Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SYNTHESIS FOR TESTABILITY TECHNIQUES
FOR ASYNCHRONOUS CIRCUITS

by

Kurt Keutzer, Luciano Lavagno, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M91/77

16 September 1991

SYNTHESIS FOR TESTABILITY TECHNIQUES
FOR ASYNCHRONOUS CIRCUITS

by

Kurt Keutzer, Luciano Lavagno, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M91/77

16 September 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

SYNTHESIS FOR TESTABILITY TECHNIQUES
FOR ASYNCHRONOUS CIRCUITS

by

Kurt Keutzer, Luciano Lavagno, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M91/77

16 September 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Synthesis for Testability Techniques for Asynchronous Circuits®

Kurt Keutzer Luciano Lavagno Alberto Sangiovanni-Vincentelli
Synopsys University of California University of California
Mountain View, CA Berkeley, CA ' Berkeley, CA
Abstract

Our goal is to synthesize hazard-free asynchronous circuits that are testable in the very stringent hazard-free
robust path-delay-fault mcdel. From a synthesis perspective producing circuits satisfying two very stringent require-
ments, namely, hazard-free operation and hazard-free robust path-delay-fault-testability, poses an especially exciting
challenge. In this paper we present techniques which guarantee both hazard-free operation and hazard-free robust
path-delay-fault testability, at the expense of possibly adding test inputs, and give a set of heuristics which can
improve hazard-free robust path-delay-fault testability without requiring such inputs. We also present a procedure
that guarantees testability in the less stringent robust gate-delay-fault model.

1 Introduction

In this paper we are concerned with the problem of synthesizing asynchronous sequential circuits from a high level
specification, the Signal Transition Graph (STG, [3]). In [13, 12] we presented a set of algorithms to solve this problem.
They produce a circuit implementation that is guaranteed to be hazard-free if and only if a set of inequalities among
path delays inside the circuit is satisfied. So using a suitable delay model during the synthesis process it is possible to
guarantee hazard-freeness in the absence of delay faults. Now our goal is to test those path delays, and be sure that the
above mentioned inequalities are satisfied in each manufactured circuit.

Moreover, as asynchronous interface circuits typically have absolute delay requirements, it is highly desirable to
know that the synthesized circuit is able to operate with the required timing constraints. Also, because asynchronous
circuits are often used as interfaces in systems where very high reliability is required, a stringent manufacture test of the
interface circuitry is desirable. Unfortunately current testing procedures do not even reliably provide comprehensive
stuck-at-fault testing of asynchronous circuits.

Our goal is to synthesize hazard-free asynchronous circuits that are testable in the hazard-free robust path-
delay-fault model. Producing circuits satisfying two very stringent requirements, namely, hazard-free operation and
hazard-free robust path-delay-fault-testability (Afrpdft), poses an especially exciting challenge. In this paper we
present techniques which guarantee both hazard-free operation and hazard-free robust path-delay-fault testability, at
the expense of possibly adding test inputs, and give a set of heuristics which can improve hazard-free robust path-
delay-fault testability without requiring such inputs. We also present a procedure that guarantees testability in the less
stringent robust gate-delay-fault model (rgdf?).

The testing scenario that we envision uses full scan techniques to make the test generation process manageable. In
this scenario every flip-flop (Set-Reset, C-element, . . .) can be scanned, to increase both the observability of its inputs
and the controllability of its output. This is also necessary because some of the flip-flop types, for example Set-Reset
flip-flops, are sensitive only to input transitions in one direction, rising or falling'. So we cannot test the delay of the
transitions in the other direction without resorting to scan techniques.

This paper is organized as follows: We present necessary terminology in Section 2. We show how an initial
two-level circuit can be generated, and how hazards can be removed from it, in Section 3. We give a procedure that
is guaranteed to turn this two-level circuit in a Afrpdft circuit in Section 4. We then give a variety of heuristics that
are likely to increase the hfrpdft testability of a circuit in Section 5. We give another algorithm for producing a rgdft
circuit in Section 6. Results on applying these techniques are given in Section 8.

*This work was partialy supported by the National Science Foundation under Grant UCB-BS16421
!This is useful also to remove dynamic hazards from the circuit, see [13].

2 Definitions and Notation

Analysis and synthesis of hazard-free asynchronous circuits which are also delay-fault testable requires spanning the

fields of logic optimization, testing and asynchronous synthesis. In this section we provide a minimal amount of
terminology which will be used in the following sections.

2.1 Logic Synthesis

A completely specified single-output logic function g of n input variables is a mapping ¢ : {0,1}" — {0,1}. Each
input variable ; corresponds to a coordinate of the domain of g. Each element of {0, 1}" is called a vertex. The set
of variables on which g depends? is called the support of g. The complement of g is the Boolean function ¢’ such that
g(v) =14 ¢g'(v) =0and g(v) =0 < ¢'(v) = 1 forall v € {0, 1}". An incompletely specified single-output logic
function f of n input variables (called logic function in the following) is a mapping f : {0,1}" — {0, 1, =}.

The set of vertices where f evaluates to 1 is called the on-set of f, the set of vertices where f evaluates to 0 is
called its off-set, the set of vertices where f evaluates to * is called its dc-set. Each vertex of the on-set of f is called a
minterm.

A literal is either a variable or its complement. A cube c is a set of literals, such that if a € c then @ ¢c
and vice-versa. It is interpreted as the Boolean product of its elements. The cubes with » literals are in one-to-one
correspondence with the vertices of {0, 1}". _ _ _ _

A cube ¢, covers another cube c;, denoted ¢; T ¢; if ¢; C ¢z, for example {a, b} C {a,b,c}, so abc T ab. The
covering is strict, denoted ¢; C ¢, if ¢ # ¢1.

