(c) Set the plant error dynamics input u(t) =u[tk, k^(jt) - 3 (0 for t e [tk, f*+i).

(4) Compute an estimate xk+x of the state of the plant error dynamics xp(tk+l ,tk,xk,u)

according to the formula

xfc+i =eA^l'u)xk +̂ e^^-^Biuity^S(t)]dt +£*eA(fM-'}f(f)dt. (2.6)
(*) Solve the open loop optimalcontrol problem Pfo+i, f*+i, r) to compute the next sam

pling time tk+2e (tM +Tc ,tk+l +f], and the optimal control «n4lly(/)el/,

* e tfik-Hl »^+2)1

Step 2: Replace k by k +1 and go to Step 1. D

Let Q be a symmetric, positivedefinite nxn matrix suchthat {x , Qx >is a Lyapunov function

for the linear closed loop system obtained applying state feedback to (2.1a). The reason for this

selection will become clear inSection 3.3. Weuse this matrix todefine the norm Ixl £ {x ,Qx }**.



Clearly, the fact that the plant inputs are bounded, limits the regionof effectiveness of any con

trol law and the class of reference inputs that can be tracked. Hence we must assume that the initial

states are confined to a g-ball BacR" and that the reference inputs belong to the set R^, both
p

defined, as follows.

Assumption 23. We assume that there exists a nonempty set r c (0, «>) and Ry cR suchthat

0€ Rry and that for all pe r, x e Bp £ [x e R" IUl £p} and for all r e RUt the optimal con

trol problem P(x,0,r) has a solution. Let p be a relatively large value in r. We define

B^ £ UeRBll*l«sp }.

The following theorem, whichgeneralizes a result given in [PoLl].

Theorem 2.4. LetB„ c R" and r € RUt bedefined as in Assumption 2.3. Suppose mat (a) the

systems (2.1a) and (2.2a) are identical, (b) d(0 =0, and (c) the Control Algorithm 2.2 is used to

define the input «(•) for (2.1a). Then the resulting feedback system is asymptotically stable in the

sense ofLyapunov on the set £ .
p

Proof. We begin by showing that for any r e Rv and for any i0eflA, the trajectory
p

x(tk,0,x0,u) = xk,k eft resulting from the use of theControl Algorithm 2.2is contained in B .
p

In turn, this shows that such a trajectory is well defined andthat it is bounded.

Suppose that x0e B„ is an arbitrary initial state at t =0. It follows from the form of (23c),

that for all k «= N,

U*+1I =bc(tk+1 ,tk,xk,u[lit 4+ll)l <S albckl £ct*+1lxol. (2.7a)

Since a e (0,1), it follows that xk e B„ for all k e N and hence that the trajectory x(t, 0 ,x0, u)

is well defined.

Next, from the form of (2.5e), we see that for all k e N and for any t e [tk, rA+1],

tx(f , tk, xk, u[4, ,l4ll)l £ pbfcl £ pa*lx0l * pl*ol . (2.7b)

whichproves that since x0 e BA,this trajectory is bounded.
p

Finally, because pa* -»0 as k -• ~, it follows thatx(r ,0,x0,u)-*0 as t ->oo, and hence

that the feedback system defined bythe Control Algorithm 2.2 isasymptotically stable inthe sense of
LyapunovonthesetB .

p



D

We note that Theorem 2.4 did not depend on the form ofthe cost function g%, •) nor on the
form ofthe constraints defined by (2.5b) and (2.5d). These constraints can be used to shape the tran
sient responses ofthe closed loop system. We will describe later aprocedure for solving problems of
the form (2.5a-e).

Asstated, Control Algorithm 2.2 only defines alocal control law. When the plant isunstable, it

is not clear that there is much that one can do about it However, in the case of stable plants (and
models), it is possible to globalize Control Algorithm 2.2 making use of the following observation.
First, it should be clear that, in the absence ofmodeling errors and disturbances, for any r e R such
that for all r£0, minU€l, IBu +/(OI =0, there exists an admissible control,

u°(t) e argminu 6v \Bu +f (01 that results in the error satisfying the equation

i(0=Ax(f). (2.8)

and hence, if A is a stable matrix, the error goes to zero exponentially, so that x(t) e B will occur
p

in finite time. Clearly, in this case, there may be room for a more effective control law, as we will

now show. Let Af and C besymmetric, positive definite matrices, such mat ATff + ffA =-Af,

then V(*(0) =U(0, ffx(f))i& aLyapunov function for (2.8). Let Ts e (Tc. f ]and suppose that
xk &B . Then, if we set tM = tk +Ts and we apply the control u0(t)t to (2.4c), for t e [tk, tk+l],

then we must have that V(x(tM,tk,xk,u°))<>e~'kv^ryr'V(xk). Hence it makes sense to use

instead the control defined as the solution of the simple optimal control problem

ntin{V(x(tk+lttk,xk,u))} , (29)

where x(tk+l ,tk,xk,u)is determined asthe solution of (2.4c).

Hence, for stable plants, we propose to modifyControl Algorithm 2.2, as follows:

Control Algorithm 2.5.

Data: fo =0,f1,KI,0#ll](0,x0,r,,rc andf suchthatO<rc <TS £T <«».

Step 0: Set k = 0.

Step 1: At t = tk,

(a) Obtain a measurement or estimate of the state x[ =xp(tk) and denote the resulting
value by xk.

8



(b) Compute an estimate, 3 (0, ofthe disturbance d(t) for t e [tk, rt+1], if possible; else,

set3 (0 =0.

(c; Set the plant error dynamics input u(t) =u[tk ttMft) - 3 (0 for f e [tk, f4+i).

frfj Compute an estimate xk+x of the state of the plant error dynamics xp(tk+x ,tk,xk,u)

according to the formula (2.6)

**+i =eA(/M"h)xk +£+* eA(^-°B[M(r)+3 (01<fr +J**' eA(k*-'}f(t)dt.
Cej If Xjt+1 e flA, solve the open loop optimal control problem P(*A+l, rt+1, r) to compute

p

the next sampling time tk+2 e (tk+l +Tc, f*+i +f], and the optimal control

Mfo..,/*.a](Oe 17, f e [r*+i ,/*+2).

Else set tk+2 = fc+i +T, and u[lM, kJf) = u°(t\ for all f e fo+1, fc+2).

5rep 2: Replace k by Jfc +1 and go to Step 1. •

We will not present a complete analysis of the operation of the closed loop system underCon

trol Algorithm 2.5.

3. ROBUST STABILITY.

In this section, we will analyze the behavior of the closed loop systemresulting from the use of

Control Algorithm 2.2under the assumption that there is adifference between the actual plant equa

tions (2.4a) and the model equations (2.4b), and that d(t)=0 and r(r)aO. We recall that when

r(r)s0,wehavethatj(Os0,/'?(r)s0,and/(Os0in(2.4a,b). Hence we will set 3 (0^0. We

will consider two distinct situations: the first is where we can measure the state, while the second one

is where the state has to be estimated. Finally, we will show how a cross over rule to a linear state

feedback law near the origin can be used to eliminate residual errors in both cases.

3.1. moving horizon control with state measurement

We begin by defining the errorquantities

Ai Amax, e[0| fjl eA'% - eM\, (3.1a)



A2 £cuT max, 6(0 f,1 eA'%Bp - eMBI, (3.1b)

tf4max,€[ofjte*|. (31c)

When either A, or A2 is not zero, even if xk e D, where D was defined in Assumption 22, the
estimated state, x4+1 (defined by (2.6)), may not be in D and hence there may not exist asolution to
the optimal control problem P(xA+1, tk+l ,0). Therefore, we have to specify aset BPt c D, such
that for any xg e £p#, Control Algorithm 2.2 is well defined on the emanating trajectory
x(t, 0, x$, u). We will obtain a formula for such aset in the process of proving the following
result

Lemma 3.1. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.2, with plant state measurement There exist ei, fy >0 such that if At £ Ex and A2 ££2,
then there exists aset BPt c D, with nonempty interior, such that for all x% € Bp,, the control law
defined by Control Algorithm 2.2 is well defined on the resulting trajectory xp(t .O.xg.w),
t e [0,00), i.e., the states, xk+lt k =0,1,2,.... computed using (2.6) satisfy that xk+l e D for all
k>0.

Proof. First suppose that the optimal control problem V(xk+l, tM, 0), has a solution for any
xk+i e Rn and tk+l £ 0. Then, given any initial state xg at time t0 =0, the Control Algorithm 2.2

generates three sequences of states. The first sequence is that ofmeasured plant states {xg} ka0$ so

that xk =xl for all k e IN, the second sequence is the sequence of estimates [xk }£lf with
**+i =x(tk+Y, tk, xl, m), k =1,2,..., generated according to (2.6), and finally, the sequence
{***.} &2» with x^+2 =x(tk+2, tk+i, xk+i, m), k=1,2,..., generated in the process ofsolving the

optimal control problem P(r*+1 , tM , 0),* e N.

First wenote that it follows form (2.4a), (2.6) and (3.1a,b) that

!*£+1 - W £ Aihfl +A2. (3.2a)

Hence, making use of (3.2a), we obtain that

lx*+il £ hqf+i - xk+ll +U£+11 ^ A!Ufl+A2 +Ixj?+1 I. (3.2b)

Since byconstruction, for all k e K, l^t+2l £ alxft+1l, it follows from (3.1a-c) and (3.2a,b), that

ttf+2l <£ ljtf+2 -/A+2I + alx*+1|

10



ZKlxfa -^l+Ajk^l+Aj+cdxfc.! -xA+il+ o±cf+1l

^(^+a)(Albjfl + A2) + (A1 + aM+1l+A2

= (K + a)AiU^I +(At +aM+I I+(1+a+AT)A2. (3.2c)

Let

%i£(l-ay(l+a+JO. (3.2d)

We wiU now show that if A^e^fei, then there exists Yi,y2e (0,«») such that for all

* = 1,2,...,

lx*l£Yilxgl +Y2. (3.2e)

We wiU now make use of Proposition 8.1. Hence, let a^A^ot, a2 =(K+a)A1, and

b =(l+a+AT)A2. Because*^, a2, and6 are positive, if we sety0 =1*61 andy! =lx? I in(8.1a),
then comparing (3.2c) with (8.1a), wesee that for all k e N, yk £ Ixgl. Also, because

A1+a+(AT+a)A1=a1 +a2<l, (32f)

the assumptions ofProposition 8.1 are satisfied. Since A! £ ei<e, and (K +a)Ai £ 0,

1-ax +a2 =1-A! -a+(K +a)A, >1-a-ei =SlzjMSLtlD. A^>0
1 +CL + K

Hence, for all A: £1,

93.2g)

lxPl<ykZa2lxp)l +lxill+ 1_J,+a Sa2kgl +lsfl+e", (32n)
\i-a2

lim ItflS lim y*<;e", ,_

where

A0j1a+J0A2
e ? • (3.2j)

Qearly,

Ixfl^lxf-xil +btl. (32k)

SincejT0=^,andM(O =0forr e [0,/1]itfoUowsfrom(3.1a,c), and (3.2k) that

11



bfl^A,lxgl+A'Ugl =(A1+A:)lxgl. (3.21)

Substituting this result into (3.2h), we obtain that for all k £ 1,

ItflSyt^+tf-AAOkgl +e" , (3.2m)

where e" isdefined in (3.2j). Since - A* A_ =a2=(K +a)Alt it follows from (3.2m) and (3.2b) that

Ix*+1l£A1y*+A2 + y*+i

£ (1 +A!)(A!+ K + (AT + a)A, )lxg I+ (1+A0 e" + A2

=Yikgl+Y2. (3.2n)

which proves (3.2e).

