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REAL TIME STATISTICAL PROCESS CONTROL

FOR PLASMA ETCHING

by

Hai-Fang Guo

ABSTRACT

Process variations in semiconductor manufacturing are responsible for degrading

product quality and for limiting the competitiveness of the enterprise. In order to achieve

tight control of the manufacturing process, a reliable and sensitive control procedure must

be applied. One such approach- Statistical Process Control (SPC)-is playing an impor

tant role in this direction.

Statistical Process Control was introduced over 60 years ago by Walter A. Shewhart.

Although it had a tremendous impact on manufacturing, the data available for SPC six

decades ago are quite different from the data available now. With the help of automated

sensors and computers, real time data can be collected from the process. This change

along with others makes the traditional SPC approach unsuitable and necessitates several

modifications. Thuseven as SPCis transforming IC production, the special needsof semi

conductor production are transforming SPC [1].

This report presents a real time multivariate Statistical Process Control scheme that

takes full advantage of real-time sensor data, which are collected from a single-wafer

plasma etcher via the SECS II communication protocol. The scheme combines a time

series model with Hotelling's T2 statistic and produces a single parameter which carries

information about thestability of theprocess. This parameter can then be applied to a stan

dard process control chart. The method has been applied to a Lam Research Rainbow



Etcher and has successfully detected several introduced faults.
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Chapter 1 Introduction

1.1 Background and Motivation

To be successful in today's marketplace, a manufacturer must be able to consistently

produce high quality, low cost products. Consequently, the Integrated Circuit (IC) manu

facturing community is focusing its resources on achieving tight process control over crit

ical manufacturing steps. Many tools and techniques are being used toward this end.

Statistical Process Control (SPC) is prominent among them, as it can help in the timely

detection of costly process shifts.

Historically, SPC has been used with process measurements in order to uncover

equipment and process problems. Such problems are manifested by significant degrada

tion in equipment operation and product quality. To discover this degradation, critical pro

cess parameters are monitored using various types of control charts. Traditionally, the

measurements consist mainly of in-line readings collected from wafers after the comple

tion of the process step in question. This method is helpful in detecting process drifts;

however, it is not timely enough since there is significant delay between theoccurrence of

a drift and the resulting alarm. As production volume increases, faster response to process

drifts becomes necessary in order to assure high product quality and low cost. In addition,

obtaining in-line measurements formulti-chamber (cluster) equipment is even more com

plicated and further reduces equipment reliability and efficiency. Other kinds ofdata, such

asreal-time sensor data, aremore desirable forquality control purposes [1].

Modern semiconductor manufacturing equipment can communicate internal sensor

readings over standard RS232 ports using the SECSII protocol. This capability has been

recognized as crucial for the diagnosis ofequipment failures, and for the improvement of

the overall product quality [2]. Unfortunately, in a high volume production facility the
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monitoring of multiple sensors results in an overload of information. Further, most of the

popular SPC strategies cannot be applied to the real-time sensor readings, since these

readings usually show non-stationary, auto-correlated and cross-correlated variations. A

special type of SPC procedure is therefore needed to automate the processing of multiple,

real time sensor data.

This report describes the development and the applicationof a novel SPC method used

for the control of sophisticated semiconductor manufacturing equipment. This method

uses time series filters [3] and multivariate statistics [4] to process internal machine

parameters such as the position of the load coil, the tune vanes, the throttle valves, etc.

These parameters are sampled several times per second, and the readings are filtered using

a time series model. The filtered readings are then combined into a single variable with

well defined statistical properties [5]. The value of this variable is calculated every few

seconds, and is plotted against formally defined control limits. Real-time misprocessing

alarms generated in this manner allow an operator to interrupt faulty runs and prevent any

adverse effects on the equipment or the product. This alarm may be then used to initiate

automated diagnosis [6].

This method has been applied on a Lam Research Rainbow single wafer plasma

etcher, and it has successfully responded to several types of nonstandard process condi

tions that were introduced in a controlled fashion. These include mismatched RF compo

nents, different loading factors, gas leaks, and several miscalibrations of the equipment

controls.

1.2 Thesis Organization

The report is structured as follows: Chapter 2 presents an introduction to SPC and

some related concepts. Chapter 3 describes the real-time, multivariate SPC approach,

which includes the time series model and Hotelling's T2 statistic. The real-time multivari-



Chapter 1 Introduction 3

ate SPC procedure has been applied on a Rainbow 4400 etcher and the results are pre

sented in Chapter 5, along with a brief description of the Rainbow Etcher from a process

engineer's perspective. Chapter 6 contains a summary and some suggestions for future

extensions of this work.



Chapter 2 Traditional Statistical Process Control

2.1 Introduction

The conceptof statistical control of a production sequence was introduced in 1924 by

Walter A. Shewhart of the Bell Telephone Laboratories [7]. Statistical processcontrol is a

collection of methods whose objective is to improve the qualityof a process by reducing

thevariability of its criticalparameters. A control chartis among the tools whosefunction

is "to supply a continuous screening mechanismfor detecting assignable causes of varia

tion1' [3].

