
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN INTEGRATED APPROACH TO LOGIC

SYNTHESIS AND PHYSICAL DESIGN

by

Massoud Pedram

Memorandum No. UCB/ERL M91/69

14 August 1991

AN INTEGRATED APPROACH TO LOGIC

SYNTHESIS AND PHYSICAL DESIGN

by

Massoud Pedram

Memorandum No. UCB/ERL M91/69

14 August 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN INTEGRATED APPROACH TO LOGIC

SYNTHESIS AND PHYSICAL DESIGN

by

Massoud Pedram

Memorandum No. UCB/ERL M91/69

14 August 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Integrated Approach to
Logic Synthesis and Physical Design

Massoud Pedram

University of California Department of Electrical Engineering
Berkeley, California and Computer Science

Abstract

Advances in VLSI technology have created a situation in which the timing behavior of

circuits has become dominated by the interconnect delays instead of the switching delays of

the cells. Efforts to cope with this situation, may be classified as follows. Some researchers

incorporate timing requirements into the physical design; others perform logic restructuring,

retiming and buffering in order to optimize circuit speed prior to physical design. Neither

approach is adequate: timing-driven physical design, although very useful, is not able to

correct all the timing problems since major characteristics of designs are dictated at the

behavioral / logic level and physical design is too far down in the design pipeline to meet

the performance specifications by itself. Similarly, current synthesis systems lack detailed

information about factors such as layout, interconnect and characteristics of macrocell-

or gate-level implementations. It is, therefore, necessary to integrate logic synthesis and

physical design in order to address the requirements of today's high-density and high-

performance designs.

This thesis describes an integrated approach to logic synthesis and physical design which

finds solutions in both domains of design representation simultaneously and interactively.

The two processes are performed in lock-step: performance analysis, logic structuring, and

technology mapping take advantage of detailed information about the interconnect delays

and the layout cost of various optimization alternatives; placement itself is guided by the

evolving logic structure and accurate path-based delay traces. Such combined approach

helps designers employ a complete top-down design methodology and move toward true

system synthesis.

%.
Prof. Ernest's. Kuh

Thesis Committee Chairman

A

An Integrated Approach to

Logic Synthesis and Physical Design

Copyright © 1991

Massoud Pedram

To my wife, Afsane

Acknowledgements

I am indebted to my research advisor Professor Ernest S. Kuh for his continuous support,

constant encouragement, and guidance. Without his vision and help, this research would

have not been possible. He has taught me the importance of discipline and originality in

research.

I have learned a great deal from my association with Professors Robert Brayton, David

Hodges, Chenming Hu, Richard Newton, and my academic advisor Alberto Sangiovanni-

Vincentelli. I would also like to express my appreciation to Professors Jan Rabaey and

Shmuel Oren for reviewing my dissertation on such a short notice and providing useful

comments.

I am very fortunate to have worked with a number of people including Professors Weiming

Dai, Malgorzata Marek-Sadowska, and Dr. Ulrich Lauther. I am indebted to Dr. Bryan

Preas of Xerox PARC who introduced me to the field of computer-aided design and has

been my good friend and mentor.

I am very grateful to Tahani Sticpewich whose administrative help and friendly face has

made the last four years of my academic life simpler and more enjoyable.

My friendship and collaboration with Narasimha Bhat has been a great source of joy and

intellectual stimulation for me. I value his good heart and clear mind. Thanks to other

members of the Layout and CAD groupfor providing an enjoyableand challenging working

environment. In particular, I would like to thank Andrea Casotto, Kamal Chaudhary,

Michael Jackson, Shen Lin, Sharad Malik, Rajeev Murgai, Hamid Savoj, Minshine Shih,

Kanwar Jit Singh, Arvind Srinivasan, Ren-Song Tsay and Deborah Wang.

I have benefited from interaction and joint research with our industrial visitors, most of all

Stefan Mayrhofer and Yasushi Ogawa. Thanks to George Carvalho, Benjamin Chen and

Charles Hough who have helped me with the programming tasks.

I am grateful to my father and mother who encouraged me to pursue academics and who

taught me the value of hard work and perseverance. Special thanks to my good friends of

many years, Saiid Eskandari, Bahman Salehi, and Hamid Savoj.

11

I would also like to acknowledge the Semiconductor Research Corporation and the National

Science Foundation which supported the research work presented in this dissertation.

Above all, I am most grateful tomywife and best friend, Afsane, for her love, understanding,

and faith during the last five years and for coping with the hardships of graduate student

life. I would have not succeeded without her help and support. She has my everlasting love.

Contents

Table of Contents ni

List of Figures vj

List of Tables viii

1 Introduction X
1.1 CAD for VLSI Design 1
1.2 Overview 4

1 Logic Synthesis 7

2 System Overview 9
2.1 Motivation 9

2.2 LILY: Layout Integrated Logic Synthesis 12

3 I/O Pad Assignment for the Boolean Network 13
3.1 Background 13
3.2 Terminology 15

3.3 The Basic Approach 16

3.4 The Timing Driven Approach 18
3.5 Experimental Results 20

4 Placement of the Boolean Network 23
4.1 Background 23

4.2 Terminology 24

4.3 Computing Preferred Edge Directions 25
4.4 DAG Bi-partitioning 27

4.5 Experimental Results 28

in

iv CONTENTS

5 Logic Optimization 31

5.1 Logic Decomposition/Restructuring 31
5.1.1 Introduction 31

5.1.2 Integrating Interconnect Optimization with Logic Restructuring . . 34
5.1.3 Technology Decomposition 39

5.1.4 Placement Relaxation 41

5.2 Technology Mapping 42
5.2.1 Introduction 42

5.2.2 Terminology 44

5.2.3 Technology Mapping for Minimum Layout Area 47

5.2.4 Technology Mapping for Minimum Circuit Delay 55
5.3 Fanout Optimization 59

5.3.1 Introduction 59

5.3.2 Buffer Insertion 60

5.3.3 Logic Duplication 61

5.4 Experimental Results 62

II Physical Design 67

6 System Overview 69

6.1 Motivation 69

6.2 BEAR-FP: A Macro-Cell Layout System 70

7 A Robust Framework for Floorplanning 74
7.1 Introduction 74

7.2 Floorplanning Procedure 77
7.2.1 Overview 77

7.2.2 Cluster Tree Generation 80

7.2.3 Shape Function Computation 82

7.2.4 Floorplan Optimization 86

7.2.5 Area Estimation 88

7.2.6 Complexity Analysis 93

7.3 Pin Assignment with Global Routing 94
7.3.1 Overview . . . 94

7.3.2 The Procedure 95

7.4 Shape Optimization '. 102

7.4.1 Overview 102

7.4.2 The Procedure 103

7.5 Channel Pin Arrangement 104

CONTENTS v

7.6 Analog Placement Issues 105

7.7 Experimental Results 106

8 Performance Oriented Floorplanning 112
8.1 Introduction 112

8.2 Net-Based Approach 113

8.2.1 Overview 113

8.2.2 The Procedure 113

8.3 Path-Based Approach 117

8.3.1 Overview 117

8.3.2 The Procedure 118

8.4 Experimental Results 121

9 Area Estimation 123

9.1 Introduction 123

9.1.1 Motivation 123

9.1.2 Prior Work 124

9.1.3 Overview 128

9.2 The Basic Interconnection Model 129

9.3 The Improved Interconnection Model 135

9.4 Complexity Analysis 139

9.5 Experimental Results 140

10 Concluding Remarks 142

Bibliography 144

List of Figures

2.1 Comparison of interconnect delay to gate delay for 1-micron ASIC library . 11

3.1 Output pad ordering based on linear placement 17
3.2 Input pad clustering based on bidirected distances 18

3.3 Cost function for timing-driven I/O pad assignment 19

4.1 Comparison of two bi-partitionings of a DAG 24
4.2 The source-sink net model 25

4.3 Computing direction for a cone C0 26

4.4 Direction of an edge crossing a cut line 27
4.5 Examples for the vector au, (p* = 0 V e 6 Eu 28

5.1 Layout-driven kernel extraction 33

5.2 Initial choice of subject graph 35
5.3 Interconnect value of an extracted kernel 38

5.4 Cube orderingviewed as. a linear assignment problem 40
5.5 Active gate area versus wire length trade-off 43
5.6 Incremental updating of the Boolean network 46

5.7 A node's life cycle during the mapping 47
5.8 Cost calculation for a candidate match 48

5.9 Dynamic updatingof placement positions using CM-of-Merged-Nodes option
(Euclidean norm) 50

5.10 Dynamic updating of placement positions using CM-of-Fan-Rectsoption (Eu
clidean norm) 51

5.11 Dynamicupdating of placement positions using CM-of-Fan-Nets option (Eu
clidean norm) 52

5.12 Various connection models for multiple pin nets 53

5.13 Output load consists of fanout load and wiring load 56
5.14 Gate splitting for timing re-calculation 58
5.15 Buffer insertion 60

VI

LIST OF FIGURES vii

5.16 Changes to inchoate network for logic duplication 61

7.1 3-room noorplan patterns, orientations of these patterns, and some of the
possible labelings 79

7.2 A multi-way cluster tree with 8 cells and 3 levels 81

7.3 Adding shape functions for horizontal and vertical cuts 83

7.4 Lower bound merging of the shape functions corresponding to horizontal and
vertical cuts 84

7.5 Calculation of the combined shape function for a cluster node with 3 children 85

7.6 Calculation of the interconnection length function for a cluster node 86

7.7 Effect of I/O connections on the routing area estimation during top-down
floorplanning 87

7.8 Routing area estimation after floorplanning may lead to poor results 89

7.9 Calculation of entries in the probability matrix used by the area estimation
procedure 90

7.10 Partial noorplan solution prior to floorplanning D 96
7.11 Partial noorplan solution after shape and position calculation 97
7.12 Partial noorplan solution after initial pin assignment 99
7.13 Partial noorplan solution after final pin assignment 100
7.14 Effect of channel pin arrangement procedure 104
7.15 Placement result for Ami33 benchmark 108

7.16 Routing result for Ami33 benchmark 109

7.17 Placement result for Ami33-F benchmark 110

7.18 Placement result for Ami33-F benchmark Ill

8.1 Net neighborhood population for a macrocells 116

List of Tables

3.1 Example circuits (# gates after mapping) 20
3.2 Wiring Results for I/O PAD Assignment (wire lengths in millimeters) ... 21
3.3 Timing Results for I/O PAD Assignment (delays in nano-seconds) 22

4.1 Update of au after moving a module \i G Mv 29

4.2 Examples 29

4.3 Delay in arbitrary timing units 29

4.4 Wire length in /x meters 30

5.1 Multi-level benchmarks: number of literals in factored form (* means full-simplify
was not used) 63

5.2 Comparison of the total instance area, final chip area and interconnection
length after detailed routing 63

5.3 Comparison of the final chip area and longest path delay results after detailed
routing 64

7.1 Number of topological possibilities f(k) for non-leaf clusters 93
7.2 Description of benchmark circuits (F = Fixed, V = Variable, L = fLoating) 107
7.3 Chip area (mm2) and total wire length (mm) for the benchmark circuits . . 107

8.1 Critical net length results for Xerox circuit (all values are in p meters) . . 121
8.2 Critical net length results for Ami33circuit (all values are in p. meters) . . 121
8.3 Chip area (mm2) and total interconnection length (mm) results for Xerox

and Ami33 circuits 122

9.1 C(k) values for k ranging from 1 to 15 139
9.2 Summary of the example circuits used for the area estimator 140

9.3 Comparison of estimates versus the actual results of wire length (mm), area
(mm2) and aspect ratio 141

9.4 Detailed comparison of metall length and feedthrough count for various sizes
of nets for PrimarylSC with 14 rows 141

vin

Chapter 1

Introduction

1.1 CAD for VLSI Design

In order to cope with the ever growing complexity of VLSI systems, engineers and designers

are relying more and more on computer-aided design systems. The design of electronic

systems is often divided into four stages. The high level synthesis starts with an abstract

behavioral specification of a digital system and finds a register-transfer level structure that

realizes the given behavior. The logic synthesis generates a net list of gates in a given

technology that realizes the register-transfer level description. The layout design provides

physical realization of the net listson a chipandincludes not only placementand routingbut

also geometric artwork. Finally, fabrication and test consists of mask-making, fabrication

and performance test.

This division into design steps has been perceived as necessary in order to make the design

process tractable. It is, however, artificial and restrictive. There is evidence that detailed

consideration of physical issues during synthesis may lead to completely different solutions

with higher quality. It is, therefore, necessary for synthesis systems to couple to physical

design.

A principal goal of electronic design automation effort is to provide designers with the capa

bility to employ a complete top-down design methodology, compiling abstract architectural

2 CHAPTER 1. INTRODUCTION

descriptions into an optimal implementationfor a specific physical media. In fact, as density

increases, system and ASIC designers have no choice but to converge to such a top-down

design methodology. However, there is at least one major difficulty that must be overcome

in order to develop the full potential and promise of this methodology. The problem is

that the top-down design approachmakes high-leveldecisions about optimization, schedul

ing, allocation, logic partitioning and restructuring, and so forth in terms of abstract views

of behavior and structure. During these early steps, factors such as characteristics of the

physical media, layout, interconnect and parasitics are ignored. Physical design which is

expected to address these issues comes much later in the design hierarchy. By then, many of

the key architectural and structural decisions have been made, hence, limiting capability of

the physical design tools to generate the "best" solutions in terms of area and performance.

This dissertation provides appropriate models, algorithms and techniques to increase the

power and robustness of the top-down design methodologies. The goal - which is easy to

state but very difficult to achieve - is to integrate various design steps into a single step

while managing the computational complexity. The first part of the dissertation describes

models and techniques to couple logic synthesis to placement and routing while the second

part gives details of a hierarchical floorplanning approach that combines the placement,

shape assignment, global routing and pin assignment steps for macrocell layout.

Logic synthesis generally involves two distinct phases. The first phase performs technology-

independent transformations on the input logic equations. The second phase performs

technology-dependent mapping and optimization to implement the logic equations using

gates in a target.library. Most previouswork [Brayton 87b, Hachtel 88] has focused on min

imizing gate area and delay through a chain of gates without considering the area needed

to hold the interconnect lines and the delay through the lines. It is generally assumed

that interconnect optimization can be relegated to the physical design phase. However, as

the packing density of transistors and their intrinsic gate delay improve with technological

advances, on-chip interconnect becomes a major factor in determining the speed, power

consumption and size of circuits. At the same time, physical design cannot correct many

of the timing problems which arise due to decisions made higher up in the design hierar

chy. Therefore, it is necessary to develop models and algorithms for explicitly controlling

interconnect during synthesis.

1.1. CAD FOR VLSI DESIGN 3

In the first part of this dissertation, effects of interconnecton circuit areaand performance

are analyzed; appropriate models and computational procedures for the accurate estimation

of wiring delays during synthesis are presented; algorithms for doing the I/O padassignment

and placement of Boolean networks (which are directed acyclic graphs representing input

logic equations) are described; techniques for coupling logic synthesis to placement and for

maintaining the correspondence between data representations in logic and layout domains

are introduced; and finally new methods for common factor extraction, gate matching and

fanout optimizations are introduced which aim at minimizing the interconnect and routing

density as well as the active gate area and delay.

It is very difficult to predict the performance of submicron silicon before layout. High-

level delay models which ignore (or oversimplify) the interconnect and layout effects are the

state of art. More elaborate methods for accurate calculation, modeling and simulation of

timing delays, which are at this time dominated by metal interconnect rather than gate

delays, are needed. Floorplanning tools can provide accurate delay estimations for pre-

layout simulation. At the same time, they can give system designers an opportunity to

interface with layout tools to reduce metal interconnect delays. Designers can optimize

critical paths by physically placing macros orlogical blocks before layout. Floorplanning is,

therefore, another way to provide high level design tools with detailed information about

module sizes and shapes, interconnect delays, and critical sections of the design.

In the early80's, several authors found out that the sizing of slicing floorplans with variable-

shape cells can be done efficiently [Stockmeyer 83, Otten 83]. Soon, floorplanning systems

emerged that combinedpartitioningmethods known from placementwith the efficient shape

computation method [La Potin 86, Zimmerman 86]. These systems were quite successful

since they could handle flexible macros effectively and use little run time. This work was

later extended to incorporate the wiring area estimation [Zimmerman 88, Dai 89] and the

orientationof cut lines during the shape computation [Zimmerman 88]. At the same time,

global wiring was integrated into the floorplanning process by [Dai 87c].

In the second part of this dissertation, a hierarchical floorplanning based on cluster tree

generation, shape computation and floorplan optimization techniques is presented. The

floorplanner minimizes chip area and total interconnection length subject to various topo

logical, geometrical and timing constraints. Novel features of the floorplanner may be stated

4 CHAPTER 1. INTRODUCTION

as: extension of shape computation method to multi-way unoriented clusters; a systematic

top-down floorplan optimization which minimizes wire length as well as chip area; efficient

and accurate wiring area estimation methods during the shape computation and floorplan

optimization; integration of pin assignment and global routing procedures; introduction of

net-based and path-based performance-oriented floorplanning techniques; and accommoda

tion of analog device constraints. The floorplanner can be used either in the feedback loop

of a high-level synthesis system or as a stand-alone system for final layout generation in
macrocell design.

1.2 Overview

Chapter 2 introduces LILY [Pedram 91a, Pedram 91c], a logic synthesis program, built on

top of MIS [Brayton 87b], which is tightly and interactively coupled to placement tools and

is capable of makingsynthesis decisions based on both logic-level information and detailed

data about the interconnecting wires and characteristics of the physical media. LILY's key

idea is to generate a point placement of the unoptimized multi-level Boolean networkwhich

captures structure of the network on the layout plane. This point placement, in turn, is

used to guide the decomposition process and is laterused to help estimate the wiring cost
of a match during the mapping process.

In order to place the Boolean network, sides and relative positions of the primary inputs and

outputs of the network must be known. Chapter 3 presents an algorithm for doing off-chip

I/O pad assignment on a logic circuit. The technique which is based on the analysis of the

circuit structure and path delay constraints, uses I/O pad clustering, goal-programming

and linear-sum assignment to assign locations to I/O pads. This procedure can be invoked

before or after logic synthesis.

Logic synthesis is driven by layout information derived from the placement of the Boolean

network. It is, therefore, essential to generate a placement solution which not only captures

the global connectivity structure of the network, but also produces the shortest directed

path between any pair of primary input - primary output nodes. Chapter 4 describes a

flow-oriented approach to the placement ofgeneral directed acyclic graphs.

1.2. OVERVIEW 5

Chapter 5 is devoted to logic decomposition and technology mapping. The major issue

in decomposition is the identification of frequently used common subexpressions. Sharing

of such expressions across the entire design reduces complexity of the synthesized network.

Previous approaches select a multiple cube factor which provides the greatest cost reduction

in terms of the number of literals. Here, a decomposition procedure with the objective of

minimizing interconnections in the synthesized network is described. Next, a procedure for

technologydecomposition (i.e., convertingan optimized Booleannetwork into an equivalent

networkrestricted to a set of base functions such as two-input NAND gate and inverter) is

presented. The objective is to find a decomposition which provides a good starting point

for the layout-oriented technology mapping. In particular, logic function associated with

each node in the Boolean network must be decomposed such that signals coming from

nearby regions of the network enter the decomposition tree for the node at topologkally

near points. Finally, a technology mapping program which uses information derived from

a dynamically updated global placement in order to produce more wirable circuits with

lower post-layout area and higher performance is presented. The algorithm is based on

DAG covering and integrates gate placement and global route modeling with a dynamic

programming procedure.

Chapter 6 introduces BEAR-FP [Pedram 90c], a macrocell layout system which builds on

its predecessor, the BEAR system [Dai 87d]. It inherits BEAR's dynamic and efficient data

representation, which unifies topological and geometrical information, and BEAR's routing

system. BEAR-FP, however, has a new floorplanning procedure with integrated global

routing and hierarchicalpin assignment, a new Steiner-tree global router, a detailed channel

pin arrangement procedure, and a timing-driven clustering and placement capability.

Chapter 7 describes a floorplanning procedure whose objective is to assign positions, shapes

and pin locations to a set of macrocells minimizing chip area and interconnection length

subject to a variety of constraints. The chapter begins by an extensive review of related

work followed by detailed descriptions of cluster tree generation, shape computation and

floorplan optimization steps. Next, a novel technique for hierarchical pin assignment with

integrated global routing is presented. The channel pin arrangement problem and some

analog floorplanning issues are discussed last.

Performance-oriented floorplanning is the subject of Chapter 8. Initially, a net-based ap-

6 CHAPTER 1. INTRODUCTION

proach is presented which transforms path delay constraints into upper bound net length

constraints and modifies the floorplanning steps in order to minimize violations of these

constraints. Next, a mathematical programming approach for solving the initial placement

of macrocells is described and techniques for solving the problem (which in the presence

of non-overlap constraints is a non-convex non-linear programming problem) are discussed.

Based on the coordinates of the macrocells obtained from this placement, a cluster tree is

constructed and subsequently floorplanned.

Chapter 9 is devoted to an interconnection analysis tool targeting standard-cell assemblies

which produces accurate pre-layout area and wire length estimates for random logic. This

is important since good physical design of large systems requires accurate size estimates of

the individual macrocells for area planning, optimal placement, and routability predictions,

and macrocells are at times laid out using standard-cell or gate-array styles. Wire length

estimates could be very beneficial to high-level and logic synthesis tools as well. A model

which abstracts the important features of placement, global routing and channel routing

is described. The predicted results are obtained from analysis of the net list. No prior

knowledge of the functionality of the design isused. Chapter 10contains concluding remarks

and future research directions.

Part I

Logic Synthesis

Chapter 2

System Overview

2.1 Motivation

Logic synthesis and physical design are of pivotal importance in the computer-aided design

of integrated circuits. Very efficient and sophisticated techniques for the synthesis of logic

circuits and placement and routing of gate net lists exist. However, to the best of my

knowledge, no successful attempt has been made to integrate the two processes. Most CAD

systems do structured design of electronic systems using a top-down design methodology

where logic synthesis is followed by physical design. However, decisions during the logic syn

thesis (including partitioning logic circuits into an interconnection of combinational logic
components and registers, optimizing logic, binding optimized logic equations into gates in

a target library) are difficult because their effects on the final layoutare hard to predict and

may not become apparent until much later in the design process. Once any parameter at

the layout design stage fails to satisfy a constraint imposed on it, the logic synthesis must

be modified (even repeated) so as to accommodate the constraint. (This may become nec

essary because physical design is too far down in the design pipeline to solve performance

issues that were not considered earlier.) The new change may cause some other constraint

to be violated and the process must be repeated. In addition, there is evidence that con

sideration of physical design issues can cause one to choose a completely different gate-level

implementation for a given BTL specification.

10 CHAPTER 2. SYSTEM OVERVIEW

Thegap between synthesis and physical design isperhaps the biggest problem ASIC design
ers face today, according to Peter Hsieh, co-founder and president of Elite Microelectronics

(San Jose, CA), a company that designs high performance ASICs for PCs and workstations

[Tuck 90]. In order to benefit from a complete top-down design methodology, to handle
the ASIC designs of near future with more than 100K gates, reduce the number of design

iterations, and find better quality solutions in shorter cpu time, physical design must be

integrated with logic synthesis. This will allow physical design and logic synthesis to evolve

together and will set the stage for true system level integration.

Decisions made during the logic synthesis phase may limit the optimization potential of

physical design tools. For example, excessive factorization based on common kernel extrac

tion during the technology independent phase of logic synthesis has led to gates with high

fanout count and increased path delay. Inordinate attention has been focused on minimiz

ing the active cell areaduring technology mapping, leading to gates with high fanin count

which often increase routing congestion during the final layout and increaseinterconnection

lengths. Ignoring propagation delay through wires has introduced inaccuracy in the timing

analysis performed during synthesis.

Interconnections are becoming a major concern in today's high-performance, high-density

ASIC designs because the distributed RC time delay of these lines increases rapidly as chip

sizesgrowand minimum feature sizesshrink [Bakoglu 86]. With recent studies [Saraswat 82,

El-Mansy 88] indicatingthat interconnections occupymorethan half the total chip area and

account for a significantpart of the chip delay, it is appropriate that wiringis integrated into

the cost function for logic synthesis. To elaborate on this point, consider Figure 2.1 which

shows a performance-optimized two-input NAND gate driving a performance-optimized in

verter gate through 0.2 cm of aluminum interconnect (2 fim wide, 0.5 fim thick, with a 1.0

fim thick field oxide beneath it). 0.2 cm is the expected length of a heal interconnect line

on a 2cm x 2cm chip [Bakoglu 86]. Two methods are used to calculate the rise time (to

50% of its final value) at the input of the inverter gate: one method ignores the capaci

tance and resistance of the interconnect line, the second method accounts for them. Gate

delays are taken from data sheets for an industrial 1-micron ASIC library; interconnect ca

pacitance and resistance are calculated using expressions given in [Bakoglu 86]. The delay

calculations clearly show that interconnect capacitance dominates gate input capacitance

2.1. MOTIVATION

1 -

>
'V

I
£>-

x = 0.3 ns

Rs = 1KQ

Cz = 0.1 pF

R B 300 ft /cm

C = 2.5 pF/cm
I = 0.2 cm

Rs

Cz

d(z) = x + Rs Cz = 0.4 ns

i
Rs R

HIUI1 1111111

Cz
1
J

11

d(z) = x + Rs Cz + Rs C I + R Cz I + 0.5 R C I
= 0.921 ns

Figure 2.1: Comparison of interconnect delay to gate delay for 1-micron ASIC library

and interconnect resistance may be ignored without introducing much error.1 Therefore,

an accurate expression for propagation delay through gates connected by local interconnect

lines is given by

d(z) = r + R,(Cz + Cl)

where r is the intrinsic gate delay, Ra is the on-resistance of the driver gate, Cg is the input

capacitance of the fanout gate, C is the interconnect capacitance per unit length and / is

the interconnect length.

In summary, with the existing technology, the capacitive term is dominated by the capac

itance between the interconnection and substrate. For local aluminum lines, the resistive

term is dominated by the on-resistance of the MOS transistor; for polysilicon and global

aluminum lines on large-size circuits, the resistive term is controlled by the interconnection

resistance. As the chip dimension increases and the minimum feature size decreases, the

1When the RC tree forms branches, delays for the branching nodes can be calculated independently and
accumulated to obtain the delays at the sink nodes. This calculation, however, requires knowledge of net
topologies which is not available before global routing. This effect will not be addressed here. Furthermore,
the transmission line properties of interconnect lines are ignored for on-chip connections.

12 CHAPTER 2. SYSTEM OVERVIEW

interconnection resistance increases rapidly while the MOS on-resistance remains relatively

unchanged; the interconnection capacitance bottoms at about 1-2 pF/cm while the input

gate capacitance decreases. Therefore, the distributed RC delay of interconnect lines will

become even more dominant in the future.

2.2 LILY: Layout Integrated Logic Synthesis

LILY provides a framework for interaction between physical design and logic synthesis.

The defining feature of LILY is its ability to incorporate layout considerations into logic

synthesis and to provide a more uniform design flow from synthesis down to layout. LILY's

principal idea is to generate a placement of the unoptimized multi-level Boolean network

which captures structure of the network. The placement is either incrementally (during

decomposition) or dynamically (during technology mapping) updated in order to maintain

the correspondence between logic and layout representations. The placement information

is used to evaluate the cost of a kernel extraction or a gate matching during decomposition

and mapping processes.

In the end, a synthesized network along with a "companion" placement solution are gen

erated. The placement solution is then globally relaxed in order to produce a feasible

placement according to the target layout style (e.g., standard-cell or sea-of-gates). This de

sign flow is in contrast with the existing synthesis systems which separate logic and layout

optimizations.

Chapter 3

I/O Pad Assignment for the

Boolean Network

3.1 Background

The key to incorporating layout aspects into logicsynthesis is the generation of a placement

of the multi-level Boolean network which is subsequently used to guide the decomposition

and mapping processes. (See Chapter 5.) However, when using force-directed and mathe

matical programming approaches for solving the placement problem, positions of the off-chip

I/O pads must be known prior to placing the gates [Tsay 88, Kleinhans 90, Srinivasan 91].

This is because in the absence of off-chip I/O pads, the gates collapse to the center of chip.

At the same time, different I/O pad assignmentsgiverise to placements with vastly different

qualities. In particular, significant improvements in area and wire length can be obtained

by doing a good I/O pad assignment.

One approach is to treat I/Os as floating gates and use a force-directed approach to assign

positions to all gates. I/Os are later assigned to fixed pads [Wipfler 85]. The problem with

this approach is that during the placement .phase, I/Os are allowed to float (and hence

assume infeasible positions) and, therefore, when they are moved to fixed pad positions,

the quality of placement solution becomes questionable. This problem is more severe if all

pads are constrained to be at the chip boundary. Another common approach is to use an

13

14 CHAPTER 3. I/O PAD ASSIGNMENT FOR THE BOOLEAN NETWORK

arbitrary I/O pad assignment prior to placement and then re-position pads based on the

detailed placement result. The two phases may be iterated until an acceptable placement

solution is generated. This approachis alsoundesirable since even if convergenceis achieved,

the final solution is heavily influenced by the initial pad assignment which was arbitrary.

In addition, the iteration process is costly and time-consuming.

The I/O pad assignment becomes more important if there are path-delay constraints from

primary inputs to primary outputs. In that case, initial locations of the I/O pads will

greatly influence the quality of timing driven placement obtained. In particular, a poor pad

assignment may result in an infeasible placement solution.

In the following sections, an I/O pad assignment procedure which is based on the analysis of

circuit structure (in logic equation or directed net list forms) and path-delay constraints is

presented [Pedram 91b]. This procedure can be invoked prior to logic optimization or final

gate placement. In either case, the pad assignment result is used as input to placement tools.