Next we will showthatwith\ 2> 0 defined by

Me
2 + K

+ 1

Y2< 1 +
1-a

1 + a+tf

Let Yi and pe be defined as follows:

^i£(l+ei)CK+(l +a+Jr)ei) ,

-l

= P
o±£)o+ct+jni+1

(l-a)(a+AT)

where p >0 was used to define the set D in Assumption 2.2 and € is defined in (3.2g), if

A2 £ e2 <fc2. then there exists a pe e (0, J), depending on£j, £2, such that if Ixgl £ pe, then \xk\ £ j*

for all k = 1,2,..., i.e., that the trajectory x(t, 0 ,xg , u), f e [0,00), emanating from xg, con

structed under Control Algorithm 2.2 is well defined.

Assuming that At £ e} and that A2£ £2, we obtain that from (3.2n)

2+K

-i

-—-,—1e2+A2£ + 1

(3.2o)

£2^2^ (3.2p)

(3.2q)

P^tf-^i. (3.2r)

Since f* -%>0 and K £ Yi £^1. we conclude that pe >0, and hence that the Bp, c D,defined by

Bp.£{xeD llxISp,} , (3.2s)

is well defined and its interior is notempty. Furthermore, for any xg e BP(, theresulting sequence

U*+i)r=o satisfies

12



Ix*+1l £ Yi bgl + -h * Yi$ -WQi) +% * £ . V* g N, (3.2t)

which implies that x4+1 e D, for all k g N, and, in turn, that the optimal control problem

P(**+i.'a+i,0) has a solution for all k g K Hence the trajectory xp(f .O.xg.iO, t e [0,~),

emanating from any xg g £ p, is welldefined by Control Algorithm 2.2, which completes ourproofD

Theorem 3.2. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.2, with plant state measurement Suppose that A! £ ei <t i and A2 £ £2 <fc2, where £lt

£2 are defined in (3.2d) and (3.2o), respectively. Let BPt be defined as (3.2s). Then (a) for any
xg e BPt, the trajectory x'(r ,0,xg ,u), f € [0,~), is bounded, and (b) there exists an £3>0,

depending on ti,e2, such that e3->0 as £2-»0, and for any xgG£p# the trajectory
xp(t,0, xg ,u), t g [0,00), satisfies lim, _ «, ix'(f, 0, xg ,u)l £ £3.

^^Z Let xg€B p, be arbitrary and let {x£}£o, U*)r=i.and {x'*} T=2 be the sequences

constructed by Control Algorithm 2.2, as defined in Lemma 3.1. We recall that by Lemma 3.1, the

trajectory xp(t, 0, xg , u), t g [0,00), is well defined.

(a) Makinguseof (2.4a) and (3.1a-c), weobtain that for all r e [tk ,tM],k g N,

\xp(t .tt.xg.uVZWit .tt.xt.uy-xit ,tk,xk,u)\ + tx(t ,tk,xk,u)l

ZAMl + Klxg-xtt+Az + lxit ,tk,xk,u)\. (3.3a)

Next we note that the form of (2.5e) ensures that lx(t ,tk,xk,u)\£$lxk\ for all t g [tk,tk+l].
Hence, in view of (3.2a), (3.3a) can be replaced by

l*'('.'jk,*^K)l£A1lx£l+A'Ujr^

<; (Ai +P)bf|+(tf +p)A1lx^_11 +(1 +K +p)A2, fe[rt, fc+1]. (3.3b)

Clearly, since **[<>,,,]s0, lx*(f .O.xg.iOlisboundedonfO,*!]. Since, as we have already shown

in the proof of Lemma 3.1, {lxj?l}£o is a bounded sequence, it follows from (3.3b) that

l*'(','*.*£,« )l is bounded for all t g [tk ,tM], k g K, which completes the proofof(a).

(b) It follows from (3.2i), in the proofofLemma 3.1, that

1— . 0. ^r— .. (l + cc+#)£2lim* _>„ btfl <limA _+„yk £e"<; - 1—^- , (3.3c)
£

wheree' is defined in (3.2n). Let
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£3 =
(P + d+ff + p^Xl + a+ff)

; + 1+AT+P £2 • (3.3d)

Then (3.2i) and (3.3b) lead to the conclusion that lim, _*«, lx*(f, 0, xg^)l £ £3. It is obvious from

(3.2i) and (3.3d) that e3 -» 0 as £2 -• 0, which completes our proof. D

32. moving horizon control with state estimation.

Since it is not always possible to measure the plant state xl, we will nowexamine thebehavior

of our closed loop system, resulting form the use of Control Algorithm 2.2, when the plant state has

to be estimated in the presence of modeling errors, i.e., when the actual dynamics are as in (2.1a,b)

and themodeled dynamics as in that (2.2a,b). We will assume that (A , C) is an observable pair.

When the model (2.2a,b) is identical with the actual dynamics (2.1a,b), we can calculatethe ini

tial state, xg at t = 0, using the standard formula

*g =Wc(Trl£(Pe*)r(y'(0-n(r. 0))dt, (3.4a)
whereT > 0, the superscript T denotes a transpose, and

W0(T) =fce^fCe^dt, (3.4b)

TK* ,s)=CjV<'-*>£u(t)dT. (3.4c)

Clearly, W0(T)~l exists because (A ,C) is an observable pair. Thus, when there are no modeling

errors and no disturbances, for t £ 7\ the state xp(t, 0, xg , u), can be calculated exactiy, and hence

this calculated state can be used in Control Algorithm 2.2.

The much more relevant situation occurs when there are modeling errors but no disturbances.

In this case formula (3.4a) yields an estimateof the initialstatexg. We proposeto use it in in Step 1

(b) of Control Algorithm 2.2, to obtain the estimatexk, with the time T determined by a parameter

§0, which must be chosen judiciously so as to avoid excessive ill conditioning in the observability

grammian W0(T):

Step 1: (a) At /k Atk +8q (tk+l - tk) with c\> g (0,1), estimate the state xl by

Xk =Wo$o(tM - tkyrl£(CeA«-'*f (yp(t)-r\(t, tk))dt. (3.5)
•

Lemma 33. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.2, with state estimation formula (3.5). There exist A,- < «», 1 = 3,..., 6, such that if

14



Control Algorithm 2.2 constructs the sequences (xf}£o* {^Iw. a^ lxk)£o is the

corresponding sequence ofthe estimates ofxjf, defined by (3.5), then for all k g K,

Lcf-x-jkI^A3lxJn+A4, (3.6a)

bf^-WSAsbfl + V (3.6b)

Furthermore, when there are no modeling errors,A; = 0, i = 3,..., 6.

Proof. Suppose that u(•) is the controlgenerated by Control Algorithm 2.2 for the plant and model

trajectories associated with the sequences {x£}jw>. {x*}£i,and {x*)£o-

We begin with (3.6a). Forany k g N andany t g [tk, tk+\]t yp(t) is given by

yp(t) =CpeA'it^)xl +Cp(eA'«-*>Bpu(f)dx

+cfkeA^-x)Bu(x)dx+fjLCpeAf{t-x)Bp^CeAit-'c)B]u(x)dx. (3.7a)
By substituting (3.7a) into (3.5), we obtain

xk=xl + W-\80(tk+1-tk)y f" (£eA(f-k>f [CpeA'i,-ti)^CeA(f-ky\dt xl

+f* (CeMt-,k))T jf[CpeA'«-x)Bp-CeA«-'QB]u(x)dxdt (3.7b)

It follows directly from (3.7b) that

lx£-x*l £ A3lxj?l +A4, (3.7c)

where

A3= max_IW<,(6Vr1l max lCeAl\ max \CpeA'(f'k)-CeA(f-lk)lb0T
te[Tc,T] <6[0,8of] /e[0,fibf]

A4= max^lW0(6Vr1l max ICe^l max \CpeA'«-*>Bp -CeW-^BiCuSaf,
telTc.T] /6[0,8of] le[0.8of]

(3.7d)

(3.7e)

which proves ourfirst (3.6a). Clearly, when there are no modeling errors, A3 = A4 =0.

Next we will establish (3.6b). Since x*+i is calculated using the estimated initial state x k, we have

that
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Itf+i -W =\eAP^~^xl-<?*&--%* +£\eA'^-*>Bp -eA<**-*B }u(x)dxl

ZKixl-xki + Allxll+A2

ZK {A3lxjfl +A4}+AMI+A2,

=(A" A3 +A0 Ixfl +KA* +A2 £A5lxfI+A<s, (3.7f)

where AT, Ab and A2 are defined in (3.1a,b,c). Hence (3.6b) holds, and our proofis complete. •

Lemma3.3,leads to the following result

Theorem 3.4. Consider the moving horizon feedback system resulting from the use ofthe Control
Algorithm 2.2, with state estimation formula (3.5). Let Ej, £2 >0 be such that

£i<(l-a)/(l +a+A-), (3.8a)

£2<p/(l+(2+*)/£'). (3.8b)

where P was defined in Assumption 2.2 and sf was defined in (3.2g), in the proof ofLemma 3.1. If

A5££! and Ag^ e2, then there exists aset Bp, CD such that (a) foranyxgG Bp#, the trajectory
xp(t, 0, xg ,u), t g [0,00), is well defined and bounded, and (b) there exists an e3 >0 such that

£3-^0 as E2-»0, and for any xg g Bpt the trajectory xp(t ,0,xg ,11), t g [0, «>), satisfies

fim/_>oolx'(f,0,xg,K)l£E3.

Proof (a) First suppose that the optimal control problem P(xA+1, tk+i, 0), has a solution for any
x*+1 g Rn and tk+l £ 0. Then it follows from Lemma 3.3 that

lx£+21 <lxl+2 - x/A+2l +IxW £ K lx&, - x*+1l +Aihf+11+A2+alxt+1l

Z(K+<x)lxl+1 -^+il +(A, +a)lxf+1l+A2

£(K +a)A5lx£l +(tf +a)A6 +(a+A1)lxf+1l+A2. (3.9a)

Since At <, A5and A2£ A^ we have that

lx£+2l £ (K +a)A5U^I +(a+A5) lx£+11 +(K +a+ l)A<s. (3.9b)

Since (3.9b) isof the same form as (3.2c), with A5 replacing Alf and A$ replacing A2, we see that the

conclusions of Lemma 3.1 and Theorem 3.2 (a) remain valid for the Control Algorithm 2.2 using
state estimation formula (3.5).
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(b) Referring to (3.2s) (3.3d), we conclude that part (b) holds withe3 and Bp, defined by

£2. (3.9c)e3£
(p +d+g+p^Xl + tt+IQ

; + 1+JT+P

Bp^ {xeD llxl<p,} , (3.9d)

where e' is defined in (3.2g) and

H*' (l +£i)(A'+(l +a+A')£1) *
D

33. elimination of residual errors by linear feedback.