The intersection of two cubes ¢, and c; is the empty cube if there exists z; such that z; € ¢; and T; € ¢; (or
vice-versa), otherwise it is ¢c3 = ¢; U c;. The Hamming distance between two cubes ¢; and c; is the number of variables
z; such that either z; € ¢; A Z; € c3 (or vice-versa).

A cube is called an implicant of a logic function f if it covers some minterm of f and it does not cover any off-set
vertex of f. An implicant of f is called a prime if it is not covered by any other single implicant of f.

An on-set cover F of a logic function f is a set of cubes such that each cube of F is an implicant of f and each
minterm of f is covered by at least one cube of F. By analogy we can define an off-set cover R of a logic function f
as a set of cubes such that each cube of R covers only off-set vertices of f and each off-set vertex of f is covered by
at least one cube of R.

A cube c in an on-set cover F of a logic function f can be expanded by removing literals from it while it remains
an implicant of f. The result of the expansion is not unique (it depends on the removal order), but it is always a prime
implicant of f.

In the following we shall use “cover” to denote on-set covers. Each cover F' corresponds to a unique completely
specified logic function, denoted by B(F'). On the other hand a logic function can have in general many covers (also
called sum-of-products or two-level representations). A cover is interpreted as the Boolean sum of its elements, so it
can also be seen as a two-level sum-of-products implementation of the completely specified function B(F).

A cover F is called a prime cover of a function f if all its cubes are prime implicants of f. A cover F is called
an irredundant cover of a function f if deleting any cube from F causes it to be no longer a cover of f (i.e. if some
minterm is no longer covered by any cube of F'). A relatively essential vertex or an irredundancy test of a cube c in a
cover F is a vertex that is covered by c and is not covered by any other cube in F'.

The cofactor of a cube c with respect to a literal z;, denoted by c;, is:

o the empty cube (a cube that does not cover any element of {0, 1}") if Z; € c.
o ¢ — {z;} otherwise.

The cofactor of a cover F with respect to a literal z;, denoted by F:,, is the set of cubes of F' cofactored against
z;. The empty cube can always be deleted from a cover, since it does not cover any vertex.

The cofactor has the following property (Shannon decomposition), for each 1 < i < n: B(F) = z; A B(Fy,) V
T; A B(Fg;).

A function f is monotone increasing in a variable z; if f(Z7,8) = 1 = f(z;,8) = 1 forall § € {0,1}""}, that
is if “increasing” the value of z; from O to 1 never “decreases” the value of f from 1 to 0. Similarly for monotone

2].e. the set of z; such that there are two vertices vy and v; that differ only in z; for which g(v1) # g(w2).

decreasing. A function f is unate in a variable z; if it is either monotone increasing or monotone decreasing in z;.
Otherwise f is binate in z;. Each prime cover of a unate function is also irredundant.
A factored form is recursively defined as

e aliteral, or
o the sum of two factored forms, or
¢ the product of two factored forms.

A factored form F is obtained algebraically from a sum-of-products S representation of a function f if F is obtained
from S by applying only the distributive and associative properties of Boolean sum and product (i.e. ignoring that
a-@=0,a+a=1andsoon).

2.2 Testing

A combinational logic circuit is represented as a labeled, directed, acyclic graph (dag) G = (V, E) with each vertex v
labeled with the name of a primitive gate such as and, or or not, or with the name of a primary input or output. There
is an edge < u, v > in V between two vertices if the output of the gate associated with u is an input to gate v. The
members of V' that have no fan-in are the only vertices that may be labeled with the name of a primary input. The
members of V that have no fan-out are the only vertices that may be labeled with the name of a primary output.

If the output of a gate, g, is connected to an input of gate, g2, g1 is a fanin of g». Gate g2 is a fanout of gate g;.

A two-level circuit is a circuit directly implementing a cover by implementing each product term by an and gate,
the sum term by an or gate adding inverters on inputs as needed.

An asynchronous sequential circuit is implemented, according to the techniques described in [13], using combina-
tional logic, asynchronous flip-flops (Set-Reset, C-elements, . . .) and feedback wires. For the purposes of this paper,
we will assume that

1. each flip-flop is implemented so that it has a testing mode, in which an appropriate value can be scanned in and
out [8].

2. each designer-specified signal that is not implemented with a flip-flop is either a primary input or a primary
output of the integrated circuit or is otherwise made accessible (for example by insertion of a scan D-latch
normally held in transparent mode).

If these assumptions are satisfied, then every cycle in the circuit is broken by at least one scan memory element.
So we shall consider flip-flop inputs as primary outputs, and flip-flop outputs as primary inputs of the combinational
logic circuit that we are testing.

2.3 Delay Testing

A path in a combinational circuit is an alternating sequence of vertices and edges, {vo, €9, ..., ¥n, €n, Un+1}, Where
edge ¢;, 1 < i < n, connects the output of vertex v; to an input of vertex v;4y. For 1 < i < n, v; isa gate; vpisa
primary input and v, 4 is a primary output. Each e; is a net.

An event is a transition 0 — 1 or 1 — 0 at a gate. Consider a sequence of events, {rg, ™, ..., s} occurring at
gates {go, g1, ..., gn} along a path, such that r; occurs as a result of event r;—,. The event ry is said to propagate
along the path. If there exists a vector pair such that under appropriate delays in the circuit, an event could propagate
along a path, then the path is said to be event sensitizable. If there exists an input vector pair such that under arbitrary
delays in the circuit, an event propagates along a path, then the path is said to be robustly event sensitizable.

A circuit has a gate-delay-fault iff there is one gate in the circuit such that the output of the circuit is slow to make
a0 — 1 (or 1 — 0) even when one or more of the gate’s inputs change values. Each single gate-delay-fault is assumed
to be so catastrophic as to cause a delay along any path through the gate to any output.

A circuit has a path-delay-fault iff there exists a path from a primary input to a primary output via a set of gates
and nets such that a primary input event is slow to propagate along the path to the primary output.

