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ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo-
rithms, for nonlinear plants with input saturation, disturbances, and plant uncertainty. The system is a
nonconventional sampled-data system: its sampling periods vary from sampling instant to sampling
instant, and the control during the sampling time is not constant, but determined by the solution of an
open loop optimal control problem. We show that the proposed moving horizon control system is
robustly stable and is capable of suppressing a class of disturbances.
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1.INTRODUCTION

There exist several approaches, including classical frequency domain techniques, for designing
robust, stabilizing feedback control laws for linear time invariant systems. However, the situation for
linear time varying systems or nonlinear systems is quite different. Following some earlier work on
model predictive control of linear time invariant systems (see e.g., [Cla.1 ,2], [Gar.1,2)), we find in
the literature an exploration of the possibility of determining feedback laws for nonlinear or time
varying systems by repeatedly solving open loop, finite horizon optimal control problems ([Kwo.1,2],
[May.1,2], [Mic.1]). Such feedback laws are known as moving horizon control laws.

In moving horizon control, the control at time ¢ is obtained by setting the current control equal
to & (t), a solution of on open loop optimal control problem over the interval [t , ¢ +T], where T > 0.

Since # (¢) depends on the current state x, repeating this computation continuously yields a feedback
control control. The finite horizon open loop optimal control problem has usually a terminal con-
straint x(t +T) = 0 (cf. [Kwo.1,2], [May.1,2}, [Mic.1]). This strategy provides a relatively simple
conceptual procedure for determining stabilizing feedback control for time varying or nonlinear sys-
tems. In [(May.2] the authors proposed an implementable version of such a controller which does not
require the exact solution of an associated optimal control problem with terminal constraints on the
state. Instead, the optimal control problem was solved approximately, with the terminal constraint
x(¢ +T) = 0 replaced by the relaxed constraint x(¢ +T) € W, where W is some neighborhood of the
origin.

Although the concept of moving horiz.on control is not new and has been proposed in conjunc-
tion with various applications, process control being one of them (see e.g., [Meh.1], [Pre.1], [Gar.1)),
it has not always been realized that a naive application of the strategy, in adaptive control for exam-
ple, can lead to instability. The literature that provides an analysis of the stabilizing properties of
moving horizon control laws for linear time varying and nonlinear systems deals with schemes based
on open loop optimal control laws for finite horizon optimal control problems with quadratic criteria
and no control constraints. Thus Kwon and Pearson [Kwo.2}, and Kwon, Bruckstein and Kailath
[Kwo.2] deal with linear time-varying systems, Keerthi and Gilbert [Kee.1] deal with nonlinear
discrete-time systems, and, more recently, Mayne and Michalska have established the stability pro-
perties of nonlinear, continuous-time systems with moving horizon control [May.1,2], [Mic.1,2]; see
also Chen and Shaw [Che.1]. In [May.2), the stability robustness of a moving horizon control was
examined, although the analysis is incomplete. In [Mic.2], the nontrivial time needed for the
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computation of the open loop controls is taken into account, under the assumption that there is no
modeling error. In [Pol.1,2], robust stability, disturbance rejection, and reference following proper-
ties of a moving horizon control law for linear time invariant systems, with and without a state esti-
mation, were analyzed, taking into account the time needed for the computation of the open loop con-
trols.

In this paper we propose a stabilizing moving horizon feedback law for time invariant nonlinear
systems, modeled with errors and subject to control and state space constraints. This feedback law
results in a nonconventional sampled-data system: its sampling periods vary from sampling instant to
sampling instant, and the control during the sampling time is not constant, but determined by the
solution of an open loop optimal control problem. We will see that taking into account the time
needed to solve the open loop optimal control problem and the modeling errors, complicates matters
considerably, because the computed optimal control is based on the state of a model that is not an
exact representation of the plant. In Section 2 we introduce our proposed moving horizon feedback
control law. In Section 3 we show that the proposed moving horizon feedback system is robustly
stable. In Section 4, we study the effect of disturbances. Finally, in Section 5§, we introduce more
structure into the nonlinear system and analyze the stability of the system when the state of the plant
has to be estimated.

2. STRUCTURE OF THE MOVING HORIZON CONTROL LAW.

We assume that the plant is a non-linear time-invariant system with bounded controls and an

input disturbance, described by the differential equation

xP()=fPxP(t),u(t),d()), (2.1a)
where f : R* xIR™xR™— R" is continuously differentiable, u € U,d e D with

U8 (uelLl0,=)lut)eG,,Vtel0,o)), (2.1b)

DA ({deL0,=)1d(t)e Gy, ¥t €[0,)]}, @.10)

where G, 4 (ze R™ | 1z1,<c, ) and Gd.é. {ze R™ | Izl,Scy)} with ¢, ,c € (0,). We
will denote the solution of (2.1a) at time ¢, corresponding to the initial state x§ at time ¢¢, the input

u, and the disturbance d, by x?(t , 19, x8 ,u ,d).

The function of the receding horizon control law that we are going to propose is to ensure



robust stability while taking into account the fact that the plant inputs are bounded as in (2.1b), as
well as various amplitude constraints on transients. Since the function fP(:, -, ) is known only to
some tolerance, the receding horizon control law must be developed using a plant model of the same

dimension as (2.1a),

"M)=", u(),0). (2.29)

Here, we will assume that the disturbance d(¢) cannot be estimated. We will denote the solution of
(2.2a) at time ¢, corresponding to the initial state x§ at time fq, and the input u, by

x™(t ,to,x3 ,u ,0).

Consider the linearization of the system (2.2a), in the neighborhood of the origin, i.e., the sys-

tem

X (@)=f"(0,0,0x.(t)+f70,0,0u(). (2.2b)
The following assumptions are needed to ensure local stability.
Assumption 2.1. We assume that f™(0,0,0)=0and f7(0,0,0)=0. 0
Assumption 2.2, We assume that (f*(0,0,0), (0,0, 0)) is a controllable pair. a

Consider the linear system described by (2.2b). It follows from Assumption 2.2 that there exists
a stabilizing linear feedback matrix K, where X is the solution of a linear quadratic regulator problem
in terms of (2.2b). Let

Adfm0,0,00-f0,0,0K. (2.3a)

Hence, since A is an asymptotically stable matrix, there exists a pair of symmetric, positive definite
matrices (Q , M) such that

ATQ+0A =-M. (2.3b)
Clearly, the matrix Q defines the Lyapunov function {x , Qx } for the linear closed loop system
x(t) = Ax(t). We use the matrix Q to define the norm
Ix18 (x,0ox ¥, (2.3¢)
that we will use throughout this paper.

Given any time #;, we will let x;"éx"‘(tk ,20,x8 ,u ,0). The aperiodic sampled-data feed-
back law which we are about to describe has the form of an algorithm which, during each sampling

period, solves a free time, constrained optimal control problem P(x*, 1,) of the form
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PO t): (n‘xix:){g°(u,1:)lg‘(u.‘t)$0.i=l,2.....l,.

maxﬂ(bj(u )20, j=1,....1,ueU,te [u+Tc,u+T1}, (249

ten,

where 0 < T < T <o, with Tc the least time needed to solve the optimal control problem P(x{*, ¢,),
Tisana priori limit on the control horizon, and

g D8R, b, xlu,0),i=0,1,...,1,-1, (2.4b)
gl , )=, X u , OP- PR, 2.4¢)
O, t)=hie™t b, xPu,0),0),j=1,...,0-1, tet.1] (2.4d)
0% )= Ix™(t , b, x[ u , O —PALR, t e (1,7, (2.4¢)

The constraint functions (2.4c,e) with e (0, 1) and B e [1, o), are used to ensure robust stability,
while the other constraint functions, ¢, h/ are convex, locally Lipschitz continuously differentiable

functions that can be used to ensure other performance requirements.

We will denote the optimal solution pair to P(x{*, ) by (u (e, 5a)() » te41). Clearly, the
optimal control is defined only on the interval [ty , #x41].

The fact that the plant inputs are bounded limits the region of effectiveness of any control law,
particularly for unstable plants. Hence we must assume that the initial states are confined to a ball

B 2 (x e R"I1IxI<p } cR", postulated as follows.
[

Assumption 23. We assume that there exists a P e (0,=) such that for all

xeB,_ 2 (xeR"IIxI<p },the optimal control problem P(x , 0) has a solution. 0
P

Assumption 2.4. Let p > O be as defined in Assumption 2.3, and let the reachable set R be defined
by

R4 (xeR"Ix=x™t,0,x0,u,d) or x =xP(t ,0,x0,u,d),
tel0,T),x0€ B ueU,deD}. @si

We assume that there exist a Lipschitz constant L € [0, ) and a modeling bound K. € [0, =) such
that forall§’,§” e R, V' ,v" € G,,and &’ ,8” € G,,



iF"E .v,8N=f"E¢" . v , ¥NSLAE -E"1+IV -Vl + 1§ - §"1) (2.5b)

IfFPE .V.8)-fPE" . V' ,NSLAE -E1+V -V'I.+ 18 -8"L.) (2.5¢)
IfPE . vV.,8N-f"E .V ,MNSK,(IE 1+ VI +181). (2.5d)
(|
We are now ready to state our control algorithm that defines the moving horizon feedback con-
trol system.
Control Algorithm 2.5.

