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ABSTRACT

We present a moving horizon feedback system, based on constrained optimal control algo-
rithms, for linear plants with input saturation. The system is a nonconventional sampled-data system:
its sampling periods vary from sampling instant to sampling instant, and the control during the sam-
pling time is not constant, but determined by the solution of an open loop optimal control problem.
This is in two part paper. In this part, we show that the proposed moving horizon control system is
robustly stable, whether the state of the plant is measurable or not. In the second part, we show that
the proposed moving horizon control system is capable of following a class of reference inputs and
suppressing a class of disturbances. Experimental results show that the behavior of the moving hor-

izon control system is superior to that resulting from some alternative control laws.
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1. INTRODUCTION

Open loop optimal feedback, dating back to a 1962 seminal paper by Propoi [Pro.1], is a general
approach for the construction of stabilizing feedback laws for systems subject to input constraints and
other nonlinearities. Originally, it was based on the idea that in a sample-data system, the control to
be applied between sampling times can be determined by solving a fixed time open loop optimal con-
trol problem with or without various constraints. Over the years, open loop optimal feedback has
been explored under the names of model predictive control (see [Meh.1, Pre.1, Gar.1, Gar.2]) and
moving horizon control (see [Kwo.1, Kwo.2, May.1, May.2, Kee.1]). In model predictive control, the
system is operated in sample-data mode, while in moving horizon control, the system is operated

either in sample-data or in continuous mode.

The literature dealing with model predictive control presents results dealing with the stability,
reference input following and constant disturbance rejection capabilities of the resulting feedback
systems, under the assumption that the controls and states are unconstrained (see, e.g., [Cla.1, Cla.2]).

No such results are available for systems with bounded control and state space constraints.

As far as moving horizon control is concemed, it has not always been realized that a naive
application of the strategy, in adaptive control for example, can lead to instability. The early litera-
ture dealt with the stabilizing properties of moving horizon control laws based on open loop optimal
control for finite horizon optimal control problems with quadratic criteria and no control constraints.
Thus Kwon and Pearson [Kwo.1], and Kwon, Bruckstein and Kailath [Kwo.2] deal with linear time-
varying systems, Keerthi and Gilbert [Kee.1] deal with nonlinear discrete-time systems, and, more
recently, Mayne and Michalska have established the stability properties of nonlinear, continuous-time
systems with moving horizon control [May.1, May.2, Mic.1, Mic.2] with control and state space con-
straints; see also Chen and Shaw [Che.1). In [May.2], the robust stability of a moving horizon control
was examined although the analysis is incomplete. In [Mic.2], the nontrivial time needed for the
computation of the open loop controls is taken into account, under the assumption that there is no

modeling error. None of the work cited above deals with the question of state estimation.

To illustrate the range of questions that must be dealt with in designing and analyzing an open

loop optimal feedback system, consider the linear, time invariant dynamical system modeled by the
finite dimensional ODE:

x(t)=Ax(t)+Bu(t) , (1.1

where (A , B)is a controllable pair. Suppose that the only requirements are to restore the state of the
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system to the origin, using bounded controls u(t), and that the resulting trajectory must not violate
some state space constraints, '

Under ideal conditions, the state of the system can be measured exactly, and there are no model-

ing errors, and no disturbances. In this case, the above requirements can be used to define the con-

straints of an open loop optimal control problem, whose instantaneous solution £ (¢) would drive the
state to the origin in finite time. Since the zero state is an equilibrium point for (1.1), no further
action would be required, and hence, under ideal conditions, there would be no need for feedback
laws to drive the system from arbitrary states to the origin.

In practice, only an estimate of the system state may be available, the system model (1.1) is
likely to be approximate, and there may be input disturbances. Furthermore, the time needed to solve
the optimal control problem is likely to be nonnegligible. Hence the actual terminal state, resulting
from the application of an optimal control based on an estimated initial state and the approximate
dynamics, need not be the origin, and hence some constant or periodic remedial action is required.

Such remedial action invariably results in some sort of a feedback law.

This is the first of a two part paper in which we propose an open loop optimal feedback algo-
rithm for linear plants, modeled with errors, subject to disturbances, reference inputs, and control
constraints, and with the time to solve the optimal control problem accounted for. Our control algo-
rithm is closest in concept to those that are classified as moving horizon control laws. It differs from
other moving horizon control laws in that it uses a free time, control and state space constrained
optimal control problem, and hence it results in a nonconventional sampled-data system: its sampling
periods vary from sampling instant to sampling instant, and the control during the sampling time is

not constant, but determined by the solution of an open loop optimal control problem.

In this part we will establish the robust stability of the resulting feedback system in the absence
of disturbances. In part II, we will examine its disturbance rejection and reference input following
characteristics. In Section 2, we introduce our proposed moving horizon feedback control law. In
Section 3, we show that the proposed moving horizon feedback system is robustly stable. We will
consider cases when the state of the plant is measurable and when it is estimated. Finally, in Section

4, we illustrate the behavior of our moving horizon control law by means of a few simple examples.



2. STRUCTURE OF THE MOVING HORIZON CONTROL LAW

We assume that the plant is a linear-time-invariant (LTI) system, with bounded inputs,
described by the differential equation

xP(t) = APxP(t)+BPu(t), 2.1a)

YP@)=CPxP(t), , 2.1b)
where the state x?(t) € IR", the control 4 € U, with .
U8 {uell0,=) lul.<c,) , .1¢c)

and c, € (0, ). Consequently, A? € R**", B? € R"*™, and C? € R™**. We will denote the
solution of (2.1a) at time ¢, corresponding to the initial state x§ at time tq, and the input u, by

xp(t !tO’xglu)‘

The function of the moving horizon control law is to ensure robust stability while taking into
account the fact that the plant inputs are bounded, as in (2.1c), as well as various amplitude con-
straints on transients.

We assume that the matrices AP, BP, and CP are known only to some tolerance. Hence the

moving horizon control law must be developed using a plant model, of the same dimension as (2.1a),

x(t) =Ax(@)+Bu(t), (2.2a)

y()=Cx(), (2.2b)

where A € R"*", B € R**™, and C € R™*" are approximations to A?, B?, and CP, respec-
tively. We will denote the solution of (2.2a) at time ¢, corresponding to the initial state X g at time 1,
and the input u by x(¢ , 29, xq, 4).

Let Q be a symmetric, positive definite n Xn matrix such that {x , Ox }is a Lyapunov function
for the linear closed loop system obtained applying state feedback to (2.1a). The reason for this
selection will become clear in Section 3. We use this matrix to define the nomm ILx14 (x,0x Y. We

will denote the usual Eucledean norm on IR" by I'l,.

