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ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo-
rithms, for linear plants with input saturation. The system is a nonconventional sampled-data system:
its sampling periods vary from sampling instant to sampling instant, and the control during the sam-
pling time is not constant, but determined by the solution of an open loop optimal control problem.
We show that the proposed moving horizon control system is robustly stable, and that it is capable of
following a class of reference inputs and suppressing a class of disturbances. Experimental results
show that the behavior of the moving horizon control system is superior to that resulting from alterna-
tive control laws.
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L. INTRODUCTION

There is a startling contrast between the considerable difficulty of constructing robust, stabiliz-
ing feedback control laws for nonlinear or time varying systems by conventional methods, and the
ease with which complex, open loop optimal control problems can be solved (see, e.g. [Kwa2,
May.2, May.3]). This observation has led to the suggestion that it might be feasible to determine
feedback laws for nonlinear or time varying systems by repeatedly solving open loop, finite horizon
optimal control problems. Such feedback laws are known as receding horizon control laws.

Although the concept of receding horizon control is not new and has been proposed in conjunc-
tion with various applications, process control being one of them, it has not always been realized that
a naive application of the strategy, in adaptive control for example, can lead to instability. The litera-
ture that provides an analysis of the stabilizing properties of moving horizon control laws deals with
schemes based on open loop optimal control laws for finite horizon optimal control problems with
quadratic criteria and no control constraints. Thus Kwon and Pearson [Kwo.2), and Kwon, Bruck-
stein and Kailath [Kwo.2] deal with linear time-varying systems, Keerthi and Gilbert [Kee.1] deal
with nonlinear discrete-time systems, and, more recently, Mayne and Michalska have establishe& the
stability properties of nonlinear, continuous-time systems with moving horizon control
(May.2,May.3]; see also Chen and Shaw [Che.1]). None of this work addresses the questions of
robustness (i.e., model errors), input following and disturbance rejection, nor does it take into account

the nontrivial computing time associated with the computation of the open loop controls.

Now consider a dynamical system modeled by the finite dimensional ODE:
x(t)=h(x(@),u@®) , (1.1

where h :R" xIR™ - R" satisfies the usual assumptions for optimal control (see, e.g.,
{Pol.1,Pol.6]), and k(0 , 0) = 0. We assume that the state of the system can be measured exactly, that
the control u (¢) is bounded, with 4 (t) e U, a compact, convex set, and that design requirements may
involve some state space constraints on the trajectories of the system. Clearly, if there were no
modeling errors, no disturbances and no inputs, there would be no need for feedback laws to drive the
system from arbitrary states to the origin. Thus, assuming that the time needed to solve a minimum
time optimal control problem is less than T¢ seconds, that the state x (0) O at time ¢ = O is known,
and that one only wishes to take the system to the the zero state as quickly as possible, one could (i)
use (1.1) to project the state at time T with the control u(¢) =0 for ¢t € [0, T¢), (ii) solve a con-
strained minimum time, or free-time quadratic integral cost optimal control problem to compute a
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control @ () that can steer the state from x(T¢) to the origin in the time £, and then (iii) apply the

control & (¢) over the interval [T¢ , Tc + ' . Atthe end of this interval the system would be retumed
to the zero state. To establish a need for supplementing open loop optimal control with a feedback
strategy, suppose that the model (1.1) is somewhat in error either in modeling the actual dynamics or
in failing to include disturbance effects, or both. Then at time T, the actual system state

xP(Tc + 1) will differ from the projected state x(T¢ + £) and hence at time T¢ + £, the system
state will not be the zero state. Thus, in the presence of modeling errors or disturbances, some form
of closed loop strategy must be used.

In this paper we propose a feedback strategy for the simplest case of a linear plant, modeled
with errors, subject to inputs and disturbances, as well as control constraints. This feedback strategy
results in a nonconventional sampled-data system: its sampling periods vary from sampling instant to
sampling instant, and the control during the sampling time is not constant, but determined by the
solution of an open loop optimal control problem. We will see that taking into account the time
needed to solve the open loop optimal control problem and modeling errors, complicates matters con-
siderably, because the computed optimal control is based on an estimated initial state and corresponds
to a model that is not an exact representation of the plant. In Section 2 we introduce our proposed
moving horizon feedback control law, based on Control Algorithm 2.2. In Section 3 we show that the
proposed moving horizon feedback system is robustly stable. In Section 4 we study the effect of dis-
turbances, while in Section 5, we establish a class of reference inputs that can be tracked asymptoti-

cally by our system. Finally, in Section 6, we test illustrate the behavior of our moving horizon con-
trol law by means of a few simple examples.

2. STRUCTURE OF THE MOVING HORIZON CONTROL LAW.

We assume that the plant is a linear-time-invariant (LTT) system, with bounded inputs and an
input disturbance, described by the differential equation

EP(1) = APEP(t) + BP(u(t) +d(r)), @.12)

nP(t) = CPEP(2), 2.1b)

where the state £7(¢) e R", the control u € U, with



UB{uel0,=) Ikl <S¢}, Q.10

¢ € (0, <), and the disturbance d € L3'[0, «). Consequently, A? € R**” and B? € R" *™. We
will denote the solution of (2.1a) at time ¢, corresponding to the initial state £§ at time to, and the
combined input u +d, by &P(¢ ,tq,E8,u +d).

The function of the moving horizon control law is to ensure robust stability and "reasonable”
reference input r(¢) tracking, suppress disturbances d(t), while taking into account the fact that the
plant inputs are bounded, as in (2.1c), as well as various amplitude constraints on transients.

We assume that the disturbance d(z) cannot be measured and that the matrices A?, B? and C?
are known only to some tolerance. Hence the moving horizon control law must be developed using a
plant model, of the same dimension as (2.1a),

Et)=AE@)+Bu()+d (1)), (2.2a)

ne) =CE®), (2.2b)

where A € R***, B € IR *™, and C € R™ *" are approximations to A?, B” and C?, and @ (¢) is
an estimate of d(¢). When d(¢) can not be estimated, we set @ (t) = 0. We will denote the solution
of (2.2a) at time ¢, corresponding to the initial state x at time t¢, and the combined input u + a, by
x(t ,tg,Xg, u +3).
Assumption 2.1. We will assume that (A , B) is a controllable pair, and that (C , A) is an observ-
able pair. (m]
Let the subspace S, € IR" be defined by
S:={(xeR'lxeRB),Axe€ R(B)}, (2.32)

where R (X') denotes the range space of the matrix X. Let H be a matrix whose columns are a basis
for S;. We will show in Section § that, when there are no constraints on the control u ("), given any
continuously differentiable function s(t), with values in S,, there exists an input ug(t) such that for
any initial state &g, 1E(¢ ,0,&5,us)—s(t)l — 0 as t = o, Let S denote the set of continuously dif-
ferentiable functions s : IR — S;. Hence, the reference inputs which can be tracked asymptotically,
under the best of conditions are those in the set R4 C'S. We will therefore assume that the reference
inputs to be tracked are in R. We will use the following characterization of elements 7 € R, because
it may help to alleviate the effects of the control constraint. Let C A4CH and let G be a matrix
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whose columns area a basis for the null space of C. Then any reference input r € R can be

expressed as follows:
ri¢)=Cs@), (2.3b)

where s(¢1)2 H(CTC)'CTr(t) (+ denotes the Penrose pseudo inverse) is continuously different-
able.

We can now define the error dynamics that will be used in defining and analyzing our control
law. Suppose that a reference input r € R is given. Let xP(t)2EP(r)—s(z), and let
x(t) 2E(r) - s(¢). Then the plant error dynamics are given by

xP(t)=APxP(t)+BP(u(@)+d@)+fP(t), (2.4a)

yP(t) = CPxP(t), (2.4b)

where £P(1) 2 —5(t) +APs(2). Similarly, the model error dynamics become
() =Ax()+Bu@)+d @) +£(t), (2.4¢c)

y@)=Cx(), (2.4d)
where f (£) 8 -5(t) + As (¢).

We will denote the solution of system (2.4b) by x(t , 2o, %0, 4 +d ). Given any time ¢, we

will let x, 8 x (1 , 29, %0, u +3). Assuming that the control law computation takes at most Tc time
units, we can now propose a simple, aperiodic sampled-data feedback law, in the form of an algo-
rithm which, during each sampling period, solves an optimal control problem P(x;, 1, ,r) of the
form

Pxp,t,,7): (mirtl){go(u,‘t)lg"(u,t)so,i=1,2,....11,
u,

. ? 14 '= LRI ? 14 14 +- 14
'gﬁﬂy(u 1)s0, j=1 l2,uelU,ten+Tc.u6+T]} (250

where 0< T < T < o0, and the constraint functions are defined by

g . V8K @, b, x,u), i=0,1,...,0;-1, (2.5b)

gl , =k, 1, x , u)P = 0PIy, 12, (2.5¢c)



Y, )=hix@, 5,5 ,u),0), j=1,...,1,-1, 259)

0" 1) = lx(r , 1, xp , )2 — BRx, P, (2.5¢)

where the constraint functions (2.5¢.¢) with e (0, 1), B € [1, o), are used to ensure robust stability
and input tracking, while the other functions, °, h/ : R — R are convex, locally Lipschitz con-
tinuously differentiable functions that can be used to ensure other performance requirements.

We are now ready to state our control algorithm that defines the moving horizon feedback con-

trol system.

Control Algorithm 2.2,

Data:  to=0,ty1=Tc,up,,,(t)=0,x0€ B,p_. Tc and T such that0<T <T¢ < T < oo,

Step0: Setk =0.

Step1: Attt =g,
(a) Obtain a measurement or estimate of the state xf = xP(f;) and denote the resulting
value by x;.
(b) Compute an estimate, @ (¢), of the disturbance d(t) for ¢ € [t , #441], if possible; else,
set d @t)=0.
(c) Set the plant error dynamics input u(t) = uy, , 4. ) - d)fort e [t » tes1)-
(d) Compute an estimate x,.; of the state of the plant error dynamics xP (#y.,1, # , X1 , &)
according to the formula

Y = A g, 4 [ A DB LA (O1dr 4 [ ACT  (ar . @26)

(e) Solve the open loop optimal control problem P(x; 41 , %41, 7) to compute the next sam-
pling time fi€ (e +Tc,tkn + T), and the optimal control (., 4. ¢) € U,
t € [te41) fa2s

Step 2: Replace k by k + 1 and go to Step 1. a

Let Q be a symmetric, positive definite n X » matrix such that {x , Ox }is a Lyapunov function

for the linear closed loop system obtained applying state feedback to (2.1a). The reason for this
selection will become clear in Section 3.3. We use this matrix to define the norm Ix12 {x , Ox .



Clearly, the fact that the plant inputs are bounded, limits the region of effectiveness of any con-
trol law and the class of reference inputs that can be tracked. Hence we must assume that the initial
states are confined to a Q-ball B, € R” and that the reference inputs belong to the set Ry, both

p

defined, as follows.

Assumption 2.3. We assume that there exists a nonempty set r < (0, =) and Ry R such that
Oe Ry and that for all p € r.xeBpé {xe R*I IxI<p] and for all » € Ry, the optimal con-

trol problem P(x ,0,r) has a solution. Let § be a relatively large value in r. We define

B A R* I xI<H ).
;S (xe P} o

The following theorem, which generalizes a result given in [Pol.1].
Theorem 2.4. Let BB C R" and r € Ry, be defined as in Assumption 2.3. Suppose that (a) the

systems (2.1a) and (2.2a) are identical, (b) d(t) =0, and (c) the Control Algorithm 2.2 is used to
define the input u () for (2.1a). Then the resulting feedback system is asymptotically stable in the

sense of Lyapunov on the set BB .

Proof. We begin by showing that for any r € Ry and for any xge B$ , the trajectory
x(t%,0,x9,u)=x;, k € N resulting from the use of the Control Algorithm 2.2 is contained inBa.
In tumn, this shows that such a trajectory is well defined and that it is bounded.