Data: tg=0,t;=Tc,xB,and up,,,)(t)=0. Tc and T suchthat0< T < T < oo,
Step 0: Setk =0.
Step1: Att =1,
(a) Measure the state xf = xP(t; ,0,x8,u ,d);
(b) Set the plantinput u(t) = uy, 4., ¢), fort € [t , te4y).
(c) Compute the estimate x[}; ‘éx"'(tm 0 XE Uy, 4., 0) of the state of the plant
xP(tksrsti . XE Uy , 4., d) by solving (2.2a) with state x{ at time ¢ = ¢, and an input
Ui, 6.1t € [t t4q]).
(d) Solve the open loop optimal control problem P(xf}; , f;41) to compute the next sam-
pling time tf,2€ (te+Tc, tey+T), and the optimal control ., (),
1 € [tee1, ts2).
Step 2: Replace k by k +1 and go to Step 1. O
The following theorem generalizes a result given in [Pol.3].
Theorem 2.6. Suppose that (@) Assumption 2.3 is satisfied, (b) d(t)=0, (c) the systems (2.1a)
and (2.2a) are identical, (d) the state of the plant is measurable, and (¢) the Control Algorithm 2.5
is used to define the input u () for (2.1a). Then the resulting feedback system is asymptotically stable
on the set Bﬁ' ie., for any x§ € Bﬁ' the resulting trajectory xP(¢ ,0,x§,u ,0) satisfies that
IxP(¢,0,x8,u ,0)l <Plxglforall t 20 and that xP(¢ ,0,x8 ,u ,0)>0ast —eo.
Proof. We begin by showing that for any xf§e B 5 the discrete time trajectory

xP8xP(1, ,0, x8,u ,0), k e N resulting from the use of the Control Algorithm 2.5 is contained in
Ba. We note that xP(¢ ,0,x§,u ,0)=x"(,0,x8,u ,0) forall t 20. It follows from the form
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of (2.4c), that forall k € IN,

Ufarl = Pty te xF 0y g O = Lxfy 1 S ol S ot Ix gl (2.63)
Since ae (0,1), it follows that x"e Ba for all k€ N and hence that the trajectory
xP(t,0,x§,u,0)is well defined.

Next, from the form of (2.4¢), we see that for all ¥ € N and for anyt € [t , tp41),

WP, 0, 2P up,, 0, O =™, b, 3P, 0y, 4.0 0) < BlX{ < Botlxfl < Plxl. (2.6b)

Since x§ € Bs, it follows from (2.6b) that x?(r ,0,x§,u ,0)l < Blx§l for all £ >0. Finally,

because Bak —0 as k — oo, it follows that xP(¢ ,0 ,bxs +4,0)—0 as ¢t -, and hence that the

feedback system defined by the Control Algorithm 2.5 is asymptotically stable on the set B 5 O

3. ROBUST STABILITY.

We will now determine under what conditions the local asymptotically stability of the closed
loop system resulting from the use of Control Algorithm 2.5 is preserved while there is a difference
between the actual plant equation (2.1a) and the model equation (2.2a). We will assume that the state
of the plant is measurable and that there is no disturbance, i.e., d (¢)=0. Since there is no distur-
bance, we can simplify our notation by letting f™(€,v)2 "¢ ,v,0), FPE.VAfPE,v,0),
x™(t,0,xq,u)8d x™(t,0,x0,u,0), and xP(¢ ,0,x9,u) éx”(t ,0,x0,u,0). We will con-
sider two strategies: the first is where we use Control Algorithm 2.5 only and the second one where
we use a cross-over rule to a linear state feedback law near the origin so that residual errors can be
eliminated. (The latter strategy was introduced in [May.2], where the analysis was carried out under
the assumption that there are no modeling error.

We observe that Control Algorithm 2.5 generates three sequences. The first sequence is that of
measured state of the plant {xf} ziq. the second sequence is that of state estimates {(xf) i, iee.
x5 éx"’(tk »te-1,Xf-) LU, 4) and finally, the sequence { X, } {2, generated in the process of
solving the optimal control problem P(xf%; , fx41), k € N, ice. Xy =x™(t, gy, x4 . Uy, u)-
By construction, the sequences {x{"} s2; and {x; } £, satisfy the relation I¥';,ol < olx[%; | for all

k € N.

Lemma 3.1.  Consider the moving horizon feedback system resulting from the use of Control Algo-

rithm 2.5. Suppose that Assumptions 2.3 and 2.4 are satisfied. Let P be as postulated in Assumption
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23,and let L ,K,, € [0, ) satisfy (2.5b-d). If xf ,x[" € BB for all £ € NN, then there exist A; and
A; 2 0 such that

P =xfa 1 SA Ixfl+A,, 3.1
and A;, A,—0as K,, 0.

Proof. First, the optimal control problem P(x{*, #,) has a solution for all k 2 1 since x{* € B, for
]

all k21, and as a result, the trajectory x(¢ ,0,x8,u) is well defined. Given xf € B 5 and

u=uy,,, )€U, obtained by solving the optimal control problem P(x[*,#), let
XP()BxP(t 0, xP, u)and x7(t) Bx™(t .8, . xP, u). Thenforall ¢ € [t , tes])

LB XE(N S [, 1f PGB , u () ~f "Ge')  u (D 't
< [ (FPGE®) @) =F PG, w M+ P G , () =F " GR(R) , w(ON) d

S L [, 1@ ~xPl dT+ Ky || 5P+ i (@l) . (3.22)
We obtain that for all ¢ € [, #;41],

B! < Ll + | ' If "((t) , u (N dT < IxPl+ L:L IOl + e (Ol) dt

' _ .
< IxPl+ L L b(oldt+Le,T. (3.2b)

It follows from the Bellman-Gronwall inequality and from the fact that f;.,3—# < T for anyke N
that

WP < eLixpre Lo, Tel ¢, (3.2¢)
Hence, forany ¢ € [y, t41]

1 I -
[ br@lds [ (e p+Le, Tel ) ar
= (L W-1YL Y Ixfl+c, T(eL¢~W-1)

< (€T -1)L YWl +c, T (el -1). _ (3.2d)

By substituting (3.2d) into (3.2a), we obtain that forall t € [z, , ;41]



PG)-xPEN S K, [((e LT 1)L pr+ (LT = 1)e, T +c.,f] +L j,: P -xlldt. 20

It follows from the Bellman-Gronwall inequality that
for —xPa 1 S (KmelT (T — 1)L ) i1+ K e, Te 2T 8 A\ eP1 44, (329
It is clear that A, A, — 0 as K,,, = 0, which completes our proof. O
To use Control Algorithm 2.5, we must have that x;" € B 5 for all ¥ 21 so that the optimal con-

trol problem P(x{*, ¢;) has a solution. In Lemma 3.1, we have assumed that x[* € Ba forallk 21.

We will now establish a condition which guarantees thatx* € B, forallk 2 1.
[

Lemma 3.2.  Suppose that Assumption 2.3 and 2.4 are satisfied. Let§ ,L , K,, be as postulated in

Assumption 2.3 and Assumption 2.4, respectively. Then there exist I?,,. € (0,) and p; € (0,p]
such that if K, < K, then for all x§ € B, the sequences {xf} 29 and {x{*} &2, resulting from
the use of Control Algorithm 2.5, are well defined and stay in the set Ba.

Proof. We will prove this lemma by contradiction. Suppose that for every I?,,, >0,pe (0,p], and

Kn SK,,, there exist xf € B, and % e N such that xf,xf e Bﬁ for all k <k and xP éBﬁ or
i

x" éBa. We will consider three cases: (a) £ = 1, (b) % = 2, and (¢) £>2 To compress our
x

notation, we let xP(t)3xP( . XE U aa)y  XEC Y8x™(t 1, xP ‘B, and
i) Bx™( 0, 2P up,. ) for all € [f,f], k€ N. We note that xPy = xP(fes),
X k42 = Xiat(teads X051 = X8 (te41), and g0l < odxf(f) forall £ € N.

