
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BTU - BERKELEY TOPOGRAPHY UTILITIES

FOR LINKING TOPOGRAPHY AND IMPURITY

DIFFUSION SIMULATIONS

by

Robert H. Wang

Memorandum No. UCB/ERL M91/71

27 August 1991

BTU - BERKELEY TOPOGRAPHY UTILITIES

FOR LINKING TOPOGRAPHY AND IMPURITY

DIFFUSION SIMULATIONS

by

Robert H. Wang

Memorandum No. UCB/ERL M91/71

27 August 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BTU - BERKELEY TOPOGRAPHY UTILITIES

FOR LINKING TOPOGRAPHY AND IMPURITY

DIFFUSION SIMULATIONS

by

Robert H. Wang

Memorandum No. UCB/ERL M91/71

27 August 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BTU - Berkeley Topography Utilities for Linking Topography and
Impurity Diffusion Simulations

Robert H. Wang

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

ABSTRACT

This report chronicles the development of BTU (Berkeley Topography
Utilities) for linking topography and impurity diffusion simulations. Currently
implemented on the data structures in the SIMPL-2 program, BTU solves the
problem of combining topography and mesh points by providing functions to
map topographies between strings generated by topography simulators such as
SAMPLE and polygons which can be decomposed into triangular meshes used
by impurity diffusion simulators such as SUPREM-IV. To facilitate the
integration of topography and impurity diffusion simulators, BTU also includes
functions which make a rectangular grid conform to topography, and convert
the topography and impurity concentrations between rectangular grid and tri
angular meshes. The procedural interface is high level in the sense that the
functionalities provided by BTU are independent of the underlying SIMPL-2
data structures and geometric algorithms. This allows TCAD developers to
add and maintain easily links to other simulators, and gives them the option to
reimplement BTU functions for robustness or efficiency as geometric modellers
and adaptive grid generators becomes widely available. SIMPL-2 interfaces to
SAMPLE and SUPREM-IV are used to demonstrate the procedural interface.
Results and run times from SIMPL-IPX simulations of epitaxy with buried
layers for submicron twin-well CMOS and BiCMOS processes and a 16-Mb
DRAM trench capacitor are presented to demonstrate the simulation capabilities
made possible by Unking SAMPLE and SUPREM-IV through BTU and meas
ure the performance of the current BTU implementation.

August 18,1991

In the memory of my father, Mr. Jan-I Wang, who influenced his children in ways he never

knew, provided them with opportunities he never had, and loved them in ways they could never

repay.

Acknowledgement

First, I would like to thank my research advisor, Professor Andrew R. Neureuther for his

support and encouragement throughout this project Without his vision, insight, and optimistic

enthusiasm, this projea would never have been realized. I would also like to thank Professor

W.G. Oldham for reviewing this report. Thanks also go to Professor R.W. Dutton at Stanford

and Professor MJE. Law at University of Florida for useful discussions on SUPREM-IV.

Collaborations with (in alphabetical order by last names) Goodwin Chin at Stanford and

Andrej Gabara on SUPREM-IV, Ed Scheckler on SAMPLE and SIMPL-IPX, and Alex Wong

on TCAD frameworks are gratefully acknowledged. More than just isolated efforts to finish

pieces ofan master's project, these experience have helped me grow as a researcher and a pro

grammer.

Personally, these past two years have been some of the more turbulent. I thank God for

pulling me through the hard times and blessing me with a wonderful support system full of

loving relatives and supportive friends. This report is dedicated to my mother.

The financial support from the Semiconductor Research Corporation, the California State

MICRO Program, IBM, and Motorola is gratefully acknowledged.

Table of Contents

1. Introduction 1

1.1. Motivation \

12. Integration of SAMPLE and SUPREM-IV in SIMPL-IPX 3

1.3. Organization 4

2. Background, Data Structures, and Algorithms 6

2.1. Background 6

2.2. DataStructures 7

2.3. Algorithms g

2.3.1. Write_Top 9

2.3.2. Stitch 9

2.3.3. GetJLayers 9

2.3.4. Stitch.Back 10

2.3.5. MC_Grid u

2.3.6. Mesh 12

2.3.7. Unmesh 13

3. Applications and Performance 14

3.1. Applications 14

3.1.1. Epitaxy with Buried Layers 14

3.1.2. 16-Mb DRAM Trench Process 16

3.2. Run Time Performance 17

4. Conclusions lg

4.1. Summary 1g

4.2. Recommendations for Future Work 18

List of Figures

Figure 1.1Topography and Impurity Diffusion Interaction

Figure 12 Impurity Diffusion Equation

Figure 13 SIMPL-IPX System Organization

Figure 1.4 Berkeley Topography Utilities

Figure 1.5a Topography Simulation Interface

Figure 1.5b Impurity Diffusion Simulation Interface

Figure 2.0 SIMPL-2 Data Structure

Figure 2.1 WriteJTop

Figure 22 Stitch

Figure 23 GetJLayers

Figure 2.4a StitchBack

Figure 2.4b Work_Out_Top

Figure 2.4c Findlntersect

Figure 2.4d TwoJD_Search_or_Insert2

Figure 2.4e ClipPoIygon

Figure 2.5a MC_Grid

Figure 2.5b Find_Grid_Intersect

Figure 2.5c Add_Grid

Figure 23d Remove Dense Grid

Figure 2.6 Mesh

Figure 3.1a Epitaxy with Buried Layers

Figure 3.1b SIMPL-DIX: BuriedN+ Layer Implant and Drive-In

Figure 3.1c SIMPL-DIX: Buried P Layer Implant

Figure 3.1d SUPREM-IV Mesh: Buried P Layer Implant

Figure 3.1e SIMPL-DIX: N Epitaxy

Figure 3.1f SUPREM-IV Mesh: Autodoping

Figure 3.1g SIMPL-DIX: Epitaxy with Buried Layers

Figure 3.2a 16-Mb DRAM Trench Process

Figure 3.2b SIMPL-DIX: Trench Lithography

Figure 3.2c SIMPL-DDC: Trench Etch

Figure 3.2d SAMPLE Strings: Trench Etch

Figure 3.2e SIMPL-DDC: Trench Implant

Figure 3.2f SUPREM-IV Mesh: Trench Implant & Diffusion

Figure 3.2g SIMPL-DDC: Trench Diffusion

Figure 3.2h SIMPL-DIX: Trench Capacitor

Figure 3.3a Run Time Performance: Epitaxy with Buried Layers

Figure 3.3b Run Time Performance: 16-Mb DRAM Trench Process

1. Introduction

1.1. Motivation

Device scaling into the submicron regime has resulted in complex device topographies

