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Abstract

We propose some syntactic and semantic extensions to a graphical specification called the signal transition graph
(STG). Our extensions allow for a more natural and compact specification of asynchronous behavior. We show that
syntactic constraints on STGs are not sufficient to guarantee a hazard-free implementation, and present techniques to
synthesize hazard-free circuits under both single input change and multiple input change conditions.

We also show that behavior containment test using the event coordination model [13] is a powerful tool for the
formal verification of asynchronous circuits. Qur implementations have been verified to be speed-independent under
fundamental mode using this behavior containment test.

1 Introduction

Despite many advantages of asynchronous circuits [23] [17] [11], they have not been widely used except in the re-
stricted domain of interface circuits, where the use of a global clock is impossible. Even in this restricted domain,
asynchronous design has been considered time-consuming and difficult because of the lack of a good formal specifi-
cation and the lack of good synthesis and verification tools. Formal specification of asynchronous circuits is difficult
because behavior such as concurrency, sequencing, conflict, timing constraints and data-dependency is difficult to
specify in a way that is both natural for designers and easy for formal analysis or verification tools. The synthesis and
verification of asynchronous circuits is difficult because of the presence of hazards. All hazards must be eliminated
because they can cause a circuit to malfunction by, for example, signaling an erroneous initiation or completion event.
Hazards complicate synthesis and verification by forcing designers to consider not only static but also dynamic be-
havior. This can be very complicated in the absence of controlled storage elements and even more so in the presence
of gate delay variations.

In this paper, we consider the specification, synthesis and verification problems of asynchronous circuits. The
highlights of this paper are

o extensions of a method of graphical specification called STGs which increase expressiveness and extend their
applicability (we call these extended STGs simply STGs and the old STGs STG/NCs in this paper)

e techniques to synthesize a hazard-free asynchronous circuit from an STG under different operating conditions
(we consider both single signal change and multiple signal change conditions)

o techniques to formally prove that the synthesized circuit is a hazard-free implementation of the specification
using the unbounded gate delay model under fundamental mode

The synthesized circuit is guaranteed to be speed-independent; it is hazard-free under all possible gate delay vari-
ations, assuming that gates have arbitrary delays but wires have no delays and that the circuit operates in fundamental
mode. We know of no method which can produce from even an STG/NC a delay-insensitive circuit, which is hazard-
free under both gate and wire delay variations.



This paper is organized as follows. Section 2 discusses some previous work on asynchronous design and defines the
terms used in this paper. Section 3 describes some extensions to STGs. Section 4 describes the hazard-free synthesis
techniques. Section 5 describes how we perform design and implementation verification. Section 6 concludes this
paper and outlines future work.

2 Preliminaries

2.1 Previous Work

The earliest work on asynchronous design used FSMs with no intervening storage element in the feedback paths [10].
Hazards were removed by performing careful state assignment[25] and/or by adjusting the feedback delays[26]. Al-
though the FSM model is quite general, it is not an ideal form of specification for control-intensive asynchronous
circuits, which tend to have a lot of concurrency. A FSM, by definition, needs to be in a single state at all times,
and this property makes it difficult to explicitly specify concurrency. Also, it is difficult to reason with FSMs about
functional properties such as the latency of the circuit at the specification level.

Another design method for asynchronous circuits relies on rules[16]{2]). The behavior is specified with some
program or waveform diagram, which is later transformed into a netlist of primitive elements by applying a set of
transformations. Although some good results have been obtained with the rule-based approach[15], the scope of
optimization tends to be local and it is not clear if rules can be used to eliminate all the hazards under different operating
conditions.

In 3], Chu described a graph-theoretic approach to asynchronous design using signal transition graphs (STG). The
STG is based on a type of Petri net called the free-choice net, which is expressive enough for specifying concurrency
and conflict but yet simple enough for analysis [8]. Concurrency can be easily specified with STGs, and its natural
timing-diagram-like specification makes it easy to analyze the I/O behavior. Most of the early work on STGs [27][17]
focused on syntactic constraints on STGs because a hazard-free circuit was believed to be produced if such constraints
were satisfied[3]. In this paper, we show that such constraints do not guarantee hazard-freeness at the gate level, and
present techniques to produce hazard-free circuits under single input change and multiple input change conditions
using the unbounded gate delay model. We verify that the synthesized circuits are free of hazards by using the event
coordination model [13].

2.2 Definitions
2.2.1 Signal Transition Graph

In [3], Chu defined the STG as an interpreted free-choice Petri net suitable for specifying self-timed control circuits.
The most general form of STG is the STG/NC, or STG with noninput-choice places. Although STG/NC can be used
to specify concurrency, sequencing and choice, there is some behavior which is either impossible or very awkward to
specify with STG/NC. To remedy the problems that we have encountered, we propose the following definition of an
STG which extends the STG/NC in several ways.

Since an STG is an interpreted Petri net where the net transitions are interpreted as signal transitions, we first define
signal types and transitions, and then Petri nets before giving the definition of an STG.

Definition 1 Let S be a set of signals for a sequential control module. Then S can be partitioned into three sets, input
signals Sy, output signals So, and internal signals S n . Output signals are those whose behavior is observable outside
the module while internal signals are only for maintaining internal state. The union of output and internal signals,
called noninput signals or S, are the signals which need to be synthesized. Transitions of a signal t are described
byt x {+,—,~,#}, where t+ means t rises from low to high, t— means t falls from high to low, t~ means t toggles to
the opposite of its current value, and t# means t may or may not change value.