(a) Suppose that £ =1. Since u(@)=0 for all t € [0,1;] and xT = x§, we have that for all
te[0,1,]

B( ) < kBl + jo' If P(x§(x) , O)ldT < Ixf] +Ljo' g(oldt (3.32)

t t
FE) S i+ jo If "(xB(t), 0)ldr SIxfl+L jo 3 (Ddt. (3.3b)
It follows from Bellman-Gronwall inequality that forall ¢ € [0, ¢,]

Ix§( ) < IxBle (3.3¢)



Pl <xBled . (33d)

Let pe (0,3/e"7-'] and I?,,.>0 arbitrary. Then, since x§ e B, it is obvious that

x§ ,xT € B, wherex{ = x§(ry) and x* = x§(r,), which contradicts our assumption.
P

(b) Suppose that £ =2. Since xTeB 5" there exists a solution to the optimal control problem
P(xT , ;). It follows from the fact that ¥’ I, < cdx Tl that
IxZ1< Ix8 — x50+ adx Tl (3.4a)
Next, using the Bellman-Gronwall inequality, it can be easily shown that for any ¢ € [¢;, ¢5],
xS el [lxq|+1.cj]. (3.4b)
Now it follows from (3.1), (3.3c), and (3.4b) that forall ¢ € [¢,, ¢,]

KF ()= ¥ (N S BF = xT1+ [ 1 PGRED) , () = F "X 100), u )T
S -2 71+ [ 1P, w ) -F "R @ , w(DdT
+ [ "0R@, u @) =" @), @
B —x 1+ K[| QFO1+ I +L 1) -2 @ldt.
S 1B+ 8+ Kl Xe T = DRI+ K TelT + L) 1ef (1) - 2 0l
<A + K elT (el - 1)/L)ix5| +8y+ Knc, Tet T+ L ' () - X (DldT

= 20,1081+ (1 + Vet A + L] 1§0) - 2 sz, (3.4¢0)

where A, A; were defined in (3.2f). Again, making use of the Bellman-Gronwall inequality, we
obtain that

Z(t3) =% (e = IxB — X )0 < 2eLTA LBl + (1 + eLT)A, . (3.4d)
By substituting (3.4d) into (3.4a) and using (3.3d), we obtain that
1x81< 24, + e LTIxBl + (1 + eLT)A, . (3.4¢)

Next it follows from (3.1), (3.3c), and (3.4¢) that
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IS kT —x81+1x81 S Alxl +A; + Bl
< (34, + 0)elT gl + 2 + eLDa, . (3.4)

Since Lx§l —0as p — 0 and Ay, A, — 0 as K, — 0, there exist K,, >0 and p, € (0, D) such that if

Kn <K, andx§ € B, thenx8 ,xF € B, , which contradicts our assumption.
P

(c) Suppose that & >2. Since xf,;,x[%; € Ba for all k <& -2, there exists a solution to the
optimal control problem P(x}; , fx41), (U(y.,,6C) » te42)s Such that IX,ol € adxft; 1. Therefore,

xP41 (¢t) is well defined for all ¢ € [ty tr42), k <& =2, and

Ixfal s Ixf+2 —'{k+2| +Q IXﬂl 1. (3.53)

Now by comparison with (3.4b), we see that forany ¢ € [t , fs2],
Iy (e < eLC-0) [le+1l+Lc,,1-']. (3.5b)
By comparison with (3.4c), we obtain that for all ¢t € [ty , 2]

UeBus 1) =X st S by a1+ L [, U (=Xt dT+K [, (e @1+ (D) d.

S AP+ A+ (KoL Yy V4 K e, THE T = 1)+ K, Te, +L j’;lxg,,, (V) =-Xra(@ld

A 1493 4
= Axfl+A,+ :L—f-ugﬂn —F +L J:... Ixfsy (x)-xk+,(-;)| dr, (3.5¢)

where A;, A, were defined in (3.2f). Again making use of the Bellman-Gronwall inequality, we
obtain that for all ¢ € (41, 42]

Lefag (6) =X 1OV S AglxPyy 14+ Ay LTIxPL+ Ay (1 + ¢ LT, (3.5d)
It follows from the fact that Ixiiy 1< Wefyy = x5 14 Py |, Xag = Xea1(fes2), (3.1), and (3.5d) that

forallk <k —2, we obtain that

Ixfil S Ixfyp = X giol + cdxf3y
< Aylxpey 14+ A e T IxPL+ Ay(1 +€LT) + olxfly — xPoy 1+ alxPyy |

< (A + Py 14+ Ay (e + eLT)IxPL+ Ag(1 + o+ e L), (3.5¢)

1



Next we will show that if

g 1? |
K, Ami [ ___La-®) B __j2+e” 4l | 35
min le”(e”- DA +a+el) ¢, TedT * @30

€

where &4 (1-0)(a+ e"f)/(l +a+ e”-'). then Ix?1,l ™1 <P must hold, which contradicts our
k k

hypothesis. Thus, suppose that (3.5f) holds. Then, it follows from (3.2f) that

_ K,,,el‘f(e”-'-l) 'K-melf(elf_l) Ae < 1-a 359
' L L " Lravell
and
2eeld 7
Ay =Kpe Te 2T <Kc,TedT 8, < [ +ée +l] p. (3.5h)

Let a,=A+0 az=Aa+etD), and b =A1+a+ell). Let z 2 (e, ye)T with
yo = Ix§land y, = Ix§1. Consider the discrete time system

01 0 .
= [a2 al]zk+ [b] éFZk'f‘g ’ (3.51)

ye = [1 0]z, & Hz, . (3.5)
It is clear that forall k €&, IxfI<y,. Sincea;,a;20and

a\+ar=A(1+a+elN+ac<t, (3.5k)
the conditions of Proposition 6.1 (see Appendix) are satisfied. Now,

1-a;+as=1-A—a+(EeF+0)A; > 1-a—(1-a)/(1 +o+ell)

- LT
(-0 "+ A o (3.50)
1+a+ell

Hence it follows from Proposition 6.1, (3.5¢), and (3.51) that forall ¥ < /3 .

(1+a+elha,
l-aj+ay

IfI <y, <ax§l+Lxfl+



(1+a+ee, ,

Sa lxfl+ i1+ A g lxgl+ Ul +¢”,

where €’ was defined in (3.51). We note that it follows from the proof of Proposition 6.1 that

k@w Ixfise”,

where £” was defined in (3.5m). Now,
51 < x§ —x I+ Tl

Since x§' =x§ and u(z) =0forallz € [0, ¢,), it follows from (3.2a-e) that
xZ1< A IxBl+e T Ixgl = (A, +eLT)Ixgl.

Substituting (3.5p) into (3.5m), we obtain that forall k < £,

PI< (LT + (1 + o+ elD)A Bl +¢”.

Next, it follows from the fact that Ix{™l S xf—x"l +1x£1, (3.5q), and (3.1) that for all ¥ < £ ,

S (1+ADEET + (1 + ot e DAY B +€7) +A,

A vixgl+y,.

Now, it follows from (3.5g,i) and (3.5m) that

elT sy s (1+e)(e T + A +a+elDe) 8%,

-

LT
Ya=(1+4A)e"+A, < [1+ 2+e

]Ez é"}z < ﬁ .
Let p, be defined by

ps 2B ~¥2M1.

(3.5m)

(3.5n)

(3.50)

(3.5p)

(3.59

(3.51

(3.5s)

(3.51)

(3.5u)

Since P —”}2 >0 and"\y, 2 1, we conclude that p, > 0 and hence that B, CB, is well defined and its
P

interior is not empty. Next, it follows from (3.5€), (3.59), and (3.5r) that if x§ € B, and K, < K,

then Ix?1, Ix™1 <, which contradicts our assumption and it completes our proof.
k k

o

Theorem 3.3. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.5. Suppose that



- -]

- . L(1-0) ) 2+el? '

K émm e = , - — - +1 , (3.6)
" elT(e T -1)(1+a+elT) ' ¢, T e%T { €

where &8 (1-a)(ou+eLT)(1 +a+elT). Let p, be defined as in (3.5u). Suppose that L € [0, )
and K, <K, satisfy (2.5b-d). Then (a) there exists an ;<o such that for any x§ € B,,,
xP(t,0,x8,u)l<e; forall ¢t € [0, <) and (b) there exists an &4 > 0, depending on K,,, such that
€4—0 as K, —0 and for any xf§ € B, the trajectory xP(¢ ,0,x§,u), ¢t € [0, ), satisfies
lim, ,.xP(¢ ,0,x8,u)l S¢es

Proof. First, we have shown in Lemma 3.2 that for any x§ € B ,, the sequences {x[*} i. and

{xP} k2 are in the set Ba. We will now prove that for any x§ € B, ikP(¢,0,x§,u)l is

bounded. It follows from (3.5d) and (2.4d) that forany ¢ € [tx4;, tks2). k € N,
xP(t, e, xBer N SWP(E, teay, xBay , ) =X, tar, X0 U+ IX™(E by, x5 L u)l
S AxPoy 1+ A1 LTIXPL+ Ay(1 + e T+ BIxf2 0
< (Ar+ PPy 14+ A1 LTIl + Ag(1+ e LT + BA 21 +A)). (3.79)
Let 83‘%(813 +&5)(1 +B+‘e"f)+[5f>, where €;,€; were defined in (3.5g), (3.5h), respectively.