which strongly influence impurity profiles and device behavior. To characterize and optimize

modem integrated circuit (IQ devices, it is critical to be able to explore accurately and

efficiently topography tradeoffs in device design. One cost effective way to perform this task

is through integrated process and device simulation. Unfortunately, incorporating topography

simulation results into impurity diffusion and device simulations has remained a major obstacle

in the development of integrated process and device simulation systems. A key issue which

has not been systematically addressed is maintaining the consistency of topography and mesh

points at material interfaces.

Topography and mesh points are said to be consistent if they require little modification

when they are combined. Ideally, if one uses only data representations which allow efficient

implementations of both surface advancement algorithms and adaptive grid generation, such as

the octree representation used in Q [1], topography and mesh points would always be con

sistent However, typical topography simulators such as SAMPLE [2,3] and impurity diffusion

simulators such as SUPREM-IV [4,5] often use geometrically dissimilar data representations

such as strings and meshes. Furthermore, the user may wish to retain different levels of physi

cal details in topography and impurity diffusion simulations. Hence, maintaining the consisten

cy of topography and mesh points is a problem which must be addressed in linking most to

pography and impurity diffusion simulators.

The problem of maintaining topography and mesh point consistency is especially complex

for highly nonplanar structures in which high topography point density is required to represent

nonplanar surfaces. As Figure 1.1 illustrates, high topography point density adversely affects

the mesh represented using rectangular grids and triangular meshes common in impurity

diffusion simulators. In the case of a rectangular grid, combining topography points with the

grid requires many grid line additions and results in significant interpolations of impurity con

centration. For triangular meshes, there are two strategies for merging topography points into

the triangular mesh: merge with remesh and merge without remesh. Merging with remesh

results in significant interpolations of impurity concentrations, while merging without remesh

may create triangular elements with obtuse interior angles. Figure 1.2 shows why triangular

elements with obtuse interior angle are undesirable. As illustrated in Figure 1.2, the impurity

diffusion equation is solved numerically using The Divergence Theorem. An obtuse interior

angle causes error because it enlarges the area of integration used in the area integral and

changes the sign of the normal vectors used in the path integral.

This report chronicles the development of BTU (Berkeley Topography Utilities) for link

ing topography and impurity diffusion simulations. Currently implemented on the data struc

tures in the SIMPL-2 [6] program, BTU solves the problem of combining topography and

mesh points by providing functions to map topographies between strings generated by topogra

phy simulators such as SAMPLE and polygons which can be decomposed into triangular

meshes used by impurity diffusion simulators such as SUPREM-IV. To facilitate the integra

tion of topography and impurity diffusion simulators, BTU also includes functions which make

a rectangular grid conform to topography, and convert the topography and impurity concentra

tions between rectangular grid and triangular meshes. The procedural interface is high level in

the sense that the functionalities provided by BTU are independent of the underlying SIMPL-2

data structures and geometric algorithms. This allows TCAD developers to add and maintain

easily links to other simulators, and gives them the option to reimplement BTU functions for

robustness or efficiency as geometric modellers and adaptive grid generators becomes widely

available. SIMPL-2 interfaces to SAMPLE and SUPREM-IV are used to demonstrate the pro

cedural interface. Results and run times from SIMPL-IPX [7] simulations of epitaxy with

buried layers for submicron twin-well CMOS and BiCMOS processes and a 16-Mb DRAM

trench capacitor are presented to demonstrate the simulation capabilities made possible by link

ing SAMPLE and SUPREM-IV through BTU and measure the performance of the current

BTU implementation.

1.2. Integration of SAMPLE and SUPREM-IV in SIMPL-IPX

An important goal of this project is to make SIMPL-IPX a viable tool for investigating

topography tradeoffs in device design by linking SAMPLE and SUPREM-IV. Another goal is

to make the geometric functions developed in this effort reusable for integrating other simula

tors. To accomplish these goals, a high level procedural interface to access the geometric func

tions was defined and SIMPL-IPX was reorganized to prove out this interface.

Figure 1.3 shows the current organization of SIMPL-IPX. Prominently displayed in this

figure are BTU (Berkeley Topography Utilities) and the simulator interfaces. Figure 1.4 illus

trates major components of BTU. At the center of BTU is the geometric modeller which pro

vides functions to traverse and query the data structures. Presently, functions which manipu

late the SIMPL-2 polygon and grid data structure form the geometric modeller. One level

above the geometric modeller is the geometric toolkit which contains functions to perform

computations such as intersection finding and polygon clipping. BTU functions are implement

ed using a combination of geometric modeller and toolkit functions. Presently, there are seven

BTU functions defined in the procedural interface. These functions include Write_Top, Stitch,

GetJLayers, Stitch_Back, MC_Grid, Mesh, and Unmesh. Write_Top converts the top sur-

face of the structure into a string. Stitch adds a polygon composed of a deposit string and the

top surface. GetJLayers converts the stmcture into a set of strings ordered from top to bot

tom. Stitch_Back clips the structure against an etch string. MC.Grid adds grid lines to con

form the rectangular grid to the topography. Mesh generates a triangular mesh using a topog

raphy conforming rectangular grid. Unmesh maps impurity concentrations calculated a tri

angular mesh onto a rectangular grid.

The BTU procedural interface facilitates the linking of additional topography and impuri

ty diffusion simulators by separating geometrical data translation and modification from process

modeling. This concept is best illustrated by the SAMPLE and SUPREM-IV interfaces

currendy in SIMPL-IPX. As shown in Figure 1.5a, interfaces to topography simulators such as

SAMPLE can be constmcted using the Write.Top or Get_Layers utilities to create the input

strings, and the Stitch and Stitch.Back utilities to update the stmcture with the output strings.

