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WITH INPUT SATURATION AND PLANT UNCERTAINTY*

by

E. Polak* and T. H. Yang*

ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo

rithms, for linearplants with input saturation. Thesystem is a nonconventional sampled-data system:

its sampling periods vary from sampling instant to sampling instant, and the control during the sam

pling time is not constant, but determined by the solution of an open loop optimal control problem.

This is in two part paper. In this part, we show that the proposed moving horizon control system is

robustly stable, whether the state of the plantis measurable or not. In the second part,we show that

the proposed moving horizon control system is capable of following a class of reference inputs and

suppressing a class of disturbances. Experimental results show that the behavior of the moving hor

izon control system is superior to that resulting from some alternative control laws.
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1. INTRODUCTION

Open loopoptimal feedback, dating back to a 1962 seminal paper by Propoi [Pro.l], is a general

approach for the construction of stabilizing feedback lawsfor systems subjectto input constraints and

other nonlineanties. Originally, it was based on the idea that in a sample-datasystem, the control to

be applied between sampling times can be determined by solving a fixed time open loop optimal con

trol problem with or without various constraints. Over the years, open loop optimal feedback has

been explored under the names of modelpredictive control (see [Meh.l, Pre.l, Gar.l, Gar.2]) and

moving horizon control (see [Kwo.l, Kwo.2,May.l, May.2,Kee.ll). In model predictive control, the

system is operated in sample-data mode, while in moving horizon control, the system is operated

either in sample-data or in continuous mode.

The literature dealing with model predictive control presents results dealing with the stability,

reference input following and constant disturbance rejection capabilities of the resulting feedback

systems,under the assumption that the controlsand states are unconstrained (see, e.g., [Qa.1, Qa.2]).

No such results are available for systems withbounded control and statespaceconstraints.

As far as moving horizon control is concerned, it has not always been realized that a naive

application of the strategy, in adaptive control for example, can lead to instability. The early litera

ture dealt with the stabilizing properties of moving horizon control laws based on openloop optimal

control for finite horizon optimal control problems with quadraticcriteria and no control constraints.

Thus Kwon and Pearson [Kwo.l], and Kwon, Bruckstein and Kailath [Kwo.2] deal with linear time-

varying systems, Keerthi and Gilbert [Kee.l] deal with nonlinear discrete-time systems, and, more

recently, Mayne and Michalska haveestablished the stability properties of nonlinear, continuous-time

systems with moving horizon control [May.l,May.2, Mic.l, Mic.2] withcontrol and statespace con

straints; see alsoChen andShaw[Che.l]. In [May.2], the robust stability of a moving horizon control

was examined although the analysis is incomplete. In [Mic.2], the nontrivial time needed for the

computation of the open loop controls is taken into account, under the assumption that there is no

modeling error. None of the workcited above deals withthe question of state estimation.

To illustrate the range of questions that mustbe dealt with in designing and analyzing an open

loop optimal feedback system, consider the linear, time invariant dynamical system modeled by the

finite dimensional ODE:

x(t)=Ax(t) + Bu(t) , (1.1)

where (A , B) is a controllable pair. Suppose that the only requirements are to restore the state of the
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system to the origin, using bounded controls u(r), and that the resulting trajectory must not violate

some state space constraints.

Under ideal conditions, the state of the system can bemeasured exactly, and there are nomodel

ing errors, and no disturbances. In this case, the above requirements can be used to define the con

straints of an open loop optimal control problem, whose instantaneous solution fi(t) would drive the

state to the origin in finite time. Since the zero state is an equilibrium point for (1.1), no further

action would be required, and hence, under ideal conditions, there would be no need for feedback

laws to drive the system from arbitrary states to theorigin.

In practice, only an estimate of the system state may be available, the system model (1.1) is

likely to be approximate, and there may be input disturbances. Furthermore, the time needed to solve

the optimal control problem is likely to be nonnegligible. Hence the actual terminal state, resulting

from the application of an optimal control based on an estimated initial state and the approximate

dynamics, need not be the origin, and hence some constant orperiodic remedial action is required.

Such remedial actioninvariably results in some sortof a feedback law.

This is the first of a two part paper in which we propose an open loop optimal feedback algo

rithm for linear plants, modeled with errors, subject to disturbances, reference inputs, and control

constraints, and with the time to solve the optimal control problem accounted for. Our control algo

rithm is closest in concept to those that are classified as moving horizon control laws. It differs from

other moving horizon control laws in that it uses a free time, control and state space constrained

optimal control problem, and hence it results inanonconventional sampled-data system: its sampling

periods vary from sampling instant to sampling instant, and the control during the sampling time is

notconstant, but determined by the solution of an open loop optimal control problem.

In this part we willestablish the robust stability of the resulting feedback system in the absence

of disturbances. In part n, we will examine its disturbance rejection and reference input following

characteristics. In Section 2, we introduce our proposed moving horizon feedback control law. In

Section 3, we show that the proposed moving horizon feedback system is robustly stable. We will

consider cases when the state of the plant is measurable and when it isestimated. Finally, inSection

4,we illustrate the behavior ofour moving horizon control law bymeans of a few simple examples*



2. STRUCTURE OF THE MOVING HORIZON CONTROL LAW

We assume that the plant is a linear-time-invariant (LIT) system, with bounded inputs,

described by the differential equation

xp(t) = Apxp(t)+Bpu(t), (2.1a)

yp(t) = Cpxp(t), (2.1b)

where the state xp(t) e R", the control u e U, with

Uk {weL^O.ooJIIwl^cJ , (2.1c)

and cu e (0,«»). Consequently, A* e IRn xn, fl' e R" Xm, and C e R""**. We will denote the

solution of (2.1a) at time r, corresponding to the initial state x% at time t^ and the input u, by

xp(t ,t0,x$,u).

The function of the moving horizon control law is to ensure robust stability while taking into

account the fact that the plant inputs are bounded, as in (2.1c), as well as various amplitude con

straints on transients.

We assume that the matrices Ap, Bp% and Cp are known only to some tolerance. Hence the

moving horizon control lawmustbe developed using aplant model, of the same dimension as (2.1a),

x(t)=Ax(t)+Bu(t), (2.2a)

y(t) = Cx(t), (2.2b)

where A e R" Xn, B e R" Xm, and C e R*x" are approximations to Ap, Bpt and Cp', respec

tively. We will denote the solution of (2.2a) attime t, corresponding to the initial state x0attime t0,

and the input u byx(t ,to,x0,u).