Then, since xf € B, for all k € IN, and A;<g; and A, <€, XP(r, 41, xPsr , u)l S€3 for all
[

t € [te41, tes2), kK € IN. Next, it follows from the proof of Lemma 3.2 that ﬁk_,,,lel <¢” where
¢” was defined in (3.5m). Hence

Jim PGt 3P IS BA+ D +A (1 +eT)e"+ 8501 4B+ e4T).
—) 00

SB+Q+p+elDee” +e,(1+B+elT) B¢y, (3.7b)

where €, , €; were defined in (3.5g), (3.5h), respectively. Since €;, €&,— 0 as K, — 0, we obtain that
€4— 0 as K, — 0, which completes our proof. 0

So far, we have analyzed the behavior of the closed loop system resulting from the use of Con-
trol Algorithm 2.5 and we have obtained a bound on residual errors when there exists a difference
between the plant (2.1a) and the model (2.2a). We will now present a strategy for eliminating the

residual errors using the suggestion in [May.2], to switch over to a linear quadratic regulator control
law when the state is sufficiently close to the origin.
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Consider the linear feedback control law u(¢) = ~KxP(¢) for all # 20 where K was chosen to
satisfy (2.3a,b). Suppose that ¢ : R* — R” is defined by

fx,-Kx)8 Ax +¢(x), (3.8)

for all x € R” and that I¢(x)ly/lx};—0 as lxl,—>0. Then, we have the following local stability
result:

Lemma34. Letpgr € (0,)besuchthatforallx € B, 8 (x e R* IxISpz),
1601/ Ix 1y S Ain(M Y450 (Q) (39)

where Apin(M ) and A,..(M ) denote the smallest and the largest eigenvalue of M, respectively. Sup-
pose that x§ € B, and that the linear feedback control u(t) = -Kx?(t ,0 » X8 , 1) is used for all

120, If Ky <Aqin(M )dhpan( Q)1 + 1K 1/Apax(Q)%), then (a) xP(¢ ,0,x8,u)e By, for all
t20and (b) lim,,.xP(t,0,x,u)l=0.

Proof. LetxP(¢)8xP(t,0 » X8 , u) where u is the linear feedback control given as above. Then,
making use of (3.8), we obtain that

xP(t) = fP(xP(t) , - KxP(t))
=f @xP@), ~KxP()+fP(xP(t) ,—KxP())-f (xP(t) , —~KxP(t))

= AxP()+Q(xP () +fP(xP(t) , ~KxP(t))=f (xP(t) ,—KxP(t)). (3.10a)
Consider the Lyapunov function V (x?(¢)) = lxP (¢ 124 (x? (), OxP(t)}. Now, since I'l, < Il,,

PGP@), -KxP(1))-f (xP(t) , —KxP (1)), QxP (1))
SIFP(P(e) ,—KxP(1))=f (xP(2) , ~KxP (e )NQ ¥xP (1),
S K (6P ()0 + 1K 1P (1) Anax (@) 1P (1))

S K Amax(Q) (1 + 1K 1/ Anex(Q@) )P (e 12 . (3.10b)
It now follows from (3.9), (3.10b), and the condition on K, that

VxP() = (xP(1), (ATQ + QAP (£))+ 246(xP (1)) , OxP(¢))

+2(fP(xP(r) , —KxP ()~ f (xP(t) ,—KxP(2)) , QxP(t))

15



S = Ain (M) + 2012 (@ )IO(xP (€ D)/ P () + 2Ky (1 + 1K /A (0 ) M) Ainan (@ DX ()12

S - Anin(M )2+ 2K (141K 1/ Apr(Q ) Aan (@ )P (0)1F 2 —yxP ()13, (3.10c)
where y> 0, which implies that if x§ € Biop, Ix? (¢)1? is strictly monotone decreasing. Hence, for
any xfeBp,, we obtain that xP(t,0,x§,-Kx?(t)) e By, for all ¢20 and that
xP(t,0,x8,-KxP(t)) -0 as ¢ — oo, which completes our proof, a

We propose to incorporate the switch over to an LQR feedback law into Control Algorithm 2.5
by modifying Step I, as follows. Let Ty 2 T¢ be such that le™41< o, where A was defined in
(2.3a).

Stepl’: Att =1,

(a) Measure the state xf = xP(t; , £o,x§ ,u , d);

(b) If xf €B,,, set the plant input u () = Ufe,ua)() fOrt € [, trq); else reset £, to

the new value #;,; = #,+ Ty and set u(t) = -KxP(t , ¢, ,xf,u ,d) fort € [te ) tesr)-

(c) Compute the estimate x{3; & x™(t41, i, %P, U, , 4, 0) OF the state of the plant

xP(teer e xE Uy, 4.0 d) by solving (2.22) with state xf at time ¢ = 1;, and an input

U, q)) foralls € [t , 4] 0

Theorem 3.5.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.5 with Step I°. Suppose that

- -1

— . L(1-0) p 2+4elT

Kmémm[ == —_—, ——— —<+1 ,
le”(e”-l)(1+a+e”) cuT e%T {

€

Amin(M) ] . 1

Amax(Q )1 +1K b/Ax(0)%)

where & & (1-0)(a+e7)(1 +a+elT). Let B, be defined as (3.5v). Suppose that L € [0, =) and
K, <K, satisfy (2.5b-d), and £” < Prgor Where £” was defined in (3.5m). Then, (a) there exists an
€s<eco such that for any x§e By, IxP(¢,0,x8,udises for all te[0,=) and (b)
lim, . x?( ,0,%§,u)l =0.

Proof. First, it follows from the proof of Lemma 3.2 and the assumption that €” < p;op that there
exists a & eN such that the cross-over to the linear feedback control law
u(t)=—KxP(t,0,x§,u) will take place. Then, by (3.11) and Lemma 3.4, we obtain that for all

16



V t 21y,
VP 1y, xB ,—KxP()) S—YIxP(t , ty . xB ,—KxP()IF, (3.12)

where V (xP(t)) = Ix? ()12 and vy was defined in (3.10c). It follows from Lemma 3.4 that xf € B,
forall k 2 ¥’ and that im, _,x?(¢ , 0, x§ , )} = 0, which completes our proof. O

4. DISTURBANCE REJECTION.

We will now determine the joint effect of disturbances and modeling errors on the behavior of
the closed loop system resulting from the use of Control Algorithm 2.5. We will assume that the
state of the plant is measurable and that the disturbance d (¢) cannot be estimated. Since the available
controls are bounded, we can only hope to overcome bounded disturbances. Hence we assume that
there exists a ¢4 € (0, =) such that 141, < c;. We will consider two strategies as we did in Section
3. The first using only Algorithm 2.5 and the second one in which algorithm crosses over to the LQR
linear feedback law near the origin. We recall that Control Algorithm 2.5 generates three sequences,

whichare {xf)} 20 (xI')} iansand (X, ) .
Lemma 4.1. Consider the moving horizon feedback system resulting from the use of Control Algo-

rithm 2.5. Suppose that Assumptions 2.3 and 2.4 are satisfied. Let p be defined as in Assumption
2.3, and suppose that L ,K,, € [0, =) satisfy (2.5b-d). If xf,x{" € BB for all £ € N, then there

exist A and A4 2 0 such that

X —xT VS A IxPL+ Ay, 4.1
and A3, Ay > 0as K, ,cq—0.
Proof. First, the optimal control problem P(x[*, t,) has a solution for all k¥ 2 1 since xf,x;" € BB

for al k21, and as a result, the trajectory xP(¢,0,x§,u ,d) is well defined. Let
xf(t)éx"(t 2. xf,u ,d) and xL"(t)éx"’(t Jt,x0,u ,0) for all ¢t € [t;,4,41] for all k € N.

Givenxf e B6 andu =uy, ., € U, obtained by solving the optimal control problem P(x*, £), it

follows from Assumption 2.4 that forall ¢t € [¢; , fx41]

Lef(t) —xg'(e)h < I,' IfPxf(D), u(m), d(@)-f"(E(T) , u (D), O)d

<[ PGE®), u () d)-f "GED)  u(5) , A

17



+[ Y mGRD)  u(D) @) -F "GP, u(), Ol dt
<L [,: k2) - xf (N dt+LegT +Kp, j,: WGP+l @l +ld(DI)dT.  (4.2d)
It follows from (2.1a) and (2.5b) that forall ¢ € [t;, %.41],

ROV S 1+ [ If PGE)  u(@), d @)l
< Uf1+ [, L POl e @I+ 1 L) dt

< Ixpl +L:L PN dt+L(c,+co)T . (4.2b)

It therefore follows from the Bellman-Gronwall inequality and from the fact that for any k£ € IN,
Le1—t S f. that

PN S el CMUPL+ L (e, +cg)TeL ¢, @4.2¢)
Hence, forany ¢t € [t , t;,4]

j,: xp(Dldt < j,: (L Wpr+ L (e, +cg)Te ) de
= (LM™YL Y P14 (c, +c)T (el 2)-1)
< (LT =1L Y IxPl+(c, +c)T (€ -1). 4.2d)
By substituting (4.2d) into (4.2a), we obtain that forall 1 € [t , #41]

KP()-xL NS K, [(e'f— 1L P+ (LT = 1) (e, +ca)T +(cu + c,,)f]