Similarly, Figure 1.5b shows that interfaces to impurity diffusion simulators such as

SUPREM-IV can use the MC_Grid and/or Mesh utilities to create the input mesh, and the

Unmesh utility to map the impurity concentrations back onto the topography conforming rec

tangular grid. In both cases, the TCAD developer only need to generate model information

specific to his/her simulator and supply data converters between the simulator data format and

either SAMPLE strings or SUPREM-IV triangles.

13. Organization

The remainder of the report focuses on the implementation and applications of BTU.

Chapter 2 gives a historical account of the development of BTU and contains a detailed discus

sion of the current implementation. Chapter 3 presents results and run times from SIMPL-IPX

simulations of epitaxy with buried layers for submicron twin-well CMOS and BiCMOS

processes and a 16-Mb DRAM trench capacitor. Chapter 4 concludes the report with a sum

mary of the contributions of this project and recommendations for future work.

TOIP(Q)<©EAMEI¥ AN© flMIPHJEIIW

WBfBW TOKOKGlRAFIHlY MDHNTT MENSIIW s>

a), sncGMUFncANT ©mod inmntt ammtoms and
nNTOBIP©ILA'irH©N BK1MMRS (RlECVAMiNJlLAIR (BUD)

2), (QITOSIE VRIANGUS <HMAN<GIIJILAI& M1S1BI)

GRID POINTS

TOPOGRAPHY

POINTS

RECTANGULAR GRID

8 IPdDHNTTS ADDMB)

<D <Q)®TOSIE ANQLIES

Figure 1.1

TRIANGULAR MESH

3 IWMNTS AMEM)

3 dMBTOHB AN<GHJES

MMJMW MF1FIUSII(Q)N E(Q)IIJATOO)N

divJdA= J*n ds

dC| -Kr (QCv -(?Cy) dA D(grad C+j^un grad V) •nds

(QMUSB nNTTIEMdDE AM3ILIE

• ENLARGED AREA OF

INTETEGRATION

NEGATIVE NORMAL VECTORS

Figure 1.2

SPLAT

SIMPL-DIX

>

iHMiPL-iiip:

SIMPL

l
LAYOUT

(\
TOPOGRAPHY

' —~^

SAMPLE TEMPEST

^ J

I
BTU

^

(BERKELEY TOPOGRPHY UTILITIES)

PROCESS

A.

i(\
THERMAL

SUPREM

IV
CREEP

^ J

Figure 1.3

1ERKELEY TOPOGRAPHY UTILITIES
TOPOGRAPHY

SAMPLE TEMPEST

t
BERKELEY TOPOGRAPHY UTILITIES

WRITE

TOP

STITCH

GET

LAYERS

STITCH
BACK

GEOMETRIC TOOLKIT

FIND

INTERSECT

CLIP

POLYGON

GEOMETRIC MODELLER

POLYGON

ADD

GRID

GRID

REMOVE
DENSE

GRID

MC GRID

^

MESH

UNMESH

t
THERMAL

Figure 1.4
SUPREM

IV
CREEP

TOIP(0)(GEAIPIHnr SflMUJLATriKM

IIOTIMFACIE

Topography
Extraction

SAMPLE

Process Models

Topography
Update

c ^v

\ r

WRITETOP 1 GETLAYERS

<
LhhhJ

~>

f "^
\ '

STITCH 1 STITCHBACK

^^IM^^HM^HHV w >

Figure 1.5a

nMiproinnf mffujsiion

IIOTMFACI

Mesh

Generation

SUPREM-IV

Process Models

Mesh

Update

r ^
f -\ r

MC_GRID 1 MESH

^
^HHH^ ™^

Initial

Mesh & Impurity

s mm

"\
r-

SUPREM-IV

ION IMPLANT

SUPREM-IV

DIFFUSION

"*>
f

Figure 1.5b

SIMPL

POLYGON

+

GRID

W GRID J

2. Background, Data Structures, and Algorithms

2.1. Background

The origin of BTU can be traced back to the seminal work by Lee on the SIMPL-2 pro

gram. Lee introduced a polygon data structure for topography simulation and a rectangular

grid data structure for impurity diffusion and device simulations. The geometric functions

which he implemented to traverse and query these data structures lay the foundation for the

geometric modeller currently used by BTU. Lee also implemented the first BTU algorithms,

the Write_Top and Stitch utilities, as part of the interface for SAMPLE deposition.

The next milestone in the development of BTU algorithms was the implementation of the

Get_Layers utility by Scheckler for etching and parasitic extraction of VLSI interconnects [8].

To avoid the problem of clipping the structure against the etch string, Scheckler simulated

etching only on structures covered by blanket deposition and updated these structures by delet

ing the top polygon and adding the etch string to the structure using the Stitch utility. This

"strip and stitch" approach was also used later by Wang and Scheckler to update the structure

after lithography simulations [7].

The "strip and stitch" approach was, however, not adequate for simulating etching of

highly nonplanar structures such as the silicon trench. Furthermore, it was also recognized that

complete characterization of advanced IC device structures such as the silicon trench required

linking topography and impurity diffusion simulations. Thus, work began in Fall 1989 to ex

tend the SAMPLE interface for general topography simulation and construct a SUPREM-IV in

terface for ion implant and impurity diffusion simulations. By Spring 1990, collaborative

efforts between Wang at the University of California at Berkeley working on SIMPL-2 and

Chin at Stanford University working on SUPREM-IV resulted in SIMPL-IPX and successfully

demonstrated integrated topography and impurity diffusion simulations for a bipolar process

with self-aligned polysilicon emitter and polysilicon collector plug [7]. However, most of the

utility algorithms were embedded in the SAMPLE interface in SIMPL-2 and SUPREM-IV pro

cess modules and required rather circular operations to invoke. Consequently, the prototype

SIMPL-IPX lacked a clear structure to support modular growth of additional utility algorithms

or interfaces to other topography and impurity diffusion simulators.