Suppose that xg e 86 is an arbitrary initial state at ¢ = 0. It follows from the form of (2.5¢),
that forall k € N,

Doparl = X (tay 1 Xp By, o DV S Ol S @ lix gl (2.7a)
Since a € (0, 1), it follows that x; € Bﬁ for all ¥ € N and hence that the trajectory x(¢ ,0,x¢, u)
is well defined.

Next, from the form of (2.5¢), we see that forall k € Nand forany ¢ e [z, , tev1ds

L@, te, 2k, up,, 0. D1 S Blxed < Botixgl < Blxgl (2.7b)

which proves that since xg € Ba , this trajectory is bounded.

Finally, because Bt — 0 as k — o, it follows that x(¢ , 0, xo, %) —> 0 as ¢ — =, and hence

that the feedback system defined by the Control Algorithm 2.2 is asymptotically stable in the sense of
Lyapunov on the set B

A
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We note that Theorem 2.4 did not depend on the form of the cost function g% , ) nor on the
form of the constraints defined by (2.5b) and (2.5d). These constraints can be used to shape the tran-

sient responses of the closed loop system. We will describe later a procedure for solving problems of
the form (2.5a-¢).

As stated, Control Algorithm 2.2 only defines a local control law. When the plant is unstable, it
is not clear that there is much that one can do about it. However, in the case of stable plants (and
models), it is possible to globalize Control Algorithm 2.2 making use of the following observation.
First, it should be clear that, in the absence of modeling errors and disturbances, for any r € R such
that for all 720, min,eylBu+f(t) =0, there exists an admissible control,
u°(t) e argmin, ¢ y 1Bu + f (¢)1 that results in the error satisfying the equation

x(t) = Ax(t), (2.8)
and hence, if A is a stable matrix, the error goes to zero exponentially, so that x(¢) e BB will occur
in finite time. Clearly, in this case, there may be room for a more effective control law, as we will
now show. Let M’ and Q' be symmetric, positive definite matrices, such that ATQ’ + QA =-M’,
then V(x(¢)) 8(x (¢), Q’x(t)) is a Lyapunov function for (2.8). Let T, € (T¢, T ] and suppose that
x, éB 5 Then, if we set #;4) = 7, + T, and we apply the control u,(z), to (2.4¢c), for ¢ € (e, tes1ds

then we must have that V (x(tgyq, 4, X, 4°)) S e'W)T‘V(x,‘). Hence it makes sense to use
instead the control defined as the solution of the simple optimal control problem

:réixb (Vs te . xe,u))}) , (2.9)

where x (841, & , X¢ , u) is determined as the solution of (2.4c).

Hence, for stable plants, we propose to modify Control Algorithm 2.2, as follows:
Control Algorithm 2.5.
Data:  tg=0,t1,8y,,,)(t) %0, T, Tc and T suchthat 0< T < T, S T < oo,
Step0: Setk =0.
Step1: Attt =y,

(a) Obtain a measurement or estimate of the state xf = x” () and denote the resulting
value by x ;.



(b) Compute an estimate, d (¢), of the disturbance d(¢) for ¢ € [, , £,41], if possible; else,
setd (£) = 0.

(c) Set the plant error dynamics input u(¢) = u, ,,.,)(¢) - d @) fort € [t , tysr)-

(d) Compute an estimate x;, of the state of the plant error dynamics xP(ty,1, 8 , Xz, 4)
according to the formula (2.6)

Xpyy = eAGIW £, 4 K " eAGa=OB e} 3 (1)) dt + j: " eAGa=DF (1) gy |

(e) If x4 € B, , solve the open loop optimal control problem P(x ., £, , 7) to compute
P

the next sampling time &€ (tgq+Tc,t+T], and the optimal control
u[lm,luz](t) € U,t € [trn, 442

Else set 2 =ty + T and uy,,,, o 3(t) = u°@), forall t € [tp,;, tis2).
Step 2: Replace k by k + 1 and goto Step 1. a

We will not present a complete analysis of the operation of the closed loop system under Con-
trol Algorithm 2.5.

3. ROBUST STABILITY.

In this section, we will analyze the behavior of the closed loop system resulting from the use of
Control Algorithm 2.2 under the assumption that there is a difference between the actual plant equa-
tions (2.4a) and the model equations (2.4b), and that d(¢) =0 and r(¢) =0. We recall that when

r(¢)=0, we have that s(¢) =0, fP(¢) =0, and f (t) =0 in (2.4a,b). Hence we will set 4 (t)=0. We
will consider two distinct situations: the first is where we can measure the state, while the second one
is where the state has to be estimated. Finally, we will show how a cross over rule to a linear state
feedback law near the origin can be used to eliminate residual errors in both cases.

3.1. moving horizon control with state measurement.
We begin by defining the error quantities

A8 max, . o ;€A™ — e, (3.12)



A 8¢, T max, o 7l eA"BP —e4BI, (3.1b)

K 8max, . o 7 lel. G3.1c)

When either A, or A, is not zero, even if £, € D, where D was defined in Assumption 2.2, the
estimated state, x,,; (defined by (2.6)), may not be in D and hence there may not exist a solution to
the optimal control problem P(x;.;, f141,0). Therefore, we have to specify a set By, € D, such
that for any x§ € B,,, Control Algorithm 2.2 is well defined on the emanating trajectory
x(t,0,x8,u). We will obtain a formula for such a set in the process of proving the following
result.

Lemma 3.1.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with plant state measurement. There exist ¢, € >0 such that if A; <€ and A; <&,
then there exists a set B,, D, with nonempty interior, such that for all xf € B, the control law
defined by Control Algorithm 2.2 is well defined on the resulting trajectory x?(¢t ,0,x8,u),
t € [0, ), i.e., the states, x;41, £ =0,1,2,..., computed using (2.6) satisfy that x;,; € D for all
k20.
Proof. First suppose that the optimal control problem P(xg41, 841, 0), has a solution for any
X¢+1 € R” and ., 20. Then, given any initial state x§ at time to =0, the Control Algorithm 2.2
generates three sequences of states. The first sequence is that of measured plant states {xf} ieo, SO
that X, =xf for all k € N, the second sequence is the sequence of estimates {x; } %, with
Xee1 = X(tear ot xf,u), k=1,2,..., generated according to (2.6), and finally, the sequence
(¥} k22, With Xpi0 = X (a2, tesy s Xen1 8, K =1,2, ..., generated in the process of solving the
optimal control problem P(x;,;, #¢41,0), k € N,
First we note that it follows form (2.4a), (2.6) and (3.1a,b) that

Ixfy — Xl S AL+ 4. (3.23)
Hence, making use of (3.2a), we obtain that

Lop il S Py —xp gl + Ixfq 1S AMIxfl+ A, + Ixf.al. (3.2b)
Since by construction, forall £ € N, I;,5l < alxy,4l, it follows from (3.1a-c) and (3.2a,b), that

Uefial S Ixfyy = Xp ol + ol
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SKWxfyy — xpal + A\xfyy 1 442 + 0dxPyy = X440 + 0],
SK +a) Axf1+A) + (A + W)xfy 1 + Ay
=K + o)A A1+ (A + )Pl +(1+a+K)A;.

Let

2, 80-0/(1+a+k).

(3.20)

(3.2d)

We will now show that if A, <€ <®;, then there exists v¥;,¥, € (0, ) such that for all

k=1,2,...,

x I < yix§l +Y.

(3.2¢)

We will now make use of Proposition 8.1. Hence, let a;=A; +0a, a=(K +mA,;, and

b =(1+a+K)A; Because a), ay, and b are positive, if we set yo = Ixgl and y; = Ix§1 in (8.1a),

then comparing (3.2c) with (8.1a), we see that forall k € N, y; 2 Ixf1. Also, because

A1+0'.+(K +Q)A] =a1+a3< 1,
the assumptions of Proposition 8.1 are satisfied. Since A, <€, <t,and K +)A; 20,

l-ay+az=1-A-a+K& +a)A.>l-a-e,=Mw—)ée’>0.

1+a+K
Hence, forall k 21,
L1 Sy S @glefl+ Bl + ——2—— <a Bl + I+ e”
l-a;+a,

lim LPIS iim y, <¢”,
k> k=00

where

ra (+a+K)A
= e' .

Clearly,
IX{'S'I{ —xll-l-lxll .

Since xo =x§,and u(z) =0fort e [0, t,] it follows from (3.1a,c), and (3.2k) that

11

(3.2)

93.2g)

(3.2h)

(3.2i)

(3:29)

(3.2k)



L§1<A)lxBl+ K 1xfl = (A, + K) x§l . (321
Substituting this result into (3.2h), we obtain that forall ¥ 21,
ISy, S(A +K - A)xfl+€” (3.2m)
where £” is defined in (3.2j). Since —A, A =a; = (K + ®)Ay, it follows from (3.2m) and (3.2b) that
Wl S Ayyr + 87 + Yin
SA+ADA1+K + (K + o)A )xBl+ (1 +A) €7 + A,
Ay xgl+,, (3.2n)
which proves (3.2e).

Next we will show that with 2, > 0 defined by

-1 -1
a0 |2 [ op [ZrRMe ] =

where § >0 was used to define the set D in Assumption 2.2 and ¢ is defined in (3.2g), if

A; S € <), then there exists a p, € (0, P), depending on g, , &, such that if lx§l < pe, then 1 < p
foralk=1,2,...,ie., that the trajectory x(¢ ,0,x§,%), t € [0, ), emanating from x§, con-
structed under Control Algorithm 2.2 is well defined.

Assuming that A; < €, and that A; < &,, we obtain that from (3.2n)

T < [1+ 141»;31( ] (”‘:,*K) € +A2 S [3-;5,5+1]ezé‘?zsa. (3.2p)
Let¥, and p, be defined as follows:

e+ K +(1+a+K)egyp) , (329

P £ @ -1, 320

Since p —¥, >0 and K <¥; <%, we conclude that p, > 0, and hence that the B,, < D, defined by
B, 4 (xeDlkxisp,}, (3.25)

is well defined and its interior is not empty. Furthermore, for any x§ € B, the resulting sequence

{ xk41) ko satisfies



Ll SHBl+Rsn@ -¥/G) +¥25p . vke N, (329

which implies that x;,, € D, for all £ € N, and, in tum, that the optimal control problem
P(Xg41, t41,0) has a solution for all ¥ € N. Hence the trajectory xP(¢ ,0,x8,u), t € [0,),

emanating from any x§ e B, is well defined by Control Algorithm 2.2, which completes our proof]
Theorem 3.2.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with plant state measurement. Suppose that A; S €, <2; and A, <&, <2,, where 2,

2, are defined in (3.2d) and (3.20), respectively. Let B, be defined as (3.2s). Then (a) for any
xf € By,, the trajectory xP(¢ ,0,x§,u), t € [0, ), is bounded, and (b) there exists an €>0,
depending on €;,€;, such that e&5—0 as e —0, and for any x§ e B,, the trajectory
xP(,0,x8,u)t € [0, ), satisfies li—m, —2alx?(,0,x8 ,u)l<e,.

Proof. Let x§ € B, be arbitrary and let {xf} g0, {x} £, and { X} 2, be the sequences
constructed by Control Algorithm 2.2, as defined in Lemma 3.1. We recall that by Lemma 3.1, the
trajectory xP(t ,0,x8 ,u),t € [0, =), is well defined.

(a) Making use of (2.4a) and (3.1a-c), we obtain that forall ¢ € [t , t.1], k € N,

pr(t » 8 'xfn u)lsup(t » & vxflu)-x(t » B ,Xk,u)l'*'lx(t o Bk s Xg vu)l

SO+ K —x 0+ Ap+x(t , 8, , u)l. (3.3a)
Next we note that the form of (2.5¢) ensures that Lx(¢ , 8, ,x; , u)l S Plx, ! for all ¢ € (79 )

Hence, in view of (3.2a), (3.3a) can be replaced by

LeP(r, 80, xf, u)l S AjxPl + K IxP — x,1 + Ap + Blxgl = (A + B)Ixf1 + (K +PBF—-x 1+ A,

SQ+PxI+ K +PAXE I+ (1 +K +B)Ay, te (s, tesl - (3.3b)

Clearly, since u,,,=0, Ix?(¢ , 0, x§ , u)l is bounded on [0, ¢,). Since, as we have already shown
in the proof of Lemma 3.1, {Ixfl1}, is a bounded sequence, it follows from (3.3b) that
IxP(t, &, xP, u)lis bounded forall t € [t , t;,,], k € N, which completes the proof of (a).