Because linear quadratic regulators are robust, when the pair (A ,B) is stabilizable and the

modeling errors are sufficiendy small, we can always find a linear stabilizing state feedback control

law u(0 =-Kcxp(t, 0, xg ,u), where Ke is the solution of a linear quadratic regulator problem in

terms of the model (2.2a,b), and aball B^ k [x IIxl <Sp^ }, p^ g (0,P), such that if for
some tk; xl g BiQjt, then the control given by u(r) = -Kex(t ,Q,x0,u)f for t Ztk* does not

violate the bound on the control on the resulting trajectory, i.e, \Kexp(t .0,x0,«)l^cB for all

t > tk>. As we will see, a similar, but somewhat more complicated result also holds when

xp(t, 0 ,xg ,u) is estimated using an asymptotic observer. Hence, in both cases, once the plant

state is sufficiendy near the origin, wecan switch over to the LQR control law and thereby eliminate

the residual errors resulting from the useof Control Algorithm 2.2.

For the case where the state can bemeasured, we propose to incorporate this idea into Control

Algorithm 2.2 bymodifying Step 7, as follows. Let TKt £ Tc issuch that \eTt(A ~BKt)l £ a.

Step J': At t=tk,

(a) measure the state xk = xp(tk).

(b) compute an estimate, 2(f), ofadisturbance d(t) for t g [tk, rt+1], if possible; else, set

2(r) =0.

(c) If x* tBuoji, set the plant input u(t) = u[tkttMp)-ct (t) for / c [tk, tk+l)\ else set

u(t) =-Kcxp(t ,0 ,x§ ,u)-2 (t) for t e [tk ,fc+1), where tk+l =tk +TK, and TKt £Tc
such that le w -BK<W*-\ ^ a.
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(d) compute an estimate xM of the state of the plant xp(tk+l ,tktxk,u+d) according to
the formula (2.6), i.e.,

xk+l =eA«"-'*xk +f*eA«"-»B u[u,4+tl(0dt.

At this point it becomes clear that for best results, the matrix Q, used to define the norm M,

should also define a Lyapunov function (x , Qx) for the system x =(A -BKc)xt so that for some

positive definite matrix M we have

(A - BKcfQ +Q(A - BKe) =-M . (3.10)

Theorem 3.5. Suppose that the matrix Q used to define the norm II satisfies (3.13) for some posi

tive definite matrix M, and that the state of the plant can bemeasured. Let£i g (0, \ i), e2 g (0, z2).

and 8 g (0, ^(g^lAf I), where \x,e2 were defined in (3.2d), (3.2o), respectively, M is as in

(3.10), andlet p, be definedby (3.2r), and p^// by

A (l + a+tf)£2
PmhZ p . (3.11)

in terms of %i,%2 and e' that was defined in (3.2g). Finally, suppose diat Pmh<Vlqjr* with
Pifift>0, as above. If Ax ££lf A2££2, and l(A'-A)-(£'-fl)A:cl£8, then for any xg g BPj,

with BPt defined in (3.2s), the trajectory xp(t ,0,xg ,u), t g [0,«») is bounded and, furthermore,

xp(t ,0,xg,«)-»0asr ->«».

/V00/. Since the conditions imposed in Lemma 3.1 andTheorem 3.2 aresatisfied, it follows that for

any xg g BPj, the trajectory xp(t, 0 ,xg , u), t g [0,00), determined by Algorithm 2.2, using the

original Step 1 (c), is well defined, bounded and lim* -tJxfl £ p^H- Since p^H < Plqr* there exists

a finite £ g K, such that btfl^p^, and hence that the cross over to the linear control law,

specified in Step V (c) will take place. Let V(x) £ (x ,Qx \ Hence, forx*(f) determined by the dif
ferential equation xp(t) = (Ap -BpKc)xp(t)% xp(t ) = xp we obtain that for all r £r ,

V(xp(t)) = <x*(0, Qxp(t))+ {xp(t), Qxp(t))

= {xp(t)T ,[(A -*ffc)TQ +fi(A -Btfc)]x'(0>

+ (x'(0[(A' -A -(£' -B)KC]TQ +Q(Ap -A -(Bp -B)Ke)]xp(t))
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= -{xp(t),Mxp(t))

+ {xp(t),((Ap -A ~(Bp -B)KC?Q +Q(Ap -A -(Bp -B)Ke))xp(t)). (3.12a)

Since \(AP-A)-(BP-B)Kcl £8 it follows that for all / £f ,

V(x'(r))<0, (3.12b)

which implies that (i) xp(t) g Biqr for all t £ t , and tf/J that xp(r)-> 0 as r -• «,, completing our

proof. •

When the state of the plant cannot be measured, we must augment our control system with an

asymptotic state observer that provides the plant state estimate when we switch over to the linear

feedback control law. The asymptotic observer must beinoperation from time t =0. In this case we

get augmented dynamics in the well known observer-controller form

xp(t) =Apxp(t)-BpKcx(t), (3.13a)

x°(t) =K0Cpxp(t) +(A -BKc-K0C)x0{t), (3.13b)

where K0 is the observer gain matrix. Let e(t) Atxp(t)-x°(t) denote the difference between the

state of the plant and that of the model in the observer. Then

e(t) =(Ap -K0Cp)xp(t)-(A -KoC)x0(t)-{BpKc -BKe)x0(t) . (3.13c)

We assume that the system

r|(0 =Ari(0, (3.13d)

whereA Adiag((A -K0C),A),mihA isdefinedby

££
(A -BKe

K0C A-BKC-K0C (3.13e)

corresponding to (3.13a,b,c) when there are no modeling errors, is exponentially stable, and hence

that there exists a symmetric, positive definite matrix Q =diag(Q0, Qe), with Q0 g Rbxb and

Qe g m.2n>2n that defines aLyapunov function, {tj ,Qr\)for the system (3.13d), so that for some
symmetric, positive definite matrix M =diag(tf0 ,MC), with MQ g JRnxn and Me g jr2"*2", we
have
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ATQ+QA=-M (3.13f)

We will now show that the system (3.13d) is robustiy stable.

Lemma 3.6 Suppose that the state (xp(t), x°(t)) is defined by the observer-controller dynamics

described by(3.13a,b), with (x'(0), x°(0)) arbitrary. Let 8g (0,0.5) and AA be defined by

AA §

0 AA -K0AC ABKC

0 AA -ABKe

0 K0AC 0
(3.14)

where AA=A'-A, AB=Bp-Bt and AC=C-C. If \AAQ\< 8X^(^7), then

lim, _ „\xp(t)\ =0 and lim, _,„ lx*(f)l =0.

Proof Let z(t)k(e{t) ,xp(t) tx°{t))T, where (xp(t),x°(t)) is a solution of (3.13a,b) and
e(t)kxp(t)-x°{t). Then, referring to (3.13a,b,c) and (3.14), we see that i(0 » [A +AA ]z(t).
Consider the Lyapunov function V(z), for the nominal system (3.13d), defined byV(r\) A{r\, Qr\\
Then,

V(z(t))={z(t),Qz(t))+{z(t),Qz(t))

= -{z(t),Mz(t))+2{z(t),AAQz(t))

^-^(AfXl -28)lz(OI22. (3.15)

It follows immediately from thecondition on8 that V(z (r)) <0, whenever z(r)* 0, which completes

our proof. •

Lemma 3.7. Suppose that the state (xp(t), x°(r)) is defined by the observer-controller dynamics

(3.13a,b), that lx'(0)l £ e, lx°(0)l £ £, for some £ > 0, and that AA satisfies the condition in Lemma

3.6. Then for all f £0,

le(Ol£ 2Xm»(0>)-
we)2

t&ye. (3.16)

Proof. First, let IxIq, A(x ,Q0x )**. Let the Lyapunov function VQ be defined as in Lemma 3.6.
Then it follows from the definition of V(-) and the fact that by Lemma 3.6, V(z(r))<0, where

z(0^(e(0.^(O.Jco(0).thatle(r)I^^V(z(0)^V(z(0)),foraUr^0. Hence,
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• am2 ^ "vuaSQo), //v.i2 . 2Anua(g ) ,

<2
*»«(&) +W<2)

WG)
(3.17a)

It now follows from (3.17a) that

*min(2) WG)2
(3.17b)

which completes the proof.

To include the use of anobserver, we now propose to modify Step 1 (c) of Control Algorithm

2.2, as follows: Let 8 g (0,0.5), let

Plqr e
0 minfo WMftmax(g)(l-28)PLQ/g

' lP^ ' 2y\miD(Q )<\KeCQ I+8Xmin(Af)) ' (3.18a)

where pijQR wasdefined atthebeginning of this subsection, and let Et, £2 >0 be suchthat

ei<t\, (3.18b)

e^minl^.^i^.)), (3.18c)

where K was defined in (3.1c), and \\ ,e2 were defined in (3.2d), (3.2o), respectively. Finally, let

poc > 0 be defined by

Poc^d-e,) p&*-7^ (3.18d)

Then, it follows from (3.18c) that p^ >(1 - ei) \plgji - P&?/2) >E2. Let TKt g [Tc ,~) be such
that

p£*min(G)e- WA/X1 - 2«)TiA-,(fi )^
2XmaxG2)(p£ +(P&*)2)'

le(A'BKt)Tct^a (31gf)

Fmally, we define the vector valued saturation function SAT(u)A*(sat(u1),...,sat(um)), where
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satiy) =y ify g [-cb ,cj, and sat(y) =cusgn(y) otherwise.

Stepl": Alt =tk,

(a)ttu(t) =-Kex°(t) for r g [r^, tk) and max {IxVi", lx*l} £p^, setxk =x'fo);
else if max {Ix^l, lx*l} ^p^, set xk =xA and reinitialize the observer by setting
x°(tk) =xkt else estimate the state xl=xp(tk) by (3.5) and denote me resulting value by

(b) compute an estimate, 2(f), ofadisturbance d(t) for t g [tk, f4+1], ifpossible; else, set

2(0 =0.

(c) If max {IxVil. kjfcl} >P«*. set the plant input u(t) =u[lkt^x](t)-2(t) for
t e [tk, tk+i); else reset tM to the new value tk+i = tk +TKt, and set

u(t)=-&4r(j:cx0(0 - 2 (0) for r g [r4, r4+1).

(tfj compute an estimate xk+i of the state of the plant xp{tk+\ ,tktxkt u+d) according
(2.6), i.e.,

xk+i =eA^'h)xk+^eA^-^B (n(r)+2(0)A .