In this paper, we will be dealing with the hazard-free robust path-delay-fault (4frpdft) and robust gate-delay-fault
(rgdft) models. A two-patterntest T = < v;, v, > is said to be a robust delay test for a path =, if and only if, when 7
is faulty and the test T is applied, the circuit output is different from the expected output at sampling time, independent

of the delays along gate input leads not on 7 [14]. A more stringent model is the hazard-free robust delay fault model,
treated in [16,4). 3 A robust test is said to be a hazard-free robust test if no hazards can occur on the tested path during
the application of the test, regardless of gate delay values.

This delay-testing model implies that the scan flip-flops (see Section 2.2) must have the following capabilities:

o select which of the flip-flop inputs (e.g. S or R for a Set-Reset flip-flop) is latched by the test clock and
subsequently scanned out.

¢ memorize two values to be applied in sequence for the application of a two-pattern test.

2.4 Asynchronous Circuit Specification

The Signal Transition Graph (STG) was introduced by [2] as a specification formalism for asynchronous sequential
circuits. It is an interpreted free-choice Petri net: transitions of the FC net are interpreted as value changes on
input/output signals of the specified circuit.

Two transitions are said to be concurrent if there exists some net marking where both are enabled. In this case they
can fire in any order. Otherwise they are said to be ordered.

An STG is live if it is strongly connected and for each signal ¢ all its transitions are ordered and alternating
@t —t= —=t+..).

In [9] was proved that a live STG can be decomposed into Finite State machine (FSM) components that cover the
net (each component is sequential and exhibits non-deterministic choice).

The State Graph (SG, also called reachability graph) is a directed graph, where each node (henceforth called staze)
is in one-to-one correspondence with a live and safe marking of the signal transition graph. An edge joins state sy with
state s, if the corresponding marking M, can be reached from M (corresponding to s;) through the firing of a single
transition. This transition labels the edge.

An STG has the Unique State Coding (USC) property if there exists an assignment of a unique vector v; of signal
values to each state s; of the SG, such that for each edge s; — sa:

1. if itis labeled t* then signal ¢ must be 0 in v; and 1 in v,.
2. if itis labeled ¢~ then signal ¢ must be 1 in v; and 0 in v,.
3. otherwise signal £ must have the same value in both v; and v;.

A static hazard is a 0 — 1 — O transition (static 0-hazard) or 1 — 0 — 1 transition (static 1-hazard) on an output
signal of a circuit, in any condition where no transition for that signal should be enabled according to the specification.

A dynamic hazardisa0 — 1 — 0 — 1 (or 1 — 0 — 1 — 0) transition on an output signal in any condition where
a single positive (or negative) transition for that signal is enabled according to the specification.

2.5 Hazard-free Operation and HFRPDFT

It may be useful to contrast the requirements of hazard-free operation and Afrpdft.

For the operation of an asynchronous circuit to be hazard-free it is necessary that for for all legal input sequences,
i.. corresponding to valid firing sequences of the STG specification, no static hazard occurs in the circuit. Thus
hazard-free operation is a global property governing the normal operation of the circuit.

For a circuit to be Afrpdft it is necessary that there exists a vector pair that detects each path-delay-fault in a robust
and hazard-free manner. Such a vector pair (v;, v2) might not be a legal input sequence, i.e. there might not exist a
valid firing sequence of the STG specification bringing the inputs of the circuit from v; to v;. This means also that
it might be impossible to apply v and v, without using scan techniques, because the circuitry surrounding the path
under test (also called the environment), which was designed to implement the STG specification, might not be able to
produce those vectors in that sequence. ‘

Despite the apparent similarity between the two properties, neither property implies the other. Moreover, optimizing
a circuit for one property can diminish or eliminate the other. See for example the case, described in Section 4, where
making a circuit Afrpdft introduces hazards during normal operation. Conversely, in the very same example, a cube
that appears in the initial two-level cover in order to eliminate a hazard during operation makes the circuit not hfrpdft.

3The hazard free robust path-delay-fault model is simply called the robust path-delay-fault model in [S, 4].

3 Hazard-free Asynchronous Circuit Synthesis
3.1 Synthesizing Initial Two-Level Circuit

The following procedures, described in more depth in [13), derive an on-set cover F' and an off-set cover R for the
next-state function f of signal ¢;, receiving as input a live STG, S, having the USC property, with initial marking m.
Let v and w be vectors of values for the n signals that appear in S, v, w € {0, 1}", and let +/ denote the value of signal
t; in v.

Generate_covers (S, 7, m)
1. for each signal ¢; in the STG, do (determine its initial value):

(a) let M; be an FSM component of S that contains all transitions for ¢;, and let m; be its initial marking (a
subset of m).

(b) find on M; the first transition ¢; that can be reached from m;.
(c) if ¢ ist], thenlet v/ = 0, otherwiselet v/ = 1.

2 ltF=¢,R=¢.

3. Generate_covers_recur (S, i, F', R, m, v)

4. expand F and R to prime covers, and remove duplicate cubes.

Generate_covers_recur (S, , F, R, m, v)
1. if ¢ is enabled in m then let v = 1.
2. else if¢] is enabled in m then let v' = 0.

3. for each maximal subset T of transitions enabled in marking m such that ¢} is not enabled in the marking m’
obtained from m firing all transitions in T" do:

@) letec={v/ s.t.8; ¢ T}
(b) if ' = 1thenlet F = F U {c}, otherwise let R = RU {c}.

4. for each transition ¢] enabled in m such that marking m’, obtained from m firing t}, has not been reached yet,
do:

(@ letw=wv.
(b) if ¢} is ¢}, then let w# = 1, otherwise let w/ = 0.
(c) Generate_covers_recur (S, i, F', R, m’, w)

If the next-state function f for signal ¢ depends on ¢ itself, then we initially implement ¢ with a set-reset flip-flop
and a pair of two-level circuits,

¢ one for the set input, including all cubes in F that depend on t, cofactored against ¢,
o one for the reset input, including all cubes in F that do not depend on ¢ (plus one not gate to invert it).