The resulting placement can then be used either to guidelogic decomposition/restructuring

and technology mapping procedures or is followed by routing to generate the final layout.*

The I/O pad assignment technique can be summarized as follows. Initially, primary out

puts are ordered in a manner which maximizes the proximity between their transitive fanin

cones. Then, output pads are distributed on the chip boundary and goal distances for pri

mary input - primary output pairs are calculated based on the analysis of circuit structure

and path-delay timing constraints. Next, a number of slots are placed on the chip periphery

and primary inputs axe assigned to slots such that the sum over all primary input - primary

output pairs of violations of the goal distances is minimized. Linear-sum assignment tech

nique is used in order to solve this problem efficiently and concurrently. In order to assure

that primary inputs which are connected to the same gates are assigned positions near each

other, inputs are divided into groups and each group is assigned to a set of adjacent slots.

lThe I/O pad assignment may be known from the results of earlier design steps. For example, an early
floorplanning solution may have dictated the positions of I/Os based on global system considerations. (See
Chapter 7.) In such a case, there is no need for the bottom-up pin assignment procedure.

3.2. TERMINOLOGY 15

3.2 Terminology

The circuit is specified in the form of a directed acyclic graph (DAG), that is, a Boolean

network prior to logic optimizationora directed net listprior to gate placement. Therefore, I

shallgive some terminology and definitionsrelevantto directed graphs followed by statement

of assumptions and timing model used.

A path in a directed graph is an open walk with no repeated vertices which follows the edge

orientations. A (u, v) path is a path with u and v as end vertices. A (u, v) bidirected path

consists of exactly two sub-paths (either ((«, z) A(v, z)) or ((*,u) A(z, v))) for some vertex

z. Distance d(u, v) is the minimum number of edges in a (tt,v) path. Bidirected distance

6(ti, v) is the minimum number of edges in a (w, v) bidirected path. In both cases, if there

is no such path, distance is set to oo.

A node u is a fanin of a node v if there is a directed edge euv from u to v and a fanout if

there is a directed edge evu. A node u is a transitive fanin of a nodev if there is a (directed)

path from u to v and a transitive fanout if there is a (directed) path from v to u. Primary

inputsare inputs of the directed graph and primary outputs are its outputs. Internal nodes

are nodes of the directed graph with at least one fanin and one fanout. The primary input

support of a node u is the set of primary inputs that are transitive fanins of u.

Each internal node has an exact (in case of gates in a net list) or estimated (in case of

unmapped nodes of a Boolean network) area. The average dimensions of an internal node

can, therefore, be calculated.

Consider a node u and let v be its fanout node. The delay through u for a signal transition

at one of its inputs is given as

T+ R (Cgate + Cwire)

where r is the intrinsic delay through w, R is the output resistance of u, Cgate is the input
capacitance of v and Cwire is the lumped capacitance of line euv which is given by

Cwire = Cff \xu - xv\ + Cy \yu - yv\.

Ch and Cy denote the capacitances per unit length of horizontal and vertical interconnect

wires respectively and (xu,yu) and (xViyv) denote positions of nodes u and v.

16 CHAPTER 3. I/O PAD ASSIGNMENT FOR THE BOOLEAN NETWORK

If node is a gate in the library, its intrinsic delay, input pin capacitance, and output re

sistance are known. Otherwise, they can be estimated. One such estimation technique is

described in [Wallace 90]. That paper presents a simple model for estimating the delay of

a multi-level combinational logic description prior to technology-dependent mapping. The

model proposes that delay through a node varies logarithmically with both the complexity

and fanout of the node's logic equation. The input pin capacitance for a node is taken to

be equal to that of a two-input NAND gate in the target library and the drive capability

for the output pin is set to that of an inverter.

3.3 The Basic Approach

For each primary output po,-, the circuit is traversed in a depth-first order and primary

input supports are identified. Then, a linear ordering on the primary outputs maximizing

proximity among their primary input supports is derived. This is accomplished by creating

a block Bi for each primaryoutput poi and creating a pin pj on the block corresponding to

each primary input pij in the primary input support of po,-. Primary inputs which belong

to the primary input support of exactly one primary output are ignored since they do not

affect the proximity metric for primary outputs. A linear placement of blocks Bi which

minimizes the total net span is generated. This solution corresponds to a linear ordering

on the primary outputs which maximizes proximity among their primary input supports.

(See Figure 3.1.)

Bidirected distances between consecutive pairs in the ordered list of primary outputs are

calculated by performing depth first search from outputs toward the inputs. The total

bidirected distance from the leftmost to the rightmost primary output in the ordered list is

normalized to chip boundary length and the primary outputs are distributed on the chip

periphery accordingly. The idea is that if the bidirected distance between a pair of outputs

is small, the two outputs should be placed near one another. If the bidirected distance

between a pair of outputs is oo, then the two outputs can be placed anywhere with respect

to one another. In particular, they are placed near one another.

After assigning initial positions to output pads, input pads are assigned. Let M denote

the number of primary inputs in the circuit. The pad placement problem is transformed

3.3. THE BASIC APPROACH

n n n
11 12 13 14 IS 16

Given Circuit

17

Linear piacment of corresponding blocks

Figure 3.1: Output pad ordering based on linear placement

into a linear-sum assignment problem. 5 slots are placed on the circuit boundary and an

M x 5 linear assignment cost matrix [C] is constructed. (5 is equal to 0 times the number

of floating I/Os where $ > 1.0.) Entry (i, k) in matrix [C] represents the cost of assigning

primary input pi,- to slot 3&. This cost is calculated as

where h(jyk) is the half perimeter length of the bounding box enclosing primary output

poj and slot $*. d(i, j) is equal to the distance from pi,- to poj. It has been converted into

Manhattan length using the average dimensions for an internal node.

After running a linear assignment algorithm[Burkhard 80] on matrix [C], a minimum sum-

cost solution to the input pad assignment problem is obtained, i.e., a subset X of entries

Cpq of matrix [C] is chosen such that the following holds

Vi 3? ,«r €*,

if ii ,£ i2 then ft ^ j*t

is minimum.

18 CHAPTER 3. I/O PAD ASSIGNMENT FOR THE BOOLEAN NETWORK

b(A,B) = 2 b(C,D) = 4
b(A,C) = 3 b(A,D) = 5

Figure 3.2: Input pad clustering based on bidirected distances

Since rows in the cost matrix [C] correspond to floating input pads and columns correspond

to the slots, the linearassignment determinesinput pad assignment with the minimum cost.

In order to ensure that primaryinputs which are connected to the same gates are assigned

positions near each other, these inputs are clustered together and clusters are assigned

to adjacent slots during the linear assignment step. In particular, primary inputs whose

pairwise bidirected distances are less than or equal to / are grouped. (/ is set to be a small

fraction of £, the number of levels in the DAG.) For example, in Figure 3.2, inputs A

through E will be clustered together for / > 5.

3.4 The Timing Driven Approach

Required times at the primary outputs and arrival times at the primary inputs of the

functional block are given. The timing slack on each path is used to estimate the wire

length that can be accommodated on that path as described below.

Let a(i,j) be the difference between the required time at poj and the signal arrival time

at primary input pi,- (i.e., the allowed path delay) and </(i,i) be the longest path delay

3.4. THE TIMING DRIVEN APPROACH

floating pi_i
wiring slack

linear cost
zero cost

quadratic cost

19

Figure 3.3: Cost function for timing-driven I/O pad assignment

from pii to poj calculated recursively as in [Hitchcock 82]. g(i,j) does not include the

wiring delay contribution, that is, Cwire = 0 in the delay equation. Now, let w(ij) =

a(hj) —9(hJ) represent the maximum delay that can be allocated to signal propagation

through wires connecting gates (which lie on paths from pi,- to poj) without violating the

timing constraints. This delay is translated to a Manhattan length by using the values of

Cjj and Cy from the technology file.

Let h(jy k) be the half perimeter length of the bounding boxenclosing primary output poj
and slot Sk and d(i, j) be the distance from input pi,- to output poj. d(i,j) is converted

to units of Manhattan length as in Section 3.3. Then, the cost function is defined as

(Figure 3.3)

c(i,k)= J^ t(ij,k)
jGpo'a

d(ij) - h(jyk) if h(j, k) < d(ij)

(\j,fc)= S 0 else if d(ij)< h(j,k) < d(i,j)+w(ij)
(h(jyk)- d(i,j))2 otherwise

The same initial input clusteringand output pad distribution followed by linear assignment

can be used to solve the timing-driven pad placement.

20 CHAPTER 3. I/O PAD ASSIGNMENT FOR THE BOOLEAN NETWORK

3.5 Experimental Results

example # gates # inputs # outputs
C1355 210 41 32

C1908 244 33 25

C3540 589 50 22

C432 127 36 7

C5315 588 178 123

C880 221 60 26

bw 93 5 28

duke2 235 22 29

e64 185 65 65

misex2 60 25 18

misex3 300 14 14

rd84 87 8 4

Table 3.1: Example circuits (# gates after mapping)

The techniques described herehavebeenimplemented in a computer program named PACT

(Pad Assignment based on Circuit sTructure). PACT is written in C and has been incor

porated into LILY. PACT was run on several MCNC logic circuit benchmarks [MCNC 88]

(after logic optimization and technology mapping). Table 3.1 shows some characteristics

of the benchmarks. PACT results were compared with those of random and clockwise I/O

pad assignment procedures provided in Octtools release 5.0. The first procedure randomly

assigns a side and position along the side to each pad. It was repeated 100 times for each

example with different seeds and the average wire lengths are tabulated. The second pro

cedure selects an output pad and assigns that output and all primary inputs in its support

set to the pads around the chip boundary in a clockwise fashion. It then processes the next

output and so on. The procedure is very sensitive to the order in whichoutputs are picked.

The clockwise procedure was run 20 times with different output orderings and average wire
lengths are reported.

The tabulated data are collected after pad assignment, detailed placement by GORDIAN

placement package [Kleinhans 90], and global and detailed routing tools of Octtools 5.0.

The area, wire length and worst case path delay are based on the placed and routed circuits

and include the delay through interconnect lines. The circuits were optimized and mapped

using MIS-II [Brayton 87b]. A library similar to MCNC standard cell library [Heinbuch 88]

3.5. EXPERIMENTAL RESULTS

example total net length % improvement over
random clockwise PACT random clockwise

C1355 210.6 203.8 184.5 12.4 9.8

C1908 248.2 238.1 224.0 9.8 5.9

C3540 1215.2 1135.4 1047.0 13.8 7.8

C432 112.0 100.8 88.3 21.2 11.6

C5315 1823.2 1716.3 1423.3 21.9 17.0

C880 252.3 227.1 192.8 23.6 15.1

bw 71.2 66.1 63.5 10.8 3.9

duke2 339.5 326.0 300.4 11.4 7.9

e64 152.7 139.2 121.2 20.6 12.9

misex2 41.9 37.6 35.1 16.2 6.7

misex3 459.4 433.0 415.7 9.5 4.0

rd84 52.7 51.2 49.3 6.5 2.0

Table 3.2: Wiring Results for I/O PAD Assignment (wire lengths in millimeters)

21

with modified timing parameters was used so that these parameters match those of a realistic

1 micron library. (Cjj = Cy = 2.5pF/cm.) Table 3.2 shows the total interconnection of

the benchmark circuits. Average reductions of 15.1% and 8.4% over random and clockwise

procedures were observed.

Results showing effect of the I/O pad assignment on the circuit speed are tabulated in

Table 3.3. Averageimprovements of 4.1% and 3.1% over random and clockwise procedures

wereobserved. Note that the GORDIAN placement package does not have a timing-driven

capability, therefore, Table 3.3 does not truly reflect the impact of I/O pad assignment on

the circuit delay. Furthermore, the drive capabiUty of a pad is much higher than that of

a gate, and a good placement tool can reduce the path delay by allowing pads to drive

longer wires on critical paths. PACT run times are short (e.g., 8 seconds output ordering,

33 seconds linear assignment for C880 on a DEC3100 workstation).

22 CHAPTER 3. I/O PAD ASSIGNMENT FOR THE BOOLEAN NETWORK

example delay without
wiring

delay with wiring % Improvement over
random clockwise PACT random clockwise

C1355 13.6 17.5 17.2 15.9 9.7 7.6

C1908 20.3 25.6 25.4 24.5 4.3 3.5

C3540 29.9 39.1 38.7 38.1 2.6 1.5

C432 21.6 25.8 25.3 25.2 2.4 0.4

C5315 20.1 27.1 26.3 26.2 3.3 0.4

C880 23.5 28.2 27.8 26.2 7.1 5.8

bw 23.9 27.4 27.8 27.1 1.0 2.5

duke2 18.4 24.2 24.0 23.3 3.7 2.9

e64 41.8 46.1 46.4 45.0 2.4 3.0

misex2 7.5 8.2 8.2 8.1 1.2 1.2

misex3 16.4 22.9 22.8 21.1 7.9 7.5

rd84 11.1 12.6 12.3 12.2 3.2 0.8

Table 3.3: Timing Results for I/O PAD Assignment (delays in nano-seconds)

Chapter 4

Placement of the Boolean

Network

4.1 Background

Automatic placement for VLSI chip design has been extensively investigated in the past.

Most of the approaches proposed so far are based on one of the following optimization

techniques: min-cut bi-partitioning [Breuer 77, Lauther 79, Mayrhofer 90], simulated an

nealing [Sechen 88], or quadratic optimization [Antreich 82, Cheng 84]. While placement

algorithms based on min-cut bi-partitioning are very fast, the quality of the final solution

may vary drastically. Simulated annealing gives excellent solutions at the expense of long

computation times. More recently, a placement algorithm based on quadratic optimization

has been proposed where the uniform distribution of the modules over the placement area

is achieved by alternating global optimization and bi-partitioning steps over several levels

of hierarchy. From the module coordinates calculated during the globaloptimization steps,

initial bi-partitions are derived which are then improved using the Fiduccia-Mattheyses

heuristic [Fiduccia 82]. Here, an extension of this approach which is suitable for partition

ing Boolean networks is introduced.

It is very important that the placement solution reflects not only the global connectivity of

the Boolean network but also produces directed paths between any pair of primary input

23

24 CHAPTER 4. PLACEMENT OF THE BOOLEAN NETWORK

and primary output nodes which do not zigzag ormeander outside the pair's bounding box.

Therefore, the netlist-oriented view of the placement problem must be replaced by a flow-

oriented view [Mayrhofer 91]. In particular, a degree of freedom which has not been used

by previous partitioning algorithms is to be exploited. To develop this observation, consider

Figure 4.1 which depicts a very small Boolean network together with two bi-partitioning

solutions. These solutions are equivalent in terms of the number of edges of the DAG

Solution 1: Solution 2:

Figure 4.1: Comparison of two bi-partitionings of a DAG

crossing the cut line. While for the first partitioning solution, every path from module

1 to module 4 crosses the cut line at most once, in the second partitioning solution path

{1,2,3,4} crosses the cut line three times. The first solution is more desirable (at least
from a timing viewpoint). Consequently, during the bi-partitioning step both the number

and direction of edges crossing the cut line should be considered.

4.2 Terminology

Given a set M of modules and a set N of nets, a netlist specifies all modules Mu connected

by the net v 6 N. For Boolean networks, the source \l+ and sinks /x € M~ for every

net v € N must be distinguished. (See Figure 4.2.) This leads to a transformation of

the netlist description into a directed acyclic graph D = (Jlf, E). The set of nodes in the

DAG is identical to the set of modules. The set of edges is derived from the source-sink

net model in the following way: For every net v 6 N, the set of edges Eu is defined as

E» = {(A^M) I M€ M~}. The set of edges E of the DAG is given by E = Uu€nE„. A

sequence (ft, ^,+i), (Ms+i> Mi+2)» •••»(Pj-uPj) of edges e € E defines a directed path in the

DAG from module /zt- to module \iy. p(/zl-,^J).

4.3. COMPUTING PREFERRED EDGE DIRECTIONS 25

tii = l;M- = {2,3,4}

Figure 4.2: The source-sink net model

Nodes in a Boolean network belong to either the set of primary inputs I, the set of primary

outputs O, or the set of internal modules G. The network can be partitioned into a set

of logic cones where each logic cone corresponds to a primary output and all its transitive

fanin nodes. More formally, for every primary output ogO, the corresponding cone C0 is

described by the set C%* of modules and the set of edges C$ characterized by

C^1 = {n6lUG\3p(ii,o)}

c? = {(tH^i)eE\faecifA/iiecif}
ci = {v.ei\ixecM}

The last equation defines the primary input support of a cone, i.e., all modules in the set

MGC*f which are primary inputs.

The preferred direction (f% for an edge e € E is the most desirable orientation from the

source to the sink of the edgein any placement of the Boolean network. A placementof the

Boolean networkin which all edges assume (as muchas possible) orientations equal to their

pre-computed preferred directions and the total wirelength is minimum is the objective of

the flow-based placement algorithm. This is roughly equivalent to minimizing the totalwire

length and the number of primary input - primary output paths that zigzag or meander

outside the pair's bounding box.

4.3 Computing Preferred Edge Directions

For the example given in Figure 4.1, it was obvious that the preferred direction for edges in

the DAGis from left to right. Here, ageneral procedure for assigning a preferred direction to

eachedge of the Boolean networkis given. The procedure ComputePrefDirections described

26 CHAPTER 4. PLACEMENT OF THE BOOLEAN NETWORK

next is based on the assumption that locations (x^y^) of all primary inputs and primary

outputs ii G i" UO are prespecified and remain unchanged during the placement. In order

VCo = 0

Figure 4.3: Computing direction for a cone C0

to calculate the preferred directions for all edges e € jE, sets C^jC^f, and C§ must be

calculated for each primary output o G O. Since positions of modules \i G C§ in the

support of a cone are prespecified, the centerofmass for support C% is easily calculated as

1 ^ 1
«f = \Cg\ ^ " lf = |C| J2 %» •

/i€C#

The direction (pcc °ftne cone, which is defined as the orientation of the axis from the center

ofmass ofC% to the primary output o G0, isdetermined next. All edges eeCf ofthe cone
are assigned this direction as their preferred directions <p%. (See Figure 4.3.) In general, an

edge may lie in several cones with different directions. In this case, the preferred direction

y§ is derived as the mean value of the directions of all cones in Ce = Uo6o{C0 | e GC&}.
The procedure can then be summarized as

Procedure ComputePrefDirections()

input: D = (Af, E), (*„, Vfi) V^ G(/ UO)
output: <pP Vc G E
complexity: 0(\ O \ • | E \)

1) for-all (e G E) <p$ = 0

2) for^all (o G O)

4.4. DAG BI-PARTITIONING

2.1) determine C§ and Cf
2.2) calculate xf, y§, and <pc0
2.3) for^all (6 GCf) vS = <# + m

3) for_all (e G£) 9? = ¥*/ ICe |

27

Since positions of primary inputs and primary outputs are prespecified, this procedure

is executed once before placement. Clearly, the initialization step (1) and the calculation

of the mean value in step (3) can be done in 0(\ E |). The complexity of the procedure

is determined by step (2) where for each of the | O | primary outputs, a depth first search

(which takes 0(\ E |) steps [Aho 74]) is performed.

4.4 DAG Bi-partitioning

The cost function for DAG bi-partitioning is used to score various bi-partitionings of a set M

of modules into two disjoint subsets A and B with M = Au B. For the Fiduccia-Mattheyses

heuristic, the cost of a net u G N is derived from the assignment of cells y. G Mu to the

subsets A and B: the cost is one if Mu DA ^ 0 AMv(15^0 and zero otherwise.

For DAG bi-partitioning, all edges e G Ev on a given net must be examined. Figure 4.4

illustrates that the direction tpe of an edge depends on both the direction of the cut line and

the assignment of the net source to either subset. For a vertical (horizontal) cut, assume

that the subset A is to the left (bottom) of B. If /j+ GA, then (pe = 0 (<pe = f); else if
p+ GB, then (pe = tt (v?e = 4f).

<Pe = 0 (pe = V B ¥>e = ? B *>e = f

B B

Figure 4.4: Direction of an edge crossing a cut line

For each net i/, vector otu = {aau^abvybav^bbu} captures the flow of its edges across a cut

line as illustrated by examples in Figure 4.5. In the first case, the net source is in subset A

28 CHAPTER 4. PLACEMENT OF THE BOOLEAN NETWORK

while net sinks are in subsets A and B. The number of edges in subset A (aav) is 2 and
the number of edges crossing the cut line from left to right (abv) is 2. In the second case

ba„ = 3 edges cross the cut line from right to left and bbv = 1 edge is in subset B. Since

the source of a net is assigned to either A or 5, two components of this vector are always

zero. The cost function for the DAG bi-partitioning is expressed in terms of these vectors.

av = (2,2,0,0), *(v) =1 av = (0,0,3,1), V(v) = 2 •

Figure 4.5: Examples for the vector a„, tpf = 0 V e £ Eu

The basic idea is to penalize the deviation of the direction of an edge from its preferred

direction by an additive term in the cost function given as

10 , if abv = 0 A ba„ = 0

1 , if abu > 0 V bau >0 and V^^ | ^ - & |< f
2 , if abu > 0 V bau >0 and \ttll)€Ev \ <Pe - <# |> f.

As long as no edge e G Ev of a net v G N is cut, the cost for the net to zero. If one or more

edges cross the cut line, then if all edges follow their preferred directions, the cost is oneelse

the cost is two. This cost function can be easily incorporated into the Fiduccia-Mattheyses

heuristic. The only modification necessary is the update of vectors au after a module is

moved across the cut line. The update is necessary only for nets connected to the module

which is moved. Table 4.1 describes the update procedure for all possible cases.

Everyupdate operation canbe executed in constant time. Therefore, the complexity of one

pass in the bi-partitioning heuristic remains linear in the total numberof edges of the DAG.

4.5 Experimental Results

The proposed bi-partitioning algorithm has been implemented in C language and has been

integrated into the GORDIAN placement package [Kleinhans 90]. The proposed method

4.5. EXPERIMENTAL RESULTS

Module /i moved from » = »i MGM- A/z+ € A fiEM- Afj,+ eB

A-> B

bby = a6|/
6a„ = aay

aau = a&„ = 0

aa^ = aa„ — 1

aby = aby + 1
bay = fccj/ —1
bby = bby + l

B-* A

aav = 6a^
aby = 66„

66v = bau = 0

aby = a&i/ —1
aO|/ = aa„ 4* 1

bau = bau + 1
6&t, = bby —1

29

Table 4.1: Update of c*„ after moving a module /a € Mv

was applied to a few MCNC logicbenchmarks [MCNC 88] which were optimized by MIS-II

[Brayton 87b]. Table 4.2 shows characteristics of these benchmark circuits.

circuit 1 circuit 2 circuit 3

modules

nets

552

562

1636

1658

1657

1717

Table 4.2: Examples

The flow based approach proposed here wascompared to the standard Fiduccia-Mattheyses

method. Cpu-times for calculation of the three placement solutions were 15, 60 and 66

seconds on a DEC3100 workstationfor both bi-partitioning approaches. The maximaldelays

from all primaryinputs to all primary outputs (after final placement) were calculated by a

standard block-oriented delay calculation technique. The wiring length after final placement

was estimated as the sum of the length of minimum rectilinear spanning trees for all nets.

As shown in Table 4.3, the flow-oriented approach led to considerable improvements in the

timing behavior of the circuit after final placement.

circuit 1 circuit 2 circuit 3

Fiduccia

improvement

1.014 x 103

0.881 x 103

15%

1.51 x 104

1.24 x 104

22%

3.23 X 104

3.01 X 104

7%

Table 4.3: Delay in arbitrary timing units

The comparison in Table 4.4 shows that the improved timing behavior is achieved at the

expense of a very moderate increase in the wiring length.

30 CHAPTER 4. PLACEMENT OF THE BOOLEAN NETWORK

circuit 1 circuit 2 circuit 3

Fiduccia

increase

9.26 X 104

9.37 x 104

2%

4.29 x 105

4.59 x 105

7%

4.92 X 105

5.01 X 105

2%

Table 4.4: Wire length in \i meters

Chapter 5

Logic Optimization

5.1 Logic Decomposition/Restructuring

The goal of logic synthesis is to produce a circuit which satisfies a set of logic equations,

occupies minimal silicon area and meets the timing constraints. Logic synthesis is often

dividedinto a technology-independent and a technology-dependent phase. In the first phase,

transformations are applied on a Boolean network to find a representation with the least

number of literals in the factored form. Additional timing optimization transformations are

applied on this minimal area network to improve the circuit performance. The role of the

technology-dependent phase is to finish the synthesis of the circuit by performing the final

gate selection from a target library. The technology-dependent phase is, to a large extent,

constrained by the structure of the optimized Boolean network.

5.1.1 Introduction

Excessive factorization based on common kernelextraction during the technologyindepen

dent phase of logic synthesis has favored gates with high fanout count and increased path

delay. Inordinate attention to minimizing the active cell area has tended toward gates with

high fanin count which often increaserouting congestion during the final layout and increase

interconnection lengths. Attempts have been made to alleviate these problems. Abouzeid

31

32 CHAPTER 5. LOGIC OPTIMIZATION

et al. [Abouzeid 90] describe an algebraic decomposition procedure based on lexicographic

expressions of Boolean functions in order to reduce gate and wiring areas. This approach

aims at expressing the set of logic functions in a form which after technology mapping

leads to layered structured cones with ordered input injection. Murgai et al. [Murgai 90]

propose a kernel extraction procedure for Table Look-Up PLD's whose objective is to min

imize the number of wires created as a result of replacing a node in the network by one of

its kernels and the corresponding residue. Approach presented here is different from these

approaches, in that placement and logic synthesis are integrated and that wiring cost is

estimated explicitly using placement information.

The major issue in decomposition is the identification of common subexpressions. Sharing

of such expressions across the design reduces the complexity of the synthesized network.

Brayton et al. [Brayton 82] proposed the notion of kernels in algebraic expressions and

showed how to use kernels to find multiple cube factors which are common to two or more

expressions. Their algorithm selects a kernel which produces the biggest cost reduction in

terms of the number of literals. This kernel selection policy tends to minimize the active

gate area after technology mapping. Here, I present a decomposition procedure with the

objective of minimizing interconnects in the synthesized network.

I shall motivate incorporating the wiring estimates into the kernel selection phase with the

following example. Assume that the Boolean network has been placed and that node x

and its fanin nodes have positions as shown in Figure 5.1a. The logic expression for node

x is equal to b'dd' + acd' + ace' + de'f + ce'f + be!. Figure 5.1b shows all the kernels and

co-kernels for this expression. The value of kernel e' + d' (that is, the number of literals

saved if this kernel is extracted and made it into a new node) is one. Similarly, the value of

kernel c + d is one. Figure 5.1c shows the final decomposition when e' + d' is extracted while

Figure 5.Id shows the final decomposition when c + d is extracted. Both decompositions

result in 16 literals (one less than the original17literals). However, the interconnect length

for 5.1c is more than that of 5.Id. The reason is that the input signals for kernel e' + d'

are coming from sources on the placement plane which are placed far apart while those

for kernel c+ d are coming from sources which are placed near one another. Therefore,

the placement information can be used to guide the decomposition procedure in order to

minimize the interconnect (often at the expense of little or no cost in terms of the literal

5.1. LOGIC DECOMPOSITION/RESTRUCTURING

e c

(a)

x = b' c' d* + a c d* + a c e' + d e' f + c e' f + b c*

co-kernel kernel

e'f
ce'
ac

c

c'
d'

e'

c + d
a + f
e' + d*
ad' + ae' + e'f
b' d' + b
b'c' + ac
ac+df+cf

[4] = e' + d*

[5] = f e' + a [4]

[6] = b + d' b'

x =c[5] + e'fd + c* [6]

(b)

[1] = c + d

[2] = ac + f[1]

[3] = b + d' b'

x =e* [2] + acd'+ c'[3]

(c) (d)

Figure 5.1: Layout-driven kernel extraction

33

34 CHAPTERS. LOGIC OPTIMIZATION

count.)

After global kernel extraction and node decomposition, the optimized Boolean network

must be transformed into a subject DAG consisting of two-input NAND and invertergates.

This process is commonly known as technology decomposition. Here again, placement

information can be used to guide the decomposition.

Figure 5.2a shows node y and its fanin and fanout nodes in the layout solution. Assume

that y = a' + b' + cf + d' + e'. Figures 5.2b and c show two possible decompositions of

the five-input NAND function into a DAG consisting of two-input NAND and inverters.

For given positions of the fanin nodes, decomposition pattern shown in Figure 5.2c is more

desirable than that in Figure 5.2b since there exists an assignment of input signals to pins

of the pattern which will allow breaking the five-input NAND gate into two smaller gates

(one four-input AND gate and one two-input NAND gate), thereby, reducing the required

interconnections.

After choosing the pattern shown in Figure 5.2c, signals must be assigned to pins of the

pattern as shown in Figures 5.2d and e. The assignment in Figure 5.2d is undesirable

because the decomposition tree conflicts with the placement solution. If this assignment is

used, the layout-driven technology mapper will lose the option of reducing the wiring by

breaking one big match into smaller matches at the expense of a small increase in the active

gate area. Note that this distinctiondoes not ariseif the mapper chooses to ignorethe wiring

cost and minimize only the gate area. Generalizing this observation, a decomposition into

primitive gates of the logic function associated with each node in the optimized Boolean

network, is sought such that the fanin signals which are coming from nearby regions in the

companion placement solution enter the decomposition tree at topologically near points.

5.1.2 Integrating Interconnect Optimization with Logic Restructuring

In this section, techniques for multiple-cube common factor extraction (which subsumes

the node decomposition problem) and elimination targeted toward minimizing the total

interconnection length of the synthesized network are discussed. These techniques can be

combined with those targeted toward minimizing the total number of literals in the factored

form representation of the network in order to minimize the routing and active cell area

5.1. LOGIC DECOMPOSITION/RESTRUCTURING

>NAND

(a)

(b) (c)

(d) (e)

Figure 5.2: Initial choice of subject graph

35

36 CHAPTER 5. LOGIC OPTIMIZATION

simultaneously.

Kernel Extraction

The extraction algorithm follows that presented in [Brayton 87a, Brayton 87b]. I concen

trate on selection and stopping criteria for layout-driven extraction. In particular, I shall

describe the kernel extraction algorithm in detail since the cube extraction algorithm is

simpler and follows a similar technique.

The area value of a candidate kernel is considered first. In order to find useful intersections

of kernels (which correspond to common multiple-cube divisors between two or more ex

pressions), it is beneficial to construct the co-kernel kernel-cube matrix as in [Rudell 89].