Definition 2 A Petri net is a four-tuple N = (P, T, F, M) where P, T and F form a bipartite graph, and My is
called the initial marking. In the graph, the vertices P are called places, vertices T are the net transitions, and the
directed edges F give the flow relation F € (P x T)U(T x P). A marking of the net is an assignment of nonnegative
integers to each place p € P, and My defines the initial marking or state of the net.
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Figure 1: Free-choice Net and STG

A transition ¢ is called the fanin transition of a place p if (t,p) € F, and the set of all fanin transitions of p is
denoted by -p. Fanout transitions, fanin places and fanout places are similarly defined. A good review of other basic
Petri net concepts is given in [20].

The complete lack of restrictions on Petri nets makes them difficult to analyze so STGs are based on a subset called
free-choice (FC) nets. FC nets allow both concurrency and choice to be specified but are easier to analyze [8].

Definition 3 Free-choice nets are a subset of Petri nets with the condition:
VpeEP:p |>1A(pt)EF=|t|=1
In other words if a place has more than one output transition then it is the unique input place for its fanout transitions.

Definition 4 A place with more than one fanout transition is called a free-choice (or input-choice) place if all the
fanout transitions belong to S ;. The cheice as to which transition will be enabled is made by the environment. Simi-
larly, in [3] Chu called a place with more than one fanout transitions (including the dummy transition ) all belonging
to Sy a controlled-choice (or noninput-choice) place, and labeled each fanout edge of a controlled-choice place
witha single Boolean literal. Thus, the fanout transition corresponding to the edge label whose Boolean literal evalu-
ates to true is enabled. Although many self-timed circuits can be described withthe above constraints on control-choice
places, we have found that they are too restrictive. Our extensions allow controlled-choice places to have fanout tran-
sitions of input signals and allow arbitrary Boolean predicates on S as edge labels.

Definition 5 An STG on a set of signals S is afree-choice net N with the net transitions T labeled as signal transitions
S x {4+, —,~, #} or the null transition . The initial marking M¢ of an STG can only assign a 0 or 1 token to each
place.

The graphical notation for STGs is illustrated in Fig. 1 along with the underlying Petri net for this STG. Places with
only one fanin and fanout transition are omitted, and tokens on these places are drawn directly as dots on the STG arcs.
Input signal transitions are underlined.

In this paper, the term STG/NC refer to Chu’s version and STG means the definition above. The most noticeable
enhancement is the addition of the two new signal transition labels, ~ and #. These will be explained in detail in section
3. Section 3 also gives new analysis techniques to check the consistency of the extended STG.
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Figure 2: STG and State Graph

2.2.2 State Graph

The state graph (SG) is a finite automaton obtained by “executing” the STG. An STG is executed by examining all the
markings reachable from M. The SG captures all the possible transition sequences from the STG, and can be derived
by the deterministic procedure given in [3]. Formally, SG is a 2-tuple, (V, F'), where V is a set of states and F a set of
edges C V x V. If astate v1 is connected to a state v2 by an edge e, then there exists a marking M2 (corresponding
1o state v2) which is reached from marking M 1 (corresponding to state v1) by firing a single transition ¢. The edge e
is labeled with ¢.

In order to implement the SG, each state must be assigned a binary code. In [3], Chu proposed using the signal
values S to define a binary labeling of each state. The label is simply the set of values of all signals S that the circuit
may have in the given state. With this labeling, only output signals are used as feedback signals. An STG and its SG
are shown in Fig. 2. The initial token marking and the corresponding state are shaded. The binary codes are shown
inside each state. The order of variables used in the state encoding is a b c.

Definition 6 A state graph is said to satisfy a unique state coding (USC) property [27] if no two different states are
assigned the same binary code.

A variation of the USC property is called the complete state coding (CSC) property which allows two states to have
the same code if the environment can distinguish them. This property was proposed by Chu in [3]. When a state graph
does not satisfy the CSC property, Chu simply said that the state graph has a “state assignment problem.”

Definition 7 A state graph is said to satisfy a complete state coding (CSC) property if
e it satisfies the USC property or

e when the same binary code is assigned for two different states, the transitions of the noninput signals, S1,
enabled in two states are identical.

Thus, only the input transitions enabled in two states are different, and it is assumed that the environment knows how
to distinguish them. The state coding is complete in the sense that input and output variables completely define the
state codes; no extra state variables are needed.



2.2.3 Syntactic Constraints

Syntactic constraints are often imposed on an STG to remove undesirable behavior. The following constraints were
proposed by Chu(3]:

o Safeness constraint imposes a bound on the number of tokens that a place may have at any given marking. A
free-choice net is called safe if the number of tokens in each place does notexceed one for any marking reachable
from the initial marking M. This safeness constraint is necessary for causality and choice. If a free-choice net is
safe, then a transition cannot fire twice in a row without firing some other transition. Otherwise, the causality is
violated because the two consecutive firing of a transition, say ¢+, is not possible without firing ¢ — in between.
Also, safeness is necessary for specifying choice[3). Consider a free-choice place with two fanout transitions,
t and t,. If the place has two tokens, then we can no longer say that the place represents a choice between ¢
and ¢, because t; can still fire after ¢, and vice versa.

e Liveness guarantees that no deadlock occurs in the circuit. An STG is live if it is strongly connected and if every
structural component called a state machine has exactly one token. This is a more stringent definition of liveness
than the one used in the literature [4], but it makes the behavior of a live and safe STG independent of the initial
marking. Thus, the specification of the initial marking becomes optional.

e CSC is necessary because only input and output variables are used for state assignment. Violation of the CSC
property must be corrected by adding either extra signals or constraints to the STG.

¢ Persistency is a fourth constraint which Chu introduced. In section 2.2.4 we show that this constraint is subsumed
by the CSC property and should not be used for synthesis from STGs.