If f does not depend on ¢, then our initial circuit is directly the on-set cover of f.
Notice that these initial two-level implementations are guaranteed to be prime, but not irredundant, and the
redundancies cannot be removed without introducing hazards in the operation of the circuit (see, for example, [11]).

3.2 Removing Hazards from the Initial Implementation

The following procedure, described in more depth in {12], detects and removes all possible hazards from a circuit
implementation I of the next-state function f of each signal, using information from the State Graph associated with
the STG specification.

Let F be the initial two-level on-set cover of f, as obtained in Section 3.1, and let I be a circuit derived from F'
using only distributivity and associativity*. Let R’ be the set of all the prime implicants of the complement of B(F),
and let 7' be the set of all the prime implicants of B(F'). Let v; be a vertex in the domain of f, corresponding to the
label of some SG state. The transition cube C associated with a pair of vectors (v;, v2) is defined as the cube obtained
removing from v; all signals that change value going from v; to v; on the SG. E.g. if we have vy = zyz, v; = 2y2
and signals y and z have a transition between those two SG states, then C = z. Let d(cy, c;) denote the Hamming
distance between cubes ¢; and c;.

Remove.hazards (f, F, R, F', R',)
1. for each vector pair (v, v2) such that

e d(vy, v2) is maximal and
e f(n) = f(v2) = f(v;) for all v; on an SG path from v; t0 v3:

(a) let C be the extended transition cube associated with (vy, v2).
(®) if f(v1) = f(v2) =1 then:
i. for each cube ¢y € R’ intersecting C, for each pair of distinct implicants
¢1, ¢ € F N C such that
d(co,v1) = d(ey,v) +1, d(c1,00) = 1,
d(co, v2) = d(c2,v2) + 1 and d(cz, ¢0) = 1:
A. let t} be the transition moving from c; to co. Let ¢; be the transition moving from co to ¢,.
B. let d; be a lower bound on the delay along the path in I° from input ¢, to ¢ corresponding to cube
¢, for transition ¢7.
C. let dy be an upper bound on the delay along the path in I from input ¢, to ¢ corresponding to cube
¢, for transition ¢3.
D. let d3 be a lower bound on the delay between transition ¢3 and ¢}6.
E. if (d; — d;) > d3 then a hazard condition exists.
Then increase ds, e.g. by adding non-inverting buffers, so that (dz — d;) < ds.

(©) else (f(v1) = f(v2) = 0):
i. do the same, exchanging F — Rand R’ — F'.

4 A Procedure Guaranteed to Generate a HFRPDFT Circuit

This Section describes a technique to implement the two-level initial on-set cover obtained in Section 3.1 as a fully
hazard-free robustly path-delay-fault testable circuit that has exactly the same hazard properties as the initial two-level
cover, so that the algorithm described in Section 3.2 can be used to make it hazard-free in operation and fully Afrpdft.
[10) first gave a procedure, based on Shannon decomposition, to make a combinational circuit robustly path-delay-
fault testable. The essence of this procedure is to choose a binate variable, call it z, in a given sum-of-products
representation, call it S, of a Boolean function f, decompose S into z - Sz + Z - Sz, such that the variable z does not
appear in either S and Sz. Unfortunately, while this procedure results in a hazard-free robust path-delay-fault testable
implementation it may not result in an implementation that is hazard-free during normal operation, as is required.

4We limit ourselves to such operations because, as shown in [13), I then has exactly the same hazards as F..
5There exists only one such path if I is obtained using only distributivity and associativity.
6Obtained from a delay analysis of the circuit implementing signal ¢, or assumed to be 0.

Figure 1: STG with a non-Afrpdft next-state function.

Take for example the STG reported in Figure 1 (taken from [3]). The on-set and off-set covers for signal A;, as
obtained in Section 3.1, are respectively Fa, = DL + DR, + LR; and Ra, = DL + DR; + LR;. Both covers are
redundant (cube DR; can be removed from F4, and cube DR; can be removed from R4,). If we choose any variable
for the above decomposition, we introduce a hazard whenever that variable changes and A; must remain constant.
Notice that in this case there is also no hope to obtain a kfrpdft implementation with any of the heuristics described in
Section 5, which cannot remove a redundancy in both the on-set and off-set covers.

We now present a procedure which is guaranteed to produce an Afrpdft circuit. This procedure may require the
addition of test inputs. At present we know of no procedure that is guaranteed to produce Afrpdft circuits, that are also
hazard-free in operation, that does not also add test inputs.

4.1 Algebraic Decomposition

Our procedure is similar to the one outlined above in some respects: first a variable at the beginning of an untestable
path is identified, call it z, in a given sum-of-products representation, call it F, of a Boolean function f. F is then
algebraically decomposed into z - G +F - H + R, so that the variable = does not appear in any one of G, H and R. The
difference between this procedure and that of {10] is the ability to partition out a remainder R. This results in a more
area efficient implementation but more importantly the factoring out of the remainder ensures hazard-free operation as
we will show in Section 4.2 below. We now give the procedure in detail. It takes as input a prime, but possibly not
irredundant, two-level representation F' of a Boolean function f, and it returns a multi-level implementation of f with
exactly the same hazard properties of F':

Make_HFRPDFT(F)

1. If the combinational circuit F' is hazard-free robustly-path-delay-fault testable, then return F.
2. otherwise:

(a) choose (with an appropriate heuristic) an input variable z such that a path beginning from is untestable
inF.
o Let G be the two-level cover obtained by collecting all the cubes in F' that depend on z, cofactored
against z.
o Let H be the two-level cover obtained by collecting all the cubes in F' that depend on Z, cofactored
against T.
¢ Let R be the two-level cover obtained by collecting all the cubes in F that do not depend on either z
orZ.
(b) Let ¢, and ¢; be two new variables, not in the support of f.