A row in this matrix corresponds to a kernel (and its associated co-kernel), and a column

corresponds to cubes which are present in some kernel. The entry Bij is non-zero if kernel

i contains kernel-cube j. The product of the co-kernel for a row and the kernel-cube for a

column yields a cube of some expression. For reference, the cubes of the originalexpres

sions are numbered from 1 to N. The number of the cube resulting from the product of the

co-kernel for row i and kernel-cube for column j is placed at position Bij in the co-kernel

kernel-cube matrix. A rectangle of this matrix identifies an intersection of kernels; this

kernel-intersection is a common subexpression in the network.

The area value of a rectangle (R, C) - denoted by va(R,C) - measures the difference in the

number of literals in the network if that rectangle is extracted and made into a new node.

The number of literals after the rectangle is selected is given by

*£R j€C

where w\ is one plus the number of literals in the co-kernel for row i and Wj is the number
of literals in the kernel-cube for column j. The number of literals before extracting the

rectangle is A(R,C) = £i6#j€c Vy where Vy is the number of literals in the cube which

is covered by position ij of the co-kernel kernel-cube matrix. Then,

va(R, C) = A(R, C) - w(R, C).

The process terminates when va(R, C) falls below some user-defined literal saving threshold.

5.1. LOGIC DECOMPOSITION/RESTRUCTURING 37

In order to reduce the routing complexity, a kernel-selection policy which chooses a kernel

with the greatest cost reduction in terms of the interconnection length is proposed. In

particular, the interconnect value of a rectangle - denoted by vi(R,C) - measures the

difference in the total wire length in the network if that rectangle is extracted and made

into a new node x. In order to calculate this wire length, node x must be assigned a position

and positions of nodes that x was extracted from must be updated. That is, positions of all

nodes y : 3 cokernel(y) G cokernels(R) must be recalculated. An exact solution requires

solving a local placement problem which optimally places x and y nodes with respect to

their current fanin and fanout nodes in the current network. This local placement problem

can be solved efficiently by formulating a quadratic optimization problem with I/O pins

located at the boundary of a polygon (and not necessarily a rectangle). (For example, see

[Tsay 88, Kleinhans 90, Srinivasan 91].) The exact solution, however, takes more time than

is acceptable during the kernel selection phase, and therefore, an approximate solution is

calculated: Positions of y nodes are made fixed and x is placed with respect to its fanin

nodes and y nodes. Since only one node needs to be placed, the placement update problem

is easily solved by placing x at the center-of-mass of its fanin and fanout net enclosing

rectangles as will be shown in Subsection 5.2.3.

After assigning a position to x, the new interconnection length is computed as

Vl(RyC) = £(Wow(*) - Wnew(k))
k

= E WoM(*)+ E Wold(k)-{Wnew(x)+ £ Wnew(k)+ E Wnew(k)}
k€fanin(x) other k k€fanin(x) other k

= £ WoM(*)-{Wne(„(*) + E Wnew(k)}.
k£fanin(x) k£fanin(x)

where W^^k) (^new(k)) denotes the wire length needed to connect node k and its fanout

nodes in the old (new) network before (after) extraction. Now,

w(R, C) =Wneu;(s) + E wn**(k)
k€fanin(x)

L(R,C)= E Woid(k)
k£fanin(x)

and therefore, the interconnect value of a rectangle is given by

vt(R, C) = L(R, C) - w(R, C).

38 CHAPTER 5. LOGIC OPTIMIZATION

(a)

(b)

Figure 5.3: Interconnect value of an extracted kernel

Figure 5.3 shows an example of interconnect value computation for a kernel. The dark

lines in Figure 5.3a (5.3b) identify the connections which must be considered for calculating

L(R,C) (w(R,C)). Any of the net models presented in Subsection 5.2.3 can be used in

order to compute the interconnection length.

The kernel extractionprocess terminates whenthe ratio v/(J2, C)/L(Ri C) drops below some

user defined wire saving threshold. In order to optimize both literal count and wiring, the

value of a kernel is a function of both va(R> C) and vi(R, C).

As new kernels areextracted, the number of nodes and the structure of the network changes.

Therefore, the network and its corresponding global placement on layout plane must be

updated accordingly. After a new node x is created, positions of x and y's are re-calculated

by solving a quadratic optimization problem as described earlier.

Note that interconnect values for overlappingrectangles in the co-kernel kernel-cube matrix

are implicitly handled - when kernel x is extracted, its fanin nets are updated and inter

connect values of subsequent kernel extractions which overlap x will be calculated based on

5.1. LOGIC DECOMPOSITION/RESTRUCTURING 39

this update.

Elimination

The elimination algorithm follows the outlineof that presented in [Brayton 87a, Brayton 87b].

Candidate vertices are selected according to some criterion and the elimination takes place

if some constraints are satisfied. Elimination terminates when no candidate vertices can be

found. I concentrate on the selection and acceptance criteria for layout-driven elimination.

The area value of an elimination is considered first. This value is the difference between

the number of literals of the resulting network if the node is eliminated and the number of

literals in the current network. This change in the total number of literals in the network

(as a result ofelimination) iscomputed by the formula given in [Brayton 87a, Brayton 87b].

The wire length value of an elimination is defined as the difference between the total wire

length in the resulting network if the node is eliminated and the wire length in the current

network. It is computed in a straight-forward manner from the placement information

regarding the node in question and its immediate fanins, immediate fanouts and immediate

fanouts of the immediate fanins. Again, in order to optimize both literal count and wiring,
the value of an elimination is a function of both area and interconnect values.

5.1.3 Technology Decomposition

The procedure for converting an optimized Boolean network into the subject DAG is not

unique andit is an open problem to determine which ofthe possible subject DAGs yields an

optimum solution when an optimum covering algorithm is applied [Brayton 90]. The goal
ofmytechnology decomposition procedure is to find a circuit representation which provides

a good starting point for the layout-oriented technology mapping. In particular, the logic

function associated with nodes in the Boolean network are decomposed such that signals

coming from nearby regions of the network enter the decomposition tree at topologically
near point(s).

The decomposition process starts by constructing AND-OR trees implementing the sum-

40 CHAPTER 5. LOGIC OPTIMIZATION

fanin node

F - X1 X3 X4 + X2 X3'+ X4'X5

Figure 5.4: Cube ordering viewed as a linear assignment problem

of-product form representation of the logic function associated with each intermediate node

in the Boolean network. The function of AND subtrees is to compute the product terms

(cubes) and that of the OR subtrees is to compute the sum of the product terms. The

input signals to the AND subtrees and then the cubes in the OR subtrees are ordered.

The conversion from the ordered AND-OR subtrees to the gates in base function set is

straight-forward.

In order to derive the input signal ordering, one refers to the "companion" placement

solution for the Boolean network. Each multi-pin net signal is modeled by a star connection

from the source toward the sinks. By circularly traversing around each node, a unique

ordering is determined for the input signals to the node. This ordering is directly related to

the positions of the fanin nodes with respect to the node in question. Next, cube ordering

is achieved by setting up a linear assignment problem. 5 slots are placed on an imaginary

inner circle around the node, and the projections of the fanin signals into an imaginary

outer circle around the node are found. Then, linear assignment cost matrix [C] is set up

whose Cik entry corresponds to the cost of assigning cube i to slot k. This entry is equal

to zero if slot k falls inside the shortest circular span for the immediate support of cube i.

5.1. LOGIC DECOMPOSITION/RESTRUCTURING 41

Otherwise, the cost is proportional to the angular distance of slot A; from the nearest end

of the support span of cube i. (See Figure 5.4.)

A linear assignment algorithm [Burkhard 80] is run on the matrix [C]. Since rows in the

cost matrix [C] correspond to the "floating" cubes and columns correspond to the slots, the

linear assignment determines a cube assignment with the minimum sum-cost. The cube

ordering is easily derived from the cube positions obtained by the above linear assignment

procedure. The process of ordering input signals, cubes and then primitive gate decompo

sition is recursively applied to all nodes in the Boolean network in order to produce the

subject DAG.

5.1.4 Placement Relaxation

After logic synthesis stage, a net list of gates and a companion placement solution are

available. The placement solution, however, has overlapping gates and has not yet been

mapped to rows (in case of standard celllayout methodology) or to slots (in case of sea-of-

gates style). The objective of globalrelaxation step is to reduce gate overlaps and produce

evendistribution ofgates overthe layoutimage. An additional goalis to make the placement

solution feasible. Two basic approaches are generally used for mapping a global placement

result to legal locations: (1) Perform a minimum squared error linear assignment which

maps the cells in the global placement to the legal positions simultaneously; (2) Use a

hierarchical bi-partitioning technique to obtain a feasible placement solution.

I have adopted the top-down bi-partitioning heuristic in the following way. The place

ment procedure consistsof alternating and interacting global optimization and partitioning

steps. In particular, for a circuit with M gates, the placement procedure goes through

m = \l0g2M] steps in order to produce a detailed placement. Now, assume that an initial

placement solution for the circuit and two parameters N8 and Nf are given. These param

eters specify the start and finish conditions for the relaxation procedure, that is, relaxation

begins when number of modules per hierarchical region is Na and ends when this number

is Nf. Let s = \log2N8]i t = \log2Nf], then m > s > t > 0.

The objectives are 1) to maintain structure of the initial placement solution by skipping

earlier global optimization and partitioning steps and 2) to distribute gates evenly over the

42 CHAPTER 5. LOGIC OPTIMIZATION

circuit boundary by doingglobaloptimization and partitioning at the later steps. The place

ment procedure is, therefore, modified such that it goes through steps m—s, •••, m—t only,

thereby, achieving the relaxation goal without drastically disturbing the initial placement

solution. Note that the final mapping to rows is performed when Nf = 1.

5.2 Technology Mapping

5.2.1 Introduction

Given a Boolean network representing a combinationallogiccircuit optimized by technology

independent synthesis procedures and a target library, technology mapping is the process

of binding nodes in the network to gates in the library such that area of the final implemen

tation (after gate placement and routing) is minimized and timing constraints are satisfied.

A successful and efficient solution to this problem was suggested by Kurt Keutzer and im

plemented in DAGON [Keutzer 87] and MIS [Detjens 87]. The idea is to reduce technology

mapping to DAG covering and to approximate DAG covering by a sequence of tree cov

erings which can be performed optimally using dynamic programming [Aho 76], DAGON

and MIS technology mappers generate circuits with small active cell area but ignore area

and delay contributed by interconnections between gates.

I justify incorporating wiring estimates into technology mapping by pointing out problems

associated with minimizing only active cell area. Figure 5.5.a shows a small portion of a

Boolean network. Source nodes s,- have either been mapped (and hence have been assigned

matching gates and positions) or are fixed at the chip boundary. Note that s\ and 52 have

positions near one another but are far from 53 and S4. The objective is to transfer the

signals from Sf's to the sink node t implementing the desired logic function while using

minimum wire length. The decision problem can be stated as: "Is there a minimum wire

length solution with the number of distribution points < &?"1 Technology mappers such as

DAGON and MIS attempt to find a solution with k = 1, i.e., they find the smallest area

gate which matches as many intermediate nodes as possible. This is a good approach if the

fanin gatess,- can be placed near the matching gates. However, in many cases, these gates

lHere, a distribution point refers to a logic gate between the sources and the sink.

5.2. TECHNOLOGY MAPPING

slQ s1
s2QA s2'

LliWD2 \\ /

^S/3s30T/ s3<
s40 s4<

s40

(a)

(b)

Distribution point
/

-*ot

Figure 5.5: Active gate area versus wire length trade-off

43

are either strongly connected to different gate clusters on the layout plane or are fixed at the

chip boundary and hence may have positions far from one another and from the matching

gate. Therefore, a solution with one distribution point may incur a large interconnection

cost. In fact, there is often an optimum k > 1 which will result in overall minimum wire

cost as illustrated graphically in Figure 5.5. Note that if the number of sources is small,

say 3, one distribution point will suffice for achieving both minimum active cell area and

minimum wire cost. However, if the number of sources is large, say 5 or more, then it

will pay off to consider how close the sources can be placed by a good placement optimizer

before deciding whether a solutionof one gate (with high fanin count) or a solutionof more

than one gate (with low fanin counts) should be accepted during the technology mapping

process.

Figure 5.5.b illustrates the importance of a good decomposition for the layout-driven tech

nology mapping scheme. This figure shows the same decomposition tree as in Figure 5.5.a.

However, this time, as a result of placing the Boolean network or dynamic updating of

node positions, source nodes s\ and £3 (s2 and S4) have been positioned near one another.

Signals coming from s\ and 33 ($2 and 34) enter the decomposed network (subject graph,

44 CHAPTER 5. LOGIC OPTIMIZATION

during technology mapping) at topologically distant points. This is undesirable because the

decomposition tree conflicts with the placement solution (which reflects the global connec

tivity structure of the network). Themapper has lost the option ofreducing the wiring cost

by breaking one big match into smallermatches. Therefore, Figure 5.5.a provides a better

decomposition (and hence potential for higher quality mapping) than that in Figure 5.5.b.

I present a technology mapping procedure based on DAG covering which integrates gate

placementand interconnection length estimationwith the dynamic programming algorithm.

LILY's mapper maps a givenlogic circuit onto a set of gates in the target library such that

layout area and delay are minimized. The layout area is the sum of gate areas and routing

area. The delayin the circuitis contributed bygatesand interconnections among them. The

interconnection dependent contributions to circuit area and delay is estimated by referring

to a dynamically updated global placement of the Boolean network. This updating is

consistent with the dynamic programming approach adopted in technology mappers such
as DAGON and MIS.

5.2.2 Terminology

The DAG covering approach to technology mapping can be summarized as follows. A set

of basefunctions is chosen, suchas a two-input NAND gate and an inverter. The optimized

logic equations (obtained from technology independent optimization) are converted into a

graph where each node is one of the basefunctions. This graph is called the subject graph.

Each library gate is also represented by a graph consisting of only base functions. Each

such graph is called a pattern graph. (Each library gate may have many different pattern

graphs.) A sink node in a pattern graph is defined as a node which does not fanout to

any other node in the pattern graph. The technology mapping problem is then defined as

the problem of finding a minimum cost covering of the subject graph by choosing from the

collection of pattern graphs for all gates in the library. For area optimization, the cost of a

cover is defined as the sum of gate areas. For performance optimization, the cost of a cover

is defined as the critical path delay of the resulting circuit.

Consider a Boolean network, iV, which has been transformed into a subject graph consisting

ofonly two-input NAND and invertergates. Thisis the network in its unmappedformwhich

5.2. TECHNOLOGY MAPPING 45

will be referred to as the inchoate network, Ninchoate. In DAGON, Ninchoate is partitioned

into a set of maximal trees, T;, and an optimal dynamic programming solution is found

for each tree. In MIS, Ninchoate is split into a set of logic cones, Ki, where each cone

corresponds to a primary output and all its transitive fanin nodes. This allows covering

across tree boundaries and, as a result, may duplicate logic. The MIS technology mapper

implements DAGON as a subset.

Consider Figure 5.6 which shows an example Ninchoate at some point during the mapping

process. Assume that cone K\ (corresponding to primary output po\) and some of the

nodes in cone K2 have been mapped. The remaining nodes in cone K2 as wellas nodes in

cone K<$ must be mapped next. (In the dynamic programming approach, mapping starts

from the primary inputs of a logic cone and nodes are recursively processed in a reversed

depth first search order toward the primary output.) At this point, nodes in Ninchoate can

be classified into four categories. An egg is a node which has not been processed (visited)

by the mapper. A nestling is a node in the current cone, K2, which has been visited. It

cannot be predicted whether or not a nestling will be present in the final mapped network,

Nmapped) until po2 is reached. A dove is a node in K\ which is a non-sink element of some

pattern match. Such a node will not be present in Nmapped because it has been merged

into another. A hawk is a node in K\ which is a sink node in some pattern match. Such a

node will inevitably show upin Nmappea: Note thatevery dove has been merged into (fallen
prey to) at least one hawk. A nestling can become a hawk or a dove. Due to the possibility

of logic duplication, it may be possible for a dove to reincarnate and restart the node's

life cycle as an egg and later become a hawk. (See Figure 5.7.) At the end of the mapping

procedure, only hawks and doves remain. This classification will be used in Subsection 5.2.3

for dynamic position calculation.

A stem refers to a multiple-fanout node in Ninchoate> A branchis the immediate fanout node

of a stem. A line refers to a directed edge in Ninchoate- An exit line for a cone Ki is a line

which is an output line of a node in Ki and input line of a node which is not in Ki.

46

po3 po2

pi6pi5 pi4 pi3 p\2 pi1

Inchoate Network

po3 po2

CHAPTER 5. LOGIC OPTIMIZATION

P03 po2

dove

pi6pi5 pi4 pi3 p\2 pi1

Partially Mapped Network
po1

pi6 pi5 pi4 pi3 pi2 pi1

Current View of Final Network

Figure 5.6: Incremental updating of the Boolean network

5.2. TECHNOLOGY MAPPING 47

Figure 5.7: A node's life cycle during the mapping

5.2.3 Technology Mapping for Minimum Layout Area

The goal is to find a covering of a subject graph G by a set of pattern graphs P such that

layout cost is minimized. The layout cost refers to the actual area of the implementation

after placement and routing. LILY's cost function accounts for the gate area and the routing

area.

Assume that the cost of match m at node v is to calculated. (See Figure 5.8.) This cost

consists of two components:

areajcost(v,m) = area(gate(m)) + y^ areajcost(vi)

wirejcost(v,m) = wire(gate(m)igate(vi)) + Y"! wirejcost(vj)

Here, v,- 6 inputs(v, m) where inputs(v,m) refers to the list of nodes of G which correspond

to the inputs of m. gate(m) is the physical gate corresponding to m. gate(vi) is the best

gate matching at node v,\ The area cost calculation is straight forward and is similar to

that in MIS. The wire cost wirejcost(vym) consists of two terms. The first term is the

interconnection length required to complete connections from gate(m) to its fanin gates,

i.e., gate(vi). The latter is the dynamic programming recursive cost and represents the sum

of wirelengths required to connect all gates from primary inputs up to gate(vi).

48 CHAPTER 5. LOGIC OPTIMIZATION

hawk.

TO2

POI

Figure 5.8: Cost calculation for a candidate match

Initial Placement of the Network

The global placement phase generates a balanced point placement for all gates subject

to the given I/O pad assignment which minimizes the Euclidean distance squared metric

summed over all connected gates. By a balanced global placement, it is meant that gates

are uniformly distributed within the chip boundary, i.e., there are no over-subscribed or

under-subscribed subregions.

Such a global placement is desirable for two reasons. Firstly, the incentive for the global

placement is to capture the connectivity structure of the Boolean network on a plane.

The global optimality of the solution and the ability to capture the logic structure are

endangered if gates are prematurely forced into rows or slots. Secondly, the placement

updating procedure does not perform well on a fixed two-dimensional mesh due to the

inability to keep track of the slot densities during the dynamic programming step.

The gate pins are assumed to be located at the center of the gate and the location of the

gate is represented by a single (x,y) coordinate that coincides with the center of the gate.

These assumptions, which coincide with the point placement model, do not introduce much

5.2. TECHNOLOGY MAPPING 49

error when the number of gates in the circuit is large.

Finding Dynamic Fanouts

The dynamic fanouts of fanin u,- for match m at v (which is a node in cone Ki) are found

in the following manner. (See Figure 5.8.) Dynamic fanout refers to a fanout of vt* that is

present at the current step. A dynamic fanout is a hawk, a nestling or an egg which has vt-

as its fanin. For example, the list of dynamic fanouts of node v\ consists of nodes v, x\,

f2 and /$. Due to logic duplication, it is possible to find more than one dynamic fanout

along a given branch. Fanouts of m are the same as fanouts of the root of the match in the

inchoate network and are calculated statically.

During dynamic position calculation, mapPositions are used for hawks and placePositions

are used for all other node types.

Dynamic Updating of Placement

Initially, nodes in Ninchoate are assigned valid placePositions based on the global placement

solution. As nodes are mapped, mapPositions are calculated and stored on nodes. There

are three options for computing the mapPositions. In the CM-of-Merged-Nodes option,

m is placed at the center of mass of merged(v,m). (This is the list of nodes of Ninchoatei

including v, which are 'covered by' or 'merged into' m.) The calculation uses placePositions

forWj. (See Figure 5.8.) In the CM-of-Fan-Rectsoption, m is placed at the centerofmass (or

median) of its fanin and fanout rectangles. In the CM-of-Fan-Netsoption, m is placed at the

center of mass (or median) of its fanin and fanout nets. Due to depth first search ordering

used during the mapping procedure, inputs(v, m) have already been mapped and therefore

their mapPositions are used; outputs(v) are not mapped yet and their placePositions are

used.

The advantage of CM-of-Merged-Nodes option is that the mapPositions are always calcu

lated by referring to the initial global placement solution. Since the initial placement is

balanced and captures the adjacency relations and directions of signal flow between nodes

in Ninchoate-, the dynamically evolving placement will also be balanced. The disadvantage

50 CHAPTER 5. LOGIC OPTIMIZATION

gate(v2)

gate(v3)

djttmfc pos&in ofisppd node

Figure 5.9: Dynamic updating of placement positions using CM-of-Merged-Nodes option
(Euclidean norm)

is that the position of the candidate gate is independent of the positions of gates directly

connected to it and hence the wire cost associated with this dynamic updating policy is

often pessimistic. (See Figure 5.9.)

The remaining options are, in essence, techniques for constructive placement of the net

work being mapped. Note that because of dynamic programming formulation, as many

constructive placement solutions as there are enumerated mapping solutions are generated

and stored. A mapping solution along with its associated placement solution are finalized

after mapping the root node of each logic cone.

The advantage of CM-of-Fan-Rects option is that m is placed at a position which causes

minimum increase in the wire length with respect to its "fixed" fanin and fanout which is

desirable. The disadvantages are that the placement may become unbalanced and that the

placePositions for the as yet unmapped outputs(v) do not have much correlation with the

mapPositions of the gates actually showingup at the outputs of v in the final network. The

first difficulty can be reduced by repeating the global placement on the partially mapped

network after a cone or a predetermined number of cones are processed. In that case, eggs

and hawks are assigned placePositions based on the new placement result. The second

difficulty is more subtle. One solution is to perform a preprocessing pass on the network

during which for each node v, all possible outputs(v) are recorded. This is accomplished

by finding every possible match in the network which has v as an input. During this

preprocessing phase, matches areplaced at the centerof massof their mergednodes. Clearly,

5.2. TECHNOLOGY MAPPING

gatefvl)

gate(v2|||] gate(m)

gate{v3;

gate(v4)
dynamic positioi ofnapped lode

f4

fanout rectangle

(oTs

51

centerofmass fenin rectangle

Figure 5.10: Dynamic updating of placement positions using CM-of-Fan-Rects option (Eu

clidean norm)

this technique leads to a slow-down of LILY since all different matches at the outputs(v)
must be considered before choosing match m at v.

When using CM-of-Fan-Rects option, depending on the wire length metric adopted, the

problem can be solved efficiently or can become difficult. Consider Figure 5.10, which

shows the enclosing rectangles for the fanin and fanout nets of match m at v. Given a norm

and the coordinates of these fanin and fanout rectangles r, the problem is to find a point

p which results in the minimum sum of distances between that point and the rectangles.

In case of the Manhattan norm, the solution easily follows by observing that the distance

function has a separable form with respect to the variables x and y. That is, the x distance

of point p from rectangle r can be written as

f(x) = -(\r.ll.x - p.x\ + \r.ur.x - p.x\ - \r.ur.x - r.ll.x\)

where 11 and ur refer to the lower left and the upper right of rectangle r. The constant term

is dropped and the problem can be restated as: Find the point x such that £i |ar,- - x\ is

minimum where xt corresponds to either the left or the right corner point coordinates of

52 CHAPTER 5. LOGIC OPTIMIZATION

gate(v2)

gate(v3)

gate(v4)

|^f4
dynamic position ofmapped node

center ofmass offanin/fenoutnet

Figure 5.11: Dynamic updating of placement positions using CM-of-Fan-Nets option (Eu

clidean norm)

each of the rectangles. The problem is a special case of solving for the median of a graph

which is presented in [Hakimi 64]. It can be shown that this problem, treatingonly a linear

tree rather than a general graph, is very easy to solve; the solution is the median point for

the sorted list of x^s.

For the Euclidean norm, N rectangles partition the plane into TV2 subregions. In each

subregion, the above optimization can be formulated as a quadratic optimization problem

with linear constraints which can be solved efficiently. The global solution is obtained by

comparing the cost of the best solution in each subregion and picking the minimum cost

solution. Pruning of regions can reduce the number of subregions that must be considered.

However, this still takes far more time than we can afford during the mapping process.

Hence, an approximate solution is pursued. In particular, each fanin/fanout rectangle is

represented by its center of mass point, then the optimal point location problem is solved by

computing the centerof mass of these points. Note that when constructingthe fanin/fanout

rectangles, nodes of merged(v,m) are excluded from the fanin/fanout nets.

5.2. TECHNOLOGY MAPPING

Star connected net model Enclosing rectangle model

&
0

•o

Single-trunktree model Minimum spanningtree model

Figure 5.12: Various connection models for multiple pin nets

CM-of-Fan-Nets option is the combination of the first two options. Here, first a position

for m is calculated using CM-of-Merged-Nodes option, then the center of mass (or median)

for all the nets which dynamically connect to m are calculated. Finally, m is placed at

the center of mass (or median) of the center of masses (or medians) for these nets. As a

result, sensitivity of the dynamic placement update procedure on the exact locations of the

dynamic fanin and fanout nodes is reduced, the circuit is remains balanced and the wire

cost increase is kept small. (See Figure 5.11.)

Wire Cost Estimation

53

After positioning gate(m), the wire cost associated with the matching of m at node v must

be calculated. This cost consists of the sum of the wire lengths from m to its fanins.

Consider fanin v{ of m. If it is driving only the input pin of m, the wire length calculation is

simple. However, if it is driving multiple fanout pins (including input pin of m, of course),

then the calculation becomes more involved.

54 CHAPTER 5. LOGIC OPTIMIZATION

The following approximateprocedures for calculating length of a multiplepin net have been

implemented (Figure 5.12)

• Star connected model — Assume a direct source to sink connection pattern and

therefore calculate distance from the source pin to each sink pin and sum over;

• Enclosing rectangle model — Calculate the half perimeter length of the minimum

box bounding all pins on the net;

• Single-trunk tree model — Assume that pins on the net (sinks and the source)

connect to a single trunk that passes through the center of mass (or median) of all

pins either in horizontal or vertical direction. The direction leading to minimum trunk

length is used;

• Minimum spanning tree model — Find a minimum spanning tree connecting all

pins on the net and calculate its length.

Note that during technology mapping for minimum area, onlylength of the line connecting

eachfanin v,- to m is ofinterest. Therefore, the net length calculated usingthe above models

must be divided by the dynamic fanout count at v,- in order to get the expected wire length

contributed by connection from v,- to m and thereby avoid duplicate accounting of the wire

cost. In fact, using the star connection model, the edge length from »,• to m can be directly

calculated. Other models provide an average edge length.

Cone Ordering

The dynamic fanouts corresponding to the hawks willnecessarily exist in the final network.

Other dynamic fanouts are tentative, in the sense that they may not exist in the final net

work. However, all dynamic fanouts are needed for calculating the wire cost of a match

as described above. Therefore, an ordering of output cones that minimizes the number of

references to the dynamic fanouts whichhave not been mapped yet is attractive. Reconver-

gent stem nodes whose reconvergence region is a subset of exactly one logic cone give rise

to egg or nestling dynamic fanouts inside the current logic cone. However, this situation

cannot be avoided. Therefore, an ordering which only minimizes the number of references

5.2. TECHNOLOGY MAPPING 55

to the eggs outside the current logic cone is pursued. This problem may be restated as

follows: Find an output cone ordering such that the sum over all cones of the number of

exit lines from any cone to all unmapped cones is minimized.

More formally, let (iri, ir2, •••, wn) denote a linear orderingon cones K\, K2, •••, Kn> Then,

it is the desired ordering if it minimizes the following sum:

E E E(K^KWi)

where E(KVi, KVj) denotes the number ofexit lines from Kw. to KVj. An nx n matrix Mis
constructedsuch that its ij entry holds E(Ki, Kj). Notethat M is a symmetric matrix with

all diagonal entries equal to zero. The desired ordering is obtained by recursive application

ofthefollowing operations: Find a row, i, with minimum row sum £J=1 E(Ki, Kj); push its
corresponding primary output cone into a queue; delete row i and column i from M. This

procedure will find the optimum linear ordering of output cones for the specified objective

function.

5.2.4 Technology Mapping for Minimum Circuit Delay

In the delay mode, the best mapping at a node is determined based on the arrival time of

the signal at the node output. As technology scales down, the contribution of wiring to the

delay becomes significant, and even dominating. Hence, it is only natural that wiring delay

is incorporated into the calculation of the arrival time.

Arrival Time Calculation

Consider a gate g with output line y and input lines i, i = 1••-p. Let g fanout to inputs

of gj. In a simple linear delay model, the delay through g is a linear function of its output

load capacitance Ci. The slope of this Unearity can be thought of as the output resistance

and the offset (at zero Cl) can be thought of as the intrinsic delay through g. In general,

the delays from different inputs to the output are different. Therefore, the intrinsic delay

from input i to y is denoted by I,-, and the output resistance at y corresponding to input i

is denoted by J2j. Jt- and J2,- have separate values each for rising and falling delays.

56 CHAPTER 5. LOGIC OPTIMIZATION

A
output net /•""*

ofG / \ Fi
p\

«

•

•

GY

l
i

1

1

\ •

•

'Q
F2

B

Figure 5.13: Output load consists of fanout load and wiring load

Based on this model, the arrival time [Burstein 85] at y from input i, tyi, can be easily

calculated as tyi = *,- + /,- + Ri Cl where U is the arrival time at input line i. (Again, note

that arrival times have to be calculated separately for rising and falling delays). Using a

worst case analysis, the output arrival time at y, ty is defined as the the time at which all

signals from input lines i will be available at y andis given by ty = max{ty.} computed over

all i, i —1 ••'p. Combining the above two equations, the output arrival time can be written

recursively as ty = max{U + Jt + Ri Cl} computed over all i,i = 1 ••-p. This calculation

for the arrival time requires that the value of Cl be known.

Output Load Capacitance

Cl is the equivalent capacitive load at y. This capacitance ismodeled asCl = £"=i Cj+Cw
where Cj denotes the capacitance at the input of fanout gate gj, and n is the number of

fanout nodes. (See Figure 5.13 Cw represents the capacitance due to the interconnections

which connect g to its fanout nodes. The wiring resistance is very small and is therefore

ignored.

