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Abstract

We are interested in globally (semi-globally) stabilizing single-input nonlinear systems that
cannot be globally full-state linearized. We focus on partially linear composite systems where
the dynamics ofthe nonlinear subsystem are not zero-input asymptotically stable. We specify
a class ofsuch systems where a linear plus (small) bounded control can be used to stabilize the
composite system. A subset ofsystems in this class can be globally (semi-globally) stabilized
using only a bounded control.

We propose algorithms that use our recent result for stabilizing a (linear) chain ofintegrators
with bounded controls [14]. In the nonlinear setting, the success of our algorithms depend only
on the general properties of the nonlinear terms and not on their explicit form. Consequently
the stability property is robust to unmodeled nonlinear terms thatsatisfy the general properties
as well as unknown (possibly time-varying) bounded parameters.

Keywords. Saturation, composite systems, stabilization, global, semi-global.

1 Introduction

We will consider partially linear single-input composite systems of the form

V = f(ri,z,u,t)
Z\ — Z2

= u

(i)

where ?/6Rp and / is smooth with /(0,0,0, t) = 0 for all t > t0.
Interest in such systems has been driven by input-output linearization theory [4] which allows

partial linearization for systems that cannot be full-state linearized. There have been many recent
global stabilization results for such composite systems ( [l], [7], [8], [9], [10], [ll], [12], [13]). In
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general these results either assume that thenonlinear subsystem is zero-input asymptotically stable
or that / depends only on 77 and z\. In the latter case it is also assumed that a smooth "input" z\
is known which globally stabitizes the nonlinear subsystem.

The approach presented in this paper aims at globally (semi-globally) stabilizing a subclass of
systems described by (1) where the nonlinear subsystem is not zero-input asymptotically stable
and where / can depend on the complete state vector z as well as the input u. We will rely heav
ily on the "converging input bounded state" property of [12] and incorporate a recent result for
stabilizing a (linear) chain of integrators with bounded controls [14] to achieve nonlinear stabiliza
tion. Interestingly, our design will provide intuition for determining coordinates and a feedback
that yield a composite system of the form (1) where the nonlinear subsystem is zero-input globally
asymptotically stable. More importantly, the approach outlined here depends only on the general
properties of the nonlinear terms and not on their explicit form. Consequently, our approach is
robust in the presence of a class of unmodeled nonlinear terms and in the presence of unknown
(possibly time-varying) bounded parameters.

The assumptions we impose are not generic, but do allow us to handle systems that do not
satisfy the conditions of existing methods. In this sense, our method presents a specialized tool
intended to complement other existing methods in the nonlinear stabilization tool box.

Section 2 will define the general concepts used throughout the paper and will review the work
of [12] as it applies to our problem. In section 3 we describe the class of systems for which our
algorithm is applicable. In section 4 we state and prove our main results for global stabilization.
Section 5 contains our main results for semi-global stabilizability. Finally, in section 6 we provide
examples for both global and semi-global stabilization. In the global case, we show that our
algorithm provides a solution to a previously unsolved benchmark problem [6]. In the semi-global
case, we show that our algorithm provides a solution to the popular "ball and beam" example [3].
To our knowledge, the only existing stabilizing solutions to this problem were local in nature.

2 Preliminaries

We begin by defining what is meant by global and semi-global stabilizability. Consider a general
finite-dimensional nonlinear system of the form

x = f(x,u,t) (2)

where /(0,0,t) = 0 for all t > tQ. We then make the following definitions.

Definition 1 A nonlinear system (2) is globally stabilizable by state feedback if there exists a
control u(x) such that \x\ —> 0 as t —*• 00 from any initial condition.

Definition 2 A~ nonlinearsystem (2) is semi-globally stabilizable by a class of state feedback laws
if, for initial conditions in any bounded subset X of the state space, there exists a control u(x)
belonging to the class such that \x\ —• 0 as t —• 00.

Our objective is to globally stabilize a given nonlinear system. In the event that the assumptions
we impose for global stabilizability do not hold, we are willing to modify our assumptions to
achieve semi-global stabilizability. In either case we are not limited to initial conditions in a small
neighborhood of the origin.

The following definition will play a prominent role in characterizing the class of systems to
which our method applies.



Definition 3 Afunction g : Rn x Rm -»• R denoted g(v, w) is said to be higher order in wuniformly
in v if 3 positive constants c0,C such that Vc < e0,

\\w\\<€=>\g(v,w)\<C€2

Finally, we define the class ofsaturationfunctions that are fundamental to our control approach.

Definition 4 Given two positive constants 6{ and €,-, a function a,- : R —• R is said to be a simple
saturation if it is a continuous, nondecreasing function satisfying

1. 5<Tt(5) > 0 for alls^O

2. Ci{s) = 5 when \s\ < Si

3. \oi(s)\ = €i when \s\ > €,-.