Let x, 4 x(t ,t9,x0,u). Assuming that the control law computation takes at most Tc time
units, we can now propose a simple, aperiodic sampled-data feedback law, in the form of an algo-

rithm which, during each sampling period, solves an optimal control problem P(x; , t,) of the form



. . et 0 i = ol j ,21)S0,
P(xk,:,‘).ggg){g(u.t)lg(u.t)so.i 1,2, lxtgllgfﬂwu )

Jj=1,...,l, uelU, 1€ 4+Tc,u+T1}), @.33)

where 0 < T < T < o, and the constraint functions are defined by

g ARG, 0, x,4),i=0,1,...,1,-1, (2.3b)
gl . D =x(t, 4, x; , w)P—alix, 2, 2.3¢c)
O, t)=hix@, b, x,u),1),j=1,...,1-1, (2.3d)
O'%(u 1) = x(r , 8, X, u)2—PlUx, 2, (2.3¢)

where the constraint functions (2.3c,e) witha e (0, 1), B € [1, =), are used to ensure robust stability
and input tracking, while the other functions, ¢, h/ are convex, locally Lipschitz continuously dif-
ferentiable functions that can be used to ensure other performance requirements.

We are now ready to state our control algorithm that defines the moving horizon feedback con-
trol system. The algorithm uses several parameters: T¢, the time needed to solve the optimal control
problem, which must be determined experimentally, and three parameters that are selected partly on
the basis of experimentation and partly on judgement, T, an upper bound on the horizon, and a, B

which govem the speed of response of the system.

Control Algorithm 2.1.

Data:  tog=0,ty=Tc,up,, (t)=0,x90e B,. Tc and T suchthat 0< T¢ < T < oo,
P

Step0: Setk =0.

Stepl: Att =g,

(a) Obtain a measurement or estimate of the state xf = xP(t; , to, x§ , #) and denote the

resulting value by x;.

(b) Set the plant input u(t) = uy, 4., (¢) forz € [t , tp41).

(¢) Compute an estimate x;,; of the state of the plant xP(fx4; , #; , XxP , u) according to the
formula

ba
Xeor = AU, 4 T eACOBy (1) dy (24)

(d) Solve the open loop optimal control problem P(x,;, #;,;) t0 compute the next
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sampling time #42 € (G +Tc, i+ 7-']. and the optimal control uy,,. .. g¢)e U,

t € [y, a2
Step 2: Replace k by k +1 and go to Step 1. (]

Clearly, the fact that the plant input is bounded, limits the region of effectiveness of any control

law. Hence we must assume that the initial states are confined to a B, < R" as follows.
]

Assumption 2.2, We assume that there exists a P € (0,o) such that for any

xeB, a {z e R*11z1<P }, the optimal control problem P(x , 0) has a solution. O
3]

The following theorem generalizes a result given in [Pol.1].
Theorem 2.3. Let 88 < IR” be defined as in Assumption 2.2. Suppose that (a) the systems (2.1a)

and (2.2a) are identical and (b) the Control Algorithm 2.1 is used to define the input u () for (2.1a).
Then the resulting feedback system is asymptotically stable on the set B‘a ,i.e. forany x§ € B 5

xP(t,0,x8,u)>0ast = oo,
Proof. We begin by showing that for any xg € 83' the trajectory x(#,,0,x0,4)=x3, k € N
resulting from the use of the Control Algorithm 2.1 is contained in B 5 In turn, this shows that such
a trajectory is well defined and that it is bounded.

Suppose that xg € BB is an arbitrary initial state at ¢ = 0. It follows from the form of (2.3c),
that forallk € N,

Dl = I (tean s e, X0, g, )V S O ) S ol ol (2.53)
Since o € (0, 1), it follows that x; € BS for all £ € IN and hence that the trajectory x(¢ ,0,x¢9, 1)
is well defined.

Next, from the form of (2.3¢), we see that forall k € N and forany ¢ € [t , 1],

Le(t, te,xp, up,, DV S Blxed < Botixol < Blxgl , (2.5b)

which implies that because B — 0 as k — oo, we obtain that x(¢ , 0, x¢, u)—0 as t = c. Hence

the feedback system defined by the Control Algorithm 2.1 is asymptotically stable on the set BB - O

We note that Theorem 2.3 did not depend on the form of the cost function g°(- ,*) nor on the
form of the constraints defined by (2.3b) and (2.3d). These constraints can be used to shape the



transient responses of the closed loop system. We will describe later a procedure for solving prob-
lems of the form (2.3a-e).

As stated, Control Algorithm 2.1 only defines a local control law. When the plant is unstable,
since the control u € U is bounded, for some initial state xo € R", there is no control which stabil-
izes the system. In this case, there is not much that one can do about it. However, in the case of
stable plants (and models), it is possible to globalize Control Algorithm 2.1 since for any xo € R"”,
there exists a ¢ € [0, =) such that x(t ,0,x0,0) € Bﬁ' Clearly, in this case, there may be room for

a more effective control law, as we will now show. Let M’ and O’ be symmetric, positive definite
matrices, such that ATQ’ + QA =M, then V(x (1)) 2 (x (t), @’x(t)} is a Lyapunov function for
x(t) =Ax(t). Let T, € (Tc,T) and suppose that x, éBa. Then, if we set fy, =1 + T, and we

apply the control u(t)=0, to (2.1a), for ¢ e [t;,#4], then we must have that
Vs, te, X, u°) < e"““’(M')T'V(x,‘). Hence it makes sense to use the control defined as the
solution of the simple optimal control problem

min (V0 @eers te,%e, u) ), (2.6)
where x (ty41, t , X; , #) is determined as the solution of (2.2a). Let u°(t), t € [t , x4, be a solu-
tion of (2.6).

Hence, for stable plants, we propose to modify Control Algorithm 2.1, as follows:
Control Algorithm 2.4,
Data:  tg=0,t1,up,, ). %0, Ts, Tc and T suchthat 0< Te < T, ST < oo,
Step0: Setk =0.
Stepl: Att =y,

(a) Obtain a measurement or estimate of the state xf = xP(t; , to, x§ , #) and denote the

resulting value by x.
(b) Set the plant error dynamics input u(t) = uy, ., (¢) fort € [t; , t49).

(c) Compute an estimate x;,; of the state of the plant error dynamics x? (t;4;, t; , P, 4)
according to the formula (2.6)

+1
Xpn = eA(lul-la)x'k +J: eA(lnl-t)Bu (1)dt .

(d) If x;,1 € B, , solve the open loop optimal control problem P(x;,, , 1) to compute the
P



next sampling time #.45 € (41 +Tc , 441 + T, and the optimal control u ., , () € U,
t € [tea1, tesd).
Else settyyo =ty +T, and uy,,,, . 4(t) = u°(), forall t € [tp41, f142).

Step2: Replace k by k + 1 and goto Step 1. O

We will not present a complete analysis of the operation of the closed loop system under Con-
trol Algorithm 2.4.

3. ROBUST STABILITY

In this section, we will analyze the behavior of the closed loop system resulting from the use of
Control Algorithm 2.1 under the assumption that there is a difference between the actual plant equa-
tions (2.1a) and the model equations (2.2a). We will consider two distinct situations: the first is
where we can measure the state, while the second one is where the state has to be estimated. Finally,
we will show how a cross over rule to a linear state feedback law, proposed by Michalska and Mayne

(see [May.2]) near the origin can be used to eliminate residual errors in both cases.