LetQ be a symmetric, positive definite nxn matrix such that {x ,Qx Hs aLyapunov function

for the linear closed loop system obtained applying state feedback to (2.1a). The reason for this

selection will become clear inSection 3. Weuse this matrix todefine the norm 1*1 £ {x , Qx )**. We

will denote the usualEucledean norm on R" by M*

Let xk £x(tk ,t0,x0, u). Assuming that the control law computation takes at most Tc time
units, we can now propose a simple, aperiodic sampled-data feedback law, in the form of an algo

rithm which, during each sampling period, solves anoptimal control problem P(xk , tk) of the form



V(xk,tk): whkig%t.Q\g{(ftt%)*0.i-1.2 lu max y(u ,0*0,

;=1 h.ueU ,%e[tk+Tc,tk+f]} , (2.3a)

where 0 < Tc < T < <», and the constraint functions aredefined by

gi(u,x)^hi(x(x,tk,xk,u))ti=Otl Ii-l. (2.3b)

gf,(M fT) =Lc(x,r4,*t,u)l2-a2UAl2f (2.3c)

< '̂(u ,t) = h>(x(t ,tk,xk,u),t),j = l,...,l2-l, (2.3d)

<J)/i(m ,r) =lx(f ,tktxk,u)l2-p2lxkl2, (2.3e)

where the constraint functions (2.3c,e) witha e (0,1), p e [1,«), are used to ensure robust stability

and input tracking, while the other functions, hl, h1 are convex, locally Lipschitz continuously dif-

ferentiable functions thatcanbe usedto ensure otherperformance requirements.

We are now ready to state ourcontrol algorithm thatdefines the moving horizon feedback con

trol system. The algorithm uses several parameters: TCt the timeneeded to solve the optimal control

problem, which mustbe determined experimentally, and three parameters that are selected partly on

the basis of experimentation and partly on judgement, 7\ an upper bound on the horizon, and a, p

which governthe speedof response of the system.

Control Algorithm 2.1.

Data: r0 =0,*i =Tc,Ml/o#/l](r)sO,*0€ BA. Tc and f such that 0<Tc < f <«>.
P

Step 0: Set k = 0.

Step]: At t=tk,

(a) Obtain a measurement or estimate of the state jcjf =xp(tk, tQ,xg , u) and denote the

resulting value by xk.

(b) Set the plant input u(t) =u[ti, fc4ll(/) for t e [tk, tk+1).

(c) Compute anestimate xk+\ of the state of the plant xp(tk+i ,tk,xk°tu) according to the

formula

**+i =eA(h*l'tk)xk+j^XeA(fk*l"t)BuO)dt (2.4)
(d) Solve the open loop optimal control problem P(x*+i, tk+l) to compute the next
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sampling time r4+2e (tM+Tc.fc+i+f], and the optimal control B^.^Oe tf.

Step 2: Replacek by k +1 andgo to Step 1. Q

Clearly, the fact that the plant input is bounded, limits the region ofeffectiveness of any control

law. Hence we must assume that the initial states are confined to a B c R" as follows.
p

Assumption 2.2. We assume that there exists a pe(0,«) such that for any

icfij {z e Rn IIz I£p },the optimal control problem P(x ,0) has asolution. n
p u

The following theorem generalizes a result given in [Poll].

Theorem 23. Let B A c R" be defined as in Assumption 2.2. Suppose that (a) the systems (2.1a)
p

and (2.2a) are identical and (b) the Control Algorithm 2.1 is used to define the input u() for (2.1a).

Then the resulting feedback system is asymptotically stable on the set B^, i.e. for any xg e BA,
p P

xp(t ,0,xg,jO->0asr -»«>.

Proof. We begin by showing that for any x0 e BA, the trajectory x(tk, 0, x0.«) =**» * e N
P

resulting from the use of the Control Algorithm 2.1 is contained in B A. In turn, this shows that such
p

a trajectory is well defined and that it is bounded.

Suppose that x0 e B ^ is an arbitrary initial state at t = 0. It follows from the form of (2.3c),
p

that for all k e N,

\xk+x\ =\x (r*+1 ,tk,xktu[ht M)l <a\xk\ £ a*+1lx0l. (2.5a)

Since a e (0,1), it follows that xk € BA for all k e N and hence that the trajectory x(t, 0,Xq , u)
p

is well defined.

Next, from the form of (2.3e), we seethat forallk e N and forany t e [tk, tk+\],

be (r, tk, xk,u[tk, ^1 <> $\xkl < Pa*lx0l ^ pU0l , (2.5b)

which implies that because pa*-»0 as k -»«>, we obtain thatx(f, 0 ,xq, m)->0 as r -^oo. Hence

the feedback system defined by the Control Algorithm 2.1 is asymptotically stable on the set BA. n
p u

We note that Theorem 2.3 did not depend on the form of the cost function £°(-, •) nor on the

form of the constraints defined by (2.3b) and (2.3d). These constraints can be used to shape the



transient responses of the closed loop system. We will describe later a procedure for solving prob

lems of the form (2.3a-e).

As stated, Control Algorithm 2.1 only defines a local control law. When the plant is unstable,

since the control u e U is bounded, for some initial state x<> e R"t there is no control which stabil

izes the system. In this case, there is not much that one can do about it However, in the case of

stable plants (and models), it is possible to globalize Control Algorithm 2.1 since for any xo e R",

there exists are [0, «>) such thatx(r, 0, x0,0) e B A. dearly, in this case,theremay be room for
p

a more effective control law, as we will now show. Let Af and Q be symmetric, positive definite

matrices, such that ATQ +Q'A =-AT, then V(x(r))k (x(r), Qix(jt))is aLyapunov function for
x(t) =Ax(r). Let Ts e (Tc , f ]and suppose that xk eBA. Then, if we set r4+1 =tk +TS and we

p

apply the control u(r) = 0. to (2.1a), for t e [tk, f*+1], then we must have that

V(x(tk+l,tk,xk,u°))Ze'^W^'Vixit). Hence it makes sense to use the control defined as the
solutionof the simple optimal control problem

jnin {V(x(tk+l,tk,xk,u))) , (26)

where x(f*+1, tk ,xk ,u) is determined as the solution of (2.2a). Letuc(t)t t e[tk, fc+1], be a solu

tion of (2.6).

Hence, for stable plants, we propose to modify Control Algorithm 2.1, as follows:

Control Algorithm 2.4.

Data: 10 =0, t lt u[/o> tl](t), x0, T„ Tc and f such that 0<Tc <Ts £ f <~.

Step 0: Set k = 0.

Stepl: Atr =tkt

(a) Obtain a measurement or estimate of the state xp=xp(tk, t0, xg , u) and denote the

resulting value by xk.

(b) Set the plant error dynamics input u(r) =u[tk t^t](r) for t e [tk, tk+l).

(c) Compute an estimate xk+i of the state of the plant error dynamics xp(tk+i ,tk,xfl,u)

according to the formula (2.6)

**+! =eA(h«-k)xk +£" eA(fk*x-l)Bu{t)dt.
(d) If xk+i e BA, solve theopen loop optimal control problem P(x4+1, tk+{) to compute the
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next sampling time tk+2 e (tk+l +Tc, tM +f ], and the optimal control u[k.t, k^(jt) e U,

Elsesetr^sr^ +T, andMI^,,M(r)=«<>(r),forallr e [r4+1,rA+2).

Sre/? 2: Replace k by * +1 and goto Step 1. D

We will not present a complete analysis of the operation of the closed loop system under Con

trol Algorithm 2.4.

3. ROBUST STABILITY

In this section, we will analyze the behavior of the closed loop system resulting from the use of

Control Algorithm 2.1 under the assumption that there is a difference between the actual plant equa

tions (2.1a) and the model equations (2.2a). We will consider two distinct situations: the first is

where we can measure the state, while the second one is where the state has to be estimated. Finally,

we will show how a cross over rule to a linear state feedback law, proposed by Michalska and Mayne

(see [May.2]) near the origin can be used to eliminate residual errors in both cases.