_ ™1
S F
< i

1

\

X
Figure 2: Application of Make_HFRPDFT.

(c) Return the circuit ¢; - z- Make_HFRPDFT(G) + t, - T- Make_HFRPDFT(H) + t;- Make_HFPDFT(R)

Figure 2 shows the result of one step of Make_HFRPDFT(F).
We now proceed to prove that this procedure results in a 4frpdft circuit. The key result is the following:

Theorem 4.1 Let f be a Boolean function, let F be a combinational circuit implementing f andletG -z + H -T+ R
be an algebraic factorization of F such that

1. G, H and R are each individually hfrpdft circuits

2. The on-set of the Boolean functionimplemented by G contains a vertex not contained in the on-set of the Boolean
function implemented by H and

3. The on-set of the Boolean functionimplemented by H contains a vertex not contained in the on-set of the Boolean
function implemented by G and

4. 1, and t are two variables not in the support of f
Then F' =t, -G -z + 1, - H - T+t - Ris a hfrpdft circuit.

Proof: We assume that G, H and R are non-empty. If they are then the analysis is further simplified.

Each of G, H, and R are assumed to be hfrpdfi. The proof strategy used to detect delay faults in these sub-circuits
in F' is to augment the vectors which test those paths in isolation with the appropriate values of ¢, 3, and z.

Consider a path 7 in G. By supposition G in isolation is Afrpdft so we have a vector pair < v), v2 > that tests 7.
Totest win F'sett; = 1,¢ =0, z = 1 and apply < v1, %2 >.

Consider a path 7 in H. By supposition H in isolation is Afrpdft so we have a vector pair < vy, v2 > that tests 7.
Totest win F'sett; = 1,t, = 0, = = 0 and apply < v, v3 >.

Consider a path 7 in R. By supposition R in isolation is Afrpdft so we have a vector pair < vy, v; > that tests 7.
Totest win F'setty =0,% =1,z = 0and apply < v, v2 >.

The paths associated with z and T are equally straightforward. Consider the path = associated with z. By
supposition the on-set of G contains a vertex not contained in H. Call that vertex v. To test w set ¢ = 1,23 = 0, give
the values of vertex v to the other primary inputs and let z rise 0 — 1.

Consider the path T associated with Z. By supposition the on-set of A contains a vertex not contained in G. Call
that vertex v. To test 7 sett; = 1, ¢, = 0, give the values of vertex v to the other primary inputs and let z fall 1 — 0.

The testing inputs do not need to run at speed but it may be simpler to test them than to treat them as a special case.
The vectors are created as follows.

Consider the path = associated with the testing input ¢, in z - ¢, - G. By supposition the on-set of G contains a
vertex not contained in H. Call that vertex v. To test = set ¢, = 0, ¢ = 1, give the values of vertex v to the other
primary inputs and let ¢; rise 0 — 1.

Consider the path = associated with the testing input ¢, in Z - ¢; - H. By supposition the on-set of H contains a
vertex not contained in G. Call that vertex v. To test 7 set ¢, = 0, = 0, give the values of vertex v to the other ’
primary inputs and let ¢, rise 0 — 1.

/

e
| —

1}
XX

Figure 3: Application of Make_HFRPDFT without test inputs.

Consider the path 7 associated with the testing input . To test = first find any vertex v such that R = 1. Then set
t; = 0, give the values of vertex v to the other primary inputs, and let ¢, rise 0 — 1.

Thus every path in F” is hazard-free robust path-delay-fault testable. n

Notice also that a similar argument allows us to conclude that if both G + R and H -+ R are Afrpdft circuits, then
we do not have to introduce the testing inputs ¢, and ¢,, resulting in the circuit structure described in Figure 3.

We prove that we retain primality in the recursion step of Make_.HRFPDFT in the following Lemma.

Lemma 4.1 Let F be a prime on-set cover of a Boolean function f. Let z be a variable in the support of f. Let G be
the set of cubes containing x, H be the set of cubes containing T and R be the set of cubes containing neither x or T.
Let G, be the cofactor of G with respect to = and let Hz be the cofactor of H with respect to T.

Then each of G, Hz and R is a prime cover.

Proof: Suppose some cube ¢ in G (with corresponding cube d = z - ¢ in F) is not prime. Then we could remove
a literal, say y, from it, and the resulting cube, call it ¢,, would still be an implicant of f. So also ¢’ = ¢, - 7 would
be an implicant of g, and ¢’ = ¢’ - = would be an implicant of f. Then we could expand d to d,, contradicting the
hypothesis of primality of F.

A similar argument can be used for H. As R is unchanged from F, R remains prime. |

To prove procedure Make_HFRPDFT is correct, we use induction and apply Theorem 4.1 at the induction step.

Theorem 4.2 Let F be a prime on-set cover of a Boolean function f. Then procedure Make HFRPDFT results in a
hfrpdft combinational circuit F' of the formt, -z -G'+t, -T - H' + t; - R' implementing f.

Proof:

o Basis:
Let f be a Boolean function of two variables. By inspection we can show that for any function of two variables
there exists a Afrpdft implementation using Make_HFRPDFT.

o Induction step:
Suppose that any function of n variables can be made hfrpdft by the procedure Make_HFRPDFT. Let f be a
function of n + 1 variables. Suppose F is not Afrpdft. Let = be a variable such that a path beginning at z is not
testable in F.

By Lemma 4.1, each of G, H and R (supposed not empty, as in the proof of Theorem 4.1) is a prime cover of a
function of » variables, and therefore, by the induction hypothesis, each has a hfrpdft implementation that can
be arrived at through Make_HFRPDFT. Let us call these Afrpdft implementations G’, H’ and R’ respectively.