Lemmas3.6 and 3.7lead us to a following result

Theorem 3.8. Suppose that (a) AA satisfies the condition inLemma 3.6, (b) \KeACQ I£ hX^M)
A5 £ £lt Ae £ e2, pMH <(Poc - £2)/(l +£i), where p^ was defined in (3.11), and (c) that we use Step
1" in Control Algorithm 2.2. Then for any xgcflp,, defined in (3.9d), the trajectory

xp(t, 0 ,xg , u) is bounded and, furthermore,xp(t, 0 ,xg ,u) -» 0 as t -> «».

/V00/ We will prove that for any trajectory xp(t,0, xg ,m), with xg g Bp,, there must exist ai
such that the control u(t) is defined by the solution of the optimal control problem P(xk ,tk,Q) for

all/G [0,^)andmax{lx^ I.IxJ) £ poc,i.e., that the switch, in Step i" (c), to the linear feed-

back control law u(t) =-^cx°(0 (since 2 (f )s0 by assumption), with (xp(t). x°(t)) the solution of
(3.13a,b), from the initial state (xp(t ) ,x.)) at t =t , will take place. Then wewill show that (a)

x°(r) g B^g* for all t £ rA so that the linear feedback control law does not violate the bound on the

control, and (b) that max {Ix^l, lx*l} £ p^ must hold for all k £ i, so that the linear law isused

for all t £ t^. Itwill then follow from Lemma 3.6 that state ofthe plant will bedriven tothe origin as
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t ->«».

First, it follows from (3.6a,b) that if the control u(t) =u[httk^(t) and the times tk are deter

mined by solving the optimal control problem P(x* , tk , 0) for all k g N, then

i^jk-il ^ ixl-x -xVi« + lx^_! I £ (A3 + DUf.! I+A4 , (3.19a)

lx*l £ Ixf - xkI + Ixfl <; A5lx{U I+Afi + Ixfl. (3.19b)

Next, because A3 £ A5 £ £lf A4 £ Ag £ £2, and pMH <(poe- £2)/(l +£1), since it follows from (3.2i j)

that e"<pMHl we conclude that lim*^ lx£l £ p^. Hence there exists a i g N such that

lx\ I £ poc and lxA I £ p^. Hence a switch to the linear feedback controllaw will take place at the
k-\ k

timer.

Next, we will prove that x°(t) g BmR for all t £ t^, where fA is the time when the switch to
k k

the linearcontrol feedback controllaw takes place. Now, it follows (3.6a)and(3.7d,e,f) that

lxp l<lx/ -x\ l+lx\ iseib/ l+£2 +lx\ I. (319c)
* —1 *-i *-i A-i A-i *-i *p.i*c;

From (3.6b), we obtain that

*/'**/-y+V^L'+^ +V (319d)
It follows from (3.19c) that lxA l£IxA I/(1-e1) +e2/(1 -e^. Hence it follows from (3.18d),

* -1 k -1

(3.19d), andthe fact that IxA I, lx^ I £ p*. that
*-l k

ei
•*/ •^ TTT(e2 +P«?>+ e2 +Poc =P&? • (3.19e)

By Step 1" (a)t wereinitialize the observer by setting x°(t^ ) =xA and hence \x°(t )l£ p^ £ p&yj.

Now suppose that linear feedback control law is used for all f £ r . Then it follows from

(3.19e) and Lemma 3.7 that \e(t)\Zyploji for all / £rA. Next, let the Lyapunov function V() be

defined by V(x°(t)) Alx°(t)l2 A{x°(t), Qx°(t)). Then, making use ofthe matrix Mdefined by
(3.11), we obtain that for all t £ t^, with (xp(t) ,x°(0) a solution of (3.13a,b) with initial states

(xp(tj,xjt
k k
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V(x"(0) £ -KJMyix*(tyi$ + 2iKcACQ Ilx'(f)l|

+[2l£(OI(l^cCQI +W:cACfil)lxo(Ol]/Xnujl02)

£-WMXI - 28)lx<'(r)l2/Xmin02) +2tp&k("*cCG i+8Amin(M))lxtf(r)IAmax02 )(3.19f)

It follows from (3.18a) that if lx*(r)l >Plqr* then V(x°(r)) <0. Since lx°(rA )l£ p^ £ p^, it fol-

lows that x°(t) g fl^ for all t £ fA. Therefore, if the linear feedback control law is used for all

t^t• , then it does not violate the bound on the control.

We will now prove by induction that lx*+1l, lx"Al £ p^, for all k £i, where xk+l is computed

by (2.6) and xk=x°(tk), with (xp(t) tx°(t)) a solution of (3.13a,b) from the initial state

(*p(f« ).*J> For (xp(t), x°(t) ,e(t)) asolution of(3.13a,b,c), let z(t) £ (xp(t), x°(t), e(t)\ and

let Iz (t)\l £ \e (t)\2 +lx'(OI2+lx°(OI2. Recall that Ix, I, lx\ I<S p*., and that x°(t )=x , and
k k-\ k k

that Ixp\<p[qR by (3.19e). Now suppose that for some *££+l, we have that

lx*l, \xk-\\, lx°(tk)\ Zp^, and Ixfl£ p£^ hold, and that u(t) =-Kcx°(t) for f g [tk-i, fc). We

need to prove that Ix^l.lxV.k'ftt+OISpoc and that lxjf+ll£p/fc*. Now, since
u(t) = -Kcx°(t) for te[tk_utk), we set xk=x°(tk) by Step 1" (a). Therefore,

l^*, =^°(^)I^Poc by assumption. Next, we must have that Ix^l^ap*. because
le(a -bk.)Tk.x ^a We wm nQw prove mat me relations b«(rik+1)| ^ Poc and ^+11 ^ p^f bQjij
hold.

Let V (z(r)) = (z(r),Gz(0\ Then,

V(z(0) 2> ^(Q )lx<*)tf* (WQ VWOMOlJ * 0,^02 )Atn»02))lxtf(OI2. (3.19g)

It foUows from (3.15) and the fact that V(z (0)^^02)^^)11 that for/ g [tk,tM\

—V (z(t)) ^-Xmia(Af)(l -28)lz(OI? Z-Q^nWVWfi ))(1 -28)V(z(0). (3.19h)

Qearly, V(z(4))^A^(Q)b(f4)lJi^(j2)lzfe)l2/^Q2). Hence, because (0
le(r*)l2 £lx°(f*)l2 +lx'(f*)l2, (ii) Yx°(fk)\ £p*. and 1x^(^)1 =U^l £pfo? by assumption, and (Hi)
\z (tk)\% £2(\x°(tk)\2 +Ix'to)!2), it foUows from (3.19h) that for aU t g [fA, *4+1),
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5̂ ^e"WM"xl~2SX' "4V1"<C") (f~+<wfc*] • <319i>
Since by the triangle inequality. V(z(f)) £ 2lx°(f)l2 for aU t g fo, rA+1), it foUows from (3.18e) and

(3.19g,i)that

lx°«k +TKt)l2 £ lx°(tk+l)l2 <; pi/2 . (3.19J)

Therefore, lx°(fA+1)l £ p^WI Now, (3.19g) holds when we replace x°(r) by xp(t) because
lz(f)l£>lx'(f)l2. Then, again it foUows from (3.19h,i) that

*xp(tk +TKt)\2 =lx£+1 I2 £ p2. <(p^)2, which completes our proof by induction. It therefore fol

lows that the Control Algorithm 2.2 selects the feedback control law u(t) =-SAr(Arcx°(r)), for the

next interval, t g [tk+x, f*+1 +TKJ, where r*+1 = tk + TKt, and since we have already shown that, in

this case, the control u(t) = -Kcx°(t) does not violate the control constraint, it foUows that

u(0 =-Kcx°(t), for the next interval, t g [tk+\, tk+x +TKJ, and hence, by induction, for all t £ fA.
k

It now foUows from Lemma 3.6 that lx*(f)l -* 0 and lx*(f)l -* 0 as t -» », which completes our

proof. •

4. DISTURBANCE REJECTION.

We wiU consider two distinct situations. The first is where the disturbance d(t) is a continuous

function, such that for some cd <~, J \d(x)\2dx I £crf for aU t £0. The second is where the

disturbance is theoutput of aknowndynamical system driven by stationary, zero mean, whitenoise.

We begin with the first case and assume that the disturbance d(t) cannot be estimated. Hence

Control Algorithm 2.2 sets 2 (/) s 0. Since the more difficult situation occurs when the plant state is
estimated, we wiU assume that this is the case. First, we derive a result similar to Lemma 3.3.

Lemma 4.1. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.2, with state estimation formula (3.5). There exist Af < «>, i = 7,8,9,10, such that if

Control Algorithm 2.2 constructs the sequences {xl)ka0, {x*}^, and {x*}£o is the

corresponding sequenceof the estimatesofxl, defined by (3.5), then for all k g N,
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Ixl - xk\ £ A7lx£I+A8, (4.1a)

!*£+1 - xMl £ Aglxll +A10. (4.1b)

Furthermore, when there are no modeling errors and no disturbances, A,- = 0, i =7,8,9,10.

Proof. Suppose that u(•) is the control generated by Control Algorithm 2.2 for the plant and model

trajectories associated withthe sequences [xl)ka(h {xA}£i,and [xk)kLc.

We begin with(4.1a). For any k g K and any t e [tk, rA+1], yp(t) is given by

yp(t) =CpeA'«~k)xl +CpfteA'«-'*Bp(u(x) +d(x))dx

=CeAit-ft)xl+ {Ce^'^-Ce^^} xl

+c£eA(/-T)B(tt(T)+d(x))dT+£{Cp^(i-t)Bp_CeA(/-t)B) (M(X) +rf(T))dt. (4>2a)
By substituting (4.2a) into (3.5), we obtain

xk =xl+wo$o(tk+l -tk))'1 \C (CeA« "*> f {CpeA'W-CeA(f^} dt xl

+(k (CeA(f ""> f £CeA« -*>Bd(x)dx

+(k\ceA(f"kY{u{CpeA'<t-*Bp-CeA<t-VB )(u(x)+d(x))dxdt i. (4.2b)

It foUows direcdy from (4.2b) that

\xl -xk\ <S A7lxjfl +A8, (4.2c)

where

A74cA max.lC'^'^-Ce^'-^ISof
te [0.W]

A8^CA max _\CpeA'« ~*>BP - CeA{* -*BKcuBqT +cd) + max \CeAt\hQTcd
/elO.SoT] ictO.fcf]
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(4.2d)

(4.2e)

with CA ^max, €^ f]IWtf(80rr1lmax, 6[0 g^jICe^l, which proves (4.1a). Clearly, when there
areno modehng errors and no disturbances, A7= A8= 0.



