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Abstract

Our goal is to synthesize hazard-free asynchronouscircuits that are testable in the very stringent hazard-free
robust path-delay-fault model. From a synthesis perspective producing circuits satisfying two very stringent require
ments, namely, hazard-free operation and hazard-free robust path-delay-fault-testability, poses an especially exciting
challenge. In this paper we present techniques which guarantee both hazard-free operation and hazard-free robust
path-delay-fault testability, at the expense of possibly adding test inputs, and give a set of heuristics which can
improve hazard-free robust path-delay-fault testability without requiring such inputs. We also present a procedure
that guarantees testability in the less stringent robust gate-delay-fault model.

1 Introduction

In this paper we are concerned with the problem of synthesizing asynchronous sequential circuits from a high level
specification, the Signal Transition Graph (STG, [3]). In [13,12] we presented a set ofalgorithms to solve this problem.
They produce a circuit implementation that is guaranteed to be hazard-free if and only if a set of inequalities among
path delays inside the circuit is satisfied. So using a suitable delay model during the synthesis process it is possible to
guarantee hazard-freeness in the absence of delay faults. Now our goal is to test those path delays, and be sure that the
above mentioned inequalities are satisfied in each manufacturedcircuit.

Moreover, as asynchronous interface circuits typically have absolute delay requirements, it is highly desirable to
know that the synthesized circuit is able to operate with the required timing constraints. Also, because asynchronous
circuits areoften used as interfaces in systems where very high reliability is required, a stringentmanufacture test of the
interface circuitry is desirable. Unfortunately current testing procedures do not even reliably provide comprehensive
stuck-at-fault testing of asynchronous circuits.

Our goal is to synthesize hazard-free asynchronous circuits that are testable in the hazard-free robust path-
delay-fault model. Producing circuits satisfying two very stringent requirements, namely, hazard-free operation and
hazard-free robust path-delay-fault-testability (hfrpdft), poses an especially exciting challenge. In this paper we
present techniques which guarantee both hazard-freeoperation and hazard-free robust path-delay-fault testability, at
the expense of possibly adding test inputs, and give a set of heuristics which can improve hazard-free robust path-
delay-fault testability without requiring such inputs. We also present a procedure that guarantees testability in the less
stringent robust gate-delay-fault model (rgdft).

The testing scenario that we envision usesfull scan techniques to make the test generation process manageable. In
this scenarioevery flip-flop (Set-Reset, C-element,...) canbe scanned,to increaseboth the observability of its inputs
and the controllability of its output This is also necessary because some of the flip-flop types, for example Set-Reset
flip-flops, are sensitive only to inputtransitions inonedirection, rising or falling1. So we cannot testthedelay of the
transitions in the other direction without resorting to scan techniques.

This paper is organized as follows: We present necessary terminology in Section 2. We show how an initial
two-level circuit can be generated, and how hazards can be removed from it, in Section 3. We give a procedure that
is guaranteed to turn this two-level circuit in a hfrpdft circuit in Section 4. We then give a variety of heuristics that
are likely to increase the hfrpdft testability of a circuit in Section 5. We give another algorithm for producing a rgdft
circuit in Section 6. Results on applying these techniques are given in Section 8.

'This work was partially supported by the National Science Foundationunder Grant UCB-BS16421
'This is useful alsoto remove dynamic hazards from thecircuit, see[13].



2 Definitions and Notation

Analysis and synthesis of hazard-free asynchronous circuits which are also delay-fault testable requires spanning the
fields of logic optimization, testing and asynchronous synthesis. In this section we provide a minimal amount of
terminology which will be used in the following sections.

2.1 Logic Synthesis

A completely specified single-output logicfunction g of n inputvariables is a mapping g : {0, l}n —• {0,1}. Each
input variablext- corresponds to a coordinate of the domain of g. Eachelement of {0,1 }n is called a vertex. The set
of variables on which g depends2 is called thesupport of g. Thecomplement of g is theBoolean function g' such that
g(v) = l & g'(v) —Oandg(v) = Q<& g'(v) = 1 for all v e {0, l}n. An incompletely specified single-output logic
function f of n inputvariables (called logic function in thefollowing) isa mapping / : {0,1}n —• {0,1, *}.

The set of vertices where / evaluates to 1 is called the on-set of /, the set of vertices where / evaluates to 0 is
called its off-set, thesetof vertices where/ evaluates to * is called itsdc-set. Each vertex of theon-setof / is calleda
minterm.

A literal is either a variable or its complement. A cube c is a set of literals, such that if a € c then age
and vice-versa. It is interpreted as the Boolean product of its elements. The cubes with n literals are in one-to-one
correspondence with the verticesof {0, l}n.

A cube c\ covers another cube c2, denoted c2 Q cx if c\ C c2, for example {a, 6} C {a, b, c}, so abc Q ab. The
covering is strict, denoted c2 C ci, if c2 # c\.

The intersection of two cubes c\ and c2 is the empty cube if there exists x, such that xt- G c\ and x~l e c2 (or
vice-versa),otherwise it is c^ = c\ Uc2.The Hammingdistancebetweentwocubes c\ and c2 is the numberof variables
x{ such that either x,- € c\ A x< e c2 (or vice-versa).

A cubeis calledan implicant of a logicfunction / if it covers some minterm of / and it doesnotcoveranyoff-set
vertex of /. Animplicant of / is called aprime if it is notcovered by any other single implicant of /.