3.1. Moving horizon control with state measurement

We begin by defining the error quantities

A^max^^fjle"1-**!, (3.1a)

A2 &WQ)H^cuf max, €{of]\eA'tBp-eAtB\, (3.1b)

AT^max(€[0 fjlg^l, (3.1c)

where Ku*(Q) denotes the largest singular value of Q. When either A\ or A2 is not zero, even if

xk e B^, where BA was defined in Assumption 2.2, the estimated state, x*+i (defined by (2.4)), may
p P

not be in B^ and hence there may not exist a solution to the optimal control problem P(x*+i, tk+l).
p

Therefore, we have to specify a setBPtcB^$ such that for any xg e Bp#, Control Algorithm 2.1 is
p

well defined on the emanating trajectory x(r, 0, xg , u). We will obtain a formula for such a set in

the process of proving the following result

Lemma 3.1. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.1, with plant state measurement. There exist £i, e2> 0 such that if Aj < £j and A2£ e2,
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then there exists asetBPicBa, with nonempty interior, such that for all xg e Bp , thecontrol law
p

defined by Control Algorithm 2.1 is well defined on the resulting trajectory xp{t ,0,xg,u),

/ e [0, oo), i.e., the states, xk+h *=0,1,2,..., computed using (2.4) satisfy that xk+l e BA for all
P

kZO.

Proof First suppose that the optimal control problem P(x*+1, r4+1), has a solution for any

xk+: e RB and tk+i £ 0. Then, given any initial state xg at time r0 =0, the Control Algorithm 2.1

generates three sequences of states. The first sequence is that of measured plant states {xf} km0, so

that xk =x£ for all k e N, the second sequence is the sequence of estimates {x*}^, with

*a+i =x(tk+i,tk ,xl,u\ * =1,2 generated according to (2.4), and finally, the sequence
{*'* }*~ 2. with x*k+2 =x(tk+2, tk+l, xk+i, m), k=1,2,..., generated in the process ofsolving the

optimal control problem F(xk+l, rA+1), k e N.

First we note that it follows form (2.1a), (2.4), (3.1a,b), and the fact that l«(r)l2£ Vm hi(f )L
that

1*1-xMl ^AJxfl+Ajj. (3 2a)

Hence, making use of (3.2a), we obtain that

lx*+1l £ btf+1 -x^l+Ix^l £A^l+Aj+Ix&jl. (3.2b)

Since by construction, for all k e K, Ix/A+2I <alx4+1l, it follows from (3.1a-c) and (3.2a,b), that

\xP+21 < lx^+2 -xW+alx*+1l

<Kbtf+1 -x*+1! +&M+\ I+A2+ alxf+i -xk+ll+cdx£+11

<(K+a)(A1lx^l+A2)+(A1+a)!xi'+1l+A2

=(AT+a)A1Ixfl +(A1+aM+1l+(l+a+^)A2. (3.2c)

Let

M(l-a)/(l +a+Ar). (3.2d)

We will now show that if A! <ex for some zx e (0,1i), then there exists yx, y2 e (0. «*) such that for
all* = l,2,...,



lx*l£y1Ixgl+'fc. (3.2e)

We will now make use ofProposition 6.1 (see Appendix I). Hence, let ax =Ai+ot, a2 =(^+a)Alf
and b =(l+a+/T)A2. Because alt a2t and b are positive, if we set y0 =Ixgl and yx =lxpI in
(6.1a), then comparing (3.2c) with (6.1a), we see that for all k e K, y4 £ Ixfl. Also, because

A1+a+(tf+a)A1=a1+a2<l, (3.2f)

the assumptions of Proposition 6.1 are satisfied. Since A! £ tx<e lt and (£ +a)A! £ 0,

l-fl1+a2=l-A1-a+(^+a)A1>l-a-e1 =-^^Ltp.Ae,>0
l+a+A

Hence, for all k £ 1,

(3.2g)

UJTl^yik<fl2lxgl+lxfl+--—^-—<;fl2txgl+lxfl+e", (3.2h)

lim Ixjfl^ lim >>*££",
k —»oo A —»oo

where

(3.20

„A (l+a+/T)A2
* - ^ • (3.2j)

Clearly,

IxflStxf-jdl +Ix,!. (3.2k)

Sincex0 =xg, and w(r) = 0forr e [0, *i] it follows from (3.1a,c), and (3.2k)that

U?l<A1Ixgl+/nxgl =(A1+/Olxgl. (3.21)

Substituting this result into (3.2h), we obtain that for all k £ 1,

lxpl <yk< (Ai+AT-A^-)lxgl+e" , (3.2m)

where e" is defined in (3.2j). Since -\+\_ =a2=(AT+a)Alt it follows from (3.2m) and (3.2b) that

lx*+1l<ALyJk+A2+y*+1

< (1 +Ai)(Al+iP +(* +a)A!)lxgl+(l +A!)e"+A2

=Yi^g»+Y2. (3.2n)

which proves (3.2e).
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Next we will showthatwitht2 >0 defined by

A*^ Afte2 = p
2+K

+ 1

-l

= P
(2+K)(l+a+K)

(l-a)(a+*)

-l

+ 1 (3.2o)

where $ >0was used to define the set B^ in Assumption 2.2 and e'is defined in (3.2g), ifA2 £ e2 for
p

some e2 e (0,1^, then there exists a p, e (0, j>), depending on £!, e2, such that if Ixgl £ p„ then

lx*l <p for all k =1,2...., i.e., that the trajectory x*(r,0 ,xg ,«), r e [0.~), emanating from

xg, constructed underControl Algorithm 2.1 is well defined.

Assuming that Ax < ex and that A2 <e2, we obtain that from (3.2n)

Y2< 1 +
1-a

1+a+tf

Let'Vj and p^ be defined as follows:

^(l+eOtfT+d+a+JOe!).

P^Cp-^i,

Since p-^2>0and K£y{ <% we conclude that p, >0, and hence that Bp, c B^, defined by
p

B^&ixGB^ Hxl<p,} ,

(l+OL+K)
e2+A2£ *±£+l £2^2^P. (3.2p)

(3.2q)

(3.2r)

(3.2s)

is well defined and its interior is not empty. Furthermore, for any xg e Bp#, the resulting sequence
{**+i)r=o satisfies

IWSYibfil+fcS'nfl -toXto+faSfr . V* e N, (3.2t)

which implies that xk+l e BA, for all ke N, and, in turn, that the optimal control problem

p(**+i ,f*+i) has a solution for all k e IN. Hence the trajectory xp(t ,0,xg ,m), r e [0,oo),
emanating from any xg e Bp, is well defined by Control Algorithm 2.1, which completes our proofO

Theorem 3.2. Consider the moving horizon feedback system resulting from the use ofthe Control

Algorithm 2.1, with plant state measurement Suppose that A2 £ zx <\x and A2 £e2 <l2, where t lf

e2 are defined in (3.2d) and (3.2o), respectively. Let Bp, be defined as (3.2s). Then (a) for any
xg e Bp,, the trajectory x^(r ,0,xg ,u\ t e [0,~), is bounded, and (b) there exists an e3>0,
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depending on e^e* such that e^O as e2->0. and for any xg e Bp, the trajertory
xp(t, 0 ,xg ,m), t e [0, oo), satisfies lim, ^mt\xp{t ,0 ,xg ,i<)l£e3.