Let q be the input of the fanout gate gj to which y is connected. Since the interconnections

have been modeled by a lumped capacitance, ty = tq, i.e., the output arrival time at y and

5.2. TECHNOLOGY MAPPING 57

the input arrival time at q are identical.

In MIS, Cw is modeled as a function of the n. (A simple function would be linear in n, with

a user specified proportionality constant.) In LILY, Cw is modeled as a lumped capacitance

proportional to the estimated output net length. If X and Y are the horizontal and vertical

interconnection lengths for the nets, the capacitance is calculated as ChX -f CVY, where

Ch and Cv are the capacitance per unit length of the horizontal and vertical interconnects

respectively. X and Y can be determined using connection models described previously.

For loading calculation, the length of the net (and not that of the edge connecting source

to sink) should be used.

Updating the Arrival Time

During the mapping process, when m is matching at node v, fanouts of v are not yet

mapped. This implies that the load Cl, at the output of gate(m) cannot be determined

exactly. This problem can be handled by assuminga constant load, i.e., all types ofgates are

assumed to have the same input capacitance. This assumption is also adopted in MIS2.1.

(Most gates in the 3/i MSU standard cell library have an input capacitance of 0.25 pF

[Heinbuch 88]). However, in order to calculate the wiring capacitance, positionsof gates at

the node's fanout must be known. This is not possible and instead positions of these gates

are read from the initial placement solution of Ninchoate' This simplification gives rise to

inaccuracies in the arrival time calculation.

To prevent the inaccuracy from propagating through, the following observation is used:

When matching m at v, the capacitance at the output of inputs(v,m) is known because the

type and position of their fanout gate whichis gate(m)is known. If the output arrival times

of inputs(v,m) are updated, then the input arrivaltime oigate(m) is accurate. The splitting

of the arrival time calculation into load independent and load dependent parts makes such

an update easy. This can be thought of as splitting the gate g into p load independent parts

Lli and one load dependent part LD. Each input i has an associated Lli. The LPs have

zero output resistance and LD has zero intrinsic delay. (See Figure 5.14.)

Corresponding to each input i, the block arrival time at g is defined as bi = U + J,-. The

output arrival time can now be defined in terms of the block arrival times and is given by

58 CHAPTER 5. LOGIC OPTIMIZATION

•••••*••**•
....•••.••»•••..••••

LD

l1=0

Ui F\=0 bt

Lh

l2

f\=0 b2

li

f\=0 bi

it,

Figure 5.14: Gate splitting for timing re-calculation

ty = max{bi + £,• Ci,}. The advantage of this splitting is that only the R&l part has to

be recalculated for different loads - 6,'s remain unchanged.

Mapping for Minimum Delay

Consider the mapping scenario at node v in Figure 5.8. Block arrival times at t>,* have

already been calculated. The mappingproceeds in the following manner:

1. For each V{ € inputs(v,m), the output arrival time at gate(vi) is recalculated. This

computation uses the block arrival times at vt and the current load at the output of

v,\ The list of dynamic fanout nodes for v,- are found, and match m is added to this

list. The current load, seen at v;, is calculated from this list. The input capacitance of

gate(m) and its mapPosition are used for calculating Cl and Cw respectively. For a

hawk in the list, the input capacitance and the mapPosition for gate(hawk) are used.

For an eggor nestlingin the list, the input capacitance and the placePositionfor its

base function gate are used.

2. The block arrival times at gate(m) and corresponding to each input Vi are computed.

5.3. FANOUT OPTIMIZATION 59

3. Using the base function gates at the fanout of v, the output capacitance load of

gate(m) is calculated.

4. The output arrival time at gate(m) is calculated using the block arrival time and the

output load.

5. The output arrival time at gate(m) is compared with the output arrival time of other

possible matches at v. The matching with the lowest output arrival time is chosen.

The match and its block arrival times are stored at v.

5.3 Fanout Optimization

5.3.1 Introduction

Fanout optimization is an important step in logicsynthesis. It can significantlyimprove the

circuit performance by reducing the delays. It can also be used to enforce fanout constraints

or load constraints imposed by a technology. The delay through a gate is approximately

proportional to the numberoffanout sinks. Hence, restricting the fanout at gates, the delay

can be reduced. (The delay can also be reduced by transistor sizing and improved drive

capability of the gate but theseissues will not be pursuedhere.) Commonly used techniques

forfanoutoptimization include buffer insertion and logic duplication. Both techniques often

achieve reduced delays at the expense of increased area.

Most logic synthesis systems use buffer trees after technology mapping. It is, however,

desirable to move the fanout optimization process to higher levels, i.e., to canonical decom

position or technology mapping steps. One way ofcontrolling the fanout during technology

mapping is to build buffer trees for the inchoate network. A timing analysis on the inchoate

network identifies the high-count multiple fanout points (fanout > fanout-limit) which lie

on the critical paths. The high fanout-count at these points is likely to be preserved during

mapping, and therefore, buffer insertion will be required after the mapping. By inserting

buffer trees at these critical high-fanout points, the possibility of high-count fanout points

after mapping is reduced and more realistic area and delay estimations are obtainedduring
the mapping process.

60

IQC&ttJB DfltWOflC

Ftnoutlinat=4

CHAPTER 5. LOGIC OPTIMIZATION

Figure 5.15: Buffer insertion

5.3.2 Buffer Insertion

The buffer trees are constructed as follows. Let m be the number of sinks and k be the

fanout limit to be enforced. The source then drives k buffers, each of whichin turn drives

k gates or buffers. The number oflevels required is logkm. Formost practical purposes one

level of buffers is sufficient, m/k buffers are put at the level 1 and the sinks are divided

equally among them.

There are two choices for buffer trees as shown in Figure 5.15. The first tree has more

buffers at level 1 each of which is driving a smaller number of sinks. The advantage of the

first tree is that it has more freedom during placement due to the reduced forward cone

dependencies but the second tree has lower area, lower routing complexity (lower number
of nets), and provides more critical signal isolation. Thus, I choose the second form of tree.

The methods described in [Touati 90] ofbuilding fanout trees based on the load and timing

information at the sinks cannot be reliably used at this step due to lack of accurate load

information. However, sinks canbe divided among buffers to reduce the routing complexity

by driving sinks which are going towards the same outputs by the same buffer. This is

5.3. FANOUT OPTIMIZATION 61

Figure 5.16: Changes to inchoate network for logic duplication

done by creating a block for each fanout and creating pins on the block corresponding to

the primary outputs in the transitive fanout cone of the sink. Then, a linear placement of

the blocks which minimizes the total net span is obtained. The ordering of the sinks so

produced maximizes the proximity between the sinks. It has been observed that this method

of modifying the inchoate network helps reduce the maximum fanout in the mapped circuit

at almost no cost in area.

5.3.3 Logic Duplication

Another technique for fanout optimization is through logic duplication. A gate which is

driving a large number of sinks is duplicated and the sinks are divided among them. This

method of optimization is more effective in reducing delays compared to the buffer insertion

which may introduce extra delay due to the increased levels of logic. (See Figure 5.16.)

Logic duplication can be performed after technologymapping but the gates which need to

be duplicated tend to be larger whichmakes the area cost of duplication high. A better way

is to handle duplication at the time of technology mapping or even before the mapping. The

required duplication is done in the inchoate network. The advantage is that fanout limits

can be satisfied by duplicating potentially smaller gates during the mapping process. The

transformed inchoate network allows all the possible solutions generated for the original

inchoate network as well as additional solutions which would not be possible with the

62 CHAPTER 5. LOGIC OPTIMIZATION

original inchoate network.

5.4 Experimental Results

Consider using the traditional mapping schemes on a given design but with two different

target libraries. Both libraries implement the same functions. However, the 'tiny' library

has gates up to 3 inputs while the 'big' library has gates up to 6 inputs. Clearly, mapping

with 'tiny'library contains many moregates andnets. Its activecellareaand total chip area

are, in general, larger. The 'big' library has much smaller active cell area, but its routing

complexity is high. Consequently, the final chip area after placement and routing can be

as large as that obtained using the 'tiny* library. Let Atiny and Abig denote the chip area

obtained by traditional mappers using 'tiny'or'big' libraries. Similarly, let Wtiny and W^g
denote the total interconnection length. Now, if along with the 'big' library, a layout-driven

mapping procedure is used, then a mapping solution with number of gates in between those

of 'tiny' and 'big' libraries but with A < min(Atiny,Abig) and W < min(Wtiny, W^g) will
be produced.

The objective was to show that by integrating logic synthesis and gate placement, one can

improve the quality of mapping both in terms of layout area and circuit performance. In

order to provide a fair basis for comparison, two pipelines wereused to produce the results:

1) Read in the optimized circuit; do technology decomposition; run MIS technology mapper

in area or timing mode; write the mapped circuit to the database; assign locations to I/O

pads; do detailed placement and routing. 2) Read in the optimizedcircuit; assign locations

to I/O pads; do placement driven technology decomposition; run LILY in area or timing

mode; write the mapped circuit and "companion" placement solution to the database; do

routing. In both cases the same placement, pin assignment and routing tools were used.

Note that the first option which is the standard MIS pipeline cannot make use of the location

of pads during the decomposition or technology mapping process.

The benchmarks were first optimized for minimum area using the rugged script [Savoj 91].

This script produces the area optimized circuits. Next, the delay script [Touati 91] (which

does a quick decomposition, resubstitution, depth reduction, redundancy removal and full

simplification) was run on the area optimized circuits to produce the delay optimized ones.

5.4. EXPERIMENTAL RESULTS

The literal count results (before technologymapping) are depicted in Tables 5.1.

Ex. original area opt delay opt
9symml 277 183 200

C1355 1032 552 832

C1908 1497 535 841

C3540* 2934 1283 1629

C432 372 219 317

C5315 4369 1763 2494

C6288* 4800 3367 4231

C880 703 414 558

apex6 904 732 1002

apex7 289 243 334

b9 236 124 153

rot 764 664 797

63

Table 5.1: Multi-level benchmarks: numberofliterals in factored form (* means fulljsimplify

was not used)

Table 5.2 shows comparisons between LILY and MIS2.1 results in terms of active cell area,

total chip area and total interconnection length (for area optimized circuits and mapping

in area mode). In general, LILY's mapper tends to use smaller gates, larger active cell area

(avg. 1%) but smaller total chip area (avg. 3%) and interconnection length (avg. 3%).

example
MIS2.1 LILY

inst. area chip area wire length inst. area chip area wire length
mm mm2 mm

2
mm mm2 mm

C1355 0.458 1.311 136.7 0.454 1.257 129.7

C1908 0.515 1.720 192.1 0.520 1.665 188.3

C3540 1.384 5.737 694.6 1.391 5.588 672.1

C432 0.246 0.742 84.2 0.258 0.696 77.8

C5315 1.700 7.694 920.9 1.721 7.611 903.9

C880 0.452 1.458 158.8 0.453 1.357 148.3

apex6 0.728 3.194 386.7 0.737 3.010 378.5

apex7 0.258 0.720 81.1 0.265 0.817 89.1

b9 0.147 0.350 35.3 0.149 0.344 35.1

rot 0.747 3.035 376.6 0.759 2.929 369.8

Table 5.2: Comparison of the total instance area, final chip area and interconnection length

after detailed routing

Table 5.3 shows comparisons between LILY and MIS2.1 results in terms of total chip area

64 CHAPTER 5. LOGIC OPTIMIZATION

and longest path delay (for delay optimized circuits and mapping in timing mode). The

delays are based on a 1/x standard cell library. (Since information on a real 1// library was

not available, the delay, gate capacitance and wiring capacitance of 3/j technology were

scaled appropriately [Heinbuch 88].) Both MIS2.1 and LILY delays are computed after

detailed placement, and the wiring delays are included during the delay calculation. LILY

shows an average area improvement of 27% and delay improvement of 12% compared to

MIS2.1.

example
MIS2.1 LILY

chip area delay chip area delay
mm* ns mm ns

9symml 1.004 9.02 1.182 9.53

C1355 6.231 18.09 4.100 15.15

C1908 7.923 32.60 6.774 24.98

C3540 21.325 40.11 13.020 36.00

C432 3.215 24.00 3.051 20.81

C5315 28.331 28.04 17.45 25.06

C880 3.226 20.67 3.158 19.68

apex6 6.160 15.91 5.818 13.60

apex7 1.376 8.27 1.324 8.50

rot 5.803 15.78 5.921 15.34

Table 5.3: Comparison of the final chip area and longest path delay results after detailed

routing

The following tools and options were used: GORDIAN [Kleinhans 90] package for global

placement, CM-of-Fan-Nets option for dynamic placement update, Euclidean distance met

ric, enclosing rectangle connection model for wire length estimation, PACT pad placement

program, TimberWolf 4.2 [Sechen 85] global router, and YACR [Reed 85] detailed router.

The placement package generates a global placement for the pre-mapped inchoate network

of C5315 with 1892 gates in about 3 minutes on a DEC3100. The LILY run time - including

premapping, pad placement, global placement of the inchoate network, mapping, detailed

placement of the mapped circuit with 713 gates for this example is about 10 minutes.

It is observed that LILY yields better mappingsolutions (e.g., compared to MIS2.1 mapper)

when the routing complexity for the logic circuit is high and the target library contains

large gates (number of fanin nodes > 4). In addition, the initial pad placement - prior to

technology mapping - influences the degree of wire length reduction that is achievable by

5.4. EXPERIMENTAL RESULTS 65

LILY.

LILY's delay model is a load independent delay model which tries to overcome some of

the shortcomings of a load independent delay calculation by using information about the

mapped portion of the inchoate network. As in MIS2.2 [Touati 90], one could perform a

preprocessing pass during which for each node, all possible load values are recorded (by

examining every possible match) or could perform a postprocessing pass to derive fanout

trees.

66 CHAPTER 5. LOGIC OPTIMIZATION

67

Part II

Physical Design

Chapter 6

System Overview

6.1 Motivation

Macro-cell layout style is often used when a complex circuit must have minimum area and

high performance. This layout style has advantages in terms of both area and performance

over other cell-based layout styles with regular structures (e. g., standard cell and gate

array/sea-of-gates). The price to pay is higher design cost and longer design time. The

macro-cell design aid tools are not as mature as standard cell or gate array tools, and

hence, macro-cell layout requires more time and effort on part of the chip designers. The

macro-cell layout, however, uses more flexible topologies and cells, hence allowing very

good area and performance optimizations. In addition, this layout style is more suited to

a hierarchical design environment since it relies mainly on interface description of the cells,

and therefore, permits higher degrees of design modularity and concurrent group work. The

cells to be laid out in a macro-cell assembly can each be optimized independently based on

the functionality and requirements of the cell. Individual cells can be implemented by the

most appropriate layout style.

69

70 CHAPTER 6. SYSTEM OVERVIEW

6.2 BEAR-FP: A Macro-Cell Layout System

BEAR-FP [Pedram 90c] is a macro-cell basedlayout system which builds on its predecessor,

the BEAR system [Dai 87d]. It inherits BEAR's dynamic and efficient data representation,

which unifies topological and geometrical information, and BEAR's routing system. BEAR-

FP, however, has a new noorplanning procedure with integrated global routing and hierar

chical pin assignment, a new Steiner-tree global router, a detailed channel pin arrangement

procedure, and a timing-driven clustering and placement capability. BEAR-FP supports

traditional macro-cell layout with routing channels as well as channel-free layout style.

The guiding principle of BEAR-FP is that of stepwise refinement, which means that the

geometrical positions and interface characteristics (shape and pin locations) of cells are

determined gradually and in a top-down fashion. For example, positions of floating pins

on cells are initially determined based on minimizing total wire length in the chip. These

positions are later modified to honor channel capacity constraints at a minimal increase

in wire length. Before detailed routing, pin positions within a channel can be changed to

minimize the routing density. As another example, shapes of flexible cells are determined

during the top-down floorplanning. These shapes can be further optimized after global

routing (when more detailed information about connection paths exist).

BEAR-FP provides a complete pipeline from a net list specification of a circuit to a finished

layout. The user specifies various physical, timing and topological constraints, controls

the order that various optimization tools are invoked and sets parameters to control the

outcomes of these procedures. BEAR-FP addresses the issue of performance optimization

by including a scheme for timing-driven layout that spans the entire layout process, i.e.,

the timing constraints influence the clustering, floorplanning, pin assignment and global

routing steps.

BEAR-FP can be used for "early" floorplanning as well. In this mode, it does a quick

floorplanning whose results can be used to guide the logic synthesis procedure by giving the

logic design tools information about the interface characteristics (shape and pin distribution)

of the blocks and about how the physical design process can impact the timing on certain

critical paths of the circuit. In the following paragraphs, a typical design flow is examined

and in the process the set of tools which constitute BEAR-FP are briefly described.

6.2. BEAR-FP: A MACRO-CELL LAYOUT SYSTEM 71

Initially, a hierarchical representation of the circuit in the form of a multi-way cluster tree is

generated. Each leaf in the tree corresponds to an actual cell and each internal node (which

is called a cluster node) represents a collection of highly connected cells (or clusters of cells).

This tree is generated bottom-up and is obtained by minimizing connections among various

cells. The maximum branching factor in the tree is restricted to a small value (e.g., four).

This restriction is necessary because the number of multi-way floorplan patterns increases

dramatically as the branching factor is increased.

Top-down floorplaning [Dai 89, Pedram 90a, Pedram 90b] is started from the root of the

cluster tree and is continuedin a breadth first manner. As a result of floorplanning a cluster

node, its child nodes are assigned shapes and positions, and the current partial floorplan

solution is updated accordingly. Next step is pin assignment and global routing. An initial

pin assignment produces a solution minimizing the total interconnection length. Global

routing produces shortest connection paths for all nets. If capacity constraints for some

channels are violated, a new pin assignment re-positions the floating pins in order to reduce

congestions in the over-subscribed channels. The process of the top down traversal of the

cluster tree continues until the leaf level is reached. Because the global pin assignment

procedure does not find the optimal pin locations within each routing channel, it is followed

by a channel pin arrangement procedure [Cong 89].

The global router [M-Sadowska 86] takes a subregion in which routing has not yet been

completed and determines a cut which separates it into two smaller subregions. When a

net has pins or pseudo pins in both sides of the partition, the net crosses the cut line. For

each such net, pseudo pins are inserted along the cut line in appropriate bottleneck tiles.

This cutting process continues until each subregion on the list is free of bottlenecks. At

each partitioning step, the linear assignment algorithm is used to determine where the net

will be placed. The global router tries to place nets in bottleneck tiles so that the density

(used space) does not exceed the capacity (available space) of each tile. The global router

works directly on a plane and does not have any knowledge about the division of channel

routing regions. Such an approach allows for better area utilization and it sets the scene

for block placement corrections and corresponding adjustments of routed nets.

After the global router completes its job, topologies and positions of all nets with respect

to blocks are determined. Since it is quite difficult to estimate the routing area precisely,

72 CHAPTER 6. SYSTEM OVERVIEW

some bottleneck tiles will have more nets passing through them than their sizes permit.

Similarly, some tiles will have less. The purpose of global spacing [Dai 87b] is to match

the capacity of each bottleneck tile with its density as much as possible while preserving

the existing nets' topologies. There are two steps in global spacing. The first step, global

decompaction, eliminates negative mismatches (density I capacity) at the expense of a

minimal increase in the chip area. The second step, global compaction, reduces the chip

area as much as possible without creating negative mismatches. During global spacing,

global routing is updated incrementally. A dynamic data representation, which unifies

topological and geometrical information, is used to achieve an efficient implementation of

such difficult operations [Dai 87a].

The floorplanning procedure described above, chooses the best shape for a flexible cell from a

finite set of discrete shapes. The shape optimization procedure, however, assigns a shape to

the flexible cell by varying its aspect ratio (while keeping its area fixed) between a minimum

and maximum aspect ratio. The pin assignment performed during this procedure is a simple

scaling of pins on the sides of cell such that the relative spacings between pins are intact.

At this point, the space between any two blocks as well as the space needed for routing

is known. The main advantage of this method is that it can use the information provided

by the placement and the global routing to accurately model the influence of block shape

modifications on the overall chip size. After resizing a cell, the global routing information

around the cell is incrementally updated.

BEAR-FP allows an additional opportunity to refine the placement during the local routing.

To make such refinement robust and efficient, a feasible routing order is crucial. In a feasible

routing order, when a new channel is being routed, it can be expanded or contracted without

destroying the previously routed channels. Hence, routing completion is facilitated without

iteration. Rather than restricting the floor plans or placements to slicing structures (in such

special case, finding feasible routing order is trivial) as done in most other system, BEAR-

FP provides a feasible routing order for non-slicing structures by introducing L-shaped

channels [Dai 85].

The channel router Glitter [Chen 86, Chen 87] which is a gridless, variable width router

does the detailed routing. Glitter places horizontal wires on one layer and vertical wires on

the other layer. The channel compactor Nutcracker [Xiong 87] can be used to reduce the

6.2. BEAR-FP: A MACRO-CELL LAYOUT SYSTEM 73

channelheight after routing. This strategy may lead to many more vias than necessary. The

detailed routing is therefore followed by a via reducer [Xiong 88] which slides and removes

unnecessary contacts. The last step in detailed routing is ring router [Wang 90] which

connects the core of a chip to the I/O pads at the periphery. The ring router expects all

signal wires to be the same width. Wires specified as power/ground can be of arbitrary

widths.

In the following chapters, I will focus on the floorplanning and pin assignment programs

within BEAR-FP.

Chapter 7

A Robust Framework for

Floorplanning

7.1 Introduction

During the early stages in the design of electronic systems, decisions are made which have

a dramatic effect on the quality (performance, density or area) of the resulting design.

Choices must be made in partitioning functions into physical cells and in choosing interface

characteristics of the cells such as size, shape, and pin positions. These choices are difficult

because their effects on the circuit area and speed may not become known until much later.

Floorplanning helps solve these problems.

The objective of floorplanning is to trade off cell interface characteristics (size, shape, and

pin position) and cell locations to optimize the layout. Floorplanning is the first step in

the physical design which determines the spatial and interface characteristics of given cells

such that the desired physical and electrical constraints are satisfied. The floorplanner must

generate a chip plan that can be implemented by cell generators. Such a floorplanner would

allow better automation of the physical design process.

Floorplanning is useful in yet another way. One must know something about how a design

is to be laid out in order to get an accurate estimate of its area and speed. The commonly

74

7.1. INTRODUCTION 75

used method for evaluating a register-transferlevel design, namely the number of functional

blocks and registers and the number of control steps, is no longer adequate. That is why

VLSI designers generally work from a floorplan, even when they are developing the basic

system architecture.

Most ASIC vendors provide pre-layout interconnect delay estimations based on fanout and

gate count, using statistical data from previous layouts. Since the lengths of wires are un

known, these pre-layout delay estimates are not accurate. One can rely on floorplanning

tools to attain more accurate estimates of interconnect delay. These tools allow designers

to place large macros, manipulate their size, aspect ratio, and pin positions and receive

feedback on routing density and wire lengths. Based on this data, delay estimators can

produce an estimated distributed RC delay. In addition to helping designers predict inter

connect delays, floorplanning can provide valuable information for layout designs to reduce

the number of placement and routing iterations needed.

Floorplanning tools can be used in the feedback loop of a high-level synthesis system to

improve scheduling and allocation. First, a schedule and register-transfer data path are

constructed. Then, floorplanning and global routing are performed which produce informa

tion about critical paths. This information is back-annotated into the circuit and high-level

synthesis is repeated.

Floorplanning algorithms should model the cells' interface flexibility and any constraints on

that flexibility. Three classes of cells are used in floorplanning: 1) Some cells are already

laid out and are stored in a library. AH the interface characteristics of these cells are known

and fixed. To provide some flexibility, several versions of cells with different characteristics

may be stored in a library. 2) The designs of some cells are known, but their layouts are

flexible and can be influenced by the results of floorplanning. For example, standard or

general cell layout methods can produce a wide range of shapes for a given design. PLAs

and memory cells can be distorted through folding or layout design. 3) Cells of the third

class areflexible because their designs (and perhaps even the design methods) are not known

or are uncertain. In this case it is difficult for the designers or algorithms to even specify

nominal interface characteristics or constraints thereon.

An important aspect of cell modeling is estimation of area and shape. This task often

76 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

requires appropriate modelingof corresponding cellgenerators so that cells'shape functions

can be accurately and quickly estimated. The floorplanner must exploit these functions in

order to trade off the sizes and shapes of the leaf cells against each other to optimize the

layout.

I have developed a floorplanning procedure which is based on the bottom-up clustering,

shape function computation, and top down floorplan optimization with integrated global

routing and pin assignment. An important feature of my floorplanner is its ability to

accept various constraints and design requirements. This is in contrast with most existing

floorplanners. Since in the past, specialized conventional floorplanners have been required

to handle data-path dominated assemblies, device-level analog chips, mixed macrocell and

standard-cell circuits,and macrocell designs. The main difference among these layout styles

is the type of constraints that must be satisfied and optimization procedures that must

be applied. My floorplanner, however, provides means for specifying and techniques for

satisfying a wide range of constraints (physical, topological, timing, device-level) and is,

therefore, able to handle all these layout styles.

In addition to above, the floorplanner introduces the following new components:

• Accurate and dynamic routing area estimation during floorplan computation in order

to avoid an increase in the chip areaafter global routing.

• A systematic optimization procedureduring the selection of suitable floorplan patterns

that integrates floorplanning, global routing and pin assignment.

• Extensions to incorporate timing issues by a novel timing-driven clusteringtechnique,

followed by top-down floorplan optimization.

• A new pin assignment technique based on linear assignment and driven by the global

routing solution and floorplan topology.

• Support for some of the device-level analog floorplanning issues such as layout sym

metries, matching constraints, topological constraints, cell abutting and merging.

• Tight coupling between floorplanner and module generators through modeling impor

tant classes of generators, i.e., standard cell and data path assemblies.

7.2. FLOORPLANNING PROCEDURE 77

• Accommodation of channel-free stylelayout which is especially useful when floorplan

ning large channelless gate arrays or mixed macrocell and standard-cell assemblies.

7.2 Floorplanning Procedure

7.2.1 Overview

Prior Work

There are two major thrusts in floorplanning research. The first thrust uses floorplanning

in the initial stages of design to develop constraints that can be passed to succeeding syn

thesis steps. The second thrust relies on the existence of powerful cell generators that can

implement cells according to specifications.

Lauther's min-cut placement [Lauther 79] is a good example of the first thrust. He uses a

top-down method that divides cells into two partitions (blocks). The process of dividing

blocks into smaller blocks continues until the number of cells per block is small. This ap

proach considers higher level of abstraction before it considers more detailed levels and is

goal-oriented. Placementdecisions madeat higher levels of the hierarchy, however, maysuf

fer from lack of detailed information. La Potin [La Potin 86] improvedthe min-cut method

by considering the pad positions. Dai [Dai 87c] extended La Potin's work to general non-

slicing structures and multi-way cluster trees and combined floorplanning with hierarchical

global routing.

Otten's shape propagation placement technique [Otten 83] is an example of the second

thrust. His algorithm initially derives a physical hierarchy in the form of a binary slicing

tree. Next, the slicing tree is traversed bottom-up. At each internal node of the tree, a

compositeshape function is calculated from the shape functions of its children (child nodes)

and directions of the cuts. These shape functions are combined and propagated recursively

up the tree until the shapefunction for the root ofthe tree (root node) is obtained. An (a:, y)

pair on the shape function for the root node which satisfies the user specified aspect ratio

is chosen and - using pointers saved during the bottom-up process - a complete floorplan

is generated. Otten's approach uses a binary slicing tree which is very restrictive and

78 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

uses simplistic shape models for the leaf cells. This technique has difficulty incorporating

I/O pin locations in the optimization process. Another shortcoming is that the bottom-up

floorplan sizing does not consider the globalconnection costs. In general, this consideration

is necessary because the choice of a suitable floorplan pattern for a cluster must be made

on the basis of the connection cost as well.

Zimmerman [Zimmerman 88] improved Otten's technique to optimize direction of the cuts

during the shape propagation phase. He estimated the wiring area required for each node

of the binary slicing tree and shifted nodes' shape functions to account for the wiring areas.

Herrigel [Herrigel 89] and Lengauer [Lengauer 90] proposed a top-down, follow-up phase to

minimize the total interconnection length by switching cells across cuts. This method has

limited effect since the layout area minimization and interconnection length minimization

are separated and since the cell switching - which is performed such that the floorplan area

does not change - represents small perturbation to the solution found during the bottom-up

phase.

Dai et al. [Dai 89] attempted to bridge the gap between the two thrusts mentioned above

by computing the best shape (i.e., a target shape) for each node of the cluster tree bottom-

up and using these target shapes during the top-down floorplanning phase to evaluate

the relative merits of various floorplan patterns and labelings for nodes of the tree. Single

target shapes, however, do not carry enough information about the leaf cells to allow reliable

decision making at higher levels of the tree hierarchy.

I extend Dai's work [Dai 89] by computing the shape functions for the cluster nodes bottom-

up, incorporating constraints on the variability in cell sizes, shapes and pin positions, cou

pling pin assignment to global routing and finally honoring various physical, topological,

timing and analog constraints.

My approach is more suitable for structured design using a top-down methodology. At the

same time, because it relies on accurate bottom-up information which is calculated and

stored during a pre-processing step, it does not suffer from the shortcomings of a purely

top-down approach. It is also capable of generating accurate shape functions for the leaf

cells from their functional or structural specifications, and produces floorplans which are

good to the extent that the shape estimates are accurate.

7.2. FLOORPLANNING PROCEDURE 79

3-room floorplan patterns

3-room floorplan orientations

3-room floorplan labels

Figure 7.1: 3-room floorplan patterns, orientations of these patterns, and some of the

possible labelings

Floorplanning for large channelless gate arrays can also be addressed by my approach. At

the beginning of the design cycle, the gates are partitioned into a set of frames based on

the timing requirements and functional hierarchy. During the physical implementation,

placement improvement algorithms move cells within (but not outside of) frames with

specified timing for critical paths influencing cell movement. (However, see [Murofushi 90]

for a hierarchical floorplanning paradigm allowing frame overlaps.)