Now suppose that H' is not empty, and that it contains no vertex not contained in G’. Then, also H is not
empty and it contains no vertex not contained in.G. Let d be any implicant of F that is assigned to H, and let
¢ = dz. Since ¢ contains no vertex that is not contained in G, then we could have removed z from d leaving it
an implicant of f. But this contradicts the primality of F'.

By a similar argument we can show that G’ contains some vertex not contained in H’.
We have now shown that:

1. G', H' and R’ are each individually Afrpdft circuits
2. The on-set of G’ contains a vertex not contained in H' and
3. The on-set of H' contains a vertex not contained in G'.

Let ¢; and ¢, be two variables not in the support of f. Then by Theorem4.1 F' =ty -2 -G'+¢,-T- H' +1;- R’
is a Afrpdft circuit.

Thus procedure Make_ HFRPDFT produces a Afrpdft circuit using additional test inputs. [|

4.2 Retaining Hazard Free Operation

We wish to show that the techniques used to make the circuit hazard-free robustly path delay fault testable do not
destroy the possibility to make the circuit hazard-free in operation using the algorithm described in Section 3.2
To do this we will find it useful to apply the following Theorem, of [15]:

Theorem 4.3 Let T be a two-level representation of a logic function f. Let M be a multi-level representation of f
such that it can be obtained from T using only the associative, distributive and De Morgan laws. Then the circuits
corresponding to M and T have precisely the same static hazards.

That is for each pair of input vectors such that the output of M had a hazard for some assignment of wire delays, there
exists some wire delay assignment in 7" such that the same hazard happens at its output, and vice-versa. On the other
hand if some hazard could not happen in M under any wire delay assignment, then it could not happen also in S, and
vice-versa.

The relevance of this Theorem is that, if we have a two-level implementation T of a logic function f that does
not exhibit hazards for some class of input changes, then we can use the transformations listed above, to obtain a
multi-level implementation of f that has the same hazard properties.

To see that the circuit F' has the same hazards as F, observe that the inputs ¢; and ¢; do not change during
normal operation, therefore their introduction does not create any hazards. Thus in normal operation F' operates as
G -z + H -T + R. The factorization of the initial circuit F into G - z + H - T + R can be accomplished simply
using associativity. Thus no hazards are introduced in this decomposition and the resulting circuit F’ can be made
hazard-free in operation.

5 Heuristic Procedures to Improve HFRPDF Testability

In this Section we present a number of heuristics which, while not guaranteeing to produce a Afrpdjft implementation
of a circuit, may be expected to improve the hazard-free robust path-delay-fault testability of a given circuit, without
introducing new hazards in its operation.

5.1 Algebraic Factorization

In addition to being a useful technique for circuit optimization, algebraic factorization can be used as a heuristic for
improving the delay-fault-testability of a circuit. While a rigorous proof of the utility of this technique would require
the introduction of the notion of ENF Reducibility from [1, 6], the basic principle in operation is simply demonstrated.
Given a cover F' - G + F - H, if the paths associated with F' were hfrpdft either in G or in H (but not necessarily
hfrpdft in both), then if the cover is algebraically factored to produce F - (G + H) then F becomes fully hfrpdft. This
is due to the collapsing of paths that is a natural by-product of algebraic factorization. As a simple illustration of this
consider the following example drawn from [6): C = ab + bc + b¢ and its algebraic factorization M = (a + ¢)b + be.
The path associated with literal in cube ab of C, call it m, is not Afrpdjt, but the path associated with b in cube bc of
C, call it my, is hfrpdft. After C is factored into M there is a many-to-one reduction from paths m; and 7 to a single
path = associated with literal 4 in the factor (a + ¢)b, and the testability of = alone is sufficient to ensure the testability
of . As aresult M is completely Afrpdft while C is not.

10

As algebraic factorization is essentially iterative applications of the associative law, it retains the hazard properties
of the initial two-level implementation, so that again the algorithm of Section 3.2 can be applied to make the circuit
hazard-free in operation.

5.2 Complementation

When the on-set cover of the next-state function of a signal is not Afrpdft, then it may be the case that its companion
off-set cover (as obtained in Section 3.1) is more easily made hfrpdft. Consider the function f implemented in the
circuit F = @€+ ab+ @b+ cd +¢d. While this is one of a few prime and irredundant implementations of this function,
the paths associated with @ and ¢ in @c are not Afrpdft. Furthermore all prime and irredundant implementations of this
function share this problem. Algebraically factoring out @ produces the circuit @(¢ + b) + abc + d +¢d. While the path
associated with @ has become Afrpdft, the path associated with € in (€ + b) is still not 4frpdft. Furthermore, another
application of algebraic factorization will not make this path Afrpdft. Thus algebraic factorization alone cannot be used
to make this circuit Afrpdft.

An alternative way of getting a fully hfrpdft implementation of f is to implement an off-set cover of f, rather than an
on-setcover, and complement the output. The off-set cover R of f, as obtained in Section 3.1, is R = @bcd+abéd+abed.
This implementation is hfrpdft.

Another case in which this can be useful is when the on-set cover of f obtained by the algorithm in Section 3.1 is
redundant, while the corresponding off-set cover is not.

Having implemented R, we can apply Lemma 4.7 of [15] that states that introducing an inverter at the output of a
circuit can does not introduce or remove hazards. Thus complementing the output of R to produce f retains the hazard
properties of R, and the resulting circuit can be made hazard-free.