/W- Let xg e Bp, be arbitrary and let {xg}£o. [xk) £„ and {x%} £* be the sequences
constructed by Control Algorithm 2.1, as defined inLemma 3.1. We recall that by Lemma 3.1, the
trajectory xp{t, 0, xg , u), t e [0, ~), is welldefined.

(a) Making use of (2.1a) and (3.1a-c), we obtain that for all t e [tk, tM]tk e N,

lx'(r,r*txi\u)l ^k',(r,rik,xf,«)-x(r,rA,x4,tt)l+lx(r,r£,x4,M)l

^A^I+ATlxjf-xJ+Ai+lxa ,tk.xk,u)l. (3.3a)

Next we note that the form of (2.3e) ensures that ix(f , tk ,xk ,«)l £ plx*! for all t e fa, fc+1].

Hence, in view of (3.2a), (3.3a) canbe replaced by

*xp(t .rjk,xf,M)l<A1Ix^l+^lxf-xAl+A2+plxtl =(A1+pMI+(^+p)lxi>-x4l+A2

<(A1+pMI+(^T+p)A1lxi'.ll+(l+^+p)A2, t e [fc.f*+1]. (3.3b)

Clearly, since ul0,11] s 0, Ix' (r, 0, xg ,u)l is bounded on [0, rx]. Since, as we have already shown

in the proof of Lemma 3.1, {IxfI} £o is a bounded sequence, it follows from (3.3b) that

bp(t, tk ,xp,u)lis bounded for all r e [tk , r*+1], k e N, which completes the proof of(a).

(b) It follows from (3.2i), in the proofof Lemma 3.1, that

i— . „. ,— „ (l+a+ff)e2lim* ^„\xPl <lim*^y* £e"£ , (3.3C)

wheree' is defined in (3.2g). Let

a+K)
ez. (3.3d)

p A
e3 =

(p+q+K + pfoXl+a+jQ
-, + 1+K+&

Then (3.2i) and (3.3b) lead to the conclusion that lim, _>«,lx',(r ,0, xg , m)I ^ e3. It isobvious from

(3.2i) and (3.3d) that e3 -> 0 as e2 -> 0, which completes our proof. •

3.2. moving horizon control with state estimation.

Since it is notalways possible to measure the plant state x£, wewill now examine the behavior

ofour closed loop system, resulting form the use of Control Algorithm 2.1, when the plant state has
to be estimated in the presence of modeling errors, i.e., when the actual dynamics are as in (2.1a,b)
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and the modeled dynamics as in that (2.2a,b).

When the model (2.2a,b) is identical with the actual dynamics (2.1a,b), we can calculate the ini

tial state, xg at t = 0, using the standard formula

T

x§ =Wo(J0Tx\ \CeM?W-Tto ,0))dt, (3.4a)
'0

whereTa > 0, the superscript T denotes a transpose, and

,r

W0(T0) =JQ '(Ce^fCe^dt , (3.4b)

Tl(' .s) =CJ eA(fm*>Bu(x)dx. (3.4c)

Clearly, W0(T0)~l exists because (A ,C) is an observable pair. Thus, when there are no modeling

errors, for t £ Tot the state xp(t, 0, xg , u), canbe calculated exactly,andhence this calculated state

can be used in Control Algorithm 2.1.

The much more relevant situation occurs when there are modeling errors. In this case formula

(3.4a) yields an estimate of the initial state xg. We propose to use it in Step 1 (a) of Control Algo

rithm 2.1, to obtain the estimate xk% with the time T determined by a parameter 8o, which must be

chosen judiciously so as to avoid excessive ill conditioning in the observability grammian W0(T0):

Step 1: (a) Atfk§tk+bo fo+i - h)wi*60 e (0,1), estimate the state x£ by

xk =w0^tM^tk)r\\ceA^Y(yP(f)-r\it. tk))dt. (3.5)
•

Lemma 33. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.1, with state estimation formula (3.5). There exist A,- <~t / a 3..... 6. such that if

Control Algorithm 2.1 constructs the sequences {x£ }kd0, {x*}^, and {x*}^ which is the

corresponding sequence of the estimates ofx£, definedby (3.5), then for all k e N,

lxP-xk\<A3lxkD\+A4t (3.6a)

Itf+i "W ^ Aslx^l+A6. (3.6b)

Furthermore, when there are no modeling errors, A,- = 0, i s 3..... 6.

Proof Suppose that u(•) is the control generated by Control Algorithm 2.1 for the plant and model

trajectories associated with the sequences {xf} kssQ, {xk) kaU and {x k} £o.

We beginwith (3.6a). For any k e N and any t e [tk, rt+1], y p(t) is given by
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yP{t) =C'eA'*-,k)x{+C'feA'*-'QB'u(fid%

=CeAt*-*xt+[C'e*'('-<l)-CeA('-*)]xjF

+C\keA^'^Bu(x)dx+\jLCpeAf(f'^Bp^CeA(f-^B]u(x)dx. (3.7a)

By substituting (3.7a) into (3.5), we obtain

Xk=x[+W;l(MtM-tk)y (\ceA{f"*? [CPe^^-Ce^'^h dt xf

+J^\cgA(r-/*))7JjC',e^-t>B',-Cci4(/-T>B]u(x)rfxAl. (3.7b)

It follows directly from (3.7b) that

lxP-xkl<A3lxi\+A4, (3.7c)

where

A3 =WQ)* max _lW0(fyT% max _ICeA/l2IC,eA'(r^)-CgA(^°l250f /3 m

A4 =WQ)* max _IWoCSorr'b max _\CeM\2\CPeAr{*-OB'-Ce**~*>B l^c^f, /* 7f*
/e[7c.T] /e[0,W] ^•/C-'

which proves our first (3.6a). Clearly, whenthere are no modelingerrors, A3 = A4= 0.

Next we will establish (3.6b). Since xk+\ is calculated using the estimated initial state xk% we have

that

lxP+l -xk+l\ =le^'^-^jtf-e^^-^+J^fe^^-^'-e'1^-1^ }u(x)dxl

<KixkD-xkl+Al\xkD\+A2

ZK {A3lx^l+A4}+A1lx^l+A2,

={K A3+At) lx£l+KA4+A2 4 A5LtfI4A<j, (3.7f)

where AT, Alt and A2 are defined in (3.1a,b,c), respectively. Hence (3.6b) holds, and ourproofis com

plete. •

Lemma 3.3, leadsto the following result
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Theorem 3.4. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.1, with state estimation formula (3.5). Let£i, e2 >0 besuch that

ei<(l-a)/(l+a+tf),

£2<P 1 +
2+K

-l

(3.8a)

(3.8b)

where p was defined in Assumption 2.2 and € was defined in (3.2g), in the proof ofLemma 3.1. If
A5 <ex and A6 £ e2, then there exists aset Bp. c BA such that (a) for any xg e Bp#, the trajectory

p

xp(t, 0, xg ,u), r e [0, ~), is well defined and bounded, and (b) there exists an e3 >0 such that

e3-»0 as e2-»0, and for any xg e Bp, the trajectory x*(r ,0,xg ,u), re [0.~), satisfies

lim,_>aolx',(r ,0,xg,u)l<e3.