! -—
+L[ @ =xF (Dl d+LeyT .
It therefore follows from the Bellman-Gronwall inequality that
Py =X b S ( KmelT(eXT = 1)L } IxPl+K (e, +cg)Te 2T + Lo Te kT
A AxPL+A,. (4.2¢)

It is clear that A;, Ay— 0 as (K, , ¢4) = 0, which completes our proof. " . O

We note that Aj is equal to A, defined in (3.2f), and that A4 is the sum of A, defined in (3.2f)
and the effect of the disturbance. Lemma 4.1 leads us to the following result.
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Lemma 4.2.  Suppose that p is as postulated in Assumption 2.3, and that L , K, € [0, o) satisfy

(2.5b-d). Then, there exist I?,,, »Ca€ (0,=)andp; € (0,p]such that if K, SE,,. and ¢4 < ¢4, then
forall x§ € Bp‘é {x e R* I IxI<p, ), the sequences {xP} 2o and {xf*} 221, resulting from the

use of Control Algorithm 2.5, are well defined and stay in the set B,.
P

Proof. We will prove this result by contradiction. Suppose that for any I?,,, ,Cq € [0, ),

pe (0,p), Kp <K, and cs STy, there exist x§ € B, and £ e N such that x*, xf e Bs for all

k<% andx? éB6 orx™ éB, . We will consider three cases: (@)% =1, (b))% =2, and (c)k >2.
: E P

To simplify notation, let xP(t) 2 xP(¢ , ¢, ,xP . u onal @ Xe@)Bx™( 10, X u (. ta]» O
and xP'(¢) 8 x™(t .1, xP . u .6 0) forallz € [, 5.,], k € N. Wenote that xf,; = xP(t;41),
X1 = XE(ra)s X ka2 = X1 (te42), and ey 1 < odxf(g4q)) forall k € N.

(a) Suppose that £ =1. Since u(t)=0 for all ¢t € [0,¢;] and xJ = xf§, we have that for all
t e [O,tI]

BN < LBl + [ 1P, 0, d(oMhde < Lxfl+L [ gt + LT (4.32)

H H
BEEOIS LBl + [ If ":F(D), 0, 0)ldr SLxBl+L[ kF(ldr. (4.3b)
It follows from the Bellman-Gronwall inequality that forallz € [0, ¢ 1]

IXB() < IxBleX + LeyTel @.3¢c)

PN <xBlel . (4.3d)

Let K, > 0 be arbitrary. Since Lx§1 -0 as p — 0 and ¢, — 0 as & — 0, there exist p , &4 > 0 such

thatxf ,xT e B, wherex§ =x§(¢,) and xT = x§(¢,), which contradicts our assumption.
P

(b) Suppose that £ =2. Since x{' € B, , there exists a solution to the optimal control problem
[}
P ,ty). It follows from the fact that I¥’ ;1 < allx 'l that
IxBI<xB - X/l + cdx Tl (4.4a)

We can easily show that using the Bellman-Gronwall inequality, for any ¢ € [ty ¢5]



B S el -1 [lqu +L(c, + cd)f] . (4.4b)
It follows from (4.4b) that forall ¢ € [¢,, 5],
t = = -
i f@ld s (M = Dx§h+ (M = 1)(e, +ca)T . (4.4c)
Now it follows from (4.1), (4.3c), and (4.4c) that forall ¢ € [¢,, t,]

BE@) =X VS I =371+ [ 1P, 4D, @) =" 1(0) . () O)ldT
<bef =371+ [ 1P GROD), 4@, d@) - F "G u (D), d@)d
+[ "R, 4@, d@) - F @ (@), u(r), Ol
SE —xT1+K,[ ' ©R O+l @l + 1)1+ L] i (X8 (7) - ¥ (Ol + ld (DL )dT
< AgxBl+ Ay + (Ko/L YT = DIxE1 + K (c, + c)TelT
+LegT +L | bf () -2 (o
< AxBl + (KnelT (el = 1VL Y181 + LegT) + A

+Knlew+ca)TelT + Le,T +L]] " B (r) - ¥ (Ol

- - ] .
= 2A3lxl + (1 + 1/elT)Ay + Lo TAS + L j‘ bR -2 (D, 4.4d)
where A3, Ay were defined in (4.2¢). Again, making use of the Bellman-Gronwall inequality, we
obtain that
xR = (Pl =Ix8 - X ,I < 2e"fA3lx5I +(1+ e”-')A4 + Lc,,:l_’e’jA, . (4.4¢)

By substituting (4.4¢) into (4.4a) and using (4.3d), we obtain that
1xB1< 243 + 0)e LT1xg1 + (1 + eLT)A, + Lo, TelTA, . (4.49)
Next, it follows from (4.1), (4.3c), and (4.4f) that

IXZ1S IxF — x81+ 1x81 < AjleZl + Ag + Bl

< (383 + elTIxgl + 2 + eLT)A + 2L, TelTA, . (4.4g)

Since Ix§l—0 as p—0 and A;,A;—0 as K,,,c; =0, there exist I?,,,,Ede [0,) and
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P4 € (0,p)such that if Ky S K, 4 SC4,and xf € B, thenx8 , x5 € B, , which contradicts our
P

assumption.

(c) Suppose that & >2. Since xf,; ,xf% € B 5 forall k <% -2, there exists a solution to the
optimal control problem P(x[%; , fi41), (¢ {ao1, £dC) + 2242), SUCh that Iy ,0l < odxf%; 1. Therefore,

xf41(2) is well defined forall ¢ € [ty tyal, k S® -2, and

Ufi2) S Ixpo—X gl +0 Iy L. (4.52)
Next it follows from (4.2d) that for all # € [f;41, 4], k S£ 2

Jo ERa@IdTS (€ =1)L ) iy 14 (e, +ca)T T -1). (4.5b)
Hence we obtain that for all ¢ € [t;,,, ;5] forall k S£ ~2,

et ()= X pa (O S By = xf b+ [, I PR (@), 4 , @) —f "W i) . D) , Ol
Sty =3l l+ [, 1f PGP 1D, @)1 (B (D). 4(5), A
+] VO ®, 1) AN~ KD 4D, Ol
S W —xEal+L [, B (DYl d
HLegT+Kn [, Uy 1+ (Ol +Hd @) d7,
S Aslxfl+ Ag+ (Ko /L YXPyy 14+ K (C, + cd)f)(e LT_ DN+K, f(c,‘ +cq)

t -
+L j, B (D =X @) d T+ Lo, T

A3 A4 t
= Aslxfl+A,+ ﬁlxgﬂ I+ —F +L L B =X n@lde (4.5¢)

where A3, Ay were defined in (4.2e). Making use of the Bellman-Gronwall inequality, we obtain
from (4.5c) that for all t € [ty , fesol,

Lefat (0) = X (1 S Aglxf 14+ Age TP+ A, (1 + € LT, 4.5d)

It follows from the fact that X, ,, = X£41 (te42), (4.1), and (4.5d) that forall k <% =2,
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Ixfipl S Ixfyp = X paol + alxfy |

S AglxPyy b+ Ase TP+ Ag(1 + e2T) + odxfty = xPyy | + g !

< (Ag+ ), 1+ Ag(a+ e LD Pl + A (1 + a+eLT). (4.5¢)

Now suppose that such that
- -1
— . L(1-0) ) 2+elT
K,, <min |[——= — , — = +1 ' (4.59)
el e -1 +a+ell) c.,Te"‘T{ €

2+elT V) e

48 e +1 P —Knc, TeXT [(K,,,eLT+L)Te"T] , 4.5g)

where &2 (1-0) (a+eLTy(1+a+elT). Cleary, &, > 0 by the choice of K,,. We will show that

Ix?1, Ix, ™1 <P must hold, which contradicts our assumption. It follows from (4.2¢), and the fact that
k k

g Ty and K, S K, that

A KnelT(elT-1) K, elT(elT-1) A, - 45h)
" L L S raell '
and
Ag = Kp(cu+ca)Te 2T +LTc etT
4 LT 1
SKnc TedT + (K elT +L)TelTey B e/y < [2*‘—;—4-1] . (4.5i)

Finally, by comparing (3.5¢) with (4.5¢e) and (3.5g), (3.5h) with (4.5h), (4.5i), respectively, we
see that the arguments used in the proof of Lemma 3.2 must hold if we replace A; by As, A; by Ay, €
by €', and €; by €';. Hence we obtain the following results which correspond to those in Lemma 3.2.

(A +atetNye 4 o
’ = ’

limy _, o IXf1 S (4.6a)
where € was defined in (3.5]). Let"\yg ,”y,; be such that
Y32 a+e)ET +(1 +a+etNey) (4.6b)

and
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) F
Yol [1 + “T‘f]e'z , (4.6c)

where €, €'y, and €, were defined in (3.51), (4.5h), and (4.5i), respectively. Let pa be defined as fol-
lows:

Pa 2@ Y. (4.6d)
It now follows from (4.5i) and (4.6b,c) that the set B,, a {xe R*"IIxI<p,) is well defined and

its interior is not empty. Finally, we conclude that Ix ™I, Ix 1 S 8, which contradicts our assump-
k k

tion, and it completes our proof. a

Next, we have the following result that corresponds to Theorem 3.3. We will omit the proof
since it is exactly same as that of Theorem 3.3 provided that we replace A; with As, A; by Ay, € with
6'1, and g, by 5'2.