In the literature for composite nonlinear systems, several different concepts are relied upon
to demonstrate global stability. The most convenient concept for our purposes is the "converging
input bounded state" condition presented in [12]. The nature ofour problem requires this condition
extended to allow for certain time-varying dynamics. In this framework, we recall the main result
of [12]. Consider a finite-dimensional composite nonlinear system

y = f(y,z,t) (3)

z = g(z,t) (4)

where / and g are smooth and /(0,0,i) = 0 and #(0,i)=0 for all t > tQ. Assume the composite
system has the following properties:

Property 1 1. The equilibrium point y = 0 of

y = f{y,o,t)

is uniformly globally asymptotically stable.

2. The equilibrium point z = 0 of (4) is uniformly globally asymptotically stable and locally
exponentially stable.

Property 2 For some positive constants A',a and T > to and for each bounded "control" z(-) on
[<o»oo) such that \z(t)\ < Ke~at for allt>T and for each initial state y0, the solution of (3) with
y{to) = 2/0 exists for all t >to and is bounded uniformly in to.

Under these conditions there is the following result:

Theorem 2.1 ([12]) If properties 1 and 2 are satisfied then the equilibrium (0,0) of (3), (4) is
globally asymptotically stable.

Proof. See [12].



3 Assumptions

We now specify the subclass of systems of the form (1) for which our control approach is suited.
First we decompose the state vector 77:

x
n =

where x € Rk and yGRm. We write

y

i = f(x,y,z,u,t)
y = 9{x,y,z,u,t) (5)

We then make the following assumptions:

Assumption 1 The dynamics of
x = f(x,y,z,u,t) (6)

with y('),z('),u(') considered as "controls" satisfyproperty 1.1 and property 2.

Assumption 2 (Global) The dynamics of y have the form

yi = 9i(x, y, *, u,t) = Vi+i + hi(x, y, z, M) (7)

for i = 1,..., m (ym+i = z\) where

1. h{ is higher order in yi,..., ym,z, u uniformly in x, y\,..., y,_i, t.

2. /i1(x,2/1,...,2/1+1,0,...,0,t) = /i?-r-/ij where

(a) h? is higher order in y,+i uniformly tna;,^,...,yi,t

(b) yM < 0 for allx,yx,...,yi+1,t.

3. for some e0 > 0, hi(x, yi,..., y;_i, yt-,0,...,0, t) —0 for all yi such that |y,| < €0.

4. For each finite c > 0, 3c0 > 0 such that for all €,- < c0 the dynamics of yi satisfy property 2
with [ccri(yi) + y,+i], yt+2» •••>2/m> z> u as "controls" uniformly in x,yi,...,y,-, 1. jTAe function
Oi is a simple saturation with positive constants #,-,€,••

Remarks.

1. For examples of systems satisfying this assumption, see section 6.

2. The most difficult requirement to check in the above assumption is point 4. Sufficient condi
tions to guarantee point 4 is satisfied are either

(a) the dynamics of y,- are "bounded input bounded state" uniformly in £,yi,.. . ,y,_i,t or

(b) hi defined by

hi = hi(x, y, z, u, t) - hi(x, yu..., y,-, -coi, 0,..., 0, t)

can be bounded as

N</ci(ICI) + K2(ICI)|y.l

where £ = (ccr,--f y,+i,y,-+2>•••)^mt^U)T and «,(•) are strictly increasing functions such
that kj(0) = 0 and for some k,€c > 0 «,-(e) < A;e for 0 < c < €<>•



The latter follows from a simple application of the Bellman-Gronwall lemma.

3. The structure imposed by assumption 2 is, in a sense, complementary to the structure im
posed by the pure-feedback conditions presented in [5]. For hi, the pure-feedback conditions
allow unrestricted dependence on x, y\,..., yt+i but disallow dependence on y;+2, ...,ym,z,u.
Conversely, our assumption allows dependence on yl+i,...,y'm,z,u but greatly restricts the
allowed dependence on x, y\,..., yi.

If the dynamics of y do not satisfy assumption 2 it is still possible to state a semi-global result
under the following (recursive) assumption:

Assumption 3 (Semi-Global) Let i —m and consider the dynamics of yi:

1. if assumption 2 holds then let i = i —1.

2. otherwise, the dynamics of y,_i, yt- have the form

Vi-i = yi + hi-i(x,y,z,u,t)
y» = Vi+i -rhi(x,y,z,u,t)

where for j = i —1, i

\hj-hj(x,y1,...,yi+uO,...,0,t)\<{\yi-1\ + \yi\ + l)\hj\

where hj is higher order in y{+2> "">ym> z,u for boundedy,+i uniformly in x,y\,...,y,-,t.
Further, hj is bounded for bounded yl+i,..., ym, z, u.

(b) i.

\hi-i(x,y1,...,yi+1,0,...,0,t)\<(\yi\ + l)\hi-1\

where /it_i is higher order in yi+i uniformly in x,y\,...,yi,t. Further, A,_i is
bounded for bounded y,-+i.

ii. hi(x, y\,..., yt-+i, 0,..., 0, t) depends only on y,+i. Further it is higher order in y,+i
and bounded for bounded y^+i.