/V00/. fa; First suppose that the optimal control problem P(xA+1, r4+1), has a solution for any
xjt+i e Rn and tk+1 > 0. Then it follows from Lemma 3.3 that

lx£+21 £ \xp+2 -x'A+2l+lxV*l £ tf Ujf+1 -xA+1l+Aihf+11+A2+ ctlxft+1l

<{K+<x)bqf+1 -xA+1l+(A1+a)lxf+1l+A2

<(AT +a)A5Ixjfl+(AT +a)A6+(a+Al) Ix^+1 l+A2.

Since A\ < A5and A2£ Ag,we have that

lxP+2\ <(K +a)AslxkDl+(a+As)lxk°+ll+(K +a+l)A6. (3.9b)

Since (3.9b) is ofthe same form as (3.2c), with A5 replacing Alt and A6 replacing A2, we see that the

conclusions of Lemma 3.1 and Theorem 3.2 (a) remain valid for the Control Algorithm 2.1 using
state estimation formula (3.5).

(b) Referring to (3.2s) (3.3d), we conclude that part (b) holds with e3 and Bp, defined by

£,£
'(&+V+K+p)e1)(l+a+tf)

e3 = . +1+J£+B
e K

R A {xeB^ llxl<p,} .
P

where e' is defined in (3.2g) and
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A p -«2+KW+l}e2 0St)
(l+eO^+d+a+^De!) *

D

33. Elimination of residual errors by linear feedback.

Because linear quadratic regulators are robust, when the pair (A ,B) is stabilizable and the

modeling errors are sufficientiy small, we can always find a linear stabilizing state feedback control

law u(r) = -Kcxp(t, 0, xg , u), where Kc is the solution of a linear quadratic regulator problem in

terms ofthe model (2.2a,b), and aball B^ i(xeR"l kl^pi^ }, Plqr e (0,$), ™ch that if
for some tk>% xg e B^, then the control given by u(r) =-Kex(t, 0, x0, u), for r £ tk> does not

violate the bound on the control on the resulting trajectory, i.e. lKexp(t t0,x0,u)l£cM for all

r > tk: As we will see, a similar, but somewhat more complicated result also holds when

xp(t, 0 ,xg , u) is estimated using an asymptotic observer. Hence, in both cases, once the plant

state is sufficiently near the origin, we can switch over to the LQR control law and thereby eliminate

the residual errors resulting from the use of Control Algorithm2.1.

Forthe case where the state can be measured, we propose to incorporate this idea into Control

Algorithm 2.1 bymodifying Step i, as follows. Let TKa £ Tc is such that le7*^"^l £ a

Step J': Atr =tk,

(a) Measure or estimate the state xk =xp(tk, 0, xg ,«).

(b) If Xk&BiQfl, set the plant input u(r) =u[hth^(t) for re [tk,tk+i)\ else set

u(t) = -Kcxp(jt ,0,xg,K)forr e [r*,rt+1),wherer^+j = tk+TKt.

(c) Compute anestimate xA+1 of the state of the plant xp(?M ,tk,xk,u) according to the

formula (2.4), i.e.,

xk+i =eA«"-'^k+£leA^-'>B u[hth^t)dt. Q
At this point it becomes clear that for best results, the matrix Q, used to define the norm II,

should also define a Lyapunov function (x , Qx) for the system x = (A -BKe)x, so that for some

positive definite matrix M we have

(A -BKcfQ +j2(A -BKe) =-Af . (3.10)

Theorem 3.5. Suppose that the matrix Q used to define the norm II satisfies (3.10) for some

16



positive definite matrix M, and that tiie state of the plant can be measured. Let Z\ e (O.feO,

£2e (0,1^, and 6e (0,^(Af)/2Xm„(Q)), where \\ Xi were defined in (3.2d), (3.2o), respec

tively, M is as in (3.10), and let p, be defined by (3.2r), and pMli by

A (l+a+tf)e2
Pa/// = p -, (3.11)

where e' was defined in (3.2g). Finally, suppose that Pmh<Plqh> with p^ >0, as above. If

A! <elt A2 £ e2, and l(A'-A)-(B'-B)A:cl2< 8, then for any xg e Bp,, with Bp, defined in(3.2s),

the trajectory xp(t, 0 ,xg ,«), re [0, °°) is bounded and, furthermore, xp(r, 0 ,xg . k)-»0 as

r -»«».

Pra?/ Since the conditions imposed in Lemma 3.1 and Theorem 3.2 are satisfied, it follows that for

any xg e Bp,, the trajectory xp(t, 0 ,xg , u), r e [0, «>), determined by Algorithm 2.1, using the

original Step 7', is well defined, bounded and lim* _> Jx£l £ pMH. Since p^n < Puqr, there exists a

finite £ e N, such that Ix *I<PuqR , and hence that the cross over tothe linear control law, specified

in Step 1' (c) will take place. Let V(x) £ (x ,Qx \ Hence, for xp(t) determined bythe differential
equation xp(t) = (A' -BpKcy*p(t)t xp(t ) =xp, we obtain that forall r £ f ,

V(xp(f)) = <i'(r). QxP(t))+ (x"(r). j2x'(r)>

= [xP(t)T . [(A -B/i:c)rj2 +Q(A -B/sTc)]x'(r)>

+(x''(r)[(A',-A-(B',-B)^c]rj2+j2(A',-A-(B',-B)/:c)]x',(r)>

+<x'(r), ((AP-A ~{BP-B)Ke)TQ +Q&P-A -(BP-B)Ke))xP(t)). (3.12a)

Since \(AP-A)-(B'-B)tfcl2£ 8 it follows that forall tZt,

V(x"(f))^-Amin(M)
28W^
WM)

lx'(Otf<0. (3.12b)

which implies that (i) xp(t)<= Buq^ for all r £ r , and (ii) that x^r) ->0 as r -»«>, completing our

proof. •

When the state of the plant cannot be measured, we must augment our control system with an
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asymptotic state observer that provides the plant state estimate when we switch over to the linear

feedback control law. The asymptotic observer must be inoperation from time t =0. Inthis case we

get augmented dynamics in the well known observer-controller form

xp(t) =APxP(t)-BPKex°(t). (3.13a)

x°(t)=K0CPXP(t) +(A -BKe-K0C)x0(t). (3.13b)

where K0 is the observer gain matrix. Let e(r)£x*(r)-x0(r) denote the difference between the

state of the plant and that of the model in the observer. Then

e(t) =(AP-K0CP)xP(t)-(A -K0C)x0(t)-(BPKe-BKeyx0(t). (3.13c)

We assume that the system

ri(r) =Ari(r). (3.13d)

where A £diag ((A -K0C), X), with X is defined by

A £
{A -BK,

K0C A-BKe-K0C (3.13e)

corresponding to (3.13a,b,c) when there are no modeling errors, is exponentially stable, and hence

that there exists a symmetric, positive definite matrix Q =diag(Q0,Qe), with Q0 e IR"** and

Qe e IR2**2* that defines aLyapunov function, {r\, Qr\) for the system (3.13d), so that for some
symmetric, positive definite matrix M =diag(M0 ,MC\ with Mp e JR.nXn and Mc e JR2**2*, we
have

ATQ +QA =-M . (3.13f)

We will now showthatthe system(3.13d) is robustly stable.