Persistency is also confusing since the term has three distinct meanings in the literature. In this paper we distinguish
these three meanings with the following terminology.

Persistency A Petri net is said to be persistent if, for any two enabled transitions, the firing of one transition will not
disable the other{20]. Thus a marked graph is always persistent, but a free-choice net with free-choice places
is not because the firing of one output transition from a free-choice place disables the firing of the rest of the
output transitions.

Semi-modularity Using an informal definition from [18], in a semi-modular state graph, if a signal transition ¢+ or
t— is excited in state a but signal ¢ does not change value when the circuit goes to a new state b, then ¢ must still
be excited in state b. In [18] it is shown that semi-modularity is a sufficient condition for speed-independence
with respect to all the signals which appear in the state graph.

STG persistency The term STG persistency refers to the property of the STG, whereas the term semi-modularity
refers to the property of the state graph. In 3], Chu proposed a syntactic condition on an STG/NC to make its
corresponding state graph semi-modular. This condition will be called STG persistency. In section 2.2.4 we
show that this syntactic condition is neither necessary nor sufficient for a semi-modular state graph.

We will discuss the exact implications of the above constraints and show that the syntactic constraints alone are
not sufficient to obtain a hazard-free circuit under various delay and operating conditions.

2.24 STG Persistency versus Complete State Coding

The characteristic of a state graph which allows a speed independent implementation is semi-modularity [18]. In an
attempt to characterize speed-independence at the STG level, Chu established the equivalence between an STG and
the state graph derived by interpreting the signal values at each marking as a state code. With this equivalence, Chu
introduced two syntactic constraints: STG persistency and CSC.

According to Chu, an STG is called persistent if all of its noninput transitions are persistent. A transition u is
nonpersistent if: transition ¢ enables u but u and 7, the complementary transition of ¢, are concurrent. To correct this
problem for STG/NCs, a persistency constraint from u to  can be added so that « must occur before £ can.

The CSC problem is characterized in terms of complementary sets in the STG. An algorithm for solving the CSC
problem for marked graph STGs was developed in [27].



Although some relationship between STG persistency and CSC has been suspected [3](27], it tumns out that the
CSC property alone is sufficient to ensure a semi-modular state graph, and the STG persistency is only a special case
of solving the state assignment problem. Informally, the extracted state graph of an STG is guaranteed semi-modular
because of the persistency of noninput signal transitions in the STG. Since the only nonpersistent transitions in an STG
are the output transitions of a input-choice place, and these are restricted to signal transitions of input signals, the only
possible problem is in the mapping from the STG markings to the states (signal value tuples) which may not be unique.
To state this more formally, we propose the following theorem.

Theorem 1 An STG satisfies the CSC property iff its extracted state graph is semi-modular.

Proof (=) Assume the STG satisfies the CSC property but some noninput transition ¢ * (¢ * denotes any transition
{+, —.~, #} on t) is not semi-modular in the sense that there is a state so where ¢ * is enabled and after firing some
sequence Y of signal transitions, ¢ * € Y, state s, is reached where ¢ = is not enabled. Consider the STG marking
which corresponds to sg, which is unique by assumption. Now fire the sequence of net transitions corresponding to ¥
toreach the marking corresponding to s;. But since an STG is a free-choice net and such is persistent (in the Petri net
sense] for noninput signals, there is no way that this could remove the token(s) which are enabling ¢+ or t—. Thus ¢
must still be enabled in s,.

(«<=) Assume the state graph is semi-modular but does not satisfy the CSC property. Then there are two markings
which have the same label /o but enable different noninput signal transitions. Consider one such signal transition ¢ *.
Thus, t* is both enabled and not enabled in label lo which means that the state graph is not even well defined (let alone
semi-modular) since the set of enabled transitions in lo is not well defined. =

Since the STG persistency condition is also not sufficient to insure semi-modularity, there is no reason to consider
thissyntactic condition for synthesis from STGs. In particular, the algorithm presented in [17] may add more constraints
than are necessary for state assignment, as observed in [27], but these additional constraints were only an artifact of
the incorrect formulation of the conditions for semi-modularity. They are not necessary for a speed-independent
implementation.

2.2.5 Logic Functions

A logic function f of n input variables is a mapping f : {0,1}" — {0, 1, 2}. Each element {0, 1}" is called a vertex
in the n-dimensional Boolean cube.

The on-set of f is defined as the set of vertices = such that f(z) = 1; the off-set, the set of vertices such that
f(z) = 0; the don’t-care set, the set of vertices such that f(z) = 2.

A literal is a variable or its complement. A cube is a set of literals. A cube is expanded by removing some literals.
When expanded, cubes cover more vertices. For example, when a cube ab is expanded to a by removing literal b, the
expanded cube covers both ab and ab.

A set of cubes is said to be a cover of f if each cube is an implicant of f (meaning that it covers some on-set
vertex and no off-set vertex) and if every on-set vertex is covered by a cube in the set. A cover is a sum-of-product
(SOP) implementation of function f. A cube in the cover can be expanded against the offset by removing some literals
without covering any off-set vertices. If a cube cannot be expanded further, it is called a prime implicant. A cover
consisting only of prime implicants is called a prime cover. A cover which ceases to be a cover if any cube is removed
is called irredundant.

A cover of f is positive (negative) unate in variable x if r appears only in positive (negative) phase in every cube
of the cover.

2.2.6 Hazards

A hazard is a possible deviation of the output from expected behavior with respect to some input change. Combina-
tional hazards can be classified into two categories: static and dynamic hazards. A static hazard refers to a 0-1-0 (or
1-0-1) transition when the expected behavior is a static 0 (or a static 1). The former type of hazard is a called a static
0-hazard and the latter a static 1-hazard. Dynamic hazards occur when the expected behavior is a single transition
from O to 1 (or 1 to 0) but the possible transition becomes 0-1-0-1, 0-1-0-1-0-1, etc. (or 1-0-1-0, 1-0-1-0-1-0, etc.)

