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MOVING HORIZON CONTROL OF NONLINEAR SYSTEMS WITH

INPUT SATURATION, DISTURBANCES, AND PLANT UNCERTAINTY1"

by

T. H. Yang* and E. Polak*

ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo

rithms, for nonlinear plants with input saturation, disturbances, and plant uncertainty. The system isa

nonconventional sampled-data system: its sampling periods vary from sampling instant to sampling

instant, and the control during the sampling time isnot constant, but determined bythe solution ofan

open loop optimal control problem. We show that the proposed moving horizon control system is

robustly stable and is capable of suppressinga class of disturbances.
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1. INTRODUCTION

There exist several approaches, including classical frequency domain techniques, for designing
robust, stabilizing feedback control laws for linear time invariant systems. However, thesituation for

linear time varying systems ornonlinear systems is quite different Following some earlier work on

model predictive control of linear time invariant systems (see e.g., [Qa.1,2], [Gar.1,2]), we find in

the literature an exploration of the possibility of determining feedback laws for nonlinear or time

varying systems by repeatedly solving open loop, finite horizon optimal control problems ([Kwo.1,2],

[May.1,2], [Mic.l]). Suchfeedback lawsareknown asmoving horizon control laws.

In moving horizon control, the control at time t is obtained by setting the current control equal

to u (0, a solution of on openloop optimal control problem over the interval [t ,t+T], where T > 0.

Since u (r) depends on the current state x, repeating this computation continuously yields a feedback

control control. The finite horizon open loop optimal control problem has usually a terminal con

straint x(t +T) = 0 (cf. [Kwo.1,2], [May.1,2], [Mid]). This strategy provides a relatively simple

conceptual procedure for determining stabilizing feedback control for time varying or nonlinear sys

tems. In [May.2] the authors proposed an implementable versionof such a controllerwhichdoes not

require the exact solution of an associated optimal control problem with terminal constraints on the

state. Instead, the optimal control problem was solved approximately, with the terminal constraint

x(t +T) = 0 replaced bythe relaxed constraint x(t +T) e W, where W is some neighborhood of the

origin.

Although the concept of moving horizon control is not new and has been proposed in conjunc

tion with various applications, process control being one of them (see e.g., [Meh.l], [Pre.l], [Gar.l]),

it has not always been realized that a naive application of the strategy, in adaptive control for exam

ple, can lead to instability. The literature that provides an analysis of the stabilizing properties of

moving horizon control laws for linear time varying and nonlinear systems deals with schemes based

on open loop optimal control laws for finite horizon optimal control problems with quadratic criteria

and no control constraints. Thus Kwon and Pearson [Kwo.2], and Kwon, Bruckstein and Kailath

[Kwo.2] deal with linear time-varying systems, Keerthi and Gilbert [Kee.l] deal with nonlinear

discrete-time systems, and, more recently, Mayne and Michalska have established the stability pro

perties of nonlinear, continuous-time systems with moving horizon control [May.1,2], [Mic.1,2]; see

also Chen and Shaw [Che.l]. In [May.2], the stability robustness of a moving horizon control was

examined, although the analysis is incomplete. In [Mic.2], the nontrivial time needed for the



computation of the open loop controls is taken into account, under the assumption that there is no

modeling error. In [Pol. 1,2], robust stability, disturbance rejection, and reference following proper

ties of a moving horizon control law for linear time invariant systems, with and without a state esti

mation, were analyzed, taking into accountthe time needed for the computation ofthe open loop con

trols.

In this paper we propose a stabilizing moving horizon feedback law for time invariant nonlinear

systems, modeled with errors and subject to control and state space constraints. This feedback law

results in a nonconventional sampled-data system: its sampling periods vary from sampling instant to

sampling instant, and the control during the sampling time is not constant, but determined by the

solution of an open loop optimal control problem. We will see that taking into account the time

needed to solve the open loop optimal control problem and the modeling errors, complicates matters

considerably, because the computed optimal control is based on the state of a model that is not an

exact representation of the plant In Section 2 we introduce our proposed moving horizon feedback

control law. In Section 3 we show that the proposed moving horizon feedback system is robustly

stable. In Section 4, we study the effect of disturbances. Finally, in Section 5, we introduce more

structure into the nonlinear system and analyze the stability of the system when the state of the plant

has to be estimated.

2. STRUCTURE OF THE MOVING HORIZON CONTROL LAW.

We assume that the plant is a non-linear time-invariant system with bounded controls and an

input disturbance, described by the differential equation

i'(0=/'fr'(O.K(0.<f(0). (2.1a)

where/ ; RBxIRmxlR'~->Rn is continuously differentiable, u e Utd e D with

Uk {ueL2[0,oo)|M(f)€GM,Vre [0,oo)} , (2.1b)

Dk [deL^[0,oo)\d(t)^Gd,\/te[0,oo)) , (2.1c)

where Guk [z e lRm I tel^c,,} and Gd £ [z e JRT" I \z\„<£cd) with cu,cde (0,~). We

will denote the solution of (2.1a) at time t, corresponding to the initial state xfi at time to, the input

u, and the disturbance d% by xp(t, fo, jcg , u ,d).

The function of the receding horizon control law that we are going to propose is to ensure



robust stability while taking into account the faa that the plant inputs are bounded as in (2.1b), as

well as various amplitude constraints on transients. Since the function fp(-, -, •) is known only to

some tolerance, the receding horizon control law must bedeveloped using aplant model of the same

dimension as (2.1a),

xm{t)=fm{xm(t),11(0,0). (2.2a)

Here, we will assume that the disturbance d{t) cannotbe estimated. We will denote the solution of

(2.2a) at time f, corresponding to the initial state x$ at time *<>, and the input u, by

xm{t ,t0,x$ ,u ,0).

Consider the linearization of the system (2.2a), in the neighborhood of the origin, i.e., the sys

tem

*l(!) =/m,(0.0,0)xL(t)+f?(p,0.0)u(r). (2.2b)

The following assumptions are neededto ensure local stability.

Assumption2.1. We assumethat/m(0,0,0) =0and/'(0,0,0) = 0. D

Assumption2.2. We assume that (/""(0,0,0), /^(0,0,0)) is acontrollable pair. •

Consider the linear system described by (2.2b). It follows from Assumption 2.2thatthere exists

astabilizing linear feedback matrix K, where K is the solution of alinear quadratic regulator problem

in terms of (2.2b). Let

A&f?(0.0,0)-/?(0, 0,0)K . (2.3a)

Hence, since A is an asymptotically stable matrix, there exists a pair of symmetric, positive definite

matrices (Q , M) such that

ATQ+QA=-M. (2.3b)

Clearly, the matrix Q defines the Lyapunov function {x , Qx )for the linear closed loop system

x(t) = Ax(t). We use the matrix Q to define the norm

lx\&{x.&F. (2.3c)

that we will use throughout this paper.

Given any time tkt we will let jcf £xm(tk ,tQ ,x$ ,u ,0). The aperiodic sampled-data feed
back law which we are about to describe has the form of an algorithm which, during each sampling

period, solves a free time, constrained optimal control problem ¥(xj?,tk) of the form



P(xf,r*): min{g<fr,'i)lf'<0,f)£O.f =1,2 /,,

•|SK^(,l'Oi0,yasl '2.«e^^6[4+rc.r4+f]} . (2.4a)

where 0<Tc <T <«>, with Tc the least time needed to solve the optimal control problem P(xf, tk),
T is an a priori limit on the controlhorizon, and

gl(u ,T)£hi(xm(x,tk,xj?, k.O)), «=0,1, ...,/j-l, (2.4b)

*7,(u ,x) =lxm(z,tk,xj?,u,0)l2-a2Uri2. (2.4c)

V(u ,t) =h>(xm{t ,tk .xf.u ,0),t), j =1 /2-l, t € ft ,x] (2.4d)

(|>'j(k ,r) =\xm{t, tk ,xP, u,0)l2- p2\xjp\2, t € [fc, t] . (2.4e)

The constraint functions (2.4c,e) with a e (0,1) and pe [1,«,), are used to ensure robust stability,

while the other constraint functions, hl, hj are convex, locally Lipschitz continuously differentiable
functions that can beused toensure other performance requirements.

We will denote the optimal solution pair to P(xf,f*) by (u[lk14^(),tk+l). Clearly, the
optimal control is defined onlyon the interval [tk , tk+i\.

The fact that the plant inputs are bounded limits the region of effectiveness of any control law,

particularly for unstable plants. Hence we must assume that the initial states are confined to a ball

flA ^ [x e R" ItcISp }cR", postulated as follows,
p

Assumption 2.3. We assume that there exists a $ e (0,«») such that for all

xe B^ § [x e Rn Il*l£p }, the optimal control problem ?(x ,0) has asolution. n

Assumption 2.4. Let j) >0 be as defined in Assumption 2.3, and let the reachable setR be defined

by

R^ U«=Rn \x=xm(f ,0,x0,u,d) OTx=x?(t ,0,x0,u,d),

t e [0,T],x0eB^ ,ue U.deD } . (2.5a)

We assume that there exist aLipschitz constant L e [0,«) and amodeling bound Km e [0,») such

mat for aU ^ $" € R,v\ v" € G„, and 6\ 8" e Grf,



l/m(5'. V, 80-/m(5", v", 8")l ^L(l5'-5"l+lv'-v"L +18'- 8"L) (25b)

V'CS'. V, 80-/'($", v", 8")l ^L(l5'-5"l+lv'-v"L+ I8'-8"L) (2.5c)

\fp<S.V. 80-/m(§'. V, 801 £ ATm(lVl+IVL+18%.). (2.5d)
D

We are now ready to state our control algorithm that defines the moving horizon feedback con

trol system.