The current definition and implementation of BTU came as the result of reorganizing

SIMPL-IPX to support modular growth. All BTU algorithms were either reimplemented or

developed during the reorganization. The Write_Top, Stitch, and Get_Layers utilities were

taken out of the SAMPLE interface and reimplemented as independent BTU functions. The

StitchJBack utility which formerly relied on a pseudo plasma etching module in SUPREM-IV

was redesigned to work with utilities which operate directly on the SIMPL-2 rectangular data

structure. A MC_Grid utility was created to make rectangular grids conform to topography.

Mesh and Unmesh utilities were created to transfer impurity concentrations between rectangu

lar grids and triangular meshes.

22. Data Structures

The current implementation of BTU algorithms uses the SIMPL-2 polygon and grid data

structures which are illustrated in Figure 2.0. The polygon data structure is composed of a

linked list of polygons, each containing a loop of vertices and a material name, and a network

of vertices. Each vertex in the network contains the coordinates of the vertex, pointers to ver

tices that follow it in the network, and the material names attached to the edges corresponding

to the vertex pointers. The material names attached to an edge is that of the polygon on the

8

right side of the edge. Common polygon data structure operation include Get_Left_Top,

Get_Right_Top, and Move. GetJLeftJTop finds the vertex which 1) is exposed to air, 2) is

on the simulation window boundary, and 3) has an "x" value equal to "xmin".

Get_Right_Top performs a similar task except it finds the vertex that has an "x" value equal

to "xmax". Move takes as input a vertex and a material name, and returns the vertex at the

end of the edge that corresponds to the material name.

The grid data structure is made up of two one-dimensional arrays which store the loca

tions of the vertical and horizontal grid lines, and a three dimensional array which stores the

impurity concentrations. The first index of the three dimensional array indicates the type of

impurity, while the second and third indices of the three dimensional array point to the coordi

nates of the grid point In the current version ofSIMPL-2, only boron and arsenic concentra

tions are supported. Operations to insert and delete grid lines and rows and columns of impur

ity concentrations are available. However, these operations are computationally expensive, i.e.

0(*2) where n is number of grid lines, because both the grid line and impurity concentrations
arrays are static.

23. Algorithms

There are currently seven functions defined in the BTU procedural interface: Write_Top,

Stitch, GetJLayers, Stitch_Back, MC.Grid, Mesh, and Unmesh. The sections below

describe the functionalities of the utilities and the algorithms used in the current implementa

tion.

2.3.1. WriteJTop

The Write_Top utility converts the top surface of the structure to a string. First,

WriteJTop calls the Get_Left_Top and Get_Right_Top utilities to get the left and right end

points of the top string. Then, starting at the left end point, all the vertices which are exposed

to air are traversed until the right end point is reached. Figure 2.1 lists the pseudocode and il

lustrates the WriteJTop utility algorithm. A more detailed description is given in [6].

2.3.2. Stitch

The Stitch utility calls the WriteJTop utility to get the top surface of the structure and

then adds a polygon composed of a deposit string and the top surface. The new polygon is

created by connecting the end points of the deposit string and the top surface. The pseudocode

and a pictorial description of the Stitch utility is given in Figure 2.2. A more detailed descrip

tion can also be found in [6].

2.3.3. Get_Layers

The Get_Layers utility converts the structure into a set of strings ordered from top to

bottom by successively deleting polygons and calling the WriteJTop utility. The most impor

tant component of the GetJLayers utility algorithm is the Find_Top_PoIygon function, which

determines if a polygon sits on top of all the other polygons in the structure. A detailed

description of the criteria used to determine the "top polygon" is in [8]. Figure 2.3 outlines

and illustrates the effects of the Get_Layers algorithm.

10

2.3.4. Stitch_Back

The Stitch_Back utility clips the structure against an etch string by finding and inserting

into the structure intersections between the polygons and the etch string, stitching together the

intersections and string points into a linked list of vertices, and clipping the polygons in the

structure using the etch string represented by the linked list of intersection and strings. Figure

2.4a gives the pseudocode which outlines the major steps in the Stitch_Back operation.

To ensure that CPU time is not wasted sifting through collinear or relatively collinear

points during the Stitch_Back operation, a geometric toolkit function, Work_Out_Top, is

usually invoked before StitchJBack to filter the etch string. As shown in Figure 2.4b,

Work_Out_Top throws out string points which join segments that are extremely short or have

equal slopes.

The task of rinding and inserting intersections is performed by the geometric toolkit func

tion Findjuitersect illustrated in Figure 2.4c. As shown in Figure 2.4c, Find_Intersect is a

brute force, 0(Nn) algorithm which compares N polygon segments against n string segments.

Intersections computed by Find_Intersect are inserted into the structure and sorted by their re

lative distances to string points for use in the stitching stage. In the current implementation of

StitchJBack, most of the CPU time is spent on Findjuitersect since it is an 0(Nn) operation.

By comparison, stitching the intersections and string points is an 0(n) operation and the

ClipJPoIygon algorithm is 0(N). However, by calling Work_Out_Top before Stitch_Back

with a tolerance of 1.0e-06, most etch strings can be reduced down to below 400 points, and

can be processed by StitchJBack in about 10 CPU seconds on an IBM RS/6000 Model 530.

The computation of intersections is actually done using the geometric modeller function

Two_D_Search_or_Insert2. Using a test which checks if a point lies counter-clockwise, col-

11

linear, or clockwise to a segment, Two_D_Search__or_Insert2 determines if an intersection

exists between a polygon segment and a string segment by testing if 1) the polygon vertices lie

on opposite sides of the string segment and 2) the string points lie on opposite sides of the po

lygon segment [9], Cases covered by this criterion are illustrated in Figure 2.4d. If an inter

section does exist, Two_D_Search_or_Insert2 calculates the coordinates of the intersection by

parametrizing the polygon and string line segments using the standard y = mx + b form and

solving the resultant system of line segment equations. The intersection is inserted into the

structure using the geometric modeller function Insert, which properly establishes connectivity

between the intersection and vertices originally in the structure.