When two or more feedback lines change at the same, the circuit is said to have a sequential hazard or a race. If the
output or the state of the circuit depends on the outcome of the race, the race is called critical. The manifestation of a
hazard is called a glitch.



All static and dynamic hazards and critical races should be avoided because they can cause a circuit to malfunction.
From now on, we use the term hazard to mean both hazards and critical races.

2.2.7 Modes of Operation

A circuit is said to operate in fundamental mode if new inputs are applied only after the circuit has assimilated the
previous input change. A gate whose output changes only after it has assimilated the previous input is called atomic.

If only one input is allowed to change at a time, then it is called the S/C condition. If multiple inputs (outputs) are
allowed to change at the same time, then it is called the MIC condition.

3 STG Extensions

Although the STG/NC is quite powerful for describing both concurrent and sequential behavior, as originally devel-
oped in [3] it has several shortcomings in describing general behavior which need to be corrected. Most continuing and
recent work has focused on the subset of marked graph STG/NCs which cannot express choices [17]{27] and where
these shortcomings are not apparent. Since we are interested in using STGs for describing general asynchronous
behavior involving both concurrency and sequencing, we propose the following extensions to the original STG/NC:

1. Both input and noninput signal transitions can be used as fanout transitions of a controlled-choice place.

2. There are no restrictions on where the dummy transition < can be used.

3. The set of predicates labeling the output arcs of a controlled-choice place can be arbitrary expressions on S and
need not be disjoint (allowing nondeterminism for input signals).

4. A transition of an input signal does not have to be enabled by the transition of an output signal but may be
enabled by the transition of another input signal.

5. More than one net transition can be labeled with the same signal transition.

These extensions to the STG/NC are summarized in Table 1 and will be called simply STGs in the remainder of
the paper. The significance of these extensions is illustrated in the remainder of this section.

3.1 Input Signal Controlled-Choices

In an STG/NC, the fanout transitions of a controlled-choice place are restricted to transitions of noninput signals.
The example in Fig. 3(a) can only be described using either multiple occurrences of f+ and f—, or a controlled-
choice of the input signal ¢. Thus we remove the restriction on controlled-choices and allow input as well as output
controlled-choice places.

Combining this extension with the null transition, €, we can specify an input signal which changes during a defined
time interval but in an undefined manner. This is similar to the cross-hatched segments denoting don’t-care conditions
intiming diagrams. Fig. 3(b) shows the construction and Fig. 3(c) an abbreviated notation by extending net transition
labels to S x {+, —,#}. The hatch transition t# means the signal ¢ may or may not change value. Because a t#
transition is nondeterministic, it can only be used for input signals.

| Feature [| sTe/nC | sTG6
controlled choices || noninput input & noninput
€ (null) transition || restricted unrestricted
predicates disjoint signals nondisjoint predicates
input transitions enabled by output only | no restriction
signal transitions || one occurance multiple occurances

Table 1: Summary of STG extensions to STG/NCs.
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Figure 3: Input choices (a) STG requiring controlled-choice of input signal (b) Common controlled-choice configura-
tion (c) The hatch notation for (b)

For a D-latch, the data input D is an example of a signal which changes in an unspecified manner but in a specified
time interval (between clocks). Fig. 4(b) (among other things) shows an STG for a D-latch using the hatch notation for
the data input. This could not be specified by an STG/NC since it requires either multiple occurrences of a transition
or controlled input choices.

3.2 Transition Signaling

Binary signal handshaking protocols are divided into two categories: four phase and two phase handshaking. With
two phase handshaking, each transition of a signal has the same meaning regardless of whether the transition is from
low to high or from high to low. Thus it is also referred to as transition signaling [24].

In an STG/NC, it is not possible to fully represent transition signaling because the phase relationships between
signals must be specified. A simple example is shown in Fig. 5. The STG/NC in Fig. 5a and Fig. 5b both meet the
specification that each transition of signal a is followed by a transition of signal b. However there is no way to specify
one STG/NC which allows both of these possible synthesis choices. The phase relationship between « and b must be
fixed in advance.

Using controlled-choice of input signals as in Fig. § (c) is one way to avoid this problem. Alternatively the 2-phase
nature of a signal can be represented directly by extending the net transitionsto 7 = S x {+, —, #,~}, where j~ means
the signal j changes to the opposite of its current value or toggles.

As shown in Fig. 5(d), the toggles notation is very concise. The extensions allow the phase relationships to be
decided in the synthesis step. A disadvantage is that the concept of a consistent STG must be modified appropriately,
as described later. Also note that this changes the relationship between the net state (token marking) and logic state
(signal values) since a single marking can represent more than one logic state.

The use of the toggles notation is also illustrated for the output signal @ in Fig. 4(b).

3.3 Controlled-Choice Predicates

Although a free-choice net expresses concurrency very compactly, it can still be tedious to use because similar but
not identical sequential behaviors must be specified separately. The D-latch in Fig. 4(a) is an example where two
similar sequences differ only in the behavior phase of the output signal @ but otherwise are identical. Extending the
arc predicates from single literals to general Boolean expressions allows a more powerful way of collapsing sequential
constructs into more compact STGs.