Control Algorithm 2.5.

Data: f0 =0, t\ =rc,x6,andM[/8i/lj(/)sO. Tc and f such that 0<Tc <f <~.

tap 0: Set k - 0.

Step 7: Atr=rA,

fa; Measure the state xp = jc'fo, 0, xfl , u , d);

(b) Set the plant input u(t) = u[tkt M(r), for re[ft, rA+1).

fc) Compute the estimate *fti i *m(f*+i ,tk,x^,u[Ut^, 0) of the state of the plant
*p(r*+i, tk,xl,u [,k, ^.j, d) by solving (2.2a) with state xl at time f = tk% and an input

(d) Solve the open loop optimal control problem P(xfti, f*+i) to compute the next sam

pling time tk+2e (fM+Tc, tM+f]t and the optimal control u[u^ltU^(t)t

t € fa+i»f*+2)-

Step 2: Replace k byfc +1 and go to Step 1. •

The following theorem generalizes a result given in [Pol.3].

Theorem 2.6. Suppose that (a) Assumption 2.3 is satisfied, (b) d(t)&0,(c) the systems (2.1a)

and (2.2a) are identical, (d) the state of the plant is measurable, and (e) the Control Algorithm 2.5

is used to define the input u(•) for (2.1a). Then the resulting feedback system is asymptotically stable

on the set £„, i.e., for any xl € B^t the resulting trajectory xp(t ,0,x^ ,u ,0) satisfies that
p P

lxp(t ,0,x§,u , 0)1 < pkgl for aU r£0 and thatjc*(f,0,x6,K ,0)->0asr->~.

Proof. We begin by showing that for any xgeBA, the discrete time trajectory
P

xp £xp(tk ,0, xft ,u ,0), k e N resulting from the use ofthe Control Algorithm 2.5 is contained in
B^. We note that ^(r ,0,xft,u ,0)=xm(t ,0,*6,u , 0) for all f £ 0. It follows from the form

p



of (2.4c), that for all k e N,

Itf+i I=ixp(tk+x .h.xt.Ufr,M f0)1 =lxf+1 I£olxfl* a*+1Lc6l. (2.6a)

Since ae(0,l), it follows that xfeB^ for all keif and hence that the trajectory

xp{t, 0, xl, u , 0) is well defined.

Next, from the form of (2.4e), we see that for all k e N and for any t e [tk , fA+1],

*xp{t ,tk,xZ,u[Uttk^,0)\ = \xm<f .r*,xf,n[ri>4+ll,0)^pb:ri^pa*lc6l^pU6l. (2.6b)

Since xg e BA, it follows from (2.6b) that lx*(f ,0,jc§ ,u ,0)l<pixgl for all tZQ. Finally,

because pct*->0 as *-><>o, jt foUows that **(/ ,0,xg ,u ,0)->0as t-»oo, and hence that the

feedback system defined by the Control Algorithm 2.5 is asymptotically stable on the set B̂ . n
p

3. ROBUST STABILITY.

We will now determine under what conditions the local asymptotically stability of the closed

loop system resulting from the use of Control Algorithm 2.5 is preserved while there is a difference

between the actual plant equation (2.1a) and the model equation (2.2a). We will assume that thestate

of the plant is measurable and that there is no disturbance, i.e., d(t)sO. Since there is no distur

bance, we can simplify our notation by letting /m(5,v)£/m(§ ,v,0), fpfe,v)£fp(£,v,0),
xm(t ,0,*<,.")= xm(t ,0,x0,u ,0), andxp(t ,0,xQlu) ±xp{t ,0,x0,u ,0). We will con
sider two strategies: the first is where we use Control Algorithm 2.5 only and the second one where

we use a cross-over rule to a linear state feedback law near the origin so that residual errors can be

eliminated. (The latter strategy was introduced in [May.2], where the analysis was carried out under

the assumption thatthere are no modeling error.

We observe that Control Algorithm 2.5 generates three sequences. The first sequence is that of

measured state of the plant {xp) k=0, the second sequence is that of state estimates {x?} |Li. i.e.

*f =xm(tk ,**_!, xp-i ,u[<>_, (4]), and finally, the sequence {x*k} £,2. generated in the process of

solving the optimal control problem P(xf+1 ,tM), k € N, i.e. x*k =xm{tkttk-ltxZLx ,u[h_uh]).
By construction, the sequences {x?} £i and {x*k} £a, satisfy the relation \x*k+$ < abc^ I for all
k € N.

Lemma 3.1. Consider the moving horizon feedback system resulting from the use ofControl Algo

rithm 2.5. Suppose that Assumptions 2.3 and 2.4 are satisfied. Let p be as postulated in Assumption

7



2.3, and let L , Km e [0, ~) satisfy (2.5b-d). If xl, xf e B „ for all k e K, then there exist A! and
p

A2 > 0 such that

bf+i-jtr+1ISAiltfl+Aaf (3.1)

and Alf A2-* 0 as Km-> 0.

Pro*?/ Rrst, the optimal control problem P(xk , tk) has a solution for all k £ 1 since *£* e BA for
p

all k £ 1, and as a result, the trajectory xp(t ,Q,x$ ,u) is well defined. Given xpe B^ and
p

M= Mt/»,r*.il€ tft obtained by solving the optimal control problem P(xr,rA), let

jtfCO^'G ,f*,x^K)andjcf(f)£*m(f ,*a,;c^k). Thenforallf e [fc.fc+i]

Itf(0-*f(Ol *£V'Ctf(x). "(x))-/m(*f(x). u(x))l dx

*JfcO/'«(X) ,K(X))-/'(*f(X) ,«(X))l+l/'(*f(X) .w(x))-/m(^(T) ,«(X))l) dX

<LL \tk\xks(x)-xir(x)ldx+Km JjUr(x)l+lM(T)l.)dx. (3.2a)
We obtain that for all t e fo , r4+i],

Jj/m(*f(x) ,u(z))ldx<bfl+£Ixf(OI £^l+Jl4l/mW(x), k(x))I<*x <hfl+JfcL(lxf(x)l+lu(x)IJdx

<Ixjfl+J^L Ixf(x)l dx+LcMf. (3.2b)

It follows from the Bellman-Gronwall inequality and from the fact that tk+\-tk £ T for any k e N

that

fcf(f)l ^ cL(/-/4)l^l+LcufeL(|-fc). (3.2c)

Hence, for any r e [rt, tk+l]

£bf(i)MiZ fu{eL^Hxfl+IcllfeLCMl)} dx

8 {(eL^"*>-iyL)hfl+cIlf(el'Cr-|l)-l)

£ {(«Lf- 1)/L }LtfI+cMf(cLf-1). (3.2d)

By substituting (3.2d) into (3.2a), we obtain that for all r e [tk , tk+l]



l*j?(0-*r(f)l£tfm[((e^ (3,2c)
It follows from the Bellman-Gronwall inequality that

kfci-xftil* {KmeLf{eLf-\)IL }Ixgl+Kmcufe2Lf &^Ixfl+Aj. (3.2f)

It is clearthat Ai, A2-» 0 as J£m ->0, which completes our proof. D

To use Control Algorithm 2.5, we must have that xk e B A for all k £ 1 so that the optimal con-
p

trol problem P(x£", tk) has a solutioa In Lemma 3.1, we have assumed that xfe B^ for all fc £ 1.
p

We will now establisha conditionwhich guarantees thatxk e B^ for allk £ 1.
p

Lemma 3.2. Suppose that Assumption 2.3 and 2.4 are satisfied. Let P , L , Km be as postulated in

Assumption 2.3 and Assumption 2.4, respectively. Then there exist Km e (0,«) and p, e (0, p ]

such that if Km<Kmi then for all x{> e Bp,, the sequences {xg) kaQ and {xF} £1, resulting from

the use of Control Algorithm 2.5, arewell defined and stay in the set B A.
p

Proof We will prove this lemma by contradiction. Suppose that forevery Km > 0, p € (0, P], and

Km £Km, there exist xg e Bp and t e N such that xF,x£e BA for all * <t and x/ eBA or
P * p

x™ £BA. We will consider three cases: (a) t =\,(b) %=2, and (c) i >2. To compress our
* p

notation, we let x£(r) £x'(r, r* ,x£, u[lk,,4+l]), xf(1) £xm(r, r*,xf,aIft,4+l]), and
x'4(r)^xm(r,^,xr,Mlr4,^I,) for all fe[fi(y, * € N. We note that x£+i =xf(r4+1),

^*+2 = ^+1(^+2). *fti = xffo+i). and Ix^l £ ctlxf(ft+i)l for all k e N.