Theorem 4.3.  Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.5. Suppose that Assumptions 2.3 and 2.4 are satisfied. Let § be defined as in Assump-
tion 2.3, and suppose that L , K, € [0, =) satisfy (2.5b-d). Let E,,. , C4 be given by (4.5f), (4.5g),
respectively, and suppose that K, SE,,, and ¢4 SC4. Let py be defined as (4.6d). Then, (a) there
exists an €’y < eo such that for any x§ € B, IxP(¢ ,0,x§,u ,d)I <&’y forall t € [0, =) and (b)
there exists an €; >0, depending on X, and ¢y, such that €4—0 as (K,,,cs)—0 and for any
xf € By, the trajectory xP(t,0,x8,u,d), t € [0, ), satisfies that
lim, . xP(t,0,x8,u,dI<€, 0

We will now show that when the disturbances are of sufficiently small amplitude, we can still
use Control Algorithm 2.5 with Step 1, to obtain the benefit of the disturbance suppression properties
of LQR systems. These depend on the largest real part of the eigenvalues A;(A) of the matrix A,
where A was defined in (2.3a). Hence a design trade-off is implied: the smaller the largest real part
of the eigenvalues, the better is the disturbance suppression. However, to obtain a very negative larg-
est real part may require large elements in X', which limits the size of the ball about the origin where
the control u () = — KxP(¢) will not violate the control constraint.

Thus, suppose that X is the gain matrix resulting from the solution of an LQR problem for the
model (2.2b) satisfying (2.3a,b). In Section 3, due to the absence of disturbances, we obtained that
H, —»=lxP(t,0,x9,-K xP(t),0)l>0. Here, we have a different situation. Suppose that
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¢4 - R* XIR™—> R" is defined by
f™(x,=Kx ,d)=Ax+f50,0,0)d +¢4(x ,d), @4.7a)

where x € R?, ¢4(0,0)=0, and M, (x ,d)l/(Ixh+1d1)—0 as (kxl,ldl.)—0. Let
@ : R, - 2% be defined by

10a(x . d)h,

V)2 ((p.c)e R, xR, | LTIl

SVe, Vxe By, VdeG.}, (4.7b)
where Bp‘é {xe R* | IxI<p} and Gcé {de R™|1dl,Sc ). Then we have the following
result.

Lemma 4.4. Suppose that Assumption 2.4 is satisfied and X,, € [0, o) satisfies (2.5d). Suppose
that

(PLor + €'a) € PAmin(M ) 4hnax(2)) (4.82)

where O , M satisfy (2.3b) and that K., < Apin(M VA nex(Q)(1 + 1K Ip/Ap 0 (Q)¥) and that yis defined
as (3.10c). Let

¢’z 8 min [c',,. PLORY {2|fg'(o.o.0)lzxm.,(g)+ (4.8b)

Amax(Q@)
If x§ € B Md1e < ¢”4, and the linear feedback control u(t) = —KxP(t ,0,x8,u , d) is used for

al ¢20, then (a) x’(t,O,xB,u,d)eBm, for all ¢20 and (b)

lim, ,.xP(t ,0,x8,u ,d)1—0asc’y—0.

Amin(M)2+1K 1) |
2(1+IKb) )

Proof. Tt follows from (4.7a) that

xP(e)=fP(xP(t) ,—KxP(t),d(t))
=f7xP(t) ,—KxP(t) ,d()+fP(xP(t) ,~KxP(t) ,d(t))—f ™(xP(t) ,~KxP(t),d (1))
=AxP(t)+f70,0,0)d () +¢a(xP(t),d(t))

+fPGP@),~KxP(t), d(®))-f "(xP(t) ,~KxP(t) ,d(¢)). (4.92)

Consider the Lyapunov function V(xP(r))=xP(e)I24 (xP(t),0xP(t)} . 'Then, since
1 (¢ )0 < 1d (2)l,

VP() = (xP(1), (ATQ +0AXP() W 2(04 (1) , d(1)) , QxP()W2(F (0,0, 0)d(2) , Ox* (6))



+2(fP(xP(t) ,—KxP(t),d(t)~f ™(xP(t) ,~KxP(2),d(t)), QxP(2))
S—{xP(t) , MxP(t) 20 nux (@104 (xP (2) , d (¢ )2IxP (1)1a+ 2K ¢’ g A ax (@)X P ()l
+ 2K (141K 1/ A2 (@) A (Q Ix? (t)lf+2¢”alf£"(0 » 0, 0120 (Q)IxP (),

2 nax(Q 94 (xP (1) , d (1)),
xP(e)l+c"4

< [—Amn.(MH +2K,..(1+IKlz>Am(Q)]w(r)l%

104(xP(t) ,d(@))l,
?()l+ C”d

+2 [Km +1f3'(0,0,0)l,+ ]AM(Q )c”qlxP (el (4.9b)

Hence it follows from (4.8b) and the condition on K,,, that

) _ ‘ . AisM)QR+IKL) |
VPe) s ‘ ——Y—XM(Q)%&P(:)H{zlf.,(o.0,0)|27L,,,.,(Q)+ 20+1KTy) ’a |IxP()L

IA

-——L—uP(t)I+M]kP(t)lz,

4.9
" @) Aenr@)" (4.9

where y was defined in (3.10c). (4.9c) implies that if x”(¢)1> p,gg, then \}(x”(t))< 0. Conse-
quently, since x§ € B ,,,, we must have that xP(¢ ,0,x8,~KxP(t),d(t)) e By, foral t20.

Since ¢”y —>0 as ¢’y — 0, it follows from (4.9¢) that as ¢’y —0, V(x?(¢)) = 0, which completes
our proof. 0

Lemma 4.4 testifies us to the use of Control Algorithm 2.5 with Step I’, stated in Section 3,
when disturbances are present. The corresponding stability result is as follows. Since its proof is

immediate from Lemma 4.2, Theorem 4.3, and Lemma 4.4, we will omit it.

Theorem 4.5.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.5 with Step I’'. Suppose that Assumptions 2.3 and 2.4 are satisfied and that L , K,
satisfy (2.5b-d). Let K, , &; > O be such that

= -1
= . L(1-a) p 2+el

Kp <min |—=——= -, ——= — 41},
" eTEeT - +a+ell) ¢, TedT {

€



Amin(M) ] (4.108)
(@)1 + 1K /g (Q)%)

= -1
LT - - -— = P
s 8 min [c"d, [{“’T"n} p- ,,.c,,Tez"T]{(K,,,eu +L)Te”}-l], (4.10b)

where ¢”4 was defined in (4.8b) and & a (1-o)(c+ el'f (1 +a+e"f). Let B, be defined as (4.6d).
Suppose that K, < Kpn, ¢4 S Ty, and €” < pgg, where €”” was defined in (4.6a) and p, in (4.8a).
Then, (a) there exists an €< oo such that for any x§ € B, IxP(z ,0,x§,u ,d)I<g for all
t € [0,)and (b) lim, , . IxP(t ,0,x8.u ,d)1—>0asc;—0. O

5. Robust Stability with State Estimation.

Since it is not always possible to measure the state of the plant, xP(¢ ,0,x§,u ,d), we will
now examine the behavior of our closed loop system resulting from the use of Control Algorithm 2.5,
when the state of the plant has to be estimated in the presence of modeling errors. Here, we will
assume that there are no disturbances. At this point, we must introduce more structure into the non-
linear functions f (-, -, ) and f ™(-, -, -) in (2.1a) and (2.2a), respectively, by assuming a parametric

structure for the model uncertainty. Hence, consider the nonlinear time invariant system described by

x(t)=F(x(t),u(t),0,), (5.1a)

y#)=h(x().6,), : (5.1b)

with u € U, where U was defined in (2.1b), 6, € R", 6, € R}, F : R"XG,XR?' = R", and
h : R'XR?* > R™. Letq 8¢,+q;and let 6 € R? be defined by 6 8 ((8,)7 , (8,)")T. We will
denote the solution of (5.1a,b) at time ¢, corresponding to the initial state x ¢ at time ¢, and the input
ubyx(t,tg,xo,u,0;).