6 A Procedure Guaranteed to Generate a RGDFT Circuit

In Section 4 we presented an algorithm that is guaranteed to produce a hazard-free robustly path-delay-fault testable
implementation of a circuit. This algorithm has the potential disadvantage that test inputs may be required. In this
Section we present a technique that also requires the introduction of test inputs but may require fewer test inputs,
producing an implementation that is robustly gate-delay-fault testable. This delay-fault testability model is less
stringent than Afrpdjft, but it can still be sufficient to determine with the desired accuracy whether the delays in the
manufactured circuit lie within the bounds assumed during synthesis, thus ensuring hazard-free operation.

6.1 Making the Circuit Robustly Gate Delay Fault Testable

The initial two-level cover produced by the techniques in Section 3.1 is prime but may not be irredundant. The first
step required is to make each cube irredundant through the introduction of test inputs. For each redundant cube in the
cover we add one test input. '

Starting now with an irredundant two-level cover we proceed to make the cover rgdft through the introduction of
a single test input. This procedure is modeled after the procedure given in [17] to improve stuck-open fault testability.
To motivate this procedure we will employ the following Lemma from [4, 7].

Lemma 6.1 : Let C be a two-level single-output circuit and let g be a gate in C. If a path © through g is hazard-free
robustly path-delay-fault testable then g is robustly gate-delay-fault testable.

It is likely that after applying the heuristic transformations described in Section 5 that at least one path per gate is
hfrpdft. If this is not the case then the following procedure will make the circuit rgdft.

Make_RGDFT(C)

1. If the prime and irredundant two-level combinational logic circuit C is robustly gate-delay-fault testable, then
return C.

2. otherwise:

11

(@) Let @ = {q1,92, - - -,qn} be the set of cubes in C that are not rgdft.
(b) Let ¢ be an input not in the support of C.

(c) Add t to each cube in Q. For example ¢; = ¢ - g;.

@ Let Q" = {¢'lg € Q}.

e) LetC'=C-QuUQ

3. Return C'

We now proceed to prove that the resulting circuit C” is rgdft. Let g be a gate in C’ associated with cube g. Suppose
¢ is not in @’. Then by supposition ¢ was already rgdjft, and the introduction of ¢ does not change this property.

Suppose ¢’ is in Q. Both the circuit C’ and C are prime and irredundant. Let v be a relatively essential vertex of
q € Q. Consider v' = t - v. Clearly, ¢’ covers ¢ - v. Furthermore no other cube in C’ covers v’ otherwise v would
not be a relatively essential vertex of g. So v’ is a relatively essential vertex of ¢’. Consider the vector sequence
<7-v,t-v>. Thevector v’ = t - v is arelatively essential vertex of ¢’ and it must be the case that the vector - v is in
the off-set of C’. Therefore by the necessary and sufficient conditions for 4frpdft in two-level networks given in (7, 4]
the path associated with ¢ in ¢, call it 7 is hfrpdft. Now by Lemma 6.1 given above, because w is hfrpdft then the gate
g associated with cube ¢’ must also be rgdft. Furthermore, because = is Afrpdjt, the output or gate of C’ must also be
rgdft, by the reasoning of the same Lemma. Thus the procedure immediately above creates a two-level circuit that
is completely rgdft. To create a rgdft multilevel circuit from this two-level circuit then the constrained factorization
techniques of S, 6] may be applied.

To see that the circuit C' can be made hazard-free, observe that the input ¢ does not change during normal
operation, therefore its introduction does not create any hazards. Thus in normal operation C' has exactly the same
hazard properties as C.

7 Summary

So far we have described the effective procedures of Sections 4 and 6 and the heuristic techniques of Section 5 as
independent procedures, but in fact the most effective use of these techniques involves their integrated application. If
the initial two-level circuit produced in Section 3.1 is Afrpdjft, then algebraic factorization can be freely applied and
hfrpdft will be retained. :

If the initial two-level circuit is not Afrpdft, then the best course is to iteratively apply the heuristics of Section 5.
If we reach a point at which further applications of algebraic factorization alone will not improve the testability of the
circuit, then we have two courses.

1. We can examine the rgdft of the current circuit. If the fault coverage in this model is high (as would be expected)
and this fault model is acceptable, then we can terminate at this point. We can also achieve complete rgdft using
the techniques of Section 6.

2. Alternatively, if complete fault coverage in the hazard-free robust path-delay-fault model is desired, then this
can be achieved at this point using the techniques of Section 4.

Through the integrated application of these techniques we aim to achieve the desired fault coverage with the least
penalty in area overhead and the fewest additional test inputs.

At this point, we have obtained an Afrpdjft (or rgdft) implementation of the STG specification that has exactly the
same hazard properties as the initial two-level cover. So we can now apply the techniques described in Section 3.2 in
order to obtain a circuit that is hazard-free in operation. These techniques simply change the delays of some signals,
so both Afrpdft and rgdft are maintained in the final hazard-free implementation.

8 Results

In this section we present our experimental results on a number of examples, taken both from industry and academia.
Table 1 gives the area and delay (using a standard cell implementation) of:

o a hazard-free, but not completely testable, optimized implementation (column “Untestable™).

12

example Untestable Testable
Area Delay | Area Delay | Decomp. Test inp.
0

chul33 320 54 320 54 0
chuls0 208 52 264 5.6 1 2
chul72 192 52 192 52 0 0
converta 432 9.2 432 9.2 0 0
|| ebergen 304 52 304 52 0 0
full 224 4.0 224 40 0 0
hazard 264 6.4 264 6.4 0 0
hybridf 304 438 304 4.6 0 0
nowick 232 42 232 42 0 0
alloc-outbound 336 54 336 54 0 0
mp-forward-pkt 304 5.6 304 56 0 0
nak-pa 320 5.6 320 56 0 0
pe-rcv-ifc 1000 84 | 1000 84 0 0
pe-send-ifc 1160 108 | 1160 108 0 0
ram-read-sbuf 440 7.0 440 70 0 0
rcv-setup 128 28 128 28 0 0
sbuf-ram-write 456 9.2 456 9.2 0 0
sbuf-read-ctl 320 52 320 52 0 0
sbuf-send-ctl 344 56 360 54 0 0
sbuf-send-pkt2 352 52 352 52 0 0
sendr-done 128 38 128 38 0 0
qr42 304 52 304 52 0 0
pdft 176 4.0 256 6.6 2 3
vbelOb 808 6.8 808 6.8 0 0
vbe5b 392 1.6 352 838 0 0
vbe5c 192 38 192 38 0 0
wrdatab 744 8.2 744 8.2 0 0
[total | 10384 159.8 | 10496 163.6 3 5

Table 1: Experimental results

¢ a hazard-free Afrpdft optimized implementation (column ‘““Testable™).