(b) It follows from (3.2i), in the proof of Lemma 3.1, that

(l+a+K)e

limg . Ixp1<iim, .y, S€”< > ,

(3.3c)

where €’ is defined in (3.2n). Let



A |B+(1+K +Be )1+ a+K)
€=

o +1+K + B]e, . (3.3d)

Then (3.2i) and (3.3b) lead to the conclusion that li_m, 2o xP(t,0,x8,u)l Se;3 Itis obvious from
(3.2i) and (3.3d) that €3 — 0 as &, — 0, which completes our proof. O

3.2. moving horizon control with state estimation.

Since it is not always possible to measure the plant state xf, we will now examine the behavior
of our closed loop system, resulting form the use of Control Algorithm 2.2, when the plant state has
to be estimated in the presence of modeling errors, i.e., when the actual dynamics are as in (2.1a,b)
and the modeled dynamics as in that (2.2a,b). We will assume that (4 , C) is an observable pair.

When the model (2.2a,b) is identical with the actual dynamics (2.1a,b), we can ca!culate'the ini-
tial state, x§ at ¢ = 0, using the standard formula

T
xB = W,(T)'] (Ce*Y 5P () =n(e , Ot , (3.42)
where T > 0, the superscript T denotes a transpose, and
W,(T) = LT(Ce")T CeMdy , (3.4b)
ne,s)=C L 'eAt—p, (v)dr. (3.4¢)

Clearly, W,(T)™! exists because (4 , C) is an observable pair. Thus, when there are no modeling
errors and no disturbances, for¢ 2T, the state xP(¢ ,0,x§ , ), can be calculated exactly, and hence
this calculated state can be used in Control Algorithm 2.2.

The much more relevant situation occurs when there are modeling errors but no disturbances.
In this case formula (3.4a) yields an estimate of the initial state x§. We propose to use it in in Step 1
(b) of Control Algorithm 2.2, to obtain the estimate X, with the time T determined by a parameter
8o, which must be chosen judiciously so as to avoid excessive ill conditioning in the observability
grammian W,(T'):

Step1: (@) Atf) 81, + 8 (tr.y — 1) with 8 € (0, 1), estimate the state xf by

Zi = Wo(Botrs1 = tk))-lj:.(ceA(‘—“))T OP@E)-n(, u))de . (35)
O

Lemma 33. Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with state estimation formula (3.5). There exist A; <%, i =3,...,6, such that if
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Control Algorithm 2.2 constructs the sequences {xf)zug {X¢) i, and {X;) is the
corresponding sequence of the estimates of xf, defined by (3.5), thenforall £ € N,

If — X VS Aslxfl + Ay, (3.62)

le+1 - Ik+1| < Asle 1+ A6 . (3.6b)
Furthermore, when there are no modeling errors, A; =0,i =3,...,6.

Proof.  Suppose that u(*) is the control generated by Control Algorithm 2.2 for the plant and model

trajectories associated with the sequences {xf} reo, { %) kepr and { X} fuo-
We begin with (3.6a). Forany k € Nand any ¢ € [t , tx41], yP(¢) is given by

yP(e) = CPeA ¢ )xp 4 C’J:e“'(‘ ~9BPu(t)dt
= CeAl™xP 4 [CPeA™¢—) _ CeAl-xp

+ Cj;e"(‘ “YBu(t)dt+ j:[cpeﬁ'(' ~UBP ~CeAt-"Blu(t)dx. (3.72)

By substituting (3.7a) into (3.5), we obtain

X = xf + W5 Solten -tk)){ ji " (CeAC W) [CPeATE) _ CeAt-Y gy xp

+Ji' (CeAt—WyT j: [CPeA’@ —VBP _ CeAl “‘)B]u(‘l:)dtdt}. (3.7b)

It follows directly from (3.7b) that

Ixf —x 1 S Aslxfl +A,, (3.7c)

where

Az= max _IW,(5¢)™ 1 max _ICeAl max _ICPeA"¢~4) _CeAlY§, T
P et T o(Bor) te (0,87 tef0,& % (3.70)

= max_IW "1 max _ICeAl max _ICPeA’¢~9BP —CeAC-9BI1c 5T ,
As te [Tc,T) o(%ot) te[0,5T) 1€[0,5T) uBoT (3.7¢)

which proves our first (3.6a). Clearly, when there are no modeling errors, A3 = Ay = 0.

Next we will establish (3.6b). Since x.,, is calculated using the estimated initial state X, we have
that



Ixfﬂ - Xl = leA’('hl-‘a)x "BA(“"-“)fg +J:‘l{ eﬁ'(ful—f)Bp - eA(hot—t)B Ju@d
<K Ixf—x'*l +Ailxfl + A,
SK {Axfl1+A4) +Axfl+ Ay,

= (K Ay +A1) ef1+ K Aq +82 8 Aslxfl +Ag, (3.76)
where X', Ay, and A, are defined in (3.1a,b,c). Hence (3.6b) holds, and our proof is complete. a
Lemma 3.3, leads to the following result.

Theorem 3.4. Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with state estimation formula (3.5). Let €; , €, > 0 be such that

g<(l-o)y(l+a+k), (3.8a)

§<p/(1+Q2+K)IE), (3.8b)

where § was defined in Assumption 2.2 and & was defined in (3.2g), in the proof of Lemma 3.1. If
As < g and Ag < &,, then there exists a set By, © D such that (@) for any x§ € B, the trajectory
xP(t,0,x8,u),t e [0, ), is well defined and bounded, and (b) there exists an €3 > 0 such that
€—0 as €, =0, and for any x§ e B,, the trajectory xP(t ,0,x8,u), t € [0, <), satisfies
lim, . P(t,0,x8, u)l S ¢

Proof.  (a) First suppose that the optimal control problem P(x,,;, t+1.0), has a solution for any
X;+1 € R” and ;1 2 0. Then it follows from Lemma 3.3 that

Lefial S Ixfyy — Xpaol + Wil S K By — xp gl + Aglxfyy | 44, + alxg
SK +o)xfyy —xpl + (A +0) kfyy 1+ 4,

SK + )Aslxf1+ (K + 0)Ag + (0 +A) Ixf, 1 +4; . (3.9a)
Since A; € As and A; S Ag, we have that
Ixfizl S (K + 0)AsIxfl + (0t +As) Ixfoy 1+ (K + 0+ 1)Ag. (3.9b)

Since (3.9b) is of the same form as (3.2c), with As replacing A, and Ag replacing A,, we see that the
conclusions of Lemma 3.1 and Theorem 3.2 (a) remain valid for the Control Algorithm 2.2 using
state estimation formula (3.5).
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(b) Referring to (3.25s) (3.3d), we conclude that part (b) holds with €3 and B p, defined by

g5 2 [(ﬂ+(l+K+?€‘)a+°‘+K> +1+K +Bles, (3.9¢)
B, 4 {xeD Ikxigp,}, (3.9d)
where €’ is defined in (3.2g) and
A P -(QR+K)e + 1), (3.9€)
P Qv K+ +arK)g)
O

3.3. elimination of residual errors by linear feedback.

Because linear quadratic regulators are robust, when the pair (A , B) is stabilizable and the
modeling errors are sufficiently small, we can always find a linear stabilizing state feedback control
law u(t) =—K.xP(¢ ,0,x§ , u), where K, is the solution of a linear quadratic regulator problem in
terms of the model (2.2a,b), and a ball Bror 4 (x I xl<pror ), PLOR € (0, p), such that if for
some #-, xf- € Brgg, then the control given by u(t) =—K.x(t ,0,xq,u), for t 21, does not
violate the bound on the control on the resulting trajectory, i.e, IK.xP(¢t ,0,x0,u)l Sc, for all
t2t. As we will see, a similar, but somewhat more complicated result also holds when
xP(¢,0,x8,u) is estimated using an asymptotic observer. Hence, in both cases, once the plant
state is sufficiently near the origin, we can switch over to the LQR control law and thereby eliminate
the residual errors resulting from the use of Control Algorithm 2.2.

For the case where the state can be measured, we propose to incorporate this idea into Control
Algorithm 2.2 by modifying Step 1, as follows. Let Ty, 2 T is such that le =¥ ~BK)j < o

Step I': Att =¢,

(a) measure the state X, = x”(t;).

(b) compute an estimate, 4 (¢), of a disturbance d(t) fort € [t , t;,,], if possible; else, set
d@)=0.

(c) If X, €Bygp, set the plant input u(t) =uy, ,.j(¢)~a (¢) for ¢ € [ty , tes1); else set
u()=—K.xP(t ,0,x8,u)—ad(t) for t € [t , trs), Where ty,y =ty + Ty, and Ty, 2 Tc

such that le @ ~8K)Te < o
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(d) compute an estimate x;,; of the state of the plant xP(fy,; , t; , £ , u+d) according to
the formula (2.6), i.e.,

+1
xk'(-l = eﬂ(‘bol-h) x-k +.‘r; eA(‘u-l-l)B u[" '“’d(') dt.

At this point it becomes clear that for best results, the matrix Q, used to define the norm I,

should also define a Lyapunov function {x , Ox ) for the system x = (A — BK,)x, so that for some
positive definite matrix M we have

(A-BK,)’Q +Q(A -BK,)=~M . (3.10)

Theorem 3.5.  Suppose that the matrix Q used to define the norm I} satisfies (3.13) for some posi-
tive definite matrix M, and that the state of the plant can be measured. Lete; € (0,2,),&2€ (0,22,

and & € (0, Apin(Q)2IM1), where 8,2, were defined in (3.2d), (3.20), respectively, M is as in
(3.10), and let p, be defined by (3.2r), and ppy by

PMH = Y , (3.1 1)

in terms of 8,,2; and ¢’ that was defined in (3.2g). Finally, suppose that Py < prgr. With
Prgr >0, as above. If A; <€y, A; S &, and AP -A)~(BP —B)K,I< 3, then for any x§ By,

with B, defined in (3.2s), the trajectory x(¢ ,0,x§ ,u), t € [0, =) is bounded and, furthermore,

xP(,0,x§,u)>0ast — oo,

Proof. Since the conditions imposed in Lemma 3.1 and Theorem 3.2 are satisfied, it follows that for
any x§ € B, the trajectory xP(¢ ,0,x8,u), t € [0, ), determined by Algorithm 2.2, using the
original Step 1 (c), is well defined, bounded and lim, _, AxP1 < pyyy. Since Py < Prgr. there exists

a finite £ € N, such that Ixtf’l < Pror. and hence that the cross over to the linear control law,

specified in Step I’ (c) will take place. Let V(x) A {(x , Ox ) Hence, for x?(t) determined by the dif-
ferential equation x?(t) = (AP ~ BPK_)xP(t), xP(tt) = x{. we obtain that for all ¢ 2 tt ,

V(xP () = (£P(t) , QxP(1))+ (xP(t) , QxP (1))
= (xP(t)T ,[(A -BK.)'Q +Q(A - BK)x"(t))

+ (xP(1)[(A? —~A —(BP —B)K.]TQ + Q(A? ~ A ~(BP = B)K)xP (1))
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=—{xP(t), MxP(¢))

+(xP(t),((A? —A —(BP -B)K.)TQ + Q(AP - A — (B? - B)K.))xP(1)). (3.12a)

Since I(A? —A) - (B? - B)K_ 1< 3 it follows that for all ¢ Ztt'

V(xP() <0, (3.12b)
which implies that (i) xP(t) € Bpg forall ¢ 2 ‘t , and (ii) that xP(¢) — 0 as ¢ — oo, completing our
proof. a

When the state of the plant cannot be measured, we must augment our control system with an
asymptotic state observer that provides the plant state estimate when we switch over to the linear
feedback control law. The asymptotic observer must be in operation from time ¢ = 0. In this case we
get augmented dynamics in the well known observer-controller form

xP(t) = APxP(t)-BPK_ x(t), (3.13a)

x°(t)=K,CPxP(t)+(A -BK,-K,C)x°(t), (3.13b)

where K|, is the observer gain matrix. Let e(¢) Qx"(t) —x°(t) denote the difference between the
state of the plant and that of the model in the observer. Then

e(t) = (AP -K,CP)xP(t) - (A —K,C)x°(t) - (BPK, — BK,)x°(t) . (3.13¢c)
We assume that the system
@) =An@), (3.13d)

where A 8 diag (A -K,C),A ), with 4 is defined by

s -BK,
ASIk,c a-Bk -K,C| - (3.13¢)

corresponding to (3.13a,b,c) when there are no modeling errors, is exponentially stable, and hence
that there exists a symmetric, positive definite matrix Q~ = diag (Q, , Q.), with @, € R*™ and

Q. € R that defines a Lyapunov function, {n, 3 n} for the system (3.13d), so that for some
symmetric, positive definite matrix M = diag (M, , M,), with M, € R™ and M, € R*"2", we

have



XTQ +Q~X =-M . (3.139)
We will now show that the system (3.13d) is robustly stable.