We assume that the actual plant parameter vector 6 is 6, but due to modeling errors, in the
model, the parameter vector 8 is set to 6™. We will denote the solution of (5.1a,b), with 8 = 67, by
xP(t,t9,x8,u)andyP(¢), and by x™(¢ , 29, X0, 4) and y™(¢) when 0 = 6™,

We propose to obtain an estimate of the initial state by solving the following nonlinear least
squares problem:



Pe®,T ,u): mi ;7T ,u,0),
e©.T ,u) xf'é“fv"(” u,0) (5.2a)

where

J(xo: T .u ,e)él/zjflyp(z)-y(:)lzd:

='/zj(;{rlh(x”(t ,0,xB,u),8)—h(x(t,0,x0,u ,6,),0,)Pdr (5.2b)

withT e [TC,7_'] and ye (0, 1). Itis obviousthat J(x§, T ,u ,6°)=0forall u € U and for all
T e[Tc, Tl

Assumption S5.1. We assume that for any 6, € R?' and 0, € R?, F0,0,6,)=0 and
h(0,6,)=0. a

Assumption §.2. We assume that forany u € U, and T € [T, T, Pg (6P, T ,u) has a unique
solution xg, such that J(xq ; T ,u ,0°)=0,i.e., xp =x§. ]

Assumption 53. Let p be as in Assumption 2.3, let p?,pP e (0, <), and let B°(67, p?) and
B°(87, py) be defined by

B°©?,pd2 (0, € R" | 162 - 6,1, <p?) (5.32)
B°@®2.pN) 8 {0, e RI*1102-06,l,<pf) . (5.3b)
Let the reachable set R , p.2) be defined by

R(P ,pf)é (zeR*lz=x"(t,0,xq,4),
Vte[O,f],xoeBa,ueU,G,eB°(9§’,pf)} . (5.3¢)

We assume that there exists a Lipschitz constant L € [0, o) such that for all £&’,&” € R(P , p?),
V. V'eU,0,,0” € B°6F,pd),and 0, ,0”, € B°(6F,p?),

IFE ,V,0:)—FE& .,V ,0")N<LIg, -0, LUET+ VL), (5.3d)

IFE ,vV,0)-FE v ,0@INSLOE -E"1+ IV -V"l), (5.3¢)

1 FE V0, - 2FE v, 0" < LIY, — 6", LA+ V1) , (5.39)
ox ox

1 FE v, 0, - 2FE v, 0y SLAE —E1+1V —vL) (5.3)
ox U ox Y 0T al2 =0 )
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o ’ ’ i ’ ’” ' _a” ’ ’
'auF@ VL0 - auF(E" VL0 )R SLIE, - 67 L(IET+ VL),

I—F(§ v, )-—F(§" VO SLAE —E1+ IV -V'l,),

3
a6,

pV’:e’z)-

3
a6,

”

L L SLUE -E"1+ IV -V'L),

2
I%F(& v, 0,)- 2F(§’,v’,e"x)lzsLle',—9",I2(|§'l+lv'l..),

0?

LrE.v.e,- =z

a 2 —FE" V', 0L sSLE -E1+ NV -V'L),
hE ,0,)-hE 0" SLIE, —0",LIEN,
hE ,0,)-hE”, 0L SLIE-E",

h(§ -3 h(§’,0”,)lzsLle',-9",l2I§'I,
h(g' )-3 h(g" 0’ SLIE -8,
I 0 d

Eh & ,6,)- 26, " E,0”,)l L1’ — 0", LIET,

h(gr er ) h(gu (% )|2< ngl gn'

a h(&' 9’,)- Ci h(§ 0” )|2<L|9' -9” |2|§'|
2
e 0 Zoher s -,

VL0 S, - 07 L>IET+ VL),

(5.3h)

(5.3i)

(5.3

(5.3k)

(5.3)

(5.3m)

(5.3n)

(5.30)

(5.3p)

(5.39)

(5.30)

(5.3s)

(5.31)

(5.3u)



Assumption 5.4. We assume that if xg is the solution of the nonlinear least squares problem
Pg(6” ,T ,u), then the Hessian (8%9x¢V (xo ; T ,u , 6°) exists and there exists a § € (0, o) such
that forallz € R"

2 iJ(x:,; T,u,0°)z 281212, (54)
oxé
O
The following theorem is a direct consequence of the Implicit Function Theorem in [Ale.1].

Theorem 5.5. Suppose that Assumptions 5.1-5.4 are satisfied. Let xg be the solution of
Pg(®”,T ,u). Then there exist p¢>0, pe>0, and a mapping n : B°(8°, pe) = R”* of class
C'B°(®” . pe)), where B°(0,p)2 (z € R I 1z -0l <p }, such that

(1) n®)=xp;
(2) forall® e B°(6”, pg), M(8) — xgl < p, and the gradient (3/0x o}/ (N(O); T , u ,0) =0;

(3) the equality (3/dxo) (xo,; T ,u ,6) = 0 holds in the rectangle B°(6P , pg) X B4, (x¢) only for
all xo =1(8), where B3(x)2 {z € R"* | Iz ~xl<p} and x s the solution of Pg(® , T , ).

Proof. First, it follows from (5.2b) that for any 6 4 (8, 81)T e B°(6°, po),
9 . (T o T
'a_x;J(th T:u 'e)—jo axoh(x(t voer:u :ex)'ey) [.Vp(t)-)’(‘)]dt

‘ T
(7|2 9
-Io axh(x(t.o,:co,u,01,),0,)91“;:(:,O,Jco,u)

(h(xP(e,0,x8,u),00)—h(x(t.,0,x0,u,6,),6y))dr. (5.5)

It follows from Assumption 5.3 that (9/dx o) (xo; T ,u ,0) is differentiable in (xg, ). Also, it fol-
lows from Assumption 5.4 that (9%0x¢) (x§,; T ,u ,0°)! exists. Hence, the conditions of the
Implicit Function Theorem in [Ale.1, pp. 105] are satisfied, which completes our proof. O

Lemma 5.6. Suppose that Assumptions 5.1-5.4 are satisfied. Suppose that x§ ,xge€ R(p, p.2) are
the solution of Pg(6”,T ,u),Pg(0,T ,u), respectively, where ©e B°(6”, Pe with

Polmin(p?, p?, pe), p?, p? as in Assumption 5.3, and p as in Theorem 5.5. Then there exists a
L € [0, ) such that
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IN@) -x§1 = lxg—x§I1SLI6 - 6°1,,

forall® € B°(6%,Pg).

(5.6)

Proof. First, it follows from Assumption 5.2 that xg = x§. It follows from [Ale.1, pp-102] that

there exists a K € [0, =) such that for all 6 2 (8T, 1) € B°(67, B o)
In®) - xﬁlsKl J(xs T,u,0)l.

Now, we have that

3 T

EJ(xﬁ v T,u,0)= Io [—h(x(t 0,x§,u,6,), 9) x(t 0,x8,u)

(hxP(t,0,x8,u),0))-h(x(t,0,x8,u ,6:),6,)]de .
Hence

la—J(xﬁ T,u,0)hLs< L l——h(x(t 0,x8.,u,6,), 6tz 15 x(t 0,x8,u)l,

1h(xP(t ,O,xﬁ,u),eyp)-h(x(t ,0,x8,u .6,),9,)l2dt .

(5.73)

(5.7b)

Now, since (5.30) is satisfied for all &',&” e R(p ,pf), it follows from direct calculation that

1Oh/9x)h (x (¢ ,0,xf8,u ,0,) ,6,)b L. Now

:‘az—oxo 0,28, u)ly = '%o [“"'L:F(x(t’o'xg'u)’u(t)’e‘)dt]'z

<1 +j° l—F(x(‘t 0,x8,u,6,),u(r), 9,)!2 x(‘t 0,x§,u)dz.
It follows from (S.3e) with v/ = v” and by direct calculation that
I-a%F(x('l: 20,x8,u,6),u(®),0,)L<L.
Next, it follows from (5.7¢,d) and the Bellman-Gronwall inequality that forall ¢ € [0, f],

9 LT
laxox(t 20, x8,u)l e .

Next, it follows from (5.3d,¢) and the Bellman-Gronwall inequality that forall ¢ € [0, T,
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xP(t,0,x§ ,u)lSleHL'IF(xP(t.O.xS .u),u(t), 80l dt
<Bl+ _[:L(Ix"(t ,0,x8, ul+ lu@I)dT

< (Bl +Lc, T)el . (5.76)
Also, it can be easily shown from (5.3d,e) and (5.7f) that

?(t,0,x8,u)-x(,0,x§,u,0,)1
S-Io‘ IF(xP(t,0,x8,u),u(t),60)-F(x(t,0,x8,u,0,),u(t),0,)ldr
SLj‘:w(ﬂc,o,xﬁ,u)-x('c,o,xs " ,9,)Id1+Lj;([xP(¢,o,x5 Jull+c,)dt

< @1+ Lo, D102 -0, + L [ kP(x,0, %8, u) —x(5,0,x8,u ,0)1dT. (5.7g)
Hence, it follows from the Bellman-Gronwall inequality that
x?(t,0,xB,u)-x(t,0,x8,u,0.0<(xB1+Le,T)elT102 - 0,1eX . (5.7h)
It now follows from (5.3n,0) and (5.7fh) that for all ¢ e [0, T),

1h(xP(t,0,x8,u),0)—h(x(t,0,x8,u 19;),0),<L16” -0l IxP(¢ ,0,x8,u)l
+LIxP(t,0,x8,u)—x(t,0,x8,u,0.)