Anon-set cover F of a logic function / is a set of cubes such thateach cubeof F is an implicant of / andeach
minterm of / is covered byat least onecube of F. Byanalogy wecan define anoff-set cover Rof a logic function /
as a set of cubes suchthateachcubeof R covers onlyoff-set vertices of / andeachoff-set vertex of / is covered by
at least one cube of R.

A cubec in an on-set cover F of a logicfunction / canbeexpanded by removing literals from it whileit remains
an implicant of /. The resultof theexpansion is not unique (itdepends on theremoval order),but it is always aprime
implicant of /.

In the following weshall use"cover" to denote on-set covers. Each cover F corresponds to a unique completely
specified logic function, denoted by B(F). Ontheother hand a logic function can have in general many covers (also
called sum-of-products or two-level representations). Acover is interpreted as theBoolean sum of itselements, so it
can also be seen asa two-level sum-of-products implementation of thecompletely specified function B(F).

A cover F is called a prime cover of a function / if all itscubes areprime implicants of /. A cover F is called
an irredundant cover of a function / if deleting anycubefrom F causes it to be no longer a coverof / (i.e. if some
minterm is no longer covered by anycubeof F). A relatively essential vertex or an irredundancy test of a cubec in a
cover F is a vertex that is coveredby c and is not coveredby any othercube in F.

The cofactor of a cube c with respect to a literal xj, denotedby cXi, is:

• theempty cube (acubethatdoes notcover anyelement of {0,1}n)if xT 6 c

• c —{x,} otherwise.

The cofactor of a cover F with respectto a literal x,-, denoted by FXi, is the set of cubesof F cofactored against
x,-. The empty cube can always be deleted from a cover, since it does not cover any vertex.

The cofactor has thefollowing property (Shannon decomposition), for each 1 <i <n: B(F) = x* AB(FXi) V
x-iAB(Fx-).

A function / ismonotone increasing ina variable x,- if /(x*,/?) = 1 =>> /(xj ,/?) = 1for all /? € {0, l}n !, that
is if "increasing" the value of x,- from 0 to 1 never "decreases" the value of / from 1 to 0. Similarly for monotone

2I.e. the setof x% suchthatthere are two vertices v\ andvi thatdifferonlyin xt forwhichg(vi) £ 3(1*2).



decreasing. A function / is unate in a variable x,- if it is either monotone increasing or monotone decreasing in x,-.
Otherwise / is binate in x<. Eachprime cover of a unate function is also irredundant.

A factored form is recursively defined as

• a literal, or

• the sum of two factored forms, or

• the product of two factored forms.

A factored form F is obtained algebraically from a sum-of-products 5 representation of a function / if F is obtained
from S by applying only the distributive and associative propertiesof Boolean sum and product (i.e. ignoring that
a • a = 0, a -f a = 1 and so on).

2.2 Testing

A combinational logiccircuit is represented as a labeled, directed, acyclic graph (dag) G = (V,E) with eachvertex v
labeled with the name of a primitive gate such as and, or or not, or with the name of a primary input or output. There
is an edge < «, v > in V between two vertices if the output of the gate associated with u is an input to gate v. The
members of V that have no fan-in are the only vertices that may be labeled with the name of a primary input The
members of V that have no fan-out are the only vertices that may be labeled with the name of a primary output.

If the output of a gate, g\, is connected to an input of gate, gi, g\ is afonin of gi. Gate gi is afonout of gate g\.
A two-level circuit is a circuit directly implementing a cover by implementing each product term by an and gate,

the sum term by an or gate adding inverters on inputs as needed.
An asynchronous sequential circuit is implemented, according to the techniques described in [13], using combina

tional logic, asynchronous flip-flops (Set-Reset, C-elements,...) and feedback wires. For the purposes of this paper,
we will assume that

1. each flip-flop is implemented so that it has a testing mode, in which an appropriate value can be scanned in and
out [8].

2. each designer-specified signal that is not implemented with a flip-flop is either a primary input or a primary
output of the integrated circuit or is otherwise made accessible (for example by insertion of a scan D-latch
normally held in transparent mode).

If these assumptions are satisfied, then every cycle in the circuit is broken by at least one scan memory element.
So we shall consider flip-flop inputs as primaryoutputs, and flip-flop outputs as primary inputs of the combinational
logic circuit that we are testing.

2.3 Delay Testing

A path in a combinational circuit is an alternating sequence of vertices and edges, {t/o, e0,..., vn,e„, vn+i}, where
edge e{, 1 < i < n, connects the output of vertex vi to an inputof vertex wj+i. For 1 < i < n, vt- is a gate; t>o is a
primaryinput and vn+i is a primary output Each et- is a net

An event is a transition 0 -+ 1 or 1 —• 0 at a gate. Consider a sequenceof events, {r0, r\, ..., rn} occurringat
gates {go, g\, •••, gn} along a path, such that n occurs as a result of event r,-_i. The event r0 is said to propagate
along the path. If there exists a vector pair such that under appropriate delays in the circuit, an event could propagate
along a path, then the path is said to be event sensitizable. If thereexists an input vector pairsuch that under arbitrary
delays in the circuit, an event propagatesalong a path, then the path is said to be robustly event sensitizable.