The geometric toolkit function CIip_Polygon is used to cut polygons with an etch string

represented as a linked list of intersections and string points. For each polygon, Clip_Polygon

first determines if the polygon should be deleted, clipped, or kept in tact. For polygons which

are clipped, Clip_Polygon first identifies all the cuts into the polygon made by the etch string

and then traverse these cuts and some of the original polygon vertices to create one or more

polygons. Figure 2.4e illustrates how Clip_Polygon uses cuts to create new polygons. Experi

ence with Stitch_Back has shown the robustness of Stitch_Back depend heavily on the

robustness of Clip_Polygon. The current version of ClipJPolygon works well for cutting

structures such as lines and trenches and updating etchback away from material interfaces, but

is less successful at updating etchback close to material interfaces.

23.5. MC.Grid

MC_Grid, which is short for Make_Conform_Grid, defines the topography on the rec

tangular grid by rinding and inserting into the structure intersections between the polygons and

the grid lines, adding grid lines at all polygon vertices, and removing grid lines which are sur-

12

rounded by tiny grid spacings. MC_Grid is the utility responsible for combining polygon ver

tices and mesh points. Figure 2.5a gives a pseudocode listing which highlights the major steps

in MC_Grid and illustrates its effect on the rectangular grid data structure.

MC_Grid calls the geometric toolkit functions Find_x_Intersect and Find_z_Intersect

to find vertical and horizontal grid line intersections and insert these intersections into the

structure. As shown in Figure 2.5b, the functionalities of Find_x_Intersect and

Find_zJtotersect are similar to that of Find_Intersect, except in this case polygon segments

are compared against grid lines rather than string segments.

Once grid line intersections have been included the structure, the geometric toolkit func

tion Add_Grid, illustrated in 2.5c, is invoked to drop grid lines on every vertex in the struc

ture. In essence, this step maps the topography onto the rectangular grid.

Clearly, adding grid lines on every vertex in the structure introduces more mesh points

than what most impurity diffusion simulators can handle. For instance, a typical SAMPLE

string of 250 points roughly results in the addition of 250x250 or 62,500 mesh points which an

order of magnitude larger than the size limit of the SUPREM-IV mesh point table of 6000

mesh points. Hence, after Add_Grid, MC_Grid invokes the geometric toolkit function

Remove_Dense_Grid to sort all grid line pairs by their spacings and then remove grid lines

which are surrounded by tiny spacings. After the initial round of grid line removals, if the

number of mesh points still exceeds the mesh point table size, spacing tolerance is increased to

remove more grid lines. This process continues until the number of mesh points is less than

the size limit of the mesh point table.

2.3.6. Mesh

The Mesh utility generates a triangular mesh from a topography conforming rectangular

13

grid. The assumption that the topography is defined at grid points greatiy simplifies the algo

rithm since it implies that string segments would lie on the diagonals of the reaangular ele

ment. Figure 2.6 outlines the Mesh algorithm and illustrates its output

2.3.7. Unmesh

The Unmesh utility maps the impurity concentrations from a triangular mesh back to the

rectangular grid. The major limitation of Unmesh is that it assumes the topography does not

change during impurity diffusion. Consequendy, this means oxidation during impurity

diffusion is not currentiy supported by BTU.

D

a

t=
j

^^&

aoD
.

O<
v

t=
)

<
2

<
3y

NCN

N

X
I

SC
iX

s(W
D

WIOTIEJT»
Write the top surface

WriteJTop
{

/* Data Conversion */
Find "left top" vertex;
Find "right top" vertex;

vertex = "left top" vertex;
n_top = 0;
while (vertex != "right top" vertex) {

top[n_top] = vertex;
n_top++;
vertex = next vertex that contains air;

}
}

Figure 2.1

nnnrcm

Add deposit string to top surface

Stitch

{
/* Input Data Filter */
lop = Work_Out_Top;

/* Data Conversion */
bottom = WriteJTop;
Create polygon using top and
bottom layer;

InsertPolygon;
}

Figure 2.2

f }

\ /

-^iJiii^iWSlT"

TJL.
Convert polygons to strings

GetLayers
{

Save cross section;

/* Data Conversion */
nlayers = 0;
while (more polygons left) {

layers[n_layers] = WriteJTop;
n_layers++;
Find lftopff polygon;
Delete "top" polygon;

}

}

Restore cross section;

/* Output Data Filter */
Remove redundant layers;

Figure 2.3

Clip polygons against etch string

Stitch Back

{
/* Input Data Filter */
Set_EtchWin();

/* Data Conversion */

FSindHIintlGiraetEttOl

Mark_Polygon();

€l[p_IP((D%g(lDlIilC|p(IDll^
}

}

Figure 2.4a

;rar€iHjBA€K
WorkOutJTop

Filter collinear or dense string points

SI

(S1,S) and (S,S2) Have
Different Slope and are
Long
K(£©|f)S

SI

S2

(S1,S) and (S,S2) has
Same Slope
Met® S

Figure 2.4b

S1~*S
S2

(S1,S) and (S,S2) are
Very Short

.titcieijba€
Findlntersect

Find polygon and string intersections

Findlntersect

{
foreach (polygon segment) {

foreach (string segment i) {
/* Compute and insert intersection

into cross section */

/* Insert intersections into a
sorted link list of intersections */

InsertJEtch(IntList[i], VJnt,...);

}
}

}

© = INTERSECTIONS

Figure 2.4c

Different Slope
and Hnaters®<£fl

V2

Different Slope
and MdDfl Hinteirs^Efl

TITCIKIJBA€IK
Two_D_Search_or_Insert2

Find polygon and string segment intersections

• = VERTICES

O = STRING POINTS

© = INTERSECTIONS

Figure 2.4d

S10' - V2
Intersect is anVertex

SI

VI

O V2

Infinite Slope

Etch String

TSTOHHBAeiK

ClipPoIygon
Clip polygon against cuts

Begin Polygon #2

Figure 2.4e

CjGEfflD)
Make rectangular grid conform

to the topography
MC_Grid
{

/* Input Data Filter */
Save cross section;
Delete_Row();

/* Data Conversion */

IFoiiM^aJiiBft(fi[rs<£<£)lQ£

/* Data Conversion */

AflMJGirWOs

/* Output Data Filter */

IR©imiaD'is,(fiJID(giias<Bi=]R(iDw09
Restore cross section;