(c) For some c0 > 0, hj(x, yu..., yt_i,0,..., 0,t) = 0 for all |yt_i| < c0.

Let 2 = i — 2.

In the next sections we present our main results and illustrate the design procedure with exam
ples.

4 Global Results

Our nonlinear global stabilizability result relies on a recent linear result for stabilizing a chain of
integrators with saturation functions [14]. As in that work, for the nonlinear composite system
(1) we employ nested saturations with linear arguments to achieve global stabilization. The proof
of the following theorem will be constructive yielding an algorithm for generating the proposed
globally stabilizing control law.

(8)



Theorem 4.1 (Global Stabilizability) If assumptions 1 and 2 are satisfied, then there exists a
time independent control of the form

u = Kz - am{Tm{y, z) + <Tro-i(Tm-i(y, *) + ••• + ai(Ti(y, z))) •. •)

which globally asymptotically stabilizes the origin of (1) where Oi is a simple saturation for 6i,€i,
Ti is a linear function and the gains K are the coefficients of a Hurwitz polynomial.

We have the following corollary regarding globally stablizing (1) with a bounded control which
follows by simply redefining the dynamics of y to include the dynamics of z also.

Corollary 4.1 (Global Stabilizability with bounded controls) If assumptions 1 and 2 are
satisfied, then there exists a time independent bounded control of the form

u = -<rm+n(Tm+n(y, z) + <7m+n_i(Tm+n_i(y, *) + ••• + <7i(li(y, z))) •••)

which globally asymptotically stabilizes the origin of (1) where Oi is a simple saturation and Ti is a
linear function.

4.1 Proof of theorem 4.1

The proof is constructive and divides into three major parts. First we develop a convenient linear
coordinate change that will simplifyour analysis. Then wedevelop howthe conditions of assumption
2 translate in the new coordinates. Finally, we show how these conditions allow for a globally
stabilizing control law.

4.1.1 Coordinate change

Our first step in developing our coordinate change is to choose the input as u = Kz + v where the
gains K are the coefficients of a Hurwitz polynomial. We then have

where

A =

* = f(x,y,z,u,t)
y = 9(x,y,z,u,t)
z = Az + Bv

0 1 0

: .. •- •. 0

0 0 1

h kn

The additional control v will be bounded and chosen to stabilize the y states. We proceed to make
a linear coordinate change to achieve a convenient form for our approach. We choose

x = x

y = Tiy + T2z
z = z

B =

(9)

0

(10)

(11)

where T\ and T2 are constructed below. For purposes ofcompact notation, we employ thefollowing
selection operators:

Si : Rm+n -h. Rn
Si(w) = [i0i,...,Wj+B_i]r



and

Pi : Rm+n -> R
Pi(w) = Wi

Si is defined for i = 1,..., m and Pi is defined for t = 1,..., m+ n. Both operate on the concate
nation of y and z:

w= [yT,zT]T
We choose y to have the following recursive construction:

ym = -KSm(w) + Pm+n(w)
ym-i = ym - tfSm-i(u>) + Pm+n_i(u;)

yi = V2-KSi(w) + Pn+1(w)

It is apparent from this construction that Ti has the form

Ti =

-*1 * ... *

0 ••. ••. 1
rr> =

• *

0 ... 0 -*1.

-lAi

o

o

(12)

0 -1/fci

(Ti is invertible because ki < 0 for A to be Hurwitz.) In the new coordinates, the dynamics of (9)
are given by

£ = f{x,Ti\y-T2z),z,u,t)
% = g(x,y,z,u,t) (13)
z = A5 + Bv

It is obvious that the dynamics oi x satisfy assumption 1 with y(-)»^(')>w(*) 2l& "controls".
For the dynamics of y we have

ii = Pt(^,y,5,w,0
= m+i + •••+ ym + v+ E^TiyfyforfHy - T2z),z,u,t)
= 2/t+i + •••+ ym + v + £,•(£, y, 5, u,*)

We proceed to determine the relevant properties of hi.

(14)

4.1.2 Properties of Perturbation Terms

Define ym+i = —fci^i- The following properties of hi follow from assumption 2:

1. hi is higher order in y,-,..., ym, z, u uniformly in x, y\,..., y,_i, t

2. hi(yu..., y,+i,0,.. .,0,<) = h$ + S* where

(a) Af is higher order in y,+i uniformly in x, yi,..., yi, t

(b) for some €0, d > 0 and Ve < €0,2?i/tJ <0 for all x,y\,..., y,_i and |y,+i| < eand |y,| > de.

3. for some e0 > 0, /i,-(yi,..., y,_i, y,-, 0,...,0, t) = 0 for all y, such that |y,| < e0.



4. 3e0 > 0 such that for all et- < eQ the dynamics of yt- satisfy property 2 with [o"t(ym) +
y»+i]> yi+2> •••, j/m» 5, was "controls" uniformly in x, y\,..., y», t. The function <rt- is a simple
saturation with positive constants £,-,€,-.