Terminology

A Ar-room floorplan patternis a floorplan structure with exactly k rooms. An orientation of a

pattern is a clockwise rotation of the pattern with respect to the boundary pin locations. A

labeling of a pattern corresponds to the assignment of nodes of the cluster tree to individual

rooms. A topological possibility - denoted by TP - refers to a particular choice of floorplan

pattern, pattern labeling and pattern orientation. (See Figure 7.1.)

80 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

The shape function for a cluster node gives the lower bound on height of the node as a

function of its width. The interconnection length Junction for a cluster node gives the lower

bound on areaof the node as a function of the estimated length of interconnectionswithin

the node. This length accounts for all wires which are required to complete connections

among children of the node and from children to the external I/O pins. The combined

shape function for a particular cluster node - denoted by SFtp - is calculated using the

shape functions for its child nodes and the TP assigned to the node. Similarly, the combined

interconnection length function for a particular cluster node - denoted by LFtp - is calcu

lated using the interconnection length functions for its child nodes and the TP assigned to

the node. (See Subsection 7.2.3.)

Inputs to the floorplanner are a collection of variable shape cells, shape and orientation

constraints on cells, pin position constraints, locations of the chip I/O pads, a net list

specifying connectionsamong various cells and a target aspect ratio for the chip. Outputs of

the floorplanner are locations, shapes and pin positions for the cells such that all constraints

are satisfied and a combination of layout area, total interconnection length and aspect ratio

mismatch is minimized.

7.2.2 Cluster Tree Generation

Hierarchy is the typical way to deal with the complexity of large designs. A hierarchical

approach appropriately prunes the solution space and reduces the design objects to man

ageable sizes. In the context of floorplanning, the hierarchy usually takes the form of a tree

where highly connected cells are grouped together. This hierarchical representation of cells

greatly simplifies the floorplanning problem since floorplanning algorithms can recursively

operate on one hierarchical cell at a time. The tree itself could have a restricted structure

(e.g., binary slicing with fixed cut directions and cluster-to-room labelings) or could have

a flexible structure (e.g., a multi-way tree). A more flexible structure allows for a higher

degree of floorplanning optimization.

A multi-way cluster tree is, therefore, generated (Figure 7.2). This tree is obtained by

minimizing connections among various cells. However, to avoid a cell shape mismatch in

the clusters that makes it difficult to find a good placement for cells, shapes of the cells are

7.2. FLOORPLANNING PROCEDURE 81

Figure 7.2: A multi-way cluster tree with 8 cells and 3 levels

also considered. The shape mismatch penalty is given more weight at the lower levels of the

cluster tree, whereas at the higher levels of the cluster tree, the governing cost measure is

that of the connections among various clusters. The maximum branching factor in the tree

is restricted to a small value (e.g., four). This allows us to take more floorplan topologies

into account that is possible with binary cut trees. At the same time, non-slicing floorplan

topologies are avoided. (My approach can handle non-slicing topologies as well, however,

I decided to keep away from them for reasons of efficiency.) Furthermore, if the branching

factor is too large, the problem of finding a floorplan solution for a node in the tree becomes

as complex as the general floorplanning problem.

To generate one level of the tree, the matching algorithm for simple graphs is used (as in

[Khellaf 87]). The clustering algorithm finds a maximumweight perfect matching M\ of G

and constructs G' by contracting all edges of Mi using the updated weights. Then, it finds

a maximum weight perfect matching M2 of G' and forms p disjoint clusters of 4 vertices

each by grouping end vertices of edges of M^. These operations are repeated recursively

until one cluster node remains. The cell shape mismatch is used as a "soft" constraint, that

is, only macros whose area and shape satisfy shape matching constraints become candidates

for merging into the same cluster. (A soft constraint is honored as long as there is at least

one feasible solution satisfying that constraint. It is ignored otherwise.)

The above cluster generation procedure is driven by connectivity and shape matching mea-

82 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

sures. It is, however, possible to derive the cluster tree directly from the architectural

or logical considerations. For example, a designer may decide to put a set of macrocells

in a cluster for timing or power distribution reasons. One advantage of my floorplanning

procedure is that it will place and size the macros preserving the clusters.

7.2.3 Shape Function Computation

Each general cell has a shape function that defines its height as a function of its width.

Assuming a binary tree, [Stockmeyer 83,Otten 83] showed howthe combined shape function

for each internal node is calculated. Briefly, the shape function for a node no is found

by taking the shape functions for its two children n\ and n-i and considering all possible

combinations of an element from shape function for n\ and one from shape function for n<i.

Some of these combinations are inferior to other combinations and hence can be discarded.

The way in which the dimensions from the two child nodes are combined depends on the

direction of the cut line. If the cut line is horizontal, the x-dimension of no is the maximum

of the x -dimensions of ni and n<i and the y-dimension of no is the sum of the y-dimensions

of ni and n^. Conversely, if the cut is vertical, the x-dimension is the sum and the y-

dimension is the maximum. As the shapefunction for no is constructed, adequate routing

space is added to accommodate the connections. (See Figure 7.3.)

Zimmerman [Zimmerman 88] extended the shape computation procedure to a binary node

(with unspecified cut orientation). Briefly, to obtain the combined shape function for an

unoriented binary node, the lowerbound of the shape function corresponding to a horizontal

cut and that with a vertical cut is calculated. The routing area is estimated and added to

the shape function. (See Figure 7.4.)

This procedure may be extended to unoriented multi-way cluster trees as follows. Consider

a cluster node with k children to which a TP has been assigned. Assume that this TP

corresponds to a slicingstructure1, thus, there is a unique binary decomposition tree which

represents it. The leaves of this binary tree are children of the cluster node and the internal

nodes of the binary tree define directions of the cuts in the TP. The combined shape function

lFor anon-slicing TP, the problem ofcalculating thecombined shape function isNP-complete [Garey 79].
Either an approximate [Wong 89a] or a branch-and-bound [Wimer 88] technique can be used to do this
calculation.

7.2. FLOORPLANNING PROCEDURE

B2

Bi

Width

Adding Shape Functions

B2
B1

Adding Shape Functions

routingarea estimation

Width

Adding Routing Area Estimations

B1
B2

routingarea estimation

Adding Routing Area Estimations

Figure 7.3: Adding shape functions for horizontal and vertical cuts

83

84 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

cluster node

Width

Lower Bound Merging of Shape Functions

Figure 7.4: Lower bound merging of the shape functions corresponding to horizontal and

vertical cuts

for the root of this binary subtree is calculated as described above.

Clustering phase, however, generates a multi-way cluster tree without assigning TPs to

cluster nodes. The shape function for an unorientedmulti-way cluster node is thus computed

as follows. All TPs with k rooms are examined, and their corresponding shape functions

are computed. For each TP, the routing areas around the child nodes are estimated. Each

(x,y) pair on the SFtp is thus shifted up and to the right to account for the wiring area

required. (This is in contrast with [Zimmerman 88] which shifts the whole shape function

for the node in order to account for the routing area.) Next, the lowerbound of all SFtps is

taken to obtain the shape function for the multi-way cluster node. (See Figure 7.5.) (x, y)

pairs on the shape function are marked to represent the chosen TP.

This procedure is recursively applied up the tree until the composite shape function for the

root node is calculated. The bottom-up shape function and a user specified aspect ratio can

be used to generate a minimum area floorplan by propagating the associated geometries

of the floorplan solution to the leaf nodes. The above procedure minimizes the layout

7.2. FLOORPLANNING PROCEDURE 85

width

Figure 7.5: Calculation of the combined shape function for a cluster node with 3 children

area - to the extent that the bottom-up wiring area estimation is accurate - but does not

optimize the total interconnection length or positions of the signal pins on flexible cells. In

Subsection 7.2.4, I will describe a top-down floorplan optimization procedure which uses

the bottom-up shape functions for its cost evaluation, and at the same time, searches for a

floorplan solution minimizing interconnection length and satisfying timing and topological

constraints. However, I shall first explain how the interconnection length functions for

internal nodes of the cluster tree are computed.

The interconnection length function for each cluster node is computed as described below.

For each (x,y) pair on the SFtp, an (/,a = x x y) pair is calculated as follows. The list

of nets intersecting (i.e., having at least one pin inside) the cluster node is known. For

each such net, a minimum rectangle which touches all the flexible blocks and goes through

the centers of the fixed blocks is constructed. (Here, flexible blocks refer to sub-clusters or

variable shape leaf cells within the node, and fixed blocks refer to fixed shape leaf cells.)

The idea is that since the pin positions on flexible blocks can be optimized, the minimum

rectangle must only touch them at some point. However, since the cell orientations are not

known during the bottom-up calculation, the center points of the fixed cells are used. Next,

86 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

parentnode boundary y\ floating pins

width

fixed pin

interconnection
length

Figure 7.6: Calculation of the interconnection length function for a cluster node

if the net has pins outside the node boundary, the minimum rectangle is extended to touch

the closest sideon the node boundary. The halfperimeter length of this new rectangle gives

an estimate on the interconnection length required to complete the routing of the net in

question within the node. These half perimeter lengths are summed over all intersecting

nets to get /. Next, for each {x,y) pair on the SFtp, an (I,a) is calculated, the inferior

(/, a) pairs are dropped and the LFtp is stored at the node. (See Figure 7.6.)

Again, lower bound merge operation is used to compose the successive LFj-ps into the

composite interconnection length function for the node. This step is repeated recursively

until the composite interconnection length function for the root node is calculated.

7.2.4 Floorplan Optimization

Each cluster node is floorplanned in a breadth-first manner starting from the root node.

When floorplanning a node, the node aspect ratio and the external I/O pin positions are

known. (These are the user specified aspect ratio and the chip I/O pads for the root node.

7.2. FLOORPLANNING PROCEDURE

r w "*****"•

B2

. .

B1

|

^

87

ast l/O's

j**a^vwjm^«^wj^awij.j.jajlj;.^;.n

routing area

Figure 7.7: Effect of I/O connections on the routing area estimation during top-down

floorplanning

For the non-root nodes, this information has been passed down the tree.) All TPs for

the node are enumerated, and a floorplanning solution which has the minimum objective

function value is selected. The objective function is a combination of area cost, intercon

nection cost and aspect ratio mismatch cost. Given a cluster node and a particular TP, the

area and interconnection length costs are calculated by summing the area and interconnec

tion length estimates for its child nodes plus the area and interconnection length required

to combine the child nodes into the enumerated TP. (The shape and the interconnection

length functions of the child nodes act as estimates of the expected layout cost from the

partial layout solution where the child nodes are not yet floorplanned to the complete lay

out.) In Figure 7.7, the two TPs shown are equivalent in terms of area and wire length

during the bottom-up cost calculation. However, after considering the global connections,

i.e., during the top-down search, these TPs have different areas and wire length costs. This

is exactly why a purely bottom-up floorplanning procedure is incapable of producing high

quality floorplan solutions.

As a result of floorplanning a cluster node, shapes, locations and orientations of its child

88 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

nodes will become known. Positions of the boundary pins on the node, the estimated

routing area around the child cells and the local net list are also known. However, I/O pins

for the child nodes must be assigned positions. This I/O pin computation is necessary in

order to influence the floorplanning of the child nodes by the outside connections as well

as the internal connections. The task is to assign pins of the nets intersecting the cluster

node to the appropriate locations on the boundaries of the child nodes such that the total

interconnection length within the cluster node is minimized.

In a manner to be described in Section 7.3, the I/O pins are propagated to the boundaries

of the child nodes. This procedure, therefore, sets the external I/O pins for next lower level

of tree hierarchy and directly influences the choice of floorplan topology for the child nodes.

At the leaf level, this I/O pin computation coincides with the pin assignment for general

cells.

It is worth noting that a designer may partially or fully specify the hierarchical structure. In

the latter case, he or she may not only specify the cluster tree but also assign a topological

possibility to each internal node of the tree. The floorplanning problem is then to place the

macros and assign shapes and pin positions to the flexible ones. The floorplanner handles

such input specification. This is useful since in some cases, due to timing constraints

or sensitive design, the designer may want to ensure a particular topological relationship

between blocks.

7.2.5 Area Estimation

Figure 7.8 shows why it is useful to include routing area during rather than afterplacement.

A placement which was optimized to have a rectangular shape of a given aspect ratio is

probably neither rectangular nor does it conformto the desired aspect ratio after the routing

area was added.

There are some approaches that with different degrees of sophistication tackle the problem.

In [Sechen 85, Wipfler 85] heuristics are applied to each block in order to derive a hypo

thetical block shape including some routing area based on the number of pins of the block.

In [Chen 84] a pseudo-routing of pairs of blocks is performed to compute spacing between

two blocks in a row-based placement. Both solutions fail to account for connections outside

7.2. FLOORPLANNING PROCEDURE 89

•

Figure 7.8: Routing area estimation after floorplanning may lead to poor results

the immediate neighborhood of the block terminals.

For gate arrays, [Burstein 83] introduced an algorithm that merges placement and routing

in a hierarchical fashion. Because of the simple array structure, this grid-based approach

is feasible. In [Szepieniec 86], a procedure for simultaneous placement and global routing

of restricted slicing structures was proposed. A method to generate global routing at the

same time as placement suited to the more general topologies was described in [Dai 87a]. In

both cases no attempt was made to estimate the routing area based on the global routing

information. Other systems [Lauther 79, Fowler 85, La Potin 86] perform global routing

after placement is finished and then estimate the necessary routing area.

Top-down Routing Area Estimation

Besides using the hierarchical decomposition of the problem, the basic idea is to avoid a

dynamic shortest path or Steiner tree determination by precomputing the paths for the

finite number of floorplan patterns and storing the information in the library of patterns

90 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

External connections
(last hierarchical level)

P?n=0.5

Internal connections
(current hierarchical level)

Figure 7.9: Calculation of entries in the probability matrix used by the area estimation

procedure

(or templates).

For every template and for each connection between blocks, clusters and I/O-goals, all the

channels on the shortest topological paths are marked with a probability. This probability

represents the likelihood that the connection will really pass through that channel [Dai 89].

(See Figure 7.9.) p-fj is the probability that a connection between blocks i and j will pass
through the channel formed between blocks k and /. The amount of memory to store the

library of parameters is acceptable.

The required normalized "channel"2 width sm/w is estimated as

» j

where w is the design-rule dependent track to track spacing, ctJ- is the pertinent element of

the connectivity matrix and tki a heuristic factor that accounts for track sharing. (Segments

of different nets share the same track.) Channel width is computed for every possible

3"Channels" on higher levels consist of many real channels.

7.2. FLOORPLANNING PROCEDURE 91

topology and on all the hierarchical levels before the placement cost function is evaluated.

Therefore, routing area and block area are treated in the same way. Routing area not only

influences the choice of templates on the current level of the hierarchy but also sets the

shape goals for the next level.

The estimation takes advantage of the information gathered about positions and connectiv

ities of clusters (of blocks) down to that level of the tree hierarchy. Earlier in the process

space for global connections between different clusters is provided. Later more of the inter

nal connections within the clusters become visible.

The allocation of space along the shortest path makes the job of a global router easier

but does not constrain it in doing whatever is recognized as optimal after the complete

topological information produced by the placement is available. In addition, this approach

is very flexible. For "over-the-block wirable" cells [Ueda 85], the probabilities can be easily

adjusted.

Before refining the basic idea it seems appropriate to describe how the numbers p*j and tu
are derived. In general the numbers tobe assigned top^j are pretty obvious as in Figure 7.9
since most of the time only two distinct shortest paths exist. For fine-tuning statistics can

be compiled that characterize the behavior of the global and detailed routers used. It is

likely that different routing algorithms willyield slightlydifferent results for the parameters.

It is one of the strengths of this approach that without having to modify the program, it

can be applied to different technologies and physical design processes.

On the non-leaf level, it is assumed that connections leave the clusters on the side that

is closest to the end point of the connection. In Figure 7.9 this means that a connection

between blocks 0 and 2 would leave the right side of block 0 and enter the left side of block

2. It is the task of the next lower level to provide the space to get to the appropriate

side. On the leaf level, this is no longer possible. In this case the pin position information

already needed for the determination of block orientations comes in handy. For a given

block orientation additional, space has to be provided along the sides of the block to bring

the wires around the block to the location that is closest to the end point of the connection.

92 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

Bottom-up Routing Area Estimation

Due to the nature of the top-down placement algorithm, the area within the cluster node

which holds the wiring must have been added beforehand. Instead of just assigning the

sum of the areas of the children to a parent node in the clustering tree before starting the

top-down traversal of the tree, a routing area estimation has to be included as well. At this

stage it is not necessary to know the paths that connections take but only the approximate

area needed for connections.

The task ofpredicting routing spacebefore invoking a floorplanner or placer has gainedsome

attention recently [El Gamal 81b, Kurdahi 86, Chen 88, Zimmerman 88]. Unfortunately

the reported results applicable to the macrocell layout style are not very encouraging. Errors

of 20% (of the whole layout area, much more if the known block area is excluded) seem to

be current state of the art [Chen 88, Zimmerman 88]. This much error is unacceptable and

will lead to poor floorplan solutions.

Fortunately, routing space can be estimated more accurately since a bit more information

is available here. After clusters on one level of the hierarchy are identified, all connections

between cluster elements and from one cluster to another are known. On the lowest level

of the hierarchy, the number of pins along the four sides of a block is known as well. When

the shape function is calculated, corresponding to each (a;, y) pair on the shape function, a

reasonable way of arranging the blocks is generated as a byproduct. All this information

can be used to produce a routing area estimate that exactly mirrors the more sophisticated

top-down routing area estimate.

Since the exact constellation that tries to minimize the number of connections between

non-adjacent blocks/clusters is not known, a worst case approach is taken by building a

hypothetical connectivity matrix C with identical connection strengths c,- and ce for all

intra-cluster and inter-cluster connections, respectively [Dai 89]. This means that all cy are

set to 6i for j G0,...,/:- 1 and to ce for j 6 North, West, South, East. (See Figure 7.9.)

« ieo,...,fc-i*(* - 1) ^ ^ Cii

Ze - au Z-rf Z-, °*i
i j€N,W,S,E

7.2. FLOORPLANNING PROCEDURE 93

With this connectivity matrix and the shape topology, the top-down wiring space allocation

function is called. The exact distribution of the wiring space generated by that function

is of no interest here. The only useful extraction is the space needed for routing. The

routing area (contrary to its exact allocation) is very similar for various good topologies

(i.e., topologies with little dead space).

On the leaf level, block areas are inflated in both dimensionsbased on the number of pins of

the blockin each direction. In the final placement result, connections between non-adjacent

blocks tend to be weaker than connections between adjacent blocks. Therefore, the initial

routing area estimate is reduced by some heuristic factor. If with the default value of that

factor the routing area is consistently over- or under-estimated, it can be adjusted by the

user.

7.2.6 Complexity Analysis

Under the assumptions that the clustering tree is a tree with n leaf nodes, that each leaf

node has a shape function with at most m shapes, and that every internal node has k

children, the complexity of the floorplan optimization algorithm is given by:

0(dnm f(k))

where f(k) = k\ x t(k) is the number of enumerated TPs (t(k) is the number of non-

isomorphic oriented floorplan patterns) and is given in Table 7.2.6. The derivation of

k 12 3 4

f(k) = k\x t(k) 1 4 36 528

Table 7.1: Number of topological possibilities f(k) for non-leaf clusters

complexity is as follows. Assume that root of the cluster tree is at level 0 and leaf nodes

are at level d. A fc-tree of depth d contains n = kd leafnodes and (n - l)/(fc - 1) internal

nodes. During floorplanning, the combined shape function for each internal node of the tree

is computed. In particular, for a node at level d —1, f(k) TPs are enumerated where each

TP requires k —1 shape function add and k —2 shape function merge operations. Each

operation takes time proportional to the number of shapes in the shape functions. At level

94 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

dy each shape function has m points, therefore, 0((k —1) m f(k)) is required to compute

the combined shape function for a node at leveld —1. There are kd"1 nodes on level d —1,

therefore, the processing time for nodes on thislevel is 0(kd~1 (k-l)m f(k) ~ nm f(k)).
The number of shapes on a shape function at level d —1 is at most k m. For nodes at level

d - 2, the processing time is 0(kd~2 (k - 1) k m f(k) ~ n m f(k)). The shape functions

for a node at level d —2 will have at most k2 m points. By induction, it can be shown that

the processing time for every level of the cluster tree is 0(n m f(k)) and since the tree has

d levels (excluding the leaf level), the desired result is derived. Note that if bucket sorting

is used, that is if an upper bound, say ilf > m, is set on the number of shapes in the shape

function for each internal node, then the algorithm runs in 0(n M f(k)). The run time can

be significantly reduced if symmetries of A;-room TPs are exploited and / or sub-templates

are shared.

7.3 Pin Assignment with Global Routing

7.3.1 Overview

Previous works on pin assignment assume that shapes and positions of cells are given as

input data. These algorithms can be classified into three categories:

1 Those which assign pins on a cell by cell basis [Koren 72, Brady 84];

2 Those which assign pins on a net by net basis [Yao 88, Yao 90];

3 Those which sequentially process edges of a supergraph containing the global

route solutions for all nets, finding a coarse pin assignment and global routing

solution followed by a local pin assignment optimization for that globalrouting

[Cong 89].

Among these approaches, only [Cong 89] correlates pin assignment with global routing.

However, the quality of the global routing with coarse pin assignment depends on the

ordering in which the 'non-essential' edges axe eliminated and there is no way to determine

7.3. PIN ASSIGNMENT WITH GLOBAL ROUTING 95

a 'good* ordering for edge deletion. It is not clear to us how any of these approaches could

be extended to include the floorplanning task.

The technique proposed here solves the pin assignment and global routing problems simul

taneously. This technique avoids difficulties associated with the cell or net orderingduring

pin assignment. Floorplanning determines positions and shapes of hierarchical cells, sets

the channel topology and assigns capacities to the routing regions. Pin assignment and

global routing operate on the hierarchicalfloorplanning solution and are weavedin order to

produce assignments for floating pins which minimize the layout area as well as the total

interconnection length. The initial pin assignment sets the stage for the global routing step

by assigning positions to the floating pins. Global routing, then, determines connection

patterns and defines channel densities. This information is subsequently used to adjust the

pin positions. Global spacing is also performed in order to guarantee routing success.

7.3.2 The Procedure

Suppose that the root of the cluster tree has been floorplanned. In the process, children of

the root have been assigned shapes, positions and pin locations. Next, these child nodes are

floorplanned in the order of decreasing area. However, prior to floorplanning a child node,

the global net list is updated to include cells and connections inside the node. Updating

the cell list means that the node is deleted from the list and its children are inserted into

the list. Updating the pin lists consists of deleting pins on the node boundary and adding

pins on the cells inside the node. Referring to Figure 7.10, D is about to be floorplanned.

The current net list consists of cells A, J3, C, D and nets n\ = (p4,ps, i\) and n$ —(ri, r2).

The global net list is updated to include cells A, B, C, Dl, D2 and DZ and new nets

ni = (PiiP2iP3iP4yPs)y «2 = (Q11Q2) and ^3 = (ri,r2). This updating is beneficial since it

provides a global view of the layout plane and the connections during floorplanning and pin

assignment of D.

After a node (e.g., D) has been floorplanned, shapes and positions of its child nodes (2?1,

D2 and D3), shapes, positions and pin locations for other nodes (A, B and C), the esti

mated routing area around the cells (channel capacities) and the global net list are known

(Figure 7.11). The goal is, then, to assign locations to the I/O pins on the child cells such

96 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

Chip boundary7

^
Hierarchical Ceil

I—Jn3

C P4*:
pin

n1

fl5

Figure 7.10: Partial floorplan solution prior to floorplanning D.

that the channel capacity constraints are satisfied while the total interconnection length

and the critical net length violations are minimized .

In order to avoidnecessity for the sequential processing of cells or nets, the pin assignment

problem is transformed into a linear sum assignment problem as follows. A cost matrix

whoserows correspond to the floating pins on the childcells and its columns correspond to

the pin slots (feasible pin locations) on the child cells is constructed. By solving the linear

assignment problem, locations for the floating pins are determined. For that assignment,

global routing is performed and channel densities are calculated. If some channels are over

subscribed, the pin assignment procedure is repeated. The initial and final assignments

differ only in the way that the linear assignment cost matrix is set-up and filled in.

Routing area may be very irregular. Therefore, in order to store the routing information,

the general approach of [Ousterhout 84, Dai 87a] is used. The entire area of a layout is

covered with rectangles referred to as tiles. There are two kinds of tiles: solid tiles which

represent cells and space tiles which represent empty space for routing between the cells.

Given a placement of rectangular shaped general cells, two tile planes are defined: the

7.3. PIN ASSIGNMENT WITH GLOBAL ROUTING 97

Figure 7.11: Partial floorplan solution after shape and position calculation.

horizontal tile plane where all space tiles are maximal horizontal strips and the vertical tile

plane where all space tiles are maximal vertical strips. In the tile plane, each space tile has

four edges: two of them are called spans of the tile (which are completely covered by the

solid tiles); the other two form sides of the tile. A space tile is a bottleneck tile if its sides

are covered by the sides of adjacent space tiles. These are areas where wire congestion is

most likely to occur. A junction region is the maximal empty space which is completely

surrounded by the solid tiles, bottleneck tiles or the plane boundaries.

Each side of a solid cell is divided into a set of segments. The bottleneck segments are

those maximal intervals of sides of cells which are fully covered by the adjacent bottlenecks.

The junction segments are the remaining maximal segments. Tile planes are shown in

Figure 7.11. (a2,a3), (o4, a5) and (a7, ai) are the vertical bottleneck segments of the cell A.

(a3,a4) and (a5,ae) are vertical junction segments of cell A. Similarly, (62,63), (64,65) and

(&6,61) are the vertical bottleneck segments of B and (65, be) is a vertical junction segment

of B.

For each segment of each cell, the number of feasible pin slots is calculated. First, the

98 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

procedure for calculating the number of pin slots on the bottleneck segments is described.

Suppose that at most t parallelwires can pass through a bottleneck. Presume that axt pins

can be placed on each segment covered by that bottleneck. 1/a is the track utilization factor

which is about 0.65 using a standard channel router. The pin slots are uniformly distributed

along the bottleneck segment. (The length of a bottleneck segment and the number of pin

slots in it determines the minimum pin-to-pin spacing which must be at least as large as

that dictated by the design rules.) Next, the number of pin slots on the adjacent bottleneck

segments are summed over to give the number of pin slots on each cell. If a cell has less

slots than it has floating pins, new pin slots are added on the junction segments. For each

junction segment, the more pessimistic spacing of the adjacent bottleneck segments is used.

For example, referring to Figure 7.11, spacing of pin slots in segment (64,65) is bigger than

the spacing in segment (66,61), therefore, for junction segment (65,6s), the same spacing as

that in segment (64,65) is picked. If after adding pin slots to the junction segments, there

are not enough slots on some cells, the node may be decompacted so that the number of

feasible slots on each child cell may be increased to be equal to or bigger than the number

of floating pins there.

For the initial pin assignment, the cost matrix is denoted by [C] and its entries are deter

mined as follows. For each net having floating pins on the child cells, a minimum rectangle

which touches the child cells and the external I/O pins connected by the net is constructed.

(Figure 7.11 shows the touch rectangle for net n\.) All the slots that fall within this touch

rectangle and lie on the child cells connected by the net are assigned a zero cost. Other slots

have positive costs proportionalto their Manhattan distances from the touch rectangle. Pin

slots on the cells which are not connected by the net are assigned infinite costs. Next, a

linear assignment algorithm [Burkhard 80] is run on the matrix [C]. Since rows in the cost

matrix [C] correspond to floating pins and columns correspond to the pin slots, the linear

assignment determines pin assignment with the minimum cost.

During the initial pin assignment, the bottleneck congestions are only implicitly considered

(by controlling the number of available slots per segment of each child node). However,

chip area and total wire length can be accurately estimated only after global routing. It is,

therefore, necessary to combine global routing with pin assignment as is described below.

After initial pin assignment, global routing on the partial floorplan produces the shortest

7.3. PIN ASSIGNMENT WITH GLOBAL ROUTING

I—Jn3
r2

"3

Horz
Bottleneck

jl

"«& m

J2
n2

ni

JJ
J9i

D1

Ip2
02

jtfttaH^^bg.vj,

q2
ff

D3

* Vert
Bottleneck

99

Figure 7.12: Partial floorplan solution after initial pin assignment.

connection paths for all nets. This routing scheme may result in over-congested channels. In

that case, a final pin assignment whichrepositions the floating pins on the childcells in order

to reduce congestions in the over-subscribed channels is performed. First, the number of pin

slots on each segmentof eachchildcell is re-calculated based on the bottleneck congestions

after global routing. In particular, the number of pin slots in the over-subscribed bottlenecks

(density > capacity) is decreased, and this number in the under-subscribed bottlenecks

(density < capacity) is increased. Next, the newcost matrix [D] is calculated. Its structure

is similar to that of the matrix [C], that is, [D] has the same number of rows as [C] but

may have different number of columns.

For each net, the connection tree produced by the global router is examined. For this tree,

the list of junction regions that the net goes through are identified. All the slots that fall

within these junction regions and are on cells connected by the net have cost zero. All other

slots on the connected cells have a cost proportional to their minimum Manhattan distances

from the nearest junction region. Slots on cells which are not connected by the net have

infinite cost.

100 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

I—Jn3
(2

01

r- !«P^PSfP3

P5j
P

Figure 7.13: Partial floorplan solution after final pin assignment.

To motivate the above slot cost calculation, consider Figure 7.12. This figure shows the

partial floorplan solution after the initial pin assignment and global routing on Figure 7.11.

The global routingfor n\ goes through junction regions ji, ji and jz and for n?, goes through

j\ and ji. Without loss of generality, assume that bottleneck region 6i is under-subscribed

and 62 is over-subscribed. The goal of the second pin assignment is to alleviate routing

congestion in 62 by moving pins out of that region. To achieve this goal, the number of pin

slots in 62 is reduced, and the number of pin slotsin 61 is increased. Therefore, there will be

more competition (among pins of competingnets n\ and 712) for available pin slots in 62 and

less competition for those in 61. Since there are not enough pin slots in 62 to accommodate

all the pins, pins of some nets have to be shifted out. There are pin slots in 61 and 62 which

have the same Manhattan distances from the junction region j\. Therefore, either p\ or q\

can be moved into 61 without increasing the sum cost. No pins in 61 has to move out since

the number of slots in 61 have been increased. Thus, the linear assignment solver will move

either p\ or q\ out of 62 into 61 (Figure 7.13.) In general, this cost calculation procedure

tends to reduce the channel congestions with a minimal increase in the total interconnection

length.