}

Figure 2.5a
NOTE: Curved SideWalls

Findzlntersect

{
foreach (polygon segment) {

foreach (horizontal gridline i) {
/* Compute and insert intersection

into cross section */

CJGEHID)
FindGridlntersect

Find polygon and grid line intersections
Findxlntersect

{
foreach (polygon segment) {

foreach (vertical gridline i) {
/* Compute and insert intersection

into cross section */

}
}

}

© = INTERSECTIONS

T^OD ID) Scfiaiircelh^aDir Hns^nrtt^fy 8naft9 **•);

}
}

}

Figure 2.5b NOTE: Curved Side Walls

CJGHRUB
AddGrid

Drop grid lines on vertices

Do Nothing;

KaDirkaDmtoD (GirM HA\m Hmtl®ir&mU(m (x$>a)
Add Vertical Grid Line at x;
Interpolate doping along x;

VcBirftBcetiD (GffM ILBna© loatonwcitlra fea
Add Horizontal Grid Line at z;
Interpolate doping along z;

Add Vertical Grid Line at x;
Interpolate doping along x;
Add Horizontal Grid Line at z;
Interpolate doping along z;

=VERTICES

INTERSECTIONS

Figure 2.5c Assume Curved Side Wall

CjBEffllD
RemoveDenseGrid

Delete grid lines surrounded by tiny spacings

RemoveDenseGrid

{
Sort each grid line pair by spacing;

Determine critical spacing such that after
removal: ngridlines < max_n_grid_line;

foreach (grid line i) {
if (grid line i is in two critical grid line pairs) {

Remove_GridJLine(i);
}

)
}

Figure 2.5d

Generate triangular mesh from
rectangular grid

Mesh

{
/* Input Data Filter:

Generate valid grid points */
Read cross section;
foreach (xz pair)

if ((x,z) is in cross section)
Write grid point;

/* Data Conversion:
Generate triangles */

foreach (rectangular element)
if (element is in bulk)

Write both triangles;
else if (element is at surface)

Write conforming triangle;
)

Figure 2.6

14

3. Applications and Run Time Performance

3.1. Applications

3.1.1. Epitaxy with Buried Layers

Simulation of epitaxy with a buried layer implant is a simple yet practical example for

verifying the links to SAMPLE and SUPREM-IV. Figure 3.1a lists the key steps in an epitaxy

process sequence with buried layer implants. Similar process sequences are used used in sub-

micron twin-well CMOS and BiCMOS processes [10]. Processing begins with a 580 A oxide

growth which is followed by an 800 A pad nitride deposition. A window is opened at the

center of the mask for an arsenic buried N+ layer implant of 1.0e+15 cm~2 and 80 keV. A

diffusion step of25 minutes and 1100 C is used to drive-in the buried N+ layer implant. The

oxide growth during the diffusion step is simulated analytically using SIMPL-2. Using the

field oxide as a mask, a boron buried P layer implant of 1.0e+15 cm~2 and 80 keV is intro

duced. After an Nepitaxial growth of 1.3 urn and 1.0e+15 cm'2, a diffusion step of5 minutes

and 1100 C is used to activate the buried P layer implant and simulate autodoping.

Figure 3.1b shows the cross section after the activation of buried N+ layer. Results from

the buried P layer implant are shown in Figure 3.1c while Figure 3.Id plots the corresponding

SUPREM-IV mesh. The cross sections before and after the autodoping simulation are shown

Figures 3.1e and 3.1g respectively. Figure 3.If shows the SUPREM-IV mesh tuned to simulate

autodoping. For epitaxy and film deposition, several horizontal grid lines must be added to the

grid generated by MC_Grid to capture doping transitions in the deposited material Meshes

generated by only BTU functions would be devoid of mesh points in the bulk of the deposited

15

material because Stitch does not place any polygon vertices along the edges of the deposited

polygon and MC_Grid places grid lines only on polygon vertices.

MPinTAXY wMk IBUEnKUD LAYEE

o N^ IBminEID) LAY« IIMIPILAOT

o N^ IBUJIRIMB) LAYEE MEWE

• FIELD OXIDE GROWTH

o IP MQMEB LAYEIOMIPLAOT

o EMTAMAL (BEOW1TM

o AHJTOBWIIN©

Figure 3.1a

Figure 3.1b
SIMPL-DIX: Buried N+ Layer Implant and Drive

Figure 3.1c
SIMPL-DIX: Buried P Layer Implant

G
O

™
M

M

C
rD

"*
u

>

«•
a

•a r "
J 3 "S
L HT S3

i •

£S|MPL-DIX 3.0 : UCrBerMey 07/31/91

Figure 3.1e
SIMPL-DIX: N Epitaxy

SI DPL0T/X11 tooM.1
Eli

i?

c

c
c

u

E

C

SUPREM-1V A.9030

0.S--

0.4—

0 .£—

0.8-

1-:

3 .2

3 .4-

\ .6-

3 ,e--

0.00 0.20 0 -40 0 .£0 0-S0
x in in lcrcns

1 .00 I .20 1 -40 * -E0

BBSSSSSSSSSRSS^S^^^^ SSSSSSSSu
!^nni»»»iT;===—*"*"-****'

Figure 3.1f
SUPREM-IV Mesh: Autodoping

****!****

Figure 3.1g
SIMPL-DIX: Epitaxy with Buried Layers

16

3.1.2. 16-Mb DRAM Trench Process

Trench process simulation is an excellent performance benchmark for BTU functions due

to the topographical complexity and the strong topography and impurity profile interaction in

herent in trench structures. Figure 3.2aoutlines the major steps of a 16-Mb DRAM trench pro

cess similar to the one described in [11]. First, several layers of materials are vertically depo

sited using SIMPL-2. These layers include an P epitaxial layer of 2 um and 1.0e+13 cm"2, and

a 5000 A oxide-nitride-oxide (O-N-O) sandwich. After resist spin-on, g-line lithography and

plasma etching are sequentially invoked to dig a trench approximately 1 um wide and 5 um

deep. An arsenic implant of 1.0e+12 cm'2 and 200 keV is performed on the trench followed

by a diffusion step of 7 minutes and 1000 C. Trench oxidation during the diffusion step is

simulated by a 150 A conformal oxide deposition. The trench capacitor is formed by filling

the trench with with 0.7 um of N+ polysilicon doped at 1.0e+20 cm'3.