Consider point 1. For some e0 > 0 and any c < €0 assume that |J,-| < e for j = i,.. .,m and
||l|| < £, |«| < £. From Tf1 this implies, for some constant D, \yj\ < De for j = i,...,m. Further
||z|| < c. By assumption 2.1 this implies, for some constants Cj, \hj\ < Cj€2, j = i,...,m. Finally,
from (14), for some constant C, \hi\ < Ce2.

Consider point 2. Decompose hi(x,yi,..., jji+i,0,...,0,t) as hi —h? + h\ where

k = T^M +T^i^T^hj
h\ = T,„fc}

where h* and h\ are defined by assumption 2.2. Consider point 2a above. Assume that |yi+i| < e
and yj = 0 for j = i + 2,.. .,m and 5 = 0, u = 0. From Ta-1 this implies |yt+i| < i^€, yj = 0 for
j = i + 2,.. .,m and 2 = 0. By assumption 2.2a this implies \hf \ < Ce2. Further, assumption 2.3
implies hj = 0 for j = i + 1,..., m. Hence, for some constant C, |^°(5,yi,..., yt+i, 0,..., 0, t)\ <
Ce2. Consider point 2b above. Again assume |yt+i| < €and yj = 0 for j = i + 2,..., m and 5 = 0,
« = 0. It follows that

yihhi{x,h, ••.,y.+i,o,.. .,o,t) = (rirty,- + riw+1»,-+i)rlH^

From assumption 2.2.b, it follows that yih\ < 0 for |y,| > | i1'"1"1 yt.n| and all x,y\,...,y,_i.
Consider point 3. For some e0 > 0 assume that |y,| < €0. Further, assume yj = 0 for j =

i + l,...,m and 5 = 0, u = 0. From Tf1 this implies, for some constant D, |yt| < De0 yj = 0
for j = i + 1,..., m and 2 = 0. By assumption 2.3, for c0 small enough, hj = 0 for j = i,..., m.
Finally, from (14), hi(x,yu...,yt_i,y,-,0,...,0,t) = 0.

Consider point 4. Let [at(yt) + yt+i],yt+2». .-jym? £,u converge to zero with an exponential
tail. From T-f1, we have [— pO"(y,-) + y,+i],y1+2,.. .,ymi *>^ converge to zero with an exponential
tail. Note that, for any bounded y,-+i,...,ym,z and sufficiently large yt-, a(y,) = o"(y,). Since
we are trying to establish the boundedness of y,- we can, without loss of generality, assume |y,| is
sufficiently large. Then we have that [-^-0"(y{) + Vi+i], yt*+2> •••>ym, z,u converge to zero with an
exponential tail. Hence, from assumption 2.4, y,- is bounded. Hence, by T\, yi is bounded.

4.1.3 Stability Analysis

Throughoutour analysis we will rely on lemmas taken from [2] which apply to the finite-dimensional
unperturbed differential equation

x = f{x,t) (15)

with / satisfying certain smoothness assumptions and such that f(0,t) = 0 for t > t0, and the
perturbed differential equation

x = f(x,t) + g(x,t) (16)

Lemma 4.1 If the equilibrium of (15) is exponentially stable and if g(x,i) satisfies an estimate
g(x,t) = o(||z||) then the equilibrium of (16) is also exponentially stable, in fact with the same
exponent.



Lemma 4.2 Let the equilibrium of (15) be (locally) exponentially stable. Then (for sufficiently
small \\x\\) there exists a Lyapunov function V(x,t) which satisfies estimates of the form

ai\\x\\2 < V(x,t)<a2\\x\\2
V < -a3\\x\\2 (17)

ll&ll < a4\\x\\

for certain positive constants a\,a2,a$, a4.

Lemma 4.3 If the equilibrium of (15) is exponentially stable and if g(x, t) satisfies an estimate
ll#(x>*)ll —€for € sufficiently small then for sufficiently small \\x(t0)\\, 11^(011 satisfies an estimate
of the form \\x(t)\\ < ae for all t > T for some T > t0 and for some positive constant a which
depends on a\,a2,a$,a4.

We now propose the following for the remaining control v:

v = -o-m(ym + crm_1(ym_1 + •••+ <7i(yi))) •••) (18)

where <r,- is a simple saturation for 6t-,€t- and we show that the values £,-,et- can be chosen to yield
global asymptotic stability.

The first thing to observe is that, with all of the saturating limits removed, the dynamics of
(y, z) are of an asymptotically stable linear system perturbed by higher order terms. Hence, from
lemma 4.1, for the system with the saturating limits removed, there is an open neighborhood
U C Rm+n of 0 such that if (y0» h) G U then the equilibrium (y, z) = (0,0) is exponentially stable.
It follows that, if we can show from any initial condition the states (y, z) enter and remain in a
small neighborhood V C U in which the functions at- for i = 1,..., m operate in their linear region,
lemma 4.1 allows us to conclude global asymptotic stability and local exponential stability for the
dynamics of y,z with the saturating limits included. Finally, by assumption 1 and theorem 2.1,
the complete composite system has (0,0,0) as a G.A.S. equilibrium.

