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Novel Routing Schemes for IC Layout

by

Deborah C. Wang

Abstract

With the advent of multiple metal layers in chip design and multi-chip modules,

it is important to explore routing techniques which are not strictly Manhattan with H/V

(horizontal and vertical) layers. In this thesis, we present a number of new channel routing

algorithms. The methods depart from the traditional channel routing approach by con

sidering non-Manhattan wiring and the overlapping model. At first, only the problem of

two-layer routing with two-terminal nets is considered. The routing strategy is based on

parallel bubble sorting and river routing techniques. An important concept introduced is the

POTENTIAL function, which serves as a measure of the degree of difficulty of a particular

channel routing problem. Although the methods are initially derived for two-layer routing

with two-terminal nets only, extensions to multi-terminal nets and three-layer routing have

been made. Preliminary results indicate that, in many instances, our new algorithm outper

forms the traditional approaches. In addition, it requires many fewer vias than traditional

methods do.

The last chapter of this thesis presents an optimum scheme for interconnecting

the chip core and the I/O pads at the final stage of physical design. The pad placement

routine, based on linear assignment, determines the dimension of the pad ring and selects the

optimum position for each pad with the objective of minimizing the chip area and the total

wire length. The ring router is based on a channel routing algorithm which incorporates

additional features to address the special needs of the ring configuration. It attempts to

achieve 100% routing completion in a rectangular ring-shaped area with two interconnect

layers. The complete package has been implemented as part of the BEAR Layout System

for custom chip design.

Prof. Ernest S. Kuh

Committee Chairman
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Chapter 1

Introduction

Layout design of integrated circuit is usually divided into several stages:

placement, global routing, detailed routing, compaction and verification. The place

ment stage decides the optimal locations of logic blocks or modules on the chip. The

remaining chip area is used for interconnection. To reduce the complex routing prob

lem into smaller and more manageable subproblems, the routing space is divided into

regions. Global routing determines the rough topology of each net in terms of regions,

but does not specify its exact pattern. Detailed routing determines the final wiring

path for each net. In gate array, standard cell and macro cell design methodologies,

routing regions are referred to as channels. Channel routing, one of the most impor

tant and extensively studied detailed routing problems is the focus of this thesis.

Many breakthroughs [13, 5, 9, 4, 2, 1, 10, 6, 8, 11] in channel routing theory

and algorithms have been reported. The classical and well-studied model for channel

routing is the directional Manhattan routing model: one layer is used exclusively for

vertical wires , another is used for horizontal wires, and vias are introduced for each

layer change. The density of a channel gives a lower bound on the channel height.

However, routing in density is frequently difficult to achieve due to the complication

introduced by the vertical constraints. It is known that the restrictive routing problem

( when each net can occupy at most one track ) with cyclic vertical constraints does

not have a solution [3] and in general, the Manhattan problem in the presence of

vertical constraints is NP-complete [7, 12].



2 CHAPTER 1. INTRODUCTION

In Chapter 2 of this dissertation, we present a number of new channel rout

ing algorithms. The methods depart from the traditional channel routing approach

by considering non-Manhattan wiring and the overlapping model. With the advent

in multiple metal layers in chip design and multi-chip modules, it is important to

explore routing techniques which are not strictly Manhattan with H/V (horizontal

and vertical) layers. The routing strategy is based on parallel bubble sorting and river

routing techniques. An important concept introduced is the POTENTIAL function,

which serves as a measure of the degree of difficulty of a particular channel routing

problem. Since there is no need to deal with vertical constraints, we can always

achieve 100% routing completion. The routing solution produced by our router has

unambiguous layer assignment and is design-rule correct. It has been demonstrated

that the method can route channels with channel height less than the channel density.

In addition, it requires many fewer vias than traditional methods do.

In Chapter 3, we propose a new 3-layer channel routing scheme by exploit

ing the additional degrees of freedom offered by the 60° Steiner grid. The routing

strategy is based on the river routing technique. Wires on different layers are allowed

to overlap. We prove that the channel height, h, produced by our router satisfies

2d/5 < h < d, where d is the Manhattan density. Compared to the Manhattan

routers, our router has the following advantages: (1) It can always achieve 100%

routing completion since it does not need to deal with vertical constraints, vertical

constraints, (2) The wire length is expected to be shorter due to the use of 60° wires.

(3) A small number of vias is required because the routing solution contains a min

imal number of net crossings. In particular, at most one via per net is required for

routing two-terminal nets across a channel. (4) Due to the simplicity of the river

routing technique, it is very fast.

In Chapter 4, the final stage of detailed routing is considered. The core

module containing the ensembled logic is to be connected to the I/O pads. The

problem is to find an embedding of the I/O pads in a ring enclosing the core module

and to define precise conductor paths necessary to interconnect the terminals as

specified by the netlist. A 100% routing completion is required and, in addition,

the objective is to minimize the chip area and the total wire length. We developed



a complete package of pad placement and ring routing as part of the BEAR Layout

System for custom chip design. The pad placement routine based on linear assignment

minimizes the chip area and the total wire length. The ring router performs 100%

interconnection in two layers based on the left edge algorithm. Each net is routed

in the shortest path. The signal nets can be routed near density to yield a ring

of minimal thickness. Shrinkage/expansion of each side of the ring is independent.

A practical situation involving multiple power/ground nets and variable widths for

Power/Ground nets is considered. The computation complexity of the package is

0(iV2) -f 0{nlogn), where N is the number of pads and n is the number of terminals.

With optimized pad placement, we achieved 3% - 18% reduction in chip area and

17% - 31% reduction in total wire length.

In Chapter 5, we discuss important features which can still be enhanced in

the existing routers and future research for detailed routing. Multi-terminal nets,

L-shaped channel routing and multi-layer channel routing remain interesting as yet

unsolved problems.



Chapter 2

Two-Layer Channel Routing

Channel routing is one of the most important phases of physical design of

VLSI chips as well as some PC boards. Many channel routing theory and algorithms

[51, 19, 43, 12, 7, 3, 45, 26, 40, 47] have been reported. The traditional model for

channel routing is the directional Manhattan routing model: net terminals are located

on vertical grid lines, two wiring layers are available for interconnection - one layer

is used exclusively for vertical wires , another is used for horizontal wires, and vias

are introduced for each layer change. Multi-terminal nets are allowed. The density

of a channel gives a lower bound on the channel height. However, routing in density

is frequently difficult to achieve due to the complication introduced by the vertical

constraints. It is known that in general, the Manhattan routing problem in the

presence of vertical constraints is NP-complete [31, 49].

In this chapter, we propose new 2-layer channel routing methods which per

form well on practical channels and attempt to provide accurate and formal analysis

on the quality of the solutions. The approach was developed with an interest in the

intrinsic complexity of channel routing problems and their combinatorial structure.

Two new routing models, the mini-swap model and the overlap model are introduced.

Non-Manhattan geometry as well as rectilinear wires are used. The routing strategy

is based on parallel sorting and river routing techniques and is very different from the

Manhattan approach. In particular, vertical constraints no longer exist. Furthermore,

the solution produced by either model consists of a minimal set of net crossings which
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leads to a small number of vias. To characterize and to evaluate the performance of

each model, a function called POTENTIAL is used. Intuitively, the POTENTIAL

function measures the degree of difficulty for a given channel routing problem. Based

on the performance analysis, we attempt to combine the strength of both models

to form a new hybrid router. The routing solution produced by our router has un

ambiguous layer assignment and is design-rule correct. Finally, extensions to handle

multi-terminal nets will be discussed.

The remainder of this chapter is organized as follows. Section 2.1 contains

the problem definition. In Section 2.2, we present the algorithm and theory associated

with the mini-swap model for 2-terminal net routing. The overlap routing model is

introduced and analyzed in Section 2.3. Section 2.4 describes the new hybrid router

and its performance. Section 2.5 deals with the multiple-terminal problem and Section

2.6 contains concluding remarks.

2.1 The Problem

A channel is a pair of vectors of nonnegative integers - TOP and BOT - of

the same dimension ( Figure 2.1 ).

TOP = *(1), t(2), t(n)

BOT = 6(1), 6(2), 6(n)

We assume that these numbers are the labels of grid points located along

the top and bottom edge of a rectangle. Points having the same positive label have

to be interconnected, i.e. they define nets. A 100% routing completion is required

and the objective is to minimize the channel area and the number of vias. We first

consider a special case of the general channel routing problem.

Definition 1 A channel is dense ifft(i) ^ 0 and b(i) ^ 0 for all i, that is, every grid

point on the top and bottom boundaries is occupied by a terminal.

Definition 2 A non-trivial 2-terminal net is a net that has exactly two terminals,

one on the top and another on the bottom.
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TOP

spacing =1 \channel height

BOT

channel length

Figure 2.1: The channel routing problem.

Let {1,2, ....n} denote the set of nets. Then in a dense 2-terminal net chan

nel, TOP and BOT are permutations of {1,2, ....n}. Without loss of generality, we

may assume that nets are arbitrarily ordered on the bottom and are naturally ordered

on the top. This is stated as:

Definition 3 A dense 2-terminal net (D2TN) channel routing problem is specified

by:

TOP = 1, 2, 3, n

BOT = a permutation of { 1, 2, .... n }

We denote the top and bottom terminals of net i by («,<&•)•

2.2 The Mini-swap Model

The mini-swap model involves diagonal wires oriented in the +45° and -45°

angles as well as vertical wires. The routing strategy is based on parallel sorting

techniques [l]. To characterize the channel routing problem under this model, a

function called POTENTIAL, originally defined for the parallel bubble sorting [44],

is used. Intuitively, the POTENTIAL function measures the degree of difficulty for
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a given channel routing problem. We can mechanically evaluate the POTENTIAL

function to compute the exact channel height required to route the channel under

the mini-swap model without actually carrying out the routing steps. This feature

makes this model very attractive since knowing the required channel height in the

placement stage is valuable.

Furthermore, we prove the solution is optimal under the mini-swap model.

The routing solution produced by applying the parallel bubble sorting technique can

be unambiguously wired using two interconnect layers. Unlike other Non-Manhattan

routers [37] [36] [46] that magnify both column and track spacing by a factor of y/2

which implies the channel area is doubled, this router ensures that the solution is

design rule correct and does not magnify spacing in either direction.

The remainder of this section is organized as follow. In section 2.2.1, we

define the new mini-swap model. Section 2.2.2 describes the the routing strategy

based on the parallel bubble sorting technique. In section 2.2.3, the POTENTIAL

function and its theoretical background are introduced. The optimality theorem

based on the POTENTIAL function is established in section 2.2.4. A lower bound

for the POTENTIAL function is also given. We compare this routing strategy to the

classical Manhattan approach as well as to other non-Manhattan routers in section

2.2.5. Section 2.2.6 contains concluding remarks on the mini-swap model.

2.2.1 Definition of the Mini-Swap Model

The basic idea of the new model is to swap a pair of neighboring nets by

two wires, one in the +45° direction, another in the -45° direction ( Figure 2.2 ). We

call such a swap a "mini-swap".

Routing of a D2TN channel can be viewed as a vertical stack of steps. A

step is a unit-high horizontal strip in which a set of mini-swaps is performed. If a net

does not change position in a step, it simply propagates to the next track by a unit

vertical wire. An example is shown in Figure 2.3 .

A solution for the D2TN channel routing problem in this model can be

constructed in a bottom-to-top step-by-step fashion . The final channel height is
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Figure 2.2: A mini-swap.

Z

3 4

7
step 3

j step 2

step 1

Figure 2.3: In each step, a set of mini-swaps occure.

equal to the number of steps required. Clearly, a D2TN channel routing problem can

have many possible solutions under the mini-swapmodel. Figure2.4 shows 2 solutions

to an instance of a D2TN channel. To measure the performanceof a routing strategy,

we need to define the optimum solutions under the mini-swap model.

i x:
X X'"

x
x i 1

y 7
„__£__ /..

€. XL

Figure 2.4: Two realizations of the same channel.
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Definition 4 The optimal solution of a two-terminal net channel routing problem

under the mini-swap model is one that has

(a) the minimum channel height and

(b) the shortest total wire length

In search of the optimum solution, the router must determine which pairs

of nets to swap in each step so that the final solution is optimum. In the example

shown in figure 2.4 , mini-swaps were performed only on pairs of nets that were not

ordered. It may be possible that in search of the optimum solution we may want to

swap pairs that are already ordered. However, the possibility is ruled out by theorem

1 which states necessary optimality conditions. Before we prove the theorem, we need

the following definition.

Definition 5 A pair of nets is said to be "planar" if it is in the natural order on the

bottom. Otherwise, it is said to be "intersecting".

Theorem 1 A solution is optimal under the mini-swap model if it has the minimum

number of tracks and properties 1 and 2 hold:

(property 1) planarpairs do not intersect and

(property 2) intersecting pairs intersect only once

Proof: For the sake of contradiction, assume a solution 5, has the minimum number

of tracks and some planar nets intersect twice. Then there exists a new solution S' (

Figure 2.5 ), which has the same number of tracks and no intersecting planar nets.