Lemma 3.6 Suppose that the state (x?(¢),x°(¢)) is defined by the observer-controller dynamics
described by (3.13a,b), with (xP(0) , x°(0)) arbitrary. Let S (0,0.5) and AA be defined by
0 AA-K,AC ABK,

A A0 a4 -ABK. |, (3.14)
0 K,AC 0

where AA =AP-A, AB=BP-B, and AC=CP-C. If WAQI< &Ayy(M), then
lim, _, , xP(¢)l = 0 and Iim, _, . k()1 = 0.

Proof. Let z(t)8(e(t),xP(t),x°(t))T, where (xP(t),x°(t)) is a solution of (3.13ab) and
e(t)8xP(t)—x°(t). Then, referring to (3.13a,b,c) and (3.14), we see that (r) = [4 +AA z(t).
Consider the Lyapunov function V (z), for the nominal system (3.13d), defined by V() 2 (n, a1}
Then,

V@) = (2(), 0 z(0))+ (2(), 0 2(2))

=—(z2(t) , M z())+2(z(t), AL 0 2(¢))

< = Amin(M X1 = 28)1z ()12 . (3.15)
It follows immediately from the condition on & that V(z (¢)) <0, whenever z(t) # 0, which completes
our proof. a

Lemma 3.7. Suppose that the state (x?(¢) , x°(¢)) is defined by the observer-controller dynamics
(3.13a,b), that Ix? (0)I S &, Ix°(0)! < &, for some € > 0, and that AA satisfies the condition in Lemma
3.6. Thenforallz 20,

%

Amex(@0) +Muan(@) | o
le()s |2 A Ave. (3.16)

Proof. First, let lxlp, 4 (x , 0,x ¥%. Let the Lyapunov function V() be defined as in Lemma 3.6.
Then it follows from the definition of V(-) and the fact that by Lemma 3.6, l}(z (t)) <0, where
2(t) B (e(e) . xP(t) , x°(1)), that le ¢ )13, S V(2 (1)) S V (z(0)), for all ¢ 0. Hence,



(@)
Amin(Q)

Amax(Qo)

A @) ¢

le(t)N3, < le (01 +

Mnax(Qo) + Apax(@ ) 2 (3.173)
Anin(Q) ’

<2

It now follows from (3.17a) that

le (t)|2 < Mk (t)léo < 252%“@0) (Xnmx(Qo) + A‘mu(Q )

Anin(Q) Amin(Q)? '

which completes the proof. O

(3.17b)

To include the use of an observer, we now propose to modify Step 1 (c) of Control Algorithm
2.2, as follows: Letd € (0,0.5), let

, . Amin M mea(@)C1 — 28108
ProR € [O'mm“’“z”' M ain @K, COT+ S | | @15

where p;gr was defined at the beginning of this subsection, and let &; , €, > 0 be such that

€<%, (3.18b)

€ <min {2,,

m) }, (3.180)

where K was defined in (3.1c), and 8,2, were defined in (3.2d), (3.20), respectively. Finally, let
Poc > 0 be defined by

Poc (1 - &) [Pfck - = ] : (3.18d)
1

Then, it follows from (3.18¢) that p,. > (1 ~¢€;) [pfm —Pigr/2) > &. Let Tg, € [T¢ , =) be such
that

¢~ Al X1 - 28)Te @) Pac (@)

— R 3.18
2heax@ YL + (PLon)D (3.18¢)

leW -BK)Tep < ¢ . (3.180)

Finally, we define the vector valued saturation function SAT(u)é(sat(u D, ..., sat(u™)), where
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sat(y)=y ify € [-c,,c,), and sat(y) = c,sgn(y) otherwise.

Step 1'": Att =14,
(a) fu()=-K.x°(t)fort € [t,y, 1) and max { I£, 41, Lx,1 } SPocs SEL X =x°(1);
else if max {IX; I, Ix,0} Sp,, set X, =x;, and reinitialize the observer by setting
X°(t) = x;, else estimate the state xf = xP(z,) by (3.5) and denote the resulting value by

Xk

(b) compute an estimate, a (¢), of a disturbance d(t) fort € [t , t;.,], if possible; else, set

d@)=0.

(c) If max{Lf, 1, bgl) >p,, set the plant input u(t) =ug, . (¢)-a () for

t € [t,1:41); else reset 4y to the new value el = U +TK., and set
u(t) =—SAT (K x%t) -3 (1)) fort € [t , tiy).

(d) compute an estimate x;,; of the state of the plant x?(t;.;, & , Xy , u+d) according
.6),i.e.,

Xia1 = eA(‘hl"&)x'k +£:ﬂ eA(fhl-‘)B (u(t)"‘a (‘))dt ]

Lemmas 3.6 and 3.7 lead us to a following result.

Theorem 3.8.  Suppose that (2) AA satisfies the condition in Lemma 3.6, (b) IK.ACQ 1 < A ;x(M)
As S €1, Ag S €, PMH < (Poc — €)/(1 + €y), Where ppgy was defined in (3.11), and (c) that we use Step
I’ in Control Algorithm 2.2. Then for any x§ e B p.» defined in (3.9d), the trajectory
xP(¢,0,x8,u)is bounded and, furthermore, xP(¢ ,0,x8 ,u) = 0 ast — oo,

Proof. We will prove that for any trajectory xP(t ,0,x§ , u), with x§ B ,, there must exist a £

such that the control u(¢) is defined by the solution of the optimal control problem P(x, , ¢ , 0) for

alte [0,z )andmax (X, |, lxtl } £Poc i€., that the switch, in Step I’’ (c), to the linear feed-
k k-1

back control law u (¢) = —K,x°(¢) (since 4 (¢)=0 by assumption), with (x?(¢) , x°(¢)) the solution of

(3.13a,b), from the initial state (x? (tf) ,xs Datt = tt » will take place. Then we will show that (a)

x%(t) € By forall t 21, so that the linear feedback control law does not violate the bound on the
k

control, and () that max { Ix, 1, bx,1} <p,. must hold for all k¥ > % , so that the linear law is used
forall¢ 2¢, . It will then follow from Lemma 3.6 that state of the plant will be driven to the origin as
k
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! —>oo,

First, it follows from (3.6a,b) that if the control u(t) = uy, , 4.,(¢) and the times ¢, are deter-
mined by solving the optimal control problem P(x, , ¢, , 0) for all ¥ € N, then

Xl SIxf,; - X+ le_l 1A+ l)le_l 1+A, (3.192)

Ll S Ixf = x 1 + IXfl < AslxP_ 1+ Ag + IxfL . (3.19b)
Next, because A3 S As S €), Ay S Ag S &, and Py < (Poc — €D/(1 +€y), since it follows from (3.2i,))

that €” <pyy, we conclude that lim,_,.. IxP1 < ppyy. Hence there exists a £ € N such that

Ix, 1<p, and Ix 1<p,.. Hence a switch to the linear feedback control law will take place at the
k-1 k

timez_.
£

Next, we will prove that x°(t) € Bpg for all ¢ 2¢, , where ¢, is the time when the switch to
k [

the linear control feedback control law takes place. Now, it follows (3.6a) and (3.7d.e,f) that

k? I1Six? —-xX_ I+, ISglx? l+g+lx. I,

t-1 -1 &4 a0 Ui K -1 (3.19¢)
From (3.6b), we obtain that

XPISIxP —x 1+lx_ ISgdx? l+e,+1x 1.

A S Sy St SRR (3.19d)

It follows from (3.19c) that Ix, 1<, V/(1-g;)+¢€/(1 —¢,). Hence it follows from (3.18d),
k-1 k-1

(3.19d), and the fact that I£,_ 1, Ix_1 S p,, that
k-1 k

€

Ix?Pl< ] (&2 + Poc) + €2+ Poc = PLpR - (3.19)
k

By Step 1"’ (a), we reinitialize the observer by setting x°(¢, ) = x_ and hence Ix°(¢, I S p,,. < Pigr-
x x [

Now suppose that linear feedback control law is used for all ¢ Ztt' Then it follows from

(3.19¢) and Lemma 3.7 that le (2)I < Wigr forall t 2¢ . Next, let the Lyapunov function V() be
k

defined by V(x°(z)) 4 ke@)rd (x°(t),0x°(t)}). Then, making use of the matrix M defined by
(3.11), we obtain that for all ¢+ 2¢_, with (xP(¢),x°(¢)) a solution of (3.13a,b) with initial states
k

&xP@).x,)
A



V(x°(t)) € = ApnM)IX ()12 + 20K, ACQ 1 1x°(¢)12

+ [2le OIIK.CQI+IK ACQDIx°(e) ]/lmx(Q )

< = Aanin(M )(1 = 28)1x° (¢ )P/ Amin(Q) + 2¥P R (K- CQO ¥ + Shyin(M MIx® () Anax(Q ) (3.196)

It follows from (3.18a) that if x°(¢ )l > pr o, then V(x"(t)) <0. Since Ix"(t; N<po S pror, it fol-

lows that x°(t) € Brog for all ¢ 2¢, . Therefore, if the linear feedback control law is used for all
k

t2 tt , then it does not violate the bound on the control.

We will now prove by induction that Lx;,,0, L¥,0 S p,., for all k 2% , where x;,, is computed
by (2.6) and X, =x°(t), with (xP(r),x°(t)) a solution of (3.13a,b) from the initial state
(x?(t,),x,). For (xP(¢),x°(t), e(t)) a solution of (3.133,b,c), let z(¢) & (xP(z), x°(t),e(t)), and

Ok

let 121G A le ()2 + 1xP(¢)2 + Ix°(¢)I2. Recall that lxz 1, Ix'; ll < Poc» and that x"(:2 )= X and

that IxPI<pfpr by (3.19¢). Now suppose that for some k2% +1, we have that
x

Lol , gl Ix® (800 < poe, and xf1 < pfpp hold, and that u(t) = —K.x°(t) fort € [ty , ;). We
need to prove that bel, W0, k(@ )I<p,, and that Pl <pfpr. Now, since
u@)=-K.x°¢) for tetyy,u) we set X,=x°() by Step I'" (a). Therefore,
el =)l <p,. by assumption. Next, we must have that Ix,,l Sop, because

le“ ~PK)ej < 0. We will now prove that the relations bx®(t;,q)l S ppe and Ixfy 1< plor. both

hold.