Ca; Suppose that £ =1. Since u(t)=0 for all t e [0, t{\ and xff =x{j, we have that for all
re [0,r,]

lx«(r)l <Ijc6I-i-J^ l/'(x6(x), 0)Wx <1x61 +Ljo' lxg(x)Wx (3.3a)

Ix ffCOl ^tcgl+J '̂ l/m(xg,(x),0)Wr «S Ixgl +LfQ \x$(x)\dx. (3.3b)
It follows from Bellman-Gronwall inequality that for all f e [0, t \\

1x8(01 £ Mile" (3.3c)



lxff(t)lZ\x§ieu. (33d)

Let pe (0,p/eLr] and Km>0 arbitrary. Then, since x6 € Bp, it is obvious that
xf .xf1 € B^wherexf sxgfrjandxj* =x^(tt)f which contradicts our assumption.

p

ft) Suppose that * =2. Since xf e BA, there exists a solution to the optimal control problem
p

P(xf , 11). It follows from the faa that W l2 £ cclxfl that

1x51 <lx$ -x'jl +alxfI. (3.4a)

Next, using the Bellman-Gronwall inequality, it can beeasily shown that for any t g [ti, fJ,

Ixf(01 ^eL(' "/l) [ixf I+Lcuf] . (3.4b)
Now it follows from (3.1), (3.3c), and (3.4b) that for all t e [t j, rj

^f(0-^1(r)l<lxf-xfl +J/'l/^(xf(x),M(x))-/w(x'1(x),«(x))Wx

£kf-xfI+£|/P(jcf(x) tu(x)) ./mW(x) fM(x))Wx

+j' l/m(*f(x).u(x))-/'VKx),«(x))Wx

<lxf -xri+/i:4'(Ixf(x)l +ltt(x)IJ^x+L£lxf(x)-x/1(x)Wx.

£A1lx6l+A2 +(tfm/L)(^fM)lxfl+^

<(A! +KmeLf(eLf - 1)/L)lx6l+A2+/TmcufeLf+l£ Ixf (x) -x' i(t)Wx

=2AMI +(1 +l/cLf)A2+L£ Ixf (x) -x' i(t)Wx, (3.4c)
where A!, A2 were defined in (3.2f). Again, making use of the Bellman-Gronwall inequality, we
obtain that

l*f(f2) -*i(*2)l =1*5 -Jf2l ^2cLfAilxSI +(1 +cLf)A2. (3.4d)

By substituting (3.4d) into(3.4a) and using (3.3d), we obtain that

1x51 £(2Ai +a)eLfIxgl +(1 +eLf)A2. (3.4e)

Next it foUows from (3.1), (3.3c), and (3.4e) that

10



Ix^l £ Ix? -xfl +lxfl £AilxfI +A2 +IxJI

<S (3A, +a)eLf1x81 +(2 +eLf)A2. (3.4f)

Since 1x81 ^ 0 as p-> 0 and A1,A2->0as^m^0, there exist^m>0 and p,e (0,p) such that if
Km <J^m and x8 e Bp#, then x5 ,xj e BA,which contradicts our assumption.

p

fo) Suppose that %>2. Since xf+1 ,x&! e BA for aU it £% -2, there exists a solution to the
p

optimal control problem P(xf+1, tM), (u[u.ltUj(),rt+2), such that lx'4+2l£cdxf+11. Therefore,

xjf+i (0 is weU defined for aU t e [/4+1, r*+2], it £%-2, and

lx£+21 £ lx&2 -xW+a \xF+i I. (3.5a)

Now by comparison with (3.4b), we see that for any t e [tk+l, tk+2],

Ix£+1 (01 <eL{f-^ [lx^+11 +LcuT]. (3.5b)
By comparison with(3.4c), we obtain that for aU t e fo+1, rA+2]

f'l*j?+i(0-*WOI *Ltjf+i -*f+il+L Jfc^if+l(x)-x'jk+1(x)ldx+/rw/fci(Uf+1(x)l+ltt(x)l00)rfx.

<AMl+A2H(KJL)Up+l\+KmcJ)(eLf-l)+Kmfcu+L f' lxf+1(x)-xWx)lrfx

-^Ixfl+Aa+^lxfcil+^+Lj^^ (3.5c)
where A!, A2 were defined in (3.2f). Again making use of the Bellman-GronwaU inequality, we
obtainthat for aU t e [tk+l, f*+2]

l*£fi(0-*WOI *Ailxf+il+Aie^lxfl+AaCl+d^). (3Jd)

It foUows from the fact that IX& I<lx^+1 -xf+11 +lxf+i I, x^ =x,k+l(tk+2), (3.1), and (3.5d) that

for aU k £ i -2, we obtain that

lx£+21 <lxf+2 - x?k+2l +alxf+11

<Ailxfc.!I+A^lx£l+A2(l +cLf) +alxfti - *f+il +alx^!

<(A1+aM+1l+A1(a+«LfMI+A2(l +a+elf). (3.5e)

11



Next we wiU show that if

AT^min
>.LT(eLT-l)(l+a+eLT) ' cuTe3LT \ e J

(3.5f)

where e^(l-a)(a+eLf)/(l+a+eLf), then lx/l,lx^mI^P must hold, which contradicts our
k k

hypothesis. Thus,suppose that (3.5f) holds. Then,it follows from (3.2f) that

__ ^tf-l) K̂me*f-» ,ei<_Lz« , (3,g)
£ £ 1+ct+e"

and

A2 =KmcuTe2Lf<KmcuTe2Lf±Z2< 2+e LT

+ 1

-1

(3.5h)

Let c^A^a, a2 =Al(a+eLf), and b =A2(l+ct+eLf). Let z*£(y* ,y*+1)T with
y0 = Ixgl and y \ = Ixf I. Consider the discrete time system

z* =

[0 1] [°1
02 <Zi Zk+ ft

I J
£**+*.

It is clear that for aU it <t, IxfI£yk. Since a j, a2£ 0 and

ai+a2 = A1(l +a+cL7')+a< 1,

the conditions of Proposition 6.1 (see Appendix) are satisfied. Now,

l-a1+a2=l-A1-a+(cLf+a)A1>l-a-(l-a)/(l+a+cLf)

_(l-a)(^f-fa)Ac^0
l+a+€Lf

Hence it foUows from Proposition 6.1, (3.5e), and (3.51) that for all k £ k ,

(l+cc+eLf)A2
Ixjfl<yt<fl2lx6l + lxfl+

l-ai+fl2
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(1 +CC+C^"y£,»
<a2lx8l+lxfl+- -—— £a2lx8l+lxfl+e", a5m)

where e' was defined in (3.51). We note that it foUows from theproof of Proposition 6.1 that

JEbflScT. (3Jn)

where e" was defined in (3.5m). Now,

IxflSlxf-xfl +lxfl. (3^o)

Since xff = x8 and u(t) = 0 for aU t e [0,11], it foUows from (3.2a-e) that

lxfl< Ax\xl\+eLf\xl\ =(A!+eLf)lx8l. (3.5p)

Substituting (3.5p) into (3.5m), we obtain that for aU it £ £,

Ixj^te^+a +a+e^A^lxSI+e". (3.5q)

Next, it foUows from the fact that Ixf I£ lx£-xfI+Ixfl, (3.5q), and (3.1) that for aU it £ $,

IxfI<(1+Ax){(eLf+(1 +a+eLf)A1)lx8l+e")+A2

=Yi^6l+Y2. (3.5r)

Now, it foUows from (3.5g,i) and (3.5m) that

eLf <Y! <(1 +Zi)(eLf+(l+a+eLf)e{) £Yi > <35s>

Y2 = (l+A,)e"+A2<

Let ps be defined by

P,A<P-T2#|. (3-5u)

1+̂ 4
e

— ^

IT

e2^Y2<p. (3.5t)

-ft *Since p -Y2 >0 and Yi ^ 1. weconclude that p, >0 and hence that BptcB^ is weU defined and its
p

interior is not empty. Next, it foUows from (3.5e), (3.5q), and (3.5r) that if x6 € Bp, and Km£Km,

then \xp I, lx^m I<p, which contradicts our assumption and it completes ourproof. •
k k

Theorem 33. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.5. Suppose that

13



tfm£min L(l-a) P h+eLf V1
f-l)(l+a+cLf) ' cMTe** 1 * JeLT(eLT

(3.6)

where e£(1 -a)(a+eLf)/(l +a+eL*). Let p, be defined as in (3.5u). Suppose that L «= [0,«>)
and JTm <tfm satisfy (2.5b-d). Then (a) there exists an c3<» such that for any x6 e Bp#t

lxp(f, 0, xg ,«)1 ^ e3 for aU r e [0,«) and (b) there exists an 64 > 0, depending on Kmi such that

£4-»0 as Km-*0 and for any x8 e BPj, the trajectory xp(f ,0,x8 ,k). f e [0,~)f satisfies

Um/_t08lx',(r ,0,x8,M)l^e4.

Proof First, we have shown in Lemma 3.2 that for any x8 e Bp#, the sequences {xf} km\ and

{xp)k=o are in the set B^. We wiU now prove that for any x8 e Bp#, lxp(r ,0,x8 ,m)I is
p

bounded. It foUows from (3.5d) and (2.4d) that for any t e fo+1, r4+2], it e N,

ixp(t ,tk+i,x^i ,u)l£lxp(t ,tk+i,xp+i ,u)-xm(t ,tk+ltxF+i ,u)l+lxm(t 9tM.xRi.«)«

<; Ailxfc, I+Ai*LfIxfl+A2(l+eLf)+pixf+11

<(A1+pM+1l+A1eLflxfl+A2(l+gLf)+p(A1lxi'l+A2). (3.7a)

Let e3 =(eip +e2)(l +p+'eLf) +pp, where Ei,e2 were defined in (3.5g), (3.5h), respectively.
Then, since xfe BA for aU it e IN, and A^ei and A2£e2, lxp(t ,tk+i,xk°+i ,u)lSe3 for aU

p

t e [fjk+1, f*+2], * e N. Next, it foUows from the proof of Lemma 3.2 that tim^^lx^! £e" where

e" was defined in (3.5m). Hence

fim lx'(r ,tM,x[+l ,u)l^(p(A1+l)+A1(l+cLf))e"+A2(l+p+6I'f).