Continuing the D-latch example, Fig. 4(b) shows an STG which is equivalent to the STG in Fig. 4 (a). Essentially
a controlled-choice allows a place to represent several different possible states. If B is the Boolean space over the set
of signals S, then the number of different states is equal to the number of parts in the partition of B induced by the
predicates. In this example, the two predicates (edge labels) (@D + @D) and (QD + Q D) partition the space of
S = (Q, D,CLK) into two parts so the controlled place represents two distinct states. This corresponds to the two
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Figure 4: D-latch examples (a) STG using only multiple occurrences of transitions (b) STG using new extensions

free-choice places in the STG of Fig. 4(a). If the two predicates overlapped, the space B could be partitioned into three
or more parts which would correspond to three or more different states.

In addition to allowing arbitrarily complex predicates, we also allow the predicates to intersect so that more than
one can be true at a time. This form of nondeterminism was already assumed when the hatch notation was introduced
as shown in Fig. 3. The predicates can only intersect when the choice is for input signals because nondeterminism is
only allowed in the environment (the inputs) but not in the implementation. In order for the net to be live or deadlock
free, itis necessary that at least one predicate evaluates to true for all states that are possible when the place is marked.

3.4 Consistent STG

With the new STG extensions, the conditions for a consistent STG must be modified. To insure the physical realiz-
ability of the STG specification, the signal transitions must always alternate between rising and falling transitions. For
example, it is not possible to have an z+ followed by an z+ without an intervening z—, z~ or z#.

To verify that a Petri net is a free-choice net simply requires a local syntactic check on its structure. However
there are no local conditions which will insure that the signal transitions are globally consistent for all possible firing
sequences. Thus the consistency of each signal must be checked against the entire STG.

In the STG/NC, consistency for signal » was guaranteed if z+ and r— were contained in some simple cycle. When
only one occurance of each transition is allowed, this simple condition insures that the signal transitions will alternate.
With the extensions, it is much harder to state conditions for consistency. Instead the following procedure is given to
check one signal z. For any state machine component of the STG [8] which contains all transitions of z, it uses a DFS
traversal to set a phase ¢,(z) indicating the allowed phase of = at each place p.

1. Initialize the phase ¢, to null for all places. At each step of the DFS the current phase of z along the path being
searched is maintained in the predicate ¢.

2. Find an initial place to start the DFS: if an z+ or z— transition exists, start at any fanout place and set ¢ = z or
¢ = T respectively; otherwise start at any output place of a z# or z~ and arbitrarily set ¢ = 7.
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Figure 5: Transition Signaling. (a) Buffer STG. (b) Inverter STG. (c) Using controlled-choice. (d) Using toggles
notation.

3. Traverse forward through the STG in DFS manner:

(a) For each arc predicate encountered, intersect ¢ with that predicate and continue the DFS along that arc if
the result is not null.

(b) Ateach transition of z, update ¢ as follows:

i. z+: if ¢ = T set ¢ = z, otherwise report an inconsistency (z cannot rise if it already is high).
ii. z—: if ¢ = & set ¢ = T, otherwise report an inconsistency.
iii. z~:set¢ = &.
iv. x#: set ¢ = 1 (i.e. x may have either value after this transition).
(c) Ateach place, if ¢ C ¢, then terminate the DFS; otherwise update ¢, by ¢, = ¢, U ¢ and continue.

4. If any ¢, is null, the STG is inconsistent, i.e. there is no valid phase for signal z at place p of the STG. Also, ifa
fanout transition is labeled z~ but ¢, is = or 7 then the transition is consistent but could have been labeled just
z— or x+ respectively.

At the end of this procedure, each ¢, indicates the possible values x can have when p is marked with a token.
From the termination condition in step (3c), each vertex can be visited at most twice, once with ¢ = z and once with
¢ = T. Thus the time to check one signal is linear in the size of the STG. The procedure is repeated for all the signals
z € S resulting in overall quadratic complexity.

4 Hazard-free Logic Implementation

4.1 Deriving Logic From a State Graph

Assuming that the STG is consistent and that it satisfies the CSC property, the state assignment of the section 2.2.2
can be used. After this output logic can be derived from the implied values of the outputs at each state. The implied
value of an output z in some state s is determined as follows: if a transition belonging to z (i.e., z+ or z—) is enabled
in state s, then the implied value of z is the complement of the present value of z as seen in the binary code of s;
otherwise, it is taken to be the present value of z [3]. Thus, each state code becomes either an on-set or an off-set
vertex in an n-dimensional Boolean space (where n is the total number of signals S) with respect to each output. It
is easy to see that the state assignment of section 2.2.2 produces an implementation where only output variables are
used as feedback variables (no internal feedback variables). Fig. 6 illustrates how a logic function is derived from a
state graph. The shaded states in the SG become off-set vertices with respect to output ¢, and are represented by dark
circles on the three-dimensional Boolean cube.
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Figure 6: Derivation of Logic from State Graph

4.2 Hazard-free Logic Synthesis

Aftera set of on-set vertices and a set of off-set vertices are derived from the state graph, logic minimization is applied.
For a two-level sum-of-product implementation, the goal is to minimize the number of product terms while making
each term depend on as few literals as possible without introducing any hazards. This implementation step has not
received much attention because a hazard-free implementation was thought to be guaranteed by imposing the syntactic
constraints defined in section 2.2.3. Unfortunately, such syntactic constraints only remove undesirable behavior at a
functional level and do not automatically produce a hazard-free implementation. We give the exact implications of the
syntactic constraints in the following theorem(19][14):

Theorem 2 If the given STG is live, safe and satisfies the CSC property, then each output variable is a monotone
increasing (positive unate) function of itself.

Proof Assume that an output variable x; is not positive unate in itself. Then, there must be an on-set vertex
ot = (1:1,1:2, vy i = 0,-- .y xn)
and an off-set vertex
v = (z1,29,...,2i=1,...,2p).