The basic concepts of SPC are presented in Section 2.2. The traditional SPC tool, the

Shewhart control chart, is introduced in Section 2.3, along with the assumptions associ

ated therewith. The applicability of this approach is further discussed in Section 2.4. The

concepts introduced in this chapterare used lateras the basis of the real-time SPCproce

dure.

2.2 Basic Concepts

2.2.1 State ofStatistical Control

The state of statistical control is defined byDr. Shewhart's statement that"aphenome

non willbesaidtobe controlled when, through the use ofpastexperience, wecan predict,

at least within limits, how the phenomenon may beexpected to vary in thefuture"[%\. Any

process, no matter how well it is designedand howcarefully it is maintained, there will be

subject to some natural variations dueto secondary, butunavoidable causes. Butas long as

these variations are"nothing but the routine run by run variation," [1] theprocess is con

sidered to be in the state of statistical control. This means that the future behavior of the

process can be predicted within acceptable limits based on the knowledge acquired from

past observations from the same process.
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222 Assignable Cause and Chance Cause

When a process is in statistical control, there is only natural variation or "background

noise" because of mechanisms known as chance causes. Ideally, a process will only be

affected by chance causes; sometimes, however, a process can drift away from its normal

level of operation, due to assignable causes such as significant environmental changes,

miscalibrations of a machine, variations of the raw material, or human error. Assignable

causes make a process unpredictable or cause it to loose the state of control as defined in

Section 2.21. The main purpose of SPC is to detect an assignable cause and remove it as

soon as possible in order to prevent quality degradation.

22.3 Cause-and-Effect Relationship

There is a cause and effect relationship between the existence of an Assignable Cause

and the quality of a manufacturing process. Although critical parameters and process con

ditions vary for different processes, the output of a process will have its minimum varia

tion when the critical parameters of the process remain constant. Consequently, if a

process drift is discovered, then there must be some cause behind it, which can be directly

attributed to the process parameters, in other words, "process variables can be utilized in a

statistical fashion to estimate the quality of a process" [2]

This cause-and-effect relationship between assignable causes and process quality

forms the basis of the traditional statistical process control as well as the real-time multi

variate SPC.
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2.3 Traditional Control Charts

There are many types of control charts such as the Shewhart control chart, the

CUSUM chart, the Geometric Moving-Average (GMA) chart, etc. Below we discuss the

Shewhart control chart.

2.3.1 Shewhart Control Chart

A control chart is a graphical representation of a statistical "hypothesis test" that is

based on a set of data. The chart requires for its operation information about the routine

process conditions, as summarized by the mean and the standard deviation for each of the

parameters of interest. These values are estimated from data collected when the process is

in statistical control. Figure 1 shows an X chart, which is a chart for the arithmetic average

and it is usually used in conjunction with a range control chart (R chart) in order to control

the location as well as the spread of a process parameter.

Figure 1. An X Chart
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2.3.2 Statistical Basis of the Control Chart

The introduction of the Shewhart control chart played an important role in the history

of quality control and reliability. It introduced an objective method to detect the significant

departure of a product parameter from past observations. From a statistical point of view,

SPC casts the decision-making process as a formal hypothesis test. A statistical hypothesis

is a statement about the values the parameters generated by a probability distribution [1].

A formal hypothesis test is a very useful tool for many process control problems and also

forms the basis for many statistical process control schemes. The null hypothesis (Hq) in

this context states that the process under consideration is under statistical process control,

while the alternative hypothesis (//a) states that the process is out of statistical process

control. To test these hypotheses, a random sample x is selected from the population of

interest, and the suitable test statistic is calculated. The resulting score is tested against sta

tistically defined limits, which are listed in Equation 1. The range of values that lead to the

rejection of a hypothesis is called the criticalregion or the rejection region. For the simple

Shewhartchart, the limits used to validate Hq are given below:

UCL = li + Znc-
X

2

center line = ^i

LCL = \i-Zno- 0)
~ Ct vx

2

where a is the type I error

Where a is the probability of rejectingHq by mistake, an occurrence known as the

type I error. The probability of accepting Hq by mistake is know as the type II error. A set

of additional rules developed by Western Electric, called the Western Electric Rules, helps

engineers to effectively interpret control charts [9].
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An X chart is shown in Figure 2 with the distribution that illustrates its hypothesis test

ing nature.

Figure 2. Hypothesis Test

A simple control chart is a device that uses datato test a hypothesis about a population.

This discussion leads to next topic of this chapter, which introduces the assumptions

needed for the application of a simple control chart.

2.3.3 Assumptions

A simple control chart tests the hypothesis for each of the data points using the same

control limits. This means that all the data points under the test are being treated in the

same way. Thus all data points must come from the same population. One of the assump

tions associated with a simple control chart is that the data must be Identically, Indepen

dently and Normally Distributed. This is known as the IIND assumption. In order for the

data to satisfy the IIND assumption, they must be consistent with Equation 2. This means
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that they must be normally distributed around the mean value |i with a standard deviation

a.

Xf =\i+et

where t - 1,2,... (2)

et~N(0,o2)

The IINDassumption is essential for the simple control chart, and without it the results

would not truly reflect the process condition. It is this assumption that prevents us from

applying the simple control chart to real-time sensor data, since such data are not IIND.