£(p+(l+p+eLf)e,)e"+e2(l+p+eLf)£ 64, (3.7b)

where ei, e2were defined in (3.5g), (3.5h), respectively. Since £!, e2->0 as Km -»0, we obtain that

e4-» 0 as JTm -» 0, which completes our proof. D

So far, we have analyzed the behavior of the closed loop system resulting from the use of Con

trol Algorithm 2.5 and we have obtained a bound on residual errors when there exists a difference

between the plant (2.1a) and the model (2.2a). We wiU now present a strategy for eUminating the

residual errors using the suggestion in [May.2], to switch overto a linear quadratic regulator control

law when the state is sufficiently close to the origin.

14



Consider the linear feedback control law u(t) = -Kxp(t) for aU t £ 0 where K was chosento

satisfy (2.3a,b). Suppose that $: R" ->R" is defined by

/(x,-Kx)£ax+<Kx), (3.8)

for aU x e IR" and that l<|>(x)l2/lxl2->0 as lxl2-»0. Then, we have the foUowing local stabflity
result:

Lemma3.4. Letp^e (0,«») be such that for aU x e Bptflt £ {xe R" IIxISp^ },

l<t>(jc)l2/UI2 £ Xmin(M)/4AmixG2), (3.9)

where K^(M) and a^M) denote the smaUest and the largest eigenvalue ofM, respectively. Sup
pose that xfte BpiaK and that the Unear feedback control u(0 =-Kxp(t ,0,x8 ,u) is used for aU

r£0. If /STm <Amin(M)/4Amax(j2)(l +IA:i2/Amilx(Q)V4), then (a) xp{t ,0,x8 ,u)e BptflI for aU
r^Oandfo) Hm^lx^r ,0,x6 ,k)I =0.

/Vaqf. Let xp(t) £x'(f, 0,x8 ,u) where « is the Unear feedback control given as above. Then,
making use of (3.8), we obtain that

xp(t)=fp(xp(t),-Kxp(t))

=/(^(r).-/&:',(r))+/''(x'>(r).-/&'>(0)-/(x''(0.-i^x''(0)

=Axp(t)+^xp(t))+fp(xp(t)^Kxp(t))-f(xp(t)f-Kxp(t)). (3.10a)

Consider the Lyapunov function V(xp(t)) =lx'(OI2 £ (x'(0. fix'(r)>. Now, since 11„ <S M2,

Vp(xp(t) ,-Kxp{t))-f{xp{t) ,-Kxp(t)),Qxp(t))

* \fp(xp(t), -Kxp(t))-f (xp(t), -ATx'(0)IIG ^(OI2

<; Km(ix»(t)\ + i/n2ix'(Oi2)WQy^Ob

^ ^^(G) (1 +l^l2/AmaxG2),/4)U''(r)l22. (3.10b)

Itnow foUows from (3.9), (3.10b), and thecondition onKm that

V(xp(t)) = {xp(t), (ATQ +GA)x',(0>+2(<Kx'(0), Qxp(t))

+ 2(fp(xp(t) ,-Kxp(t))-f(xp(t) ,-Kxp(t)) ,Qxp(t))

15



£ (-WA/)+2Wfi)l<Kx'(0^^

^(-X^(M)/2+2^m(l +IA:i2/Aw(Q)^An^02))lx''a)l22 A-ylxPM}, (3.10c)

where y> 0, which impUes that if x8 € B^, lx'(OI2 is strictly monotone decreasing. Hence, for
any *6€Bptflt, we obtain that xp(t ,0,xZ,-Kxp(t))e Bpict for all r^O and that
xp(r, 0, x8 ,-Kxp(t)) -40as t -»~,which completes our proof. n

We propose to incorporate the switch over to an LQR feedback law into Control Algorithm 2.5
by modifying Step 7, as foUows. Let TK *TC be such that le^lScc where A was defined in
(2.3a).

Stepl': At t=tk%

(a) Measure the state x£ =xp(tk , t0, x6 , u , d);

(b) Ifxf *B Pw, set the plant input u(r) =u[tk tM(r), for / e [tk, tk+l); else reset tk+l to

the new value tM =tk+TK and set u(t) =-£*'(*, tk, xf. u ,d) for f e [tk , tM).

(c) Compute the estimate xf+1 £xmfo+1, tk, xp, it [tk,/4+l,, 0) of the state of the plant
xp(tk+l ,tk,xkD,u[tkt^, d) by solving (2.2a) with state xp at time t =tk, and an input
"[fc,^,](OforaU/e [tk,tM]. D

Theorem 3.5. Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.5 withStep 1\ Suppose that

Km k min Ml-a)
eLf(eLf-\)(l+OL+eLf) ' cuf e2^ ^+1'"}•

^min(M)

4WG)(i+i/n2/Am„(Q)V4) -

wheree£(l-a)(a+e^/(l+a+eLf). Let Bp. be defined as (3.5v). Suppose that Le [0,~) and
Km <Km satisfy (2.5b-d), and e"<p^* where e"was defined in(3.5m). Then, (a) there exists an

e5<~ such that for any x$eBPi, lxp(t ,0,x8 .m)I<e5 for aU f€[0,~) and (b)
imT/_00lx',(r ,0,x8,«)l =0.

Proof First, it foUows from the proof of Lemma 3.2 and the assumption that e" <p^* that there
exists a k' e N such that the cross-over to the Unear feedback control law

u(0 =-Kxp(t, 0, x8 ,«) wiU take place. Then, by (3.11) and Lemma 3.4, we obtain that for aU

16
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tztf,

V(xp(t ,* ,xg ,^Kxp{t)))<t^\xp{t ,tn ,xg ,-Kxp(t))\i, (3.12)

where V(x*(0) =lx^(r)l2 and y was defined in (3.10c). It foUows from Lemma 3.4 that xge B Plflt

for aU it >if and that lim, __..lxp(t. 0, x6 , u)l =0, which completes ourproof. D

4. DISTURBANCE REJECTION.

We wiU now determine the joint effect of disturbances and modeling errors on the behaviorof

the closed loop system resulting from the use of Control Algorithm 2.5. We wiU assume that the

state of the plant is measurable and that the disturbance d(t) cannot be estimated. Since the available

controls are bounded, we can only hope to overcome bounded disturbances. Hence we assume that

there exists a cd e (0, «>) such that 14lM < cd. We wiU consider two strategies as we did in Section

3. The first using only Algorithm 2.5 and the second one in which algorithm crosses over to the LQR

linear feedback law near the origin. We recaU that Control Algorithm 2.5 generates three sequences,

whichare [xg}£*,, {xf }£lfand [x*k)Z&

Lemma 4.1. Consider the moving horizon feedback system resulting from the use ofControl Algo

rithm 2.5. Suppose that Assumptions 2.3 and 2.4 are satisfied. Let p be defined as in Assumption

2.3, and suppose that L ,Km e [0,«») satisfy (2.5b-d). If xg ,xf e B„ for aU it e N, then there

exist A3 and A4 > 0 such that

kjf+i-^ilSAalxfl+A^ (4.1)

and A3, A4-> 0 as Km , cd -> 0.

Proof. First, the optimal control problem P(x", tk) has a solution for aU it ^ 1 since xg, xF e B
p

for aU it > 1, and as a result, the trajectory xp(t ,0,xft ,u ,d) is weU defined. Let

xp{t)kxp{t ,tk,xg,u ,d) and xF(.t)£xm(t ,tk,xg,u ,0) for aU t e [tk,tM] for aU k e N.

Givenxg e B ^ and u =U[kt ,4+1j e (/, obtained by solving theoptimal control problem V(xF, tk)t it
p

foUows from Assumption 2.4 that for aU t e [tk , tk+{\

J,\xg(t)-xF{t)\ <> (\fp(xg(x), u(x), d{x))-fm{xg\x) ,u(%), 0)ldx

* tVftfCc).«<*).d(x))-fm(xg(x),u(x),d{x))\dx

17



A

+jkVm(xg<x) >*(?), d(x))-fm(xF(x), u{x), Q)\dx

<IL \[\xg{x)-xF{x)\dx+Lcdf+Km\l(lxg(x)l+lu(x)\m>+\d(x)l„)dx. (4.2a)
It foUows from (2.1a) and(2.5b) that for aU t e [tk. f*+1],

lxg(t)l <S lxg\+fulfp(xg(x) ,u(x), d{x))\dx

<ttfl+ftL(\xg(x)l+lu(x)l<n+\d(x)\Jdx

<lxg\+jtL \xg(x)\dx+L(cu+cd)f. (4.2b)

It therefore foUows from the Bellman-GronwaU inequality and from the fact that for any it e IN,

tk+l-tk£Tt that

lx£(OI £ eL{t-tk)lxgl+L(cu+cd)feL("k). (4.2c)

Hence, for any t g [tk , tk+{\

\ltlxg(z)\dx<fh{cL(x"'*)lxfl+L(cM+c<f)f6L<t-||)} dx

= {(eL(t-tk)-l)/L)lxg\+(cu+cd)f(eL(f-tk)-l)