We set out to establish that all of the states (y, z) can be steered to the set V in finite time by
judicious choice of 6i,€i.

Observe that the dynamics of z are given by an asymptotically stable linear system perturbed
by a small disturbance (with maximum absolute amplitude of em). Here the estimates of lemma
4.2 apply globally. Hence lemma 4.3 applies for any initial condition z(0). This leads to a bound
|5(t)| < a€m for all t > Tm+i for some Tm+i > t0. Observe that \u(t)\ < a#€m for all t > Tm+i
where ax depends on a and the feedback gains K. We define am = max{a,aK,k\a}.

With this bound on z we define ym+i = -k\i\ and proceed by induction showing that given
c,_i sufficiently small, 3et- sufficiently small such that if

|yj+i(0l < ai(i J = *,...,m
\\z(t)\\ < *i*i
\u(t)\ < ai€i

for all t > Tf+i, then

forall*>rt>Ti+i.

\yj(t)\ < at_i£,-i j = i,...,m
i|*WII ^ *i-l€.-l
KOI ^ Ot-i^-i



Assume that €t- is chosen sufficiently small such that <rt+i operates in its linear region for
all t > Ti+i. (am+i can be considered a globally linear function.) Consider the dynamics for
yi,..., ym, z after time T;+1:

$i = -o-i + hi(x,y,z,u,t)
h+i = -yi+i -<?i + k(x,y,z, u, t)
h+2 = -ft+2 - yf+i - (Ti + hi{x, y, z,u, t) (19)

I = Az - B(ym + •••+ yt+i + a;)

We show that, for e» sufficiently small yt- becomes small and after some finite time Ti > Tt+i
remains in a region such that a,- is linear. Consider yt- such that |y,| > €,• + £t-i and make the
coordinate change

yt+1 = yt+i + Oi
yj = yj j = i + 2,...,m
z — z

Then the dynamics of yj, y,-+i,..., ym,z are

y,- = -<7m(y») + MM,5,iM)
yt+i = -y«+i + hi+1(x,y,z, u,t)
h+2 = -y»+2 - ft+i + h+2(x, y, z, u, t) (20)

I = Az - B(ym + - •+ yi+i)

since, when |y,| > c,- + c,_i,
(Tj = 0

<rm{yi) = <ri(yi + ai-i(-))

Observe that,for the dynamics of y,+i,...,ym,z,lemma4.1 applies so that,for €,• sufficiently small,
y,+i,.. .,ym,2 converge exponentially toward zero. Point 3 above is crucial for the perturbations
hj for j = i + 1,..., m to remain higher order in the y,+i,..., ym, z coordinates. Note that, since
the control is u = Kz —ym — y,+i, u also converges exponentially toward zero. We assert
that, for small enough €,-, and with these "controls" set to zero, the set M = {y,- : |y;| < €i + e,-..i}
is attractive. Further, since the dynamics of y,- satisfy property 2, by theorem 2.1, at some finite
time T > Tt+i, yt- will enter M.

Consider the dynamics of y,- with the "controls" z, ym,..., y,-+i,u set to zero:

ii = -tft(yi)+ &»(£,2h,...,yt,-^,o,...,o,t) ( .
= -vitid + hf + hi Kl)

With regard to point 2 above we have |y,+i| = e,-. Consider the time derivative of the Lyapunov
function Vi = y2 along the trajectories of (21):

Vi = 2yi{-<ri(yi) + h'> + h\]
< 2|yt|[-£t + d£? + C2e?]

(Note that the term yih\ < 0 for |ym| > dem from point 2, and is uniformly higher order for
\ym\ < dti from point 1.) It follows that we must choose c,- such that

€i - (Ci + C2)e2 < 0

10



to insure that the set M is attractive with the controls y,+1,..., ym, z, u set to zero.
We show now that for €,_! sufficiently small, yt- enters and stays in a region where ax(>) is linear.

(Note that c0 = 0.) Again consider the dynamics of yt- beginning at the time when y, enters M:

ii = -<rm(yi + <7,_i) + hi(y,z, u,t) (22)
We take the derivative of the Lyapunov function Vf = y2 along the trajectories of (22) and employ
point 1 from above:

Vi = 2yi[-(Ti(yi + ai_1) + ai(yi)-<Ti(yi) + ni]
< 2|yi|[-|at(yt)|+ €,-! + (?€?]