2.4 Problems

The IIND assumption covered in last section, restricts the application of the simple

control chart. These control charts can only be applied to data points which come from the

same population and are independently selected. Unfortunately, this assumption is not

valid for real-time sensor data which are most likely to be both auto-correlated and cross-

correlated.

To solve these problems, new statistical process control schemes are needed. A real

time multivariate SPC schemewill be presented in the next chapter.
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3.1 Introduction

The most popular SPC methods are based on the conventional Shewhart and CUSUM

(Cumulative sum) control charts. However, one of the most important assumptions in

using these schemes is that the data generated by the in-control process are Identically,

Independently and Normally Distributed. This assumption is known as the IIND assump

tion and it plays a central role in SPC. The IIND assumption makes it improper to apply

the traditional control charts to the real-time data directly, since real-time data are usually

non-stationary, auto-correlated and cross-correlated, in the case of multi-parameter con

trol, even when they originate from a process that is under control.

Modifications are therefore necessary in the traditional SPC scheme. Most modern

equipment has an automated data acquisition capability that can generate an avalanche of

real-time information. This information must be processed properly and efficiently. As

process volume increases, instantaneous detection of process drifts becomes necessary as

well.

To accommodate this situation, a SPC scheme is developed and applied to a test pro

cess. This scheme employs Econometric Time Series models and Hotelling's T2 statistic

[6]. limeseries models transform data into IIND signals; Hotelling's T2 statistic combines

the multiple IIND signals into a single, well behaved statistical score. This scheme is capa

ble of generating alarms on a real-time basis, and thus is able to prevent misprocessing.

The time series model and Hotelling's T2 statistic are discussed in Section 3.2.2 and

Section 3.2.3, respectively. Section 3.2.4 summaries the scheme and describes its imple

mentation.
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3.2 Time Series Modeling

A model is an algebraic statement that describes the statistical relationship between a

variable of interest (such as an output) and other variables (such as inputs). A time series

model describes the statistical dependency of the current observation on several previous

observations [10].

32.1 Time Series Data

A Time series consists ofobservations generated at regular time intervals. Data col

lected from most modern semiconductor manufacturing equipment can be classified as a

time series. These data can be auto-correlated. Such auto correlation might result by syn

chronizing readings with control actions. Modern equipment usually uses feedback con

trol mechanisms to control critical parameters, such as the gas flow through the chamber

of a plasma etcher. The sensors in the control loop sense the deviation of the parameter

from the standard or target value. The controller tends to compensate (offset) the deviation

by opening or closing a valve within the mass flow controller. Thus, if sampled on proper

intervals, a high reading is likely to be followed by a low value and vice versa. Auto corre

lation might also result from a high sampling rate. With the help of the SECS II protocol,

equipment can collect real-time data up to a rate of several Hz. At this rate, the monitored

parameters are subject to "inertia" [11], so a high reading will be followed by another high

reading. Figure 3 shows a sample time-series with a periodic pattern. In these two cases,

the data cannot be described by the following Equation 2, unless we generalize it as fol

lows:

Xrf(Xti,Xt2,...,et_i,et_2,...)+et
where r= l, 2,... (3)

er~W(0,a2)

The auto-correlation coefficient describes the statistical dependence of one observa

tion on previous observations and takes values between 0 and 1. A zero value will be
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obtained when the observation of interest is independent from other observations, while a

value of one indicates complete dependence. The following equation defines the auto-cor

relation coefficient between two readings that are k sampling intervals apart. This coeffi

cient has been calculated using N consecutive observations.

r*=

125.00-

120.00-

115.00-

110.00-

105.00-

100.00-

95.00-

90.00-

85.00-

80.00-

N-k

I (Z,-z> <z,+*-z>
r_n\

N

^(ZrZ)

Where k = 1,2,...

= 2

X Graph
Heflow

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

Figure 3. Sample Time-Series Data With Periodic Pattern

(4)
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32.2 Objectives ofTime Series Modeling

For the two cases described in the last section, the data are auto-correlated; thus the

observations in the time seriesare not completely random. In fact, an observation is statis

tically related to the previous observation and can be predicted with certain accuracy, if

this statistical relationship is known. The objective of time series modeling is to find this

statistical relationship and use it to achieve [12]:

• Description - describe the features of a time series process.

• Explanation - infer the structuralrules of behavior.

• Prediction - forecast future readings.

• Control - investigate the effects of changing model parameters.

In this project, the main purpose of the time series modeling is to find suitable models

to filter real-time data used for statistical process control. The methods used to obtain the

models are discussed in the next section.

32.3 Approach - Univariate Box-Jenkins Analysis

In this application, we employ univariate Box-Jenkins time series analysis (named

after George E. P. Box and Gweilym M. Jenkins who introduced this procedure). The rea

son for using only univariate analysis is that the time-series behavior of one parameter can

be explained by using only the past observations of this parameter. A Box-Jenkins time

series model is also called an ARIMA(p, d, q) model, since it consists of three components

(or filters) as illustrated in Figure 4. These components are the auto-regressive part (of

order p), the integration part (of order d), and the moving-average part (of order q) [5].
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Integration

Filter

Auto-

Regressive
Filter

Moving-
Average

Filter

Figure 4. The Three Components of the ARIMA Model

The general form of the ARIMA(p, d, q) model is given below:

<(»(B)wr =6(5)fl

9(B) =i-e1B-e2B2-... e Bq

wrV*zt where (dzo)

Difference Operator: Vz -2 -z

Backward Shift Operator Bz -z

Chapter 3

(5)

where zt is the original data, wt is the differentiated signal anda is the IIND residual.