LetV(z()) = (z(t), @ z(r)). Then,
V 2 (0) 2 Ayin@ Mz (40 2 Arnin@ Whemax @2 (IF 2 Penin @ Wheman @ D@12 . (3.19g)
It follows from (3.15) and the fact that V' (z(¢)) S Apax(Q Iz (1)1 that for £ € [t , £.41),

%‘7 (2 (1)) S =Ain(M Y1 = 28)1z (¢ )13 S — oginM WAax(@ )1 = 28)V (2(2)) . (3.19h)

Clearly, V() S hug@ Mz (2 S Apx(@ Nz (03 Amin@).  Hence,  because (i)
le (2017 < x ° (81 + P (8,2, (i) Ix° (6 )) S P and Ix? ()l = LxP1 < pfpr by assumption, and (iii)
12 (613 < 2(x° (812 + IxP (5 )12), it follows from (3.19h) that for all ¢ € [ty , 1),



V(2(2)) S e~ 2=t X1 -2 -uasl@)F (51, ))

L‘*@) “Ac(M X1 = 25)¢ - Y Aau(@) [ 2 2 .
S [p2 +0t007). (3.190)

Since by the triangle inequality, V (z(¢)) 2 2Ix°(¢)I for all ¢ € [z, , ;). it follows from (3.18¢) and
(3.19g,i) that

Ot + TR 2 Ot 2 < plr2 . (3.19))
Therefore, Lx®(t41)l < poc/V2. Now, (3.19g) holds when we replace x°(¢) by xP(¢) because
Iz 2 P ()PP Then, again it follows from (3.19h,i) that
P (¢ + T P = kP, 2 < pZ < (pfor)? which completes our proof by induction. It therefore fol-
lows that the Control Algorithm 2.2 selects the feedback control law u(t) = —SAT (K,.x°(t)), for the
next interval, t € [fg41, tg41 + T ), where £, = #; + Tg,, and since we have already shown that, in
this case, the control u(t) =—K_.x°(t) does not violate the control constraint, it follows that
u(t) =—K.x°(t), for the next interval, ¢ € [ty , x4 + Tx.], and hence, by induction, for all ¢ 2 t‘i .

It now follows from Lemma 3.6 that Ix?(¢)l = 0 and Lx°(¢)1 = 0 as ¢t — oo, which completes our
proof. O

4. DISTURBANCE REJECTION.

We will consider two distinct situations. The first is where the disturbance d(¢) is a continuous
function, such that for some ¢; < oo, [];HTld (‘l:)lzd‘t]% Scq forall £ 20. The second is where the
disturbance is the output of a known dynamical system driven by stationary, zero mean, white noise.

We begin with the first case and assume that the disturbance d(t) cannot be estimated. Hence

Control Algorithm 2.2 sets d (t)=0. Since the more difficult situation occurs when the plant state is
estimated, we will assume that this is the case. First, we derive a result similar to Lemma 3.3.

Lemma 4.1. Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with state estimation formula (3.5). There exist A; <eo,i =7,8,9, 10, such that if
Control Algorithm 2.2 constructs the sequences {xf}ieg, {xc)}in. and {X,} 2o is the
corresponding sequence of the estimates of xf, defined by (3.5), then forall k € N,



Ief = X, 1S AqIxfl + Ag, “.19)

f - X1 S Aglxfl + Ayp. (4.1b)
Furthermore, when there are no modeling errors and no disturbances, A; =0,i =7, 8,9, 10.

Proof.  Suppose that u (") is the control generated by Control Algorithm 2.2 for the plant and model
trajectories associated with the sequences {xf) f2g, { %z} 521, and { X, } 2.

We begin with (4.1a). Forany £ € Nand any ¢ € [z, , t,,,), y?(¢) is given by

yP(t) = CPeA"¢4)yp 4 CP j: eA'C-IBP(u (1) +d())d7
= CeAlxp 4 (CPeAUW _CeAl)) xp

+C j: eAC-B ) +d()dT+ f {CPeA’C-%BP _CeAl-B } (u(t) +d())dT. (4.22)

By substituting (4.2a) into (3.5), we obtain

Eg =X+ W, (Boltesr — ) {I:. (CeAl~M)T (CPeATU-b)_ CoAl-)y gp xp
+ I: (Ce* WY [ ceAt-9Bd(mdt

+ j': ' (CeAl —a)T j:: {CPeA™¢-YBP _ CeAt-OB } (u(t)+d(t))drdt } 4.2b)

It follows directly from (4.2b) that
Ixf —x ;1 S A7Ixfl +Ag, “4.2¢)
where

AAC, max _ICPeATU) _ CoAC-) 5 T
75Ca max o @4.2d)

AgAC,| max _ICPeA’~0BP —CeAC-BI(c,8,T +c,)+ max _ ICeMI5,Tcy |,
8 A[‘e[o‘&ﬂ (cudoT +cy4 e BoTcy @.2¢)

with Ca8max, . (7, 7IW, (o) max, o 57ICe4'l, which proves (4.1a). Clearly, when there

are no modeling errors and no disturbances, A7 = Ag = 0.



Next we will establish (4.1b). Since x,, is calculated using the estimated initial state ¥, it
follows from the Schwartz inequality in L,[0, T] G.e.,

[ aop@ars ([aera)” ([ berd)" sa

'xfﬂ —xk-l-ll = led'(“"-“)x _eA(lhl-Q)x-k
+1 "
+J: {edr(tm-‘t)BP _eA(lm—t)B ]u('l)d‘t-i-J:. eA’(““-')de(‘t)d‘tl
SK f -3+ Akl + Ay

. j:mI g4 pp _ oAU B 11d (¢)1dt +flle"(""")8 Hd (e)ldt

Az F
SK {AMxfl+Ag) +A 1+ A+ =+ KIBINT |c,4
VT

Ay

—F K T ]c,, A AglxP1 +Ay0, @2

= (KA7+A) Ixfl + KAg +A; + [

where X, Aj, and A; were defined in (3.1a,b,c). Hence (4.1b) holds, and our proof is complete. a
Lemma 4.1 leads to the following result that also holds when the state is measured.

Theorem 4.2.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.2, with state estimation as in (3.5). Suppose that €, , €5 > O are such that

1-a

Ag<g < m , @4.3a)
<erc— P 4.3b
Aos&< e i He .35

where Ag, Ajo were defined in (4.2f), and €’ was defined in (3.2g). Then there exists a ps € (0,p],
such that for all x§ € B,,, the trajectory x?(t ,0,x§,u+d), t € [0, <), is bounded, and there
exists an €3 > 0 such that €3 — O as €; — 0, and lim, _, ., Ix?(¢ , 0, x§ , u+d)l S&;.

Proof. First suppose that the optimal control problem P(xg,;,f+1,0), has a solution for any
Xi+1 € IR" and #, 2 0. Then, given any initial state x§ at time ¢¢ = 0, the dynamics of the moving
horizon feedback system, using Control Algorithm 2.2, generate the sequence of states {xf} o
while Control Algorithm 2.2 generates the sequence of estimates {x;)}:%, Wwith
Xt =X (81, 8, X, u), k=1,2,..., according to (2.6), and the sequence (X} 2, With
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Xps2 = X420 tesr s Xe41,4), k£ =1,2, .., generated in the process of solving the optimal control
problem P(xg.1, 441,0), k € N.

Now, forany & € N,

Uizl S Ixfy = Xpaol + Weiol S Iefyp — X pial + 0llxy 4
SKIxfyy = xpal + Aglxfyg 1+ Ajo + adxPyy = xpyql + 0dxfyy |
SAy+ ) Ixfyl+ K +)Alxfl+ (1 + 0+ K)Ag. (4.4a)

Ifweleta; =429+, az=(K + Ay, and b = (1+a+ K)Ayq, then, in view of (4.3) we see
thata,,a;,b 20and @y + a3 < 1, so that the assumptions of Proposition 8.1 are satisfied. Hence, if
we let yo = Ix§l and y, = Ix§l, then it follows from (4.4a) that for y, defined by (8.1a), /1S y,,
and hence (c.f. (3.2i)) that

Jim gt s a m:,K)A“’ g, (4.4b)
and also that forall k € N,
PISy, S (K + o)Ay IxBl + Ix§1 + €. 4.4c)
Since u(t) =0, forall ¢ € [0, ¢,), fork = 0, (4.1b) reduces to
RIS X} —x 0+ Ix 0 SAgIxBl+ A0+ K Ixfl = (K + Ag) IxBl+ 40 4.4d)
It then follows from (4.4c,d) that for all k 2 2,
PIS((1+a+ K)Ag+K)Ix§l+Ap+€™ . (4.4¢)
Next, making use of (4.4c), we obtain that forall k € NN,
Lel < Wfyy — Xl + WPy VS Aglxf1 + Ao + kP S Agyy + Agg + Vi
SA+A0)K +(1+0+K)Ag) IxBl+ (14 AgdAjg+Agp
Ay xBl+y",. 4.4

Since by (4.3), (1 - )(1 + 0.+ K') < 1, it follows that 1 + Ag < 2, and hence it follows that

l1+a+K 4

, l1-o l1+a+K
Y2=(1+A9)A10+A;p<2A) 0+ [1+ ]( - )A10+Aw



SG+Q+K)NASB+Q+K))e A, <P . 44g)

Let By, 2 {(x € D | xl Sp,} where, with¥, asin (3.29), p, is defined by

pa 46 -V (4.4h)

Because ¢; satisfies (4.3), pg > 0. Furthermore, we conclude that for any x§ € B poforallk € N,

Ll S Y Bl + 72 <Y 1pg +Y 25D .
x,€ D forallk 21.

It now follows from Proposition 8.1 that ﬁ, -« xP(t,0,x8,u)l < €5, where &3 is defined by
(3.9¢) (with g, , €; as in this theorem). It is again obvious (3.9c) that €3 = 0 as &, — 0, which com-
pletes our proof. a

We will now show that when the disturbances are of sufficiently small amplitude, we can still
use Control Algorithm 2.2 with Step I’ (with state measurement) or Step 1°* (with state estimation),
to obtain the benefit of the disturbance suppression properties of LQR systems. These depend on the
largest real part of the eigenvalues A;(A — BK,) of the matrix A — BK,.. Hence a design trade-off is
implied: the smaller the largest real part of the eigenvalues, the better is the disturbance suppression.
However, to obtain a very negative largest real part may require large elements in K, which limits
the size of the ball about the origin where the control u(t) = —K_.x(t) will not violate the control
constraint.

Thus, suppose that K is the gain matrix resulting from the solution of an LQR problem for the
model (2.2a) and that X, is the gain matrix for a corresponding asymptotic state estimator for (2.2a).
Assuming that we use the control determined by the gain K, and the asymptotic state estimator deter-

mined by the gain K,, we get the following augmented dynamics in the well known observer-
controller form

xP(t) = APxP(t)-BPK_ x(t)+BPd(t), (4.52)
x°@)=K,CPxP(t)+(A —-BK, - K,C)x°(t). (4.5b)

We will assume that there exists a constant ¢’ < oo such that Id (¢)I € ¢4 for all z 20, and that
both ¢’; and the modeling errors are sufficiently small to ensure the existence of a ball
Bior8 {x e R* I Ixl SPLgr }+ Prgr > 0, such that if for some ¢_, x°(t, ) € Brgg, then the control

k x
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givenby u(t) =—-K x°(t) forall t 2¢_, with (x?(z) , x°(¢)) determined by (4.5a,b), does not violate
k
the bound on the control.

Let e(t) 4 xP(t) —x(t) denote the difference between the state of the plant and that of the
model. Then

e(t) = (AP ~K,CP)xP(t)-(A -K,C)x°(t) - (B’K, -BK )x°(t)+BPd(t). (4.5¢)

We will assume from now on that the system
N =Ane), 4.50)

where A 8 diag (A -K,C),A ), with A is defined by

- -BK, .5
AS\k,c a-BK.-K,C|’ (@.5¢)

corresponding to (4.5a,b,c) when there are no modeling errors and no disturbances, is exponentially
stable, and hence that there exists a symmetric, positive definite matrix Q = diag (Q, , Q.), with
0, € R¥* and Q. € R**?" that defines a Lyapunov function, (n, 0 ) for the system (4.5d), so

that for some symmetric, positive definite matrix M= diag (M, ,M_.), with M, € R** and
M, € R?2" we have

ATQ +QA =-M . (4.5
We will now show for the observer-controller dynamics that when le(O)l and Idl, are
sufficiently small, le (¢)! remains small for all ¢ 2 0.