7.3. PIN ASSIGNMENT WITH GLOBAL ROUTING 101

It is worthwhile noting that the above procedure based on linear sum assignment does not

find the optimal pin locations within each routing channel, and therefore, must be followed

by a channel pin arrangement procedure as in Section 7.5. For example, consider net w3

in Figure 7.13. This net does not pass through any junction region. It is advantageous

to minimize the half perimeter length of the box enclosing its pins. However, this task

cannot be accomplished using linear assignment since the cost of assigning a pin to a slot

is dependent on the position of the other pin.

This method also handles nets whose pins were preassigned at the expense of more work

during the floorplanning phase and slightly more complex processing during the slot gen

eration and positioning phase. In particular, during the floorplanning step, orientations of

the cells must be optimized based on the locations of their fixed pins, and when calculating

the number and the distribution of pin slots within bottleneck boundaries, the presence

of fixed pins is taken into account. (A list of free boundary regions for each child node is

maintained.) One may wish to have a special pin assignment for power and ground nets to

satisfy planar routingtopology for thesenets. In onesuchscheme, all Vita pins are placed on

pin slots located on the top and left cell boundaries and all Gnd pins are placed on bottom

and right boundaries by giving infinite cost to undesirable pin slots for each Vdd or Gnd

pin. If there are some critical nets, pin slots which are located outside the zero-cost regions

for the nets are assigned very high costs, hence, ensuring minimum interconnection lengths
for the critical nets. Of course, this may lead to increased wire length for non-critical nets

and increased total wire length.

Feedthroughs can be inserted on the non-leaf nodes. After constructing the minimum

touch rectangle for a given net, if the rectangle is completely 'blocked' by a child node,

two feedthrough pins are inserted on the child node. Next, the net is decomposed into

two spanning subtrees as follows. A minimum spanning tree connecting all pins of the net

(which must include the feedthrough pin(s) and the edge that goes through the child node)
is constructed. The feedthrough edge is subsequently removed and two connected subtrees

are left. The pins in each subtree define a subnet which is then passed to the pinassignment

and the global routing steps.

102 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

7.4 Shape Optimization

7.4.1 Overview

The initial floorplanning is followed by the global routing process which defines densities

of the routing areas. After global routing, the global spacing procedure assures that all

bottleneck tiles have capacities equal to or exceeding their corresponding densities.

A global shape optimization phase follows next. This is useful because after global routing

and spacing, the channel densities are likely to change, and hence, it is possible to decrease

the chip area by reshaping some of the flexible blocks.

One-dimensional and two-dimensional shape optimization algorithms have been imple

mented. The one-dimensional algorithm iteratively computes new dimensions for flexible

blocksin order to reduce the chipdimension in the user-specified resizedirection (horizontal

or vertical). This algorithm does not change chip dimension in the direction orthogonal to

the resize direction. The two-dimensional algorithm iteratively reduces the layout areaby

picking up a block with the largest resize possibility and resizing it. Relevant terminology

can be found in Subsection 7.3.2.

Block adjacency graphs [Dai 87b] can be used to calculate the extents of the chip. The

longest or critical paths through the horizontal and vertical block adjacency graphs de

termine width and height of the layout. Vertices of the horizontal block adjacency graph

represent blocks and arcs represent horizontal bottleneck tiles. Weights on vertices are

horizontal dimensions of the corresponding blocks and weights on arcs are densities of asso

ciated bottleneck tiles. The vertical block adjacency graph is defined similarly. Bottleneck

densities (rather than bottleneck capacities) are used since longest paths computed using

bottleneck densities give more accurate estimations of the post-layout chip dimensions. In

addition, because the global routing information is incrementally updated and bottleneck

densities recomputed from one iteration to the next, longest paths through the layout sur

face remain accurate and representative of the final chip dimensions.

7.4. SHAPE OPTIMIZATION 103

7.4.2 The Procedure

The estimated width and height of the chip at the jth iteration are denoted by W and H

respectively. If block i with width w*\ height ti and area a* does not belong to the longest
path in the current optimization direction, it will have some freedom to move or deform

in that direction without enlarging the chip area. Considering the X-direction, the legal

X-slack of this block x\egalslack is determined as follows: Assume that the length of the
longest path from the left boundary of the chip to the left boundary of the block is /• and

the length of the longest path from the right boundary of the block to the right boundary

of the chip is r*. Then, the X-span of the block (horizontal range where the block can be

placed without overlapping other blocksor causing overflows in the neighboring bottleneck

tiles) is given by

x* • — I*

xmax —W —r .

The lower left corner of the block may be positioned between x*min and x*max —w* or its

width may be increased by an amount x\lack = x'max - x*min - w*. The twooperations can

be combined without enlarging the chip dimension in the X-direction. Now, suppose that

the block height has a lower bound h]^^ and its width has an upper bound of w*upper.
Then

a*
x\egalSlack = ^M^slacky Kpper ~ w'.TJ ™$).

lower

Similarly, the legal Y-slack y\egalsiack °* block B*is defined as a function ofthe upper bound
^upper on its height and the lower bound wj^^ on its width.

Initially, the longest paths through the layout in X- and Y-directions are computed. Next,

a block Bi which lies on the longest path in one direction (e.g. Y-direction) and has the

largest legal slack, x}egalslacki in the other direction (e.g. X-direction) is selected. This
block may be laterally shifted (in X-direction) and/or resized by Aw* = ~fx}egalslack where
0 < 7 < 1 is a user specified parameter bounding the maximum change in block dimensions

per iteration. The new block dimensions are w* = tu'+Ati?' and h1' = a'/w' if Bi is a general

cell. If Bi is a standard cell or data path block, w* and h* will be rounded to the closest

(xty) pair in the block shape function. The new position of block is adjusted in order to

distribute the 'free' area among the surrounding routing channels according to their wiring

104 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

8 9 7 * 32 10 6

Before Detailed Pin Arrangement (6 tracks)

2 7,

3 4 9 10

After Detailed Pin Arrangement (4 tracks)

Figure 7.14: Effect of channel pin arrangement procedure.

demands. The global spacer may be called to assure that no surrounding bottleneck tiles

will overflow as the result of block resizing. The global routing around the block is locally

updated. After block Bi is resized, the chip height is usually decreased but the chip width

remains relatively unchanged. In general, the stopping criterion is that longest paths only

contain fixed size blocks (or maximally warped flexible blocks) or contain flexible blocks

which lie on the longest paths in both X- and Y- directions.

7.5 Channel Pin Arrangement

The unconstrained channel pin arrangement problem is to determine the pin positions on

the bottom and top edges of a routing channel such that the resulting channel density is

minimum. In [Cong 91] a near-optimal solution for the unconstrained problem is presented.

The solution technique, however, places pins of the same net which are on the same side

of the channel next to each other. Although the channel density is then nearly minimized,

the produced pin arrangement solution is far from desirable. In fact, in many cases, it is

7.6. ANALOG PLACEMENT ISSUES 105

desirable to have pins of the same net which are on the same side of a macro-cell be placed

far from one another, because the signalmust be sent to different regions on that macro-cell.

The generalized channel pin arrangement problem imposes position and partial order con

straints on the pins. In [Cai 90], it is shown that the generalized channel pin arrangement

problem is NP-complete and a polynomial time algorithm is presented for the case of a

linear ordering with no position constraints.

Currently, I use a heuristic procedure for assigning pins on the sides of the channel which is

similar to that in [Cong 91]. This procedure is effective since in most of the examples, nets

haveat most 2 pins (onopposite sides) and2exitsin anyrouting channel. (See Figure 7.14.)

7.6 Analog Placement Issues

Today's VLSI chipsoften containwhole systems including the interfaces with analog inputs

or outputs. The design time and cost associated with the dedicated analoginterface modules

often constitute a bottleneck in semicustom design of mixed analog / digital systems. That

is one reason for the recent interest in automatic layout tools for analog devices.

Layout of an analog circuit strongly influences its performance. Performance constraints

imposed on an analog circuit areoften convertedinto physicalconstraints such as symmetry,

matching, and equal distances between pairs of modules. An analog module has a number

of different implementations for its shape; its pin positions are, however, fixed for each

implementation. These physical constraints can be easily incorporated into the floorplan

ning procedure by suitable modifications to cluster tree generation procedure followed by

appropriate pruning of the search space during the top-down floorplan optimization phase.

Assume that the analog designer provides the physical constraints. Automatic generation

of physical constraints from performance objectives is not addressed here. Therefore, the

following classes of constraints are considered during the placement process:

• Symmetry — Only half of the modules are considered during the placement. The

other half will be the mirror image of the placed modules with respect to a symmetry

line.

106 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

• Matching — Modules with matching constraints are forced to assume similar orien

tations.

• Merging/Abutting — During clustering, a matched pair of modules are merged

into a single module (cluster).

• Net Length Bounds — Upper bound length constraints for nets is honored.

From the above list, items 1 and 2 axe straight-forward and will not be discussed further.

Item 4 will be addressed as part of the net-based performance-oriented floorplanning pro

cedure. Item 3, however, needs further discussion. If modules with matching constraints

belong to the same cluster, the problem is easy since during the top-down enumeration

phase, all different orientations for this group of modules will be considered and the best

is chosen. However, if the modules belong to different clusters, then their orientations can

not simultaneously be optimized and this will introduce an ordering dependency in the

sense that the orientation of the first module fixes the orientation of all other modules in

the matching group. Hence, firstly modules in a matching group are to be assigned to as

few clusters as possible and secondly, the cluster with largest number of modules in any

matching group must be processed before others.

Other analog issues (such as crosstalk avoidance, over-the-device wiring, wellmerging, bulk

contacts, symmetric routing, transmission line effects and so forth) must be considered by

specialized analog routing systems. (See [Garrod 88, Choudhary 90].)

7.7 Experimental Results

Due to lack of published results on floorplanning and pin assignment, comparative results

for BEAR-FP floorplanner could not be presented. Therefore, I ran BEAR-FP on Xerox,

Ami33 and Ami49 general cell benchmarks and recorded layout area and interconnection

length after routing (for chip aspect ratios 1.0, 2.0, and 4.0). Next, I ran BEAR-FP on the

variable-shape version of these benchmarks. For Xerox-F, I used the shape list specified

in [MCNC 90]; for Ami33-F and Ami49-F, I generated 7 shapes per macrocell (spanning

aspect ratios 1.0 to 3.0 with constant area). Pins on the fixed-shape macrocells were fixed,

7.7. EXPERIMENTAL RESULTS 107

and pins on the variable-shape macrocells were completely floating (no side, position or

ordering constraints). Cell rotation was permitted. Table 7.2 summarizes characteristics of

these benchmark circuits.

example numCells numNets numlOs shapeType pinType
Xerox 10 203 2 F F

Ami33 33 121 38 F F

Ami49 49 408 22 F F

Xerox-F 10 203 2 V L

Ami33-F 33 121 38 V L

Ami49-F 49 408 22 V L

Table 7.2: Description of benchmark circuits (F = Fixed, V = Variable, L = fLoating)

Table 7.3 presents the results. The chip area and total wire length for the variable-shape

benchmarks are about 10% and 15% less than their fixed-shape counterparts respectively.

The run time (on DEC3100) for the Xerox and Xerox-F circuits are 17 and 43 seconds.

Most of the time is spent in the hierarchical pin assignment and global routing steps.

example
aspect ratio = 1 aspect ratio = 2

chip area wire length chip area wire length
Xerox 27.2 626.1 25.6 613.8

Ami33 2.65 131.5 2.69 132.3

Ami49 50.6 983.3 52.3 994.1

Xerox-F 26.1 540.4 25.1 535.3

Ami33-F 2.34 109.7 2.45 110.6

Ami49-F 45.2 713.4 48.0 721.6

Table 7.3: Chip area (mm2) and total wire length (mm) for the benchmark circuits

Figures 7.15 and 7.16 show the pre- and post-routing results for AmiSS benchmark. Fig

ures 7.17 and 7.18 show the results for Ami33-Fbenchmark. There is good match between

the top-down routing area estimations and the final routing areas.

108 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

Figure 7.15: Placement result for AmiSS benchmark

7.7. EXPERIMENTAL RESULTS 109

Figure 7.16: Routing result for Ami33 benchmark

110 CHAPTER 7. A ROBUST FRAMEWORK FOR FLOORPLANNING

•

1

• 1

Figure 7.17: Placement result for AmiS3-F benchmark

7.7. EXPERIMENTAL RESULTS 111

Figure 7.18: Placement result for Ami33-F benchmark

Chapter 8

Performance Oriented

Floorplanning

8.1 Introduction

As IC fabrication technology improves and performance requirements on designs increase,

it is becoming essential to explicitly optimize the chip performance. Furthermore, since

the contributionof interconnection length to the overall chip delay is increasing, automatic

control of interconnection length is indispensable. To meet the needs of an expanding

electronic industry,high-performance chips must be designed in a short period. Accordingly,

a straight forward design flow which incorporates timing analysis and verification into the

the physicaldesign process is desirable. This fact motivates the development of layout tools

which optimize layout area and chip performance simultaneously. This chapter focuses

on the floorplanning step since it often plays a bigger role in overall circuit performance

compared to the subsequent global and detailed routing phases.

112

8.2. NET-BASED APPROACH 113

8.2 Net-Based Approach

8.2.1 Overview

Many researchers have addressed the timing-driven placement. These research efforts are

mainlytailoredto layoutstyleswhich haveregular structure suchas gate array and standard

cell design styles. [Prasitju 89] is the only work which presents a technique for the timing-

driven placement of the general cells. [Jackson 87] has addressed the timing-driven global
routing for the general cell layouts.

One common approach for solving the timing-driven placement problem is to transform

timing constraints into net weights and to use these weights to guide the placement process

[Dunlop 84, Burstein 85, Ogawa 86]. This stepis repeated and weights are dynamically ad

justed until all timingconstraints are met. Another approach transforms timing constraints

into maximum interconnection lengths [Nair 89, Ogawa 90] and then places the cells based

on these net length constraints.

Timing requirements are often represented as path-delay constraints from the primary in

puts or the outputs of the sequential logic blocks to the primary outputs or the inputs of

other sequential blocks. There are two approaches to fill the gap between a net-based tim

ing model and a path-delayinput specification format. The first approachrelies on a static

timing analyzer which generates timing constraints based on the required arrival times at

the primary inputsand outputs prior to the placement step [Nair 89]. The second approach

uses a timing simulator incorporated into the placement process whichdynamically adjusts

timing constraints for each net [Dunlop 84, Ogawa 86, Teig 86].

8.2.2 The Procedure

A path is expressed as a sequence ofnets between anysource-sink pair in the circuit. Timing

requirements for layout can be written as

k

Y,t(m)<Sp
t=i

114 CHAPTER 8. PERFORMANCE ORIENTED FLOORPLANNING

where n, is a net in the path, Sp is the slack of the path and t(ni) is the delay allowed to

be used on net ra,-. Slackfor a path may be positive (indicating early arriving signal at the

path end point) or negative (indicatinglate arriving signal). It is calculated as

sp = Teff - T™*

Teff = Tpcriod —rjjjg* —T8etup —Tdk-tQ

•'•p = 2-/n€pvT'n "•" ^otrf,n ^fanoutfti)

where rn is the intrinsicdelay throughnode n, Rout,n is the output resistance of n, Cfan<mttn

is the fanout load seen by n, T^m is the clock cycle time, T$£* is the maximum clock

skew, Tgetup and Tdk-+Q are the setup time and the internal clock to'output delay for the

synchronizing elements respectively.

The slack must be distributed to nets on the path [Hauge 87]. Normalized slack value is

defined as Sp = Sp/k for a path with slack Sp and k nets. Let Cnominai denote the nominal

capacitance for all nets. Then, the capacitance constraint for net n,- is given by

r __r , Minptpath^Sp
Abound — ^nominal 1 5

where paths(i) denotes the signal paths which go through source i.

The capacitance constraint on delay given for each net is converted to a wire length con

straint for the net. This is because the net length constraint is more easily handled during

floorplanning. This conversion is based on a simple delay model which assumes a lumped

capacitance at each input pin and a linear on-resistance for each driving pin. The upper

bound on the net length, length^nd is calculated as follows

lengthen* = -p,
Is unit

where Cunu is the wiring capacitance per unit length.

To make the delay calculation procedure less pessimistic, one must differentiate delays

between rising and falling signals. Distinct values are provided for each signal type, and

unateness information about each output pin of each macro is used during the path tracing,

so that the proper values of the intrinsic and extrinsic delay are selected.

8.2. NET-BASED APPROACH 115

It is also possible that the designer has specified the delay constraints as net delays in which

case the net wire length constraints are easily calculated using the output resistance of the

driving cell and Cumt.

The multi-way cluster tree is generated based on block connectivities and net length con

straints. Assume that root of the cluster tree is at level 0 and the leaves are at level d. A

net is ^critical if it is a net with length constraint which must be handled at level > / of

the cluster tree. Otherwise, with high probability the net length constraint associated with

this net can not be satisfied in the subsequent steps.

Given the net list, a complete graph G(V> E) is built where each vertex represents a leaf cell

and each edge corresponds to connections between pairsof cells. Initially, edges are assigned

weights according to the number of connections between end points of the edge (i.e., their

"natural connectivities"). A set of d-critical nets are identified and graph edge weights

are updated to force merging of leaf nodes which are connected by these nets. Then, the

matching algorithm described in Subsection 7.2.2 is used to form the clusters. This process

is recursively applied until a rooted tree is constructed.

A key question is how to find a minimal set of level criticalnets (MSLN) at level / of the

tree. At this time, levels d up to / -f- 1 of the tree have been generated, and hence, the

interconnection length which is necessary to build the partially completed connection tree

for each critical net can be easily calculated. This length is denoted by lengthy of the net.

The expected length of a critical net on p pins lengthcur at level / of the tree is estimated

as (Figure 8.1)

lengthcur = p(p) X 2 x y/A* + Aw

where p(p) is ratio of the maximum length of a minimal Steiner tree (MST) connecting p

pins on the net to the half perimeter length of the bounding box enclosing the net pins

[Chung 79], Aa and Aw represent sum of the active and the routing areas of strongly con

nected clusters at level /. The notion of strongly connected clusters is related to that of

the net neighborhoods which will be defined in Section 9.3. These are clusters which are at

distance zero or one from the net and are connected to one another by edges with weights

greater than a threshold. This threshold is the minimum weight on all the edges for the net

in question.

116 CHAPTER 8. PERFORMANCE ORIENTED FLOORPLANNING

Strongly Connected Clusters

DlsUncs O I I DbUnca 1

Area = block area •+- wiring area

Figure 8.1: Net neighborhood population for a macrocells

An l-critical net is one which satisfies

lengthbound - lengthbu - lengthcur < Te

where Tc > 0 is the criticality threshold. After computing MSLN, the graph edge weights

are updated to force merging of the tree nodes connected by MSLN. The updated weight

for an edge belonging to MSLN, wnew is given by

lengthtot = lengthy + lengthcur

Wnew = bias+wM+n'e"^'x!:T'")2

where w^j is the weight before updating and Has is the maximum value of the old connec

tivities. The bias is set to some large value in order to force merging of the nodes.

Reasons for choosing a minimal set of level critical nets are the following: Satisfying net

length constraints may increase the overall cost of the cluster tree (in terms of the total

interconnection length and layout area). In general, the earlier a commitment is made

toward satisfying a particular net length constraint, the larger this increase is. Hence, the

8.3. PATH-BASED APPROACH 117

clustering decisions based on critical net length requirements are postponed as much as

possible so that the restrictive effects of premature decisions are avoided.

After generating level / of the cluster tree, interconnection length Junction s for the critical

nets are computed as described in Subsection 7.2.3. These functions are used during the

top-down phase to guide the search for a good placement solution while satisfying timing

constraints.

Top-down floorplanning as in Subsection 7.2.4 is the next step. However, a new cost term is

added to the floorplanning objective function. The new term penalizesnet length constraint

violations and is given by

criticalNetCost =^t.boundViolation^
numCriticalNets

where the summation is over all the critical nets which have pins within the node. num

CriticalNets is the number of such nets. The boundViolationnet is calculated as

I ilsfe otllerwise
lengthtot = lengthintra + lengthinter + lengthtd

where lengthintra is the length of wires used within subclusters of the cluster node in ques

tion, lengthinter is the length of wires required to complete connections among subclusters

and to the current I/O pins for the cluster node and lengthtd is the length of wires used-up

in order to produce the partial placement solution starting from the root. Expressions for

lengthintra and lengthinter were given previously; lengthtd is easily calculated by adding

the lengthinter of the already placed cluster nodes.

8.3 Path-Based Approach

8.3.1 Overview

Prasitjutrakul et al. [Prasitju 89] presented a mathematical programming approach for the

timing-driven initial placement of macro-cells. The authors used a source-sink connection

structure to model the interconnections among various cells. They assumed that the delays

118 CHAPTER 8. PERFORMANCE ORIENTED FLOORPLANNING

of wires connected to the same signal net are independent. However, delays through wires

connected to the same net are closely related and an independent assignment of delays

to these wires does not produce a valid timing model. They adopted the total normal

ized interconnection delay for signal paths as their objective function. This function does

not, however, consider the minimization of total interconnection length. A timing-driven

placement algorithm which minimizes both of these metrics while satisfying the timing and

geometric constraints is needed. Furthermore, the number of timing constraints is propor

tional to the number of signal paths which could be exponential and the resulting non-linear

programming problem is non-convex and can be solved only by breaking it into separate

steps. An approach that gives rise to fewer number of timing constraints is more desirable.

[Jackson 90, Srinivasan 91] have presented such an approach.

8.3.2 The Procedure

Modules are modeled as circles whose radii axe equal to the square root of the estimated or

actual area of the module [Hsh 87, Alon 88,Prasitju 89]. This model is used since the actual

shapes of the modules are not known and also because it leads to more elegant and simpler

mathematical formulation. A source-to-sink net model is assumed, that is, connections are

modeled only between modules having a source-to-sink relationship [Jackson 89, Prasitju 89,

Jackson 90, Srinivasan 91].

Let M, P and N denote the number of modules, pins and nets in the circuit, 5 and E refer

to the set of path starting points (primary-inputs or synchronizing elements) and path end

points (primary-outputs or synchronizing elements) respectively, Ta and Te represent the

actual arrival times at the path starting points and the required arrival times at the path

end points, pi denote a pin in the circuit, a, refer to the actual arrival time at pin p,-, m,-

be a module with radius r,* and center coordinates (x,-,^), and A represent the set of edges

in the circuit which capture the source-sink relationships.

The objective of the timing-driven initial placement is to find a set of module positions

which yields the minimum total interconnection length (using Euclidean Squares distances)

subject to timing and geometric constraints. The timing constraints ensure that the circuit

satisfies required time constraints at the end points of all signal paths. The geometric

8.3. PATH-BASED APPROACH 119

constraints ensure that modules do not overlap. This is mathematically described as:

Minimize L = l/2(wTQw

subject to

+ bTw)

aj >ai + T(pi,pj)

at > T,

a, < Te

V(PnPi) GA

V# € S

vPier

d(mi, mj) > rt + r,- Vm,-, mj G M, m,- # 171j.

w is the vector of2M+P coordinate and arrival time variables, Q is the (2M + P)(2M +P)
matrix of the cost function, bdenotes contributions from fixed modules (I/O pads), r(pi,pj)
is the propagation delay from pi to pj1 and d(m,-, mj) is the Euclidean distance between the

center points of modules m,- and mj.

This formulation is adopted from [Srinivasan 91] with the additionof geometric constraints.

Without the geometric constraints, the formulation isaconvex programming problem (con

vex objective function andconvex constraint set)2, and hence, efficient numerical techniques

can be applied to it (P-I). Unfortunately, as the result of adding the geometric constraints,

the constraint set becomes non-convex (P-n).

In one approach, P-I is solved to obtain a point placement. Next, either first a slicing tree

is derived from the point placement followed by rectangle dissection to find the optimal

shapes of modules as in [Otten 82, Otten 83] or the slicing tree and the optimal shapes of

modules are simultaneously computed from the point placement as in [van Ginneken 90].

The difficulty with this approach is that the overlap among various modules may be exces

sive and deriving a reasonable slicing tree based on this type of point placement becomes

questionable.

If pi and pj belong to the same module, r denotes the sum of the intrinsic (due to propagation delay
through module) and extrinsic (due to input pincapacitances of the modules driven by&)delays. Otherwise,
it denotes the propagation delay through interconnecting wires, in which case it is given by

r(vit vj) = Ri [CH\xi -xj\ + Cv\yt - yj\]

where Ri is the output resistance of pin pt and 67/, (Cv) denotes the horizontal (vertical) capacitance per
unit length of horizontal (vertical) interconnect wires.

Although the equation for r is non-linear, a mathematical transformation can be used to convert it to
an equivalent linear equation at the expense of introducing 4N new variables. However, these new variables
do not enter the cost function, and therefore, sparsity of the Q matrix is maintained. (See [Srinivasan 91].)

120 CHAPTER 8. PERFORMANCE ORIENTED FLOORPLANNING

P-II may be solved iteratively, that is, first P-I is solved using techniques presented in

[Jackson 90, Srinivasan 91]. Consequently, a timing feasible initial placement with module

overlaps is obtained. Next, overlaps are identified and appropriate geometric constraints

are added to P-Iin order to eliminate overlaps. For example, if modules mf- and mj overlap,
the following two constraints will be added

l*i - Xj\ > rt + rj

\Vi - Vj\ > ^ + rj.

Sub-problem P-I1 which is a non-convex non-linear programming problem is formulated

and solved using the Penalty method [Fletcher 81]. To avoid numerical unstabilities, the

dual solution must be considered during the optimization process by applying the SQP-

method [Schittkowski]. The process may be repeated until a solution to II is obtained.

Global spacing, global routing, shape optimization procedure given in Section 7.4 and pin

assignment procedure given in Section 7.3 can subsequently be used to produce a feasible

and area optimized solution.

In fact, one need not obtain a legal solution to H, that is, the iteration may be stopped at

step k (after solving sub-problem P-I*) when some modules possibly overlap, but they are

generally distributed over the layout plane. Then, one of the following options may be used:

1) Eliminate overlaps and do shape optimization either by adding topological constraints

to an incomplete constraint set to obtain a complete extension of the set [Dong 89], or by

starting with a complete constraint set that may have redundant constraints and removing

those redundant constraints that result in a reduction of floorplan area [Vijayan 90]; 2)

Start with modules as points and gradually expand modules to meet their specified area

and shapes as in [Yonezawa 90]; 3) Construct either a multi-way cluster tree or a binary

slicing tree based on the coordinates of the modules and then floorplan the tree using

procedures presented in Sections 7.2 and 7.3. As mentioned earlier, the advantageof using

a cluster tree over a binary slicing tree (which has two-way nodes with prespecified cut

orientations) is that it gives the maximum flexibility to the floorplan procedure and allows

exploration of more topological possibilities.

8.4. EXPERIMENTAL RESULTS 121

8.4 Experimental Results

The net-based approach has been implemented and incorporated into BEAR-FP. I carried

out experiments on the MCNC benchmarks in order to evaluate the performance of the net-

based floorplanning procedure. Tables 8.1 and 8.2 depict the critical net lengths for Xerox

and Ami33. (Chip aspect ratios are set to 2.0.) The first column gives the net name, the

second column specifies the upper bound lengths, the third and fourth columns correspond

to the estimated interconnection lengths after routing with conventional placement and with

timing-driven placement. The upper bound length constraints for Xerox have been specified

as part of the MCNCbenchmark set. For AmiSS, I assigned tight upper bound constraints

to eight of the nets.

net name upper bound conventional timing-driven
A1PC 850 281 220

NRLFTA 600 5432 560

TXREQ 600 906 526

PAORB 1200 671 873

A1A 2000 5648 1294

LK 850 684 731

ID 2200 3453 1720

RXOPDA 850 254 206

Table 8.1: Critical net length results for Xerox circuit (all values are in p. meters)

net name upper bound conventional timing-driven
7 600 1859 299

99 600 488 338

222 700 2787 77

257 700 2215 645

Table 8.2: Critical net length results for AmiSS circuit (all values are in p. meters)

Timing-driven placement of Xerox produces a layout with 6.5% increase in chip area and

3.1% increase in total interconnection length (compared to placement without length con

straints). Timing-driven placement of Ami33 produces a layout with 2.1% increase in chip

area and 1.7% increase in total interconnection length. (See Table 8.3.) This is to be ex

pected since satisfying the critical net length constraints often leads to an increasein chip

area and/or total interconnection length. There are no upper bound length violations for

the benchmark examples.

122 CHAPTER 8. PERFORMANCE ORIENTED FLOORPLANNING

example placement chip area total wire length
Xerox conventional

timing-driven
25.6

27.3

613.8

632.3

Ami33 conventional

timing-driven
2.69

2.75

132.3

134.5

Table 8.3: Chip area (mm2) and total interconnection length (mm) results for Xerox and

Ami33 circuits

Chapter 9

Area Estimation

9.1 Introduction

9.1.1 Motivation

Interconnection analysis addresses two related problems: the wire (interconnection) length

and distribution problem and the wiring area estimation problem. Many researchers have

addressed the latter problem and good area estimation techniques are available. However,

the wire length and distribution problem has not been solved satisfactorily. Interconnection

length studies tend to be theoretical and hence not applicable to specific designs, empiri

cal such as those relating Rent's rule parameters to the average wire length, or based on

experience with previous design layouts. Early research into interconnection length estima

tion, although of theoretical interest, is too general to be useful for specific designs. Later

work, which produces results that have the appropriate level of detail, requires knowledge

of Rent's exponentor assumes particular wire length distributions. In practice assumptions

about wire length distributions are either not verified or require fitting curves to the actual

layout data.

A method which describes the wire length distribution as a function of the specific logic

design before layout is needed. Good physical design of large systems requires accurate area

estimates of the individual modules for area planning, optimal placement, and routability

123

124 CHAPTER 9. AREA ESTIMATION

predictions. This requirement encourages development of procedural models which include

characteristics of the physical design processes, structural description of the logic design, and

physical features of primitive cells. These models produce interconnection length estimates

with high accuracy (without making arbitrary wirelength distribution assumptions or fitting

curves to the data).