A circuit has a gate-delay-faultiff there is one gate in the circuit such that the output of the circuit is slow to make
a 0 —• 1 (or 1 —• 0) even when one or more of the gate's inputs change values. Each single gate-delay-fault is assumed
to be so catastrophic as to cause a delay along any path through the gate to any output

A circuit has a path-delay-fault iff there exists a path from a primary input to a primary output via a set of gates
and nets such that a primary input event is slow to propagatealong the path to the primary output

In this paper, we will be dealing with the hazard-free robust path-delay-fault (hfrpaft) and robust gate-delay-fault
(rgdft)models. A two-pattern test T = < t>i, vi > is said to be a robust delay test for a path ir, ifand only if, when x
is faulty and the test T is applied, the circuit output is different from the expected outputat sampling time, independent



of the delays along gate input leads not on ir [14]. A more stringent model is the hazard-free robust delay fault model,
treated in [16,4].3 A robust testis said tobea hazard-free robust testif nohazards can occur on thetested path during
the application of the test, regardless of gate delay values.

This delay-testing model implies that the scan flip-flops (see Section 2.2) must have the following capabilities:

• select which of the flip-flop inputs (e.g. S or R for a Set-Reset flip-flop) is latched by the test clock and
subsequently scanned out.

• memorize two values to be applied in sequence for the application of a two-pattem test.

2.4 Asynchronous Circuit Specification

The Signal Transition Graph (STG) was introduced by [2] as a specification formalism for asynchronous sequential
circuits. It is an interpreted free-choice Petri net: transitions of the FC net are interpreted as value changes on
input/output signals of the specified circuit.

Two transitionsaresaid to be concurrent if thereexists some net marking where both areenabled. In this case they
can fire in any order. Otherwise they are said to be ordered.

An STG is live if it is strongly connected and for each signal t all its transitions are ordered and alternating
(t+ — <-—*+...).

In [9] was proved thata live STG can be decomposed intoFinite State machine (FSM) components thatcoverthe
net (each component is sequential and exhibits non-deterministicchoice).

The State Graph (SG, also called reachability graph) isadirected graph, where each node (henceforth called state)
is in one-to-one correspondence withalive andsafemarking of thesignal transition graph. An edgejoinsstate s\ with
state s2if thecorresponding marking M2 can be reached from Mi (corresponding to «i) through the firing of a single
transition. This transition labels the edge.

An STG has theUniqueStateCoding (USC) property if there existsanassignment of a unique vector v,- of signal
values to each state st- of the SG, such that for each edge si -• s2:

1. if it is labeled t+ then signal t must be 0 in vi and 1in vi.

2. if it is labeled t~ then signal t must be 1 in vi and 0 in i^.

3. otherwise signal t must have the same value in both vi and t^.

A static hazardis a 0 —> 1 —• 0 transition (static0-hazard) or 1 —• 0 —• 1 transition (static 1-hazard) on an output
signal of acircuit, inany condition where notransition for that signal should beenabled according tothespecification.

A dynamic hazard isaO—•l-»-0-»,l(arl->0-»-l->0) transition onan output signal inanycondition where
a single positive(ornegative) transition for thatsignal is enabled according to thespecification.

2.5 Hazard-free Operation and HFRPDFT

It may be useful to contrastthe requirements of hazard-free operation andhfrpdft.
For theoperation of anasynchronous circuit to be hazard-free it is necessary that for/or all legal inputsequences,

i.e. corresponding to valid firing sequences of the STG specification, no static hazard occurs in the circuit Thus
hazard-free operation is a global property governing the normal operation of the circuit

For a circuit to be hfrpdft it is necessary thatthere exists avector pair that detects each path-delay-fault in a robust
and hazard-free manner. Such a vector pair (vi, vi) might notbe a legal inputsequence, i.e. there mightnotexist a
valid firing sequence of the STG specification bringing the inputs of thecircuit from v\ to i^. This means also that
it mightbe impossible to apply v\ and vi withoutusing scan techniques, because thecircuitry surrounding the path
under test(also called theenvironment), whichwas designed to implement theSTG specification, mightnotbe ableto
produce those vectors in that sequence.

Despite theapparent similaritybetween thetwoproperties, neitherproperty implies theother. Moreover, optimizing
a circuit forone property candiminish oreliminate theother. See for example thecase, described in Section 4, where
makinga circuithfrpdft introduces hazards during normal operation. Conversely, in the very same example,a cube
thatappears in theinitial two-levelcoverin order toeliminate a hazard during operation makes thecircuit not hfrpdft.

3Thehazard free robust path-delay-faultmodelis simplycalled the robust path-delay-faultmodelin [5,4].



3 Hazard-free Asynchronous Circuit Synthesis

3.1 Synthesizing Initial Two-Level Circuit

The following procedures, described in more depth in [13], derive an on-set cover F andan off-setcover R for the
next-state function / of signal U, receivingas input a live STG, S, havingthe USC property, with initialmarking m.
Let v andw bevectors of values forthe n signals that appear in S, v, w € {0,1 }n,andlet tP denote thevalueof signal
tj in v.

Generate-covers (S, i, m)

1. for each signal tj in the STG, do (determine its initial value):

(a) let Mj be an FSM componentof 5 that contains all transitions for tj, and let mj be its initial marking(a
subset of m).

(b) findon Mj the firsttransition t* thatcanbe reached from m;-.

(c) if t*j is tf, then let v> =0, otherwise let tP' = 1.

2. let F = <f>, R = <f>.

3. Generate-covers-recur (5, i, f, R, m, v)

4. expand F and A to prime covers, and remove duplicatecubes.

Generate-covers-recur (S, i, F, R, m, v)

1. if iJ" isenabled in m then let t/* = 1.