First note that if ct- - et_! —C^e2 > 0 then the set M is invariant. Second, observe that given tf», e,-,
if £,•«! satisfies

6{ - C3e2
€,•-1 < 2

then yi will enter the set Qi = {y,- : |y,| < '+23C< }in finite time and remain in Qi thereafter. With
yi G Qi the argument of <7» is bounded by

lyt + ^-il < ly.l + la.-il
< 6j+C3e? , ft-C3e?
- 2 "T 2

< *

Hence crt(-) enters in finite time and thereafter remains in its linear region.
Note that after this finite time the dynamics of (yt-,..., ym,z) are of an asymptotically stable

linear system perturbed by higher order terms as well as a perturbation of maximum amplitude €{_i.
Combining lemma 4.1 and lemma 4.3, if c,- is sufficiently small (to start in a small neighborhood of
the origin) then we can establish bounds \§j\ < a,-_i€f_i for j = i,...,m and ||5|| < a,_ic,_i and
|w| < at_ict_i for all t > Ti > Ti+i. D

5 Semi-Global Results

In this section we state our main results for semi-global stabilizability. Again the proof of this
theorem will be constructive yielding an algorithm for generating the proposed class of semi-globally
stabilizing control laws.

Theorem 5.1 (Semi-Global Stabilizability) // assumptions 1 and 3 are satisfied, then there
exists a family of time independent control laws of the form

u = Kz- crm(Tm(y,z) + am-i{Tm-i{y,*)+••• + °i(Ti{y,z))) •. •)

which semi-globally stabilizes the origin of (1) where Oi is a simple saturation for Si,€i, Ti is a
linear function and the gains K are the coefficients of a Hurwitz polynomial.

We have the following corollary regarding semi-globally stabilizing (1) with a bounded control
which follows by simply redefining the dynamics of y to include the dynamics of z as well.

Corollary 5.1 (Semi-Global Stabilizability with bounded controls) // assumptions 1 and
3 are satisfied, then there exists a family of time independent bounded control laws of the form

u = -<rm+n(Tm+„(y,z) + am+n_t(Tn+m-t(y, z) + •••+ oi(Ti(y, z))) •••)

which semi-globally stabilizes the origin of (1) where Oi is a simple saturation for Si,€i and Ti is a
linear function.
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5.1 Proof of theorem 5.1

The proof is again constructive. We employ the same convenient coordinate change as the the case
of global stabilization. We will develop how the conditions of assumption 3 translate in these new
coordinates. Most of the work then lies in showing how these conditions allow for a semi-globally
stabilizing class of control laws.

5.1.1 Coordinate change

As in the case for global stabilization we begin by choosing the input as u = Kz + v where the gains
K are the coefficients of a Hurwitz polynomial. In addition, we add the condition that the gains
K are such that Re cr(A) < —1 where A is defined in (10). The coordinate change then proceeds
in the same way as in the global case (see section 4.1.1.) Once again we have

V' = 0'(x V Z U 11

= yi+i + '- + ym + v+ Z%iTuM^Tr\y-T2z),z,u,t) (23)
= 2/t+i + •••+ ym + v + hi(x, y, z, u, t)

We proceed to determine the relevant properties of hi.

5.1.2 Properties of Perturbation Terms

Define ym+i = —kizi. Next we establish the properties of hi that follow from assumption 3. First
observe that if assumption 3.1 applies to hi then the four points established in section 4.1.2 apply.
Otherwise we establish the following properties for hi and /i,_i that follow from assumption 3.2:

for j = i —\,i

1.

\h - M*,yi,...,y»+i,o,...,o,OI < (lfc-il + Ifrl + i)N

where hj is bounded for bounded y,+i,...,ym,z,u and higher order in yi+2,...,ym,z,uioT
bounded y,+i uniformly in x, yi,..., y,-, t.

2. (a)

|^_i(5,yi,...,yt+i,0,...,0,0l<(|yti + l)|ft,-i|

where ht_i is higher order in yt-+i uniformly in yi,...,y,-, t and bounded for bounded
y.+i-

(b) hi(x, yi,..., y,+i,0,...,0, t) depends only on yl+i. Further it is higher order in y,+i and
is bounded for bounded jji+i.

3. For some €c > 0, /ij(x,yi,...,yt-_i,0,...,0,0 = 0 for \y^i\ < c0.

Consider point 1. Denote hj{x,yx,.. .,yt+1,0,.. .,0,0 by h°j and likewise for hj. From (23),

m

\h-h)\<Y.Th^-hl\

Point 1 then follows from apply assumptions 3.2.aand 2.1 to the appropriate terms in the summation
and then using T\ to return to the y coordinates.

12



Consider point 2a. Assume yk = 0 for k = i + 2,...,m and z = 0 and u = 0. From T^1
this implies yk = 0 for fc = i + 2,.. .,m and z = 0. By assumption 3.2.b this implies |/it_i| <
(|y»l + l)l^t'-i| where hi-i is higher order in y,+i uniformly in £,yi,...,y,-,t and is bounded for
bounded yt+i. Also hi is higher order in yt+i uniformly in x, yi,..., y,-, t and bounded for bounded
yl+i. Further, assumptions 3.2.c and 2.3 imply hk = 0 for k = i + 1,..., m. Hence, from (23) and
Zi, |/i,_i(5,yi,...,y,+1,0,...,0,01 < Clffsl + l)l^t-i| where /j,-_i is higher order in y,+1 uniformly
in x, yi,..., yi,t. Consider point 2b. Since hk = 0 for k = i+1,..., m, h,- = Ti„/it-. Now ^ depends
only on y,+i and is higher order in yt+i and bounded for bounded yi+\. Finally, since yj = 0 for
j = i + 2,..., m, it follows that yt+1 = TUiyi+i. Hence, &,-(£, yi,..., y,+i, 0,..., 0,0 depends only
on y1+i and is higher order in y,-+1 and bounded for bounded yt+i.