Lemma 4.3. Suppose that the state (xP(¢) ,x°(¢)) is defined by the observer-controller dynamics
described by (4.5a,b), with (xP(0),x°(0)) arbitrary and let z(¢)2 (e(r) JXP(@),x°()T. Let
AA , AB be defined by

0 AA-K,AC  ABK.

A 30 AA -ABK, |, (4.62)
0 K,AC 0
ABT =[ABT ,ABT (], (4.6b)

where AA = AP -A,AB =BP -B,and AC =C? -C.



If there exists a 8 € (0, 0.5) such that (a) 1AA Q | < 8A, (M ), (b)

. (M (1 -28)2 .
L < Mia (M DM (1 = 2820108 Aeia(Q) “69

4V Aan(@ Pnan(@ YK, CON + ShegiaMNB T O 1 4 Shegin(M )
where BT =[BT ,BT,0] and Q and M were defined in (3.11), (c) 1AB TG 1< 84, (M ), and (d)

Anin(M X1 = 28)p1.08 Ain( @) Ay
D @)K CO + Bhin(M))
where (OI8O +POI+ @ and 2P 1e@P+UPOR+°OR,  with
Lxl = (x , Qx %, thenle (!)l, IxP ()1 S, forall £ 20.

1zO)I s (4.6d)

Proof. Referring to (4.5a,b,c) and (4.6a,b), we see that () =[A +AA )z(t) +[B +AB 1d(r).
Consider the Lyapunov function V (z), for the nominal system (4.5d), defined by V() 2 (n, 0 n).
Then,

V@) = (), 0 z(t))+ (2() , G (1))
=—(2(8) , M z(£))+2(2(r) ,AA Q (1)) +24(B +AB ) (), 0 2(r))
S = AminM Nz (112 + 2104 O Nz (1)1 + 20 (1)L(AB TG 1 +1AB TG iz (1),
< (= Amin(M ) + 2800 (M Nz (012 + 2Vm 1AL (B TG 1 + A (M )z (1)1,
Amin(M )(1 = 28)V (2 (4))#z ()l
Amax(Q )%
The last inequality is obtained by Iz (¢ ), 2 V (z(¢ ))V‘/).ma,(Q“ )%. Now, it follows from (4.6¢) that

= Amin(M )(1 - 28)V (z (£))% 4 Pmin M a1 )1 = 28150 hnin( @)
Mnax(Q) 2Mmax(2)*Amax(Q YUK CQ 1 + Ehin(M )
We can see from (4.7b) that if V(z(¢)%> Y Amin(Q)*Ana(@)% then V(z(r))<0. Since
% 2EZOP2VEO i@ Ann(@), V) S¥Ania(@VAn(@) for all ¢20.  Since
V(2 () 2 Ain(@ 1z ()P Aqax(Q ) 2 Anin(@ Y (¢ )P/ A ux(Q ), e obtain that le (¢)1 < y,, which estab-
lishes the first inequality. Since Lx?(¢)I12 <1z (2)12 also holds, we see from the above that the second
inequality also holds, which completes our proof. O

<-—

+2Vm I AB TQ 1+ ShiaM Diz()y.  (4.73)

V(@) <

Iz(£)l;. (4.7b)

It is worth noting that (4.7a) implies that 1z(¢)1— 0 as ldl.,—0, and hence that
Ix°@),xP@)l > 0asldl,— 0.
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Now, let

pfor S min {v,/4,p0r/d } , (4.82)
1-a

Ag<Sg < T+o+k (4.8b)
; p Pigr(l —¢)) 4.8¢

A’°“2<‘“‘“"[34-(2+1<)/;a' T 2 ' “.80)

where K’ and &’ were defined in (3.1c) and (3.2g), respectively. Then, it follows from (4.4b) that

(I1+a+K)Ay < (I1+a+K)e o

g@, A RS > > 4.8d)
Let

Poc (11— €1) [P - 41 -1 @.30)
Then, it follows from (4.8a,c) that

Poc = PLgrR(1 ~€1)— &> plor(1 ~€1)2 > ¢, . 4.8

Theorem 4.4. Suppose that (@) 5, AA ,AB, Idl, satisfy the conditions in Lemma 4.3, (b)
K ACQ1 < 8Amin(M), (c) that (4.8b,c) holds, (d) that pyy < (Poe —€2)/(1 +€;), Where pyy Was
defined in (4.8d), (e) that v, < p,, where ¥, and p, were defined in (4.6d) and (4.4h), respectively,
and (f) that we use Step I'’ in Control Algorithm 2.2. Then for any x§ € B ,, defined in (4.4h)
(using the formulae (3.2q), (4.4g)), the trajectory xP(¢ ,0, x§ , u +d) is bounded and, furthermore,
lim, _, xP(t ,0,x8,4 +d)— Oasldl.—0.

Proof. 'We will prove that for any trajectory xP(¢ ,0,x§ , 4), with x§ € B ,, there must exist a £

such that forall ¢ € [0, ¢, ), the control u(¢) is defined by the solution of the optimal control problem
k

P(xg,t,0)and max {Ix, I, Ixtl } SPoc, i-e., that the switch will take place in Step I°* (c) to the
k-1

linear feedback control law u(t) = -K.x°(t), with (xP(¢) , x°(¢)) the solution of (4.5a,b), from the

initial state (xP(tE) ,x"(tt Datt = tf’ Then we will show that if the linear feedback control law

u@)=-K.x°@¢) is used for teft, ,T,] with T, 2t , k°@Is pLor holds for all

k k +1
te[t ,T,], so that the linear feedback control law does not violate the bound on the control.
k

Then, we will consider two possibilities: (a) only one switch to the linear feedback control law takes
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place (att,),,ie., max { L5 ), )} Sp,. forall k 2% sothat u(t) = —K,.x°(t) forall ¢ 2t
k

and (b) the condition max { Lf,_,l, x;l} < p,. fails for some & 2% and the Control Algorithm 2.2
switches back to the solution of the optimal control problem P(x,, #; ,0) which implies that the
linear feedback control law and the solution of the optimal control problem are used alternatively.

First, we will show that the switch to the linear feedback control law will take place. It follows
from (4.1a,b) that if the switch to the linear feedback control law does not take place for any k € N,
then

Ix,1< Ixf_; — Xl + f, 1< A+ l)le_l I+4g, (4.9a)

bl < Ixf = x 0+ Ixfl < AglxPl + Ajg + Ixf (4.9b)
Because A7 SAg< g, Ag< Ay S &, and Pagy < (Poc — /(1 +¢y), it follows from (4.8d) that there
exists a & e N such that I¥ 2 lI S Po and lxz 1 <poc. Therefore the switch to the linear feedback
control law will take place.
Now, it follows from (4.1a) that

kP ISk? —%, 1+15,
k

ISsglx? 1++1x, 1.
k-1 k-1 k-1 a4 T4 & ] (4.9¢)

From (4.1b), we obtain that

PISIx? —x I+Ix I<glx? l+e+1x 1.
; £k z a7 @.9d)
From (4.9¢,d) and (4.8¢e) we obtain that
P & o .
h‘i I< 1_(_:1(.t:.z+p,,‘,)-|-t-:z+p¢,¢=plm. (4.9¢)

Then, it follows from x°(¢, ) = x, that lx°(¢, 1 < p,. < pfgg-
k k k

Next, suppose that the control u(t) ==K x°(t) is used for all ¢t e [t, . T,), where ¢ is the
k k
time when the switch to the linear feedback control law takes placeand T,. 2¢, . Let the Lyapunov
k+1

function V () be defined by V(x°(¢)) & Ix°()P? a {x°(¢),0x°(t)). Then, making use of the matrix
M defined by (3.11) and (4.5b), we obtain that forall e [t , Tl
k
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V(E° () S —Auin®M)x® ()1 + 20K, ACQ 1 1x° ()13 + 2le (1)K, CQ1 + K. ACQ DIz (¢)l,

< |- AminM (1 - 205)x(2)l + 2le ()WIK.CO 1 + dAg;;(M))
Amax(Q)% Ann(Q)*

It now follows from (4.9¢) that kx°(¢, 1,k PI1< pfpr S7,/4 and that lz(z, 1S le(e W+ ko )
k [} k k k

]lx"(t)lz . (4.99)

+ le((tz ns 2(lx°(t; N+ lx{ D <v,, which implies that for all ¢ [t; , Tsoboc), le(t)1<¥,, by
Lemma 4.3. Now, it follows from (4.6d) that if Lx°(¢)1 > p g, then V(x°(t)) <0fort e [t; 2 Toel.
Since lx"(t; NSpror, we must have that Ix°(t)iSprop for all ¢ e [“i ,Toc] and therefore
u(t) =—K_ x°(t) satisfies the bound on the control.

Now let us consider the case (a). If we set T, = -, then we conclude from the above that
@) <prop fort 2¢, . Also, by Lemma 4.3, lxP(¢1)I S, for all £ 2¢_, which implies that x?(¢)
k k

is bounded. Since by Lemma 4.3, lim, _ Jz(t)1—0 as Ildl,—0 we must have that
1im, _, 1x?(t)} = 0 as kd L, — 0, which completes the proof of (a).

Next, let us consider the case (b). Suppose that there exists a K >& such' that
u(t)==K.x°(t), for all ¢ € [t, ,t), and max {41, xyl} >p,. Since Ix°(t)N<pop and
k

IxP(eN <Y, for all ¢ e [r, ,ty), and ¥, Spy, we have that xP(ty) € B,,, which implies that the
k

optimal control problem has a solution. Hence, by the first part of our proof, there exists a 2 sv

such that the switch to the linear feedback control law again takes place. We now resort to a con-

tinuity argument. If d(¢) =0 for all t e [z ,¢, ], then by Theorem 3.8, we will have that
'kl

max (Ix_1, lxg ,ﬂl } Spo.max{o, "2 } . Hence, by continuity of the solution of (4.5a,b), there
k ’

must exists a ¢”34>0 such that if lA@)N<c”;>0 for all te [ti , t; 1]' then
4 l+
max{Ilx_ |, Ixt '+z| } <poc Will hold, and hence the linear control law will be retained for the next
k‘+1

interval, [z, ,t, 1, and similarly, for all the intervals to follow, since ¢4 does not depend on .
k'+1 k‘'+2
Hence, if Id1., < c¢”4, then the linear control law will be used for all ¢z 2 ‘i » and therefore, by case

(a), we conclude that lim, _, ..lx? (¢)l = 0 and it completes our proof. ]

Next we tumn to the case where the disturbance is the output of a known dynamical system
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driven by stationary, zero mean, white noise. To obtain bounds on the disturbance effects, we must
assume that there are no modeling errors, i.e., that A? =A, B, =B and C? = C, and that the the
state of the plant can be measured. First we will consider the effect of disturbances which are gen-
erated by the initial state of an unforced, linear, time invariant system that is described by

x4(t) = Agx4(t) (4.10a)

d(t) = Caxy(t), (4.10b)

where 4; € R™™, C; e R™™. Since the input u () is bounded, we can only hope to reduce the
effects of bounded disturbances. Therefore, we assume that there exists a by <o such that
le*'1 < b, forall ¢ 20.

To estimate the state x4(t), we can proceed as follows. For all k € N and t € [#;, fx41] , let
e(t) be defined by e (¢) 3 xP(¢ , t , xP, u+d) —x(t , t; ,xE , u). Then

e(t) =Ae(t)+Bd(t), (4.10¢)

with e (t;) = 0. Combining (4.10a,b,c), we obtain that
d Xd(t) Ad 0 xd(t) - Xd(t)
@ [e(t) ]= [BCd A] [e(t)] 24 [e(:)] (4.10d)

xq(t c | t
e(t) = o 1] [ :((:)) ] [:((:)) ] : (4.10¢)
Obviously, when (C ,A) is an observable pair, we can use a reduced order estimator to obtain an

asymptotically converging estimate of the disturbance state x,(t). Then, assuming that

lu@)-d (N <c, for all ¢ € [#, t;41], where u(¢) is computed by solving the optimal control
problem P(x;_; , 1 , 0) the use of Control Algorithm 2.2 will result in asymptotically perfect distur-
bance rejection.

We now give a necessary and sufficient condition for (C_' LA ) to be observable.