2. else if t-,~ isenabled in m then letvl = 0.

3. foreach maximal subset T of transitions enabled in marking m such that t* is norenabled in the marking m'
obtained from m firing all transitions in T do:

(a) \etc = {v> s.t.t] £T}.
(b) if v* = 1then let F = F U{c}, otherwise let i2 = RU{c}.

4. for each transition <!• enabled in m such that marking m', obtained from m firing <), has notbeen reached yet,
do:

(a) let w = v.

(b) ifV- is tf, then let t^ = 1, otherwise let w* =0.
(c) Generate_coversjecur (5, i, F, R, m', w)

If the next-state function / for signal t depends on t itself,then we initially implement t witha set-reset flip-flop
and a pair of two-level circuits,

• one forthe set input, includingall cubes in F thatdependon t, cofactored againstt,

• one for the reset input, includingall cubes in F thatdo not dependon t (plusone not gateto invert it).

If / doesnotdepend on t, thenourinitial circuit is directly theon-setcoverof /.
Notice that these initial two-level implementations are guaranteed to be prime, but not irredundant, and the

redundancies cannotbe removed without introducing hazards in the operation of the circuit(see, forexample, [11]).



3.2 Removing Hazards from the Initial Implementation

The following procedure, described in more depth in [12], detects and removes all possible hazards from a circuit
implementation I of the next-state function / of each signal, using information from the State Graph associated with
the STG specification.

Let F be the initial two-level on-set cover of /, as obtained in Section 3.1, and let / be a circuit derived from F
using onlydistributivity andassociativity4. Let R'be thesetof all theprime implicants of the complement of B(F),
and let F' be the set of all the prime implicantsof B(F). Let v, be a vertex in the domain of /, correspondingto the
label of some SG state. The transitioncube C associatedwith a pair of vectors (v\, v2) is defined as the cube obtained
removing from v\ all signals that change value going from v\ to v2 on the SG. E.g. if we have v\ = xyz, i^ = xyz
and signals y and z have a transition between those two SG states, then C = x. Let d(c\, c2) denote the Hamming
distance between cubes c\ and c2.

Remove-hazards (/, F, R, F', R', I)

1. for each vector pair (v\, t^) such that

• d(v\, t/2) is maximal and

• f(vx) = f(v2) = f(vj) for all vj on an SG path from v\ to i^:

(a) let C be the extendedtransitioncube associated with (vi, t^).

(b) iff(vl) = f(v2) = l\hen:

i. for each cube c<> G R' intersecting C, for each pair of distinctimplicants
ci,c2 6 FnCsuchthat
d(cQ,vi) = d(ciJu1) + l, d(ci,c0) = 1,
d(co, V2) = d(c2, v2) + 1 and d(c2i c0) = 1:
A. let t\ be thetransition moving from c\ to c0. Let t2 bethetransition moving from c0 to c2.
B. let dx bea lower bound onthedelay along the path in I5 from input t\ to t corresponding tocube

c\ for transition^.
C. let d2 beanupper bound onthedelay along thepath in J from input t2 tot corresponding tocube

c2, for transition^.
D. letck bea lower bound onthe delay between transition t2 and t\6.
E. if (d2 -d\)> dz then a hazardconditionexists.

Then increase dj, e.g. byadding non-inverting buffers, so that (d2 - d\) < rf3.

(c) else(/(t;1) = /(V2) = 0):

i. do the same, exchanging F <-• R and R' *-*• F'.

4 A Procedure Guaranteed to Generate a HFRPDFT Circuit

This Section describes a technique to implement the two-level initial on-set cover obtained in Section 3.1 as a fully
hazard-free robustly path-delay-fault testable circuit that has exactly thesame hazard properties as theinitial two-level
cover, so that thealgorithm described inSection 3.2can beused tomake it hazard-free inoperation and fully hfrpdft.

[10] first gave a procedure, based onShannon decomposition, tomake acombinational circuit robustly path-delay-
fault testable. The essence of this procedure is to choose a binate variable, call it x, in a given sum-of-products
representation, call it S, of a Boolean function /, decompose S intox •Sx + x •S*, such thatthevariable x does not
appear ineither SxandSx. Unfortunately, while this procedure results ina hazard-free robustpath-delay-fault testable
implementation it may notresult inan implementation thatis hazard-free during normal operation, as is required.

4Welimitourselves to such operations because, asshown in [13], / thenhasexactly thesame hazards asF.
sThere exists onlyonesuch path if J isobtained using onlydistributivity and associativity.
6Obtained from adelayanalysis of thecircuit implementing signal t%, orassumed to be 0.



Figure 1: STG with a non-hfrpdftnext-state function.

Take for example the STG reported in Figure l_(takenfrom [3]). The on-set_and offset covers for signal Ait as
obtained in Section 3.1,are respectively FAx = DL + DR±+ LRi and RAi = DL + DRi + LRi. Bothcovers are
redundant(cube DRi can be removed from FAi and cube DRi can be removed from RAi). If we choose any variable
for the above decomposition, we introduce a hazard whenever that variable changes and At must remain constant.
Notice that in this case there is also no hope to obtain a hfrpdft implementation with any of the heuristics described in
Section 5, which cannot remove a redundancy in both the on-set and off-set covers.

We now present a procedure which is guaranteed to produce an hfrpdft circuit. This procedure may require the
additionof test inputs. At present we know of no procedure that is guaranteed to produce hfrpdftcircuits, that arealso
hazard-free in operation, that does not also add test inputs.