The area is the total area, excluding routing, of each circuit. The delay is the maximum combinational logic delay,
obtained with static timing analysis.
The column labeled “Decomp.” gives the number of times procedure Make HFRPDFT had to decompose the

circuit in order to make it Afrpdft, while the column labeled “Test inp.” gives the number of added test inputs for each
circuit.

9 Conclusion

In this paper we are concerned with the problem of synthesizing asynchronous sequential circuits from a high level
specification, the Signal Transition Graph (STG, [3]). We have demonstrated both heuristic techniques and effective

procedures to synthesize hazard-free asynchronous circuits that are testable in the very stringent hazard-free robust
path-delay-fault model.

There are three principal obstacles to comprehensive path-delay-fault testing:
1. the synthesis of fully Afrpdft sub-circuits;

2. the inability to achieve comprehensive path coverage because of an unmanageable number of paths; and

13

3. the inability to apply the vector pairs due to limited controllability/observability.

Our results on both academic and industrial examples show that our synthesis for testability techniques can be used
to create asynchronous circuits that are fully Afrpdft.
Moreover, in practice we may not have to test all paths, but only each path that intervenes in one of the delay

bounds used by the procedure described in Section 3.2. This would then be enough to guarantee the hazard-freeness
of the manufactured circuit’.

. Finally our testing scenario, where all flip-flops is the circuit can operate in test mode, gives the required control-
lability and observability.

Thus in this paper we have preliminary indications that the three principal obstacles to comprehensive path-delay-
fault testing of asynchronous circuits can be overcome.

The techniques of this paper were applied to circuits synthesized using the asynchronous synthesis procedures
described in Section 3. However, because our synthesis for testability techniques so carefully preserve the nature of the
original two-level cover, we believe that the same techniques can be applied to achieve fully testable implementations
of circuits produced by other asynchronous synthesis procedures, such as the ones described in [18].

References

[1] M. J. Bryan, S. Devadas, and K. Keutzer. Testability-Preserving Circuit Transformations. In Proceeedings of
the Int’| Conference on Computer-Aided Design, November 1990.

[2] T. A. Chu. On the models for designing VLSI asynchronous digital systems. Integration: the VLSI journal,
4:99-113, 1986.

(31 T. A. Chu. Sinthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications. PhD thesis, MIT, June
1987.

[4] S. Devadas and K. Keutzer. Necessary and Sufficient Conditions for Robust Delay-Fault Testability of Logic
Circuits. In Sixth MIT Conference on Advanced Research on VLSI, pages 221-238, April 1990.

(5] S. Devadas and K. Keutzer. Synthesis and Optimization Procedures for Robustly Delay-Fault Testable Logic
Circuits. In Proceedings of the 27** Design Automation Conference, pages 221-227, June 1990.

[6] S. Devadas and K. Keutzer. Synthesis of Robust Delay-fault Testable Circuits: Practice. /EEE Transactions on
Computer-Aided Design of Integrate Circuits and Systems, October 1991. To appear.

(7] S. Devadas and K. Keutzer. Synthesis of Robust Delay-fault Testable Circuits: Theory. I[EEE Transactions on
Computer-Aided Design of Integrate Circuits and Systems, September 1991. To appear.

(8] E. Eichelberger and T. W. Williams. A logical design structure for Isi testing. In Proceedings of the 14th Design
Automation Conference, pages 462—468, June 1977.

(9] M. Hack. Analysis of production schemata by petri nets. Technical Report TR 94, Project MAC, MIT, 1972.

[10] S. Kundu and S. M. Reddy. On the Design of Robust Testable CMOS Combinational Logic Circuits. In
Proceedings of the Fault Tolerant Computing Symposium, pages 220225, 1988.

(11] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Synthesis of verifiably hazard-free asynchronous
control circuits. Technical Report UCB/ERL M90/99, U.C. Berkeley, 1990.

{12] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for synthesis of hazard-free asynchronous
circuits. In Proceedings of the Design Automation Conference, June 1991.

{13] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Synthesis of verifiably hazard-free asynchronous
control circuits. In Advanced Research in VLSI Conference, March 1991.

7We can also test additional paths to make sure that the circuit does not have other kinds of faults, such as for example stuck-at faults.

14

[14] C.J.Lin and S. M. Reddy. On Delay Fault Testing in Logic Circuits. In /EEE Transactions on Computer-Aided
Design, pages 694-703, September 1987.

{15] M. C. Paull and S. H. Unger. Minimizing the Number of States in Incompletely Specified Sequential Circuits. In
IRE Transactions on Electronic Computers, volume EC-8, pages 356-357, September 1959.

[16] A.Pramanick and S. Reddy. On The Design of Path Delay Fault Testable Combinational Circuits. In Proceedings
of the 20** Fault Tolerant Computing Symposium, pages 374-381, June 1990.

[17] S. M. Reddy and M. K. Reddy. Testable Realization for fet Stuck-Open Faults in CMOS Combinational Logic
Circuits. In [EEE Transactions on Computers, volume C-35, pages 742-754, August 1986.

[18] S. H. Unger. Asynchronous Sequential Switching Circuits. Wiley Interscience, 1969.

15