Clearly 5' has shorter total wire length than 5, which implies that S is not

optimal.

The proof for property 2 is similar. •

In other words, a router never needs to swap a pair of nets that are already

in the natural order to obtain an optimum solution. This implies that the set of

mini-swaps that leads to the solution corresponds to a minimal set of net crossings.



10 CHAPTER 2. TWO-LAYER CHANNEL ROUTING

Solution S Solution S'

Figure 2.5: For proof of necessary optimality condition.

2.2.2 The Routing Strategy

The basic routing strategy is to construct a wiring path for each net in a

bottom-to-top step-by-step manner. In each step, the router selects a set of intersect

ing pairs to swap. Since decisions made in the earlier steps can affect choices in later

steps, choosing an appropriate set of mini-swaps to perform in each step is crucial to

the quality of the final solution.

We now describe a routing algorithm based on the parallel bubble sort [1].

In the first step, nets located at odd grid points are compared with the net on their

right. If the pair is an planar pair, the pair does not switch positions; otherwise,

a mini-swap is performed. The second step is identical to the first one, except this

time nets located at even grid points are compared with the net on their right. These

two steps are repeatedly performed in this order. The algorithm stops when for two

consecutive steps, no pairs of nets switch places. Once the algorithm terminates, the

nets are ordered in the natural order. The algorithm must terminate since each pair

of nets can switch places only once. Let us demonstrate the algorithm on the example

shown in Figure 2.6.

Layer assignment for the wiring path is trivial. Layer 1 is assigned to wires

oriented in the +45° angle; layer 2 is assigned to wires oriented in the -45° angle.

Vertical wires can be assigned to any layer since they do not cross any other wires.
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12 3 4 5

4 3 2 1

Figure 2.6: Routing by odd-even transposition.

spacing = 1

via

(a) An impossible situation (b) A via is placedat the center of a

vertical segment to endure d > 1.

Figure 2.7: Postions of vias.

11

Vias are introduced for layer changes between a +45° wire and -45° wire. Due to the

odd-even transposition procedure, the situation shown in Figure 2.7(a) could never

happen: the 4-45° wire of a net always connects to a -45° wire through a vertical

segment as shown in Figure 2.7(b). We place a via at the midpoint of the vertical

segment. This ensures that the wires satisfy the design rule so that there is no need

to magnify either the column spacing or the row spacing by \/2.

Formally, let us denote the permutation of nets on track t by:

At = (at(l),ae(2), at(n))
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Then, Aq = (a0(l),a0(2), a0(n)), where a0(i) = 6(i), for all i. We also assume

there is an infinite number of auxiliary nets, represented by a(-l)> a(0)> and

a(n-fl), a(n+2),...., where for all i < 0 and t > 0,at(i) = -oo and for all i > n and

t > 0, at(i) = -foo. These auxiliary nets do not disturb the routing of regular nets at

any time. For each track t > 0 and each integer i, the net, a*(i), at the ith grid point

at track t is given by:

if (i + t) is even , at(i) = mtn(a((_i)(t), a(*_i)(z + 1))

if (i + t) is odd , at(i) = max(a^t_i)(i —1), a(t_i)(i))

The dynamic behavior of this routing scheme is the same as that of the

parallel bubble sorter realized on a two-way infinite linear array. If, for every i,

at(i) < at(i + 1) , then At is said to be sorted. The computing time of the parallel

bubble system is the smallest t such that At is sorted.

2.2.3 The POTENTIAL function

Since the routing scheme is a direct adaptation of the parallel bubble sort, a

characterization of the bubble system can also be used to analyze the routing process.

In particular, we are interested in the computing time of a parallel bubble system

which corresponds to the required height of the D2TN channel routing problem.

A function called POTENTIAL, first introduced by [44], proved to be very useful

in evaluating the computing time of the bubble system. This section defines the

POTENTIAL function and reviews the theorem proved by [44]. Before we introduce

the POTENTIAL function, we need to define the following four terms.

Definition 6 For each (i,j,t), where 1 <i,j <n, and t>0, and the set of nets, S,

we define (Figure 2.8):

• ORDER(i,j,t,S) is the number of indices p € S such that i < p < j and at(i) <

at(p) , or such that j <p <i and at(p) < at(i)

• NOTORDER(i,j,t,S) is the number of indices p 6 S such that i < p < j and

a>t{p) < o>t{i) , or such that j <p < i and at(i) < at(p)
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1 1 0RDER(5, l,t) = 2

1 7 1 d S fi 7 TOP NOTORDER(5,l,t) = 2

MAXLT(5,t) = 2

t_n _• MAXGT(5,t) = l
l-° 5 6 12 4 7 3 BOTTOM

Figure 2.8: Illustration of ORDER, NOTORDER, MAXLT, MAXGT.

• MAXLT(i,t,S) = max(0 U { ORDER(i,p,t,S) - NOTORDER(i,p,t,S) + l\pe

5,p < i and at(i) < at(p) } )

• MAXGT(i,t,S) = max(0U { ORDER(i,p,t,S) - NOTORDER(i,p,t,S) + l\pe

5,z < p and at(p) < at(i) } )

We are now ready to define the POTENTIAL function.

Definition 7 For any position indexing i <n, and any t>0, the function POTEN

TIAL^) is defined as ( Figure 2.9 ):

• When NOTORDER(i,l,t,S) = 0,

POTENTIAL(i,t) = NOTORDER(i,n,t,S) + MAXGT(i,t,S)

• When NOTORDER(i,n,t,S) = 0,

POTENTIAL(i,t) = NOTORDER(i,l,t,S) + MAXLT(i,t,S)

• When NOTORDER(i,n,t,S) ^ 0 and NOTORDER(i,n,t,S) ^ 0,

POTENTIAL(i,t) = NOTORDER(i,l,t,S) + NOTORDER(i,n,t,S) +

max( 1, MAXLT(i,t,S), MAXGT(i,t,S) )

The POTENTIAL function for the entire bubble system is defined by:

POTENTIAL^) = max(POTENTIAL(i,t) | 1 < i < n )

Intuitively, NOTORDER(i, 1,<, S) is the number of nets to the left of net i

that are to be swapped with i. NOTORDER(i, JV, t, 5) is the number of nets to the

right of i that are to be swapped with i. MAXLT(i,t, S) is the maximum number of
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t = 0

1 3 T A s * 7 TOP

5 6 12 4 7 3 BOTTOM

POTENTIAL(i,t) =5443 5 14

The POTENTIAL function for the enure channel is

= POTENTIAL(t)

= max { POTENTIAL(U) I for all i}

= 5

Figure 2.9: Illustration of the POTENTIAL function.

steps it takes for i to swap with a net j > i which is to the left of i and MAXGT(i, £, 5)

is the maximum number of steps it takes for i to swap with a net j < i which is to

the righT of i. POTENTIAL(i, 0) is the number of steps required for i to rearch

its target postions. Therefore, the overvall POTENTIAL(O) is chosen to be the PO

TENTIAL value of the worst net. Note that when both NOTORDER(z,l,t,S) =

NOTORDER(z, n, t, 5) = 0, POTENTIAL^', r) = 0 from either (1) or (2). Hence the

function is well defined. From the above definition, it is clear that POTENTIAL^', t)

= 0 if and only if NOTORDER(i, 1,r, 5) = NOTORDER(z, n, t, S) = 0. An immedi

ate consequence of this fact is:

Fact 1 If POTENTIAL^) = 0, then At is sorted.

Fact 2 If POTENTIAL^', <) = 0, then POTENTIAL^, r) = 0 for all r X

We now state the main theorem proved by [44].

Theorem 2 Ift>\ and At is not sorted, then

POTENTIAL(t+1) = POTENTIAL^) - 1

Corollary 2.1 The computing time of the bubble system is POTENTIAL(O) or PO

TENTIAL(0)+l.
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The salient feature of the bubble system is that the POTENTIAL value

consistently decreases by 1 per step. In other words, when POTENTIAL(O) = &, the

required height of the D2TN channel is k or k + 1. The value of POTENTIAL(O) is

defined solely by the initial permutation Ao , without referring to the intermediate

configurations At for t > 0. The POTENTIAL function can be precisely evaluated to

compute the number of tracks require to route the D2TN channel without actually

carrying out the routing steps. Another feature is that the decision of whether to

swap a pair or not is local and does not depend on the locations of the rest of the

nets. This feature makes this algorithm attractive in a parallel mode of operation.

Also observe that the wiring path for each net is monotonic in the vertical direction.

2.2.4 The Main Theorem

The parallel bubble sort provides a simple routing strategy to produce a

solution in the mini-swap model. Given the initial value of the POTENTIAL function,

we saw the bubble scheme consistently decreases the POTENTIAL value by one

until the target value zero was reached. Do better algorithms exist for which the

POTENTIAL value decreases rapidly , say, by more than 1 per step ? For the

example shown in Figure 2.10, the first step of the parallel bubble algorithm would

switch the 2 pairs shown in (a). But as many as 6 pairs could have been switched (b).

In the following theorem, we prove a sufficient optimality condition for any algorithm

under the mini-swap model. See Appendix A and B for detailed proof.

Theorem 3 Potential value decreases at most by 1 per net per step under the mini-

swap model.

The following theorem gives a lower bound on the POTENTIAL function.

Theorem 4 For each net i, we define the displacement^) as the horizontal distance

between its two terminals. Then POTENTIAL(O) > max({displacement(i) | 1 < i: <
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1 1 X X Mill 1 1 | 1 1
5 6 8 1 9 3 2 15 4 10 14

(a)

17 11 12 ' J 16 13

1 1 X X 1 X 1 1 X X X
5 6 8 1 9 3 2 15 4 10 14 17 11 12 7 16 13

(b)

Figure 2.10: Choosing different pairs to swap in a step.

2.2.5 Results and Comparison

Routing results of two D2TN channels are shown in Figure 2.11 and 2.12.

Compared to the Manhattan routers, our router has the following advantages:

• There is no need to deal with vertical constraints.

• The required channel height, POTENTIAL(O), can be precisely computed.

• For D2TN channels that have a POTENTIAL(O) value less than the Manhattan

density, our router can out-perform any Manhattan routers.

• Extra columns outside the channel's span are never used.

• Wirelength is expected to be shorter due to the use of diagonal wires.

• Being a minimal crossing solution, the routing requires only a small number of

vias. We observed that most nets require zero or one via, whereas Manhattan

routing typically requires at least 2 vias per net.

• It is inherently suitable for parallel mode of operations.

• In standard cell design, it is very difficult to optimize the assignment of pins to

feedthroughs when the objective function is the density. In our environment,



2.2. THE MINI-SWAP MODEL

(a) Manhattan model

12 3 4 5 6 7

3 5 17 2 4 6

(b) Lodi's diagonal model
12 3 4 5 6 7

3 5 17 2 4 6

(d) Comparison

(c) mini-swap model

12 3 4 5 6 7

"v7—n7—x7

/ / x/N
( / /

3 5 17 2 4 6

^\ Man Lodi Mini
Swap

height 7 3 3

area 56 42 18

vias 20 4 0

wire
length 71 42 28

17

Figure 2.11: A channel is routed in three different models. Results are tabulated in

(d).

one would want to minimize the maximum displacement of a net. This can be

easily done by linear assignment.

In comparison with the diagonal model channel router proposed in [37], we

make the following observations. (1) The results produced by our router are design
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12 3456789 10 11 12 13 14 15 16 17

A/
7
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/

z ĵ
5 6 8 1 9 3 2 15 4 10 14 17 11 12 7 16 13

Figure 2.12: A channel with density = 7 is optimally routed by the mini-swaps.

rule correct while the diagonal router [37] violates design rules. In order to rectify

their violations, the spacing between terminals for [37] must be magnified by y/2.

This is not a realistic and practical design since pin assignment has been done prior

to the channel routing phase. (2) Suppose we do allow the pins to be reassigned in

order to make a fair comparison. The diagonal router [37] completes routing of a

D2TN channel in max({displacement(i) | 1 < il < n}) tracks which is smaller than

the height obtained by our router (see theorem 4). But due to the \fl factor for both

the column spacing and row spacing, the channel area produced by the diagonal

router [37]is twice the height. On the other hand, our channel area simply equals to

the height, POTENTIAL(O). Therefore, our router is better than [37] for channels

whose POTENTIAL values are less than twice the maximum displacement.

2.3 Concluding Remarks on the Mini-Swap Model

In section 2.2, we have proposed a new channel routing model, the "mini-

swap" model. The routing algorithm is based on the parallel bubble sorting technique.

A function named POTENTIAL, originally defined for characterizing the bubble sys

tem, can be evaluated to compute the precise number of tracks required to route the

channel. The function evaluation of POTENTIAL for a given channel can be obtained

without referring to the intermediate routing steps. We have established necessary
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and sufficient optimality conditions for routing under the "mini-swap" model. The

final routing solution has an unambiguous layerassignment and is design-rule correct.

Our results show that a class of dense twc>-tenmnal net channels can be routed in a

height less than the Manhattan density.