3.1. Moving horizon control with state measurement.

We begin by defining the error quantities

Ay 8max, . o 74" —e#l, (3.12)
A2 8 Xax(@)m e, T max, . (o 7leA""BP~e*BI, (3.1b)

where A,.(Q) denotes the largest singular value of Q. When either A; or A; is not zero, even if

X, € B, ,where B, was defined in Assumption 2.2, the estimated state, x;,; (defined by (2.4)), may
P P

not be in B, and hence there may not exist a solution to the optimal control problem P(x;,;, #x41)-
P

Therefore, we have to specify a set B, © B, , such that for any x§ € B ,, Control Algorithm 2.1 is
P

well defined on the emanating trajectory x(¢ ,0,x§ , u). We will obtain a formula for such a set in
the process of proving the following result.

Lemma 3.1. Consider the moving horizon feedback system resulting from the use of the Control

Algorithm 2.1, with plant state measurement. There exist €, € > 0 such that if A; <g; and A; <€,



then there exists a set By, € B, , with nonempty interior, such that for all x§ € B ,, the control law
P

defined by Control Algorithm 2.1 is well defined on the resulting trajectory xP(t ,0,x§,u),
t € [0,e),i.e., the states, x4, k =0,1,2,..., computed using (2.4) satisfy that x;,; € B, forall
P

k20.

Proof. First suppose that the optimal control problem P(xi,;,#.y), has a solution for any
X¢+1 € R" and #;41 20. Then, given any initial state x§ at time ¢o = 0, the Control Algorithm 2.1
generates three sequences of states. The first sequence is that of measured plant states { xP} fug, SO
that X, =xf for all k € NN, the second sequence is the sequence of estimates {xx ) x=p, With
X4t = X(tesr, e xE,u), k=1,2,..., generated according to (2.4), and finally, the sequence
(X%} g2, With Xpy2 = X (a2, tiay  Xesr ) k=1,2, ..., generated in the process of solving the
optimal control problem P(x;,;, t;41). k € N,

First we note that it follows form (2.1a), (2.4), (3.1a,b), and the fact that lu (¢)l, < Vm lu ()l
that

Ixfi1 = xeei S AflxPl+A,. (3.2a)
Hence, making use of (3.2a), we obtain that

L srl S WPy =g 14 ey S AjlxPl+ Ag+ xPy 1. (3.2b)
Since by construction, forall £ € N, IX;,5l < alx, 41, it follows from (3.1a-¢) and (3.2a,b), that

PV S IxPyp =X g ol + olxp gl
S Kbefoy =Xl + A1 1442+ 0dxfyy = xpgql +alxPyy |
< (K +0) (A lxPl+Ap) + (A + Q)lxf, 1+A,
= (K + 004 xf1+ (A + o)lxfyy 1+ (1 +a+ K)A,. (3.2¢c)
Let
2 8(1-0)(1+a+K). ‘ (3.2d)

We will now show that if A <€, for some €; € (0,2 ,), then there exists Y1. Y2 € (0, =) such that for
alk=1,2,...,



Ix, ) S 1, 1xBl+%. (3.20)

We will now make use of Proposition 6.1 (see Appendix I). Hence, let ay = Aj+ 0, a; = (K +0)A,,
and b = (1+a+K)A;. Because ay, a5, and b are positive, if we set yo = Ix§l and y; = k£l in
(6.1a), then comparing (3.2c) with (6.1a), we see that forall k € N, y; 2 Ixfl. Also, because

A1+a+(K+a)A1=a1+ag<l, (329

the assumptions of Proposition 6.1 are satisfied. Since A, S€; <€ pand (K +0)A; 20,

1-a;+a3 = 1-Aj—a+(K +0)A; > 10—, = —‘%fx"—) Ae'>0. (3.28)

Hence, forallk 21,

gl < y, 5a2u5|+|xg|+T:a—bl-)ESazlx5|+|qu+e", (3.2h)

k@m i < k@. yeSe”, (3.2i)
where

era LFatKody (32)

€

Clearly,

DB < Ixf —x h+1x4l. (3.2k)
Since xg =x§,and u(¢) =0 fort € [0, ¢,] it follows from (3.1a,c), and (3.2k) that

LB < A IxBl+K IxBl = (A +K) IxBl. (3.21)
Substituting this result into (3.2h), we obtain that forall k 2 1,

Pl Sy < (A1 +K - A )Ixgl+¢” , (3.2m)

where €” is defined in (3.2j). Since —A,A_=a; = (K +@)A,, it follows from (3.2m) and (3.2b) that

el S Ay + 82+ Yy
SA+A)A1+K + (K +0)A)IxBl+(1 +A) " +A,

Ay ixgl+y,, (3.2n)

which proves (3.2e).
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Next we will show that with 2, > 0 defined by

-1 -1 :
K)(1+a+K
2,4 5[2”‘ 1] -p[(z(’; fol'fE))“] : (3.20)

where § > 0 was used to define the set B, in Assumption 2.2 and & is defined in (3.2g),if A; S &, for
P

some &; € (0,22), then there exists a p, € (0, p), depending on € , &,, such that if Ixgl <p,, then

<P forall k =1,2,..., ie., that the trajectory xP(t ,0,x§ ,u), t € [0, o), emanating from
x§, constructed under Control Algorithm 2.1 is well defined.

Assuming that A; < €; and that A; < &, we obtain that from (3.2n)

1-a | 1+a+K) 2+K A% <
T2 < [1‘*'1_'_“_”{] e fth:s [—e +1]€z-‘iz$P- (3.2p)
Let¥, and p; be defined as follows:
8+e) K +(1+a+K)g) , (3.29)
ps 8B -¥2M1, (3.2r)

Since § ~¥,>0and K <, %, we conclude that p, > 0, and hence that B p. © B, defined by
P

B, A {xeBs lixI<p,}, .(3.2s)

is well defined and its interior is not empty. Furthermore, for any x§ € B ,, the resulting sequence

{ xk41) £ satisfies

Ll S Bl+v <n@ -Y/G1)+¥2<p , Vk e N, (3.21)

which implies that x,,; € B, for all ¥ € N, and, in tum, that the optimal control problem
[

P(xp41 . t41) has a solution for all k € IN. Hence the trajectory xP(t ,0,x8,u), t € [0,¢e),

emanating from any x§ € B p. is well defined by Control Algorithm 2.1, which completes our proof.]
Theorem 3.2.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.1, with plant state measurement. Suppose that A<g <% and A;Se; <2y, where 2,

2, are defined in (3.2d) and (3.20), respectively. Let B, be defined as (3.25). Then (a) for any
xf € B, the trajectory xP(t ,0,x8,u), t € [0, ), is bounded, and (b) there exists an €3> 0,

11



depending on €;,&;, such that €;—0 as €—0, and for any xf e B, the trajectory
xP(t,0,x8,u),t € [0, ), satisfies fim, _, . Ix”(¢ , 0, x§ , u)I S €.

Proof. Let x§ € B, be arbitrary and let {xP) 5. {x¢) k=1, and {x; ) 52, be the sequences
constructed by Control Algorithm 2.1, as defined in Lemma 3.1. We recall that by Lemma 3.1, the
trajectory xP(¢ ,0,x8,u),t € [0, =), is well defined.