< {{eLf-\)IL }\xgl+(cu+cd)f(eLf-l). (4.2d)

By substituting (4.2d) into (4.2a), we obtain that for aU t e [rA , rA+1]

W(0-Jcf(01 ZKm \(eLf-l)/L\xglHeLf-l)(cu+cd)f+(cu+cd)f]

+L\'klxg(x)-xF(x)ldx+Lcdf.
It therefore foUows from the Bellman-GronwaU inequality that

ixg+l-xF+it< {KmeLf(eLf-\yL)\xgl+Km(cu+cd)fe2Lf+UdfeLf

£a3Ix£I+A4. (4.2e)

It is clear that A3, A4 -> 0 as (Km ,cd)->0, whichcompletes ourproof. D

We note that A3 is equal to Ab defined in (3.2f), and that A4 is the sum of A2 defined in (3.2f)

and the effect of the disturbance. Lemma 4.1 leads us to the foUowing result

18



Lemma 4.2. Suppose that p is as postulated in Assumption 2.3, and that L ,Km e [0, «>) satisfy

(2.5b-d). Then, there exist Km,cde (0,~) and prf e (0,p] such that if tfm£ATm and cdZcd, then
foraUx8eBp,£ {x e IR" Ilx I£pd)% the sequences {xfj^and {xf)£i, resulting from the
use of Control Algorithm 2.5, are weU defined and stay inthe set BA.

p

Proof We wiU prove this result by contradiction. Suppose that for any Km,cde [0,«>),

pe (0,p], Km<Kmt and cd £cdf there exist x6 e Bp and i e N such that xf,x£e B„ for aU
p

*<£ andx/£BA orxJ"eBA. We wiU consider three cases: (a)i =h(b)i =2,md(c)t >2.
k P k p

To simpUfy notation, let xg(t) £xp(t ,tk,xg,u[tkt ,l4lJ, rf), x*k(t) £xm(*. '* .xf. m[tk. ,„,, 0),
and xF(t) kxm{t ,tk,xg,u[tkt^,,,0) for aU t e [tk, fA+1], it e N. We note that x£+1 =xg(r4+1),
*f+i =xfftk+i),^*+2 =*f+i (^+2). and lx'A+1l £ alxf(r4+1)l for aU it e N.

fa) Suppose that i =1. Since u(r) =0 for aU re [0,*!] and xff =x8, we have that for aU
re [0,*!]

1x6(01 <1x81 +jj Vp{xl{x), 0, d{x))\dt <, U8I +L£IxgCflWx+ICrff (4.3a)

^^^^^^^^/^^(^.©^^^^^^^(x)!^. (4.3b)
It foUows from the Bellman-GronwaU inequaUty that for aU t e [0, t \]

1x6(01 <Ixgle* +^fe^ (4.3c)

lxS»(r)l<lx8le^. (4.3d)

Let Km >0 be arbitrary. Since 1x81 -> 0 as p-» 0 and cd -> 0 as cd -» 0,there exist p , cd >0 such

thatx? ,xf e B^ wherexf =x8(*i)andx? =xg,(r1), which contradicts our assumption,
p

(b) Suppose that i =2. Since xf e B^, there exists asolution to the optimal control problem
p

P(xf , 11). It foUows from the fact that Ix^l <cclxfI that

Ix5l<lx5-x'2l +oixfl. (4.4a)

We can easUy show that using the Bellman-GronwaU inequaUty, for any t e [t\, rj
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Ixf(01 £eL(t -"> flxf I+L(cu+ cd)f) . (4-4b>

It foUows from (4.4b) that for aU t e [t\, rj,

£Ixf (x)Wx <; (cLf - l)lxf I+(eLf - l)(cB +cd)f. (4.4c)
Now it foUows from (4.1), (4.3c), and (4.4c) that forall / e [t i, fJ

kf(O-x'1(r)l^lxf-xfl +jS/^(xf(x).M(x),rf(x))-/m(x'1(x),K(x).0)Wx

^Uf -xfl+£l/'(xf(x), m(x), d(x)) -/m(xf(x), u(x), <*(x))Wx

+J,' l/m(*f(x), m(x) ,rf(x))-/m(x'1(x), «(x) ,0)Wx

^Ixf -xfl+Kmfti (Ixf (x)l +\u (x)L+W(x)IJdx +Lfti (Ixf (x) - x* i(x)l +W(x)l00)rfx

<A3lx61 +A4 +(Km/L)(eLf - l)lxf I+KM{cu +cd)fe^

+Lcdf +L\t lxf(x)-x'1(x)Wx

<A3lx6l +(KmeLf(eLf - 1)/L)(lx6l +Lcdf) +A4

+Km(cu +cd)feLf+Lcd f+Lj'h Ixf (x) - x* j(x)Wx

=2A3lx6l +(1 +l/cLf)A4+LcdfA3+L|l|xf(x)-x/1(x)Wx, (4.4d)
where A3,A4 were defined in (4.2e). Again, making use of the BeUman-GronwaU inequality, we

obtain that

^f(f2)-^ia2)l =^5-^2l^2gLfA3lx8l +(l +6Lf)A4 +L(:<<fez'fA3. (4.4e)

By substituting (4.4e) into (4.4a) andusing (4.3d),we obtainthat

Ix^l <(2A3 +a)eLf1x61 +(1 +eLf)A4 +LcdfeLfA3. (4.4f)

Next, it foUows from (4.1), (4.3c), and (4.4f) that

lx2nl<U2n-x5l +Ixfl <A3lxfl+A4 +1x51

£(3A3 +a)eLf1x61 +(2 +eLf)A< +2LcdfeLfA3. (4.4g)

Since lx6l-»0 as p->0 and A3,A4-»0 as Km,cd->Ot there exist Km,cdG [0,~) and
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Pd € (0,p)^uchthatif^m £KmicdZcd, andx6 € B^thenxf ,x? e BA, which contradicts our
p

assumption.

(c) Suppose that %>2. Since xf+1 ,xf+i gBa for aU it zi -2, there exists asolution to the
p

optimal control problem P(xf+1,r4+1), (u^li4+jlQ,rA+2), such that Ix^l<;alxf+1I. TTiercfore.

x/+1 it) is weU defined for aU t e [/*+,, /t+2], it £ J - 2,and

lxjf+21 s lxk+2-x,k+2l+a lxf+11. (4 5a)

Next it foUows from (4.2d) that for aU t e fo+1, r4+2], kzl-2

Lpt+xWdx* {(eLf-l)/L }lxg+llHcu+cd)f(eLf-l). {4Sb)
Hence weobtain that for aU t g [rA+1, tk+2] for aU it £ £ - 2,

Itf+i(0-xWOI *lxf+i -*f+il+J,J/'(xf+1(x), ii (t), d(z))-fm(x*M(z). u(x), 0)1 dx

*ltf+i -*f+il+Jj/'(tf+i(x) .11(1), rf(X))-/"(rf+1(T) . j| (t), d(x))\dx

+J4J/"«+i(t). «(x). rf(x))-/'»(x'ik+1(x), «(x), 0)1 <*x

^bf+i -xRjI+L jJj*ki(x)-xW*)«<*x

+Lcdf+Km \l<\xg+x (x)l+lu (x)l00+W(x)IJ dx,

£A3lx£l+A4+((*m/L)lxi^

+L tw«<$-*k+iWdx+Lcdf

=A3lx£l+A4+^lx£+1l+-^r+iL j^hfci(t)-x*ft+,(t)lrfx (4.5c)
where A3, A4 were defined in (4.2e). Making use of the Bellman-GronwaU inequaUty, we obtain
from (4.5c) that for aU t e [tk+1, tk+2]t

bg+i(t)-x'k+l(t)\ZAilxg+l\+A3eLflxgl+A4(l+eLf). (4.5d)

It foUows from the fact that x*M =xft, (tk+2)t (4.1), and (4.5d) that for aU it <S t -2,
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i*£+21 ^ itf+2 - *W + OlX^j I

,LT LT\ . ~ivm^A3lxJf+1l+A3e"Ufl+A4(l+e")+cxlxr+i-xf+1l + alxffll

^(A3+a)lxf4.1l+A3(a+c£'f)lxjfl+A4(l+a+cLf).

Now suppose that such that

Ml-a)
/fm < min h*..r

eLT{eLT-IW+a+e1*) ' cTe2"" 1 *

5* ft
2 + e LT

\-l

•+lf p-^cMre 2L7 (tfmeLf+L)reLf]~\

(4.5e)

(4.5f)

(4.5g)

where e ft (1 -a) (a+e"V(l+a+«"r). Qearly, crf >0 by the choice ofKm. We wUl show that

\xp I, lxAm I <p must hold, whichcontradicts ourassumption. It foUows from (4.2e), andthe fact that
k k

cd<cd, and Km <Km that

A3= — -. -£

and

KmeLf(eLf-l) ^KmeLf(eLf-D A_, ^ i-cc
se'!<

l+a+etT '

A4 =Km{cu +cd)Te7iI+Lrcdei*

ZKnCufe11*+{KmeLf+L)feLfcd fte'2< 2+e LT

+ 1

-l

P.

(4.5h)

(4.5i)

FinaUy, by comparing (3.5e) with (4.5e) and (3.5g), (3.5h) with (4.5h), (4.5i), respectively, we

see that the arguments used in the proof of Lemma 3.2 must hold if we replace Ai by A3, A2by A4,ei

by e'i, and e2 by e'2. Hence we obtain the foUowing results whichcorrespond to those in Lemma 3.2.