4.1 Algebraic Decomposition

Our procedure is similarto the one outlinedabove in some respects: first a variable at the beginningof an untestable
path is identified, call it x, in a given sum-of-products representation, call it F, of a Boolean function /. F is then
algebraically decomposed into x •G + x •H + R, so thatthevariable x doesnotappear in anyoneof G, H and R. The
differencebetween this procedure and thatof [10] is the ability to partition out a remainder R. This results in a more
area efficientimplementation but moreimportantly the factoring outof theremainder ensures hazard-free operation as
we will show in Section42 below. We now give the procedure in detail. It takes as inputa prime,but possiblynot
irredundant, two-levelrepresentation F of a Boolean function /, andit returns a multi-levelimplementation of / with
exactly the same hazard properties of F:

Make_HFRPDFT(F)

1. If the combinational circuit F is hazard-free robustly-path-delay-fault testable,then returnF.

2. otherwise:

(a) choose (with an appropriate heuristic) an input variable x such thata pathbeginning from x is untestable
inF.

• Let G be the two-level coverobtained by collecting all the cubes in F thatdepend on x, cofactored
against x.

• Let H be the two-level cover obtained by collectingall the cubes in F that dependon x, cofactored
against x.

• Let R be the two-level cover obtainedby collectingall the cubes in F that do not depend on either x
orx.

(b) Let *i and t2 be two new variables, not in the support of /.



Figure 2: Application of Make-HFRPDFT.

(c) Return the circuittx •x-Make-HFRPDFT(G) + U •x- Make-HFRPDFT(#) +t2- Make-HFPDFT(.R)

Figure 2 shows the result of one step of Make-HFRPDFT(F).
Wenowproceed to prove that thisprocedure results in a hfrpdft circuit. Thekey result is the following:

Theorem 4.1 Let f bea Booleanfunction, letF bea combinational circuit implementing f and letG x + H •x + R
be an algebraicfactorizationofF such that

1. G,H and R are each individuallyhfrpdft circuits

2. The on-set ofthe Booleanfunction implemented by Gcontains avertex not contained inthe on-set ofthe Boolean
function implemented by H and

3. The on-set oftheBooleanfunction implemented by H contains a vertex not contained inthe on-set ofthe Boolean
functionimplemented by G and

4. t\ and t2 are twovariablesnot in thesupport of f

ThenF' = tx G •x -Mi • H • x -M2 • R is a hfrpdft circuit.

Proof: Weassume that G, H and R are non-empty. If theyare then the analysisis furthersimplified.
Each of G, H, andR areassumed tobe hfrpdft. Theproofstrategy used todetectdelay faults in these sub-circuits

in F' is to augment thevectors which testthose paths in isolation withtheappropriate values of t\, t2,and x.
Consider a path it in G. Bysupposition G in isolation is hfrpdft so wehave a vector pair < vi, t^ > thattests it.

To test it in F' set t\ = 1, t2 = 0, x = 1 and apply < vx,t^ >.
Consider a path it in H. By supposition H in isolation is hfrpdft so we havea vectorpair <vl,v2> that tests it.

To test it in F' set t\ = 1, t2 = 0, x = 0 and apply < t>i, t^ >.
Consider a path it in R. Bysupposition R in isolation is hfrpdft so wehave a vector pair < vi,v2> thattests it.

To test 7r in F' set t\ - 0, t2 = 1, x = 0 and apply <v\,v2>.
The paths associated with x and x are equally straightforward. Consider the path it associated with x. By

supposition theon-set of Gcontains a vertex notcontained in H. Call that vertex v. To test itsett\ = l,t2 = 0, give
the values of vertex v to the other primary inputs and let x rise 0 —• 1.

Consider thepath itassociated with x. Bysupposition the on-set of H contains a vertex notcontained in G. Call
thatvertex v. Totest it set t\ = 1, t2 = 0, give thevalues of vertex v to theotherprimary inputs andlet x fall 1 —> 0.

The testing inputs do notneedtorunat speedbut it maybesimpler to testthem thanto treatthem as a special case.
The vectors are created as follows.

Consider the path it associated with the testing input t\ in x •tx •G. By supposition the on-set of G contains a
vertex not contained in H. Call that vertex v. To test it set t2 = 0, x = 1, give the values of vertex v to the other
primary inputs and let t\ rise 0 —• 1.

Considerthe path it associated with the testinginput tx in x •t\ •H. By supposition the on-setof H contains a
vertex not contained in G. Call that vertex v. To test it set t2 = 0, x = 0, give the values of vertex v to the other
primary inputs and let t\ rise 0 —• 1.

8



Figure 3: Application of Make-HFRPDFT without test inputs.

Consider the path it associated with the testinginput t2. To test it first findany vertex v such that R = 1. Then set
t\ = 0, give the values of vertex v to the other primary inputs, and let t2 rise 0 —• 1.

Thus every pathin F' is hazard-free robust path-delay-fault testable. •
Notice also that a similar argumentallows us to conclude that if both G + R and H + R are hfrpdftcircuits, then

we do not have to introduce the testing inputs t\ and t2, resulting in the circuit structure described in Figure 3.
We prove that we retain primality in the recursion step of Make-HRFPDFT in the following Lemma.