Since the vertex v°® belongs to the on-set, there must exist a state so in the SG corresponding to v°* in which the
transition z;+ is enabled. Similarly, there must be a state s; corresponding to v°// in which the transition z;— is
enabled. Since s, is reached from sg by firing z;+, the complementary transition «;— can fire immediately after z;+
fires without firing any other transition. Thus the state s, reached by firing z;— from s, has the same binary code as
51 but does not enable z;-, which violates the CSC assumption. m

The implications of the above theorem are two-fold:

1. There is no inherent oscillation due to feedback because no output variable depends on the negative phase of
itself.

2. Every output Q can be expressed in the form of
S+ MQ,
where S and M are arbitrary Boolean expressions which do not depend on Q. Thus, the following latches can

be used to implement the output (or next-state) logic:

11
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Figure 7: Problem with two-level logic and SR latch implementation

e SMilatch: Q=S+ MQ[1]
e SRlatch: Q = S + RQ, where M = R.
o C-element: Q = AB+ (A + B)Q [23)where S = ABand M = A + B.

Although the above implications are desirable, they imply nothing about hazards in the implementation. We now
consider both the single input change (SIC) and the multiple input change (MIC) conditions and give synthesis proce-
dures under both conditions of operation, assuming that the circuit operates in fundamental mode.

4.3 Hazard-free Implementation Under SIC Condition

A two-level SOP implementation has only one type of hazard, namely the 1-hazard, once it is minimized[26]. This
property, along with the fact that set-dominant! latches implemented with cross-coupled NOR gates are immune to
1-hazards, was used to implement logic in some previous designs [2].

The problem with the above implementation is that a race condition can occur when the set and the reset inputs
fall almost simultaneously after both have been asserted high. The expected behavior of the SR latch output is that it
should remain high. However, if the set input falls sooner then the reset input, then the output can become low and
locked at low. No syntactic constraint can prevent such near simultaneous falling of set and reset inputs because they
are internal signals (created during the logic synthesis procedure) whose behavior was not specified by the STG.

Fig. 7 illustrates this race problem. The given STG is live, safe and satisfies the CSC property. Initially the values
of inputs a and b are 1 and 0, respectively. The set input, the reset input, and the output ¢ of the SR latch are all 1.
When & changes from O to 1, it causes both the set and the reset inputs to fall. Because we assume that each gate can
have an arbitrary delay, the set input may fall sooner, causing the output to be locked at 0; a clear deviation from the
expected behavior! The above problem is a special case of the general logic hazard problem which occurs when an
irredundant cover is used. This problem is easily solved by adding some redundant cubes in the cover {7]. This is
done by examining all the adjacent state pairs in the state graph and adding some consensus terms if necessary. Fig 8
gives a simple algorithm which removes all logic hazards. The complexity of this algorithm is O(n), where n is the
number of states in the state graph.

! The set-dominant SR latch should be used to obtain a correct output of 1 when both set and reset inputs are asserted 1.



/* F = on-set cover consisting only of minterms; */
/* R = off-set cover; */
hazard_free_minimize(F, R) {
for (all adjacent states s1 and s2 in state graph) {
m1 = onset_minterm(s1);
m2 = onset_minterm(s2);
if (m1 # NULL and m2 # NULL) {
¢ = consensus(m1, m2);
F=Fuc;
}
}
F = single_cube_contain(F); /* remove cubes contained in other cubes */
F = expand(F, R); /* expand F against R */
}

onset_minterm(s) {
if (there exists a on-set minterm m corresponding to state s) {
return m;

return NULL; /* The implied value of every outputin s is 0 */
}

Figure 8: Algorithm for Minimizing Logic Under SIC Condition

Fig. 9 shows the application of the above algorithm. A new prime implicant ac is added to eliminate the hazard.
In the new implementation the reset input remains at 0 and only the set input falls. Note that with the above algorithm,
the latch type is no longer restricted to an SR latch. Any latch which matches the given Boolean expression can be
used.

44 Hazard-free Implementation Under MIC condition

Concurrent transitions which occur simultaneously can also cause hazards. An example is a 0-hazard produced at the
outputof an AND gate by two inputs which change simultaneously in opposite directions. Under the MIC condition, a

SOP realization is no longer free of 0-hazards, so we must identify cubes (product terms) which can potentially produce
glitches and eliminate them. Such cubes can be identified by considering the following four output transitions: 0 =

0,0=1,1=0and 1 = 1. For a0 = 0 transition, no cube can make a rising or a falling transition. However, cubes
with more than two literals changing in opposite directions can produce a glitch which can propagate to an output (0-

hazard) and thus must be identified as problematic. Likewise, for a 0 = 1 transition and a 1 => 0 transition, glitching
cubes need to be identified because they can cause dynamic hazards. Fora 1 = 1 transition, we are guaranteed by the
procedure in section 4.3 to have a constant 1 cube; other cubes can make arbitrary transitions. Once all the problematic
cubes are identified, we eliminate the glitches by adding to each such cube some literal which remains at 0 while the
concurrent transitions take place. Such literals can always be found because it is not possible to have all the transitions
in an STG fire simultaneously. However, we need to check that the above cube reduction is legal. We have a legal
cube reduction if

F, new U D 2 F ’

where F,,.,, is a new on-set cover (F — c U ¢’), ¢ a problematic cube, ¢ the reduced cube and D the external dont-care
set. Also, we need to ensure that this reduction does not introduce any logic hazards, which were removed by the
previous step. When there are several candidates for reduction, the literal which is least likely to cause further glitches
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Figure 9: Solution to the hazard problem under SIC

ischosen. On over 40 circuits that we have tried we were able to remove all MIC-related hazards this way. However, if
no valid reduction exists, then the circuit is not hazard-free under the concurrent cccurrences of some transitions. After
such transitions are identified, the STG can be modified (possibly by adding arcs) to sequentialize the concurrency in
a manner which does not cause MIC hazards (this can always be done because all the SIC hazards were removed).