,LTw

where e' was defined in (3.51). Let y3, y4 be such that

(4.6a)

.' \(„LT LT\*'y3 i (1 +e'1)(e" +(1 +a+e")e'i) (4.6b)

and
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Y4* l+^5
Lf "*

e'2, (4.6c)

where e', e'lt and e'2 were defined in (3.51), (4.5h), and (4.5i), respectively. Let pd bedefined as fol

lows:

P*ft0-Y4)/Y3. (4.6d)

It now foUows from (4.5i) and (4.6b,c) that the set Bp, ft {x e IR" IIxl £ p<*} is weU defined and

its interior is not empty. FinaUy, we conclude that 1x^1, \xp I£ P, which contradicts our assump

tion, and it completes our proof. •

Next, we have the foUowing result that corresponds to Theorem 3.3. We wiU omit the proof

since it is exactly same as that of Theorem 3.3 provided that wereplace Ax with A3, A2 by A», ex with

e'i, and e2by e'2.

Theorem 43. Consider the moving horizon feedback system resulting from theuseof the Control

Algorithm 2.5. Suppose that Assumptions 2.3 and 2.4 are satisfied. Let p bedefined as in Assump

tion 2.3, and suppose that L ,Km e [0,«) satisfy (2.5b-d). Let Km , cd be given by (4.5f), (4.5g),

respectively, and suppose that Km £Km and cd £ cd. Let pd be defined as (4.6d). Then, (a) there

exists an e'3 <eo such that for any x6 e BPd, \xp(f ,0, x6 ,u ,d)\ £ e'4 for aU t e [0,«) and (b)

there exists an e7 >0, depending on Km and cd$ such that e'4->0 as (JCm ,cd)-»0 and for any

x6 e B p,, the trajectory xp(t, 0, x6 , u ,d\ t e [0, oo), satisfies that

iim, ^Wit ,0, x6 ,u ,d)\ Ze'4. D

We wiU now show that when the disturbances are of sufficiently smaU ampUtude, we can stiU

use Control Algorithm 2.5 with Step 1\ toobtain the benefit of the disturbance suppression properties

of LQR systems. These depend on the largest real part of the eigenvalues Xy(A) of the matrix A,
where A was defined in (2.3a). Hence adesign trade-off is implied: the smaUer the largest real part

of the eigenvalues, the better is the disturbance suppression. However, to obtain avery negative larg

est real part may require large elements in K, which limits thesizeof the baU about theorigin where

the control u (/) = -Kxp(t) wiU not violate the control constraint

Thus, suppose that K is the gain matrix resulting from the solution of anLQR problem for the

model (2.2b) satisfying (2.3a,b). In Section 3, due to the absence of disturbances, we obtained that

limr_>0olx',(f ,0,x0,-A'x''(O,0)l-»0. Here, we have a different situation. Suppose that
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fa : Rn xR^-^lR" is defined by

fm(x ,-Kx ,d)=Ax+fdn(0,0,0)d+$d(x ,d), (4.7a)

where x e IRn, fa(0,0) =0, and lfa(x ,d)l2/Qx\2+ldlJ)-*0 as (lxl2. WIJ-+0. Let

O; IR^-* 2*** be defined by

a lfa(* . d)U<X>(Ve)£ {(p,c)eIR+xIR+l b| +M| Svg, VxeBp, VdeGc) , (4.7b)

whereBpft {xe IR" I IxISp) and Gc ft [d e R"" Ilrfl£c). Then we have the foUowing
result.

Lemma 4.4. Suppose that Assumption 2.4 is satisfied and Km e [0,«) satisfies (2.5d). Suppose

that

(Plqr . c'd) € Gfl^CWy4AB»(J2)). (4.8a)

whereQ ,M satisfy (2.3b) and that tfm <Amin(Af)/4Xln„02 Xl+KiJKnfQ )**) and thatyis defined

as (3.10c). Let

c d = min ,i'ui)i?r(P'0,'')'iU(eH yi+urw J J' (48b)
If x6 e Bptflir, Wl,.<d"d, and the Unear feedback control u(t) =-tfx'(f, 0, x6 ,u ,d) is used for

aU r£0, then (a) xp(t ,0,x6 ,u ,d)e Bpiflt for aU t>0 and W

liml_>aolx''(r ,0,x6,k ,d)l->0asc'd-»0.

Proo/. It foUows from (4.7a) that

xp(t)=fp(x»(t),-Kxp(t),d(t))

= fm(xp(t),-Kxp(t),d(t))+fp(xp(t),-Kxp(t),d(t))-fm(xp

= Ax'(O+/«0,0,0)d(O+fa(x'(O. d(t))

+fp(xp(t),-Kxp(t), d(t))-f»(xp(t) ,-Kxp(t), <*(0). (4.9a)

Consider the Lyapunov function V(xp(t)) =lx'(f)l2ft {xp(t) ,Qxp(t)) . Then, since
ld(t)l„Z\d(t)\2,

Vfr'CO) =U'(0. (A rQ +&4)x'(0>+2{fa(x'(0, d{t)), Qxp(ty+2{f?(0,0,0)d(t), Qxp(t))
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+2</'(x'(0. -Kxp{t). d(t))-fm(x'(f), -Kxp{t), d{t)), Qxp(t))

<; - (x'(0, Mx',(r)>+2Xm„(j2)lfa(x',(r), d{t))\2\xp{t)\2+7Xmcf,dK^2)\xp{t)\2

+2ATffl(l +wri2/AmixG2)V4)XmaxG2)lx''(r)l22+2c"dl/^(0,0,O^WOk'a^

-Xmin(Af)+ . „_. „ +2Arm(l +M:i2)Am»(Q)

Ifa(^(/).rf(0)l2
+2 ^ + l/dm(0.0,0)l2+

Ix',(r)l2+c"<<

Hence it foUows from (4.8b) and the condition on Km that

KaWAx'tolh

1x^(01?

(4.9b)

V(xp{t))< :^b'^(o.o.o).^)* **%%£» y<]lxp(t)l2

r_Up(0I+_p^l
W2)* WC)*

U^(r)l2, (4.9c)

where y was defined in (3.10c). (4.9c) implies that if lx'(01 >PigA. then V(xp(t))<0. Conse

quently, since x6 e BPtfijt, we must have that xp{t ,0,x% ,-Kxp(t),d(t)) e BPlfit for aU r £0.

Since c"^ - >0 as c'd -» 0, it foUows from (4.9c) that as c'^0, V(xp(t))->Ot which completes

our proof. •

Lemma 4.4 testifies us to the use of Control Algorithm 2.5 with Step i', stated in Section 3,

when disturbances are present The corresponding stability result is as foUows. Since its proofis

immediate from Lemma 4.2, Theorem 4.3, and Lemma 4.4, we wiU omit it

Theorem 4.5. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.5 with Step 1'. Suppose that Assumptions 2.3 and 2.4 are satisfied and that L ,Km

satisfy (2.5b-d). Let Km , cd > 0 be such that

Km < min L(l-a) P [2+eLf,ir
Lf(eLf-W+a+eLf) ' cje™ \ e J '
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4X^02 )(i+wri2An«02)V4)
(4.10a)

cd ftmin c d » fe^+i\$-Kmcufe™ [<JCmeLf+L)TeLfr* (4.10b)

where c"d was defined in (4.8b) and eft (1 -a)(a+e^y(l+a+eLf). Let Bp4 be defined as (4.6d).
Suppose that ATm £ ATm, cd £ cd, and e"'<p^, where e'" was defined in(4.6a) and py^ in (4.8a).

Then, (a) there exists an e6<«o such that for any x8 e Bp,t lx*(f ,0,x6 ,u ,d)l£e6 for aU

t e [0,~)and(fc;iim,._><jx',(f ,0,x6.« ,d)l-»0ascj-»0. D

5. Robust Stability with State Estimation.

Since it is not always possible to measure the state of the plant, xp(t ,0 ,x8 , u , d), we wiU

now examine the behaviorof ourclosedloop system resulting from the use of Control Algorithm2.5,

when the state of the plant has to be estimated in the presence of modeling errors. Here, we wiU

assume that there are no disturbances. At this point, we must introduce more structure into the non

linear functions fp{-, -, •) and/w(-, •, •) in (2.1a) and (2.2a), respectively, by assuming aparametric

structure for themodel uncertainty. Hence, consider thenonUnear time invariant system described by

x(r) =F(x(r),u(0,ejc), (5.la)

y(0 = fc(x(0.ey), (5.1b)

with u e £7, where U was defined in (2.1b), 9X e R*\ 9, e R", F : JR?xGuxR*% -» R\ and

h : R"xR*J -> R* Let q ft qk+q2 and let 6e R* be defined by 9ft ((9X)T, (%??. We wiU
denote the solution of (5.1a,b) at time r, corresponding to the initial state xo at time r0i and the input

u byx(r ,t0,x0,u ,9X).

We assume that the actual plant parameter vector 9 is 9*\ but due to modeling errors, in the

model, the parameter vector 9 is setto 9m. We wiU denote the solution of (5.1a,b), with 9 =9*\ by

xp{t ,fo.*6.")andy''(0,andbyxm(f ,f0.*0.")andym(Owhen9 = 9"1.