(a) Making use of (2.1a) and (3.1a-c), we obtain that forall ¢ € [, k1) k € N,

lxp(t » & nxtv u)l S"xp(t v U vxg'u)_x(t ' & 'xkru)l+lx(t ' & vxk’u)'

SALPIHKIP-x 0 + A0 +1x (e L 1, 2, , 0l (3.33)

Next we note that the form of (2.3e) ensures that Lx(z , t; , x; , u)l SBIx, ! for all £ € [t , 41
Hence, in view of (3.2a), (3.3a) can be replaced by

Pt 1, XP, ) S AP +K P=xpd+ Ag+ Blxed = (A + Bl +(K +B)xP—x, 1+,

< A1+ BB+ (K +B)A P 1+ (1 +K +B)Az, 1 € [t , tpay]. (3.3b)

Clearly, since uyg, ,;=0, lxP(¢ ,0,x§ , u)l is bounded on [0, ¢;]. Since, as we have already shown
in the proof of Lemma 3.1, {Ixfl1}, is a bounded sequence, it follows from (3.3b) that
LeP (¢, # ,xE , u)lis bounded for all ¢ € [# , t;41], k € N, which completes the proof of (a).

(b) It follows from (3.2i), in the proof of Lemma 3.1, that

_— —_— 1+0a+K)e
lim, _,..,lel <lim, —w)k S g’'< % ’ (3.3¢c)

where €’ is defined in (3.2g). Let

. +1+K +B [e;. (3.3d)

" [([3+(1+K+B)e,)(1+a+1<)
3:
€

Then (3.2i) and (3.3b) lead to the conclusion that I'E, —xlxP(t ,0,x8,u)l <€3. Itisobvious from
(3.21) and (3.3d) that €3 — 0 as £,— 0, which completes our proof. (]

3.2. moving horizon control with state estimation.

Since it is not always possible to measure the plant state xP, we will now examine the behavior
of our closed loop system, resulting form the use of Control Algorithm 2.1, when the plant state has

to be estimated in the presence of modeling errors, i.e., when the actual dynamics are as in (2.1a,b)

12



and the modeled dynamics as in that (2.2a,b).

When the model (2.2a,b) is identical with the actual dynamics (2.1a,b), we can calculate the ini-
tial state, x§ at ¢ = 0, using the standard formula

17 anT
x§ = Wo (T (Ce*Y P (0)-n(s . O))de , (3.42)
where T, > 0, the superscript T denotes a transpose, and
7o
W,(T,) = jo (Ce*) CeMadr , (3.4b)
NG .s) = C [ eAtBu (. (3.40)

Clearly, W,(T,)™! exists because (4 , C) is an observable pair. Thus, when there are no modeling
errors, for ¢ 2 T, the state xP(¢ ,0,x§ , u), can be calculated exactly, and hence this calculated state
can be used in Control Algorithm 2.1.

The much more relevant situation occurs when there are modeling errors. In this case formula
(3.4a) yields an estimate of the initial state x§. We propose to use it in Step 1 (a) of Control Algo-
rithm 2.1, to obtain the estimate X', with the time T determined by a parameter 8, which must be

chosen judiciously so as to avoid excessive ill conditioning in the observability grammian W, (T,):
Step 1: (a) Aty 8 t,+8o(tes1—1t) With 8y € (0, 1), estimate the state xP by

s
% = Wo@olten 1), (CeA T P (0)-n(e , s))de . 35)
' O

Lemma 3.3. Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.1, with state estimation formula (3.5). There exist A; <o, i =3, ..., 6, such that if
Control Algorithm 2.1 constructs the sequences {xf} oo, {xi) su1, and { X, } 52p Which is the

corresponding sequence of the estimates of xf, defined by (3.5), then forall k¥ € N,

ef-x 1 SAsIxfl+A,, (3.6a)

Py — x4l < Aslxfl+Ag. (3.6b)
Furthermore, when there are no modeling errors, A; =0,i =3,...,6.

Proof.  Suppose that u(-) is the control generated by Control Algorithm 2.1 for the plant and model

trajectories associated with the sequences { xf} geg, { Xk } fu1» and { X: } 0.

We begin with (3.6a). Forany k € Nand any ¢ € [t , t41], yP(¢) is given by

13



t
YP(t) = CPeA P4 CP[ A" =IBPu (D)1
= CeA U Wxp4[CPeA ") CeAl- yp

[}
+C [ eAC-9Bu()dT+ [ [CPeA"t~9BP — CeA-VBIu(D)d. (3.72)

By substituting (3.7a) into (3.5), we obtain

[
2y = 2f+ W5 Bolten ~10)) {L'(Ce“‘ ST ICPed - Ce Al dr xp

+ j,:‘(Ce"“ T I‘:[CPeA'("‘)B"—Ce'“‘ -9B] u(t)d‘tdt}. (3.7b)

It follows directly from (3.7b) that

Ixf—% 1 S AIxPl 44, (3.70)
where
Ay = % max _IW,(5)M, max _1CeA L ICPeA ¢ CeAt4), 5, T
3 = Anax(Q) , hax 2(S0?) 2, 2 280 (3.7d)

Ay = Anax(@)% max _IW,(8pt) M, max _ICeALICPeA’ ~UBP —CeA =B 1. Nmc, 8,7 , (3.7¢)
IE[Tc.T] 16[0.807']

which proves our first (3.6a). Clearly, when there are no modeling errors, A3 = A4 = 0.

Next we will establish (3.6b). Since x;,, is calculated using the estimated initial state x,, we have
that

b
xfyy = Xpegl = leAT(amt)y —eA(“"-")fg-i'J’“ '{eA’(lm-‘t)Bp_eA(&n-‘!)B } u()d
SK Ixf-x 1+ AIxfl+ A,
SK {Aslxfl+A4) +Akf1+A,,

= (K A3+Ay) IxPl+ K Ay+A3 8 AglxPl+Ag, (3.79)

where K, A, and A, are defined in (3.1a,b,c), respectively. Hence (3.6b) holds, and our proof is com-
plete. O

Lemma 3.3, leads to the following result.
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Theorem 3.4.  Consider the moving horizon feedback system resulting from the use of the Control
Algorithm 2.1, with state estimation formula (3.5). Let €, , €, > 0 be such that

g <(l-a/(1+a+K), : : (3.83)

-1
2+K ] , (3.8b)

€E2<p [l + T
where p was defined in Assumption 2.2 and € was defined in (3.2g), in the proof of Lemma 3.1. If
As < g and Ag < €, then there exists a set B p.C B, suchthat (a) foranyx§ e B,,, the trajectory

[

xP(t,0,x8,u),t € [0,e), is well defined and bounded, and (b) there exists an €3 > 0 such that
€30 as g—0, and for any x§ e B,, the trajectory xP(t,0,x8,u), t € [0, ), satisfies
lim, ,.xP(t ,0,x§,u)l S &

Proof.  (a) First suppose that the optimal control problem P(xg41, t41), has a solution for any
Xx+1 € R” and ;.1 2 0. Then it follows from Lemma 3.3 that

a2l < Ixfig —X g gl + W hyod SK Ixfyy ~Xppgl+ A1 Py 1 +A2+ 0xp 4
<SK+0) lei—l —Xk.ﬂl + (Al +0) lx[.,,l |+A2

S K +0)AsxfI+ (K +0)Ag+ (0 +A)) IxPyy 144,. (3.923)
Since A} < As and A; < Ag, we have that
Ixfiol < (K + a)Aslxfl+ (0 +A3) Py 14+ (K + 00+ 1)Ag. . (3.9b)

Since (3.9b) is of the same form as (3.2c), with Ags replacing Ay, and Ag replacing A,, we see that the
conclusions of Lemma 3.1 and Theorem 3.2 (a) remain valid for the Control Algorithm 2.1 using
state estimation formula (3.5).