Lemma 3.6 Suppose that the state (xp(t) ,x*(r)) is defined by the observer-controller dynamics

described by (3.13a,b), with (x*(0), x*(0)) arbitrary. Let 8e (0,0.5) and AA be defined by

AA £

0 AA-K0AC ABKe

0 AA -ABKe

0 AT0AC 0
(3.14)

where AA =AP-A, AB =B"-B, and AC=C-C. If \AAQh< 8WM), then
lim, ^colx^r)! =0 and lim, ^Ix^r)! =0.
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Proof Let z(r)4(e(r),x'(r),x°(r))Tf where (x'(r).x'(r)) is a solution of (3.13a,b) and

e(t)kxp(t)-x°(t). Then, referring to (3.13a,b,c) and (3.14), we see that i(f) =[A+AA ]z(r).

Consider the Lyapunov function V(z), for the nominal system (3.13d), defined by V(rO = {i\, Q r\\

Then,

Viz (r)) = {i(t), Q z{t) \+ U(r). Q i(t))

= -(z(r).Afz(r)x/+2/vz(r),AAQz(rM

^-Xmin(M)(l-28)lz(r)lf. (3.15)

It follows immediately from the condition on 8 that V(z (r))<0, whenever z(r) * 0, whichcompletes

our proof. •

Lemma 3.7. Suppose that the state (xp(t),x°(r)) is defined by the observer-controller dynamics

(3.13a,b), that 1x^(0)1 £ e, lx°(0)l £ e, for some e > 0, and that AA satisfies the condition in Lemma

3.6. Then for all r £ 0,

W&>) +*max(£)
ld(OI< 2W2)-

Km(Q)Kin(Qo)
e^-ye. (3.16)

Proof First, let Ix l& £ (x ,Q0x XP. Let the Lyapunov function V() be defined as in Lemma 3.6.

Then it follows from the definition of V() and the fact that by Lemma 3.6, V(z(r))<0, where

*(0 =(e(t),xP{t),x°(t)\thatle(r)I^^V(z(r))^V(z(0)),foraUr ^0. Hence,

i /.\i2 ^ *max(6«), /nNl2 . ^Am^OS ) 2
,e(0,^sx-(27le(0),+iu^re

£2
WQJ+XmaxOS)

e2.

It now follows from (3.17a) that

,e(f)' SX~(eJ,e(f),e.s2E^2> 3Uffl)WB.)
which completes the proof.
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To include the use ofan observer, we now propose to modify Step 1
of Control Algorithm 2.1, as follows: Let8e (0,0.5), let

Plqr e
n minfn KtJM)K*JQ){\ -28)0^U , mm ( pmR , ~Z-Z raw *

W 2YXmin(j2)(l^cCCI2+8Xinin(M)) j (3.18a)

where p^ was defined at the beginning of this subsection and y was defined in (3.16). Let
£i, e2 > 0 be such that

ei<£i, (3.18b)

e2<mm{£2, "* } , (3.18c)

where K was defined in (3.1c), and lt ,fc2 were defined in (3.2d), (3.2o), respectively. Finally, let
poc > 0 be defined by

Pocdd-ej) o* —2Plc«-T3
1-ei (3.18d)

Then, it follows from (3.18c) that p^ >(1 -EiXp/faR -p/fc*/2) >e2. Let 7*. e [Tc .~) besuch that

e- XoaCM )(1 - 26)7jcAo«(e) ^
2Wfi)(p£ +(pfo)V

• . (i4 -MT.)7C| ^ __le ' l£a. (3>18Q

Finally, we define the vector valued saturation function SAT(u)A-(sat(ul\...,sat(um))t where
sat(y)=y ify e [-cM , cj, and jar(y) =cwjgn(y) otherwise.

Stepl": Atr =r*,

W If u(r) =-/srcx°(r) for r e [r^. r*) and max {IxVil. 1**1} £P^, set xk =x'fo);

else if max {Ix^l, lx*l) Sp^, set xk =xk and reinitialize the observer by setting

x°{tk) =xk, else estimate the state xjf =x'(r*, r0.xg ,u) by (3.5) and denote the result
ing value by xk.

(b) IfmaxflxVil,!**!} >p<7C, set the plant input w(r) =Ml/lt^l](r) for r e [tk,tk+1);
else reset tk+l to the new value tk+l = tk+TKt, and set u(t) =-SAT(Kcx°(t)) for
' e [r* , tk+{).

(c) Compute an estimate xA+1 of the state ofthe plant xp(tk+l ,tk,xk,u) according (2.4),

20
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i.e.,

xk+l =eA(fM'k}xk^eA(kH'0B u(t)dt.

Lemmas 3.6 and 3.7 lead us to a following result

Theorem 3.8. Suppose that (a) AA satisfies the condition in Lemma 3.6, (b) 8 e (0,0.5),

\KCACQ I<8Xmin(Af) A5 £ ei, A$ £ e2, pM# <(p^ -6^/(1+e{), where ei and e2 satisfy (3.18b) and

(3.19c), respectively, and pMH was defined in (3.11), and (c) that we use Step 7" in Control Algo

rithm 2.1. Then for any xg e Bp,, defined in (3.9d), the trajectory xp(t ,0, xg . u) is bounded and,

furthermore,xp(t ,0,xg , u)-»0asr -»«.

Proa/ We will prove that for any trajectory x'(r, 0, xg ,u), with xg e Bp,, there must exist ai
such that the control u(r) is defined by the solution of the optimal control problem P(xt, tk) for all

t e [0, r„) and max {lx„ I. Ix I} £ p^, i.e., that the switch, inStep I" (c), to the linear feedback

control law K(r) =-tfex°(r), with (x'(r),x°(r)) the solution of (3.13a,b), from the initial state

(xp(t ),x ) at r =r , will take place. Then we will show that fa; x°(r)e Bn™ for all r £r so

that the linear feedback control law does not violate the bound on the control, and (b) that

max {lx~*_il, 1**1} £Poc must hold for all kZt, so that the linear law is used for all r£r^. It will
k

then follow from Lemma 3.6 that state of the plant will bedriven to the origin as r -» «>.

First, it follows from (3.6a,b) that if the control u(r) =u[tk ,44l)(r) and the times tk are deter

mined by solving theoptimal control problem P(x* , tk) for all k e N, then

IxVil ^ IxiU -*it-il+IJci'-il<(A3+l)lxf_1l+A4 . (3.19a)

lx*l <lxf-xAl+bfl ^ AsklLil+^+bfl. (3.19b)

Next, because A3 £ A5 <elf A4 <A*< e2, and pMH <(p^-6^/(1 +60, since it follows from (3.2ij)

and (3.18d) that e"<pMH, we conclude that limJk_H>0lxApl^pilfH. Hence there exists a$ eNsuch

that If^ I<p^ and lx„ I£ p^. Hence aswitch to the linear feedback control law will take place at

the time r .