Lemma 4.5. Let A and C be defined as (4.10d,). Then (C , A) is an observable pair if and only if
(BC4 , Ay) is an observable pair.

Proof. => We will give a proof by contraposition. Suppose that (BC; , A,) is not an observable
pair. Then there exists a nonzero vector z € IR™ such that
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BC,4Aiz =0, i =0,1, .... @.11a)

Nowletz 2 (z7,0)" € R™**. Then, because of (4.11a), we have that

N .
CA'Z = F A7 1BC4Ai2 =0, j=1,2,...,ng+n—1. (4.11b)
i=0

Furthermore C7 = 0. Hence (C , A) is not an observable pair.

<= Now suppose that (C_ .Z ) is not an observable pair. Then there must exist a nonzero
Z=(z,7)e R**", such that CA’z7 =0 for j=0,1,...,ny+n—1. Since C =0 11I), it is
clear that z’ = 0 must hold. Hence (4.11b) must hold, and unraveling this expression, we find that
(4.11a) must also hold, which completes our proof. (]

As an alternative to using a reduced order observer, at the expense of more computation, we can

get an exact estimate of a (¢) to be used to obtain perfect disturbance rejection, as follows. Let

[:,';:g; ot ] 8 exp(At) = exp { [;54 9 ]: } (4.12a)
so that w (1) = e and w(¢) = e#’. Hence (4.10¢) can be rewritten in the equivalent form

e(t) = wa(e)xa(fe) + w2t )e (i) = way()xa(te) - (4.12b)
Since the state of the plant is measurable, e(¢) can be computed for all ¢ € [t , #;,1]. Hence, if

Ix
L 3" 51 (T)w21(T) d7 is always invertible for some 6 > 0, then we can also compute x,(#; — &) using

the formula
o -1 .a
%t-8 = ([ whowamar]" [ wheemar. @.139)

We can then use x4 (¢, — 5) to compute the disturbance 4 (¢), for ¢ € (2 , tg41], using the formula:
ad (t) = CqeM O (0, - 8) A Cuxa(t) . ' (4.13b)
To establish the invertibility of the matrix LwL (Twai(t)d1, for all ¢ > ¢, we need the fol-

lowing lemma.

Theorem 4.6. Suppose that w;(¢) is defined as in (4.12a). If (C 4, Ay) is an observable pair and B
has maximum column rank, then, J: wli (t)yw 1 (x) dt is invertible for all ¢ > ¢,.

Proof. To simplify notation, let <_D(t ,T) éexp((t —1:)5). Since (5 ,I ) is a observable pair by
Lemma 4.5, the observability grammian for the system (4.10d,e), W (¢ , #;), defined by
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W, 1,8 j: &1, 1) CTCD(,1,)dx (4.14a)

is nonsingular for all ¢ >¢,. By substituting the expressions for C and @z , 1,) that are given by
(4.10e) and (4.12a), respectively, we obtain that

fwhi@wamar | whewnmd s [Wae 1 W 2

W, 1) = Wit ) Wt . t) (4.14b)

. wh@wn@dr [ whawamdr
Suppose that for some ¢ > t;, Wy,(¢ , #;) is a singular matrix. Then there exists a nonzero vector,
z € R™, such that W (¢ , t;)z = 0, and hence for 7 2 (z7 0)f € R™*",

2, W@, t)2=1{z , Wyt ,n)z)=0, (4.14¢)
which contradicts to the fact that W(z , ¢;) is positive definite matrix for all ¢ >¢#,. Therefore,

W11t , t;) is nonsingular for all ¢ > 1,, which completes our proof. O

" Thus, assuming that lu (¢) - a (l.Sc, forall t € [t , t;4]), where u () is computed by solv-
ing the optimal control problem P(x;_; , #;—; , 0) the use of Control Algorithm 2.2 will result in per-
fect disturbance rejection.

In reality, it is not likely that the disturbance d () is the output of a unforced linear time invari-
ant system. It is more realistic to suppose that d (") is the output of a linear time invariant system

driven by stationary zero-mean white noise, with an initial state x,(0), described by

X4(t) = Agxa(t) + Baw(t) (4.152)

d(t) = Caxs(t). (4.15b)

Letd(t) 2 Coe* x,(0) 4 Cyxa(¢) and let d5(t) A C, J’o'eM ~B,w (1) dt 8 Cyx4,(t) be the contri-
bution of the white noise term in (4.15a). Let E () denote the expected value of the random variable
E. Then we see that because E(w(t)) =0 for all ¢t 20, E (x4,(t)) =0 for all ¢+ 20. Hence (c.f.
(4.10d,e) and (4.12a,b)) we obtain that for ¢ € [ty , f41), & € N, E(e(2)) = wa (t)x4(t). Since
f_ A 2L (t)way(2)de is invertible for any 8 > 0 by Theorem 4.6, we can compute the estimate of the
disturbance d(t), fort € [t , #;41), according to

3 it)= Cde A‘(H"s)xd(tk - 8) , (4-16)

where x;(#; — ) is defined by (4.12a). Since E (x4,(t)) =0 forall t 20, E @ (1)) = E(d(t)) for all
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t 20. Therefore, we have perfect estimation of the expected value of the disturbance, which implies
that IEd()-d (M. = 0. In conjunction with Theorem 4.4, this fact leads to the following result.

Theorem 4.7.  Suppose that (a) 8, AA ,AB, Idl,, satisfy the conditions in Lemma 4.3, (b)
IK:AC 1< 8Apin(M), (c) that (4.8b) holds, (d) that pygr < (Poc — )/(1 +€4), Where pyy Was defined
in (4.8d), and (e) that we use Step 1'’ in Control Algorithm 2.2. Then for any x§ € B,,, defined in

(4.4h) (using the formulae (3.29), (4.4g)), the expected value of the trajectory x?(¢t ,0,x8,u) is
bounded and, furthermore, lim, _, .E(xP(¢t ,0,x§ , u +d)) = 0. D

5. TRACKING.

We will now examine the reference input tracking properties of our moving horizon control sys-
tem, defined by the error dynamics (2.4a,b) and Control Algorithm 2.2. At this point we must assume
that the matrix B in (2.4c) has full column rank.

Before we attempt a characterization of inputs which can be tracked asymptotically by our mov-
ing horizon control system (with bounded controls), we will extend a result due to Basile and Marro
(Bas.1], dealing with asymptotic state tracking of LTI systems without control constraints.

Lemma 5.1. [Bas.1] Consider LTI system (2.2a,b), and let S, be defined as in (2.3a). Then, S; is
the largest subspace among subspaces S IR” such that

AS +SCR(B), G.1
whereAS +S = {x e R"lx =x;+x,,forallx; € AS ,x,€ S }. 0

Making use of Lemma 5.1, we obtain the following straightforward generalization of a result in
[Bas.1].

Lemma 52. Let r ¢ R and consider the error dynamics (2.4c,d), with d (t)=0, and
F@)=-5(@)+As(t), where s()AH(CTC)YCTr(t). Then, there exists a continuous control
uy(t), t 20, such that for any initial state xy € lR",y(:)QCx(t ,0,x9,4)>0ast = oo,

Proof. Clearly, if there exists a control u,(-) such that x(¢ ,0,xq,%,) — 0 as ¢ = o, then, since
y(@)=Cx(,0,xq, u,), the desired result must hold.

We recall that by definition s(t) e S, for all z 20. We will now show that we also have that
§(t) € S;. Let z be a nonzero vector in the orthogonal complement of S,. Then forall ¢z >0,
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0=1(z,6E)-sO))= (z ,L's’(:)dt). .2

Since (5.2) holds for all ¢+ 2 0, we must have that (z ,s(t)}= 0 for all z. Therefore s(¢) € S, for all

t20.

Let u,(t) 8 —Fx(t) +v(¢) where F is any feedback matrix such that 6(4 — BF)<C? (with
O(A) the set of eigenvalues of A and C2 the open left half plane of the complex plain), and v (¢) is
defined by As(t) —s(t) + Bv(t) =0 for all £ 20. The latter is possible because s(t),s(¢) € S; and
AS; +S5;CR(B). Then, we have that x(t,0,xq,u,)=e%® ¥x, and obviously,

x(t,0,x0,u,) > 0ast — o, which completes our proof. O

So far, we have assumed that there are no constraints on the control. We have assumed in

Assumption 2.3 that for all € Ry and x € B, , the optimal control problem P(x , 0, 7) has a solu-
P

tion. To show that Control Algorithm 2.2 can be used for input tracking as well as stabilization, we

have to prove that for trajectories emanating from the ball B, , the estimated states x;,; defined by
P

(2.6) are in the set B, . To establish this fact, we will follow the pattern set up in Section 4. First, we
P

need the following definition.
Definition 5.3. Letc, € (0, ). WedefineR ; < Ry by
Ry = {r € Ry I max(sk., l5l) S ¢, ) , (5.3)
where s(¢) = H(CTC)'CTr(r). m]
Consider the error dynamics (2.4a,b) and its model (2.4c,d). We assume that the disturbance

d(t) cannot be estimated. Hence Control Algorithm 2.2 sets d =0. Since the more difficult situation

occurs when the plant state is estimated, we will assume that this is the case. First, we derive a result
similar to Lemma 4.1.

Lemma$54. Letre ﬁu. Consider the moving horizon feedback system nésulting from the use of
the Control Algorithm 2.2, with state estimation formula (3.5). There exist A;<oo,
i =11, 12, 13, 14, such that if Control Algorithm 2.2 constructs the sequences {xf} 2o {xx} £mts

and { X} gz is the corresponding sequence of the estimates of xP, defined by (3.5), then for all
k e N,

f -5 SApPl + 4, (5.42)
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by —xpl SApslxfl+ Ay .

(5.4b)

Furthermore, when there are no modeling errors and no disturbances, A;=0,i=11,12,13,14.

Proof.  Suppose that u(-) is the control generated by Control Algorithm 2.2 for the plant and model

trajectories associated with the sequences {xf} s, {xi}ia, and {X,) 5. For us to have a

similarity with Lemma 4.1, let us modify the error dynamics (2.4a,c) as follows.
Foragivenr € R y,lets(t) = HCTC)YETr(t). Let
u(t) =u(t) +ux),
where
ua(t) =(BTBY'BT(As(t)-5()).
Then, since fP(t)=-s(@)+APs(t)and f (t) = -5 (t) + As(¢), (2.4a,c) becomes

xP(t)=APxP(t) +BP(u (t) +d(t))+ (BP = B)u (t)+ (AP -A)s ()

BAPXP(t) +BP(uy(t) +d () +d,(t),

X() = Ax(¢) + B(uy(t)+4d (1)) .

Since max { Isl.,, Isl.} Sc,, itis clear that lu 1, is bounded. Then,
Mgl < b+ lusl Bc, .

Next it follows from (5.5¢) that

ldil..<(BP -BI1+1AP -Al), 2 Ay, .

We begin with (5.4a). Forany k € Nand any ¢ € [t , #;,1], y?(¢) is given by

yP(t) = CPeA’C4)yp 4 CP j: eA’¢ -9BP(y (1) +d(1))dT +CP j; eA’t -9 (v)de

= CeAUxp 4 (CPeA ¢ _CeAt My 3P+ C f“ eA¢ =B (u (1) +d(¥))dx

+Jf (CPeA’=BP _ CeAC-B } (uy(v) +d(x))dT

+C j‘: eAC =9 (t)dt+ J: (CPeA’C-D_CeAt -9} 4 (n)dr.