Consider point 3. For some i0 > 0, assume that |yt_i| < e0 for some e0 > 0. Further, assume
yj = 0 for j = i,..., m and 5 = 0 and u = 0. From Tj1 this implies |yt_i| < €0/c for some constant
c > 0 and yj = 0 for j = i,..., m and 2 = 0. Define i0 = ce0. By assumptions 3.2.c and 2.3 this
implies hj = 0 for j = i - 1,..., m. Finally, from (23), hj(x, y\,..., y,_2, y,-i,0,..., 0,0 = 0 for
j = i-l,i.

5.1.3 Stability Analysis

Again we will rely on lemmas taken from [2] which are stated in section 4.1.3. In addition will will
use the following lemma in our proof.

Lemma 5.1 Consider the n-dimensional nonlinear system

x = f(x,t)

where |/,(x,OI < <ft(0 + 5Zj=i a«iI^iI for a^ * ^ *o- Define the constant matrix A by Aij = atj.
Consider the vectors

x{t) = [MOI.-.MOIF
?« = [l?1WI,---,l?n(0lf-

Then x(t) is bounded as

x(t) <eA^-toh{to)-r [* eA{t-T)q(r)dT
Jto

We begin by formulating a bounded control v to stabilize y using the following algorithm:

1. let k = m and let v = —om where am is a simple saturation for em,Sm to be specified.

2. if assumption 3.1 applies to hk then

(a) let the argument of ak be yk + ak-\{-) where cr/;_i is a simple saturation for €jt_i,^_i
to be specified.

(b) let k=k-l

(c) return to step 2.

3. if assumption 3.2 applies to hk (and hence ftjt_i) then

(a) let the argument of ak be yk -f yk-\ + o~k-2(-) where ok-2 is a simple saturation for
€k-2,Sk-2 to be specified.

(b) let k=k-2

(c) return to step 2.

13



We show that, given initial conditions in some bounded set X, the values €,-,£,- can be chosen to
yield asymptotic stability.

The proof proceeds in the same manner as the proof for global stabilizabib'ty. Again we define
ym+i = -kiZi. In addition, we define k to be the largest index such that assumption 3.2 applies
to hi rather than assumption 3.1. It follows then from the proof of the global result that, B€j for
j = k,..., m sufficiently small such that Oj for j = k+ 1,..., m operate in their linear region for
all t > Tjfc+i (cm+i can be considered as a globally linear function.)

We now show that 3c* sufficiently small such that for €k-2 sufficiently small ak operates in its
linear region for all t > Tk > Tk+\. (For k = 2, observe that ek-2 = 0.)

First, we know that u,z and yt- for i = fc+1,.. .,ra are bounded for all t > 0. Then since hk-\,hk
are globally Lipschitz in yjt-i, yk for bounded u,z, yi for i —k+1,..., m, 3R which depends on the
initial conditions of y»(*o) for i = fc —1,...,m and z(to) and on €t- for i = k + 1,...,m such that
for j = k —1, k

\yj(Tk+1)\ < R.

Consider the dynamics for yjt_i,...,ym, z for t > Tk+i:

fa-i = yk- (?k{yk-i -rijk-r ^Jt-2)_+ hk-i(x, y, z,u, t)
yk = -ak(yk-i+yk + <7k-2) + hk(x,y,z,u,t)

h+i = -2/A+i ~ ffk + h+i{x,y,z,u, t) (24)

z = Az- B(ym + •••+ yjfc+i + ok)

Again from the proof of global stabilizability we know that, for all t > Tk+i,

|y«(0l ^ ajk+iffc+i i = k + l,...,m
\\z(t)\\ < ak+i€k+i
\u(t)\ < ak+1€k+i.