Lemma 4.1 Let F bea primeon-setcoverofa Booleanfunction f. Let x be a variable in thesupport of f. Let G be
the set ofcubes containing x, H be the set ofcubes containing x and R be the set ofcubes containingneither x or x.
Let Gx be the cofactor ofG with respect to x and let Hx be the cofactor ofH with respect to x.

Then each ofGx, Hx and R is a prime cover.

Proof: Suppose some cube c in Gx (with corresponding cube d = x •c in F) is not prime. Then we could remove
a literal, say y, from it, and the resulting cube, call it cy, would still be an implicantof /. So also d —cy y would
be an implicant of g, and c" = c7 • x wouldbe an implicant of /. Then we could expand d to dy, contradicting the
hypothesis of primality of F.

A similar argument can be used for H. As R is unchanged from F, R remains prime. •
To prove procedure Make-HFRPDFT is correct, we use induction and apply Theorem 4.1 at the induction step.

Theorem 4.2 Let F bea prime on-set cover ofa Booleanfunction f. Thenprocedure Make-HFRPDFT results in a
hfrpdft combinational circuit F' of theform <i •x •G' -Mi • x • H' +12 •R' implementing f.

Proof:

• Basis:

Let / be a Boolean function of two variables. By inspection we can show that for any function of two variables
there exists a hfrpdft implementation using Make-HFRPDFT.

• Induction step:
Suppose that any function of n variables can be made hfrpdft by the procedure Make-HFRPDFT. Let / be a
function of n + 1 variables. Suppose F is not hfrpdft. Let x be a variable such that a path beginning at x is not
testable in F.

By Lemma 4.1, each of G, H and R (supposed not empty, as in the proof ofTheorem 4.1) is a prime cover of a
function of n variables, and therefore, by the induction hypothesis, each has a hfrpdft implementation that can
be arrived at through Make-HFRPDFT. Let us callthesehfrpdft implementations G', H' and R' respectively.

Now suppose that H' is not empty, and that it contains no vertex not contained in G'. Then, also H is not
empty and it contains no vertex not contained in G. Let d be any implicant of F that is assigned to H, and let
c = dx. Since c contains no vertex that is not contained in G, then we could have removed x from d leaving it
an implicant of /. But this contradicts the primality of F.



By a similar argument we can show that G' contains some vertex not contained in H'.

We have now shown that:

1. G', H' and R' are each individually hfrpdft circuits

2. The on-set of G' contains a vertex not contained in H' and

3. The on-set of H' contains a vertex not contained in G'.

Let t\ and t2 be two variables not in the supportof /. Then by Theorem4.1 F' = t\ •x •G' + tx •x •H' +12 •R'
is a hfrpdft circuit.

Thus procedure Make-HFRPDFT produces a hfrpdft circuit using additional test inputs. •

4.2 Retaining Hazard Free Operation

We wish to show that the techniques used to make the circuit hazard-free robustly path delay fault testable do not
destroy the possibility to make the circuit hazard-free in operationusing the algorithm described in Section 3.2

To do this we will find it useful to apply the following Theorem, of [15]:

Theorem 43 LetT bea two-level representation of a logicfunction f. Let M be a multi-level representation of f
such that it can be obtainedfrom T using only the associative, distributive and De Morgan laws. Then the circuits
corresponding to M and T haveprecisely thesame static hazards.

That is foreach pairof input vectors such that the output of M hada hazard for some assignment of wire delays, there
exists some wire delay assignmentin T such that the same hazard happens at its output,and vice-versa. On the other
hand if somehazard couldnot happen in M under any wiredelay assignment, thenit could nothappen also in S, and
vice-versa.

The relevance of this Theorem is that, if we have a two-level implementation T of a logic function / that does
not exhibit hazards for some class of input changes, then we can use the transformations listed above, to obtain a
multi-level implementation of / that has the same hazard properties.

To see that the circuit F' has the same hazards as F, observe that the inputs t\ and t2 do not change during
normal operation, therefore their introduction does notcreate any hazards. Thus in normal operation F' operates as
G • x + H • x -I- R. The factorization of the initial circuit F into Gx + Hx + R can be accomplished simply
using associativity. Thus no hazards are introduced in this decomposition and theresulting circuit F' can be made
hazard-free in operation.

5 Heuristic Procedures to Improve HFRPDF Testability

In this Section we presenta numberof heuristics which, while not guaranteeing to producea hfrpdft implementation
of a circuit, may be expectedto improvethe hazard-free robust path-delay-fault testability of a given circuit,without
introducing new hazards in its operation.

5.1 Algebraic Factorization

In additionto being a useful technique for circuitoptimization,algebraic factorization can be used as a heuristic for
improvingthe delay-fault-testability of a circuit. While a rigorous proofof the utility of this techniquewould require
the introduction of the notion ofENFReducibility from [1,6], the basic principle in operation is simply demonstrated.
Given a cover F • G + F • H, if the paths associated with F were hfrpdft either in G or in H (but not necessarily
hfrpdft in both), then if the cover is algebraically factored to produce F >(G+ H) then F becomesfully hfrpdft. This
is due to the collapsing of paths that is a natural by-product of algebraic factorization. As a simple illustrationof this
consider the following example drawn from [6]: C = ob+ be+ 6cand itsalgebraic factorization M —(a + c)b+ 6c.
The pathassociated with literal 6 in cube abof C, call it itx, is not hfrpdft, but the pathassociated with 6 in cube beof
C, call it tt2, is hfrpdft. After C is factored into M there is a many-to-one reduction from paths it\ and it2 to a single
path it associated with literal6 in the factor (a + c)b,andthe testabilityof it2 alone is sufficient to ensurethe testability
of it. As a result M is completely hfrpdftwhile C is not.
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As algebraic factorization is essentiallyiterativeapplications of the associative law, it retains the hazard properties
of the initial two-level implementation, so thatagain the algorithm of Section 3.2 can be applied to make the circuit
hazard-free in operation.