A condition for applying a time series model is that the signal must be stationary. This

means that the mean, variance and autocorrelation function of the time series must be con

stant through time. The integration component of the ARIMA model as described above is

used to convert a non-stationary data series to a stationary one, as the autoregressive and

moving average models can only be applied to a stationary series. The differentiation can
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be used to achieve constant mean; taking the log or square root of the data might also be

necessary in order to produce a constant variance.

The second part of the ARIMA model is the auto-regressive (AR) part, which

describes the dependency of the currentobservation on previous observations, through the

parameters <fy, i = 1,..., p.

The third part of the ARIMA scheme is the moving-average (MA) part, which

describes the dependencyof the current observation on previousrandom shocks, by means

of the parameters 9y, j =1,... q.

Sometimes the original data show seasonal periodic patterns - similar to the data

shown in Figure 3. These patterns canbe modeled by creating ARIMA models for the sea

sonal variation as well as for the individual samples. The compositemodel is known as a

Seasonal ARIMA model orSARIMA(p, d, q)x(P, D, Q)s, where p is the number of signif

icant autocorrelations, d is the number of differentiations, q is the number of significant

random shocks within each season, and P, D, Q are the autocorrelations, differentiations

and moving average terms, taken across seasons of duration s [14]. The complete

SARIMA(p, d, q)x(P, D, Q)s is shown in Equation 6.

<|> (B) O(8s) wt =0(B) 0(#*) at (6)

A model must be obtained from the collected data when the process is under control;

in this way the model describes the "good" process. Once amodel has been developed, it

can be used to forecast (or predict) each new value. The difference between the forecast

value and the actual value is the forecasting error, which is, by definition, an IIND (Identi

cally, Independently, and Normally Distributed) variable. The residual or random shock is

thedifference between the real-time data and the value predicted by the model:

residual: a s Y - Yt (7)
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3.2.4 Modeling Procedure

In order to assist the user in obtaining a "good" ARIMA model, Box and Jenkins pro

posed a 3-step procedure. The procedure is outlined in the following figure [10].

Select ARIMA
model or models as
candidates

Estimate the parameters
of the model selected
at step 1

Check the adequacy
of the model(s)

Step 1 |
Identification r^

"

Step 2 |
Estimation 1

1'

Step 3 |
Diagnostic Checking 1

^^is model^^v.Use Model | Yes
tor control |M ^^adequate?^^^

^S

Figure 5. The 3-Step Procedure for ARIMA Modeling

Two devices are used to select the ARIMA models - the autocorrelation function (acf)

and the partial auto-correlation function (pacf). Both are calculated from the data and are

compared with the theoretical acf and pacf patterns from known model structures. Once

the structure of the model is established, the parameters of the selected models are esti

mated at the estimation step. At the diagnostic and checking steps, similar devices are

used to check the adequacy of the selected model. If the models are not statistically ade-
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quate, the procedure is repeated. The procedure terminate when a satisfactory model is

obtained.

3.3 Hotelling's T2 Statistic

3.3.1 Correlated Data

While auto-correlation was used as a measure of the dependence of a variable on its

past, correlation measures the dependency of one variable on the other variables. If sev

eral sensors are employed at the same time, their readings are very likely to be cross-corre

lated. For example, pressure readings of a plasma etcher are likely to be related to gas flow

readings in the same chamber. Such a chamber pressure is plotted against the helium flow

in Figure 6. The plot shows the cross-correlation between the two parameters in one par

ticular experiment.

C&se ;Hartitopy JAbout

t^ 2.C0* -"•i"— ......J~-^....,„•.,—~

: tiO.Gfi-
« »»v. . . ,

; 108.G0 ~~4-.~v
; 108.80- j ——— t

102.C8 ; •-—

10G Q£}""*--'-«'*-'i»*»*'k'*•*-*•«• —**—*«-»* >»••).« m.im»>k«.«.i«w.|

3«oo-

\ 32v09 .

3D.DO" •**" {• -

f&PO USD 3.9..PQ,

•U>res5

13 SB
XMO3

Figure 6. Sample cross-correlated data: chamber pressure plotted against He flow
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3.32 Objective

Because multiple readings tend to be correlated, using a number of separate control

charts can be misleading. It has been shown that as the number of correlated variables

increases, the probability of generating false alarms from a control procedure that uses a

large number of separate charts grows significantly [7], Also from a process engineer's

point of view, parameters that are tightly related should not be interpreted separately. In

the case of plasma etching, for example, forward and reflected RF power readings are very

closely related and treating them separately can lead to underestimation of type I and type

II error rates.

The objective of Hotelling's T2 statistic is to combine several cross-correlated vari

ables into a single statistical score, which is simply the square of the maximum possible

univariate t computed from any linear combination of the various outcome measures [4].