We propose to obtain an estimate of the initial state by solving the foUowing nonlinear least

squares problem:
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PE(9,T,u): min/(x0; T ,u ,9), (52a)

where

J(xQ; T,u ,Q)±Vij^lyp(t)-y(t)\2dt

=̂ Jo IA(x',(r,0,x6.M),9p-A(x(r,0,xo,«,9x),9>)l2<ft, (5.2b)

with Te [Tc ,f] and ye (0,1). It is obvious that J(x6 ; T ,u ,9p)=0foraU u e £/ and foraU
r€[rCtf].

Assumption 5.1. We assume that for any 9X e R*' and Qy e R*2, F(0,0,9X) =0 and
/i(0,9y) =0. D

Assumption 5.2. We assume that for any u e £/, and T e [Tc , T], Pe(9p ,T , u) has a unique

solutionxS,suchthat7(xS; T ,u ,9/,)=0,i.e.,xJ=x6. D

Assumption S3. Let p be as in Assumption 2.3, let px , p9e (0,«>), and let B°(QP, p*) and
B°(9/, py9) be defined by

B'(8£f pAft {9, g R«« I I9i>-9xl2<p9} (5.3a)

B°(Bp, py9) ft {9y e R"'I 19^- 9yl2< p9} . (5.3b)

Let the reachable set R(P , px) be defined by

R(p .p^ft {zeR" I z=xm(t,O.xo.u),

Vr e [0,f],x0€BA ,ue C7f9x€B°(9x,,p9)} . (5.3c)
P

We assume that there exists a Lipschitz constant L e [0, °°) such that for aU £'»5" € R(P . P*).

v\v"e U,VX ,9"x e B°(9i,,p9),and9'y ,9"y e B°(Qp,p»)t

IF <g ,v', 9'x) - F<g',v', 9"x)l <L I9'x - 9"xl2(l^l + lv'l„) , (5.3d)

IF ft', V , 9'x) - Fft", v", 9'x)l <L(l$'-%"\ + lv'- v"U, (5.3e)

l-J^Fft'.V,9'x) -^Fft'. V, 9"x)l2 <LI9'x -9"XI2(I5'I+Iv'lJ, (5.3f)

1-^Fft', v', 9'z) - J^Fft", v", 9'x)l2 <>L«'-61+IV-v\), (5.3g)
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l^.^'J-^Fft'.v'^^

^Fft',V,9'x)-^F(^,V',9'x)l2^L(l5'-6''l+lv/-v''l00),

-J-Fft'.V, 0'x) - af-Fft'.V. 9"x)l2<LI9'x -9"xl2(ft'l+Iv'IJ,

^Fft',V,9'x)--J-Fft/'.v''f9'x)l2<L(l5/-ri+lv/-v''U),

ax-
^ .Fft', v', 9'x) - -r^Fft',V, 9"x)l2 SLI9'x - 9"xl2(ft'l +Iv'IJ ,
dxz *~*

^ r/fc/ ../ o/ \ 3^ _Fft',v',9'x)- TrFft" ,v" ,9'x)l2<L(ft'-5"l +IV- V'lJ,
3xz 3xz

/» ft' . 6'y) "Aft', 9"y)l2 <L I9'y - 9"y feft'l ,

h ft' , 9'y )" h ft" . 9'y)l2 <L1 '̂ - 5"l ,

^ft'^V-^ft'^'y^^L^'y-ryl^'l.

±h ft'.e'y) - £h ft". e-y )i2 <; l ft' - 5"i.

d

39,
•Aft'.e'y)-"^-/lft',9"y)l2^LI9'y-9"yl2ft'l,

39,
hft', 9'y) - -£-h ft". 9', )l2 <Lft' - ?"l,

« i. /e> a> \ " l /f^ *ft' .9'y)" ~^h ft' ,9"y )l2 <LI9'y - 9"y l2ft'l .

3* , .,, 32
^2*G' •*>>" ^2*K" '9*>'**L'5' "S"' '
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Assumption 5.4. We assume that if xj is the solution of the nonlinear least squares problem

Pe(^ .T ,u), then the Hessian (32/3x^)/(xS ; T ,u ,W) exists and there exists a6e (0, ~) such
that for aU z e R"

zT-^TJ(x0;T,u.&>)2Zblz\}. (5.4)
•

The foUowing theoremis a directconsequence of the ImpUcit FunctionTheorem in [Ale.l].

Theorem 5.5. Suppose that Assumptions 5.1-5.4 are satisfied. Let x J be the solution of

Pe^ ,T ,u). Then there exist p£>0, pe>0, and a mapping T| : B°(9P ,pe)->R" of class

C\B°{&> ,pe)), where B*(9,p) ft {zeR* I \z - 9I2 <p}, such that

(1) 11(6") =x5;

(2) for aU 9 e B°(&>, p0), ln.(9) - xjl <p£ and the gradient (3/3xo)/(ii(9); T , u , 9)=0;

(3) theequaUty (3/3x0)/(xo; T ,u ,9)=0 holds in the rectangle B°QV ,pe)xB°Pt(xJ) only for

aUx0 =rt(9). where B*(x) ft {zeR" I lz-xl<p) and x0 is the solution ofPE(9,r ,u).

Proof First, it foUows from (5.2b) that for any 9ft (9/, 9/7 e Bp(9? ,pe),

-/(x0; r,M ,9) =J ^A(x(r,0.x0.if .ej.e^&'CO-yCO]*
axn ^U' ' J0 3X0 'u ox0

Jo
-^•A(x(r ,0,x0,u ,9x),9y)^j-x(r ,0,x0,k)

[h(xp(t ,O,x6.M),9y'0-/i(x(/,O,xo>M ,9x),9y)]dr. (5.5)

It foUows from Assumption 5.3 that (3/3x0)/(xo; T , m , 9) is differentiable in (x0,9). Also, it fol

lows from Assumption 5.4 that (32/3x£)/(x8 ; T ,u , 9T1 exists. Hence, the conditions of the

Implicit Function Theorem in [Ale.l, pp. 105] are satisfied, which completes ourproof. •

Lemma 5.6. Suppose that Assumptions 5.1-5.4 are satisfied. Suppose that x8 ,x0 e R(p , p9) are

the solution of PE(9^ ,T, w),PE(9,7 ,u), respectively, where 9eB°(9^,pe) with

peft min(px9, p9, pe), p.?, py9 as in Assumption 5.3, and p0 as in Theorem 5.5. Then there exists a
L e [0,«) such that
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h(Q)-*6i = i*o-*6i*£i9-e',i2, (5.6)

foraU9eBc(9P,Po).

Proof. First, it foUows from Assumption 5.2 that xj =x8. It foUows from [Ale.l, pp.102] that

<5-7a>

Now, we have that

there exists atfe [0,oo)suchthatforaU9ft(9j,9J)T€ B°(V ,$B)t

lri(e)-x8I^ATl32-/(x8; T,«,9)l.
oXq

afr/W;rf«,»-f -^•A(x(r,0,x8,tt.9x),9y)^-xa,0,x8.«)

[A(x',(/,0,x8,u),9',)-/i(x(r,0,x8.«,9x),9y)]df.

Hence

l^/(x8;r,M,9)l2^J[^l^(x(r,0,x6.u,9x),9y)l2l^x(r,0,x8,«)l2

(5.7b)

IA(x',(r,O,x8.M),9y0-/i(x(r,O,x8,M,9x),9y)l2dr.

Now, since (5.3o) is satisfied for aU §', %" e R0 , p,9), it foUows from direct calculation that

Kdh/dx)h(x(t ,0,x8,w ,9x),9y)l2£L. Now

,^(^0^6.")l2 =l^^o+j0V(x(x,0,x8,tt),u(T),9x)dx]l2

It foUows from (5.3e) withv' = v" andby direct calculation that

I-^F(x (x, 0,x8,u ,9X), u(x), 9X)l2 £L.

Next, it foUows from (5.7c,d) and the Bellman-GronwaU inequality that for aU t e [0, f ],

l^-x(r,0,x8,u)l2^eLf.

Next, it foUows from (5.3d,e) and the Bellman-GronwaU inequality that for aU t e [0, f ],
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kp(t ,0 ,x$ ,u)l£\x%\ +jW'ixi'ix ,0 ,x$ ,u),u(x) .Q&l dx

^lx6l +|)L(lx''(x,0,x6,«)l+l«(x)L)(/x

£ (1x81 +Lcuf)eu. (5.7f)

Also, it can be easUy shown from (5.3d,e) and(5.7f) that

lx'(r ,0,x8,K)-x(f ,0,x8,k ,9x)I

<JoIF(x',(x,0,x8,tt).u(x),9x,)-F(x(xt0.x6.M,9x),M(x),9x)lrfx

<LjQlx',(xlO,x8,K)-x(x,0,x8,M,9x)ltfx+Ljor(lx',(x,0,x8,M)l+cBMx

<(lx8l +̂ f)eLfl9/-9xl2+L^lx^(x,0,x8,tt)-x(x,0,x8.tt.9x)lrfx. (5.7g)
Hence, it foUows from the Bellman-GronwaU inequality that

lx'(r ,0 ,x8,u) -x(f .0 ,x8 ,u ,9X)I <S (1x81 +Lcuf)eLflQg- Qx\2eu . (5.7h)

Itnow foUows from (5.3n,o) and (5.7f,h) that for aU t e [0, f ],

\h{xp{t .0,x8,M),9yO-/z(x(r,0fx8,u.9x),9y)l2<LI9P-9l2lx',(r,0,x6.tt)l

+Llx',(/,0,x8.M)-x(r,0,x8.M,9x)l

<L(lx6l+Ic„f)(l +ez'f)eI/ I9^-9I2. (5.7i)

Now, it foUows from (5.7c-i) that

l^-/(x8; T,u ,Q)\2ZULf(l +eLfW-91^L(\x^+Uuf)eudt

^^^(1x81+^7X6^-1)19^-912 ft L'I9P-9I2. (5.7j)

Setting L ft KV, we obtain the desired result •

We propose to utilize the result of Lemma5.6 in Control Algorithm 2.5 as foUows.