2.4 An Overlap Model

2.4.1 Introduction

The results of the previous section show the advantages of using the mini-

swap model for routing channels whose POTENTIAL value is less than or equal to the

Manhattan density. Using the mini-swap model to route channels with "long" nets

( nets spanning a number of columns which is larger than the Manhattan density),

however, leads to unsatisfactory results. How can we overcome this deficiency? Since

Theorem 3 confirmed that we could not reduce the required channel height by cleverly

selecting pairs to swap, the only alternative that may lead us to a better solution is

to relax the constraint of pair-wise transpositions. In other words, we shall allow

long nets to swap with more than one net at a time so that they may reach their

target positions more rapidly. In this section, we introduce an overlap model. The

routing algorithm is based on the river routing technique, in which, like the mini-

swap model, vertical constraints do not exist. To analyze the routing performance,

the POTENTIAL function again proves to be a useful tool in providing an upper

bound of the channel height. We also establish a lower bound of the channel height

that incorporates the relative ordering of the nets. For a class of channel routing

problems, this demonstrates that density is not a tight lower bound. Unlike other

overlap models [29, 42, 6] that used two or more vias per net, the routing solution

produced by our router can be wired using two interconnect layers so that at most one

via is required per net. Furthermore, all wires are monotonic in both the horizontal

and vertical directions.

This section is organized as follow. The routing algorithm based on river

routing is described in section 2.3.2. In section 2.3.3, we establish the lower bound
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and upper bound of the channel height by considering the permutation of the nets. In

particular, we prove the initial POTENTIAL value of the channel is an upper bound.

A refinement of the routing procedure is introduced in section 2.3.4. Conclusion

remarks on the overlap model are given in section 2.3.5.

2.4.2 Algorithm for the Overlap Model

The basic idea of the new scheme is to allow long nets to swap with more

than one net while maintaining the integrity of net crossings. To improve the results

of the mini-swap model, the long nets must be given a better chance in swapping with

other nets. At the same time, we want to keep the number of net crossings minimal

so that the number of vias will not increase.

The routing algorithm is based on the river routing technique. A dense 2-

terminal net channel routing problem is specified in Definition 3. A net is said to be a

rightnet if B(i) > i; otherwise, it is said to be a left net (Figure 2.13). The basic idea

of the overlap model is to divide the nets into two disjoint subsets: Si = { right nets

} and S2 = { left nets } and route each set independently. A top level description of

the algorithm is given below:

step 1) Nets are divided into two sets: SI = { right nets }; S2 = { left nets }

step 2) Sort Si in decreasing order of their top terminals. Route Si.

step 3) Sort S2 in decreasing order of their bottom terminals. Route S2.

The solution for the D2TN channel routing problem is constructed in a

bottom- to-top net-by-net fashion. Let us demonstrate the algorithm on the example

shown in Figure 2.14. The right nets are sorted and routed sequentially in a river

routing fashion. The procedure begins by constructing a rectilinear wiring path for

the first right net. The path begins at the bottom terminal and ends at the top

terminal. The wiring path for the second right net simply follows the path of the first

right net and ends at its top terminal. This process continues until all of the right



2.4. AN OVERLAP MODEL

left net

right net

qj

Figure 2.13: Definition of a right net and a left net.

12 3 4 5 6 7 8

In Li Li
iii"Hl-r
8 3 2 5 4 7 6 1

Sorted Right Nets = { 8,7, 5, 3 }

Sorted Left Nets = { 1,6,4, 2 }

Figure 2.14: Routing in the overlap model.
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nets are routed. All of the paths are monotonic in both the horizontal and vertical

directions. Step 3 is identical to step 2, except that this time the left nets are routed.

Layer assignment for the wiring paths is trivial. For the right (left) nets,

the vertical segment attached to their bottom (top) terminals is assigned layer 2(1)

while the remaining wire segments are assigned layer 1 (2). If a right ( left ) net,

», has NOTORDER(i,l,Q,S) = 0 ( NOTORDER(i,l,0,S) = 0), then i can be

routed on a single layer, see Figure 2.14 . A via is introduced for each layer change.

Clearly, the routing paths for a pair of planar nets do not intersect and intersecting

pairs intersect only once. This implies that the routing solution contains a minimal

set of net crossings.

2.4.3 Performance Analysis

We establish four results associated with the overlap model: lower- and

upper- bounds on channel height, wire length and number of vias. The lower- and

upper- bounds on the channel height are derived by considering the permutation of

nets. Suppose the D2TN channel routing problem is specified as a pair of vectors:

TOP = {1,2, ..., n } and BOT = { b(l), b(2), ... b(n) } . Let us define the term

NOTORDER and the function POTENTIAL as in Definition 6 and 7.

Theorem 5 The lower bound on the channel heightunder the arbitrary overlap model

is max{ NOTORDER(l,i,0,Sl) + NOTORDER(i,n,0,S2) | 1 < i < n }

Proof: At each column i, the number of horizontal tracks required on layer 1 is at

least NOTORDER(i,l,0,Sl). The number of horizontal tracks required on layer 2

is at least NOTORDER(i,n,0,S2). Since the layer 2 tracks must be stacked on top

of the layer 1 tracks, this implies the height of the channel at column i is at least

the sum of the two terms. The overall channel height is then the maximum over all

columns. •

The above lower bound is derived by considering the permutation of the nets.

It is not only a tighter bound than the Manhattan density, d, but also demonstrates
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Figure 2.15: A channel is routed in a height equal to the lower bound.

that d/(L —1) [34, 28] is not a universal lower bound under the unrestricted overlap

models, where L is the number of layers. The example in Figure 2.15 is routed by the

overlap router in a height equal to the lower bound, which is half of the Manhattan

density. We prove in the following theorem that, in contrast to the bubble system,

the POTENTIAL value will decrease by more than 1 per track (amortizedly) under

the overlap model.

Theorem 6 The upper bound on the channel height under the arbitrary overlap model

is

POTENTIALS) + 2.

Proof: The proof is established by amortized analysis. The total decrease of PO

TENTIAL value is average over the total number of tracks. A accounting method

guarantees the average performance of each net in the worst case. See Appendix C

for detailed proof. •

The essential implication of Theorem 3 and Theorem 6 is that when long

nets are present in a channel routing problem, the POTENTIAL value of the channel

is much larger than the density. This means that the overlap model works better

than the mini-swap model. On the other hand, if all nets are "short", i.e. the

POTENTIAL value of the channel is equal to or less than the density, the mini-

swap model is more attractive. In section 2.4 we shall introduce a hybrid router
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that combines the strengths of both models to handle all types of channel routing

problems.

The wiring path for each net is monotonic in both the horizontal and vertical

direction. There are no detours in the final solution. This is a direct consequence of

the routing algorithm and leads to the following fact.

Fact 3 In the routing solution produced by the rectilinear overlap router, the wire

length of net i is equal to displacement(i)+(finalchannelheight), where displacement^)

= horizontal distance between the terminals of net i.

There are a number of reasons that the number of vias should be kept small:

(1) In integrated circuit processing, the more vias you have on a chip the lower the

yield will be. (2) Every via has an associated resistance which affects the circuit

performance. (3) The size of the via is usually larger than the wire width. So more

vias means more routing space is needed. The overlap routing procedure has the

distinct advantage of generating a small number of vias for D2TN channel routing

problems. Given any D2TN channel routing problem, the overlap routing algorithm

introduces at most one via per net. Furthermore, the number of vias required can be

calculated by the following lemma.

Lemma 1 For any right (left) net i, ifNOTORDER(i,l,0,Sl) = 0 ( NOTORDER(i,n,0,S2)

= 0 ), then net i has no via in the final solution produced by the overlap router. Oth

erwise, net i has one via. The total number of vias can be precisely calculated by

evaluating

NOTORDER(i,l,0,Sl) or NOTORDER(i,n,0,S2) for all i.

Proof: If a right net i has NOTORDER(i, 1,0,51) = 0, then by construction, net

i does not require a via. Similarly, if a left net j has NOTORDER(j, iV,0,52) = 0,

net j needs no via. Hence, the total number of vias can evaluated by adding the

number of right and left nets that satisfy the above conditions. •
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Figure 2.16: Refinement of the overlap routing procedure.

2.4.4 Refinement of Routing Strategy

One weakness of the overlap routing method is its inefficiency in handling

a consecutive sequence of planar nets, as shown in Figure 2.16(a). A modification of

the routing procedure to improve routing results in such situations is proposed. The

basic idea is that instead of routing all right (left) nets in one step, we route the right

and left nets alternatingly until the nets are sorted. The remaining nets are planar

and can be optimally routed by the "layer per net" method [4, 35]. The "layer per

net" method states that, given two interconnect layers and a set of planar nets, {

1,2, ...M }, we assign the odd-numbered nets to layer 1 and the even-numbered nets

to layer 2, solve the two one-layer river routing problems that are thus formed to yield

the minimum width channel.

Refined Routing Algorithm for Rectilinear Overlap Model

step 1) Divide the nets into two sets: 51 = {right nets} and 52 = {left nets}

step 2) Sort right nets in decreasing orderof their top terminals: 51 = {rl, r2, r3,...}

step 3) Sort 52 in decreasing order of their bottom terminals: 52 = {/l, /2,/3,...}

step 4) Alternatingly route the right and left nets, ie. route in the order:

rl, /l, r2, /2, r3, /3, ... until the nets are sorted.

step 5) Route remaining planar nets by the "layer per net" model



26 CHAPTER 2. TWO-LAYER CHANNEL ROUTING

The example in Figure 2.16(a) is rerouted by the refined procedure to yield

a much better solution as shown in Figure 2.16(b).

2.4.5 Concluding Remarks on the Overlap Model

Compared to the Manhattan model, the overlap model has the following

advantages:

• There is no need to deal with vertical constraints

• For channels that have POTENTIAL(O) value less than the Manhattan density,

our model can out-perform any Manhattan routers

• Extra columns outside the channel's span are never used

• Because it is a minimal crossing solution, we expect only a small number of vias

to be required.

The overlap model is better than the mini-swap model in two respects: (1)

It yields a small channel area for channel with long nets. (2) Variable wire widths can

be incorporated easily. However, overlapping wires may increase crosstalk between

signals and unlike the mini-swap algorithm, the overlap algorithm is not suitable for

parallel operations.

2.5 The Hybrid Router

We combine the advantages of the overlap and the miniswap models to form

a new hybrid router. This router pre-routes long nets using the overlap algorithm so

that the amount of overlapping wire is limited. The remaining nets, ie. relatively

short nets, are routed by the miniswap algorithm. The user can specify the maximum

amount of overlap allowed.
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2.5.1 Algorithm

The basic idea is as follows: When the channel is routed solely by the min-

iswaps, we know the channel height is POTENTIAL(O). Suppose we pick some long

nets which would cause the mini-swap model to disgrace itself, and pre-route them

using the overlap strategy. If the resulting channel height is better than before, we

can choose more long nets and continue the process provided the maximum amount

of overlap is not exceeded. A top level description of the algorithm is given below:

For i <— 1 to n — 1 do

i) pre-route i longest nets by the overlap model

amount of overlap = i,

calculate current channel height, t(i),

t(i) = (tracks for pre-routes ) + ( POTENTIAL value of remaining channel

)

ii) compare height to last iteration:

if (t(i) < t(i —1)) and ( max overlap is not exceeded )

i = i + l

continue

else stop

After selecting a set of long nets, it is not essential to pre-route them to

their final positions. It suffices to pre-route them to intermediate positions with the

objective of minimizing the POTENTIAL value. Our aim is to simultaneously process

the long nets and to find an intermediate position for each net. Assignment of a net

to a position should be done in such a way that the POTENTIAL value of that net

is as small as possible. Using this criterion, many nets may compete for the same

position. To find a good assignment of nets to positions, we use a linear bottleneck

assignment approach. We build a complete bipartite graph: G(V,U,E), with two sets

of nodes. One set, V = P(i), i = lv..K , represents the nets; the other set, U =

1,2,...K, represents the positions. A" is the number of long nets. Edge (i, j) connects
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U

nets positions

Figure 2.17: Linear Assignment.
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Figure 2.18: A channel is routed in density by the hybrid router.

net node i to position node j. Edge (i, j) is labeled with cost c[i,j] indicating the the

POTENTIAL value of net i when it is assigned to position j. ( Fig. 2.17 ). Standard

methods may be used to solve this problem. An example routed by the hybrid router

is shown in Figure 2.18.
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2.5.2 Performance Analysis

Since the hybrid router is a combination of the mini-swap model and the

overlap model, it should perform at least as well as either model in the worst case.

Given a channel routing problem, if the algorithm terminates in the first ((n —l)th)

iteration, the solution has purely mini-swaps (overlaps). Therefore, the mini-swap

model and the overlap model can be considered special cases of the hybrid router.

We summarize the performance bounds of the hybrid router in the following theorem.

Theorem 7 Lower Bound on the channel height required by the hybrid router

= max{NOTORDER(i,l,0,Sl) + NOTORDER(i,l,n,S2) | 1 < i < n})

Upper Bound of channel height required by the hybrid router

= POTENTIAL(O) + 1.