Next we wiU estabhsh (4.1b). Since xk+\ is calculated using the estimated initial state xk, it

foUows from the Schwartz inequaUty in L2[0 ,f] (i.e.,

\^a(t)b(t)dt<> [jQra(r)2^j [£"&<* J2*] )that
lxl+l -x*+1l =\eA'^-*xl-eA^-*xk

+£lieA'«"-x)Bp -eMk«-x)B )u(x)dx+f* eA'ft«-'>B*<f(T)dTl

^Arix^-x-*l + AIlxjfl+ A2

+{i'ileA'(tk*l-t)Bp -eA(h***Bl\d(t)\dt +f*lleMk«-t)BUd(t)\dt

<K {A7lx£l + A8} +A1lxj?l + A2+
A2
jf= +KlBV& Cd

= (K A7+A!) Ixjfl+*A8 +A2+ W+A'ISlVr
Vf C^lxfl+A10 (4.2f)

where K, Alt and A2 were defined in(3.1a,b,c). Hence (4.1b) holds, and our proof iscomplete. •

Lemma 4.1 leads to the foUowing resultthat alsoholds when the state is measured.

Theorem 42. Consider themoving horizon feedback system resulting from the useof theControl

Algorithm 2.2,with state estimation as in (3.5). Suppose that £j, e2 >0 are suchthat

1-a
A9 £ £j <

1 + a+tf ' (4.3a)

A10< £2<
3+ (2+ *)/£'

(4.3b)

where A9, A10 were denned in (4.2f), and € was defined in (3.2g). Then there exists a pd g (0, £],

such that for aU xg g £p,, the trajectory xp(t, 0 ,xg ,u+d), t g [0, ~), is bounded, and there

exists an £3 >0such that £3 -»0 as £2 -> 0, and lim, _> „lxp(t, 0, xg ,u+d)\ ££3.

Proof. First suppose that the optimal control problem P(x*+1, tM, 0), has a solution for any

xk+i g RB and tM £ 0. Then, given any initial state xg at time r0 =0, the dynamics of the moving

horizon feedback system, using Control Algorithm 2.2, generate the sequence of states {xl} ka0,

while Control Algorithm 2.2 generates the sequence of estimates {x*}£,i, with

Xk+i =x(tk+i,tk,xk,u)t k = 1,2 according to (2.6), and the sequence {x*k}£3, with
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x*k+i =x(tk+2, rt+i, xk+x ,u)tk =1,2,..., generated in the process of solving the optimal control

problem P(x*+1, tk+l , 0), * g N.

Now, for any k g N,

lXj£+2l <J \xl+2 -X*k+2\ +Wk+2\ £ IXjf+2 -X'^l +Olx*+1l

£ tflx£+1 -xA+il+A9Uffll +A10 +(xlxf+, -x*+il +cdxjf+1l

^(A9 +a)lxjf+1l +(^+a)A9lx^l +(l+a+^)A10. (4.4a)

If we let fl! =A9 +a, a2 = (AT +0OA9, and fc =(1 +a+Jf)A10, then, in view of (4.3) we see

that a 1, a2»& ^ 0 and a 1+a2< 1.so that the assumptions of Proposition 8.1 are satisfied. Hence, if

we let y0= Ixgl and y x= Ixf I, then it foUows from (4.4a) that for yk defined by (8.1a), Ixfl £yk,

and hence (c.f. (3.2i)) that

— (l + a+Jr)A10 Alimltfl^ —^Ji^er, (4.4b)
k -k» £ '

and also that for all k g N,

ttflSy* £(* +ct)A9lxgl +Ixf!+£"'. (4.4c)

Since u(t) = 0, for aU re [0,fi),forik =0, (4.1b) reduces to

lxfl^lxf-x1l +lx1I^A9Ugl +A10 +A'lxgl =(A'+A9)lxgl +A1o. (4.4d)

It then foUows from (4.4c,d) that for aU k £ 2,

lx£l <, ((1 +a+K)Ag+K) Ixgl +A10+£"'. (4.4e)

Next, making use of (4.4c), we obtain that for aU k g N,

Ix^l £ lx£+1 -xA+ll+ lxf+11 £ A9lx^l+A10 +lxf+11 <Agyk +A10 +yk+i

£ (1 + Ag)(jK +(1 + a+JOA9) IxgI+ (1 + A9)Al0 +A10

=Y'i^gl+Y'2. (4.4f)

Since by (4.3), (1 -a)(l+ a+AT)< 1,it foUows that 1+A<,< 2, and hence it foUows that

y'2= (1 + A9)A10 +A10 <2A10 + 1+ l'a
1 + a+K

-, A10+ A10
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«S (3 +(2 +A-)/£OA10 £ (3 +(2 +AT)/£0£2 ^Y2<? . (4.4g)

Let BPd A{x g D IIxl £ p4} where, withal as in (3.2q), prf is defined by

P^tf-VzVYi. (4.4h)

Because e2 satisfies (4.3), pd >0. Furthermore, weconclude that for any xg g Bp,, for aU k g N,

lx*+1l <J y'jIxJI +y'2 <i Y 'ip„ +Y '2* P •

x*g D foraU* > 1.

It now foUows from Proposition 8.1 that lim, _»„ lxp(r, 0 ,xg,n)l £ £3, where £3 is defined by

(3.9c) (with £1, £2 as in this theorem). It is again obvious (3.9c) that £3 -> 0 as £2 -» 0, which com

pletes our proof. •

We wiU now show that when the disturbances are of sufficiendy smaU amplitude, we can still

use Control Algorithm 2.2 with Step V (with state measurement) or Step 1" (with state estimation),

to obtainthe benefitof the disturbance suppression properties of LQR systems. These depend on the

largest real part of the eigenvalues Xj(A -BKC) of thematrix A -BKe. Hence a design trade-off is

implied: the smaller the largest real part of the eigenvalues, thebetteris the disturbance suppression.

However, to obtain a very negative largest real part may require large elements in Kc% which limits

the size of the baU about the origin where the control u(t) = -Kcx(t) wiU not violate the control

constraint.

Thus, suppose thatKc is the gain matrix resulting from the solution of an LQR problem forthe

model (2.2a) and that K0 is the gainmatrix for a corresponding asymptotic state estimator for (2.2a).

Assuming that we use the controldetermined by the gainKc andthe asymptotic stateestimatordeter

mined by the gain Ka, we get the foUowing augmented dynamics in die. weU known observer-

controUer form

xp(t) = Apxp(t)-BpKcx(t) + Bpd(t), (4.5a)

x°(t) = K0Cpxp(t) + (A -BKC -K0C)x0(t) . (4.5b)

We wiU assume that there exists a constant c'd <«» such that W(/)l £ c*d for aU t £ 0, andthat

both c'd and the modeling errors are sufficiendy smaU to ensure the existence of a ball

Blqr = {x g R* I Ixl <PuqR ), puQR > 0, such that if for somet , x°(r ) e Buqd, thenthecontrol
k k
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given byu(r) =-Kex°(t) for aU t Z fA, with (xp(t), x°(t))detennined by(4.5a,b), does not violate

the bound on the control.

Let e(t) Atxp(t) -x(r) denote the difference between the state of the plant and that ofthe
model. Then

e(0 = (Ap-KoCpyxp(t)^(A-KoC)xo(t)^(BpKe-BKcyxo(t) +Bpd(t). (4.5c)

We wiU assume from now on that the system

11(0 =An(r), (4Jd)

whereA AdiagQtA -K0C),A),mihA is defined by

(A -BKA
££ K0C A-BKC-K0C (4.5e)

corresponding to (4.5a,b,c) when there are no modeling errors and no disturbances, is exponentiaUy

stable, and hence that there exists a symmetric, positive definite matrix Q =diag(Q0, Qc), with

Q0 g R"*" and Qc g r2"*2" that defines aLyapunov function, {r\, Qi\) for the system (43d), so
that for some symmetric, positive definite matrix M =diag(M0 ,A#C), with M0 g R"*" and
A/cg R2"^, we have

ATQ+QA =-Af . (4.5f)

We wiU now show for the observer-controUer dynamics that when le(0)1 and WL are

sufficiendy smaU, \e (t)\ remains smaU for aU t £ 0.

Lemma 43. Suppose that the state (xp(t), x°(t)) is defined by the observer-controUer dynamics

described by (4.5a,b), with (x'(0),x*(0)) arbitrary and let z(t)As(e(t),xp(t) ,x°(t))T. Let
AA ,AB be definedby

AA £

0 AA -K0AC ABKe

0 AA -ABKe

0 KaAC 0

ABT =[AB7,fAB7,,0],

whereAA = AP-A,AB =Bp -B,andAC =CP-C.
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If there exists a5 g (0,0.5) such that (a) \AAQ\< 8X^(^7), (b)

W| < WM);WAO(l-2S)\lqrKJJQ)
4<^KJ&)Xmtx(Q WCCQI +8Xmin(M))IB rQ I+8Amin(Af)) ' ' }

where BT= [BT ,BT ,0] and Q and Af were defined in(3.11), (c) IAB TC I£ SX^Af), and (d)

. ,^ ^nm(M)(l-28)Pj[^Xmin(j2)V4 A
12(0)1 S2UB)"(ftCBi,»rf»^' (4«

where Iz (t)\ £ le (r )l +lx'(r)l +lx°(r)l and lz(r )l2 &le (r)l2 +lx'(r)l2+lx°(OI2, with
1*1 = (x , Qx>*, then le(r)l, txp(t)\ <Sye foraU t £0.

Proo/ Referring to (4.5a,b,c) and (4.6a,b), we see that z(t) = [A +AA]z(t) + [B +AB]d(t).

Consider the Lyapunov function V(z), for the nominal system (4.5d), defined byV(T|) ^ {x\, Qr\).
Then,

V(z(r)) = {i(t). Qz(t))+ (z(r), Qi(t))

= -{z(t),Mz(t))+2{z(t),AAQz(t))+2{(B +AB)d(t),Qz(t))

Z-Km(M)tz(t)l} +2\AAQ\lz(t)t}+2ld(t)l2(lBTQ

Z(rKJM) +28XTnin(A7))lz(r)l22 +2<n7\dlJ\BTQ I+8Xmin(M ))lz(*)l2

. Xmin(M)(l~28)V(z(0)^lz(OI2 ^Piji ... M .
* jlTcgV* + '+ ^nin(M )),z (0'2 * (4,7a)

The last inequaUty isobtained byIz (f)l2 ^ V(*(0)**/Am«G2 )* Now, it foUows from (4.6c) that

V(z(f))£
-^nin(M)(l-28)V(z(r))V4 t A^flyfl^flf)(1 -28)^X^02)

Wfi ) 2X^(2)V4Xmax02 WeCQ I+8X^00)

We can see from (4.7b) that if V(z(t))^>yeXtain(Q)^/Xm$x(Q)^ then V(z(r))<0. Since

Y2 ^lz(0)l2^V(z (Q))Kin(Q VWQ), Vizit^^J^n^iQ) for aU r^0. Since
V(z(t)) >^(CMO^/WC) £KJQykityPfowMxiQ), we obtain that le(r)l £ye, which estab-
Ushes the first inequaUty. Since lx*(r)l2 £ lz(r)l2 also holds, we see from the above that the second

inequality also holds, which completes our proof. •

It is worth noting that (4.7a) implies that lz(r)l->0 as WI„->0, and hence that

lx°(f)l, lx'(/)!-» 0 as WL -> 0.
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Now, let

pfat =min {y«/4 ,p^/4} , (4<8a)

A„ < e. *- -
•a

*»^Cl< l +a+K

A10£ e2 < min
r *

p pfi^O-Ci)
23 + (2 + AT)/e'

(4.8b)

(4.8c)

where K and e' were defined in(3.1c) and (3.2g), respectively. Then, it foUows from (4.4b) that

— ,^(l+a+^)A10^(l +a+^)£2 A
lim lx*l<; - <s aPaw. (4.8d)

Let

Poc =(1 -ei) (p/fc* -e2/(l -e,) j. (4.8e)
Then, it foUows from (4.8a,c) that

Poc = p£b*0 ~ ei)- 62 >p/fca(l - ei)/2 >e2. (4.8f)

Theorem 4.4. Suppose that (a) 8, AA ,AB, WL satisfy the conditions in Lemma 4.3, fa;

M:cACGI^8Xmin(M), fc; that (4.8b,c) holds, (d) that Pj«/<(pac-e2)/(l+ei), where p^ was

denned in (4.8d), (e) that ye £ pd, where ye and pd were defined in (4.6d) and (4.4h), respectively,

and (f) that we use Step 1" in Control Algorithm 2.2. Then for any xg g £p,, defined in (4.4h)

(using the formulae (3.2q), (4.4g)), the trajectory xp(t, 0, xg , u + d) is bounded and, furthermore,

Um^^'a ,0,xg.K +rf)^0asWloo->0.