Interconnection length models have many uses. They can evaluate the capability of a new

fabrication technology. The models determine routability of the proposed logic design,

subject to the constraints of the technology, and therefore, help the system designers trade

off aspects of the design and the technology. Accurate interconnection length estimates

are beneficial since they measure the quality of placement and global routing algorithms.

Interconnection estimates are also useful during the technology mapping phase of the logic

synthesis since they can predict the cost of various implementations.

The area required for interconnections within a circuit layout largely depends on the total

length of wire that must be accommodated. Therefore, accurate estimation of total inter

connection length is an essential part of any area estimation procedure. In fact, many area

estimation techniques require the wire length for the logic design as an input parameter

[El Gamal 81a, Kurdahi 89].

9.1.2 Prior Work

Interconnection analysis models are divided into three categories: empirical, theoretical,

and procedural. Empirical studies produce expressions for physical characteristics by ex

tracting information from actual designs and fitting curves to the data. Theoretical studies

produce closed form expressions by making simplifying assumptions about the intercon

nection structure. Procedural models consider more detailed aspects of the actual design

processes, physical structures and interconnection structure of the design to improve the

accuracy of the predictions.1

lFor a more comprehensive review, refer to [Hanson 88].

9.1. INTRODUCTION 125

Empirical Models

The initial work on the wiring requirements was performed by Rent in early 1960's. He

derived Rent's rule which is a relationship between the I/O count and the cell count of a

design by fitting curves to the empirical data from various computer designs

ioCount = (averageCellSize) x (cellCount)r

where r is Rent's exponent. Landman and Russo [Landman 71] studied the relation between

cell versus I/O counts and the Rent's exponent. They showed two different values of Rent's

exponent must be used depending on the number of cells, that is, the circuits with larger

cell counts and smaller package counts have smaller Rent's exponents. Donath [Donath 79]

reported that values of Rent's exponent ranged as high as 0.75 for highly parallel designs

and as low as 0.47 for highly serialized designs. Sastry and Parker [Sastry 86] derived an

interconnection length distribution that fitted actual designs.

These models require knowledge ofempiricalparameters (such as Rent's exponent) that are

computed from actual design instances. An implicit assumption is that the design instances

used in deriving the values of these parameters have the same interconnection structure and

design characteristics as those of the design under consideration. This assumption limits

the applicability of the empirical formulas.

Theoretical Models

Theoretical models produce closed form, mathematical descriptions of the physical charac

teristics from logic designs and physical implementation technologies. These models provide

general trends but lack sufficient detail to represent individual designs accurately. They are

useful when little is known about the actual design process. These models are divided into

two categories: deterministic and stochastic.

Deterministic models rely on parameters extracted from actual design instances. The effects

of the physical design processes are characterized by simple, measurable parameters. Donath

[Donath 69] devised a plausible structure for a logic design which conforms to Rent's rule.

He assumed a hierarchical structure where only a fraction of the pins inside a cell are

126 CHAPTER 9. AREA ESTIMATION

connected to pins outside the cell (the "encoding" assumption). He showed that such a

structure exhibits Rent's rule. He also demonstrated that a randomly constructed design

does not conform to Rent's rule.

A major thrust in stochastic approaches models the interconnection characteristics of the de

sign as a stationary process. The wiring requirements axe computed by making assumptions

about the probability distributions of wires. An early attempt to formalize the characteris

tics of computer logic designs was published by Donath [Donath 70]. He defined a top-down

hierarchical design approach in which each step of the expansion of the hierarchy is modeled

by the substitution of a pattern of interconnected cells for each block. These patterns are

selected randomly from a fixed pattern library by a stochastic process. Based on this model,

Donath established the relation between the cell-to-pin ratio and performance.

Heller et al. [Heller 77] addressed the problem of estimating wiring space requirements.

He modeled interconnection wires as independent two-point wires originating stochastically

(with a Poisson distribution) at some cell, covering a random distance (an average inter

connection length) and terminating at some second cell. Based on this model, he derived

the probability of wiring completion of some number of cells in a limited number of wiring

tracks. His model correctly predicts the relative difficulty of wiring completion in various

designs. El Gamal [El Gamal 81a] refined Heller's model. His model assumes a regular two-

dimensional array of cells. The generation and length of interconnecting wires are modeled

as in Heller's work. The path traveled by each wire is established randomly, with the re

striction that its endpoints be separated by a Manhattan distance which is equal to the

path length. El Gamal derived from this model the minimum number of wire segments,

and hence the minimum wiring area required for the square array of cells. He concluded

that the overall minimum wiring areais of order N 2log2N where all cellshave been placed

in an JV x iV array.

Sastry and Parker [Sastry 86] used a model similar to El Gamal's. They modeled intercon

nections as independent two-point wires covering an average length and derived expressions

for channel widths, probability of routing completion, and wire lengths. They showed that

wire length distribution has the form of a Weibull distribution with location and shape

parameters. These parameters must be computed based on the net lengths obtained from

actual layouts. Kurdahi and Parker [Kurdahi 89] presented an area estimator for standard

9.1. INTRODUCTION 127

cell layouts. They assumed rows of equal size, double entry cells, constant pin pitch, two-pin

nets and minimal rectilinear connection paths. Their model assumes birth of a wire at pin

slot t and length of a wire / are independent random variables with probabilities pg(i) and

Pl(1)' They suggested uniform distribution for ps(i) and geometric distribution for pl(0*

Based on these assumptions, the required routing area is estimated. This model, however,

requires knowledge of average interconnection length which is computed by fitting curves

to known data.

These models, although of great theoretical interest, are too general to be useful for spe

cific design decisions. They require knowledge of empirical parameters or hypothetical wire

length distributions. Assumptions about wire length distributions are either not verified in

practice or require fitting curves to the actual layout data. Many area estimators require

wire lengths as input. The accuracy of the area estimates is, therefore, bounded by the

accuracy of interconnection length estimates. To be useful for design work, however, es

timates with 10% accuracy are needed. In order to achieve this level of accuracy, proper

abstractions to model layout processes and physical structures as well as careful analysis of

the interconnection structure of the design under consideration are necessary. Theoretical

models lack this level of detail and therefore produce results that are not accurate enough

for today's design work.

Procedural Models

Procedural models incorporate greater detail and a lower level of abstraction compared to

other models. They rely on relations derived from knowledge of the actual design processes,

interconnection structure of the design, physical layouts of the leaf cells and layout rules.

These models extract interconnection characteristics of the design and combine them with

abstractions of the placement and routing processes to give estimates without need for

arbitrary wire length distribution assumptions or empirical parameters.

Sechen [Sechen 87b] presented an interconnection length estimator which gives accurate

estimates for small designs. He assumed square cells placed on an square, two-dimensional

grid. For each size of net, the half perimeter of the smallest rectangle enclosing all pins on

the net is computed. Various scenarios and a look up table are used to determine all possible

128 CHAPTER 9. AREA ESTIMATION

arrangements of cells which establish a given bounding box. Total interconnection length

is then computed by summing (over all nets) the half perimeter lengths of the rectangles

enclosing pins on the nets. Sechen's abstraction of the layout surface make his model most

applicable to "sea-of-gates" style. His approximation of total interconnectionlength for nets

with large number of pins (> 4) is not accurateenough.2 I implemented an interconnection

length estimator based on half perimeter lengths of net bounding boxes. For the circuits in

the test suite, errors up to 30-40% were observed.

Chen and Bushnell [Chen 88] introduced an area estimator for random placement with the

assumption that wires do not share tracks. They derived the expected number of wiring

tracks, and feedthroughs in the central row, and thereby, estimate the chip width and height.

The authors do not attempt to model global and detailed routing processes, and do not

differentiate between designs based on their interconnection structures. Their estimated

chip area for small designs is 40-70% over the actual chip area, and the number of wiring

tracks is overestimated by a factor of 2-3. No data is presented for medium or large size

designs.

9.1.3 Overview

To obtain accurate areaestimates, it is necessaryto achievehigh accuracyin estimating the

wire length. This task is accomplished by the procedural model presented here. The model

captures the characteristics of the physical design processes (placement, global routing and

detailed routing) and the structural features of the logic design in order to accurately

estimate interconnection length.

This model produces accurate interconnection length estimates for standard cell layouts.

Since interconnection length is a very strong function of a logic design, the first task is to

extract relevant features which account for the wiring requirements of the logic design. A

metric which captures the local influence of other nets over a net under consideration is

introduced. This is a more pertinent and effective metric (as far as interconnection length

estimation is concerned) compared to other metrics such as average pin per cell or average

2Chung [Chung 79] showed that the worst case length of a minimal rectilinear Steiner treeconnecting d
pins of a net tends to be (yd + l)/2 of the half perimeter length of the smallest rectangle enclosing pins of
that net.

9.2. THE BASIC INTERCONNECTION MODEL 129

number of connected cells to any cell in the design.

The wire length model relies on knowledge of the actualdesign processes (placement, global

routing and detailed routing), and physical structures. The predicted results are obtained

from analysis of the net list. No prior knowledge of the functionality of the design is used.

The model considers multi-pin nets directly, and does not preprocess them into sets of 2

pin nets (as is often the case). Using these wirelength estimates, the chip width and height

can be computed by statistical areaestimation presented in Section 9.2 or by random offset

track packing technique introduced in Section 9.3.

Two interconnection models are presented [Pedram 89a, Pedram 89b]. The basic model

features a random placement but optimized global and detailed routing. Since the random

placement process can be characterized accurately, the effects of placement and routing

within the overall model can be separated. The improved model extends the basic model by

including optimized placement and is used in production. Optimized global and detailed

routing abstractions from the basic model are retained.

Given knowledge of standard cell layouts and model assumptions, the model equations

follow logically (without reference to any empirical or arbitrary parameters).

9.2 The Basic Interconnection Model

The inputs to the area estimation model are the logical design specification and primitive

cells included in the specification. Following the standard cell model, double entry cells

are placed in rows and interconnected in routing channels among the rows. Outputs of the

estimation model are the estimated total wire length, wire length distribution, the estimated

total number of feedthroughs, the feedthrough distribution, chip width and height and chip

area.

A standard cell layout is modeled as a regular w x n array, where n is the number of rows

and w (= numCells/n) is the average number of cells per row. Wires follow rectilinear

paths with horizontal segments on one layer (called metall or Ml) and vertical segments

on another (called metal2 or M2). The average cellwidth is computed from the cellsactually

used in the design.

130 CHAPTER 9. AREA ESTIMATION

Pins on a net are distinguishable, that is the number of states available to a net of N pins

is the product of the number of states available to each pin. Notice the implicit assumption

here that the states available to any one pin do not depend on whether they are already

occupied by other pins.

The basic model assumes a random placement but optimized global and detailed routing

processes. The following important aspects of the algorithms have been incorporated. The

placement process uniformly distributes cells on the wxn grid. The global router finds

a minimum spanning tree to connect pins of nets. Wiring for a net does not meander

outside the bounding box defined by the pins on the net. Feedthroughs are placed at the

intersections of cell rows and the edges in the spanning tree connecting pins on the net.

No feedthrough is added to a row which contains a pin on the net. Each net contributes

at most one feedthrough to each cell row. A channel routing paradigm is assumed. The

channel router finds the shortest path inside the channel to connect pins on the net. The

route does not meander outside the box enclosing these pins. Inside the channel each net is

connected with trunks with no overlap along the length of the channel. Branches connect

trunks to the pins. All branch layer conflicts can be resolved by adding horizontal jogs.

Over-the-cell routing is not considered.

The assumption of independent nets allows us to compute the wire length and feedthrough

contribution of each net separately. The random placement assumption implies uniform

pin distribution over the layout surface and is captured in the MlLengthlnFrame and

M2LengthInFrame equations. Consider a net with d pins uniformly distributed on a

wxn frame. Sum of the lengths of metall wires connecting all pins on the net (in units of

cell pitch) is computed as

Min(d,n) x / \
MlLengthInFrame(diw,n)= ^ (—)d x I \ x A(i,d,w).

i=i n \i)

The first term gives the probability of placing d pins on some subset of n rows. The next

term gives the number of ways i rows can be selected from among n rows, and A(i, d, w)

gives the contribution of a d-p'm net occupying exactly i rows (i < d) to the metall length.

In order to compute A(i, <2, tt>), all different configurations (groupings) of d pins on i rows

9.2. THE BASIC INTERCONNECTION MODEL 131

axe examined. In particular, the following integer equation must be solved

^2Xj = d 1<Xj < w.

The solution to this equation returns a list of sets. Each set represents a distinct pin

configuration describing the distribution of pins on rows. For example, if i = 3, d = 6 ,

w = 60, then solution to the integer equation is ((1,1,4), (1,2,3), (2,2,2)). Elements in each

set are increasingin magnitude, that is, (1,1,4) is an acceptable pin set, but (1,4,1) is not.

This equation is efficiently solved by a recursive procedure. The cardinality of the solution

(list of sets) strongly affects the run time of the model since the number of solutions grows

rapidly with d and i. Therefore, results for very large nets are approximated by dividing

large nets into cliques of smaller nets. Now,

A(i,d,w) = y^j CfgLength(i, tt?,set) x Ai(i,d,set) x A2(i,diset)
seta

&{ Toms[k+l]) ULi roms[k}<

Mi,d,set)=n f '-ss-i*"*!) = . *
,v* ' th\ pins[k+i)) nui*»*[*]i

where A\(i,d,set) is the number of distinguishable row arrangements for a given pin set

and A2(i, d,set) is the number of distinguishable pin distributions for a given row arrange

ment and a given pin set. rows[k] is the number of rows with k pins, and pins[k] is

the number of pins on the Arth row. For example, if set = (1,1,4), then rotu$[l] = 2

and pm5[l] = 1. For this pin set, distinguishable row arrangements are (1,1,4), (1,4,1)

and (1,1,4). For row arrangement (1,1,4) and assuming pins are numbered as pi, •••,p6,

then (0>l),(j>2),(p3,j>4,p5,p6)), (d>2),(pl),(p3,p4,p5,p6)), ((p2),(p3),(pl,p4,p5,p6)) and

so forth are distinguishable pin distributions.

CfgLength(i,wyset) which gives the expected length on the net if it assumes the distribu

tion of pins described by a particular set is computed next. CfgLength is an abstraction

of the global router, assumes that pins (on a net) on rows do not share channels with pins

on other rows and is given by

WL(pins[l],ttf) if i = 1

CfgLength(i, w,set) = < ££=2 WL(pins[k] + 1,w) else if pins[l] = 1

WL(pins[i\, w) + £1=2 WL(pins[k] -f 1,w) otherwise

132 CHAPTER 9. AREA ESTIMATION

where p«n5[fc] is sorted in increasing order.3 WL(m, w) gives the expected length of the net

which has m pins in a routing channel (2 < m < 2w) and is calculated as

\ m — 2
WL(m, w) =

C)
The numerator is a sum over all possiblespans of the m randomly placed pins on a channel

with w cells on each side and the denominator is the number of ways m cells can be chosen

from among 2w cells. The first term in the numerator is the number of ways spans of /

cell pitches can be established within the channel, the second term in the numerator is the

number of ways the remaining m - 2 pins can be placed on 2/ —2 cells, and / is the cell

span established by the pins.

Under the assumption of a single wire segment per track (using unity track demand factor,

i.e., Vm WL(myw) = 1), the equation for MlLengthInFrame(diwin) reduces to that of

[Chen 88]

A(i,d,w) = ix ^2A\(i)d,set) x A2(i,d,set) = i x B(i,d)
seta

B(i,d) =»* -(£ (*JxB(j,d)) B(l,d)=1.
B(iy d) whichis defined recursively gives the number of waysof placing d pins on exactly i

rows. Note that
Min(d,n) / \

x: (i)dxi. jxj?(M)=i.

Sum of the lengths of metal2 wires connecting allpins of the net (in units of channel height)

is computed as

Min(d,n) x / \
M2LengthInFrame(d,n)= ^2 (-)d x I I XChanSpan(i,n) x B(i,d)

,=i n \ i J
3These equations model a minimum spanning tree global router. A similar but different set of equations

is used to model minimum Steiner tree global routers. Same comment applies to the equation computing
NumFTs.

9.2. THE BASIC INTERCONNECTION MODEL 133

£P=i(n-/+1) x^J_* |x(/- 1)
ChanSpan(i, n) =

n

i

where ChanSpan(i, n) is the expected number of channels spanned by a d-pin net (occu

pying i rows). The first term in the numerator is the number of ways spans of / rows can

be established within the chip, the second term in the numerator is the number of ways the

remaining i —2 rows can be chosen from among n - 2 rows, and / —1 is the channel span.

The denominator is the number of ways i rows can be chosen from among n rows.

The expected number of feedthroughs contributed by a d-pin net is computed next

Min(d,n) / \

FTHeightInFrame(d,n)= Y] (-)d x | XNumFTs(i, n) x B(i> d)
fei n \i J

where NumFTs(i, n) is the expected number of feedthroughs added by a net which is

occupying exactly i rows. It is given by an expression identical to that for ChanSpan with

I —i (number of feedthroughs) replacing / - 1 (channel span). This is because the global

router does not add a feedthrough to a row which contains a pin on the net.

The total interconnection length required to connect all the nets and the total number of

feedthroughs contributed by all the nets are

totMlLength = J^ ne<s[d] x MlLengthInFrame(d,Wjn)
nets

totM2Length = ^ nets[<£] x M2LengthInFrame(di n)
nets

totFTs = ^2 nets[d\ x FTHeightInFrame(d,n)
nets

where neta[d] represents the number of nets with d pins. Note that the distributions of wire

lengths and feedthroughs as a function of the number (nets[d]) or size (d) of nets in the

logic design have been computed as well.

The abstraction of the channel routing process is composed of two components: the wire

length abstraction captured by WL(m, w) equation given previously and the segment pack

ing into tracks abstraction described below.

134 CHAPTER 9. AREA ESTIMATION

The metall length for each net is divided equally into a number of segments as determined

by the expected channel span of the net.4 The average segment length (over all nets) is
computed as

Jf totMlLength
segmentLength = -—

totSegments

totSegments =^ numSegments[d\.
d

Because of random placement process, one may argue that the segments in the channel

originateaccording to a Poisson distribution with parameter6 where 6 is the average number

of wire segments per slot and is given by

- _ totSegments
~ wx (n- 1) '

Next, define
c ^t .i totMlLength

a = b x segmentLength = -. r—
* * wx(n-l)

From this and a confidence level of c (= 0.999) for routing completion, the required number

of wiring tracks per channel is approximated as follows

trackalnChan c_a ^ ftfc

totTracks = (n - 1) x tracksInChan.

After computing the total number of wiring tracks requiredby the detailed router, the num

ber of feedthroughs crossing eachof the rows is computed. The probabilityof a feedthrough

crossing row i (rows are numbered from bottom to top starting from 1) is given by

d~1 ' - 1 _ ' IdPFTOnRow(i,n) =£(—)' x (2—%-)d-* x
jA n n \3

From the d pins on the net, assume that j are placed in rows below the ith row and d —j

pins are placed in rows above the ith row. (i —l)/n is, then, the probability that one pin

is placed in rows below row i and (n - i)/n is the probability that another pin is placed

in rows above row i. Note that if at least one pin on the net is placed on row i, then

PFTOnRow(i) = 0. This is consistentwith the assumption that the global router does not

add feedthroughs to a row which contains some pin on the net.

4A spanning treeglobal router tends to divide the metall wire length of a net equally among the channels
spanned by the net.

9.3. THE IMPROVED INTERCONNECTION MODEL 135

For randomly placed designs, the number of feedthroughs crossing the central row is the

largest. To compute the probability that a d-pin net will contribute a feedthrough to the

central row, t = (n -f l)/2 is used. Now,

n + 1
CFTsInFrame(d,n) = PFTOnRow(—j—,n) x FTHeightInFrame(d1n)

cFTs = ^2 nets[d\ x CFTsInFrame(d, n).
neta

The chanHeight is computed as

, _ . , totTracks X trackSpacing
chanHeight =

and finally, chip width, chip height, and actual metall and metal2 lengths (in /jmeters) are

computed as

cellPitch = cellWidth + cFTs x ftWidth/w

chipWidth = w x cellPitch

chipHeight —nx cellHeight-r (n —1) x chanHeight

actualMILength = totMlLength x cellPitch

actualM2Length = totFTs x cellHeight + totMlLength x chanHeight.

9.3 The Improved Interconnection Model

The improved model assumes a placement optimization process, a minimal rectilinear

Steiner tree global router and a left edge channel router. The features of the algorithm

classes which are captured by the interconnection model are the following. The placement

optimizer minimizes the sum over all the nets of the half perimeter length of the rectangle

enclosing pins of each net. Pins inside the placement bounding box for the net are not

optimized for that net.

The global router approximates a minimal rectilinear Steiner tree to connect pins on each

net. This global routing paradigm [Cong 88] tends to produce minimal metal2 routes at

the expense of more metall routing. (See [Lee 88] for an opposing global routing paradigm

that produces maximal metal2 routing.) A channel routing paradigm is assumed. (See

Section 9.2.)

136 CHAPTER 9. AREA ESTIMATION

Interconnection length and feedthrough count for each size of net is estimated and then

summed over all the nets. Metall wire length is expressed in units of average cell pitch

and metal2 wire length is expressed in units of average channel height. The average inter

connection lengths are computed by spatially restricting the possible positions of the pins

on the net to abounding box within the wxn grid. Considering feasible aspect ratios

for this bounding box and various pin configurations within the box and averaging over all

such states, the average interconnection lengths and feedthrough count for the net arecom

puted. By summing over all nets, the total interconnectionlength and the total number of

feedthroughs are computed. There is no explicit dependence on a particular cell library or

fabrication technology for estimation of wire length. However, such information is required

when the total interconnection length is used to estimate the chip width and height.

The interconnection structure of a design is characterized by net neighborhood populations

(NPs) which account for the local influence of other nets over a net in question. The NP

for a net is the number of primary input/outputs (I/Os) and cells which are at distance

zero or one from the net. To compute the NP for a particular net, we find all the cells

and I/Os connected by this net (i.e. at distance 0 from the net). Every other net which is

connected to the cells is followed all the cells and primary I/Os which are at distance one

from the net are visited. The NP for the net is the totalnumber of distinct cells and I/Os

encountered in this manner. In the NP computation, nets which connect more than 25%

of the cells in the design are ignored. (These are typically power and clock nets that go

everywhere.) This procedure is repeated for all nets of given size resulting in the average

neighborhood population for each size of net. At the end, NP[d\ contains the average

neighborhood population for nets with d pins.

The NP for a net reflects the conflicting demands on a placement optimizerthat is attempt

ing to optimally place the cells directly connected to the net. To clarify this notion, assume

that the placement optimizer is seeking a placement of d cells connected by exactly one net.

The optimizerwill cluster these cells in a bounding box of minimum half perimeter length.

However, in reality, it is not possible to place cells connected to each net in such a minimum

length bounding box due to competition from other nets. The placement and routing of

the cells directly connected to a net of size d (to a first approximation) is influenced by a

cell and I/O population of size NP[d\.

9.3. THE IMPROVED INTERCONNECTION MODEL 137

The abstraction of the placement optimizer is described next. Consider a d-pin net with

pins on a two-dimensional, wxn grid. The d pins on the net can be placed within an

x x y bounding box where y ranges from k\ to &2 and x = [iVP[d]/y]. k\ is given

by \NP[d\lXSpan(d,n)\ and &2 is equal to the \YSpan(d,n)] where XSpan(d,n) and

YSpan(d, n) are the the expected cell span and the expected row span of the net if the net

pins are randomly placed on the wxn grid. Due to the placement process which minimizes

the half perimeter length of the rectangle enclosing all pins on the net, and due to conflicting

demands of other nets, the d pins are uniformly distributed inside the x x y bounding box.

Now,

W(x v) = (w-x +l)x(n-yrl)
v 'y} xx cellWidth + (7 X(y - l) + y)x cellHeight

where the numerator gives the count of all feasible subgrids of size x x y in a grid of size

wxn, and the denominator gives the half perimeter length of the xxy grid. 7 is the ratio

of the expected channel height to the cell height.

The average length of the net with d pins is given by

MILen th(d) =^kl W^'y^ XM1Len9thInFrame(d1x,y)
eng z%klm*,y)

where MlLengthInFrame(dixiy) is the expected length of the net if it is restricted to

xxy bounding box and is given in Section 9.2. Recall that this length depends on

CfgLength(i,x,set). Here, CfgLength(i,x,set) is redefined so that it captures the effects

of a minimal rectilinear Steiner tree global router. CfgLength(i^xy set) gives the expected

length of the net when the net assumes the configuration described by a particular pin

set. In addition, one must address the channel sharing problem, i.e., given a particular

pin configuration what is the probability of these pins are facing the same channel. This

issue is important because pins on two adjacent rows can be connected within the shared

channel. Sharing(y,i,l) which gives the probability of pins which are placed on i out of y

rows sharing exactly / channels (/ < i/2) is computed by a recursive procedure. Then,

CfgLength^^XySet) =

EtLVtfEUoSharing(y,i,s)) x (WL(pins[2r + 1],x) + WL(pins[2r + 2],x))+
(1 - £J_0 Sharing(y, i,s))x WL(pins[2r + 1]+ pins[2r + 2],x)} +

(i/2- 1) x WL(2,x) + (if IsOdd(i) then WL(pins[i]+ 1,x) else 0)

138 CHAPTER 9. AREA ESTIMATION

WL(m, x) gives the expected length of m-pin portion of the net when allm pins lie on one

channel (2 < m < 2x) and is given in Section 9.2.

Sumof thelengths of metal2 wires connecting all thepins, theexpected number of feedthroughs

added to all rows and to the centralrowby a net of size d are computed in a fashion similar

to MILength calculation. For example,

FTHeight(d) =̂ n*,y)x FTHei9htInFrame(diy)
EjUW^y)

where FTHeightInFrame(di y)is given in Section 9.2. The totalmetall and metal2 lengths

required to connect all nets, the total number of feedthroughs crossing all rows, totFT's,

and those crossing the central row, cFTs, are also calculated as in Section 9.2.

Given average wire length and wire length distribution, known statistical area estimation

techniques can be exploited to estimate the total chip area and aspect ratio [Heller 77,

Kurdahi 89, Sastry 86]. Here, I shall describe a new technique based on random offset track

packing to model the detailed routing process.

The metall length for each net is divided equally into a numberof segments as determined

by the expected number of wire segments (trunks) for each size of net. The number and

lengths of all segments for each size of net lying in each channel are given by

segmentsInChannel[d\ = fnet$[<f] x Segments(d)]/(n-l)

segmentLength[d\ - \MlLength[d\/Segments(d)]

*(j\ _ ^%ki W(X*V) x SegmentsInFrame(d,y)
j contents i a) — .

EjUWT(,,y)

Minify) x / y \ «/2
SegmentsInFrame(d,y) =]T (-)d x I x B(i,d) x J^(t - j) XSharing(y,iJ).

i=i y \i J ;=o
Now, the track packing problem (in the absence of vertical and horizontal constraints) can

be defined as follows: Given t segments which must be placed in tracks of equal length w

and given that segment i requires /,- units of track length, the objective is to determine the

minimum number of tracks needed to accommodate all segments. This is the well known

bin packing problem and is NP-complete [Garey 79]. There exist many heuristics which

obtain packings that use a "small" fraction of tracks more than the optimal packing.

9.4. COMPLEXITY ANALYSIS 139

The simplification made by assuming that no pin constraints exist on the wire segments

causes underestimation of the routing area. By generating a uniformly distributed offset

for each wire segment in the channel, this shortcoming is remedied. One could build a

horizontal constraint graph for these randomly positioned wire segments. The assignment

of tracks to wire segments corresponds to the proper coloring of this constraint graph (which

is by construction an interval graph). In the absence of vertical constraints, there exist

simple optimal algorithms for coloring the interval graphs. The task at hand, however,

is much easier because only density of the channel must be computed and this can be

accomplished by a simple plane sweep technique. The total density of the standard cell

layout (totDensity) is the sum of channel densities over all channels. Ignoring vertical

constraints in the area estimation model produces small errors because modern dogleg

routers often route channels at density. Then,

chanHeight = totDensity x trackSpacing/(n —1).

Finally, chip width, chip height, and actual metall and metal2 lengths (in jimeters) are

computed as in Section 9.2.

9.4 Complexity Analysis

k 12 3 4 5 6 7 8 9 10 11 12 13 14 15

C(k) 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

Table 9.1: C(k) values for k ranging from 1 to 15

The complexity of the interconnection model presented above is

dmase

0(n x £ C(k))

where C(k) is defined as

C(*) =£||Sefc(«,fc)||
1=1

Table 9.1 gives values of C(k) for k ranging from 1 to 15.

The run time is relatively independent of the size of design but is strongly affected by the

maximum size of net being considered (dmax). For this reason, nets with more than 15

140 CHAPTER 9. AREA ESTIMATION

pins are divided into cliques of smaller nets. This division introduces little error because,

typically, there are few large nets. Each execution of the model requires 2-5 minutes for the

example runs.

9.5 Experimental Results

The interconnection model has been implemented in the Cedarlanguage running on Xerox

Dorado Workstations (2-MIPS machines) and incorporated the model into the DATools

system developed at Xerox PARC [Barth 88].

example cells I/Os nets pins
16b adder 144 52 177 546

SnprCtl 95 30 114 331

RSD 210 89 211 670

64b counter 478 130 585 1537

PrimaryISC 750 73 903 2801

Primary2SC 2907 107 3029 8758

Table 9.2: Summary of the example circuits used for the area estimator

Table 9.2 describes the examples used to test the model's predictions. The counter and the

adder are circuits synthesized by the DATools system when no performance requirements

are imposed. The adders are simple ripple-carry designs, the counters are carry-look-ahead

designs. The RSD is part of a Reed-Solomon error correction circuit, and the SnprCtlis

part of a cache controller. PrimarylSC and Primary2SC are the benchmarks from the

physical design workshop [Preas 87]. The placement is obtained by TimberWolfSC version

4.1 [Sechen 87a]. The global and detailed routers are discussed in [Cong 88, Deutsch 76].

Table 9.3 compares the model's wire length, area and aspect ratio estimates with the actual

results obtained after global and detailed routing of the circuits. The estimates are all

within 10% accuracy. The detailed characteristics of the model were verified by collecting

data and generating statistics for the actual interconnection length and feedthrough count

for each size of net and comparing it with the model's estimated values.