3.3.3 Approach

Hotelling's T2 statistic is awell defined variable that represents acombined score for

many, possibly cross-correlated variables. This score is calculated by grouping n readings

of each of p cross-correlated variables:

12 =n(X-X)TS~l(X-X)
where group mean X =pc,... jc 1

~T

(8)
nominal value X =pc, ... xJ

variance-covariance matrix S =

2
... TJ, ... s

2
s ... s

The distribution of the T2 statistic is related to the F distribution as follows:
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^ p(tt-l)F
a,p,n-i n_p ccp./i-p

19

(9)

This statistic takes a low value when the cross-correlated structure of the underlying vari

ables remains constant. The T2 score isvery sensitive to any change in one ormore ofthe

variables. This score can be used in conjunction with a one-sided control chart, whose

limit is set according to the number of variables, the sample size and the acceptable false

alarm rate.

3.4 Summary and Implementation

The real-time SPC scheme takes multiple sensor data that are auto-correlated and

cross-correlated, and then feeds them into individual time series filters that result in multi

ple, cross-correlated IIND residuals. The Hotelling's T2 filter then combines the residuals

into a single real-time alarm signal. This alarm signal can be used to initiate the BCAM

diagnostic module [5]. This scheme is shown in Figure 7 [15].

Multiple

Non-stationary
Raw Data

Auto-correlated

Cross-correlated

Multiple

IIND

Residuals

cross-correlated

Figure 7. Summary of the real-time SPC scheme

Single

Alarm

Signal
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A software package has been developed to implement this real-time SPC scheme. It

includes three modules —data manipulation,ARIMA modeling, and Hotelling's 7* calcu

lationand alarm generation. It is implemented both in SAS [16] and RS/1 [17]. Portionsof

the SAS code are attached in Appendix 3.1 - 3.3.



Chapter 4 Application Examples

4.1 Introduction

Experiments are conducted to test the applicability of the real-time SPC scheme. To

date it has been successfully applied on a Lam Rainbow plasma etcher, and it has been

able to detect internal machine shifts that cannot be seen with the classical SPC proce

dures using wafer measurements.

4.2 The Test Vehicle - the Rainbow Etcher from Lam Research

The Lam Research Rainbow etcher is a state-of-the-art single wafer tool. There are

three basic Rainbow machines, with applications for polysilicon, oxide, and metal films.

The equipment provides automated processing of 4" through 8" wafers. For the experi

ment reported here, 6" inch patterned polysilicon wafers were etched using a C/2-based

polysilicon etch recipe [18].

Through the SECS II protocol link a remote host can communicate directly to the

Rainbow in order to acquire real-time analog data. The data conversion is done using the

LamStation software package provided by Brookside Software Co. [19]. Up to 32 separate

parameters can be sampled simultaneously with rates of up to 3 Hz. For this experiment,

we monitored signals from the RF network because we found them to be very responsive

to small process changes. The major functional components of the Rainbow RF network

are shown in Figure 8 [20].
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4.3 The Experiment

Two phases of an experiment designed to test the real-time SPC procedure have been

completed to date.

The first phase of the experimenthad two objectives. The first objective was to select

the proper (most sensitive) parameters from all the available sensor readings and to find

the proper time series models for the parameters. The second objective was to detect the

introduced fault. This experiment was conducted at Lam Research's Qualifications Lab

using a Rainbow etcher. First, the machine was calibrated to its "best" operating condition

by running over one hundred wafers. Four polysilicon wafers are processed afterwards.

These four wafers formed the baseline wafers, and as such they were used to select and

characterize the appropriate time series models, and later to estimate the means and the

variance-covariance matrix of the residual for the Hotelling's T calculation. Following

the baseline wafers, one wafer with a different loading factor - photoresist instead of poly

silicon, was processed.

During the second phase of the experiment, the objective was to refine the time-series

models, and to test the scheme by introducing, one by one, a number of "faults" into the

process. Again, over one hundred wafers were processed to set up the proper process con

dition. Eight baseline wafers were etched before introducing faults. For each fault two

wafers were processed, and the machine was then switched back to the baseline condi

tions. Two additional baseline wafers were processed before introducing the next fault.

Several faults were introduced, including the replacement of several RF components with

miscalibrated ones, miscalibrated recipe settings for the electrode gap, the pressure, etc.

Chamber contamination was also introduced by not cleaning the chamber at the recom

mended intervals.
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The main steps in establishing the control scheme during each of the two experimental

phases are described in the following section.

4.4 Selecting the Relevant Sensor Readings

Originally, we collected readings from more than 25 parameters. Applying all of them

into the scheme, however, proved to be too complicated and also unnecessary, since only

some of them carried useful information. The criterion for selecting the relevant sensor

readings was that the parameter must have some physical significance,and it also must be

suitable for time series modeling. This meant that after applying a reasonably simple

SARIMA model to the parameterreadings, the resulting residuals should be IIND.

Five parameters were finally selected. They were the position of the RF tune vane, the

positionof RF load coil, the RF phase error, the plasmaimpedance, and the peak-to-peak

voltage across the electrodes. As shown next, the statistical behavior of these readings

conveys a comprehensive picture of the etching conditions.