Figures 3.2bc show the SIMPL cross sections after trench lithography and etching. The

SAMPLE etch strings used as input to the Stitch_Back utility are plotted in Figure 3.2d. Fig

ures 3.2e and 3.2g plot the SIMPL cross sections before and after activation of the arsenic

trench implant. The SUPREM-IV mesh used to simulate the implant and diffusion is shown in

Figure 3.2f. The complete trench capacitor is shown in Figure 3.2h.

M
M

b
IM

A
M

T
O

E
N

C
IE

I
I
P

M
C

E

•
E

P
IT

A
X

IA
L

G
R

O
W

T
H

•
D

IE
L

E
C

T
R

IC
D

E
P

O
S

IT
IO

N

o
»

IE
N

<
C

II
M

T
»

«
A

I
P

I
H

n
f

o
©

E
M

P
T

E
E

M
C

M
E

T
T

Q
H

I

o
T

O
E

N
€

IE
IU

M
IP

L
A

N
T

T
&

•
T

R
E

N
C

H
O

X
ID

A
T

IO
N

•
D

O
P

E
D

P
O

L
Y

F
IL

L F
ig

u
re

3
.2

a

Figure 3.2b
SIMPL-DIX: Trench Lithography

SIMI'I i)ix 3.0 : lie Itorkolcy oh/I i/m

m

EXF

MSKI

g^MSK2

[]air
Hntrd

RST

ERST

OXID

OXI1

OXI2

POLY

NTR

)EV ETC)EP IMP

SELECT COMMAND

i *. m. rf» #. •#> #. #tf *# #_ *. *- «
i * 4 '4 4 4 *4 *4 r4 % *t 4
** ****** ** *S *V *!•V» V* ** f.

.'', %%\': \':': \ %V
f *. K 4± V. V. V. v. V, V. V, V •
v. •>, V, **. *v Vi *•*,V, V. *• V. *,
. V U- r4-V V. V. fjL V v. V. V.'
>, V, *J. <*, •>, *>. *>, *#, *#, V *#, '#,
, % 7, >, V#y, V v V *>„ ', *,

:;;;;; ; i ; : i 1

^>>^*i>yf &{«{«{$&&

DIFF OXI REF

OPE

PRO

FILE

OPE

SUP

INP

SAV

PRO

Figure 3.2c
SIMPL-DIX: Trench Etch

EDIT

NP

N12

N13

N14

N15

N16

N17

N18

N19

P12

P13

P14

P15

P16

RET

Jbijti

i
pes

B

l—IU..1-1..

73

<
I

-13.7

-15.3

X-Y LINE PLOT

Figure 3.2d
SAMPLE Strings: Trench Etch

1.68

Figure 3.2e
SIMPL-DIX: Trench Implant

£l DPI01/X11 tool 1.1

>

SUPREM-IV A.9030

:MffofiS

0.00 0.23 0.40 0.S3 3.SB ! .00 1.20 1 ^0 1.£0

x in n]cr ^ns

Figure 3.2f
SUPREM-IV Mesh: Trench Implant & Diffusion

S
IM

P
L

-D
IX

3
.0

:
U

C
-C

e
rk

e
le

y
0

8
/1

1
/9

Y
/% 2

2
M

S
K

^M
S

K
2

A
IR

N
T

R
D

R
S

T

E
R

S
T

O
X

ID

O
X

I1

O
X

I2

gP
O

LY
H

n
tr

.

N
E

W

P
R

O
F

IL
Z

O
O

M
F

R
A

M
E

O
N

S
E

L
E

C
T

C
O

M
M

A
N

D

rt
"
5

"
V

i
V

i
V

r
*

W

''r
/'r

/'r
/'r

/'r
/'r

.'4
'.'

''
'''

'*'
'*•

W
'.

V
V

V
V

V
V

V
'

'.
V

V
V

V
V

V
W

'A
'«

'#
4

'/
v

'#
v

iV
'»

'*
'

D
E

F
IN

E

L
A

Y
E

R

D
O

P
IN

G

P
R

O
F

IL

i
i

t

S
H

O
W

D
O

P
A

N
T

i

F
O

R
C

E

O
R

IG
IN

X
:Y

F
ig

ur
e

3.
2g

S
IM

P
L

-D
IX

:
T

re
n

c
h

D
if

fu
si

o
n

N
P

N
1

2

N
1

3

N
1

4

N
1

5

N
I
6

N
1

7

N
1

8

N
1

9

P
1

2

P
I

3

P
1

4

P
1

5

P
1

6

R
E

T
U

R
N

A
B

O
R

T

^IJM.lt;«H.MIWCT!HITO.|:«IWi

||MSK2
•air

NTRD

Figure 3.2h
SIMPL-DIX: Trench Capacitor

17

32. Run Time Performance

The run times used to simulate the epitaxy process and the DRAM trench on an IBM

RS/6000 Model 530 were recorded and analyzed to identify the critical path in linking SAM

PLE and SUPREM-IV. For each simulation, the amount of CPU time used by BTU functions,

SAMPLE, and SUPREM-IV were computed and converted to percentages of the total run time

for comparisons. These data are summarized in Figures 3.3ab.

By tracing the changes in grid size over the course of each simulation and correlating

them with the run time data, one can conclude that for highly nonplanar structures, MC_Grid

becomes a bottleneck in linking SAMPLE and SUPREM-IV because of the large number of

grid line additions and deletions it performs on static arrays. For instance, in the simulation of

the DRAM trench, the nonplanar topography along the trench sidewalls caused the grid size to

fluctuate from approximately 70x70 to approximately 400x400 twice, and resulted in a run time

of 371.78 CPU seconds for MC_Grid. By comparison, in the simulation of the epitaxy pro

cess, the relatively planar topography caused MC_Grid to change the grid size gradually from

about 25x25 to about 150x150, which resulted in a run time of only 44.82 CPU seconds.