Proof. We wiU prove that for any trajectory xp(t, 0,xg ,u), with xg e BPi, there must exist ai
such that for aU t g [0, ^), the control u(r) isdefined bythe solution of the optimal control problem

P(**,tk, 0) and max {l£A I, Ix. I} £ p^, i.e.. that the switch wfll take place in Step V' (c) to the

linear feedback control law u(t) = -Kex°(t), with (xp(t) ,x°(t)) the solution of (45a,b), from the

initial state (xp(t^) ,x°(t )) at t =t . Then we wiU show that if the linear feedback control law

u(t) = -Kex°(t) is used for te^JJ with T^t^ , lx°(f)l:£p™ holds for aU

' € U* »Toe]* so that the linear feedback control law does not violate the bound on the control.
k

Then, we wiU consider two possibilities: (a) only one switchto the Unear feedback control law takes
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place (at t^),, i.e., max {Ix^l, lx4l} £ p^ for aU k £ k so that u(t) = -Kex°(t) for aU t £ r ,

and fa; the condition max {Ix^l, lx4l} £ p^ fads for some k £ t and the Control Algorithm 2.2

switches back to the solution of the optimal control problem P(x*, tk, 0) which impUes that the

linear feedback control law and the solution of the optimal control problem are used alternatively.

First, we wiU show that the switch to the linear feedback control lawwiU take place. It foUows

from (4.1a,b) that if the switch to the linear feedback control law does not take place for any k g N,
then

Ix *_il <\xl-x -xVil +\xl.x I£ (A7 +Dlxf.! I+A8 , (4.9a)

lxk\<lxl-xkl +lxll^A9\xl\ +AXQ +lxl\. (4.9b)

Because A7 £ A,, <, elt Ag £ A10 £ fy and pMH <(p^ - ^/(l +ej), it foUows from (4.8d) that there

exists aJeN such that lx\ I£p*. and lx^ I<p^. Therefore the switch to the Unear feedback
k-l k

control law wiUtake place.

Now, it foUows from (4.1a) that

* -1 k-l k-l k-l k -1 k -1 ^*yW

From (4.1b), we obtain that

U/,S,Y-V +VSeib*V +e2+V- (4.9d)
From (4.9c,d) and (4.8e) we obtain that

eik/,^'^"(e2+P«> +e2+Poc =P&? • (4.9e)

Then, it foUows from x°(t^ )=xA that lx*(^)l £ p^ £ p/^.

Next, suppose that the control u(t)=-Kex°(t) is used for aU t g [^ . r^], where t is the

time when the switch to the linear feedback control law takes place and T^ £ t . Let the Lyapunov
*+i

function VQ be defined by V(x"(0)£lx*(r)l2£ {x°(t),Qx°(t)). Then, making use ofthe matrix
M denned by (3.11) and (4.5b), we obtain that for all e [fA , T^]

k
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V(x°(t)) £-Xmin(Af)lx*(f )l22 +2UrcACG I\x°(t)\$+2le (t)\2(\KcCQ I+ltfcACfi l)b"(f )l2

^nm(M)(l-28)lxg(QI 2k (r)l(IA:eCe I+8Xmin(Af))

WC)* KjQt

It now foUows from (4.9e) that lx°(t^)l, lx/1 £pfa £ y«/4 and that lz(^ )l £ le(^ )l+ lx*(fA )l
* * k k k

+Ix^((^)I^2(Ix°(^)I +Ix/I)^y«. which imphes that for aU t g [t„ .Tsoboc], le(t)l£yg, by
k k k k

Lemma 4.3. Now, it foUows from (4.6d) that if lx'(f )l>pz^, then V(x°(t)) <0 for t g [fA ,7^1.
k

Since l**(fJI£pLfia, we must have that lx*(f)l£Plqr for aU r g [t„ ,r«.] and therefore
k k

u(t) = -Kcx°(t) satisfies the bound on the control.

Now let us consider the case (a). If we set T^ =«», then we conclude from the above that

l*°(OI ^ Plqr for r S rA. Also,by Lemma 4.3, lx'(/)l £ Y« for aU r £ r , which impUes that x'(f)

is bounded. Since by Lemma 4.3, lim, _»Jz(*)l->0 as IdL-tO we must have that

lim, _> „lxp(f)l -> 0 as W l„ -+ 0, which completesthe proofof (a).

Next, let us consider the case fa;. Suppose that there exists a kf >i such that

u(t) = -Kex°(t), for aU r g [t^ ttf]t and max{IxV^I,lx*l} >poe. Since Ix^OlSp^ and

lxp(t)\£ye for aU t g [rA , r*]t and yt £prf, we have that xp(tn) g £p,, which impUes that the

optimal control problem has a solution. Hence, by the first part of our proof, there exists a J? >V

such that the switch to the Unear feedback control law again takes place. We now resort to a con

tinuity argument If d(t) = 0 for aU t g [t , t ], then by Theorem 3.8, we witt have that
*' * '+i

max {lx^ I, lx. I} £ Pocinax {a, lW2}. Hence, by continuity of the solution of (4.5a,b), there
k' *'+!

must exists a c"d>0 such that if \d(t)l£c"d>0 for aU re[r ,r ], men
*' * '+1

max {lx" I, Ix I} < Poc wiU hold, and hence the linear control law wiU be retained for the next

interval, [t^ , rA ], and similarly, for aU the intervals to foUow, since c"d does not depend on tk.
k '+1 * '+2

Hence, if IJI« £c"d, then the linear control law wiU be used for aU t £ f , and therefore, by case

fa;, we conclude that lim, _> ^Ix* (r)l -* 0 and it completes our proof. •

Next we turn to the case where the disturbance is the output of a known dynamical system
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driven by stationary, zero mean, white noise. To obtain bounds on the disturbance effects, we must

assume that there are no modeling errors, i.e., that Ap =A, Bp=B and Cp =C, and that the the

state of the plant can be measured. First we wiU consider the effect of disturbances which are gen

erated by the initial state of anunforced, linear, time invariant system that is describedby

xd(t) = Adxd(t) (4.10a)

d(t) = Cdxd(t), (4.10b)

where Ad g R'wx'u, Cd g Rm50w. Since the input «(•) is bounded, wecan only hope to reduce the

effects of bounded disturbances. Therefore, we assume that there exists a bd < °° such that

te^'l^foraUf £0.

To estimate the state xd(t), we can proceed as foUows. For aU k g N and t g [tk , tk+x], let

e(t)bedtfinedbye(t)Axp(t ,tktxl,u+d)-x(t ,tk,xl,u). Then

e(t)=Ae(t)+Bd(t),

with e (tk) = 0. Combining (4.10a,b,c),we obtain that

d_
dt

xd(t) *d 0 xd(t)
±A

xd(t)
e(t) BCd A e(t) e(t)

f(0= [o/] xd{t)
e(t) ic

Xd(t)
e(t)

(4.10c)

(4.10d)

(4.10e)

Obviously, when (C ,A) is an observable pair, we can use a reduced order estimator to obtain an

asymptoticaUy converging estimate of the disturbance state xd(t). Then, assuming that

lK(0-2(f)loo£cu for aU t g [fc»f*+iL where u(t) is computed by solving the optimal control
problem P(x4_j, tk.x, 0) the use of Control Algorithm 2.2 wiU result in asymptoticaUy perfect distur

bance rejection.

We now give anecessary and sufficientcondition for(C , A) to be observable.

Lemma 4.5. Let A and C be defined as (4.10d,e). Then (C ,A) isan observable pair if and only if
(BCd , Ad) is an observablepair.

Proof =^> We wiU give aproofby contraposition. Suppose that (BCd ,Ad) is notan observable

pair. Then there exists a nonzero vector z g IR* such that
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BCdAdz=0, i =0,1,.... (4.11a)

Nowletz A(zT t0)TG R*+\ Then, because of(4.1 la), we have that

CA^z =2A^-1BC<<A<iz=0,y =l,2 iid +n-1. (4.llb)

Furthermore CF =0. Hence (C ,A) is notan observable pair.

<= Now suppose that (C ,A) is not an observable pair. Then there must exist a nonzero

z =(z ,z')gR~+'1, such that CA'z=0 for y =0,1,..., nd+*-l. Since C =(01/), it is

clear that z' =0 must hold. Hence (4.11b) must hold, and unraveling this expression, we find that

(4.11a) must alsohold, which completesourproof. •

As an alternative to using a reduced order observer, at the expenseof morecomputation, we can

get an exact estimate of2 (t) to be used to obtain perfect disturbance rejection, as foUows. Let

wn(0 0
W2X(t) H>22(0 = exp(AO = exp Ad v " l (4.12a)*}}BCd A

so that wxx(t) =e^ and w22(f) =e*. Hence (4.10e) can be rewritten in the equivalent form

e(t) = wlx(t)xd(tk) +W22(Oe(r4) = w2X(t)xd(tk). (4.12b)

Since the state of the plant is measurable, e(f) can be computed for aU t g [tk, tk+x]. Hence, if

Jfc_5 w21 (x)w 2i(t) dx is always invertible for some 8>0, then we can also compute Xdfo - 8) using

the formula

xd(tk-S)= \j*_s\vlx(x)w2X(x)dx] \l^wlx(x)e(x)dx. (4.13a)

We can then use xd(tk - 8) to compute the disturbance 3 (O. for t e[tk, tk+x], using the formula:

2 (0 =CdeA'(/-ft-5>x^Jk- 8)^0^(0. (413b)

To estabUsh the invertibUity ofthe matrix JT wJifr^ifr)^. for aU f >fft, we need the fol
lowing lemma.