Otherreadings of significance, suchas the RF power, the chamberpressure, or the gas

flows, were not used. We found that, since these parameters were actively controlled by

the machine to fixed set points, their readings were very insensitive to internal machine

changes.

4.5 Fitting the SARIMA Model

To build the SARIMA model we used the real-time data from the baseline wafers. The

readings shown in Figure 9 were collected while processing the baseline wafers for the

first experiment. It is obviousthat the readings are not stationary, and that they havea sea

sonal pattern that repeats during the processing of each wafer. The seasonalcomponentis

evident from the patterns that can be seen repeating in each of the four baseline wafers.
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Having decided to use a SARIMA model, it is important to select the appropriate

model structure for each of the five parameters. Using the SAS statistical package, this

task was accomplishedby trial anderror, until the reading residuals were IIND. The model

structure selected was the SARIMA(0,l,l)x(1,1,0)50, as listed in Equation 10. Although

we used different coefficient values Oj and&i for each of the five parameters, the same

structure was applicable to all five.

t V t t-V t-60 t-6l' !

[(y _y )_(y _y )l+9,a,
lV f-60 t-6V V f-120 r-12l'J l t-l (10)

where O is the seasonal AR coefficient

8 is the MA coefficient
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Figure 9. The Original Real-time Data for the Four Baseline Wafers
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The residuals at, defined as the real-time data minus the fitted SARIMA model as

shown in Equation 7 of Chapter 3 are IIND; thus they can be used in traditional SPC pro

cedures. The residuals for the five observed parameters are plotted in Figure 10.

4.6 Applying Hotelling's T2 Statistic

In order to use Equation 8ofChapter 3 to calculate the T2 statistic, it is necessary to

estimate the mean values and the variance-covariance matrix for the five residuals. These

values have been obtained from the baseline wafer data using SAS. The T2 statistic can be

applied to aHotelling T2 control chart. This single-sided chart can then respond to process

drifts by generating an alarm, whenever the T2 score takes values beyond the upper con

trol limit.

4.7 Experimental Results

4.7.1 First Phase of the Experiment

The T2 statistic obtained from the first phase ofthe experiment isplotted in Figure 11.

Wafer *3 Wafer 14 Wafisr #5

UCL = 9

10 15

Figure 11. The T- Control Chart for the First Phase of the Experiment
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Since the fifth wafer had poorly developed photoresist on top of the polysilicon, the

loadingfactor is different from that of the baselinewafers; thus the plasma parameters are

different. This process change was detected by the T2 control chart by generating a score

that easily exceeds the UCL of it

4.72 Second Phase ofthe Experiment

The results for the second experimentwere also conclusive, as shown below in Figure
12.

Yxl(? X Graph
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Wafer 23-24 Miscalibrated Pressure

Wafer 25-26 Miscalibrated Flow

Wafer 27-28 Sense Relay #2
Wafer 29-30 Sense Relay #3
Wafer 31 -32 Chamber Contamination

Wafer 33-34 Out-OfT Specification Cable

30 35

UCL-30
xct = 0.05

Figure 12. The T2 Control Chart for the second phase of theExperiment
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The faults associated with the alarms are shown on the plot. This scheme is able to

pick up most of the process faults thatwe haveintroduced. The significance of this scheme

is thatit can detectvery slightprocess changes which might affect the performance of the

machine, but cannot be seen on traditional control charts of etch rate or uniformity. Such

control charts are shown in Figures 13 and 14.
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Figure 13. The Etch Rate Control Chart.
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Figure 14. The Etch non-Uniformitv Control Chart

The two alarms observed in the non-uniformity chart were traced to wafer problems

that were unrelated to our experiment.



Chapter 5 Conclusions and Future Plans

We have presented a novel application of real-time statistical process control for mon

itoring state-of-the-art semiconductor manufacturing equipment. Through actual monitor

ing examples, we have shown that this technique can successfully flag internal machine

variations long before their effects can be seen on the wafers.

Because of the ability of this technique to observe changes within the internal opera

tion of the machine, we also expect it to be useful in driving an automated diagnostic

package that, in real-time, would be able to supply more information to the operator.

Adjustments, maintenance scheduling, and further investigation might be planned by the

operator based on this information.

Although not reported here, a third experiment is currendy under way. Its objective is

to quantify the sensitivity of our procedure. To this end, we have introduced miscalibra-

tions of varying sizes and are currendy analyzing the results.

The T charts that were presented here have been obtained off-line. Currently, we are

working on the real-time implementation of this scheme. Since the only operations that are

taking place in real-time involve the evaluation of the SARIMA forecasting error and the

computation of the T2 score, we feel that aworkstation with moderate capabilities will be

able to easily monitor up to 3 samples/second. Operation beyond this speed, will be lim

ited by the bandwidth of the SECS-II serial port.