(b) Referring to (3.2s) (3.3d), we conclude that part (b) holds with €3 and B, defined by

. A [(B+(1 +K +B)e)(1 +0+K)
3 =
A

- +1+K +ﬂ]e¢. , (3.90)

B, 8 {xeBs Hixlsp, ), (3.94)

where €’ is defined in (3.2g) and



A _P-(@+K)E+1)e, (3.9¢)
Ps = rep K+ +0+K)ep)

33. Elimination of residual errors by linear feedback.

Because linear quadratic regulators are robust, when the pair (4 , B) is stabilizable and the
modeling errors are sufficiently small, we can always find a linear stabilizing state feedback control
law u(t) =-K.xP(t ,0,x§, u), where K, is the solution of a linear quadratic regulator problem in
terms of the model (2.2a,b), and a ball Bygg & {x € R™ 1 Ix1<por }, Pror € (0, P), such that if
for some t;, xf» € Bygg, then the control given by u(t) =—-K.x(t ,0,xq, u), for t 2 ;- does not
violate the bound on the control on the resulting trajectory, i.e, IK.xP(t,0,xq,u)l<c, for all
t215- As we will see, a similar, but somewhat more complicated result also holds when
xP(t,0,x§,u) is estimated using an asymptotic observer. Hence, in both cases, once the plant
state is sufficiently near the origin, we can switch over to the LQR control law and thereby eliminate

the residual errors resulting from the use of Control Algorithm 2.1.

For the case where the state can be measured, we propose to incorporate this idea into Control
Algorithm 2.1 by modifying Step 1, as follows. Let T, 2 Tc is such that le =¥ -2 < o

StepI': Att =4,
(a) Measure or estimate the state X, = x?(;,0, x§ , u).

(b) 1f X €Brpp, set the plant input u(t)=u (., 0a)() for t e [t,64); else set
u(t)=-K.xP(t ,0,x8,u)fort € [, 1), where t,; = 1, +Tx,.
(c) Compute an estimate x, . of the state of the plant xP (. , & , X, , ) according to the

formula (2.4), i.e.,

-
xk'l'l = eA (‘h‘-“)ik +J“ eA ('hl-‘)B u [f. , “ﬂ](t) dt. D

At this point it becomes clear that for best results, the matrix @, used to define the nomm I,

should also define a Lyapunov function (x , Ox ) for the system £ = (A —BK_)x, so that for some
positive definite matrix M we have

(A-BK.)Y'Q+Q(A-BK.,)=-M . (3.10)
Theorem 3.5.  Suppose that the matrix Q used to define the norm Il satisfies (3.10) for some
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positive definite matrix M, and that the state of the plant can be measured. Let & € (0,2,),

g2€ (0,2, and 3 € (0, Amin(M )2Amux(Q)), Where 2,2, were defined in (3.2d), (3.20), respec-
tively, M is as in (3.10), and let p, be defined by (3.2r), and pyy by

A (+a+K)e,

PmH = p ’ (3.11)

where € was defined in (3.2g). Finally, suppose that pyy <prgr, With prog >0, as above. If
Aj<e, A< €, and AP -A)-(BP -B)K I, < §, then for any x§ € B, with B, defined in (3.2s),
the trajectory xP(¢t,0,xf,u), t € [0, ) is bounded and, furthermore, xP(¢ ,0,x§,u)—0 as

t =>oo,

Proof. Since the conditions imposed in Lemma 3.1 and Theorem 3.2 are satisfied, it follows that for
any x§ € B,,, the trajectory x?(t ,0,x8,u), t € [0, =), determined by Algorithm 2.1, using the
original Step I’ , is well defined, bounded and IE,‘ —=Ixf1 Spyy. Since pyy < prgr, there exists a

finite £ € N, such that Ix t" I < pror, and hence that the cross over to the linear control law, specified

in Step I’ (c) will take place. Let V(x) 4 (x ,Qx ) Hence, for xP(t) determined by the differential
equation x?(t) = (AP -BPK_)xP(t), x”(tt) = xtP. we obtain that forall ¢ 2 tt .

V(xP()) = 4P (r) , QxP (1) (xP(r) , Qi (1))
= (xP()T , [(A -BK.)"Q +Q (A - BK,)xP(¢))
+{xP(1)[(AP~A -(BP-B)K.'Q +Q (AP -A —(B? -B)K,)xP (1))
=—{xP(t), MxP(t))

+{xP(@t), (AP —A —(BP-B)K.)'Q +Q(AP ~A —(BP -B)K.))xP(¢)). (3.12a)

Since I(A? -~A)-(B? -B)K_1, < d it follows that forall ¢ 2 tt .

. 20A nax
V(xP(t)) € = ApinM) ["T,,‘x:n(%] xP(e)2<0, (3.12b)
which implies that (i) xP(t) € Bpp forall ¢t 2 tt’ and (ii) that xP(z) — 0 as ¢ — ==, completing our
proof. O

When the state of the plant cannot be measured, we must augment our control system with an
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asymptotic state observer that provides the plant state estimate when we switch over to the linear
feedback control law. The asymptotic observer must be in operation from time ¢ = 0. In this case we
get augmented dynamics in the well known observer-controller form

xP(t) = APxP(t)-BPK_x°(t), (3.13a)

x°(t) = K,CPxP(t)+(A —BK.~K,C)x°(t), (3.13b)

where K, is the observer gain matrix. Let e(t) éx’(t)-x"(t) denote the difference between the
state of the plant and that of the model in the observer. Then

e(t) =(AP-K,CP)xP(¢)~-(A -K,C)x°(t)~(BPK.—BK.)x°(t). (3.13¢)
We assume that the system

ne)=Ane), (3.13d)

where A 2 diag (A -K,C),A ), with A is defined by

A - Bk 3.13
A2 lk,c a-Bk.-k,C|’ (3.13¢)

corresponding to (3.13a,b,c) when there are no modeling errors, is exponentially stable, and hence
that there exists a symmetric, positive definite matrix 0 = diag(Q, , Q,), with Q, € R™ and
Q. € R?2 that defines a Lyapunov function, (n, Q1) for the system (3.13d), so that for some
symmetric, positive definite matrix M = diag (M, , M,), with M, € R™ and M, e R**2*, we

have
ATQ +0A =-M . (3.13f)
We will now show that the system (3.13d) is robustly stable.