5.2 Complementation

When the on-set cover of the next-state function of a signal is not hfrpdft,then it may be the case that its companion
off-set cover (as obtained inJSection 3.1) is more easily made hfrpdft. Consider the function / implemented in the
circuit F = a c+ab + ab+cd+cd. While this is one ofa few prime and irredundant implementations of this function,
the pathsassociatedwith a and c in ac arenot hfrpdft.Furthermore all prime and irredundantimplementations of this
function share this problem. Algebraically factoring out a produces thecircuita(c + b)+ abc+d + cd. While the path
associated with a has become hfrpdft, the pathassociated with c in (c + 6) is still not hfrpdft. Furthermore, another
applicationofalgebraic factorization will not make this path hfrpdft. Thus algebraic factorization alone cannot be used
to make this circuit hfrpdft.

An alternativeway ofgetting a fully hfrpdftimplementation of / is to implement anoff-setcover of /, ratherthanan
on-setcover,andcomplement theoutput. The off-set cover R of/, asobtainedin Section 3.1, is R = a6cd+a6ai+a6c(i.
This implementation is hfrpdft.

Another case in which this can be useful is when the on-set cover of / obtained by the algorithm in Section 3.1 is
redundant, while the corresponding off-set cover is not

Having implemented R, we can apply Lemma 4.7 of [15] that statesthat introducing an inverter at the output of a
circuit can does not introduce or remove hazards. Thus complementing the output of R to produce / retains the hazard
properties of R, and the resulting circuit can be made hazard-free.

6 A Procedure Guaranteed to Generate a RGDFT Circuit

In Section 4 we presented an algorithm that is guaranteed to produce a hazard-free robustly path-delay-fault testable
implementation of a circuit. This algorithm has the potential disadvantage that test inputs may be required. In this
Section we present a technique that also requires the introduction of test inputs but may require fewer test inputs,
producing an implementation that is robustly gate-delay-fault testable. This delay-fault testability model is less
stringent than hfrpdft,but it can still be sufficient to determine with the desired accuracy whether the delays in the
manufacturedcircuit lie within the bounds assumed during synthesis, thus ensuring hazard-freeoperation.

6.1 Making the Circuit Robustly Gate Delay Fault Testable

The initial two-level cover producedby the techniques in Section 3.1 is prime but may not be irredundant. The first
step requiredis to make each cube irredundant throughthe introductionof test inputs. Foreach redundantcube in the
cover we add one test input.

Startingnow with an irredundant two-level cover we proceed to make the cover rgdft throughthe introductionof
a single test input. This procedure is modeledafterthe procedure given in [17] to improve stuck-open faulttestability.
To motivate this procedure we will employ the following Lemma from [4,7].

Lemma 6.1 : LetC be a two-level single-output circuit andletg bea gatein C. Ifa path it through g is hazard-free
robustly path-delay-fault testabletheng is robustly gate-delay-fault testable.

It is likely thatafter applying the heuristictransformations described in Section 5 thatat least one path per gateis
hfrpdft. If this is not the case then the following procedurewill make the circuit rgdft.

Make-RGDFT(C)

1. If the prime and irredundant two-level combinational logic circuit C is robustly gate-delay-fault testable, then
return C.

2. otherwise:
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(a) Let Q = {qi, q2,..., qn} be the set of cubes in C thatarenot rgdft.

(b) Let t be an input not in the support of C.

(c) Add t to eachcube in Q. Forexample q'i = t •qi.

(d)LetQ' = {q'\qeQ}.

(e) LetC = C-QuQ'

3. Return C'

Wenow proceed toprove that theresultingcircuit C' isrgdft. Letgbeagate inC" associated withcube g. Suppose
q is not in Q'. Then by supposition 9 wasalready rgdft, and the introduction of t does not change thisproperty.

Suppose q' is in Q'. Both the circuit C' and C are prime and irredundant. Letv bearelatively essential vertex of
q 6 Q. Consider v' = t •v. Clearly, q' covers t •v. Furthermore noother cube in C' covers v' otherwise v would
not be a relatively essential vertex of q. So v' is a relatively essential vertex of q'. Consider the vector sequence
< t •v, t •v >. The vector v' = t •v isarelatively essential vertex of g'and itmustbe thecase that thevector t •v is in
theoff-setof C'. Therefore by thenecessary and sufficient conditions for hfrpdft in two-level networks given in [7,4]
the path associated with t in q', call it it is hfrpdft. Now byLemma 6.1 given above, because it ishfrpdft then thegate
gassociated with cube q' must also bergdft. Furthermore, because it ishfrpdft, the output orgate of C must also be
rgdft, by the reasoning of the same Lemma. Thus the procedure immediately above creates a two-level circuit that
iscompletely rgdft. To create a rgdft multilevel circuit from this two-level circuit then the constrained factorization
techniques of [S, 6] may be applied.

To see that the circuit C can be made hazard-free, observe that the input t does not change during normal
operation, therefore its introduction does not create any hazards. Thus innormal operation C" has exactly the same
hazard properties as C.