Theorem 4.6. Supposethat w 2X(t) is defined asin (4.12a). If (Cd, Ad) is anobservable pairand B

has maximum column rank, then, f wfi(x)u>2i(x) </x is invertible for aU t >tk.

Proof. To simpUfy notation, let <I>(r ,x)^exp((f -x)A). Since (C ,A) is a observable pair by

Lemma 4.5, the observability grammian for the system (4.10d,e), W(t, tk), defined by
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W(t ,tk)k(wx.tk)TCTC<lXz,tk)dx (4.14a)

is nonsingular for all t > tk. By substituting the expressions for C and <D(f, tk) that are given by

(4.10e) and (4.12a), respectively, we obtain that

W(t,tk) =
[k\vlx(X)w2x(x)dX J^W2"l(X)W22(x)rfX

)twli(x)w2X(x)dx }tkw2\(x)w22(x)dx
Wxx(t,tk)WX2(tttk)
WX2(t.tk) W22(r,r4) (4.14b)

Suppose that for some t > tk, Wxx(t, tk) is a singular matrix. Then there exists a nonzero vector,

z g R~, such that Wxx(t ,tk)z =0,and hence for z^(zT Of g R*""1,

{£ ,W(t , tk)z) ={z ,Wxx(t , tk)z )= 0. (4.14c)

which contradicts to the fact that W(t ,tk) is positive definite matrix for aU t >tk. Therefore,

W n(f t *k) is nonsingular for aU t > tkt which completes our proof. •

Thus, assuming that \u (t)- 2 (t)\» £ cu for aU t g [tk , tM], where u(t) is computed bysolv

ing the optimal control problem P(x*_!, tk.x, 0) the use of Control Algorithm 2.2 wiU result in per

fect disturbance rejection.

In reality, it is not likely that the disturbance d(t)\s the output of a unforced lineartime invari

ant system. It is more realistic to suppose that d{) is the output of a linear time invariant system

driven by stationary zero-mean whitenoise, with an initial state xd(0), described by

xd(t) = Adxd(t)+ Bdw(t) (4.15a)

d(t) = Cdxd(t). (4.15b)

Let dx(t) £Cde^(O) £Cdxdl(t) and let d2(t) 4C^e^ ~x)Bdw(x) dx £Cdxdi(t) be the contri
butionof the white noise term in (4.15a). Let E© denote the expectedvalue of the random variable

5. Then we see that because E(w(t)) =0 for aU t £0, E(xdl(t)) =0 for aU t £0. Hence (c.f.

(4.10d,e) and (4.12a,b)) we obtain that for t g [tk, tk+x), k g N, E(e(t)) = w2X(t)xd(tk). Since

J-.s^i(r)w2i(f )<# is invertible for any 8>0by Theorem 4.6, we can compute the estimate of the
disturbance d(t\ for t g [tk, tk+x), according to

2(0 =CdeA'(/-'^(rik-8), (4.16)

where xd(tk - 8) is defined by (4.12a). Since E(xdi(t)) =0 for att t £ 0,£(2 (O) =£(d(0) for aU
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t £ 0. Therefore, we have perfect estimation ofthe expected value ofthe disturbance, which impUes

that \E(d (•) - 2(•))!« =0. In conjunction with Theorem 4.4, this fact leads to the foUowing result

Theorem 4.7. Suppose that fa; 8, AA ,AB, Ml. satisfy the conditions in Lemma 4.3, fa;

UCeACI £ 8Xmin(Af), (c) that (4.8b) holds, (d) that Pmh<(Pcc-^(l +e0,where p^ was defined
in (4.8d), and (e) that we use Step 1" in Control Algorithm 2.2. Then for any xg e Bp4, defined in
(4.4h) (using the formulae (3.2q), (4.4g)), the expected value of the trajectory xp(t, 0 ,xg ,u) is
bounded and, furthermore, Urn, _ o£(xp(t, 0, xg, u +d)) =0. •

5. TRACKING.

We wiU now examine the reference input tracking properties ofour moving horizon control sys

tem, defined bythe error dynamics (2.4a,b) and Control Algorithm 2.2. At this point wemust assume

that the matrix B in (2.4c) has fuU column rank.

Before weattempt acharacterization ofinputs which can be tracked asymptoticaUy byourmov

ing horizon control system (with bounded controls), we wiU extend a result due to BasUe and Marro

[Bas.l], dealing withasymptotic state tracking of LTI systems without control constraints.

Lemma 5.1. [Bas.l] Consider LTI system (2.2a,b), and let Sx be defined as in (2.3a). Then, Sx is
the largest subspace among subspaces ScIR" suchthat

AS+ScR(B), (5.D

whereAS+5 = {xgR"Ix =x1+x2,foraUx1G AS ,x2g S }. •

Making use of Lemma 5.1, weobtain the foUowing straightforward generaUzation of aresult in
[Bas.l].

Lemma 5.2. Let rcR and consider the error dynamics (2.4c,d), with 2(0*0, and

/(r) =-i(0+Aj(r), where s(t)AtH(CTC)tCTr(t). Then, there exists a continuous control

«r(r),r £0, such that for any initial state x0g R\y(r) =Cx(f ,0,x0,Ur)-^0asr ->°°.

Proof Clearly, if there exists a control ur() such that x(t, 0,x0, ur) ->0 as t ->«>, then, since

y (0 = Cx(t, 0, x0, Mr), the desiredresultmust hold.

We recaU that by definition s(t) g Sx for aU t £0. We wUl now show that we also have that

s(t)e Sx. Let z be anonzero vector in the orthogonal complement of Sx. Then for aU t > 0,
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0= (z ,(s(t)-s(0)))= (z ,£s(f)dt). (5.2)
Since (5.2) holds for all r ^ 0, we must have that {z , s(t))= 0 for aU t. Therefore i(f) g Sx for aU

t >0.

Let ur(0 = -/rx(/) + v(0 where F is any feedback matrix such that o(A -BF)cCl (with

o(A) the set of eigenvalues of A and Ci the open left half plane of the complex plain), andv (0 is

defined by As(r) - s(r) +Bv(t) =0 for aU t £ 0. The latter is possible because s (t), s(t) g Sx and

ASx+5,cif(B). Then, we have that x(t ,0,x0,ur)se^^^o and obviously,

*(*»0, x0, Mr) -» 0 as / -» oot whichcompletes ourproof. D

So far, we have assumed that there are no constraints on the control. We have assumed in

Assumption 2.3 that for aU r g Rv and x g B^, theoptimal control problem P(x ,0, r) has a solu-
p

tion. To show that Control Algorithm 2.2 can beused for input tracking as weU as stabiUzation, we

have to prove that for trajectories emanating from the baU BA, the estimated states xk+x defined by
p

(2.6) are inthe set BA. To estabUsh this fact, wewfll foUow the pattern setupin Section 4. First, we
p

need the foUowing definition.

Definition S3. Let c, g (0, ~). We define R v c Rv by

Rv = [r g Rc/lmax(ljl«,liU£c, } , (5.3)

whereof) =H(CTC)fCTr(t). a

Consider the error dynamics (2.4a,b) and its model (2.4c,d). We assume that the disturbance

d(t) cannot beestimated. Hence Control Algorithm 2.2 sets 2 sO. Since the more difficult situation

occurs whenthe plant state is estimated, we wiU assume that this is the case. First, we derive aresult

similar to Lemma 4.1.

Lemma 5.4. Let r g Rv. Consider the moving horizon feedback system resulting from the use of

the Control Algorithm 2.2, with state estimation formula (3.5). There exist Af<oo,

i =11,12,13 ,14, such that ifControl Algorithm 2.2 constructs the sequences {xl) £<>, {xk} kaXt
and {xk} £a is the corresponding sequence of the estimates of xf, defined by (3.5), then for aU
*gN,

Ixjf -xk\< Axxlxl\ + AX2, (5.4a)
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•tf+i - W * A13lxfl +A14. (5.4b)

Furthermore, when there are nomodeling errors and nodisturbances, A,- =0, i = 11,12,13,14.

Proof. Suppose that u(•) is the control generated byControl Algorithm 2.2 for the plant and model

trajectories associated with the sequences {xl}£<>, {xk)k%$ and {x*}£o. For us to have a

similarity with Lemma4.1,let us modify theerror dynamics (2.4a,c) as foUows.

Foragivenr g RUtlets(t) = H(CTC)tCTr(t). Let

u(.0 = ux(t) + u2(t), (5.5a)

where

u2(t) =(BTBTlBT(As(t)-s(t)) . (5.5b)

Then, since /'(*) = -i(r) + Aps(t) and/(0 = -i(r)+As(t)f (2.4a,c) becomes

xp(t)=Apxp(t)+Bp(ux(t) + d(t)) + (Bp-B)ux(t) + (Ap-A)s(t)

±Apxp(t)+Bp(ux(t) +d(t)) +dx(t), (5.5c)

x(r)=Ax(0+B(Mi(0 +2(r)). (5.5d)

Since max {Is!«, is!«,} £ cs, it is clearthat \u 2I„ is bounded. Then,

lu iU£ Ik U+\u2\„ 4 cr . (5.5e)

Next it foUows from (5.5c) that

Mil^CIB'-BI +U'-ADCrdA*. (5.5f)

We begin with (5.4a). For any k g N and any t g [tk, tk+x], yp(t) is given by

yp(t) =CpeA'{t^hl +Cp(eA'lt-*Bp(ux(x) +d(x))dx +Cpi

+£{C'eA'<'-xte'-CeA('-t>£ }(ux(x) +d(x))dx

+C^^(/-t^1(T)dT+£{C'?cA''(r-t>-CeA<'-t>}Ji(t)rfT. (5.5g)
By substituting (5.5g) into (3.5), we obtain
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fk(CeA«-k))T {CpeA'^^CeA(f-^) dtxlxk=xt+w0it&M-tk)rl<

+C{CeAit ~U))T i^A(f~x\Bd(x) +dx(x))dx

+£l(CeA(f-ky (k{CpeA'«-x)Bp-CeA«-*>B )(ux(x)+d(x))dxdt

+£(CeM* '"V IC CPeA'U~x)-CeA(' -x)) dx(x)dx \.
It foUows directiy from (5.5h) that

ixf-iJSAubfl 4*12.

where An = A7,which was defined in (4.2d) and

A12^A'8 +CA { max_IC^A'</-t>-Cei4(r-t)l+ max ICe*l}8oTA,,

(5.5h)

(5.5i)

(5.5j)

with CA kmax, €^ fjIH^ffofr!lmax, €[0 g^jIC '̂l and with A'8 replacing cu of A8 defined in
(4.2e) with cr in (5.5e), which proves (5.4a). Clearly, when there are no modeling errors and no dis
turbances, An = A12 = 0.