Next, we will prove that x°(r) e B^ for all r £ t^, where r is the time when the switch to
k k

the linear control feedback control law takes place. Now, it follows (3.6a) and (3.7d,e,f) that
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Ixf ISix/ -xA l+lx\ IS^Ix/ l+c*+lxA I. ,319(a

From (3.6b), we obtain that

U/ISUZ-sJ+lxJ^lx/ l+e2+l*J. (3.l9d)
k k k k k-\ k w /

It follows from (3.19c) that lxA l£l*A l/(l-ei)+e2/(l-ei). Hence it follows from (3.18d),
k-\ k-l

(3.19d), and the fact that Ix„ I, lxA I£ p^ that
*-i *

I*/1 ^ -rr(e2+p0c)+£2+Pac =P&r • (3.19e)

By Step 1" (a), we reinitialize the observer by setting x°(r^) =xA and hence!x"(r^ )l £ p^ £ pj%?.

Now suppose that linear feedback control law is used for all tZt . Then it follows ftom

C3.19e)andUmma3.7that.e(r).,p^ *r*H,*V Nex, let Ae Lyapunov function V() be

defined by V(x°(r)) 4 lx°(r)l2 £ (x*(r), Qx°(r)). Then, making use of the matrix M defined by

(3.11), we obtain that for all r £rA, with (xp(t) ,x°(r)) a solution of (3.13a,b) with initial states
k

V(x0(r))<-Xmin(M)Ix°(r)l22+2l/i:cACj2l2lx0(r)l22

+ f2le(r)l(IATcC(2 I\sub2+\KeACQ\2)lx°(t)\\/Xmtx(.Q)

£-WAO(l-28)lx^r)l2/Wfi)

+2vpf^(^^ l2+5WW ))lx^(r)l/XmtxG2). (3.19f)

It follows from (3.18a) that if lx°(r)l >p^, then V(x°(t))< 0. Since lx*(r^ )l £ p«: ^ Plqr* it fol

lows that x°(r) e B^ for all r £ rA. Therefore, if the linear feedback control law is used for all

f£tt then it does not violate the bound on the control.

We will now prove by induction that lx*+il, lx*l £ p^, for all k £ k , where x*+i is computed

by (2.4) and xk =x°(tk), with (xp(f),x°(jt)) a solution of (3.13a,b) from the initial state

(xp(t^ ), xj. For (x'(r). x°(r). e(r)) asolution of(3.13a,b,c), let z(t)^ (x"(r), x*(r). e(r)), and
k k
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Ietlz(r)l34l*(r)l2+Ix'(r)l2+U'(r)l2. Recall that lxA I. Ix\ ISp,*, and thatx'(r )=x .and
* *-i i k

that Ix/I^pIqr by (3.19e). Now suppose that for some *££+l, we have that

1**1. l*Vil, lx°(tk)l £ p^, and Lrjl £ pfoi hold, and that u(r) =- JTex*(r) for t e [r^. tk). We

need to prove that lxA+1l, IxJ M'ih+iftZpn and that lxf+1l^p^. Now, since

u(t) = -Kex°(t) for te[tk-lttk), we set x*=x*(r*) by Step 7" (a). Therefore.

lxk\ = lx°(tk)\£poe by assumption. Next, we must have that Ix^l^ap^ because
,e(A-BAT«)rt|<a We wiU now prove mat me relations Ix^+^ISp^ and lxf+1l^p£^, both
hold.

LetV(z(t)) = (z(r).Qz{t)\ Then,

V(z(t))ZKm(Q)h(t)\Z>Q^^QyK*(Q»iz(.t)q Z(WG)/Wfi))lx<>(r)l2. (3.19g)

It follows from (3.15) and the fact that V(z(t)) ^^(Q )lz(r)l22that forr e [tk. r4+1).

j^V(z (r)) <: -^(M )(1 -25)lz(r)l22 <; -(WAO/WG ))(1 -28)V (z(r)). (3.19h)

Clearly, ^(z^))^^^)^^)!^^^)^^)!^^). Hence, because (i)
\e(tk)\2< lx°(tk)\2+\xP(tk)l\ (ii) lx°(tk)l Sp*. and lx'(r*)l =lx£l jSpfo? by assumption, and (Hi)
\z (tk)l$ <2(tx°(tk)l2+ lx'(r*)l2), it follows from (3.19h) that for all r e [tk, r*+1).

V(z(f))<e"Xo*(A?xl"25)(/"'*)/X°-Q2)Vr(z(r4))

Since by the triangle inequality, V(z(t)) £ 2lx°(r)l2 for aU r e [tk , rA+1), it follows from (3.18e) and
(3.19g,i)that

ix°(tk+TK.)l2£lx°(tk+i)l2Zpl/2. (3.19j)

Therefore, Ix'fo+Ol^p^Wi Now, (3.19g) holds when we replace x°(t) by x'(r) because
Iz(0lj2>lxp(r)l2. Then, again it follows from (3.19h,i) that
Ix'fo+r*,)!2 =lxf+112 £ p2. £ (p&*)2, which completes our proof by induction. It therefore fol

lows that the Control Algorithm 2.1 selects the feedback control law u(t) =-SAT(Kex°(t)), for the

next interval, t e [tk+l, r4+1+7>J, where r*+1 =rA+7^t, and since we have already shown that, in

this case, the control u(t) =-Kcx°(t) does not violate the control constraint, it follows that

u(r) =-Kcx°(t), for the next interval, r e [tk+l, tk+l+TKJ, and hence, by induction, for all r £ t^.
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It now follows from Lemma 3.6 that lx*(r)l-*0 and Ix^r)! ->0 as t -»«>, which completes our

proof. •

4. NUMERICAL RESULTS.

We will now present three examples thatillustrate the performance of the moving horizon con

trol system based on Control Algorithm 2.1, for aplant modeled by the state equations

x(t) =
'i\t)' o r 0"

x\t) —

0 0 *(0 + 1 «(0. (4.1a)

where ue U£ [ue LJO,«») Ilul^ 1}. Control Algorithm 2.1 used the following optimal
control problem:

P(xk ,tk): jnin V4j^ ((x(r .tk ,xk ,u),Rx(t ,tk,xk ,u))+ U(r) .ta(r)S)dt (4.1b)

subject to

lx(x,tk,xk,u)\2-0mixkl2ZQ,

Ix(r,tk,xk ,w)l2- lOOIxt^^O, vr e [tk,x].

where xe [tk +7C , tk + f ], Tc =5, f =40,

^ =
10 0

0 1

(4.1c)

(4.1d)

(4.1e)

and S = 2000.

For comparison, we used the example given in [Gut. 11, which has only a control constraint

Since the initial state was known, we solved the optimal control problem P(x0,0) off-line to obtain

the initial control u(t\t e [0, t{\.