Due to the pre-routing strategy, planar nets may intersect twice in the final

solution. For example, see net 15 and net 17 in Figure 2.18. Therefore, the number

of vias increases in general when the solution does not correspond to a set of minimal

net crossings.

2.5.3 Results

The hybrid router is implemented in the C language on a DEC3100 running

Ultrix Worksystem V2.1. Figure 2.19 shows the actural routing results of Ex4. Ex4

is a channel with 48 nets. We have attempted to run this example using other routers

available [45, 16, 22] but they either failed to complete routing or produced substan

tially worse results. Table 1 lists the channels tested with 100% routing completion

in all cases. Several D2TN channels are routed in a height less than the density.

2.6 Multi-terminal Nets Routing

To extend the routing algorithm to handle multi-terminal nets, we partition

eachmulti-terminal net into 2-terminal subnets ( Figure2.20 ) and classifyeach subnet
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Figure 2.19: Ex4 routed by the hybrid router.

» •

TOP

BOTTOM

Figure 2.20: Partition of a multi-terminal net into two-terminal subnets.

as a right net or a left net. A 2-terminal subnet with one terminal on TOP and the

other on BOTTOM is said to be a 2-sided subnet; otherwise, it said to be a 1-sided

subnet. The 2-sided subnets can be categorized as left or right easily. However, the

classification of 1-sided subnets is ambiguous and may affect the quality of solution.

Definition 8 Given I, a two-terminal 1-sided subnet:

• I is top-sided iff both terminals of I lie on TOP.

• I is bottom-sided iff both terminals of I lie on BOTTOM.

In the following lemmas, we show that not all 1-sided subnets can be clas

sified either way.

Lemma 2 Given a 1-sided subnet I,
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i j i

TOP

BOTTOM

Figure 2.21: For proof of lemma 2(i).

i) I is top-sided and I intersects a right net => I must be a left net.

ii) I is bottom-sided and I intersects a left net =^> / must be a right net.

Hi) I is top-sided and I intersects another top-sided subnet J => I and J can not both

be right nets.

iv) I is bottom-sided and I intersects another bottom-sided subnet J => I and J can

not both be left nets.

Proof:

i) Suppose for the sake of contradiction that net / is classified as a right net. Then

by the algorithm, net / must be routed before net J on layer 1 ( Figure 2.21 ).

This shortes the two wires.

ii) Suppose for the sake of contradiction that net I is classified as a left net. Then

by the algorithm, net 7" must be routed before net J on layer 2 ( Figure 2.22 ).

This shortes the two wires.

iii) Suppose for the sake of contradiction that both net J and net J are classified as

right nets. Then the algorithm would route both nets on layer 1 ( Figure 2.23

) and result in conflict.

iii) Suppose for the sake of contradiction that both net J and net J are classified as

left nets. Then the algorithm would route both nets on layer 2 ( Figure 2.24 )

and result in conflict.
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BOTTOM

I J I

Figure 2.22: For proof of lemma 2(ii).

I J I J

TOP

BOTTOM

Figure 2.23: For proof of lemma 2(iii).

TOP

BOTTOM

I J I J

Figure 2.24: For proof of lemma 2(iv).
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Figure 2.25: Example of multi-terminal net routing.
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Figure 2.25 shows an example of multi-terminal net routing. Most 1-sided

nets in practical examples are classified as above. The classification of the remaining

1-sided subnets is guided by local congestion analysis. The left subnets and right

subnets then are sorted independently by their terminal positions and routed in the

rivering routing fashion as discussed in the previous section. We observe that this

method for routing multi-terminal nets is straight-forward but not necessarily optimal.

Future work should investigate better strategy for handling multi-terminal nets.

In a channel routing problem, nets may exit the channel on either its left

end or its right end. Routing of these so-called side nets is done by the following

procedure (Figure 2.26 ):

The analysis and theorems introduced for the D2TN channel routing prob

lem in Section 2.3.3 can be generalized for the multi-terminal nets problem by replac

ing nets with subnets in the equations. Figure 2.27 shows that the Deutsch's difficult

channel is routed with 23 tracks and has 25% less vias than [12, 45].
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1 left net

2 right net

(i) find closest terminal to exit (ii) Assign side nets to SI or S2

it

1 3

(iii) Artificially extend the channel and add pseudo-terminals;
After routing completion, delete the extended section.

Figure 2.26: Routing side net.

2.7 Conclusion

This chapter departs from the traditional channel routing approach by con

sidering non-Manhattan wiring and the overlapping model. At first, only the problem

of two-layer routing with two-terminal nets is considered. Two new routing models,

the mini-swap model and the overlap model are introduced. The mini-swap approach

based on bubble sorting is especially attractive for problems with short nets, while

the river routing approach is more suitable for problems with long nets. A hybrid

method which combines the two is introduced. In the limiting case, the method yields

either the mini-swap approach or the river routing approach. The routing techniques

are very different from the Manhattan approach. In particular, vertical constraints no

longer exist. To characterize and to evaluate the performance of each model, a func

tion called POTENTIAL is used. Intuitively, the POTENTIAL function measures

the degree of difficulty for a given channel routing problem. The routing solution

produced by our router has unambiguous layer assignment and is design-rule correct.
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Finally, a straight-forward extension to handle multi-terminal nets and and side-nets

is proposed. It has been demonstrated that the method can route channels with

channel height less than the channel density. In addition, it requires many fewer vias

than traditional methods do.

Table 1. Experimental results for 2-layer channel routing

channel density final height rPTT

Exl 8 7 0.1

Ex2 7 8 0.1

Ex3 4 3 0.1

Ex4 18 22 0.1

Ex5 4 5 0.1

Ex6 8 5 0.1



Chapter 3

Three-Layer Channel Routing

Recent advance in the manufacturing technology has made multi-layer in

terconnect a reality. Therefore, it is important to design channel router to handle

multi-layer regions. This development is also meaningful for other technologies such

as multi-chip modules and hybrid packages. We shall focus on the 3-layer channel

routing problem in this chapter.

Most of the 3-layer routing algorithms [22, 16, 8,17, 21, 24] extend the layer

per direction paradigm of Manhattan routing : the top and bottom layers are used

for horizontal wires and the middle layer is used for vertical wires (HVH model). The

vertical constraints are the major performance- degrading factor under such model.

Other algorithms use knock-knee model [41] or overlapping wires [6, 5, 28]. For

example, the knock-knee router [41] routes any channel in height equal to the density

using 3 alyers. However, these methods may introduce excess vias.

In this chapter, we propose a new 3-layer channel routing algorithm using

60° wires. 60° wires not only provide more degrees of freedom for completing the

interconnections but also shorten interconnect length. The algorithm is implemented

in a router called Overture. Overture is designed to route two-terminal nets across a

channel, and will also be extended to handle multi-terminal nets. The routing strategy

is based on the river routing technique and is very different from the Manhattan

method. In particular, vertical constraints no longer exist. Furthermore, the solution

produced by Overture consists of a minimal set of net crossings which leads to a small

37
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Figure 3.1: The Steiner grid.

number of vias. These characteristics contribute to the effectiveness of Overture.

The remainder of this chapter is organized as follows. Section 3.1 describes

the Steiner (60°) wiring grid. The routing algorithm is given in Section 3.2. Section

3.3 contains performance analysis. Multi-terminal nets are introduced in Section 3.4.

Routing results are presented in Section 3.5. Concluding remarks and future work

are given in Section 3.6.

3.1 The Steiner Grid

The Steiner grid, first proposed by [13, 14], is composed of three types of

grid lines: the horizontal tracks, the right (+60°) tracks and the left (-60°) tracks

(Figure 3.1 ). In principle, three interconnect layers are required: one layer per

direction [14, 38]. In contrast to the layer-per-direction Steiner model, we allow wires

on different layers to overlap. The only restriction is that wires must He on the Steiner

grid, thereby imposing a uniform unit separation design rule. At each grid point, at

most one via is present. Figure 3.2 shows three sample nets routed on the Steiner

grid.

Let us now examine the design rules for the Steiner grid. If the terminals

on TOP or BOT axe separated by the contact-to-contact spacing, D, the distance

between parallel tracks is \fZDj2. If this is greater thanor equal to the pitch (line-to-

line spacing ), the spacing requirement is satisfied. Otherwise, the the spacing between
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3 2 1

Figure 3.2: Sample nets are routed on the Steiner grid.
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Figure 3.3: Label horizontal tracks.

terminals need to be enlarged. Since the contact-to-contact spacing is typically larger

than the pitch, it is highly likely that the spacing rule is satisfied without magnifying

the terminal spacing. We also note the spacing between grid points where vias are

located, remains design-rule correct.

3.2 Routing Algorithm

In order to align terminals on TOP and BOT on vertical lines, the channel

must have odd number of horizontal tracks. Let the horizontal tracks be labeled

by tw,tw-i, ...,t0, ...,t_w (Figure 3.3 ). Consider a D2TN channel routing problem

specified by Definition 3. Let us define the following terms.

Definition 9 Given a net i with terminals (i,qi),
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• i is a right net iffi > g,-.

• i is a left net iffi < g,.

We partition the nets into two disjoint subsets: R = { right nets } and L =

{ left nets } and route each set independently. The routing strategy is based on the

river routing techniques. It is an extension of the 2-layer channel router presented in

Chapter 3. A top level description of the algorithm is given below:

Top-Level Routing Algorithm

step 1) Nets are divided into two sets: R = { right nets }; L = { left nets }

step 2) Sort R in decreasing order of their top terminals. Route R.

step 3) Sort L in increasing order of their top terminals. Route L.

The solution for the D2TN channel is constructed in a bottom- to-top net-

by-net fashion. Let us demonstrate the algorithm on the example shown in Figure

3.4. The right nets are sorted and routed sequentially in a river routing fashion. The

procedure begins by constructing a wiring path on the Steiner grid for the first right

net. The path begins at its bottom terminal and ends at its top terminal (detail of

path finding will be given later). The wiring path for the second right net simply

follows the path of the first right net and ends at the top terminal. This process

continues until all right nets are routed. Step 3 is identical to step 2, except that this

time the left nets axe routed.

The layer assignment scheme is as follows. The first interconnect layer is

used for horizontal and right tracks; the third layer is used for horizontal and left

tracks. If a channel has more right nets than left nets, the middle interconnect layer

is used exclusively for the right (+60°) tracks. Otherwise, it is used for the left (-60°)

tracks.

To find the wiring path for each individual net on the Steiner grid, we classify

the nets according to the following definition.

Definition 10 Given a channel of height h = 2(w+l) and net i with terminals (i,qi),
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(a) Route sorted right nets: (b) Route sorted left nets:

R={ 11,10,9,8,7,6} L={1,2,3)

Figure 3.4: Example of 3-layer routing on the Steiner grid.

• i is a right long net iff i —qi > w + 1

• i is a right short net iff 0 < i —q, < w + 1

• i is a left long net iff qi —i > w + 1

• i is a left short net iff 0 < qi —i < w + 1

For channels with more right nets, the wiring paths for sample nets are

shown in Figure 3.5 . A short net with \i —g,| = h + 1 is also called a direct net. A

direct net is routed with a single segment on the right or left track and requires no

via. A short net bends on the horizontal track i —qi. A long net is routed with one

horizontal segment and two 60° segments. Direct nets are routed on a single layer

and do not require vias. Short and long nets change layer only once and require one

via per net. The layer assignment scheme in Figure 3.5 uses the second layer for right

tracks. On the other hand, if there are more left nets, ie. the second layer is used for

the left tracks, the wiring patterns and layer assignment scheme shown in Figure 3.6

axe suitable for this class of channel routing problems.

3.3 Performance Analysis

In this section, we establish four results associated with Overture: (1) lower

bound on the channelheight, (2) upper bound on the channelheight, (3) total number
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Wiring Method (I)

w
L

Right long nets

Left long nets

layer 1: horizontal and +60 degree wires for routing right long nets

layer 2: +60 degree wires

layer 3: horizontal and -60 degree wires for routing left long nets

Right short nets

\v\
\ * \

\
Left short nets

Figure 3.5: Wiring method (I) for the Steiner grid.

Wiring Method (II)

Right long nets

Left long nets

layer 1: horizontal and +60 degree wires for routing right long nets

layer 2: -60 degree wires

layer 3: horizontal and -60 degree wires for routing left long nets

Right short nets

I
Left short nets

Figure 3.6: Wiring method (II) for the Steiner grid.
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Figure 3.7: A channel is routed in the lower bound on the Steiner grid.

of vias, and (4) wire length. In particular, weprove the final channel height, h, satisfies

2d/5 <h<d.

For the 3-layer HVH Manhattan model, d/2 is an obvious lower bound on

the channel height, since as many as d/2 tracks are necessary on each horizontal layer

to complete routing. When overlap between wires is allowed, Hambrusch [28] showed

that the lower bound is also d/2 using 3 layers. We improve this lower bound to

2d/5 for the 3-layer 60° model, where d is the Manhattan density. In particular, the

example shown in Figure 3.7 is routed by Overture in a channel of height equal to

the lower bound.

Theorem 8 The lower bound on the channel height produced by Overture is 2d/S,

where d is the Manhattan density of the channel.