We are currently implementing this scheme as part of the Berkeley Computer-Aided

Manufacturing system. BCAM is a Unix-based CAM framework that supports monitor

ing, modeling, real-time and in-line model-based SPC, diagnosis and feed-forward feed

back control. This system is being implemented on Sun4 and IBM RS6000 workstations
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for the concurrent control of multiple equipment operating alone or in workcell configura

tions.
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SAS Implementation of the Data Manipulation Module

SPC module of BCAM;

Copyright (c) 1989 Regents of the University of California;

Permission to use, copy, modify, and distribute this software and its;
documentation for any purpose and without fee is hereby granted,;
provided that the above copyright notice appearin all copies and;
that both that copyright notice and this permission notice appear in;
supporting documentation, and that the name of the University of;
California not be used in advertising or publicity pertaining to;
distribution of the software without specific, written prior;
permission. The University of California makes no representations;
about the suitability of this software for any purpose. It is;
provided "as is" without express or implied warranty.;

Author: Hai-Fang Guo;
$Revision: 1.0 $;
$Date: 91/05/17 17:04:01 $ ;

**/;

*** USED TO SELETE THE WINDOW FOR ANALYSIS - THE ETCHING STEP;
*** USE THE RF FORWARD POWER AS STANDARD TO SELECT THE WINDOW;
*** IN THIS CASE, C14;

DATAPAKTSUB;
SET SASDATA.TOTAL;
RETAIN INDO;
POWER=270;
HIGH=1.05*POWER;
LOW=0.95*POWER;
IF TEST="MATCH2" OR TEST ="BASE4" OR TEST="BASE5" OR TEST="BASE6"
ORTEST="CONTAM";
IFTYPE="POLY";
IF C14<LOW OR C14>HIGH THEN DELETE;
TIMEDIFF=C1-LAG1(C1);
IF TIMEDDFR>50 THEN IND=0;
ELSEIND=IND+1;
IF WAFER*=LAG1(WAFER) THEN IND=0;
REC1=LAG1(REC);
DIFF=REC-REC1;
IF DIFF^l THEN DELETE;
DROP C6 C7 C9 Cll C12 C13 C25 C26 C29;
RUN;

*** USED TO CHOOSE THE RIGHT PART OF THE WINDOW FROM 4 TO 63 ;

DATA SUB;
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SETPARTSUB;
RETAIN 10;
RETAIN MINC2 2000 MINC3 2000 MINC4 2000;
RETAIN MINC8 2000 MTNC10 2000 MINC16 2000;
RETAIN MINCl8 2000 MINC19 2000 MINC20 2000;
RETAIN MINC20 2000 MINC21 2000 MINC22 2000;
RETAIN MINC23 2000 MINC24 2000;

IF MINC8>C8 THEN MINC8=C8;
IF MINC10>C10 THEN MINC10=C10;
IF MINC16>C16 THEN MINC16=C16;
IF MINC18>C18 THEN MINC18=C18;
IF MINC23>C23 THEN MINC23=C23;
IF MINC22>C22 THEN MINC22=C22;
IF MINC24>C24 THEN MINC24=C24;

LAG1C16 = LAG1(C16);
DIFFl = C16-LAG1C16;
LAG22C16 = LAG22(C16);
DIFF22 = C16 - LAG22C16;

IF IND<4 OR IND>23 THEN DELETE;
1 = 1+1;
RUN;

*** USED TO CHECK THE WINDOWED DATA ;
PROC PRINT DATA= SUB;
VAR TEST WAFER IND C16 LAG1C16 DIFFl DIFF22 C18 C20 C21 C22 ;
RUN;

*** USED TO OUTPUT THE SELECTED VARIABLES TO THE OUT.TEST FILE;
*** FOR OUTPUT FILES;

CMS FELEDEF OUT16 DISK OUT16 TEST,
DATA_NULL_;
SET SUB;
FILE OUT16;
INDEX=_N_;
MARK=INDEX-0.5;
IF IND=1 THEN PUT MARK MINC16;
PUT INDEX C16;
RUN;
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SAS Implementation of SARIMA Modeling

;;; SPC module ofBCAM;
»»»

;;; Copyright (c) 1989 Regents of the University of California;
»»»

;;; Permission to use, copy, modify, and distribute this software and its;
;;; documentation for any purpose and without fee is hereby granted,;
;;; provided that the above copyright notice appearin all copies and;
;;; that both that copyright notice and this permission notice appear in ;
;;; supporting documentation, and that the name of the University of;
;;; California not be used in advertising or publicity pertainingto;
;;; distribution of the software without specific, written prior;
;;; permission. The University of Californiamakes no representations;
;;; about the suitability of this software for any purpose. It is;
;;; provided "as is" without express or implied warranty.;
>>»

;;; Author: Hai-Fang Guo ;
;;; $Revision: 1.0$;
;;; $Date: 91/05/17 17:04:01 $ ;
**/;

*** ARIMA ANALYSIS - TO FIND ONE MODEL FOR EACH PARAMETER ;

PROC ARIMA DATA=SUB;
IDENTIFY VAR=C16(1,20) NLAG=70 CENTER CLEAR ;
ESTIMATE P=l Q=(0)(20) PLOT GRID;
FORECAST OUT=Bl BACK=152 LEAD=160 ID=I;

IDENTIFY VAR=C18(1,20) NLAG= 70 CENTER CLEAR ;
ESTIMATE Q=(0)(20) PLOT GRID;