Fig. 10 gives an example of a logic which is hazard-free under the SIC condition but not under the MIC condition.
The cube which can glitch during the simultaneous occurrences of a— and d— is @d. In this case, the 0-hazard can
be removed by adding literal ¢ to @d because it is effectively a constant O literal while a— and d— fire. This cube
reduction is valid because the on-set vertice(s) (in this case, @¢d z) covered by @< d are also covered by the implicant
dz.

5 Verification

Formal verification needs to address two aspects of correctness: one is the correctness of the implementation against the
specification (implementation verification) and the other is the correctness of the design with respect to some desirable
properties such as liveness and fairness(design verification). Both aspects of correctness are crucial for most circuits
but are more so for asynchronous circuits because it is computationally infeasible to perform exhaustive simulation
over all possible input patterns and delay variations.

Most of the early work on asynchronous verification did not address both aspects of correctness together because
of the lack of a suitable specification and/or underlying hardware model. The ternary simulation technique proposed
by Eichelberger in [7] and later refined by Seger in [22] can be used to detect combinational hazards and critical
races, but does not address the problem of verifying the correctness of the implementation against the specification.
Implementation verification was addressed in [5] using trace theory[21]. The trace-theoretic verification is hierarchical
and has been used to detect problems in some published circuits(6]. However, due to the simple underlying model
(a deterministic finite automaton with failure states) the useful application of the trace theory has been limited to the
verification of safety properties only. Extending the model to check for liveness seems difficult.

We present techniques to perform both design and implementation verification of asynchronous circuits. Our
technique is based on the event coordination model of Kurshan [13]. The basic verification approach is similar to
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Figure 10: An implementation which is not hazard-free under MIC condition

the trace-theoretic approach of Dill[5] in that both methods check to see if the behavior of the implementation is
contained in the behavior of the specification. The differences are that the event coordination model is based on a non-
deterministic finite-state model with two types of acceptance conditions (which are very good for liveness checking)
and that it supports homomorphic reduction, which is the basis for handling large systems. We show that the event
coordination model is a suitable model for modeling concurrency, conflict, and asynchrony of asynchronous circuits.
We have used the event coordination model to successfully check for liveness and safeness properties, and to verify
that our gate-level implementation is functionally correct and free of hazards with respect to the STG specification.

5.1 Implementation Verification and Design Verification
5.1.1 Implementation Verification

We perform implementation verification as follows. We first transform both the STG specification and the gate-level
implementation into a set of interacting FSMs. Then, we feed both of them to COSPAN, an AT&T verification engine
[9]. COSPAN checks if the behavior of the implementation is contained in the behavior of the specification. Any func-
tional incorrectness such as a hazard in the implementation will show up as some extraneous behavior not contained in
the specification, and will cause a failure during the behavior containment test. The behavior containment test is done
by checking for acceptance conditions on a Cartesian product of two FSMs (one for the implementation and the other
for the specification). No complement automaton is computed. The complexity of this verification step is linearly
dependent on the size of the product machine, so we have tried to use as few states as possible in our FSM models.

5.1.2 Design Verification

Two properties that we want to check during design verification are liveness and sateness. Liveness can be checked
on both the STG and on the gate-level circuits. Safeness is only defined on the STG. Again, we model either the STG
or the gate-level circuit with a set of interacting FSMs, and have COSPAN perform either a depth-first search (DFS)
or a breadth-first search (BFS) of all the reachable states from the initial state. If the specification is live, we should
not have any “dead” states: thatis, states with no next states. This is checked in COSPAN by a special run time option
which tells it to abort on deadlocks. Non-safeness in the STG can be detected simply by monitoring the number of
tokens in each place and each edge in the STG, and can be checked by COSPAN using DFS or BFS enumeration or by
directly executing the STG without COSPAN.
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5.2 Finite-state Models
5.2.1 Modeling Asynchrony and Conflict

Non-determinism is used to model both asynchronous delay and conflict. Asynchronous delay is modeled with a state
with two ordered outputs?. When the state is reached, its first output is selected initially; afterwards the first output
may be selected again for any arbitrary number of times but eventually the second output is selected. After the second
output is selected, the first output may not be selected again unless the state is re-visited. The model of asynchrony is
illustrated in Fig. 11. )

Conflict or choice is also modeled by nondeterminism. For example, if there is an input-choice place with two
fanout transitions in the STG, it can be modeled with a state with two unordered outputs?: either output can be selected
at any time. It is also straightforward to model the control-choice places. The model of conflict is also illustrated in
Fig. 11,

5.2.2 Modeling STGs

The STG model has three basic components: places, transitions and flip-flops. A place is modeled by a deterministic
FSM. For example, a place is in state 0 if it has no token. If any of its input transition fires, then it moves to state 1

(has one token). Upon firing of any output transition, the place moves back to state 0, and so on. Transitions are not
explicitly represented but rather modeled like ports which connect places. The delay between the time a transition is
enabled and the time it actually fires is modeled by the nondeterminism mechanism used for modeling conflict as shown
in Fig. 11. Thus, an enabled transition can fire only if some non-deterministic FSM outputs a 1. Concurrent signal
transitions can fire simultaneously (MIC condition) because the finite-state model of STG allows enabled transitions to
fire totally independently of the other enabled transitions. Flip-flops are necessary to interpret each net transition in the

STG as a change in some signal value. For each signal we use a two-state FSM whose state transitions are controlled
by the rising/falling transitions of that signal. Fig 12 illustrates the STG model.