Proof: Given a channel routing problem and a channel of height h = 2w + 1, con

sider a vertical line L as shown in Figure 3.8 . The horizontal tracks are labeled as

tw,tw_\,...,io .>.,t-w. Suppose w is even. Then each of the w grid points located at

the intersection of L and the odd numbered tracks allows three distinct wires to pass

through. Similarly, each of the (w + 1) grid points located at the intersection of L

and the even numbered tracks allows two distinct wires to pass through. Hence the

total number of distinct wires cut by L is 3iu + 2(w + 1) = 5w + 2 > d. The channel

height, h = 2w + 1, is then > (2d —l)/5. The proof for even w is similar. •
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Figure 3.8: For proof of lower bound.

The final channel height, /&, is max{ h(i) | 1 < i: < 3 }, where h(i) denote

the number of tracks required in the ith interconnect layer. The values of h(i) depend

on the density of wires on layer i. Recall the Manhattan density is the maximum of

nets that are split by any vertical cut of the channel. We now introduce the notion

of the Steiner density by considering the number of nets split by any +60° or —60°

cut of the channel.

Definition 11 Given a channel of height h and a set of nets, S,

d(S,h,+60°) = the maximum number of nets in S split byany +60° cut of the channel

d(S,h,—60°) = the maximum number of nets in S split by any —60° cut of the channel

For a given /&, let i?/, i?s, L/, La denote the sets of right long nets, right

short nets, left long nets, and left short nets respectively. Since layer 1 contains only

right long nets and each such net intersects any —60° cut line once, the number of

tracks required on layer 1, /i(l), is the Steiner density, d(Ri, h, —60°). The number of

tracks required on layer 2 and 3, h(2) and h(3)y can be calculated similarly. This is

summarized in the following lemma.
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Lemma 3 Given a channel routing problem, assume wiring method I is used, the

channel height produced by Overture is h = max{ h(i) | 1 < i\ < 3 }, where

h(l) =d(Rhh, -60°)

h(2) = d(R8UL„h,-6Q°)

h(S) = d(Lt Ul,U RB, h, -60°)

To find the value of channel height and to construct the final solution, we

propose an iterative method. We start with h = 2d/5, the lower bound. Given

h, we can construct the sets i?/, ils, L/, La and calculate h(i) by Lemma 1. If

max{h(i)} > h, we repeat the procedure with h + 1. Otherwise, the algorithm

terminates and the final solution is found. This iteration procedure is summarized

below.

Overture Routing Procedure

initialize h = 2d/5

repeat

build i?/, R8i If/, La

calculate h(i) by Lemma 1

while ( h < max{h(i) | 1 < i < 3} )

construct wiring paths ( described in Section 4 )

To find the upper bound on the channel height, /i, and to compare it with

the Manhattan density, we analyze the worst case performance of Overture in the

following theorem.

Theorem 9 Overture can route any D2TN channel routing problem in at most d

tracks, where d is the Manhattan density of the channel.

Proof: Suppose a D2TN channel routing problem with Manhattan density d is routed

in a height h by Overture (Figure 3.9 ). Consider layer 1 and any —60° cut line L.

The number of tracks required on layer 1 is d(Rt,h, —60°) (Lemma 1).
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Figure 3.9: For the proof of upper bound.

i) number of grid points on L = h,

ii) each right net split by the vertical line v\ is also split by L. At most d/2 right

nets are split by v\.

iii) If allof the d/2 right nets split by v\ axe alsosplit by the vertical line V2, then there

can not be additional right nets in the interval I. Hence h = d(Ri, h, —60°) =

d/2.

iv) If not all of the d/2 right nets split by v\ span the interval J, i.e. say m right

nets have top terminals in J, then at most m additional right long nets can be

split by L. Since there are h/2 grid points on /, m < h/2. Hence in the worst

case d(Ri, h, —60°) = d/2 + m = d/2 + h/2 = number of grid points on L = h.

Hence h = d.

The proof for layer 2 and layer 3 is similar. •

This upper bound is rather pessimistic because it is the channel height of a

pathological case. Experimental results show that Overture performs well on practical
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channels.

The number of vias required by Overture is small because the solution con

sists of a minimal number of net crossings. In particular, at most one via is required

per net for any D2TN channel routing problem. The number of vias can be calculated

by the following Lemma.

Lemma 4 Given a D2TN channel routing problem specified by Definition 3. Let

R = right nets ; L = left nets. Given nets i, j and S, a set of nets, we define

NOTORDER(i,j,S) as the number of indices p £ S such that i < p < j and qp <

qi , or such that j < p < i and qi < qp. Then, for any non-direct right (left)

net i, if NOTORDER(i,l,R) = 0 ( NOTORDER(i,N,L) = 0 ), then net i has no

via in the final solution produced by Overture. Otherwise, net i has one via. The

total number of vias can be precisely calculated by evaluating NOTORDER(i,l,R) or

NOTORDER(i,N,L) for all i.

When wiring method I is used, ie. layer 2 is used for +60° tracks, the wiring

paths for the right nets axe monotonic in both the horizontal and vertical directions;

while the paths for the left nets are monotonic in the vertical direction only. The

wire length of each net can be calculated by the following lemma.

Lemma 5 The exact wire length of net i, L(i), is calculated by:

L(i) = span(i) -f h/2 if net i is a right net

L(i) = span(i) + h/2 + NOTORDER(i,N,L) if net i is a left net

where span(i) = \ i —b(i) \, h = final channel height

3.4 Multi-terminal Nets

To extend the routing algorithm to handle multi-terminal nets, we partition

each multi-terminal net into 2-terminal subnets and classify each subnet as a right net

or a left net. Every 2-terminal subnets are classified as a right net or a left net by the

same procedure presented in Section 2.5. The right subnets and left subnets axe then
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Figure 3.10: 3-Layer routing result of Ex4.

sorted independently by their terminal positions and routed in the rivering routing

fashion. We observe that this method for routing multi-terminal nets is straight

forward but not necessarily optimal. Future work should investigate better strategy

for handling multi-terminal nets.

The analysis and theorems introduced for the 2-terminal nets in Section 3.3

can be generalized for the multi-terminal nets problem by replacing nets with subnets

in the equations.

3.5 Results

Overture is implemented in the C language on a DEC3100 running Ultrix

Worksystem V2.1. Figure 3.10 shows the routing result of a channel with 48 nets. We

have attempted to run this example using other routers available[chameleon,trigger]

but they produced substantially worse results. Figure 3.11 shows the difficult channel

routed in 13 tracks and 181 vias. Table 1 lists the channels tested with 100% routing

completion in all cases. Note that (Ch) in Table 1 denotes the router Chameleon

developed by [22].
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Table 1. Experimental results for 3-layerchannel routing

Ex density
Height Vias CPU

Ch Ours Ch Ours Ch Ours

1 7 8 5 34 5 1.3 0.1

2 8 5 3 20 2 0.1 0.1

3 8 13 5 25 0 2.4 0.1

4 18 26 11 111 39 57.0 0.3

Diff 19 11 13 312 181 2.6 1.1

** Ch = Chameleon
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Figure 3.11: 3-Layer routing result of the difficult channel.
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3.6 Conclusion

In this chapter, we have proposed a new 3-layer channel routing scheme by

exploiting the additional degrees of freedom offered by the 60° Steiner grid. The

routing strategy is based on the river routing technique. Wires on different layers

are allowed to overlap. The routing solution produced by Overture has unambiguous

layer assignment and is design-rule correct. We prove that the channel height, h,
produced by Overture satisfies 2d/b < h < d, where d is the Manhattan density.

Compared to the Manhattan routers, Overture has the following advantages: (1) It

does not need to deal with vertical constraints, (2) The wire length is expected to be

shorter due to the use of 60° wires. (3) A small number of vias is required because

the routing solution contains a minimal number of net crossings. In particular, at

most one via per net is required for routing two-terminal nets across a channel. (4)

Due to the simplicity of the river routing technique, it is very fast. The method has

been extended to handle multi-terminal nets.



Chapter 4

Pad Placement and Ring Routing

This chapter presents an optimum scheme for interconnecting the chip core

and the I/O pads in the final stage of physical design. The pad placement routine,

based on linear assignment, determines the dimension of the pad ring and selects

the optimum position for each pad with the objective of minimizing the chip area

and the total wire length. The router is based on a channel routing algorithm which

incorporates additional features to address the special needs of the ring configuration.

It attempts to achieve 100%routing completion in a rectangular ring-shaped area with

two interconnect layers. The complete package has been implemented as part of the

BEAR Layout System for custom chip design.

4.1 Introduction

In the final stage of the layout design, the central core module containing

the assembled logic is to be connected to a set of I/O pads. The problem is to find an

embedding of the I/O pads in a ring enclosing the core module and to define precise

conductor paths necessary to interconnect the terminals as specified by the netlist.

A 100% routing completion is required and, in addition, the objective is to minimize

the chip area and the total wire length.

In this paper, we assume that I/O pads are to form a rectangular ring, called

the outer core, encircling the central core module. The interconnection is to take place

51



52 CHAPTER 4. PAD PLACEMENT AND RING ROUTING

in the doughnut-shaped area between the inner core module and the outer core using

two interconnect layers. We partition the process into the two steps: pad placement

and ring routing.

The two main tasks of the placement step are to determine the dimension of

the outer core and to select the best possible position on the outer core for each pad.

The question to be answered by placement is : How should the pads be optimally

assigned to positions on the outer core. The height and width of the outer core may

be flexible. We propose an analytic solution for determining the dimension of the

outer core and a pad placement scheme based on linear assignment or network flow

optimization.

After placement, the router connects the terminals on the central core mod

ule and the pads according to the net specification and design rules. Several routing

schemes have been proposed with varying degrees of success [2] [39] [23]. Baker and

Pinter [2] required the terminals on the pads and core module to have the same cyclic

order so that wires could be river routed in one layer. Smith et al. [23] proposed the

concentric and radial wiring model without presenting a complete solution. McGehee

[39] used the vertical constraint graph to route the ring. The router presented in this

paper is based on an optimal channel routing algorithm which incorporates additional

features addressing the special needs of the ring configuration.

):

Throughout the the paper we will use the following terminology ( Figure 4.1

terminal a point on the boundary of the core module or
a point on one side of the pad where interconnection must be made

net a set of terminals to be connected

core module the central block containing the assembled logic of the circuit
inner core the smallest rectangle enclosing the core module
pad rectangular I/O blocks
pad ring a ring of pads
outer core the rectangle along which the pad ring is formed
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Figure 4.1: Terminology for pad ring.
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Figure 4.2: Dimensions of outer and inner cores.

4.2 Pad Placement

The goal of the placement step is to assign the best possible position on the

outer core to each pad and to determine the dimensions of the outer core. Section

(4.2.1) describes an analytic approach to finding the optimum dimension of the outer

core. Section (4.2.2) describes the assignment of pads along the outer core.

4.2.1 Optimum Dimension of Outer Core

The dimension of the outer core is represented by two variables x and y,

where x (y) represents the number of pad spaces available on one side of the outer

core in the horizontal (vertical) direction ( Fig. 4.2 ). The first step in the pad

placement routine is to determine optimum values for x and y with the objective of

minimizing the chip area.
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Figure 4.3: Plot of chip area as a function of x.

Suppose we are given 2N I/O pads of equal width and an inner core with

dimensions a and 6, where a (b) represents the number of pad spaces on one side of

the inner core in the horizontal (vertical) direction ( Figure 4.2 ). Without loss of

generality, assume a > b else rotate the central core by 90 degrees.

A chip is said to be core bound if a + b >= iV, that is, there are more pad

spaces than pads. Otherwise, it is said to be pad bound. In a core bound chip, the

chip area is dominated by the inner core , and minimizing area requires minimizing

the routing area in the ring. On the other hand, for a pad bound chip, we have N =

x + 2/, and the area of the chip can be represented as

x(N-x) iia<=x<=N-b

Chip Area = xy = a(N - x) if x <= a

b(N -y) iix>=N-b

The corresponding plot of the area against x is shown in Figure 4.3.

The theoretical minimum is obtained when x = (N - b) and y = N - x = b.

However, this corresponds to the configuration shown in Figure 4.4, where there is no

routing space either on top or on bottom. This is clearly unrealistic. Hence the next

best solution according to the plot above is to increment or to decrement x by one.
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Outer Core

Inner Core y = b

x = N-b

Figure 4.4: Theoretical minimum chip configuration.

Outer Core

Inner Core y = b+l

—— x = N-b-l

Figure 4.5: Final Chip configuration.
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Since to increment x by one does not increase the routing space, the final solution

is to decrement x, that is, x = (N - b - 1) pads are placed on top/bottom sides and

y = (6 + 1) pads are placed on left/right sides ( Figure 4.5 ). We have derived an

analytic solution of the outer core dimension problem for a pad bound chip in which

the minimum chip area is achieved.

Additional flexibility has also been incorporated into this procedure. For

instance, the user may specify the dimension of the outer core to be one of the

following three cases:

1. fixed

2. within specified aspect ratios

3. automatically determined by the placement routine

When case 2 or 3 is chosen, the outer core dimension is calculated. If ratio

of the resulting x and y exceeds the specified aspect ratio, simply move along the

curve in the plot until the desired aspect ratio is obtained.