Lemma 3.6 Suppose that the state (xP(t),x°(t)) is defined by the observer-controller dynamics
described by (3.13a,b), with (x?(0) , x°(0)) arbitrary. Let § e (0, 0.5) and AA be defined by

0 AA-K,AC  ABK,
A 80 AA -ABK, |, (3.14)
0 K,AC 0

where AA =AP-A, AB =BP-B, and AC=CP-C. If IMAQl< &, (M), then
lim, _, . 1x?(¢)l = 0 and lim, _, . x°(z)1 = 0.
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Proof. Llet z(t) Aew),x? (t),x°()7, where (xP(¢),x°(t)) is a solution of (3.13a,b) and
e(t) éx”(t)—x"(t). Then, referring to (3.13a,b,c) and (3.14), we see that z(t) = [Z +AA-]z(r).
Consider the Lyapunov function V (z), for the nominal system (3.13d), defined by V(n) 4 n, Q- nk
Then,

V@) =1$2@¢),0z@¢)R{z@¢). 0 ()

=={2(t), M 2(t)+2 {z(t), AL O 2(r))

< — Apin(M )1 =28)Iz (¢ 2. (3.15)
It follows immediately from the condition on § that V(z (¢)) < 0, whenever z(¢) # 0, which completes
our proof. (m]

Lemma 3.7.  Suppose that the state (xP(t),x°(¢)) is defined by the observer-controller dynamics
(3.13a,b), that IxP (0)I S €, Ix°(0)l S €, for some € >0, and that AA satisfies the condition in Lemma
3.6. Thenforallt 20,

-]

Anax(@0) + Amax(@ ) ] A

le(t)I < [2).,,,,@) A0 osD) e2E. (3.16)

Proof. First, let Ixlg, 8 {x , 0,x Y. Let the Lyapunov function V'(:) be defined as in Lemma 3.6.
Then it follows from the definition of V() and the fact that by Lemma 3.6, V(z (t)) <0, where
2(®) 8 (e@) yxP(t),x°()), that le (t)lé, SV@E (@) SV(z(0)), forall £ 20. Hence,

D)

Amax(@o) ¢
Amin(Q)

2
le®Wle. <5 @

le (O)12+

(3.172)
Anin(@)

It now follows from (3.17a) that

< [xm@o)ﬂm(é) ]ez.

Anax(Q)

A'max(ch)"'Amnx(é)
2 2
le )< 5= le (113, < 26%Annn(Q)

Amin(Q@ Mnin(@o)  °
which completes the proof. (]

(3.17v)



To include the use of an observer, we now propose to modify Step 1
of Control Algorithm 2.1, as follows: Let$ e (0, 0.5), let

Mnin(M YAnax (@ )(1 = 28)p1 o8 )
2Pmin(Q@ YUK CQ by +8hmin(M)) ° | °

Plor € [O,min {Prgr . (3.18a)

where pror was defined at the beginning of this subsection and Y was defined in (3.16). Let
€1, €2 > 0 be such that

€; <él , (318b)
e;xmin{%bwl , (3.18¢)

where K was defined in (3.1c), and 2,2, were defined in (3.2d), (3.20), respectively. Finally, let
Poc > 0 be defined by

€
Poc 2 (1-¢)) [pfm - 1-2e, ] (3.180)

Then, it follows from (3.18c) that p,. > (1 —€)(pLor—PLr/2) > €. Let Ty, € [T, =) be such that

2
¢~ el M1 -28)Tehea@) Poc Mmin(Q)

= , 3.18
D@ P2 + (020 ©.18)

le@ -BK)Mey < . (3.189)

Finally, we define the vector valued saturation function SAT(u)é (sat?Y, ..., sat(™)), where

sat(y) =y ify € [-c,, c,), and sat(y) = c,sgn(y) otherwise.

Step I'’: Att =4,
(a) fu(t)=-K.x°(t)fort € [y, ) and max (¥, 41, Ix0} < Pocs SEt X = X%(1.);
else if max (X1, gl } <p,, set X; =x, and reinitialize the observer by setting
x°(te) = x;, else estimate the state xf = xP(t;, to, xB , u) by (3.5) and denote the result-
ing value by x;.
(b) If max {IXpyl, el ) >p,, set the plant input u(z) = Uy, 4,)¢) for t € [t , te4q);
else reset 7., to the new value £, = ty+Tg,, and set u(t) =—-SAT(K.x°(t)) for
t € [t, i)

(c) Compute an estimate x;, of the state of the plant xP(ty4y, # , X , u) according (2.4),
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ie.,

e
xk-l-l = eA("d-“)x.k"-I“ eA(’lol-‘)B u(t)d‘ .

Lemmas 3.6 and 3.7 lead us to a following result.

Theorem 3.8. Suppose that (a) AA satisfies the condition in Lemma 3.6, (b) ¢ (0,0.5),
IK.ACQ I < SAin(M) As S €y, Ag S €, Paryy < (Poc —€2)/(1+;), where €; and €; satisfy (3.18b) and
(3.19¢), respectively, and p,y was defined in (3.11), and (c) that we use Step I'’ in Control Algo-
rithm 2.1. Then for any x§ € B p.» defined in (3.9d), the trajectory xP(¢ ,0,x§ , u) is bounded and,

furthermore, x?(¢ ,0,xf,u)—>0ast oo,

Proof. 'We will prove that for any trajectory xP(¢ ,0,x§ , u), with x§ e B ,, there must exist a £

such that the control u (¢) is defined by the solution of the optimal control problem P(x; , t;) for all

tef0,t )andmax{lx, I, lx£l } < Pocs ie., that the switch, in Step 1"’ (c), to the linear feedback
k k-1

control law u(t) = -K.x°(t), with (xP(t),x°(t)) the solution of (3.13a,b), from the initial state

(xP(,),x,) at ¢t =t , will take place. Then we will show that (a) x(¢) € Bygg for all £ 21 so
k

‘e

that the linear feedback control law does not violate the bound on the control, and (b) that

max { 15,41, Ix1} <p, must hold forall k 2%, so that the linear law is used for all ¢ > t, . Itwil
k

then follow from Lemma 3.6 that state of the plant will be driven to the origin as ¢ — oo

First, it follows from (3.6a,b) that if the control u(¢) = uy, wa)(?) and the times ¢, are deter-

mined by solving the optimal control problem P(x, , t;) forall k € N, then

LF gog) < Ixfoy =% g1+ IxP_ 1S (Ag+ DIxPoy 144y, (3.192)

bl < P —x, 0+ 1xf1 S AglxP_ 14+ Ag+Ix[1. (3.19b)
Next, because A3 < As S €1, Ay < Ag S €, and pyy < (Poe —€2)/(1 +€y), since it follows from (3.2i,))

and (3.18d) that €” < pyyyy, we conclude that Iim,_,,,Ixf1 S pyy. Hence there exists a £ € N such
thatlx, 1<p, andIx 1<p,. Hence a switch to the linear feedback control law will take place at
k-1 x

the time ¢ _.
time A
Next, we will prove that x°(t) e Bigg forall t 2¢_, where ¢, is the time when the switch to
k k

the linear control feedback control law takes place. Now, it follows (3.6a) and (3.7d,e.) that