IDENTIFY VAR=C20(1,20) NLAG=170 CENTER CLEAR ;
ESTIMATE Q =(0)(20) PLOT,

IDENTIFY VAR=C21(1,20) NLAG=170 CENTER CLEAR ;
ESTIMATE Q=(0)(20) PLOT,

IDENTIFY VAR=C22(1,20) NLAG=170 CENTER CLEAR ;
ESTIMATE P= 1 Q=(0)(20) PLOT,

PROC PLOT DATA=B1;
PLOTFORECAST*I='F' C16*I=**' L95*I='U U95*I='U'
/OVERLAY;
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RUN;

*** USED TO FILTER THE DATA - CREATE A NEW DATA SET CALLED HLTD;

DATA FTJLTD'
RETAIN X16 0 A16 0 X18 0 A18 0 X20 0 A20 0 X21 0 A21 0 X22 0 A22 0;
SET SUB;

PHI161 =-0.233387;
T1620 = 0.613464;
DIFF161=C16 - LAG1(C16);
DIFF1620=LAG20(C16)-LAG21(C16);
DIFF1640=LAG2(KLAG20(C16))-LAG20(LAG21(C16));
IFI<23THENX16 = 0;
A16=DIFF161-DIFF1620-PHI161*(DIFF161-DIFF1620)+T1620*LAG19(X16);
X16 = A16;
TERM3 = T1620*LAG19(X16);
TERM1 = DIFF161-DIFF1620;
TERM2 = (-1)*PHI161*(DIFF161-DIFF1620);
TERM0 = LAG19(X16);

*** FILTER OUT THE ... DATA IN FILE FTJLTD, PUT THE NEW DATA ;'

DATA SASDATA.FILTERED;
SET FILTD;
INDEX= N ;
IF A16= 0 THEN DELETE;
IF INDEX<181 THEN DELETE;
KEEP A16 A18 A20 A21 A22;
RUN;

PROC PRINT DATA=FDLTD;
VAR TEST WAFER I IND TERM1 TERM2 TERM3 TERMO Al 6 XI6;
RUN;
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SAS Implementation ofHotelling's T2 Module

SPC module of BCAM;

Copyright (c) 1989 Regents of the University of California;

Permission to use, copy, modify, and distribute this software and its;
documentation for any purpose and without fee is hereby granted,;
provided that the above copyright notice appearin all copies and;
that both that copyright notice and this permission notice appear in;
supporting documentation, and that the name of the University of;
California not be used in advertising or publicity pertaining to;
distribution of the software without specific, written prior;
permission. The University of California makes no representations;
about the suitability of this software for any purpose. It is;
provided "as is" without express or implied warranty.;

Author: Hai-Fang Guo;
$Revision: 1.0 $;
$Date: 91/05/17 17:04:01 $;

**/;

ft**********************************.

*** USED TO PRODUCE THE COV MATRIX;

PROC CORR DATA=SASDATA.BASELINE COV OUTP=COVM ;
VAR A16 A18 A20 A21 A22;
RUN;

*** USED TO PRODUCE THE MEAN TABLE - GROUP THE DATA SS(SAMPLE SIZE);
*** TOGETHER, TAKE THE MEAN VALUES WHICH WILL BE USED TO CALCULATE;
*** THE TA2 IN PROC MATRIX;

i

*** USED TO DO MATRIX OPERATION - ;
PROC MATRIX;
FETCH X DATA=SASDATA.FILTERED /*INCLUDE RAIN5 WHOLE DATA FOR TA2*/;
FETCH M DATA=SASDATA.COVMAT;
FETCH Y DATA=SASDATA.BASELINE; /* WINDOW W/O RAIN5 FOR GRANDMEAN*/;

SS=10; /* SAMPLE SIZE N */;
TR=NROW(X);
NP^=TR#/SS + 1; /* NUMBER OF SUBGROUPS = N OF POINTS IN TA2 */;

R=NROW(Y);
C=NCOL(Y);
COVMATI=INV(M);
GMEAN=Y(+, )#/R; /* GRAND MEAN OF THE SELECTED WIDNOW */;
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DO 1=1 TO NP BY 1; /* CALCULATE GROUP MEAN WITH SIZE=SS */;
IF 1=1 THEN DO;
S=l;
E=I#SS-1;
A1=X(S:E,);
MEANMAT=A1(+, )#/E;
END;
IF 1^=1 THEN DO;
START= (I-1)#SS; /* STORED IN MATRIX MEANMAT */;
END=I#SS -1;
A=X(START:END,);
MEAN=A(+, )#/SS;
MEANMAT=MEANMAT//MEAN;
END;
END;

DO 1=1 TO NP BY 1;
DIFF=MEANMAT(I, )-GMEAN;
DI=DTFF';
VAL=DTFF*COVMATI*DI#SS;
T2MAT=T2MAT//VAL;
END;

OUTPUT T2MAT OUT=T2;

PRINT SSNPTR;
RUN;

CMS FILEDEF OUT8 DISK OUT8 TEST,
DATA_NULL_;
SETT2;
FILE OUT8;
INDEX=_N_;
PUT INDEX COL1;
RUN;
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