5.2.3 Modeling Gate-level Circuits

A gate can have arbitrary delays, and is uniformly modeled by a four-state FSM. (Trace theory uses different models
foreach gate.) We use four states for two reasons. One is to capture the exact instances of rising and falling transitions.
Such transition instances are coordinated with the transitions in the STG during implementation verification. The other
reason is to model glitch phenomenon at the gate level. For example, consider the inverter model in Fig. 13. Assume
that we are initially in state OFF. Now input a becomes low and we move to state RISE. If input a changes its value
before state transition to ON occurs, then we have a glitch. Upon encountering a glitch, we can make a transition to
some failure state.

2To be precise, outputs should be called selections because there is no global distinction between inputs and outputs in the event coordination
model.
3This type of nondeterminism can also be used to model delay.
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For implementation verification we need to have a complete behavior of the gate-level implementation, i.e., both
the system and the environment. To obtain a closed system, we synthesize an environment circuit from the STG. Each
gate in the environment circuit is assumed to be atomic and is modeled by the same four-state FSM as shown in Fig. 13.
By having the environment circuit monitor all the internal signals in the system circuit, we can allow the environment
circuit to change only after all the internal signals in the system have settled down. This is how the fundamental mode
of operation is modeled.

5.3 Experimental Results

Our synthesis/verification algorithms are implemented as a package called ASTG within the Berkeley Sequential
Interactive System (SIS).

Tables 2 and 3 give some experimental results obtained from our synthesis and verification system. The STG
examples were obtained from published literature, industry and our digital signal processing group and include both
concurrency and conflict. Table 2 gives the result of design verification under the MIC condition. The design verifi-
cation process checks if an STG or a gate-level implementation is live. The stg column is obtained by using COSPAN
to perform a reachability analysis on STG specifications. All five STGs were found to be live. The number of states
and the number of transition conditions are given. The number of transition conditions represents the number of edges
out of any state. For example, if there are 3 binary-valued variable, then there are 8 transition conditions (each la-
beled with some minterm). For the gate-level implementation, the environment circuit is synthesized from the STG
specification and the liveness checking is performed on the closed circuit. The two-level implementation refers to the
SOP implementation using SM latches. The old two-level implementation was obtained by running ESPRESSO. The
old implementation of fifo!.g circuit has a hazard, which is removed by our new technique. In this case, the hazard
resulted in a deadlock due to our glitch-catching gate-level model.

Although performing design verification alone on gate-level implementation may detect many hazards, design
verification alone does not guarantee that we have a functionally correct implementation. We must perform imple-
mentation verification to check for functional correctness. An inverter implementation for a buffer specification is free
of any deadlocks but is functionally incorrect (although this type of incorrectness is not called a hazard in the litera-
ture, the output clearly deviates from the expected behavior). Table 3 gives the result of implementation verification
under the MIC condition. The STG column is obtained by verifying a given STG against itself. The Gate column is
obtained by verifying the gate-level implementation against the STG specification. The new implementations of the
five circuits were all found to be hazard-free and functionally correct (i.e., their behavior is contained in the behavior
of the specification). The reported CPU times give the total time for I/O, synthesis and verification on a DECsystem
5000/200.

The very large number of transition conditions seems to be the bottleneck of verification at this moment. Replacing
the core computation inside COSPAN with binary decision diagrams (BDD) should help avoid this bottleneck.

6 Conclusions and Future Work

We have proposed some syntactic and semantic extensions to STG. Our extensions allow for a more general specifi-
cation of asynchronous behavior in a more natural and compact manner. We have shown that syntactic constraints on
STGs are not sufficient to guarantee a hazard-free implementation, and presented techniques to synthesize hazard-free
SOP implementations under both SIC and MIC conditions. The synthesized circuits are speed-independent: they are
hazard-free, independent of the gate delay variations, assuming that the circuit operates in fundamental mode.

Behavior containment testing based on the event coordination model has been shown to be a powerful tool for the
formal verification of asynchronous circuits. Our implementations have been verified to be speed-independent under
the unbounded gate delay model using this behavior containment test. The bottleneck of the present verification comes
from the very large number of transition conditions, and we are looking at ways to avoid this bottleneck by using BDD
computations. Also, we are looking at automatic reduction techniques for faster verification[12].
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Circuit STG Gate

Two-level (New) | Two-level (Old)
| [| #states/#trans_conds [CPU time] [| #states/#trans_conds (#gates) [CPU time]
[Cc-elem.g | 8/512 (4.8s] || 81/134 (5) [3.95] | 81/134 (5) [3.9s]
[ halfg | 1473584 [7.6s] || 197/331 (3) [5.45] | 197/331 (8) [5.35] |
[ fullg || 16/4096 [7.3s] || 383/654 (10) [7.4s] | 383/654 (10) [6.6s] |
| fifol.g || 8/512 [4.6s) || 63/98 (6) [4.8s] | deadlocked at 48/67 (5) [3.65] |
[hybridf.g | 80/5242880 [2004.8s] || 5789/10897 (17) [17.4s] | 5789710897 (17) [19.3s] |

Table 2: Design Verification

Circuit H STG | Gate
#states/#trans_conds [CPU time]
[c-elem.g T 8/512 [9.4s] | 105/216 [10.5s] |
[ hafg Tl 14/3584(7.6s] ||  251/507 [12.3s] |
[ fullg T 16/4096 [13.4s] ||  473/994 [14.3s]
[ fifolg 8/512 [8.4s] | 76/130 [11.0s]
|

hybridf.g || 80/5242880 [13847.7s] || 7067/21239 [116.5s] |

Table 3: Implementation Verification
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