21



k? Iskk? -x, I+lx, 1Sglx? l4g+l5, L.
t-1 -1 k4 -1 © -1 € lxi‘-ll (3.19¢)
From (3.6b), we obtain that

PISIxP-x I+ilx 1Sgix? l+e+ix |,

2 2 2 2 1 - 2 2 (3.199)

It follows from (3.19c) that Ix, I1sSLf, U/(1-¢g))+¢&/(1-¢€;). Hence it follows from (3.18d),
k-1 k-1

(3.19d), and the fact that Ix, 1, Ix_1<p, that
k-1 &

€
1 -&

lx;PI < (E2+Poc) +E2+Poc = PLOR - (3.19)

By Step 1'’ (a), we reinitialize the observer by setting x°(¢_ ) = x, and hence Ix° (¢, )} S p,. < pipr-
k k k
Now suppose that linear feedback control law is used for all ¢ 2 tt. Then it follows from

(3.1%) and Lemma 3.7 that le (¢)l < ypfpg for all £ 2¢_ . Next, let the Lyapunov function V() be
x

defined by V(x°(£)) 8 Ix?(e)IP 8 (x°(t), Qx°(r)). Then, making use of the matrix M defined by
(3.11), we obtain that for all £ 2¢_, with (xP(¢),x°(t)) a solution of (3.13a,b) with initial states
k

xP().x.),
k k
V(x°()) S = Apin(M)Ix 2 ()13 + 21K, ACQ L Ix° (1)1
+ [2le(t)l(lK¢CQ I lsub2+1K.ACQ |,)|x°(z)|]/xm(g)
< = ArninM (1 = 28)1x° (¢ W/ Ain(Q)

+ 2y 0r (1K CQ b+ Shpis(M NIx 2 (1 WA 0ux(Q) . (3.199)
It follows from (3.18a) that if Lx°(¢)1 > p.gg, then V(x" (2)) <0. Since kx°(t, N < p,e < Prgr, it fol-
k
lows that x°(t) € Brpg for all ¢ 2¢, . Therefore, if the linear feedback control law is used for all
k
t2t . then it does not violate the bound on the control.
We will now prove by induction that brg 41, Ix 1 S p,, for all k 2 % , where X4+ is computed

by (2.4) and X, =x°(#), with (xP(t),x°(t)) a solution of (3.13a,b) from the initial state
(x”(t; ), xz ). For (xP(t),x°(t), e(2)) a solution of (3.13a,b,c), let z(¢) A (xP(t),x°(),e(t)), and
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let 12(e)13 A1e (P+ kP ()2 +1x (). Recall that ui 1, lzz2 l| € Poce and that x"(ti) =z, and

that Ix{lSprR by (3.19¢). Now suppose that for some k 2% +1, we have that

Ll , 1 eyl Le® (@)1 S poc, and Ixf1 S pfop hold, and that u(f) = =K x°(t) fort € [t ,4). We
need to prove that Ix 8,50, k(G N<p,. and that Ixf. 1< pfor. Now, since
u@)=-K.x°@t) for tet_1,u) we set £,=x°0) by Step I' (a). Therefore,
Wl =k°@N<p, by assumption. Next, we must have that Ixp a1 Sop,. because
le“ ~B%Te) < o We will now prove that the relations 1x°(t ! € p,e and Lefy;l < pfgr. both
hold.

LetV (z(1)) = {z(¢) , 0 z(t)} Then,
V (2 (6)) 2 Ayin(@ Nz (12 2 Anin(Q WAinax @Mz (4 1Z 2 (rnin( G VAnax(@ )X ° ()12 (3.19g)

It follows from (3.15) and the fact that V' (2 (£)) € Apax(Q 1z (!)17 that for £ € [ty , fe41),
7 @) S~ Aia ¥ X1 =282 12 S = (o Ve @ X1~ 28V e ). (3.19h)

Clearly,  V (2(t)) S Amax(@ Nz (012 S M@ Nz (013 Amin(@).  Hence,  because (i)
le (212 < Lx (8 )P+ IxP (), (i) (6 )1 € P, and IxP ()1 = 1xP1 < pfpr by assumption, and (iii)
12 (513 < 2(x° (5 )12+ xP (1,)12), it follows from (3.19h) that forall ¢ € [t , t4.4y),

V) < ¢~ Pas( X1 =28} -6 Aaa(@ )7 ()

2Amex(@) 57 X1-285K0 - aYren@) [ 2
g somanl ), ' +(p 2] : 3.19i
Since by the triangle inequality, V (z(t)) 2 21x°(s)I? for all ¢ e [t , te41), it follows from (3.18e) and
(3.19g,i) that

(8 + T P 8 k2 ()P < p2.12. (3.19))

Therefore, Ix°(t ) < px/‘/f. Now, (3.19g) holds when we replace x°(t) by xP(t) because
12($)1F 2 P (1)1, Then, again it  follows from (3.1%h,i) that
P (e + Tg W2 = IxPyy 12 < pZ < (pfpr)? which completes our proof by induction. It therefore fol-
lows that the Control Algorithm 2.1 selects the feedback control law u () = ~SAT (K x°(t)), for the
next interval, ¢ € [fe41, 241+ Tk,), Where t, = £, +Tg,, and since we have already shown that, in
this case, the control u(t) =—-K,.x°(t) does not violate the control constraint, it follows that

u(t) =—K.x°(t), for the next interval, ¢ € [t,;, #41+Tx,], and hence, by induction, for all ¢ 2 t .
k
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It now follows from Lemma 3.6 that Ix?(¢)l -0 and Ix°(¢)1 -0 as t — o, which completes our
proof. O

4. NUMERICAL RESULTS.

We will now present three examples that illustrate the performance of the moving horizon con-
trol system based on Control Algorithm 2.1, for a plant modeled by the state equations

-1
x(¢) 01 0
S(1) = = 4.1
where u € U8 (u € Lo[0,) | lul.S1 }. Control Algorithm 2.1 used the following optimal
control problem:

T
P(x,, ) :nei% '/zj“ (e, e, x,u) Rx(t b, xp,u))+ (u(e),Su(e)) de (4.1b)
subject to
Lx(t,t,x,u)l?-0.01x12 <0, @.1c)
(e, tp,x, u)2= 10012 <0, Ve € [1,,1], 4.1d)

where T € [ +Tc,tg+7—'],Tc =5.f=40,

10 0
R = [0 1] , (4.1¢)

and S = 2000.

For comparison, we used the example given in [Gut.1], which has only a control constraint.
Since the initial state was known, we solved the optimal control problem P(x ¢, 0) off-line to obtain
the initial control u(t), ¢t € [0, #,].