Next we wiU estabUsh (5.4b). Since xk+x is calculated using the estimated initial state xk, it

foUows from the Schwartz inequaUty in L2[0,f] (i.e.,

£a(t)b(t)dt< (j^flCrftfr)*4 (j^M02*]*)that
l^jf+l -JC*+ll =l^^^-^^-^^-^JC^+^C^^-'^^T)^

+C\eA'«M-<>B'-eA«>«-x)B )ux(x)dx+̂ eA'^'^Bpd(x)dxl
£Klxl-xkl+Axlxll + A'2

+£lleA'<.U«-*)_eA(4-r*), ld i(r)| ^+£+,|cM<4-,-0|W i(/)|^

+̂| '̂̂ )Bp.eAM)fl|W(fM +£*V<^fc| \d(t)\dt
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ZK {Anlxjfl+Au} +A1lxjfl +A'2 +

+[k+ max l^'-^llVrArf,
<> re[0,f] J !

A'a= +*i5iVr
;rVF «*

£ (tfAu +At) 1x0 +ATA12+A/2 +
A',

.crVfb+tfi* iVF Crf+Arfl

AAi3bjn+A14. (5.5k)

where #, A! were defined in (3.1a,b) and A'2 was obtained by replacing cu of A2 in (3.1c) with cr in

(5.5e). Hence (5.4b) holds, andour proofis complete. D

In Section 4, Theorem 4.2 was proved by making use of the results in Lemma 4.1 and Proposi

tion 8.1. In thecase of tracking, it is clear that if wereplace A9 withAl3 and A10 withA14 in the proof

of Theorem 4.2 and use Lemma 5.4 instead of Lemma 4.1, stiU using Proposition 8.1, thenthe con

clusions ofTheorem 4.2 assumethe foUowing form.

Theorem 5.5. Let r g Rj/. Consider the movinghorizon feedback system resulting from the use

of the Control Algorithm 2.2,with state estimation asin (3.5). Suppose thatA13, A14 satisfy the ine

qualities

1-a
An<ex<

AM£e2<

l + a+K '

A
3 + (2 + tf)/e' '

where A13, A14 weredefined in (5.5k), and e' wasdefined in (3.2g). Let pd be asin (4.4h). Then, for

aU xg g BPi% the trajectory xp(t, 0, x% ,u+d), t g [0, ~), is bounded, and there exists an e3 >0

suchthate3^0ase2-»0,andiiml_>oolx''(f ,0,xfj .u+dyZfy. D

Since the constants A13, A14 depend on cs and the bounds on the modeling errors, we see that

there is a trade off involved in chosinga value forc,, namely, the larger cs the smaUer are the model

ingerrors underwhich (5.6a,b) wiU be satisfied, whilethe set of admissible inputsR# grows with cs.

In a similar way, the results of Theorem 4.4 can also be extended to the reference foUowing

case.
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6. NUMERICAL RESULTS.

We wiU now present three examples that illustrate the performance of the moving horizon con

trol system based on Control Algorithm 2.2, for a plant modeled by the state equations

i(0 =
x\t) o r o"

x\t) —

0 0 *(0 + 1 u(f). (6.1a)

where u e U£ {u e LM[0,») IlulM£ 1}. Control Algorithm 2.2 used the foUowing optimal
control problem:

Pfck .*k .0): min Vi£ ({x(t ,tk,xk, u),Rx(t ,tk,xk, u))+ {u(t) ,Su(t))) dt (6.ib)

subject to

lx(x, tk ,xk ,u)\2-0.0Uxk\2£0,

lx(t ,tk,xk.u)\2-l0Olxk\2Z0, vr g [tk.x],

wheretG [tk+Tc.tk+f]tTc =5,f =40,

R =
10 0

0 1

(6.1c)

(6.1d)

(6.1e)

and S = 2000.

AU the computations were performed in double precision on a Sun 3/140 Workstation with a

floating point accelerator. For comparison, we used the example given in [Gutl], which has only a

control constraint Since the initial state was known, we solved the optimal control problem

P(*o»0. r) off-Une to obtain theinitial control u(r), t g [0,tx].

Example 6.1. In this example we have assumedthat the statecan be measured and that there areno

modeling errors. Also, we assumed that r(t) s 0 and d(t) b 0. This is the case presented in [Gutll,

wherea piecewise linear control law wasused, defined by

u(O =sat [(L -k[0 l]P)x(f)], (6.2)

where L =-0.78 x 10"3 x [4.47 94.61], k =0.5 x 1(T5,

P =
171 1433

1433 19435

and sat() is the standard saturation function. The matrix L was obtained by solving a Linear
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Quadratic Regulator problem and P is acorrection matrix. Figure 1shows the resulting trajectories,
using both our strategy and the one in[Gutl] for / e [0,60) and x0=[10 10].

As we can see from the Figure 1, the trajectory generated by Control Algorithm 2.2 converges
to the origin faster than the trajectory given by [Gutl]. The controls for both cases are shown in Fig
ure 2.

Example 62. Next, we have again assumed that the state can be measured, that r(r)aO and

d(t) s 0, but that there are modeling errors, viz. we assumed that the actual plant dynamics were

xp(t) =
0.01 1

0 0.01
x(t) +

0.01

0.99
u(t), (6.3)

while the model was as in(6.1a). For the initial state given inExample 6.1, inFigure 3, we compare

the trajectory, xp(t, 0, xg ,k), obtained byapplying the control given in [Gutl] with the trajectory

generated by Control Algorithm 2.2. Again, the trajeaory generated by Control Algorithm 2.2 con

verges to theorigin faster. The controls for both cases are shown in Figure 4.

Example 63. In this example, weconsider the case where there are modeling errors and the state

has tobeestimated. Thus, weassumed that the plant was described by

xp(t) =
0.002 1

0 0.003
x(t) +

0.002

0.99
u(t),

yp(t) = [0.99 0.005]x(r),

withxg = [5 5]. The plant was modeled by the equations

i(0 =
';*(o • o r "o"

x\t) —

0 0
x(t) +

1 «(0.

y(0 = [l 0]x(f),

withx0= [2 2].

We appUed Control Algorithm 2.2 and the resulting control u(t) and trajectory,

xp(t, 0, xg , u), t g [0,100], are shown in Figures 6 and 5,respective.

7. CONCLUSION.
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Moving horizon control is a promising new idea for the control of nonlinear systems. In this

paper we have explored the properties of a moving horizon feedback system, based on constrained

optimal control algorithms, with the simplest possible nonlinearity, namely, input saturation. We

have shown that moving horizon control results in a robustly stable system, capable of foUowing a

class of reference inputs andsuppressing a class of disturbances. Ourexperimental results show that

the behavior of the moving horizon control system is superior to that resulting from alternative con

trol laws. The main remaining issue in the use of moving horizon control based on the solution of

constrained optimal control problems, is the timeneeded to solve the optimal control problems. This

should cause no difficulties in controUing slow moving plants, as in process control. For faster

plants, it wiU be necessary to implement the optimal control algorithms in some form of dedicated

architecture, so asto reduce to the solution time to acceptable levels.

8. APPENDIX I.

We wiU now estabUsh two inequalities that form the basis of several ofour proofs.

Proposition8.1 Consider the second order scalar difference equation

yk+2 = <t]yk+i+a2yk+b > *gn. (8.ia)

Uax,a2>0,bZ0mdax + a2<l, then for all k > 1,

yk<a2y0+yx + bKl-ax +0^, (8.1b)

and

\\mk^„yk<ibl(\-ax +0^. (8.1c)

Proof. We begin by rewriting (8.1a) in first order vector form, as foUows. For k g N, let

2k =(y* . v*+i)r. Then z0=(y0, y i)T, and

*k+i =
0 1

a2 ax *k + = Fzk+g, (8.2a)

yk = [\0]zk^Hzk. (8.2b)

The matrix F has two eigenvalues, A*,X. =lA(ax ±Va?"+4ai), with corresponding eigen
vectors, e+ =(l,Xy and ex =(l,X.f. We wiU now show that -1<A_£0£X+ < 1, i.e., that
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(8.2a) is an asymptoticaUy stable system. By assumption

0£a2<l-ax. (8.2c)

If wemultiply both sides Of (8.2c) by4, and add a f to the both sides, weget that

ax2+4a2<(2-ax)2, (8.2d)

which implies that X^s^!-^? +4a2)>-lsndX¥ = l/i(ax +^ax2+4a2)<l. Thus, we have
that-l-cA^SA^l.

We canproceed to estabUsh (8.1b,c). By the Jordan decomposition, we havethat

F =E~lAE , (8.2e)

where A =diag(X+, X.), and E =(e+, e_) is a matrix whose columns are the eigenvectors of F.
Hence for all * £ 2,

yk=HE-lAkEz0

=̂ ^l^<ti-l-X!-i)yo+<tt-Xbyx) +_4—^ft^1"1-^1-1). (8.20
Since 0<X+ < 1and -1 <X- <0, it is clear that (a) the first term in (8.2f) goes to zero as k -> «> and

(b) the last term in (8.2Q satisfies the inequaUty

Vzc^-^stVItVtVI-t-^—••~Af i=0 A^-A+ l^l-A^. l-A+J l-ax +a2 (8.2g)

because (1 - A+Xl - A4 = 1- a j+a2. which proves (8.1c).

Next, for aU *£1, X£zK and -A*£(-JL)* *-A~ Hence

{A(fX.(Xf-1-Ai-1)/(A.-A^)^-A+A_ =a2. Also(Ai-A^)/(A^-A^)^1,hence(8.1b)hold. D

9. APPENDIX H.

The free-time optimal control problem (2.5a-e) has to be solved at every iteration of Control

Algorithm 2.2. The majordifficulty in solvingthis problem stems from the fact that functions suchas

lx(t ,0,xq,u)\2 that are convex in u, are not convex in t and hence optimal control algorithms,
such as the phase I - phase n algorithms described in [Polak-Mayne, Pol.3], can onlybecounted onto

find local minima for this problem. This difficulty can be eliminated by solving a sequence of
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convex, fixed time optimal control problems, constructed using an interval bisection technique,

whose solutions converge to the desired optimal solution of (2.5a-e), as foUows. An important aspect

of phase I - phase n algorithms, such as those in [Polak-Mayne, Pol.3], is that when a fixed-time

optimal control problem hasno solution, then they produce a control which rninimizes the maximum

constraint violation.

Algorithm 9.1.

Data: xk g B^,tk andf such that f -tk >TC andSc (0,f-Tc-tk).
p

StepO: Set/ =0, To = f, T^ =tk +Tc, and T^ =f.

Step 1: Solve the problem (2.5a-e) withx fixed atthevalue x = x,-.

Step 2: If thecomputed control, «,•(•), does notsatisfy aU the constraints in (2.5a-e),

fmin =Xi, ^max =2xf,and xl+1 =Tmax, if x,- =rmix
set ^

Kmin = x,- and xl+, = (X; + Tnux)/2, otherwise.

Else, set Tmax = xf and xl+1 =(r^ + x,)/2.

Step 3: If (r^-r^^a, set fc+1=xl+1-r,, setul4i^lJ(r) =ttl(0 for t g [f*,fA+1], and
stop.

Else, set i = i +1 and go to Step 1. •

Since by definition of p, theoriginal free-time optimal control problem has a solution, it is clear

that Algorithm 9.1 terminates after a finite number of iterations.
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Figure 6. Control vs Time with State Estimation