Example 4.1. In this example we have assumedthat the statecanbe measured andthat there areno

modeling errors. This is the case presented in [Gut.l], where a piecewise linear control law wasused,

defined by

M(r) =sat [(L -k[0 l]F)x(r)l, (4.2)

where L =-0.78 x 10~3 x [4.47 94.61], k =0.5 x lfr5,
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p =
171 1433

1433 19435

and sat{) is the standard saturation function. The matrixL was obtainedby solving a Linear Qua

dratic Regulator problem and P is a correction matrix. Hgure 1 shows the resulting trajectories,

using both our strategy and the one in [Gut11 for re [0,60) and xo = [10 10].

As we can see from the Figure 1, the trajectorygenerated by Control Algorithm 2.1 converges

to the origin faster than the trajectory givenby [Gutl]. The controls for both cases are shownin Fig

ure 2.

Example 4.2. Next, we have again assumed that the state can be measured, but that there are

modeling errors, viz. we assumed that the actual plant dynamics were

xp(t) =
0.01 1

0 0.01
x(t) +

0.01

0.99 u(t). (4.3)

while the model was as in (4.1a). For the initial stategivenin Example 4.1, in Figure 3, we compare

the trajectory, xp(t , 0, xg , u), obtainedby applying the control given in [Gutl] with the trajectory

generated by Control Algorithm 2.1. Again, the trajectory generated by Control Algorithm 2.1 con

verges to the origin faster. The controls for both cases are shown in Figure 4.

Example 4.3. In this example, we consider the case where there are modeling errors and the state

has to be estimated. Thus, we assumed that the plant was described by

i'(0 =
0.002 1

0 0.003 *<0 +
0.002

0.99
u(t),

yp(t) = [0.99 0.005]x(r),

with xg = [5 5]. The plant was modeled by the equations

i(0 =
x\t) o r 0"

x\t) —

0 0
x(t) +

1 «(0.

y(r) = [l 0]x(r).

withx0 = [2 2].

We applied Control Algorithm 2.1 and the resulting trajectory, xp(jt, 0 ,xg , m), and control

u(t),t e [0,100], are shown in Figures 5 and 6, respectively.
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5. CONCLUSION.

Inthis paper we have explored the stability robustness properties ofamoving horizon feedback

system, based on constrained optimal control algorithms. As a starting point for a more extensive

exploration to follow, we have assumed that the plant has the simplest possible nonlinearity, namely,
input saturation. We have shown that the particular moving horizon control scheme that we pro
posed, results in a robustly stable system, both when the state of the plant is measurable and when it

must be estimated. Our experimental results show that the behavior ofour moving horizon control

system is superior to that resulting from one alternative control law. While the time needed for the

solution ofthe optimal control problems defining our control law is nontrivial, it should be acceptable

in controlling slow moving plants, such as in process control. For faster plants, itmay be necessary
to implement the optimal control algorithms in adedicated architecture, so as to speed up the solution
times.

6. APPENDIX L

We will now establish two inequalities that form the basis ofseveral ofour proofs.

Proposition 6.1 Consider the second order scalar difference equation

y*+2 =«1^+1 +0^+^ . *eN. (6.1a)

Iftfi,a2£0,6 £0andax + a2<hthenforall*£l,

yk^aiyo+yi + bKl-ax +^2), (6.lb)

and

lim* _*„yA £&/(l-ai +*2)- (6.1c)

Proof We begin by rewriting (6.1a) in first order vector form, as follows. For k e N, let

z* = (y*.vik+I)7\ Thenz0 = (yo,yi)7,,and

Zk+ \b]-Fzi< +8' (6.2a)

yk =[\0]zk^Hzk. (6.2b)

The matrix F has two eigenvalues, \+, X_ = lA(a x± Vflf+4a2), with corresponding eigen
vectors, e+ =(l .X+)7 and e1 =(l,\_)T. We will now show that -1 <X_£0<3Lf< 1, i.e., that
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(6.2a) is an asymptotically stablesystem. By assumption

0£fl2<l-a1. (6.2c)

If wemultiply both sides Of (6.2c) by4, and add a? tothe both sides, weget that

fl?+4a2<(2-fll)2. (6.2d)

which implies that A_ = lA(a \ - ^laf+Aa^>-1 and X+ = lA{a \ +Va2+4a2) <1. Thus, we have
that-l<X_£A4.<l.

We can proceedto establish (6.1b,c). By the Jordan decomposition, we have that

F =E"lAE , (6.2e)

where A =diag(K+, \_), and E =(c+, eJ) is a matrix whose columns are the eigenvectors of F.

Hence for all k £ 2,

yk=HE~lAkEzQ

=̂ 4^ {X4^(Xj-1-^-I)y0+Oi-X*)y1} +-5^4^ LOi-W-Xf-1^. (6.2f)
Since 0 < X+ < 1 and -1 <X. < 0, it is clear that (a) the first term in (6.2f) goes to zero ask -» « and

C&J the last term in (6.2f) satisfies the inequality

^-^S( ^ ^^-^\l-^-l-^J-l-a1+fl2' (62*>
because (1 - 7^){\ -\J) = l-a\ + a2, which proves (6.1c).

Next for all k £ 1, XfsX* and -Ai*(-X^)*£-A~ Hence

{XfX.(X*-1-Xi-1)/(X_-Xf)£-AsX. =a2. Also(K±-\*)/(K-K)£hhence(6.1b)hold. D

7. APPENDIX H.

The free-time optimal control problem (2.3a-e) has to be solved at every iteration of Control

Algorithm 2.1. The major difficulty in solving this problem stems from the fact that functions such as

lx{t ,0,x0, u)\2 that are convex in ut are not convex in r and hence optimal control algorithms,

such as the phase I - phase n algorithms described in [Pol.2], can only be counted on to find local

minima for this problem. This difficulty can be eliminated by solving a sequence of convex, fixed

time optimal control problems, constructed using an interval bisection technique, whose solutions
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converge to the desired optimal solution of (2.3a-e), as follows. An important aspect of phase I -

phase II algorithms, such as those in [Pol.2,3,4], is that when a fixed-time optimal control problem

has no solution, then they produce a control which minimizes the maximum constraint violation.

Algorithm 7.1.

Data: xk e B^,tk and f such that f - tk >Tc and5e (O.f -Tc-tk).
p

Step 0: Set i =0, Xq = f, rmin = tk +TC, and Tmn =f.

Step 1: Solve the problem (2.5a-e) with x fixed at the value x = xt.

Step 2: If the computed control, ut(•), does not satisfy all the constraints in (2.3a-e),

— * max» " ^i = * max

set 1rmin =X; and x1+i =(X; +TmM)/2, otherwise.
Fmin = *i »^max = 2X; , and Xl+1 = 7

|rmin =Xi and xl+1 =(x,- +Tmax)/2,
Else, set Tmax = x,- and xl+1 = (rmin+x,)/2.

Step 3: If (Tmax - Tmin) ^ 5, set fA+I =x,+1 -T,, set m[u th+l](r) =«,(0 for r e [r^ , tM], and

stop.

Else, set i = i +1 and go to Step 1. D

Since by definition of £, the original free-time optimal control problem hasa solution, it is clear

that Algorithm 7.1 terminates after a finite number of iterations.
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Figure 6. Controls vs Time with State Estimation for Example 4.3.