For relatively planar structures, most of the BTU run time is spent on reading and writing

simulation data from and to ASCII files since fewer grid line additions or deletions are per

formed. For example, in the simulation of the epitaxy process, bulk of the 103.55 CPU

seconds used by MC_Grid and Mesh must be devoted to file operations since very few grid

lines are added or deleted up to the final diffusion step. Consequendy, for relatively planar

structures, significant reduction in BTU run times could be achieved by storing simulation data

in a binary database.

EPITAXY with BURIED LAYERS

o TTOTAllMJN TTIIM1 m M9&29 s©ce

o IBTO Dtan TTfom<» a M&MB s©<£ (€M%)

• MC_Grid = 44.82 sec

• Mesh = 58.73 sec

o SAMIPLIE a 1L8D s®<e (QJLQft)

• Deposition = 1.80 sec

o otipmm-w a im%M s®® (mm%)

• Implant = 86.19 sec

• Diffusion = 1506.75 sec

Figure 3.3a

16-Mb DRAM Trench Process
o TOTTALTON nfflB a WSSSM s©(£

° 1BTO Km TaoDQ® a BMA3 s©(£ (4&3Q*)

• StitchJBack = 12.40 sec

• MC_Grid = 371.78 sec

• Mesh = 134.25 sec

o SAMIPLE a 153,86 s<s<£ <pl&J5%)

• Lithography = 4.48 sec

• Etching = 149.38 sec

o SHJIPIEEM=nV a SS3J7 s®<e (415.141%)

• Implant = 22.60 sec

• Diffusion = 553.27 sec

Figure 3.3b

18

4. Conclusions

4.1. Summary

The primary focus of this project hasbeen the development of a set of functions, BTU, to

address the topography and mesh point consistency problem which arises in the linking of to

pography and impurity diffusion simulations. In addition, a high level procedural interface for

accessing BTU functions has been denned to facilitate the extension and maintenance of simu

lator interfaces and give TCAD developers the option to improve the robustness and efficiency

of BTU functions by incorporating geometric modellers and adaptive grid generators. Simula

tions of epitaxy with buried layers for twin-well CMOS and BiCMOS processes and a 16-Mb

DRAM trench capacitor were used to verify the links to SAMPLE and SUPREM-IV. For

most structures, BTU string utilities such as Stitch_Back require on the order of 10 CPU

seconds on an IBM RS/6000 Model 530. The run time of BTU grid and mesh utilities such as

MC_Grid varies greatly with grid size, which depends directly on topographical complexity.

In particular, the MC_Grid utility has been identified as a bottleneck in linking SAMPLE and

SUPREM-IV for highly nonplanar structures such as the trench,

42. Recommendations for Future Work

First of all, the run time of the MC_Grid utility needs to be reduced. This can be ac

complished by modifying the MC_Grid algorithm and changing the rectangular grid data

structure. The MC_Grid algorithm should be modified to avoid adding grid lines which are

likely to be removed in the latter stages of the MC_Grid operation. The rectangular grid data

19

structure which MC.Grid is implemented on should be dynamic to reduce the computational
cost of grid line additions and removal.

Secondly, the Unmesh utility should be extended to handle oxidation during impurity
diffusion. The extension involves modifying Unmesh to incorporate oxidation induced topogra
phy changes into the polygon and rectangular grid data sttuctu.es. This will enable using BTU
id facilitate rigorous simulations of process sequences such as LOCOS and trench oxidation.

Hnally, the C!ip_Polvgon function used in the SlitcrUtack algorithm should be im
proved » handle more robusUy etch strings which are close to material interfaces. This will
improve the overall robustness of Stitch_Back for updating etchback.

References

[I] Conti, P., Hitschfeld, N., and Fichmer, W., "Q - An Octree-Based Mixed Hement Grid
Allocator for Adaptive 3D Device Simulation", NUPAD HI Technical Digest, pp. 25-26,
June 1990.

[2] Oldham, W.G., Nandgaonkar, S.N., Neureuther, A.R., and OToole, M., "A General
Simulator for VLSI Lithography and Etching Processes: Part I - Application to Projection
Lithography", IEEE Trans. Electron Devices, vol. ED-26, pp. 717-722, August 1979.

[3] Oldham, W.G., Neureuther, A.R., Sung, C, Reynolds, J.L., and Nandgaonkar, S.N., "A
General Simulator for VLSI Lithography and Etching Processes: Part II - Application to
Deposition and Etching", IEEE Trans. Electron Devices, vol ED-27, pp. 1455-1459,
August 1980.

[4] Law, M.E., Two Dimensional Numerical Simulation of Impurity Diffusion, Ph.D. thesis,
Stanford University, January 1988.

[5] Rafferty, C.S., Stress Effects in Silicon Oxidation - Simulation and Experiments, Ph.D.
thesis, Stanford University, December 1989.

[6] Lee, K., SIMPL-2 (SIMulated Profiles from Layout - Version 2), Ph.D. thesis, UC Berke
ley, July 1985.

[7] Scheckler, E.W., Wong, A.S., Wang, R.H., Chin, G.R., Camagna, J.R., Toh, K.K.H.,
Tadros, K.H., Ferguson, R.A., Neureuther, A.R., Dutton, R.W., "A Utility-Based
Integrated Process Simulation System", 1990 Symposium on VLSI Technology: Digest of
Technical Papers, pp. 97-98, June 1990.

[8] Scheckler, E.W., Extraction of Topography Dependent Electrical Characteristics from
Process Simulation using SIMPL, with Applications to Planarization andDense Intercon
nectTechnologies, MS report, UC Berkeley, December 1988.

[9] Sedgewick, R., Algorithms, 2nd Edition, Addison-Wesley Publishing Co., Reading, MA.
1988.

[10] Haken, R.A., Havemann, R.H., Eklund, R.H., and Hutter, L.N., "BiCMOS Process Tech-
. nology", BiCMOS Technology and Applications, Alvarez, A.R., Editor, Kluwer Academic

Publishers, Boston, MA, 1989.

[II] Bakeman, P., Bergendahl, A., Hakey, M., Horak, D., Luce, S., Pierson, B., "A High Per
formance 16-Mb DRAM Technology", 1990 Symposium on VLSI Technology: Digest of
Technical Papers, pp. 11-12, June 1990.