7 Summary

So far we have described theeffective procedures of Sections 4 and 6 and the heuristic techniques of Section 5 as
independent procedures, but in fact the most effective use ofthese techniques involves their integrated application. If
the initial two-level circuit produced in Section 3.1 is hfrpdft, then algebraic factorization can be freely applied and
hfrpdft will be retained.

If theinitial two-level circuit is nothfrpdft, then thebest course is toiteratively apply theheuristics of Section 5.
Ifwereach apoint atwhich further applications ofalgebraic factorization alone will not improve the testability of the
circuit, then we have two courses.

1. We can examine the rgdft of the current circuit. If the fault coverage inthis model ishigh (as would beexpected)
and this fault model isacceptable, then wecan terminate atthis point. We can also achieve complete rgdft using
the techniques of Section 6.

2. Alternatively, if complete fault coverage in the hazard-free robust path-delay-fault model is desired, then this
can be achieved at this point using the techniquesof Section4.

Through the integrated application of these techniques weaim to achieve the desired fault coverage with the least
penalty in area overhead and the fewestadditional test inputs.

At this point, wehave obtained an hfrpdft (or rgdft) implementation of the STG specification that has exactly the
same hazard properties as the initial two-level cover. Sowecan now apply the techniques described inSection 3.2 in
order to obtain a circuit that is hazard-free in operation. These techniques simply change thedelays of somesignals,
so both hfrpdft andrgdftaremaintained in the final hazard-free implementation.

8 Results

In thissection we present ourexperimental results onanumber of examples, taken bothfrom industry and academia.
Table 1 gives the area and delay (usinga standard cell implementation) of:

• a hazard-free, but notcompletelytestable, optimizedimplementation (column •TJntestable").

12



example Untestable Testable

Area Delay Area Delay Decomp. Test inp.
chul33 320 5.4 320 5.4 0 0

chul50 208 52 264 5.6 1 2

chul72 192 5.2 192 5.2 0 0

converta 432 9.2 432 9.2 0 0

ebergen 304 5.2 304 5.2 0 0

full 224 4.0 224 4.0 0 0

hazard 264 6.4 264 6.4 0 0

hybridf 304 4.8 304 4.6 0 0

nowick 232 42 232 4.2 0 0

alloc-outbound 336 5.4 336 5.4 0 0

mp-forward-pkt 304 5.6 304 5.6 0 0

nak-pa 320 5.6 320 5.6 0 0

pe-rcv-ifc 1000 8.4 1000 8.4 0 0

pe-send-ifc 1160 10.8 1160 10.8 0 0

ram-read-sbuf 440 7.0 440 7.0 0 0

rev-setup 128 2.8 128 2.8 0 0

sbuf-ram-write 456 9.2 456 9.2 0 0

sbuf-read-ctl 320 5.2 320 5.2 0 0

sbuf-send-cd 344 5.6 360 5.4 0 0

sbuf-send-pkt2 352 5.2 352 5.2 0 0

sendr-done 128 3.8 128 3.8 0 0

qr42 304 52 304 5.2 0 0

rpdft 176 4.0 256 6.6 2 3

vbelOb 808 6.8 808 6.8 0 0

vbe5b 392 7.6 352 8.8 0 0

vbe5c 192 3.8 192 3.8 0 0

wrdatab 744 8.2 744 8.2 0 0

total 10384 159.8 10496 163.6 3 5

Table 1: Experimental results

• a hazard-freehfrpdftoptimized implementation (column "Testable").

The area is the total area, excluding routing, of each circuit The delay is the maximum combinational logic delay,
obtained with static timing analysis.

The column labeled "Decomp." gives the number of times procedure Make-HFRPDFT had to decompose the
circuit in order to makeit hfrpdft, whilethecolumn labeled 'Test inp." givesthenumber of added test inputs foreach
circuit.

9 Conclusion

In this paper we areconcerned with the problem of synthesizingasynchronous sequential circuits from a high level
specification, the SignalTransition Graph (STG, [3]). We have demonstrated both heuristictechniques and effective
procedures to synthesize hazard-free asynchronous circuits that are testable in the very stringent hazard-free robust
path-delay-fault model.

There are three principalobstacles to comprehensive path-delay-faulttesting:

1. the synthesis of fully hfrpdft sub-circuits;

2. the inability to achieve comprehensive pathcoveragebecauseof an unmanageablenumber of paths;and
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3. the inability to apply the vector pairs due to limited controllability/observability.

Our results on both academic and industrial examples show that our synthesis for testability techniques can be used
to create asynchronous circuits that are fully hfrpdft.

Moreover, in practice we may not have to test all paths, but only each path that intervenes in one of the delay
bounds used by the procedure described in Section 3.2. This would then be enough to guarantee the hazard-freeness
of the manufactured circuit7.

Finally our testing scenario, where all flip-flops is the circuit can operate in test mode, gives the required control
lability and observability.

Thus in this paper we have preliminary indicationsthat the threeprincipalobstacles to comprehensivepath-delay-
fault testing of asynchronous circuits can be overcome.

The techniques of this paper were applied to circuits synthesized using the asynchronous synthesis procedures
describedin Section3. However, becauseour synthesisfor testability techniques so carefullypreservethenatureof the
original two-level cover, webelieve that thesametechniques canbe applied toachieve fullytestable implementations
of circuits produced by otherasynchronous synthesis procedures, suchas theonesdescribed in [18].
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