Table 9.4 gives this comparison for PrimarylSC. Detailed results for other examples and

9.5. EXPERIMENTAL RESULTS 141

aspect ratios are comparable. Sources of error include average behavior modeling (rather

than worst case behavior modeling) and incomplete characterization of the physical design

processes.

example rows

predicted actual

Ml M2 circuit aspect Ml M2 circuit aspect
length length area ratio length length area ratio

SnprCtl 5 24.1 20.1 0.81 1.11 22.1 17.5 0.76 1.04

16b adder 8 24.0 23.6 0.81 2.66 22.1 21.5 0.76 2.50

RSD 6 59.6 52.2 1.70 1.08 62.1 48.3 1.61 0.98

64b cntr 12 226.2 254.6 5.84 1.53 238.6 238.2 5.36 1.54

PrimarylSC 22 714.0 545.5 27.1 1.36 782.7 491.2 26.9 1.47

Primary2SC 34 3958.2 3422.3 109 1.36 4300.1 3050.0 113 1.48

Table 9.3: Comparison of estimates versus the actual results of wire length (mm)y area

(mm2) and aspect ratio

pins estimated actual

Ml length ft count Ml length ft count

2 484 0.353 506 0.484

3 843 0.797 835 0.597

4 1073 1.026 1100 0.530

5 1417 1.114 1474 0.846

7 2028 1.106 2630 0.833

12 4280 0.852 5689 1.330

Table 9.4: Detailed comparison of metall length and feedthrough count for various sizes of

nets for PrimarylSC with 14 rows

Chapter 10

Concluding Remarks

In the first part of this dissertation, I studied the effects of interconnect on circuit area

and performance, presented appropriate models and computational procedures for estimat

ing delay during synthesis, described algorithms for I/O pad assignment and placement of

Boolean networks, and most of all, put forth techniques for coupling logic synthesis to place

ment and for maintaining simultaneous and interactive data representations in logic and lay

out domains. There is still much work to be done here. Extension of layout-driven approach

to the synthesis of sequential networks and Field Programmable Gate Arrays, investigation

of layout-driven techniques for logic resubstitution, simplification and redundancy removal,

finding an efficient solution to the problem of technology mapping with the objective of

minimizing area under delay constraints, and driving cell-based placement with the infor

mation embedded in the logic graph are a few of possible research directions. Integrating

buffering and gate sizing with the actual placement procedure is another way to improve the

circuit performance based on detailed layout information. Another important issue is that

of estimating delay through combinational logic during the technology-independent phase

of logic synthesis.

In the second part of this dissertation, I addressed the floorplanning problem and presented

a technique based on the cluster tree generation, shape computation and floorplan opti

mization which unifies many of the physical design steps (placement, shape calculation, pin

assignment, global routing, and global spacing) in a hierarchical manner. More work needs

142

143

to be done in floorplanning for sea-of-gates design style and analog circuits, channel pin ar

rangement problem, and path-based performance-oriented floorplanning. The floorplanner

can be used in the feedback loop of a high-level synthesis system, in which case constructive

floorplanning techniques must be incorporated in the existing framework.

Early estimation of macrocell areas (from a complete or partial net list specification) is also

important to a floorplanning system. The work presented in this dissertation for predicting

the area of standard cell assemblies can be extended to other design styles (sea-of-gates,

PLAs, etc).

And on this note, I end my dissertation.

Bibliography

[Abouzeid 90] P. Abouzeid, K. Sakouti, G. Saucier and F. Poirot, "Multilevel synthesis

minimizing the routing factor," Proc. 27th ACM/IEEE Design Automation Conf.,

pages 365-368, 1990.

[Aho 74] A. V. Aho, J.E. Hopcroft and J.D. UUman, "The design and analysis of computer

algorithms," Addison-Wesley Publishing Company, 1974.

[Aho 76] A. V. Aho and S. Johnson, "Optimal code generation for expression trees,"

J. ACM, pages 488-501, July 1976.

[Alon 88] A. Alon and U. Ascher, "Model and solutionstrategy for placement of rectangular

blocks in the Euclidean plane," IEEE Trans, on Computer-AidedDesign, Vol. CAD-7,

No. 3, pages 1062-1081, November 1988.

[Antreich 82] K. J. Antreich, F. M. Johannes and F. H. Kirsch, "A new approach for solving

the placement problem using force models," Proc. IEEE Int. Symp. on Circuits and

Systems, Proc. ISCAS, pages 481-486,1982.

[Bakoglu 86] H. B. Bakoglu, "Circuits, interconnections, and packagingfor VLSI," Addison-

Wesley, 1990.

[Barth 88] R. Barth, L. Monier and B. Serlet, "Patchwork: layout from schematic nota

tions," Proc. 25th ACM/IEEE Design Automation Conf, pages 250-255, 1988.

[Brady 84] H.N. Brady, "An approach to topological pin assignment," IEEE Trans, on

Computer-Aided Design, Vol. CAD-3, pages 250-255,1984.

144

BIBLIOGRAPHY 145

[Brayton 82] R. K. Brayton and C. McMullen, "The decomposition and factorization of

boolean expressions," Proc. Int. Symp. Circuits and Systems, Rome, May 1982.

[Brayton 87a] R. K. Brayton, "Algorithms for multilevel synthesisand optimization,"G. De

Micheli, A. Sangiovanni-Vincentelli and P. Antognetti, Editors, Design Systems for

VLSI Circuits: LogicSynthesis and Silicon Compilation, Martinus Nijhoff, 1987.

[Brayton 87b] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. Wang, "MIS:

a multiple-level logic optimization system," IEEE Trans, on Computer-Aided Design,

Vol. CAD-6, No. 6, pages 1062-1081, November 1987.

[Brayton 90] R. K. Brayton, G. D. Hachtel and A. L. Sangiovanni-Vincentelli, "Multilevel

logic synthesis," Proc. the IEEE, Vol. 78, No. 2, pages 264-300, February 1990.

[Breuer 77] M. A. Breuer, "Min-cut placement," Design Automation and Fault-Tolerant

Computing, 2, October 1977.

[Burkhard 80] R.E. Burkhard andU. Derigs, "Assignment andmatchingproblems: solution

methods with Fortran programs," Springer Verlag, 1980.

[Burstein 83] M. Burstein, S.J. Hong and R. Pelavin, "Hierarchical VLSI layout: simulta

neous placement and wiring of gate arrays," Proc. VLSI, pages 45-60,1983.

[Burstein 85] M.Burstein andM.N.Youssef, "Timing influenced layout design," Proc. 22nd

ACM/IEEE Design Automation Conf, pages 124-130,1985.

[Cai 90] Y. Cai and D. F. Wong, "An optimal channel pin assignment algorithm,"

Proc. IEEE Int. Conf. on Computer-Aided Design, pages 10-13,1990.

[Chen 83] N. P.Chen, C.P.Hsu, E.S. Kuh, C.C.Chen andM.Takahashi, "BBL: abuilding-

block layout system for custom chip design," Proc. IEEEInt. Conf. on Computer-Aided

Design, pages 40-41,1983.

[Chen 84] C. C. Chen and E. S. Kuh, "Automatic placement for building-block layout,"

Proc. IEEE Int. Conf. on Computer-Aided Design, pages 90-92, 1984.

[Chen 86] H. H. Chen and E. S. Kuh, "Glitter: A gridless variable-width channel router,"

IEEE Trans, on Computer-Aided Design,Vol. CAD-5, pages 459-465,1986.

146 BIBLIOGRAPHY

[Chen 87] H. H. Chen, "Routing L-shaped channels in non-slicing structure placement,"

Proc. 24th ACM/IEEE Design Automation Conf, pages 152-158,1987.

[Chen 88] N. P. Chen, "Building block routing - a symbolic approach," Proc. IEEE Custom

Integrated Circuits Conference, pages 11.2.1-11.2.4,1988.

[Chen 88] X. Chen and M.L. Bushnell, "A module area estimator for VLSI layout,"

Proc. 25th ACM/IEEE Design Automation Conf, pages 54-59,1988.

[Cheng 84] C.-K. Cheng and E.S. Kuh, "Module placement based on resistive network

optimization," IEEE Trans, on Computer-Aided Design, Vol. CAD-3, pages 218-225,

July 1984.

[Choudhary 90] U. Choudhary and A. Sangiovanni-Vincentelli, "Constraint-based chan

nel routing for analog and mixed analog/digital circuits," Proc. IEEE Int. Conf. on

Computer-Aided Design, pages 198-201,1990.

[Chung 79] F. R. K. Chung and F. K. Hwang, "The largest minimal rectilinear Steiner trees

for a set of n points enclosed in a rectangle with given perimeter," Networks, Vol. 9,

pages 19-36,1979.

[Cong 89] J. Cong, "Pin assignment with global routing," Proc. IEEE Int. Conf. on

Computer-Aided Design, pages 302-305, 1989.

[Cong 88] J. Cong and B. T. Preas, "A new algorithm for standard cell global routing"

IEEE Int. Conf. on Computer-Aided Design, pages 176-180, November 1988.

[Cong 91] J. Cong, "A provable near-optimal algorithm for the channel pin assignment

problem," private communication.

[Dai 85] W. -M. Dai, T. Asano and E. S. Kuh, "Routing region definition and ordering

scheme for building-block layout," IEEE Trans, on Computer-Aided Design, Vol. CAD-

4, No. 3, pages 189-197,1985.

[Dai 87a] W. -M. Dai, M. Sato, E. S. Kuh, "A dynamic and efficient representation of

building-block layout," Proc. 24th ACM/IEEE Design Automation Conf, pages 376-

384, 1987.

BIBLIOGRAPHY 147

[Dai 87b] W. -M. Dai, E. S. Kuh, "Global spacing of building-block layout," Proc. VLSI
'87, pages 161-173,1987.

[Dai 87c] W. -M. Dai andE. S. Kuh, "Simultaneous floor planning andglobal routing for hi

erarchical building-blocklayout," IEEE Trans, on Computer-Aided Design, Vol. CAD-

6, No. 5, pages 828-837,1987.

[Dai 87d] W. -M. Dai, H. H. Chen, R. Dutta, M. Jackson, E. S. Kuh, M. Marek-Sadowska,

M. Sato, D. Wang and X. M. Xiong, "BEAR: a new building-block layout system,"

Proc. IEEE Int. Conf Computer-Aided Design, pages 34-37, 1987.

[Dai 89] W. -M Dai, B. Eschermann, E.S. Kuh and M. Pedram, "Hierarchical placement

and floorplanning in BEAR," IEEE Trans, on Computer-Aided Design Vol. 8, No. 12,

pages 1335-1349, December 1989.

[Detjens 87] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli and A. Wang,

"Technology mapping in MIS," Proc. IEEE Int. Conf Computer-Aided Design,

pages 116-119, 1987.

[Deutsch 76] D. N. Deutsch, "A 'dogleg' channel router," Proc. 13th ACM/IEEE Design
Automation Conf, pages 425-433,1976.

[Donath 69] W. E. Donath, "Hierarchical structure of computers," IBM T. J. Watson Re

search Center Report RC 2392, March 1969.

[Donath 70] W. E. Donath, "Stochastic model of the computer logic design process," IBM
T. J. Watson Research Center Report RC 3136, November 1970.

[Donath 79] W. E. Donath, "Placement and average interconnection lengths of computer

logic," IEEE Trans, on Circuits andSystems, Vol. CAS-26, No. 4, pages 272-277, April

1979.

[Dong 89] S. K. Dong, J. Cong and C. L. Liu, "Constrained floorplan design for flexible

blocks," Proc. IEEE Int. Conf. Computer-Aided Design, pages 488-491, November

1989.

[Dunlop 84] A.E. Dunlop,V.D. Agrawal,D.N. Deutsch,M.F. Juki, P. Kozak and M.Wiesel,

"Chip layout optimization using critical path weighting," Proc. 21th ACM/IEEE De

sign Automation Conf, pages 133-136, 1984.

148 BIBLIOGRAPHY

[El Gamal 81b] A. A. El Gamal, Z. A. Syed, "A stochastic model for interconnections

in custom integrated circuits," IEEE Trans, on Circuits and Systems , Vol. CAS-28,

pages 883-893, 1981.

[El Gamal 81a] A. A. El Gamal, "Two dimensional stochastic model for interconnections

in master slice circuits," IEEE Trans, on Circuits and Systems, Vol. CAS-28, No. 2,

pages 127-138, February 1981.

[El-Mansy 88] Y. A. El-Mansy and W. M. Siu, "MOS technology advances," Handbook

of Advanced Semiconductor Technology and Computer Systems, G. Rabbat ed., Van

Nostrand Reinhold Company, pages 229-259,1988.

[Fiduccia 82] CM. Fiduccia and R.M. Mattheyses, "A linear-time heuristic for improving

network partitions," Proc. 19th ACM/IEEE Design Automation Conf, pages 175-181,

1982.

[Fletcher 81] R. Fletcher, Practical methods of optimization, Vol. 2, John Wiley and Sons,

Chichester, 1981.

[Fowler 85] C. Fowler, G.D. Hachtel and L. Roybal, "New algorithms for hierarchical

place and route of custom VLSI," Proc. IEEE Int. Conf on Computer-Aided Design,

pages 273-275, 1985.

[Garey 79] M. R. Garey and D. S. Johnson, Computers and intractability, W. H. Freeman

and Company, 1979.

[Garrod 88] D. Garrod, R. A. Rutenbar and L. R. Carley, "Automatic layout of custom

integrated circuits in ANAGRAM," Proc. IEEE Int. Conf on Computer-Aided Design,

pages 544-547, 1988.

[Hachtel 88] G. Hachtel, M. Lightner, R. Jacoby, C. Morrison, P. Moceyunas, and D. Bo-

stick, "BOLD: the boulder optimal logic design system," Hawaii Int. Symp. on Systems

Sciences, 1988.

[Hakimi 64] S. L. Hakimi, "Optimum locations of switching centers and the absolute centers

and medians of a graph," Oper. Res., 12, pages 450-459,1964.

BIBLIOGRAPHY 149

[Hanson 88] D. Hanson, "Interconnection analysis," Physical Design Automation of VLSI

Circuits, B. Preas and M. Lorenzetti editors, Benjamin/Cummings Publ., Menlo Park,

CA, pages 47-48, 1989.

[Hashimoto 87] A. Hashimoto and J. Stevens, "Wire routingby optimizing channel assign

ment within large apertures," Proc. 8th Design Automation Workshop, pages 155-163,

1971.

[Hauge 87] P. S. Hauge, R. Nair and E. J. Yoffa, "Circuit placement for predictable perfor

mance," Proc. IEEE Int. Conf. on Computer-Aided Design, pages 88-91,1987.

[Heinbuch 88] D.V. Heinbuch ed., CMOS 3 Cell Library, Addison-Wesley Publishing Com

pany, 1988.

[Heller 77] W. R. Heller, W. F. Mikhail and W. E. Donath, "Prediction of wiring space

requirements for LSI," Proc. 14th ACM/IEEE Design Automation Conf, pages 32-42,

June 1977.

[Herrigel 89] A. Herrigel, M. Glaserand W. Fichtner, "A global floorplanning technique for

VLSI layout," IEEE Int. Conf. on Computer Design, pages 92-95, 1989.

[Hitchcock 82] R. B. Hitchcock,G. L. Smith and D. D. Cheng, "Timing analysis of computer

hardware," IBM J. Res. Develop.,Vol. 26, No. 1, pages 100-105,January 1982.

[Hsh 87] Y. C. Hsh and W. J. Kubitz, "A procedure for chip floor planning,"

Proc. Int. Symp. on Circuits and Systems, pages 568-571, 1987.

[Jackson 87] M. A. B. Jackson, E. S. Kuh and M. Marek-Sadowska, "Timing-drivenrouting

for building block layout," Proc. Int. Symp. on Circuits and Systems, pages 518-519,

1987.

[Jackson 89] M. A. B. Jackson and E. S. Kuh, "Performance-driven placement of cell based

IC's," Proc. 26th ACM/IEEE Design Automation Conf, pages 370-375,1989.

[Jackson 90] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, "A fast algorithm

for performance-driven placement," IEEE Inl. Conf. on Computer-Aided Design,

pages 328-331, 1990.

150 BIBLIOGRAPHY

[Keutzer 87] K. Keutzer, "DAGON: technology binding and local optimization by DAG

matching," Proc. 24th ACM/IEEE Design Automation Conf, pages 341-347, 1987.

[Khellaf 87] M. Khellaf, "On the partitioning of graphs and hypergraphs," Ph.D. disserta

tion, Dept. IEOR, Univ. Calif., Berkeley, 1987.

[Kleinhans 90] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich, "GORDIAN:

VLSI placement by quadratic programming and slicing optimization," IEEE Trans, on

Computer-Aided Design, Vol. 10, No. 3, pages 356-365, March 1991.

[Koren 72] N.L. Koren, "Pin assignment in automated printed circuit board," Proc. 9th

Design Automation Workshop, pages 72-79, 1972.

[Kurdahi 86] F.J. Kurdahi and A.C. Parker, "PLEST: a program for area estimation of

VLSI integrated circuits," Proc. 23rd ACM/IEEE Design Automation Conf, pages 467-

473,1986.

[Kurdahi 89] F. J. Kurdahi and A. C. Parker, "Techniques for area estimation of VLSI

layouts," IEEE Trans, on Computer-Aided Design,Vol. 8, No. 1, pages 81-92, January

1989.

[Landman 71] B. S. Landman and R. L. Russo, "On a pin versus block relationship for

partitions of logic graphs," IEEE Trans, on Computers, C-20, No. 12, pages 1469-

1479, December 1971.

[La Potin 86] D. P. La Potin and S. W. Director, "Mason: a global floorplanning ap

proach for VLSI design," IEEE Trans, on Computer-Aided Design, Vol. CAD-5, No. 4,

pages 477-489, October 1986.

[Lauther 79] U. Lauther, "A min-cut placement algorithm for general cellassemblies based

on a graph representation," Proc. 16th ACM/IEEE Design Automation Conf, pages 1-

10, 1979.

[Lauther 85] U. P. Lauther, "Channel routing in a general cell environment," Proc. VLSI-

85, 1985.

[Lee 88] K. W. Lee and C. Sechen, "A new global router for row-based layout," IEEE

Inl. Conf. on Computer-Aided Design, pages 180-183, November 1988.

BIBLIOGRAPHY 151

[Lengauer 90] T. Lengauer, Combinatorial algorithms for integrated circuit layout, Wiley-

Teubner Series in Computer Science, 1990.

[M-Sadowska 86] M. Marek-Sadowska, "Route planner for custom chipdesign," Proc. IEEE

Int. Conf. Computer-Aided Design, pages 246-249,1986.

[M-Sadowska 89] M. Marek-Sadowska and S. P. Lin, "Timing driven placement,"

Proc. IEEE Int. Conf. on Computer-Aided Design, pages 94-97, 1989.

[Mayrhofer 90] S. Mayrhofer and U. Lauther, "Congestion driven placement using a new

multi-partitioning heuristic," IEEE Int. Conf. on Computer-Aided Design, pages 332-

335,1990.

[Mayrhofer 91] S. Mayrhofer, M. Pedram and U. Lauther, "A flow-based approach to the

placement of Boolean networks," Proc. VLSI-91,1991.

[MCNC 88] "Logic synthesis and optimization benchmarks - user guide," Microelectronics

Research Center of North Carolina, 1988.

[MCNC 90] "Floorplanning benchmarks," MCNC Int. Workshop on Layout Synthesis, Re

search Triangle Park, NC, 1990.

[Murgai 90] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton and A. Sangiovanni-

Vincentelli, "Logic synthesis for programmable gate arrays," Proc. 27th ACM/IEEE

Design Automation Conf, pages 620-625,1990.

[Murofushi 90] M. Murofushi, M. Yamada and T. Mitsuhashi, "FOLM-planner: a new

floorplanner with a frame overlapping floorplan model," Proc. IEEE Int. Conf. on

Computer-Aided Design, 1990.

[Nair 89] R. Nair, C. L. Berman, P. S. Hauge and E.J. Yoffa, "Generation of perfor

mance constraints for layout," IEEE Trans, on Computer-Aided Design, Vol. 8,No. 8,

pages 860-874, August 1989.

[Ogawa 86] Y. Ogawa, T. Ishii, Y. Shiraishi, H. Terai, T. Kozawa, et al., "Efficient place

ment algorithms optimizing delay for high-speed ECL masterslice LSI's," Proc. 23th

ACM/IEEE Design Automation Conf, pages 404-410,1986.

152 BIBLIOGRAPHY

[Ogawa 90] Y. Ogawa, M. Pedram and E.S. Kuh, "Timing-driven placement for general cell

layouts," Proc. Int. Symp. on Circuits And Systems, Vol. 2, pages 872-875, May 1990.

[Otten 82] R. H. J. M. Otten, "Automatic floorplan design," Proc. 19th ACM/IEEE Design
Automation Conf, pages 261-267, 1982.

[Otten 83] R. H. J. M. Otten, "Efficient floorplan optimization," Proc. IEEE Int. Conf. on

Computer Design, pages 499-502, 1983.

[Ousterhout 84] J.K. Ousterhout, "Corner stitching: a data structuring technique for VLSI

layout tools," IEEE Trans, on Computer-Aided Design, Vol. CAD-3,1984.

[Pedram 89a] M. Pedram and B. T. Preas, "Accurate prediction of physical design char

acteristics of random logic," IEEE Int. Conf. on Computer Design, pages 100-108,

1989.

[Pedram 89b] M. Pedram and B. T. Preas, "Interconnectionlength estimation foroptimized

standard cell layouts," Proc. IEEE Int. Conf. on Computer-Aided Design, pages 390-

393, 1989.

[Pedram 90a] M. Pedram and B.T. Preas, "A hierarchical floorplanning approach," Proc.

Int. Conf. on Computer Design, pages 332-338, 1990.

[Pedram 90b] M. Pedram, M. Marek-Sadowska and E. S. Kuh, "Floorplanning with pin

assignment," Proc. IEEE Int. Conf. Computer-Aided Design, pages 98-101,1990.

[Pedram 90c] M. Pedram, W. M. Dai, M. Marek-Sadowska, G. Carvalho, D. Wang and

B. Chen, "BEAR-FP Manual, distribution 1.0," Memorandum N. UCB/ERL M90/118,

December 1990.

[Pedram 91a] M. Pedram and N. Bhat, "Layout driven technology mapping," Proc. 28th

ACM/IEEE Design Automation Conf, pages 99-105,1991.

[Pedram 91b] M. Pedram, K. Chaudhary and E. S. Kuh, "I/O pad assignment based on

circuit structure," To appear in Proc. IEEE Int. Conf. Computer Design, 1991.

[Pedram 91c] M. Pedram and N. Bhat, "Layout drivenlogicrestructuring / decomposition,"

To appear in Proc. IEEE Int. Conf. Computer-Aided Design, 1991.

BIBLIOGRAPHY 153

[Prasitju 89] S. Prasitjutrakul and W. J. Kubitz, "Path-delay constrained floorplanning: a

mathematical programming approach for initial placement," Proc. 26th ACM/IEEE

Design Automation Conf, pages 364-369,1989.

[Preas 87] B. T. Preas, "Benchmarks for cell-based layout systems," Proc. 24th ACM/IEEE

Design Automation Conf, pages 319-320,1987.

[Reed 85] J. Reed, "YACR: yet another channel router," Master's Report, University of

California, Berkeley, February 1985.

[Rudell 89] R. Rudell, "Logic synthesis for VLSI design," Ph.D. dissertation, University of

California, Berkeley, 1989.

[Sakurai 83] T. Sakurai, "Approximation of wiring delays in MOSFET LSI," IEEE Journal

of Solid-State Circuits, Vol. SC-18, No. 4, pages 418-426, August 1983.

[Saraswat 82] K. C. Saraswat and F. Mohammadi, "Effect of scaling of interconnections

on the time delay of VLSI circuits," IEEE Trans, on Electron Devices, Vol. ED-29,

pages 645-650, 1982.

[Sastry 86] S. Sastry and A. C. Parker, "Stochastic models for wirability analysis of gate

arrays," IEEE Trans, on Computer-Aided-Design, Vol. CAD-5, No. 1, pages 52-65,

January 1986.

[Savoj 91] H. Savoj, H. -Y. Wang, "Improved scripts in MIS-II for logic minimization of

combinational circuits," Proc. Int. Workshop on Logic Synthesis, Vol. 3, 1991.

[Schittkowski] K. Schittkowski, "Computational mathematical programming," NATO ASI

Series, Vol. 15, Springer Verlag.

[Sechen 85] C. Sechen and A. Sangiovanni-Vincentelli, "The TimberWolf placement and

routing package," IEEE J. of Solid State Circuits, Vol. 20, No. 2, pages 510-522, April

1985.

[Sechen 87a] C. Sechen and K. W. Lee, "An improved simulated annealing algorithm for

row-based placement," Proc. IEEE Inl. Conf. on Computer-Aided Design, pages 478-

481, November 1987.

154 BIBLIOGRAPHY

[Sechen 87b] C. Sechen, "Average interconnection length estimation for random and op

timized placements," IEEE Inl. Conf. on Computer-Aided Design, pages 190-193,

November 1988.

[Sechen 88] C. Sechen, "VLSI placement and global routing using simulated annealing,"

Kluwer Academic Publishers, 1988.

[Srinivasan 91] A. Srinivasan, K. Chaudhary and E. S. Kuh, "RITUAL: an algorithm for

performance-driven placement of cell-based ICs," Proc. Third Physical Design Work

shop, May 1991.

[Stockmeyer 83] L. Stockmeyer, "Optimal orientation of cells in slicing floorplan designs,"

Information and Control, Vol. 57, pages 91-101, 1983.

[Szepieniec 86] A. A. Szepieniec, "Integrated placement / routing in sliced layouts,"

Proc. 23rdACM/IEEE DesignAutomation Conf, pages 300-307,1986.

[Teig 86] S. Teig, R.L. Smith and J. Seaton, "Timing-drivenlayout of cell-basedICs," VLSI

Systems Design, pages 63-73, May 1986.

[Touati 90] H. J. Touati,C. W. Moon, R. K. Brayton and A. Wang, "Performance-oriented

technology mapping," Proc. 6th MIT Conf, Advanced Research in VLSI, W. J. Dally

ed., pages 79-97, 1990.

[Touati 91] H. J. Touati, H. Savoj, and R. K. Brayton, "Delay optimization of combina

tional logic circuits by clustering and partial collapsing," To appear in Proc. IEEE

Int. Conf. Computer Design, 1991.

[Tsay 88] R. S. Tsay, E. S. Kuh and C. P. Hsu, "Proud: A sea-of-gates placement algo

rithm," Proc. IEEE Int. Conf. Computer-Aided Design, pages 318-323,1988.

[Tuck 90] B. Tuck, "High-density gate arrays: products too far ahead of technology?,"

Computer Design, pages 71-72, August 1990.

[Ueda 85] K. Ueda, H. Kitazawa and I. Harada, "CHAMP: chip floor plan for hierarchical

VLSI layout design," IEEE Trans, on Computer-Aided Design, Vol. CAD-4, pages 12-

22, 1985.

BIBLIOGRAPHY 155

[van Ginneken 90] L. P. P van Ginneken and R. J. M. Otten., "Optimal slicing of plane

point placements," Proc. 1st European Design Automation Conf, pages 322-326,1990.

[Vijayan 90] G. Vijayan and R. S. Tsay, "Floorplanning by Topological Constraint Reduc

tion," Proc. IEEE Int. Conf. Computer-Aided Design, pages 106-110,1990.

[Wang 90] D. Wang, "Ring routing for macro-cell layout," Proc. 27th ACM/IEEE Design

Automation Conf, pages 193-198,1990.

[Wallace 90] D. E. Wallace, M. S. Chandrasekhar, "High-level delay estimation for tech

nology independent logic equations," Proc. IEEE Int. Conf. Computer-Aided Design,

pages 188-191,1990.

[Wimer 88] S.Wimer, I. Koren andI. Cederbaum, "Optimal aspect ratios ofbuilding blocks

in VLSI," Proc. 25th ACM/IEEE Design Automation Conf, pages 66-72,1988.

[Wipfler 85] G. J. Wipfler, D. A. Mlynski and H. HiUner, "An automatic placement proce

dure for integrated circuits," Proc. Int. Symp. on Circuits and Systems, pages 13-16,

1985.

[Wong 89a] D. F. Wong and P. Sakhamuri, "Efficient floorplan area optimization,"

Proc. 26th ACM/IEEE Design Automation Conf, pages 586-589,1989.

[Wong 89b] D. F. Wong and K. The, "An algorithm for hierarchical floorplan design,"

Proc. IEEE Int. Conf. on Computer-Aided Design, pages 484-487,1989.

[Xiong 87] X. M. Xiong and E. S. Kuh, "Nutcracker: an efficient and intelligent channel

spacer," Proc. 24th ACM/IEEE Design Automation Conf, pages 298-304,1987.

[Xiong 88] X. M. Xiong and E. S. Kuh, "The constraint via minimization problem for PCB

and VLSI design," Proc. 25th ACM/IEEE Design Automation Conf, pages 573-578,

1988.

[Yao 88] X. Yao, M. Yamada and C.L. Liu, "A new approach to the pin assignment prob

lem," Proc. 25th ACM/IEEE Design Automation Conf, pages 566-572,1988.

[Yao 90] X. Yao and C.L. Liu, "Pin position assignment for movable pins in macro-cells,"

Int. Journal Computer-Aided VLSI Design, 1990.

156 BIBLIOGRAPHY

[Yonezawa 90] N. Yonezawa, N. Nishiguchi, A. Etani, F. Tsukuda, R. Hashishita, "A VLSI

floorplanner based on 'balloon' expansion," Proc. 1st European Design Automation

Conf, pages 257-262, 1990.

[Zimmerman 86] G. Zimmerman, "Top-down design of digital systems," E. Horbst, editor,

Advances in CAD for VLSI, Vol. 2, North-Holland, New York, pages 185-206,1986.

[Zimmerman 88] G. Zimmerman, "A new area and shape function estimation technique for

VLSI layouts," Proc. 25th ACM/IEEE Design Automation Conf, pages 60-65,1988.

	ERL-91-69 (1 of 2)
	ERL-91-69 (2 of 2)