Example 4.1. In this example we have assumed that the state can be measured and that there are no

modeling errors. This is the case presented in {Gut.1], where a piecewise linear control law was used,
defined by

u()=sat [(L —k[01)P)x()], “4.2)

where L = -0.78 x 1073 x [4.47 94.61), k = 0.5 x 1075,



171 1433
P = 11433 19435 |
and sat () is the standard saturation function. The matrix L was obtained by solving a Linear Qua-

dratic Regulator problem and P is a correction matrix. Figure 1 shows the resulting trajectories,
using both our strategy and the one in [Gut.1] forz € [0, 60) and x¢ = [10 10).

As we can see from the Figure 1, the trajectory generated by Control Algorithm 2.1 converges
to the origin faster than the trajectory given by [Gut.1]. The controls for both cases are shown in Fig-
ure 2.

Example 4.2. Next, we have again assumed that the state can be measured, but that there are

modeling errors, viz. we assumed that the actual plant dynamics were

_ 001 1 0.01
@=19 001|*®+ 099

while the model was as in (4.1a). For the initial state given in Example 4.1, in Figure 3, we compare

u(e), 4.3)

the trajectory, xP(¢ ,0, x§ , u), obtained by applying the control given in [Gut.1] with the trajectory
generated by Control Algorithm 2.1. Again, the trajectory generated by Control Algorithm 2.1 con-

verges to the origin faster. The controls for both cases are shown in Figure 4.

Example 4.3. In this example, we consider the case where there are modeling errors and the state

has to be estimated. Thus, we assumed that the plant was described by
. 0002 1 0.002
F®=1 0 0003|*®+ |09 |¥®). 4.42)

yP (1) = [0.99 0.0051x(¢), (4.4b)

withxf§ =[5 S]. The plant was modeled by the equations

¢! 01 0
x(t) = [iz((:; ] = [0 o]x(t)+ [l ]u(t), (4.4c)
y() =11 0lx(s), 4.44d)
withxg=[2 2].

We applied Control Algorithm 2.1 and the resulting trajectory, xP(¢ ,0,x§, u), and control
u(t),t € (0, 100], are shown in Figures 5 and 6, respectively.

25



5. CONCLUSION.

In this paper we have explored the stability robustness properties of a moving horizon feedback
system, based on constrained optimal control algorithms. As a starting point for a more extensive
exploration to follow, we have assumed that the plant has the simplest possible nonlinearity, namely,
input saturation. We have shown that the particular moving horizon control scheme that we pro-
posed, results in a robustly stable system, both when the state of the plant is measurable and when it
must be estimated. Our experimental results show that the behavior of our moving horizon control
system is superior to that resulting from one altemative control law. While the time needed for the
solution of the optimal control problems defining our control law is nontrivial, it should be acceptable
in controlling slow moving plants, such as in process control. For faster plants, it may be necessary
to implement the optimal control algorithms in a dedicated architecture, so as to speed up the solution
times.

6. APPENDIX L.
We will now establish two inequalities that form the basis of several of our proofs.

Proposition 6.1  Consider the second order scalar difference equation

Yes2 = A 1Vp1 a2y +b, ke N. (6.13)

Ifa],azzo,b 20anda1+a2<l.thenforalllc21.

YeSayo+y +bl/(l1—-a, +ay), (6.1b)

and
limg L.y Sb/i(1-ay +ay). (6.1¢)

Proof. ~ We begin by rewriting (6.1a) in first order vector form, as follows. For k € N, let
2 = Ok Yesn)T. Thenzg = (o, y,)", and

Zear = [‘,02 all]zk + [2] QFzn+g, (6.22)

Yi = [10)z, & Hz, . (6.2b)

The matrix F has two eigenvalues, A, ,A. = %(a; \fa," +4a,), with corresponding eigen-
vectors, e, =(1,A)" and ey =(1,A)". We will now show that -1 <A_<0<A,<1, ie., that
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(6.2a) is an asymptotically stable system. By assumption
0<as<l-a;. (6.2¢)
If we multiply both sides Of (6.2¢) by 4, and add a £ to the both sides, we get that
al+4a;,<(2-a,)?, (6.2d)

which implies that A_ = %(a, -Va # +4a;)>-1and A, = Yo(a; +Va? +4a,) < 1. Thus, we have
that—1<A <A, <1.

We can proceed to establish (6.1b,c). By the Jordan decomposition, we have that
F =E7AE, (6.2e)

where A =diag(A,,A.), and E = (e,,e.) is a matrix whose columns are the eigenvectors of F.
Hence for all k 2 2,

yi = HE“IA*Ez,

1 bk, :
( k-1 k-1 k k=1-i k=1-i . )
o (AT =AYy o+ A=Ay ) + 55 PO (6.2)

Since 0 <A, < 1and -1 <A_<0, it is clear that (a) the first term in (6.2f) goes to zero as k — « and
(b) the last term in (6.2f) satisfies the inequality

b ki ke b 1 1 _ b
L_LEO(L -\ )SL—L o " Toh [~ 12,723 (6.2g)

because (1 -A)(1 -A.) = 1-a, + a,, which proves (6.1c).

Next, for  all k21, Af<A, and M) s-Al Hence
{AA LT =25y = A,) S ~AA = a,. Also (A% - AKX/ —A,) S 1, hence (6.1b) hold. 0

7. APPENDIX II.

The free-time optimal control problem (2.3a-e) has to be solved at every iteration of Control
Algorithm 2.1. The major difficulty in solving this problem stems from the fact that functions such as
Lx(t ,0,xq, u)I? that are convex in u, are not convex in ¢ and hence optimal control algorithms,
such as the phase I - phase II algorithms described in [Pol.2), can only be counted on to find local
minima for this problem. This difficulty can be eliminated by solving a sequence of convex, fixed

time optimal control problems, constructed using an interval bisection technique, whose solutions
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converge to the desired optimal solution of (2.3a-e), as follows. An important aspect of phase I -
phase II algorithms, such as those in [Pol.2,3,4], is that when a fixed-time optimal control problem
has no solution, then they produce a control which minimizes the maximum constraint violation.

Algorithm 7.1,

Data: x e€B, ,t,andT suchthatT -, >TcandSe (0, T —Tc —1).
P

Step0: Seti =0,%=T,Tmn=t +Tc,and Ty =T.
Step 1:  Solve the problem (2.5a-¢) with 1 fixed at the value T = 1;.
Step 2:  If the computed control, u;(-), does not satisfy all the constraints in (2.3a-e),

min =Ti » Tnax = 2%; ,and T;.1 = T pax » ift; = Thax
ST i =T and Tiyg = (T + T )2 » otherwise.

Else, set T pax = T; and T4y = (T min + T;)/2.

Step 3: U (Tpax = Thin) S d, set tie1 = Tiv1— T4, Set U, ,,M](I) = u;(t) for t € (4, tx41], and
stop.

Else,seti =i +1and goto Step 1. ]

Since by definition of f, the original free-time optimal control problem has a solution, it is clear
that Algorithm 7.1 terminates after a finite number of iterations.
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Figure 1. States vs Time for Example 4.1.
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Figure 2. Controls vs Time for Example 4.1.
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Figure 3. States vs Time with Perturbations for Example 4.2.
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Figure 5. States vs Time with State Estimation for Example 4.3.
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