4.2.2 Assignment of Pads to Positions Along The Outer

Core

This section addresses the question of how to assign pads to positions along

the outer core with the objective of minimizing the total wire length. Our aim is to

simultaneously process the nets and to find an embedding ( in terms of pad spaces

along the outer core ) for each pad.

Assignment of a pad to a position on the outer core should be done in such

a way that the increase of wire length of that net is as small as possible. Using this

criterion, many pads may compete for the same position. To find a good assignment

of pads to positions, we use a Unear assignment approach. We build a complete

bipartite graph: G(V,U,E), with two sets of nodes. One set, V = P(i), i = l,...i\T

, represents the pads; the other set, U = 1,2,...N, represents the positions on the

outer core. Nis the total number of pads to be placed. Edge (i, j) connects pad node
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V U

....COStfi.j]
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Figure 4.6: Bipartite graph G(V, U,E) for pad placement.

i to position node j. Edge (i, j) is labeled with cost c[i,j] indicating the cost ( to be

discussed in the next section ) of assigning pad i to position j ( Figure 4.6 ). Standard

methods [9, 20, 50, 27] may be used to solve this problem.

4.2.3 Cost Function

Choosing an appropriate cost function is crucial to the linear assignment

approach. Values of the cost function are stored in an NxN matrix which specifies

the cost of assigning pad i (i = 1,...,N) to position j (j=l,...,N). Let P(i) denote the

ith. pad and Net(i) denote the net that has a terminal on pad P(i). If a net has

more than one pads, say P(i), P(j) and P(k), then Net(i) = Net(j) = Net(k). In our

implementation, the cost c[i,j\ reflects the increase in the wire length of net Net(i)

when P(i) is assigned to position j. For each pad P(i) to be placed, we compute

and store the shortest path for the net Net(i). This is achieved by drawing a path

completely around the inner core and deleting the section with the larger rectilinear

distance between two adjacent terminals of Net(z') (Figure 4.7 ). Now unroll the ring

and let the interval (u,v) be the projection of the shorter path on the outer core. To

all positions inside this interval, we assign cost zero. To positions outside this range,
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outer core u

tl, t2, t3 are terminals of Net(i)

Figure 4.7: Shortest path of a net.

cost

outer core

VJ\±J\MVJ
inner core tl t2t3

Figure 4.8: Cost funtion.
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cost values increase linearly with the distance from the interval (u,v) (Figure 4.8 ).

The slope of this cost function outside (u,v) may not be the same for all nets.

The cost function of more critical nets have higher slopes, giving them an advantage

in competing with less critical nets.

For simplicity, we have presented a cost function which allows only a single

terminal per pad. It can be extended to handle multi-terminal pads. Suppose a pad

has k terminals, tl, t2, ...., tk. Each terminal ti is a part of net Net(z). The cost
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function for this pad then contains k additive terms, with the ith term describing the

increase of wire length for net Net(i).

The pad assignment routine is flexible in many ways. For instance, it allows

users to preplace some of the pads' positions. When a pad is preplaced, the nodes

corresponding to the preplaced pad and the associated incident edges are deleted from

the bipartite graph. In another example, the user may specify, for each pad P(i), a

subset of positions, jl, j2,..., jk as undesirable. A very large cost can be assigned to

the edges (i, jl),... (i, jk) to prevent placing this pad at these positions.

4,3 Ring Routing

Upon completion of pad placement, the ring router interconnects terminals

on the inner core to the pads according to the netlist. Section (4.3.1) describes the

main difficulties associated with the ring routing problem. A solution based on an

optimum channel routing scheme is proposed in section (4.3.2). Further refinement

of the routing result is outlined in section (4.3.3), followed by a discussion of future

directions.

4.3.1 Routing Problem Description

The central core module is a rectilinear polygon defined by 4 boundaries:

top, bottom, left and right. The top and bottom boundaries are monotonic in the

x-direction; the left and right boundaries are monotonic in the y-direction. The

terminals of the module are located on the horizontal segments of the top and bottom

boundaries and on the vertical segments of the left and right boundaries.

The ring routing problem is analogous to the channel routing problem. The

ring routing problem is a channel bent into a ring so that the horizontal tracks become

concentric and the vertical columns become radial. One interconnect layer is used for

concentric wires. The other layer is used for radial wires [39, 23]. The radial columns

are horizontal and vertical lines drawn through the terminals with the exception of the

four corners of the ring (Figure 4.9 ). The thickness of this ring must be determined
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Figure 4.9: Concentric tracks and radial column.

Al

A2

Figure 4.10: There is only one way to route net A in a channel.

by the router: that is we are allowed to add or delete concentric tracks to the ring

by moving the four sides of the pad ring. The objective is to minimize the number of

tracks in the ring.

One difference between the channel and the ring is that the channel has

two open ends whereas the ring is a closed loop. In a straight channel, there is only

one direction to route a net (Figure 4.10 ). But a two-terminal net in a ring can be

routed in two ways (Figure 4.11 ). Under the restrictive routing model proposed by

Burstein [11], where the number of concentric tracks for each net is limited to one,

an n-terminal net can be routed in n ways.
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Figure 4.11: There are two ways to route net A in a ring.
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Figure 4.12: Channel produced by unrolling the ring.

Another difference is that the ring has corners. The four corners of the ring

impose a key restriction when adapting channel routing algorithms to a ring router.

If we cut the ring along a line drawn between the top-left corner of the pad frame

and the top-left corner of the module and unroll the ring, the channel we obtain is

shown in Figure 4.12 .
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Figure 4.14: Vertical constraints between net A and net B.
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The shaded regions represent empty space: they do not correspond to avail

able space within the ring. So if we were to route a corner pad terminal to a track

by a vertical column that intersected such non-existing regions, the net could conflict

with other nets passing through the corner (Figure 4.13 ).

The third problem associated with the ring relates to vertical constraints,

which are common in channel routing. A vertical constraint arises when a pad termi

nal and a module terminal have the same abscissa (or the same ordinate) and are to

be connected to distinct nets (Figure 4.14 ). The presence of a vertical constraint indi

cates that the concentric track of the net 'A' must be positioned above the concentric

track of the net 'B\ Vertical constraints lead to significant algorithmic complication

and optimality degradation.
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Figure 4.15: Routing area is divided into subrings.

In summary, in order to produce an optimal solution, the ring router must

effectively deal with the problems of the routing direction, the corner pads and the

vertical constraints.

4.3.2 The Routing Solution

To minimize the interaction between signal nets and P/G nets, the ring is

divided into three subrings(Figure 4.15 ). The inner and outer subrings are used for

routing signal nets while the middle subring is used exclusively for P/G interconnec

tions.

The problem of restrictive routing in a ring is to determine a concentric track

number for each net. Restrictive routing has the advantage of both being simple and

of using a minimal number of vias. When there are no vertical constraints, the

restrictive routing problem can be easily and optimally solved by using the left edge

algorithm [30]: the number of tracks equals the density. However, when there are

vertical constraints, the problem is NP-complete [32] and only a suboptimal solution

may be obtained.

One special feature of the ring problem allows us to eliminate all vertical
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constraints so that the left edge algorithm can be applied. This requirement is that the

pad terminals must be spaced far enough apart to guarantee the existence of an empty

column close to the constraint pad terminal. Usually, at the expense of allocating

one track in the outer subring, all of the vertical constraints can be resolved (Figure

4.16 ). Since the P/G tracks are always outside the signal tracks, this subring is also

used for resolving vertical constraints between a signal pad terminal and a P/G core

terminal. If one track is not enough to efiminate all vertical constraints, more tracks

in the outer subring can be allocated. It is very unlikely that this will be necessary:

we have found that one outer track is sufficient for all of the industrial chips we have

tested.

Once the vertical constraints are removed, we are ready to apply the the left

edge algorithm. First, the shortest rectilinear path for each net is determined. This is

achieved by drawing a path completely around the ring and deleting the section with

the greatest rectilinear distance between two adjacent terminals of the net (Figure

4.7).

In order to minimize the ring thickness, the routing space between the inner

core and the boundary of the core module (Figure 4.17 ) should be put to good use

since it does not contribute to routing tracks. We shall describe a pre-processing

procedure which embeds paths in such space prior to the application of left edge

algorithm.

Figure 4.18 shows extra routing space in the indentation /(a, b). Such an
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Figure 4.17: Hidden routing space between the inner core and core module boundary.
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Figure 4.18: Net classification with respect to the indentation.

indentation is critical if it contains the region of maximum density. The height V

limits the number of paths that can be embedded in indentation i". The goal is to

select an appropriate set of paths for embedding in critical indentation.

A path P can be classified as type A, B, or C with respect to / depending

on how it intersect J. A path is type A if P is contained in I (Figure 4.18 ). A path

is type B if it has a terminal in J. A path is type C ii I is contained in P. Figure

4.19 also shows how each type of path P can be embedded in /. Since embedding of

type A (C) paths introduces the least (most) number of vias, type A, B, Cpaths are
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Figure 4.19: Embedding of paths in the indentation.
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selected in that order by the preprocessor.

After path selection and pre-processing, we are ready to apply the left edge

algorithm. Tracks are assigned from the inside out to keep the wire length as short

as possible. Pad terminals are connected to concentric tracks through radial columns

with the exception of corner pads.

As described in section 4.3.1, a straightforward radial connection from a

corner pad may cause conflicts with other nets. The solution proposed by [39] is to

always assign a track outward from the point of intersection for such a corner pad.

But in doing so, [39] requires that all tracks be assigned from the outside in, so that

concentric wires run along the outer core. For the net shown in Figure 4.20, this

strategy results in an unnecessary detour of the wiring compared to that of Figure

4.21.

To overcome this problem, we propose a corner routing scheme resembling

river routing. We divide each of the four corners of the ring into two triangular halves

along the diagonal line drawn through the pad ring corner and the corresponding

module corner (Figure 4.12 ). Every triangular corner region is routed in the same

fashion.

For the example in Figure 4.22 , a wiring path for the first corner pad

terminal, A2 (of net A), is constructed by running along the corner boundary until

the assigned track is reached. The path for the next corner pad terminal, B2 (of

net B), simply 'licks' along the path for A until the track for net B is reached. This
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Figure 4.20: Routing along outer core introduces detour.
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Figure 4.21: Routing along inner core produces shorter path.
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ABC

Figure 4.22: Strategy to route corner pads.

process continues until all corner pads in this triangular region are routed. The paths

are placed on the same layer as the radial columns so that they do not conflict with

the concentric tracks. A similar procedure is repeated for all other corners.

Signal nets can usually be routed within one track of the mathematical lower

bound. Compared to the router in [39], the method presented here takes advantage

of the ring property and achieves a significant reduction in algorithmic complexity

and wire length.

Routing of power and ground nets is done in the same way as signal routing.

The ring router is capable of handling variable wire widths for power and ground

nets.

4.3.3 Post Processing

The purpose of post processing is to further refine routing results. Its two

main tasks are to eliminate unnecessary jogs and to shrink or expand each side of the

outer core independently.

Recall that prior to the left edge algorithm, a jog in the outer-most track

was introduced whenever a vertical constraint arose between a pad terminal, say A,
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CI Al

Bl B2 C2 A2

Figure 4.23: Introduction of jog at terminal Al to resolve vertical constraint between

terminals Al and B2.

Bl B2 C2 A2

Figure 4.24: Since the deletion of the job causes conflict between nets And C, it

should not be deleted.

and a core terminal, say B, to resolve the vertical constraint. After the left edge

routine is applied, each net is assigned a track (Figure 4.23 ). If the track assigned

to terminal A is higher than that of terminal B, then it may be possible to delete

the jog so as to free the outer track and possibly reduce the ring thickness. Deletion

of jogs, however, must be guided so that it does not cause conflicts between nets (

Figure 4.24 )

Since each side of the ring usually requires different amounts of routing

space, we shrink or expand each side independently. For example, maximum density

occurs only on one or two sides of the ring so that the ring thickness on the other sides

may be further reduced. Likewise, P/G nets or vertical constraints may be present
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Figure 4.25: Shortest paths vs. preferred paths.

on one or two sides of the ring so that the unused tracks of the other sides may be

shrunk to zero.

4.3.4 Shortcomings of the Routing Approach

Exact optimization of the routing space would involve selecting the preferred

path, not necessarily the shortest one, to route a net so that the ring thickness on

every side is minimized. An example is shown in Figure 4.25 .

Solutions for the two-terminal nets core bound problem (no pad is allowedin

the corners) which take into consideration the preferred path are proposed by [33, 48].

For multi-terminal nets or pad bound chips, it remains an open problem.

4.4 Computation Complexity

The placement step based on linear assignment takes 0(iV2) time and space

where N is the number of pads. The routing step based on the left edge algorithm

takes 0(nlogn) time and space including sorting on n terminals.
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4.5 Results

The ring router is implemented in the C language as part of BEAR [25],

a building block layout system. The following tables list the chips tested and the

router's performance. The results are obtained on a DEC VAX-11/780 running UNIX

BSD 4.3 with 100% routing completion in all cases.