< L(IxBl+ Le, TY(1 + eLT)e 167 - 01, . (5.70)

Now, it follows from (5.7c-i) that

_ = VT -
I%J(xﬁ ;T ,u,0)hsLetT(1+elTHer - 9|2L L(IxBl +Lc,T)e dt
0
< LelT(xBl+ L, TY(e%T - 1) 167 - 61, & L'16° -6l (5.75)
Setting L 2 KL’ , we obtain the desired result. (]

We propose to utilize the result of Lemma 5.6 in Control Algorithm 2.5 as follows.
Control Algorithm 5.7.

Data:  to=0,ye€ (0,1),¢y=Tc,x¥,and uy,,,;t)=0. Tc and T such that 0 < T < T < oo,
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Step0: Setk =0.
Stepl: Attt =y,
(a) Set the plant input u (t) = Uy, o)) fort € [t , tiyy).
(b) Att =t + Aty — ), estimate the state of the plant xf éx”(t ,0,x8 , u) by solving

the optimal control problem Pg(6™ , t,1 — #; , u) where 6™ is the parameter of the model,
and denote the resulting value by x;.

(c) Compute the estimate x[%; Qx'"(tm.'k Xk, Uy, 4., Of the state of the plant
xP(tesr o te  xE Uy, 4. by solving (5.2a) with state X, at time ¢ = f;, and an input
Ul )@t € (8, tea).
(d) Solve the open loop optimal control problem P(x{%; , ;.1) to compute the next sam-
pling time f,€ (e +Tc, ty+T), and the optimal control ug,,,,,. (),
t € [teey) tea2)

Step 2: Replace k by k + 1 and go to Step 1. O

We will examine the behavior of Control Algorithm §.7.

Lemma 5.8. Consider the moving horizon feedback system resulting from the use of Control Algo-
rithm 5.7. Suppose that Assumptions 5.1-5.3 are satisfied. Let p be as in Assumption 2.3, let
L € [0, =) be as in Assumption 5.3, and let f g be as in Lemma 5.6. If xf ,x’e B_ forallk € N
P
and 8™ € B°(6” , P ¢), then there exist Ag, Ag € [0, =) such that
IxPyp = x0 VS Aslxfl+ Ag, (5.8)
andAs.Aﬁ-)Oasﬁg—)O.

Proof. First, the optimal control problem P(x{*, #;) has a solution for all k 2 1 since x* € B, for
P

all k21, and as a result, the trajectory xP(¢ ,0,x8,u) is well defined. Given xf e Ba and

u=upy,,, €U, obtained by solving the optimal control problem PG*,s), let
X8 xP @, b, xE, up,, o) and xP@) Ax™(t 8, £, Uy, ). Then it follows from Lemma
5.6, (5.3d.e), (5.7), and the fact that X, is the solution of Pg(6™, i, —1#,u) that for all
tet, ),k € N,

Lef(r) = xg" (VS ef — X} +J: IF(f(T), upy,0a1(t) . 0F) = F (P'(T) , myy, , 4.0Ct) , 0D AT
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<167 —om1, +J: [L 16° — 8™, LP(D)l + L LxP(x) -x{‘(‘t)l)] dt

<LPo+Potaft+LeTelT - D+L] tf) - xPeo dt. (5.92)
Then, it follows from the Bellman-Gronwall inequality that forall t € [, #;41], kK € N,

Lf(e) = XN < P oelT(ell — 1) IxPl + B oL + Lo, T(eLT - 1)) T

A Aglxpl + Ag. (5.9b)

Then, As, Ag — 0 as P ¢ = 0, which completes our proof, ’ ]

We note that Lemma 3.1 is the basic result that was used to prove other results in Section 3.

Now, by comparing Lemma 3.1 and Lemma 5.8, it is clear that similar to those results stated in Sec-

tion 3 will hold if we replace K, with § g. Therefore, we omit the proof of the following theorem.
Theorem §.9. Consider the moving horizon feedback system resulting from the use of Control

Algorithm 5.7. Then, there exist pg € (0, Po] and p, € (0, ], where P g is as in Lemma 5.6 and p is
as in Assumption 2.3, such that for any x§ € B, and for any 6™ € B°(p® ,Eg). the trajectory
xP(t,0,x8,u) is well defined and that there exists a €7 € (0, =) such that Ix?(¢ ,0,x8, u)I<e;
for all 1 2 0. Furthermore, there exists a K; € (0, =) such that E, e lXxP(,0,x8,u)< K,Ee. o

6. APPENDIX
We will now establish two inequalities that form the basis of several of our proofs.

Proposition 6.1 Consider the second order scalar difference equation

Yes2 = A Yentay+b , k€ N. (6.12)

Ifay,a,20,b20anda;+as<1,thenforallk 21,

Ye<ayo+y+b/(1-a,+a)), (6.1b)
and

limy Loy, Sb/(1—-a;+ay). (6.1c)

Proof. We begin by rewriting (6.1a) in first order vector form, as follows. For k € NN, let
2 = Ok » Yes)T. Thenzg = (yg,y )7, and
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Zg41 = [002 all] Zt [2] 8Fz+g, (6.2a)

Ye = [10)z, & Hz; . (6.2b)

The matrix F has two eigenvalues, A, ,A_ = %(a;  Va +4a,), with corresponding eigen-
vectors, e, =(1,A,)T and e, = (1,A). We will now show that —1<A_S0SA, <1, i.e., that
(6.2a) is an asymptotically stable system. By assumption

05a2<1-—a1. (6.2c)
If we multiply both sides Of (6.2c) by 4, and add a # to the both sides, we get that
at+d4a;<(2-ay)?, (6.2d)

which implies that A_ = Ya(a,~ Va2 +4a5)>—-1 and A, = Vi(a,+Va 2 +4a;) < 1. Thus, we have
that—1<A_SA, < 1.

We can proceed to establish (6.1b,c). By the Jordan decomposition, we have that
F =E7IAE, (6.2¢)

where A = diag(A,,A.), and E = (e,, e_) is a matrix whose columns are the eigenvectors of F.
Hence forall k 22,

Y& = HET\AkEz,

k-1 : .
,“ (A -A2 Dy o+ A2-Ady1 ) +5 25 ZOSE-A. (6.2)

Since 0<A, <1 and -1 <A_<0, it is clear that (a) the first term in (6.2f) goes to zero as k — e and
(b) the last term in (6.2f) satisfies the inequality

k-1-i_ 9 k-1-i 1 | S b
—ATS L{ 1A, }' 1-ay+a; ' ©2g)

because (1-A,)(1-A.) = 1—a+a,, which proves (6.1c).

Next, for all k21, AfsA, and A (-A0Fs-Al Hence
{AAQET- 5y -24) < A = a3, Also AE=A8/(A_~A,) < 1, hence (6.1b) hold. O

k-1




7. APPENDIX
We will now establish two inequalities that form the basis of several of our proofs.

Proposition 7.1  Consider the second order scalar difference equation

Yis2 =8 Yps1+a2x+b , k€ N. (7.1a)
Ifa;,a,20,b 20anda;+a,<1,thenforallk 21,

YeSayot+ty+b/(1-a,+ay, (7.1b)
and

limy Yk Sb/(1-a,+ay). (7.10)

Proof. We begin by rewriting (7.1a) in first order vector form, as follows. For k¥ € N, let
2,=Ok . yes1)T. Thenzg=(yo,y )", and

Zpa= [aoz 011] Z+ [2] é-sz+g , (7.2a)

i =[10]z; & Hz . (7.2b)

The matrix F has two eigenvalues, A, , A_=Y(a, Va % +4a,), with corresponding eigenvec-
tors, e,=(1,A,)" and e, =(1,A)". We will now show that—=1 <A_<0<A, <1, i.e, that (7.2a) is
an asymptotically stable system. By assumption

0<a;<1-a,. (7.2¢)
If we multiply both sides Of (7.2¢) by 4, and add a £ to the both sides, we get that
at+da,<(@2-a,)?, (7.2d)

which implies that A_=Y%(a;-Va 2 +4a)> -1 and A, = %(a,+Va ? +4a,) < 1. Thus, we have
that-1<A_<A,.<1.

We can proceed to establish (7.1b,c). By the Jordan decomposition, we have that
F =E"AE, (7.2e)

where A =diag(A;,A), and E =(e,, e_) is a matrix whose columns are the eigenvectors of F.
Hence for all k 2 2,

yx =HE'A*Ez
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1 k=1_ k-1yy Lk -2 M k1 kel a
Since 0< A, <1 and -1 <A_<0, it is clear that (a) the first term in (7.2f) goes to zero as k — o and
(b) the last term in (7.2f) satisfies the inequality

b_Sarigihg b f L L L b )
A=A A=A |1-A " 1-A, [ 1-a,+a3’ (729
because (1-A,)(1-A) = 1-a;+a,, which proves (7.1c).

Next, for all k21, Af<A, and A=) sl Hence
(A QET=25 0 -A) < AA_=a,. Also AW*-AK5/(_-A,) <1, hence (7.1b) hold. O
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