Control Algorithm 5.7.

Data: f0 =0,Ye (0, \)%tx =7c,x8,,andM(/o#/l](r)sO. Tc and f such that 0<Tc < f <~.
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Step 0: Set k = 0.

Stepl: Atf=fA,

(a) Set the plant input u(t) = u[lk,M(r), for f e [fA, r4+1).

(ty Atr =tk +7(f4+1 - r4), estimate the state ofthe plant xg ft xp{t, 0, x8, u)bysolving

the optimal control problem PE(9m, f4+1 - tk, u) where 9"* is the parameter of the model,

and denote the resulting value by xk.

(c) Compute the estimate xfti =xm(tk+i,tk,xk,u[tkttk.i]) of the state of the plant

xp(tk+i,tk ,xg,U[tkitM]) by solving (5.2a) with state xk at time t =tkt and an input

"H.UO.re [tk,tk+il

(d) Solve the open loop optimal control problem P(x&!, tk+l) to compute the next sam

pling time tk+2 € (r4+1+Tc ,tk+i+f], and the optimal control u[tk^, u^(t),
* e [tk+l, tk+2).

Step 2: Replacek by k + 1 and go to Step 1. •

We wiUexamine the behaviorof Control Algorithm5.7.

Lemma 5.8. Consider the moving horizon feedback system resulting from the use of Control Algo

rithm 5.7. Suppose that Assumptions 5.1-5.3 are satisfied. Let p be as in Assumption 2.3, let

L e [0 , ~) be as in Assumption 5.3, and let j* ebe as in Lemma 5.6. If xg, xFe B for aU k e N
p

and Bm g B °{&>, p e), then there exist A5, Age [0,«) such that

l*f+i - *fii »^ A5\xgl +Afi, (5.8)

andA5, Ag-» 0 as£e -> 0.

Proof First, the optimal control problem P(xf, tk) has asolution for aU k £ 1 since xf e BA for
p

aU /: > 1, and as a result, the trajectory xp(t ,0,x8 ,u) is weU defined. Given xge B and
P

"="[/*./*+ii€ V* obtained by solving the optimal control problem V(xF,tk), let

x£(Oftx'(r ,'*.*£."[*,<,,,]) and xf(0 ft xm(r, tk, xk, u[tk, ^j). Then it foUows from Lemma
5.6, (5.3d,e), (5.7f), and the fact that xk is the solution of PeO^1 , k+i - f*, *0 that for aU

t elh, tM], AeN,

Mit)-xf(01 <\xg-xk\ +( \F(xg(x),u[Uilk^t), eg)-F(xf(x) ,u[tk,,„j(0. 0F)\dx
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sf.9-9«.2+( (l.9-9Wx),+L lxg(x)-xFW))dx

^LpB+p6(\x^ +uJ)(eLf'l)+L^\xg(x)-xFix)ldx. (5.9a)
Then, it foUows from the Bellman-GronwaU inequality that for aU r e [tk , ft+1], k e N,

l*j?(0-*f(OI £$&eLf(eLf - 1)1x0+ pe£ +Lcuf(eLf -1))*^

ftAslxfl +Afi. (5.9b)

Then, A5,A$->Oasj5e-*0, which completes ourproof. D

We note that Lemma 3.1 is the basic result that was used to prove other results in Section 3.

Now, by comparing Lemma 3.1 and Lemma 5.8, it is clear that similar to those results stated in Sec

tion 3 wiU hold if we replace Km with p e. Therefore, we omit the proofofthe foUowing theorem.

Theorem 5.9. Consider the moving horizon feedback system resulting from the use of Control

Algorithm 5.7. Then, there exist pe e (0, p e] and p, g (0, p ], where p e is as in Lemma 5.6 and p is

as in Assumption 2.3, such that for any x8 e BPt and for any 9m g B°($P, pe), the trajectory

xp(t, 0, x8 , u) is weU defined and that there exists a £7 g (0,«) such that lxp(r , 0, xg , u)l £ e7

for aU t >0. Furthermore, there exists a Kx g (0, °°) such that lim, _> „ lxp(t ,0, x8 , u )l <Kxp$. D

6. APPENDIX

We wiU now establish two inequalities that form the basis of several of our proofs.

Proposition 6.1 Consider the second order scalardifference equation

y*+2 = aiyk+i+a&k+b > k g N. (6.1a)

lfai,a2>0tb £ 0 and ax+a2<l, then for aU* £1,

Vjk^a2)'o+y1+^/(l-a1+a2), (6.1b)

and

l\mk_+„yk£b/Q.-al+a2). (6.1c)

Proof We begin by rewriting (6.1a) in first order vector form, as foUows. For k g N, let

2k = (y* ,y*+i)T. Then z0 =(y0.y i)T. and
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Zjfc+1 =
0 1

a2ax z*+ [°]=Fz*+*' (6.2a)

yk =[10^ ft Hzk. (6.2b)

The matrix F has two eigenvalues, X+, X_ =V4(a i ±Va?+4a2), with corresponding eigen

vectors, e+ =(l,X^)r and el =(l,X_)T. We wiU now show that-1<a_^0^ah.< 1, i.e., that

(6.2a) is anasymptoticaUy stable system. By assumption

0<fl2<l-a!. (6.2c)

If we multiply both sides Of (6.2c) by4, and add a 2 tothe both sides, weget that

a2+4a2<(2-al)2, (6.2d)

which implies that X*_ =Vi(a1-Vaf+4a2) >-1 and X* =V4(a1+Vfl12+4fl2) <1. Thus, we have
that-l<A^£X4.<l.

We can proceed to estabUsh (6.1b,c). By the Jordan decomposition, we have that

F=£"1A£, (6.2e)

where A =diag (X+, X_), and E =(e+, e_) is a matrix whose columns are the eigenvectors of F.

Hence for aU k £ 2,

yk = HE-*AkEz0

Since 0 <X+ < 1 and -1 <X_ < 0, it is clear that (a) the first term in (6.2f) goes to zero as k -» » and

(6Jthe last term in (6.2f) satisfies the inequality

x^J^~w~^~W)sx^{t^-t^:}= i-«t+«2 • (62g)
because (1- X+Xl - X*.) = 1-a \+a2t whichproves (6.1c).

Next, for aU *£1, XfsX* and -Xi^(-X_)*^-X^ Hence

{XAAf'1-^"1)/^-^)^ X^ =a2. Also (Xj-X£/(X^-X+)«£ 1,hence (6.1b)hold. D
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7. APPENDIX

We wiUnow establish two inequalities that form the basis of severalofour proofs.

Proposition 7.1 Consider the second order scalardifference equation

y*+2 = aiyJk+1+a2yik+fc , k g N. (7.1a)

Uax,a2>0,b >0andfl!+fl2< 1, then for aU* £1,

yk^a&o+y i+bl(\ -a i+a^, (7.1b)

and

hmik_>00yik£&/(l-a1+a2). (7.1c)

Proof We begin by rewriting (7.1a) in first order vector form, as foUows. For k g N, let

z* =(y*.yt+1)T. Thenz0=(y0»yi)r.and

zk+\ =
0 1
a2ax Zk + ^Ftk+8 . (7.2a)

yk =[10]zk&Hzk. (7.2b)

The matrix F has two eigenvalues, X+, X^= V4(a i±Vfl?+4a2), with corresponding eigenvec
tors, e+=(1, X+)T and e j=(1, X_)T. We wiU now show that -1 <X^ £ 0 £ X+ <1, i.e., that (7.2a) is
an asymptoticaUy stable system. By assumption

0<a2<\-ax. (7.2c)

If wemultiply both sides Of (7.2c) by4, and add a 2 to the both sides, we get that

a2+4a2<(2-al)2, (7.2d)

which implies that X_= lA(a i-Va?+4a2) >-1 and X+= lA(a 1+Va?+4a2) <1. Thus, we have
that-l<X^<X+<l.

We can proceedto establish (7.1b,c). By the Jordan decomposition, we have that

F«E'lAE . (7.2c)

where A =diag(X+,X_), and E =(6+,e_) is a matrix whose columns are the eigenveaors of F.
Hence for aU k £ 2,

yk=HE-lAkEzQ
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=X^K (^UXf-^Xf-^o+Oi-A^yi) +X^x; zV-^-Xf^-O. (7.20
Since 0 < X^. < 1 and -1 < X*_ <0, it is clear that (a) the first term in (7.2f) goes to zero as k -*» and

(b) the last term in (7.2f) satisfies the inequaUty

because (1-X+Xl -Xw)= 1-a x+a2,whichproves (7.1c).

Next, for aU *£1, XfsX* and -X*£(-X^)* £-Jl_ Hence

{X+X_(Xf"1-Xi-1)/(Xw-X+)< XtX_=a2. Also(Xi-kMX.-XjiSl,hence(7.1b)hold. •
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