The numbers in parentheses indicate total wire length and chip area im

provement with pad placement. These results are also compared with the approach

of dividing the ring into 4 channels and using traditional channel router in [25]. In

particular, the comparison of the total wire length is shown in Table 3, in which the

ring router approach performs favorably.

Table 1. Ring Routing Results Without Pad Placement

Chips Pads CPU

(sec)
Total

Wire Length
Chip Area

Hughes 36 3.6 21336 524342

PrimBBL2 40 7.6 60787 334705

Hp 46 6.2 99167 173232

RTASIC 100 6.4 418228 506000

Table 2. Ring Routing Results With Pad Placement

Chips Pads CPU

(sec)
Total

Wire Length
Chip Area

Hughes 36 8.2 16287 (31%) 467810 (12%) *

PrimBBL2 40 15.8 48630 (25%) 325981 (3%) *

Hp 46 13.8 84758 (17%) 158680 (9%) *

RTASIC 100 65.7 357460 (17%) 429000 (18%) **

denotes core bound chip, ** denotes pad bound chip.

Table 3. Total Wire Length Comparison

Chips Ring Router
With Pad Placement

Ring Router
Without Pad Placement

Channel Routing

Hughes 16287 21336 22196

PrimBBL2 48630 60787 65562

Hp 84758 97067 98163

RTASIC 357460 418228 471134
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The plot on this page shows the actual routing results on a core bound

Hughes chip.
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4.6 Conclusion

We have developed a complete package of pad placement and ring routing

for interconnecting the chip core and the I/O pads. The pad placement routine (1)

minimizes the chip area by analytically solving the outer core dimension problem

and (2) minimizes the total wire length by using the Unear assignment formulation.

Upon completion of pad placement, the ring router connects terminals according to

the netlist in two layers based on the left edge algorithm. We have presented new

strategies for eliminating vertical constraints and for routing corner pads. Each net is

routed in the shortest path. The signal nets can be routed near density to yield a ring

of minimal thickness. Shrinkage/expansion of each side of the ring is independent. A

practical situation involving multiplepower/ground nets and variablewidths for P/G

nets is considered. The computation complexity of the package is 0(N2) + 0(nlogn),

where N is the number of pads and n is the number of terminals. This project has

been implemented as part of the BEAR Layout System for custom chip design.



Chapter 5

Future Research for Detailed

Routing

5.1 Two-layer Channel Routing

One important feature which can still be enhanced in the existing two-layer

channel router is the optimization of the routing for multi-terminal nets. In the cur

rent implementation of the two-layer channel router , multi-terminal nets are divided

into two-terminal subnets and routed by the generic two-terminal nets algorithm.

This approach has the inherent disadvantage of forcing one-sided subnets to be clas

sified as either left or right nets. Therefore how to handle one-sided subnets and how

to optimize the routing scheme for multi-terminal nets remains an interesting, and as

yet unsolvedproblem.

5.2 L-shaped Channel Routing

The concept of L-shaped channel was first introduced in RRDO [19] to

generate a feasible routing order for non-slicing structure placement in building block

layout design. Chen [15] proposed an L-shaped channel router by dividing the L region

into two subchannels. Depending on the wiring style, vertical or 45° constraint graphs

were constructed for both channels. The vertical subchannel and horizontal channels
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were then routed and expanded alternatively. Several iterations may be required to

complete the routing unless the boundaries were moved in the 45° direction and 45°

wires were used. It was not clear whether more iterations were required when the

boundaries moved to any angle. Whether or not it is possible to use sorting or river

routing techniques to route L channels so that (1) the vertical or 45° constraints can

be completely eliminated and (2) routing completion does not require iterations are

additional as yet unsolved problems.

5.3 Multi-layer Channel Routing

With the advances in manufacturing technology, multi-layer routing has be

come a reality. It is important to design detailed routers to handle multi-layer regions.

This development is also meaningful for other technologies such as multi-chip mod

ules and hybrid packages. In the multi-layer environment, it is important to explore

new routing techniques which are not strictly Manahattan with H/V (horizontal and

vertical) wires. Diagonal wires and overlappping wires not only provide more degrees

of freedom for completing the interconnections but also shorten the interconnection

length. The latter has a profound impact on system performance and cost. In this

thesis, 45° and 60° wires have been investigated to route channels using two or three

layers. The routing algorithms based on sorting and river routing have the distinct

advantage of generating a smaller number of vias since they introduce the minimal

number of net crossings. To generalize the generic algorithms to handle n layers,

would require three steps. The first step would divide the layers into sets, in which

each set contains either two or three layers. Then the second step would distribute

nets among the sets of layers. And finally the third step would look at each set of

layers and nets as an independent routing problem. The key to optimal results lies

in how nets are distributed among the sets of layers so that the sets have uniform

density.
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Proof of Theorem 3

Theorem 3 Potential value decreases at most by 1 per net per step under the mini-
swap model.

Proof:

For brevity of notation, let
A = (a(l),a(2), ....,a(iV)) denote the permutation of nets on track t.
A' = (a'(l),a'(2), ....,a'(JV)) denote the permutation of nets on track t + 1.
DELTA(i,j,t) = ORDER(iJ,t) - NOTORDER{iJ,t) + 1

Case 1: If NOTORDER(i,N,t) = 0, then

POTENTIALS) = NOTORDER(i,l,t) + MAXLT{i,t) (A.l)

where MAXLT(i,t) = max{{0} U {DELTA(i, j,t)\ j < i, and a(i) < a(j)})

Subcase 1.1: If the net at position i does not switch position at t, then

NOTORDER{i,l,t + 1) = NOTORDER(i,l,t) (A.2)

Let J = { j | 1 < j < *, a(i) < a(j) }
Let j € J.

Subcase 1.1A: If the net at position j switches position with its right
neighbor at time i, then a(j + 1) < a(j) and a(i) < a(j).
lia(j + 1) < a(z), then
ORDER(iJ + l,t + 1) = ORDER(i,j,t) - 1 and
NOTORDER{iJ + 1,* + 1) = NOTORDER(i,j,t)
Hence, DELTA{iJ + l,t + 1) = DELTA(i,j,t) - 1
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Otherwise, i.e. if a(j + 1) > a(i), then
ORDER(i,j + l,i + 1) = ORDER(i,j,t) and
NOTORDER{i,j + l,t + 1) = NOTORDER(i,j,t)
Hence, DELTA(i,j + 1,< + 1) = DELTA(i,j,t)

Subcase 1.1B: If the net at position j switches position with its left
neighbor at time t, then a(i) < a(j) < a(j —1). Hence,
ORDER(i,j -l,r + l) = ORDER(i,j,t)
NOTORDER(i,j - l,t + 1) = NOTORDER{i,j,t)
DELTA(i,j - l,t + 1) = DELTA(i,j,t)

Subcase 1.1C: If the net at position j does not switch position, then
ORDER(i,j,t +1) = ORDER(i,j,t)
NOTORDER(i,j,t-\- 1) = NOTORDER(i,j,t)
DELTA(iJ,t + l) = DELTA{iJ,t)

Since in Subcases 1.1A, l.lB and 1.1C, DELTA{i,j,t) decreases at most by 1,
MAXLT(i,t) decreases at most by 1. Substitute MAXLT{i,t) and equa
tion (A.2) into equation (A.l), we can conclude POTENTIAL decreases
at most by 1 for Subcase 1.1.

Subcase 1.2: If net at position i switches position at t, then it must switch
with the net on its left since NOTORDER(i,N,t) = 0. This implies

NOTORDER(i - 1,1,t + 1) = NOTORDER(i,l,t) - 1 (A.3)

Let J = { j | 1 < j < t, a(i) < a(j) }
Let j e J.

Subcase 1.2A: If the net at position j does not switch position at time
t, then
ORDER(i - lj,t + 1) = ORDER(iJ,t) and
NOTORDER(i - lj,t + 1) = NOTORDER(iJ,t) - 1
DELTA(i - l,j,t + 1) = DELTA(I,J,T) + 1

Subcase 1.2B: Suppose the net at position j switches with its rihgt
neighbor at time t.
If a(j + 1) < a(i) < a(j), then
ORDER(i - l,j + l,t + 1) = ORDER(i,j,t) - 1
NOTORDER(i - 1,j + 1,< + 1) = NOTORDER(i,j + l,t) - 1
DELTA{i -l,j + l,t + l) = DELTA(i,j,t)
Otherwise, i.e. a(i) < a(j -f 1) < a(j), we have
ORDER(i -l,j + l,t + l) = ORDER(i,j,t)
NOTORDER(i - 1,j + l,t + 1) = NOTORDER(i,j,t) - 1
DELTA(i - l,j + l,t + 1) = DELTA(i,j,t) + 1
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Subcase 1.2C: Suppose the net at position j switches with its left neigh
bor at time t. This implies a(i) < a(j) < a(j —1). Then
ORDER(i - l,j - l,t+ 1) = ORDER{i,j,t)
NOTORDER(i - l,j - l,t + 1) = NOTORDER(i,j,t) - 1
DELTA(i - l,j - l,t + 1) = DELTA{i,j,t) + 1

Since in Subcases 1.2A, 1.2B and 1.2C, DELTA(i,j,t) increases by 0 or 1,
MAXLT(i,t) can increase by 0 or 1. Substitute MAXLT(i,t) and equa
tion (A.3) into equation (A.l), we can conclude POTENTIAL decreases
at most by 1 for Subcase 1.2.

Case 2: If NOTORDER(i, l,t) = 0, then

POTENTIAL(i,t) = NOTORDER(i,l,t) + MAXGT(i,t)

The proof of this case is similar to that of Case 1.

Case 3: When NOTORDER{i,l,t) ^ 0 and NOTORDER(i,N,t) ^ 0,

POTENTIAL(i,t) = NOTORDER(i,l,t) + NOTORDER(i,l,t)+
max{ 1, MAXLT(i,t), MAXGT(i,t) }(A.4)

Subcase 3.1: If the net at position i does not switch position at time t, then,

ORDER{i,l,t +1) = ORDER{i,l,t) (A.5)

NOTORDER(i,l,t + 1) = NOTORDER(i,l,t) (A.6)

Similar to the proof of Subcase 1.1, we can show

MAXLT(i,t + 1) = MAXLT{i,t) or MAXLT(i,t) - 1 (A.7)

MAXGT(i, t+l) = MAXGT{i, t) or MAXGT(i, t) - 1 (A.8)

Substituting equations (A.5), (A.6), (A.7) and (A.8) into equation (A.4),
we conclude POTENTIAL decreases at most by 1 for Subcase 3.1.

Subcase 3.2: If the net at position i switches position with its left neighbor,
then

ORDER(i —1,1,* + 1) = ORDER(i,l,t) - 1 (A.9)

NOTORDER{i -1,1,* + 1) = NOTORDER(i,l,t) (A.10)
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Similar to the proof of Subcase 1.2, we can show

MAXLT(i - l,r+ 1) = MAXLT(i,t) or MAXLT(i,t) + 1 (A.ll)

To see the changes in MAXGT(i —l,t + 1), we again do a case analysis.
Let J' = { j | i < j < N, a(j) < a(i) }.
Let j e J'.

Subcase 3.2A: If the net at position j does not switch position at time
t, then
ORDER{i - l,j,t + 1) = ORDER(i,j,t) + 1
NOTORDER{i - l,j,t + 1) = NOTORDER(i,j,t)
DELTA(i - l,j,t + 1) = DELTA(i,j,t) + 1

Subcase 3.2B: If the net at position j switches position with its right
neighbor at time t, then a(j + 1) < a(j) < a(i). This implies
ORDER{i - l,j + 1,* + 1) = ORDER(i,j,t) + 1
NOTORDER{i - l,j + l,t + 1) = NOTORDER(i,j,t) + 1
DELTA(i - l,j + 1,* + 1) = DELTA(i,j,t)

Subcase 3.2C: Suppose the net at position j switches position with its
left neighbor at time t. This implies a(j) < a(j - 1) and a(j) < a(i).
If a(j) < a(j - 1) < a(i), then
ORDER(i - l,j - 1,*+ 1) = ORDER(i,j,t) + 1
NOTORDER{i - l,j - l,t-r 1) = NOTORDER(i,j,t) - 1
DELTA(i - 1,j - 1,* + 1) = DELTA{i,j,t) + 2
Otherwise, i.e. a(j —1) > a(i),
ORDER(i - l,j - 1,* + 1) = ORDER{i,j,t)
NOTORDER(i - l,j - l,t + 1) = NOTORDER{i,j,t)
DELTA(i —l,i —1,*+ 1) = DELTA(i,j,t)

Since in Subcases 3.2A, 3.2B and 3.2C, DELTA(i,j,t) increases by 0, 1, or
2, MAXGT(i,t) can increase by 0, 1 or 2. Substitute MAXGT(i,t), and
equations (A.9), (A.10), and (A.ll) into (A.4), we can conclude POTEN
TIAL decreases at most by 1 for Subcase 3.2.