By substituting (5.5g) into (3.5), we obtain

(5.53)

(5.5b)

(5.50)

(5.5d)

(5.5¢)

(5.59

(5.5g)



Ex = 2P+ Wo(Bolte = 1)) {f (CeAt=W)T {CPeAt—4)_ CeAl-) gt xp
+ j: ' (CeAt YT j: CeA¢-YBd (1) +d,(V)dx
+ j: ' (CeAl —anT jf {CPeA™t-NBP _ CeAC =B } (uy(T) + d(1)dT dt

+ j:: ' (CeA¢ —tyT f“ (CPeAT¢-D_CeAl-9d (1) dT } (5.5h)

It follows directly from (5.5h) that
Ixf - x 1 SAIxPl +4,,, (5.51)

where A;; = A7, which was defined in (4.2d) and

(559

ApdAs+C max _ICPeA"¢-V-CeAC-N4¢ max _ 1Ce41) 8TAy |,
1224A% A[{'e[o'&ﬂ - } 8T Ay,

with C 5 & max, . (7. 7IW,(8of)"Imax, 10,57 1Ce*'l and with A’g replacing c, of Ag defined in
(4.2¢) with ¢, in (5.5e), which proves (5.4a). Clearly, when there are no modeling errors and no dis-
turbances, Ay = A3 = 0.

Next we will establish (5.4b). Since x,,, is calculated using the estimated initial state £ b it
follows from the Schwartz inequality in L,0,T] G.e.

Jy abydr < [Iora(t)zdt]” [Lrb(t)zdt]%) that

Py = Xpqql = 1eA = 0)yp_ pAla-t)g, +J:M eA"ia=1g (yde
+I:‘. (eAT@i=Upp _ pAla-1g |, 1(t)dt+f:" eA"ta=Nprg(rydl
SK f—x, 1+ Allxfl + A,
+ j: “leAT ) _ g Aty g W(Ohde + [: “leA®ONg ()1 de

+ j’: “1eA"®a)gp _ g AW 114 ()Idr + f " 1eAGTOB 114 (¢ )1de
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’

A =
<K {Ankﬂ‘l‘Au} +A1le|+A’2+ [ Vz—_-"l"KIBN;]Cd
YT

r

+ [K+ max_ Ie""-e"l]‘h—_‘Ad

tef0,T) !

A , A'z J: -
SKAHA) I+ KAy +4% + = +KIBIVT |cg +A,,
eNT

8 Apslxfl+Ay4, (5.5k)

where K, A| were defined in (3.1a,b) and A’, was obtained by replacing c, of A, in (3.1¢c) with ¢, in
(5.5¢). Hence (5.4b) holds, and our proof is complete. a

In Section 4, Theorem 4.2 was proved by making use of the results in Lemma 4.1 and Proposi-
tion 8.1. In the case of tracking, it is clear that if we replace Ag with A3 and A with A4 in the proof
of Theorem 4.2 and use Lemma 5.4 instead of Lemma 4.1, still using Proposition 8.1, then the con-
clusions of Theorem 4.2 assume the following form.

Theorem 5§.5. Letr e ﬁy. Consider the moving horizon feedback system resulting from the use

of the Control Algorithm 2.2, with state estimation as in (3.5). Suppose that A3, A, 4 satisfy the ine-
qualities

1-a
< —_— i
AsSa<TIoiK” (5-.62)
< (5.6b)
A& oK

where Aj3, A4 were defined in (5.5k), and &’ was defined in (3.2g). Let p, be as in (4.4h). Then, for
all xf e B,,, the trajectory xP(¢ ,0,x8 ,u+d), t € [0, «), is bounded, and there exists an €3> 0
such that €, = 0 as €, — 0, and lim, _, , Ix?(¢ , 0, x§ , u+d)I S &3. m]

Since the constants A;3, A4 depend on ¢, and the bounds on the modeling errors, we see that
there is a trade off involved in chosing a value for ¢,, namely, the larger c, the smaller are the model-
ing errors under which (5.6a,b) will be satisfied, while the set of admissible inputs ﬁu grows with ¢;.

In a similar way, the results of Theorem 4.4 can also be extended to the reference following
case.
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6. NUMERICAL RESULTS.

We will now present three examples that illustrate the performance of the moving horizon con-
trol system based on Control Algorithm 2.2, for a plant modeled by the state equations

.1
x'(t) 01 0
S00) = = 6.1a
x(t) = [xz(z) ] = [o 0 ]x(t)+ [1 ]u(t), (6.1a)
where u € U & {u e€L,0,=)lul,s1}). Control Algorithm 2.2 used the following optimal
control problem:

P(x;,2,0): .fnei’}; ‘/zj:((x(r vl Xe, u) Rx(t, g, xp , u)d+ (u(t),Su(t)) de (6.1b)
subject to
x(t,t,x,u)? =001l 12 <0, (6.1¢c)
(8, x, u)l? =100, 2 <0, Ve € [1,, 1], (6.1d)

wherete [ty +Tc .t +T), Tc =5, T = 40,

100
R = [0 l:| , (6.18)

and S = 2000.

All the computations were performed in double precision on a Sun 3/140 Workstation with a
floating point accelerator. For comparison, we used the example given in [Gut.1], which has only a
control constraint. Since the initial state was known, we solved the optimal control problem
P(xq, 0, r) off-line to obtain the initial control u(t),t € [0, ¢,].

Example 6.1. In this example we have assumed that the state can be measured and that there are no
modeling errors. Also, we assumed that r(¢) =0 and d(¢) =0. This is the case presented in [Gut.1],
where a piecewise linear control law was used, defined by

u(t) =sat [(L —k[01)P)x(t)], (6.2)

where L = —0.78 x 1073 x [4.47 94.61), k = 0.5 x 1075,

171 1433
P = h433 19435 |-
and sar () is the standard saturation function. The matrix L was obtained by solving a Linear
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Quadratic Regulator problem and P is a correction matrix. Figure 1 shows the resulting trajectories,
using both our strategy and the one in [Gut.1] for¢ € [0, 60) and x¢ = [10 10).

As we can see from the Figure 1, the trajectory generated by Control Algorithm 2.2 converges

to the origin faster than the trajectory given by [Gut.1]. The controls for both cases are shown in Fig-
ure 2.

Example 62. Next, we have again assumed that the state can be measured, that r(t)=0 and
d(¢) =0, but that there are modeling errors, viz. we assumed that the actual plant dynamics were

001 1 0.01
xP()= [ 0 0m]x(tn- [0‘99]140), (6.3)

while the model was as in (6.1a). For the initial state given in Example 6.1, in Figure 3, we compare
the trajectory, xP(t ,0, x§ , u), obtained by applying the control given in [Gut.1] with the trajectory
generated by Control Algorithm 2.2, Again, the trajectory generated by Control Algorithm 2.2 con-
verges to the origin faster. The controls for both cases are shown in Figure 4.

Example 6.3. In this example, we consider the case where there are modeling errors and the state
has to be estimated. Thus, we assumed that the plant was described by

. 0.002 1 0.002
xP@) = [ 0 0.003]x(t)+ [0‘99 ] u(t), (6.4a)

yP(t) =[0.99 0.0051x(z), (6.4b)

with x§ =[S 5]. The plant was modeled by the equations

) 1) 01 0

x(t) = [x-z(t)]= [0 0]x(:)+ [l]u(t), (6.4c)

y(@)=[1 Okx(¢), (6.4d)
Wiﬂ]x°= [2 2].

We applied Control Algorithm 2.2 and the resulting control u(t) and trajectory,
xP(t,0,x8,u),t € [0, 100], are shown in Figures 6 and 5, respective.

7. CONCLUSION.



Moving horizon control is a promising new idea for the control of nonlinear systems. In this
paper we have explored the properties of a moving horizon feedback system, based on constrained
optimal control algorithms, with the simplest possible nonlinearity, namely, input saturation. We
have shown that moving horizon control results in a robustly stable system, capable of following a
class of reference inputs and suppressing a class of disturbances. Our experimental results show that
the behavior of the moving horizon control system is superior to that resulting from altemnative con-
trol laws. The main remaining issue in the use of moving horizon control based on the solution of
constrained optimal control problems, is the time needed to solve the optimal control problems. This
should cause no difficulties in controlling slow moving plants, as in process control. For faster
plants, it will be necessary to implement the optimal control algorithms in some form of dedicated
architecture, so as to reduce to the solution time to acceptable levels.

8. APPENDIX I.
We will now establish two inequalities that form the basis of several of our proofs.

Proposition 8.1 Consider the second order scalar difference equation

Yes2 = @Y +a20,+b, ke N. (8.1a)

Ifa,,a220,b 20anda,+as<1,thenforallk 21,

YeSayo+y +b/(1-a; +ay), (8.1b)

and
limg ey $b/(1—a; +ay). 8.1¢)

Proof. We begin by rewriting (8.1a) in first order vector form, as follows. For k € N, let
2t = Ok, Yee1)T. Thenzg = (yo. 1), and

Zpa1 = [802 all} z + [g] 8Fy+g, (8.22)

Ye=[101z, A Hz, . (8.2b)

The matrix F has two eigenvalues, A, ,A_ = %(a, ‘Ja% +4a ), with corresponding eigen-
vectors, e, =(1,A,)7 and ey =(1,A)T. We will now show that —1<A_S0<A, <1, ie., that
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(8.2a) is an asymptotically stable system. By assumption

0<ajs<l-a;. (8.2c)
If we multiply both sides Of (8.2c) by 4, and add a # to the both sides, we get that

at +4a,<(2-a,)?, (8.2d)

which implies that A_ = '/z(a;-\'af +4a))>-1land A, = '/z(aﬁ‘Jaf +4a,) < 1. Thus, we have
that-1<A_SA,<1.

We can proceed to establish (8.1b,c). By the Jordan decomposition, we have that
F =E-AE, (8.2e)

where A =diag(A,,\), and E = (e, e_) is a matrix whose columns are the eigenvectors of F.
Hence for all £ 22,

yi = HE-'A*Ez,

- .
= 7\._-1-7\4- (AAAET =02 Ny o+ k- Adyy, ) + LEL igo(xf-l—a_u-l-.). 820

Since 0< A, <1 and -1 <A_<0, it is clear that (a) the first term in (8.2f) goes to zero as Kk — oo and
(b) the last term in (8.2f) satisfies the inequality

b k=1=i _ g k=1-i b 11 _ b
A=A EO(L A )SL-L 1-o. 1-A | 1-ay+ay’ (8.2g)

because (1 -A,)(1 -A) = 1 —a; + a,, which proves (8.1c).

Next, for all k21, Af<A,  and AP <Al Hence
{AAET = AE Tyl - A, S =A A = a2, Also A= AD/(_—A,) < 1, hence (8.1b) hold. O

9. APPENDIX 1.

The free-time optimal control problem (2.5a-€) has to be solved at every iteration of Control
Algorithm 2.2. The major difficulty in solving this problem stems from the fact that functions such as
Lx(¢,0,xq, u)I? that are convex in u, are not convex in ¢ and hence optimal control algorithms,
such as the phase I - phase I algorithms described in [Polak-Mayne, Pol.3]}, can only be counted on to
find local minima for this problem. This difficulty can be eliminated by solving a sequence of
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convex, fixed time optimal control problems, constructed using an interval bisection technique,
whose solutions converge to the desired optimal solution of (2.5a-¢), as follows. An important aspect
of phase I - phase I algorithms, such as those in [Polak-Mayne, Pol.3], is that when a fixed-time
optimal control problem has no solution, then they produce a control which minimizes the maximum
constraint violation.

Algorithm 9.1.

Data: x,€B,,t;andT suchthatT —1,>TcandSe (0, T ~T¢c —1,).
P

Step0: Seti =0,%9=T,Tyn=t+Tc,and Ty =T.
Step 1:  Solve the problem (2.5a-¢) with 7 fixed at the value T = 7;.
Step 2:  If the computed control, 4;(-), does not satisfy all the constraints in (2.5a-¢),
min =T » T nax = 2%; , and T;41 = T pnax ifT; = Thax
set {;'min =1 and Ty = (T; + T a2, otherwise.
Else, set T pex = T; and ;41 = (T g + T;)/2.

Step 3: If (T max = Tmin) SO, set 41 =T =T, set u[,,,;m](t) = u;(¢) for t € [t , 1341], and
stop.

Else,seti =i +1and goto Step 1. 0O

Since by definition of §, the original free-time optimal control problem has a solution, it is clear
that Algorithm 9.1 terminates after a finite number of iterations.
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Figure 1. States vs Time
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Figure 3. States vs Time with perturbations
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Figure 5. States vs Time with State Estimation
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