Subcase 3.3: If the net at position i switches position with its right neighbor,
the proof is analogous to Subcase 3.2.



Appendix B

Proof of Theorem 4

Theorem 4 For each net i, we define the displacement^) as the horizontal distance
between its two terminals. Then POTENTIAL(O) > max({displacement(i) \ 1 < 11 <
N}).

Proof:

Assume a dense 2-terminal net channel routing problem has N nets. With
out loss of generality, the nets are in the natural order on the top and are arbitrarily
ordered on the bottom. ( Defition 3 in Chapter 2). Given any net i, the top and
bottom terminal positions of net i are in columns i and j respectively ( Figure B.l ).

Case 1: j > i

Column 1

Column 2
displaceroent(i)

TOP

BOT

Figure B.l: A net i has top and bottom terminals in columns i and j respectively.
The displacement of net i is the horizontal distance between the terminals.
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Subcase 1.1: When NOTVRDER(i,N) = 0, then obviously NOTORDER(i,l) ^
0

Let 5= { 2+ 1, z+ 2, ...., N}.
Let 51 C 5 be the nets that have bottom terminals in positions j + 1,
; + 2, ...., N. Clearly,

|51| < N-j

Let 52 = 5 — 51 be the nets that have bottom terminals in positions 1,
2, ...., j-1. Then

|52| > (N —i) —(N —j) = j —i = displacement^)

Therefore,

POTENTIALS) = NOTORDER(i,l,t) + MAYLT

|52| + MAXLT

> displacement^) (B.l)

Subcase 1.2: When NOTORDER(i,l) ^ 0 and NOTORDER{i,N) ^ 0,

Let 5= { i + 1, i + 2, ...., N }
Let 51 C 5 be the nets that have bottom terminals in positions 1, 2, ....
j - 1. Then

|51| = NOTORDER(i,l) > displacement^)

POTENTIAL{i,t) = NOTORDER{i,l,t)-rNOTORDER{i,N,t) +
max{ 1, MAXLT, MAXGT )

= |51| + NOTORDER(i,N,t) +

max( 1, MAXLT, MAXGT )
> displacement^) (B.2)

Case 2: j < i

This case is simply the mirror image of Case 1. The proof is similar.



Appendix C

Proof of Theorem 6

Theorem 6 The upper bound on the channel height under the arbitrary overlap model
is POTENTIAL(O) + 2.

Proof:

Without loss of generality, the channel can be viewed as having two sections:
the bottom section and the top section In the bottom section, the right nets are routed
to their target posi- tions; in the top section, the left nets are routed ( Figure C.l ).

Let us consider the change in the POTENTIAL values of nets in the bottom
section. The proof is by Lemma 1, 2 and 3. The main result of these three lemmas
is that the POTENTIAL value of every net decreases by at least 1 ( amortized ) per
track in the bottom section. The proof for the top section is similar.

Top section (for routing right nets)

Bottom section (for routing left nets)

Figure C.l: The channel can be viewed as having two section.
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Lemma 6 In the bottom section, If NOTORDER(i,N,t) = 0, then
POTENTIALS + 1) = POTENTIALS) ~ ™
where m> 1, unless
POTENTIAL(i,t) = 0 which implies POTENTIAL^,t + 1) = 0.

Proof:

When NOTORDER(i,N,t) = 0,

POTENTIALS) = NOTORDER(i,l,t) + MAXLT(i,t)
= NOTORDER(i,l,t) -rmax{DELTA{i,j,t)} (C.l)

Case 1: Net i is a right net:

Claim: Net i has reached its target position, that is

POTENTIALS) = °

Proof:

Suppose for the sake of contradiction that net i has reached position i' < i.
Now, there are N —i nets which are greater than i. These nets can not fill up
the positions in the interval [ i' +1, N ]. Hence some net j < i is in this interval.
This contradicts the fact NOTORDER{i, N, t) = 0. •

Case 2: Net i is a left net and i crosses a net i'\

When i crosses a net,

NOTORDERS,* +1) = NOTORDER{i,l,t) - 1 (C.2)

Let J = { j | ; < i, a(i) < a(j) }
Let j 6 J.

Subcase 2.1: When j crosses another net:

If j propagates vertically upwards( Figure C.2 ), then DELTA(i, j, t+1) =
DELTA(i,j,t).
Else if j propagates horizontally ( Figure C.3 ) to the right, then there
exist a net j' > j such that j' > i.



. j .1

i i
•i i ;» track t

Figure C.2: A right net j propagates vertically upwards in track t.

track t
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Figure C.3: A right net j propagates horizontally in track t.

Thus,

ORDER(i,j,t-\-1) = ORDER(i,j',t)
NOTORDER(i,j,t + 1) = NOTORDER(i,j',t)

DELTA(i,j,t-r 1) = DELTA(i,j',t) (C.3)

Substituting equations (C.2) and (C.3) into (C.l), we have
POTENTIAL(i,t+l) = POTENTIALS) - L

Subcase 2.2 : Suppose j does not cross another net.
If j isa right net( Figure C.4): Then DELTA(i,j,t-rl) = DELTA{i,j',t).
Otherwise, j is a left net ( Figure C.5 ):
This implies there exists a right net j' overlapping with j ( else j would
have been crosses by a right net ) such that j' > j. Hence,

DELTA(iJ,t+l) = DELTA(i,j',t) - 1 (C.4)
Substituting equations (C.2) and (C.4) into (C.l), we have
POTENTIALS -r 1) = POTENTIALS) ~ 2-

Case 3: Net i is a left net and i does not cross another net( Figure C.6 ).
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track t

Figure C.4: A right net j does not cross another net in track t.

track t

Figure C.5: A left net j does not cross another net in track t.

J track t

Figure C.6: A left net i does not cross another net in track t.
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H 1 1 1 1 l track t

knets

Figure C.7: A right net i crosses k nets in track t.

Since i is a left net and NOTORDER(i, N, t) = 0, net i can be routed to its tar
get position at the t'th track in the top section which reduces POTENTIAL(i, t)
to 0 ( see proof of Lemma 2 ). This implies the amortized decrease in POTEN
TIAL value of net i is greater than 1. Note: once POTENTIALS^ l)
becomes zero, net i will be dropped from analysis in future steps.

Lemma 7 In the bottom section, If NOTORDER(i, 1, t) = 0, then
POTENTIAL(i,t+l) = POTENTIAL(i,t) - m, where m> 1.

Proof:

In the bottom section, only a right net could satisfy NOTORDER(i, 1, t) =
0. By the routing algorithm, net i would propagte horizontal toward right un
til another right net i', i' > i is reached. Since NOTORDER(i,l,t) = 0, the
POTENTIAL value of net i is defined as

POTENTIALS) = NOTORDER(i,N,t) + MAXGTS)
= NOTORDER(i,N,t) + max{DELTA(i,j,t)} (C.5)

Case 1: Net i crosses k nets as shown in ( Figure C.7 ).

In this case, we have

NOTORDER(i,N,t-r 1) = NOTORDER(i,N,t) - k (C.6)
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H 1 1 K track t

knets rnets>i and snets<i

Figure C.8:

Let J = { j | j < i, a(i) < a(j) }
Let j £ J.

By examining equations (C.5) and (C.6), we need to show DELTA(i,j,t) does
not increase more than k.

If MAXGT(i, t + 1) = 0, then

POTENTIALS + 1) = POTENTIALS) - *

Else if MAXGT(i,t + 1) > 0 ( Figure C.8 ), then

DELTA(i,j,t-rl)
= ORDER(i,j,t-r 1) - NOTORDER(i,j,t + 1)
= r — s

= {r + l)-(k + s)-r(k-l)
= ORDER{i,j,t) - NOTORDER(i,j,t) + (k - 1)
= DELTA{i,j,t) + (k - 1)

(C.7)

Case 2: When net i does not cross any net,

NOTORDER(i,N,t-r 1) = NOTORDER(i,N,t)

We need to show that DELTA(i,j,t) decreases.

If MAXGTS) > ° ( Figure C.9 ), then

DELTA(i,j,t +1)
= ORDER(i,j,t + 1) - NOTORDER(i,j,t-r 1)
= (ORDER(i,j,t) - 1) - NOTORDER(i,j,t)
= DELTA(i,j,t)-l

Otherwise, if MAXGTS) = ° ( Figure CIO ).

This implies j' < i and net i will cross j' and j in track t + 1. Hence the
amortized decrease in the POTENTIAL value of net is 1.
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H h track t

Figure C.9:

H 1 h track t

J7 J

Figure CIO:

Lemma 8 In the bottom section, If NOTORDERfi, 1, t) ^ 0 and
NOTORDERfi, N, t) ^ 0, then POTENTIAL(i,t+l) = POTENTIAL(i,t) - m
where m> 1, unless POTENTIAL(i,t) = 0 which implies POTENTIAL(i,t+l) = 0.

Proof:

When NOTORDER{i,l,t) ^ 0 and NOTORDER(i,N,t) ^ 0, net i prop
agates vertically upwards on layer 2 in the bottom section and

POTENTIAL^, t) = NOTORDER(i, 1, t) + NOTORDER(i, N, t)+
maxl, MAXLT, MAXGT (C.8)

Case 1: If net i crosses another net, then

NOTORDERSS + *) = NOTORDER{i,l,t) - 1 (C.9)
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J>1

1
track t

Figure C.ll:

track t

Figure C.12:

NOTORDER(i,N,t + 1) = NOTORDER(i,N,t) (CIO)

By examining equations (C.8), (C.9) and (CIO), we We need to show MAXLT
and MAXGT does not increase.

Subcase 1.1: i is a right net

To show the change in MAXLT....

Let J = {j \j > i, a(i) > a(j) }.
Let j e J.

Subcase 1.1A: If j crosses a net as shown in ( Figure C.ll ).
Then j' > j > i and DELTA(i,j,t + 1) = DELTA{i,j,t).

Subcase l.lB: if j crosses a net ( Figure C.12 ):
Then j' >j>i and DELTA(i,j,t + 1) = DELTA{i,j(,t).

Subcase 1.1C: If j does not cross any net ( Figure C.13 ):
then DELTA(i,j,t-r 1) = DELTA(i,j',t)

From Subcases (1.1A), (LIB) and (1.1C), we conclude that MAXLTS)
decreases by > 0 since DELTA(i,t) decreases by > 0.
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: i

track t

Figure C.13:

:J

track t

Figure C.14:

To show the change in MAXGT....

Let J' = { j | j < i, a(i) < a(j) }
Let j € J'.

Subcase 1.1D: If j crosses another net ( Figure C.14 ).
Then, DELTA(i,j,t+l) = DELTA(i,j,t)

Subcase LIE: net j does not cross any net ( Figure C.15 ):
If DELTA(i,j,t-\-l) < 1, then done. Else, ie. if DELTA(i,j,t+l) >
2, then net j will cross 2 or more nets in some track in the top section.

r
track t

Figure C.15:
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r
track t

Figure C.16:

This implies the amortized decrease in the POTENTIAL value of net
i is greater than or equal to 1.

Subcase 1.2: i is a left net

The proof is analogous to Case 1.1.

Case 2: If net i does not cross any net, then

NOTORDERSS + 1) = NOTORDER(i,l,t) (C.ll)

NOTORDER(i,N,t-r 1) = NOTORDER(i,N,t) (C.12)

By examining equations (C.8), (C.ll) and (C.12), weWe need to show MAXLT
and MAXGT decreases.

To show the change in MAXLT....,

Let I = j \j > i, a(i) > a(j) .
Let j G I.

Subcase 2A: If j crosses a net ( Figure C.16 ).

Then j' > j > i and

DELTA(i,j,t +1)
= ORDER(i,j,t + 1) - NOTORDER(i,j,t + 1)
= ORDER(i,j,t) - {NOTORDER(i,j,t) + 1)
= DELTA{i,j,t)-l



1+

track t

Figure C.17:

J U
track t

Figure C.18:

Subcase 2B: If j does not cross any net ( Figure C.17 ).

Then,

DELTA(i,j,t-rl)
= DELTA{i,j,t)
= ORDER(i,j,t) - NOTORDER(i,j,t)
= ORDER(i,j',t) - (NOTORDER{i,j(,t) + 1)
= DELTA(i, j',t)-l

93

From Subcases (2A) and (2B), we can conclude that MAXLT(i, t) decreases by 1.

To show the change in MAXGT,

Let V = { j | j < i, a(i) < a(j) }.
Let j e r.

Subcase 2C: If j crosses another net ( Figure C.18 ):

Then j' > i. Hence,

DELTA(i,j,t-r 1) = ORDER{i,j,t) - 1 - NOTORDER(i,j,t)
= DELTA(i,j,t)-l
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Subcase 2D: net j does not cross another net

The proof is similar to (1.1E)

From Subcases (2C) and (2D), we conclude that MAXGT(i,t) decreases by 1.

From Case 2 we find that both MAXGTS) a*"* MAXLT(i,t) decrease by 1.
Substituting these two terms and equations C.ll and C.12 into equation C.8,
we conclude that POTENTIAL decreases by 1 in Case 2.
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