Then, since hk-\,hk satisfy points 1 and 2 of section 5.1.2, the dynamics of y&-i,yjt are of a
2-dimensional nonlinear system satisfying the conditions of lemma 5.1 with

and

A = C4+i l + ^+i
C4+i C<Ui

q(t) = €k+i + Ce2k+1
ek+i + Cek+1

(since we will choose ek < e*+i*) A. simple calculation using lemma 5.1 shows that for some K
depending on ejfc+i, for j = k - 1, k and Vi > Tk+i

\yj(t)\ < RKea^-Tk^

where

«=C4+i + y/Cel+1(l +C4+l)
For convenience, we choose cjt+i such that a < 0.5.
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Now since the linear approximation at the origin of the dynamics of yk+i,...,ym,z has eigen
values with real part less than or equal to -1, we can conclude from the lemmas 4.1 and 4.3
that

|yi+i(OI < Wk + ak+i€k+ie-^-Tk^ i = k,...,m
\\z(t)\\ < akek + afc+^+je-^-^+i)
KOI < ajfefJb + ajb+icjt+ie-e-7^)

for all t > Tjt+i.
We solve for the time tt such that, for all t > t€

|yt+i(OI <2a;kfjk i = k,...,m
\\z(t)\\ < 2akek
\u(t)\ < 2ak€k

We find

tc = Tk+i - In

Further, from (25), we determine a bound on yj(t) for Tk+i < t < U for j = k —\,k to be

|fc| <RS{^±Lr =j^ (26)

So then it remains to determine whether c* can be chosen sufficiently small such that a small
neighborhood of the origin is attractive for the dynamics

yk-i = m- °k(yk-\ +yjt +^-2) +&*-i(0 /27\
yjt = -°k(yk-i + yk + ^-2) + hk(t)

from initial conditions such that

Iftl < Rck

for j = k - l,k and where hj satisfy the properties of section 5.1.2. To show that this is possible
we begin with the simple coordinate change

xi = yjfc-i + yk

x2 = yk

yielding the dynamics
x\ = x2 -2ak(x\ -r crk-2) + fi(t) ,£g\
x2 = -crk(xi + <Tk-2) + A(0

It can be shown that for j = 1,2

l/i-/i(»i,..M»i+i,0,...,0)|<(|a:i| + N + l)/i (29)

where fj is higher order in yjt+2,. •.,ym, z,u uniformly in &,..., y*+i,t (since yk+i is bounded.)
Further, it can be shown that

|/i(»i,...,yfc+i,o,...,o)|<(N + i)^ (30)

and f2(y\,..., yk+i>0,..., 0) depends only on yk+i and is higher order.
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Observe that if |a?i(*&)| > €* + ek-2, then for all t > tf, such that \xi(t)\ > €k -r en—2 we have

(31)
|y«+2(0l < 2oifc6ifeC-<4-'») i = k,...,m
||5(0II < 2a,efce-(*-*6)
\u(t)\ < 2ak€ke-lt-t^

This follows from point 3 of section 4.1.2. Hence, for t>tb and such that |xi(0l > £* + £fc-2,

l/il < (N + i^ + danl + N + i)!?^'-'*)
A = c + /2

where C is a constant and

IAI < (|*i| + N + l)^e-(«-«»)
|C| < DcJ

Then from (25) and (26), we have the bound

|/!| < |xap£J + I?€a-

These bounds on the nonlinear terms when |xi| > ek + €jk-2 will play a crucial part in our analysis.
The remainder of the proof consists of three points. Consider the set

Q = {(xux2) : \xi\ < ek + ^-2}

Point 1 will be to show that if xi(tt) i Q then 3tc > tc which is finite such that xi(tc) € Q and we
establish a worst case value for |z2(*c)|. Pomt 2 will be to consider the "Lyapunov-like" function

!, ^2 15(*i " *2) + 2-W = -(*i - s2)2 + -x2 (33)

which we will demonstrate is uniformly decreasing when xi(0 £QnUc. Here U is a neighborhood
ofthe origin depending on cjt_2 and such that ak(xi + ak.2) = xx + crA_2 for all xi € £/". (Uc is the
complement of U.) Point 3 will be to show that whenever the trajectory leaves Q it returns to Q
and when it does it returns at a lower energy level for W.

For point 1, define the set

Qr = {(xux2) : xi > ek + e*_2}

and without loss of generality assume xi(te) € QT- We demonstrate that for ck sufficiently small
and for

r2-a2ek + De'-Q < x2(t0) < R

3td > t€ such that Xi(td) = xi(tc) and further,

Mtd)\ < X2(h)

In the set QT the dynamics of (x\,x2) are given by

ii = a?2-2cjb + /i(0

Cfc
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From the bounds on C and f2[t), x2 is monotonically decreasing for sufficiently small ek. We
now consider the forms of fi,f2 which will maximize |x2(i<f)|. We do this by considering the
instantaneous slope of the trajectory in the (xi,x2) plane. The instantaneous slope is given by

*2 = -ek + C+ f2(t)
xi x2-2ek-rfi(t) l '

Observe that since x2 is monotonically decreasing, the actual trajectory will be bounded by two
curves. The outer curveis produced by flowing along the vector field that minimizes the magnitude
of the negative instantaneous slope (x\ increasing) and maximizes the positive instantaneous slope
(xi decreasing.) The inner curve is produced by flowing along the vector field that maximizes
the magnitude of the negative instantaneous slopes and minimizes positive instantaneous slopes.
It is straightforward to see that, as long as |x2| < i2Cfc, the outer curve is generated by setting
fi(t) = De2k-a and

f m - / H~ae-{t-tb) *2« >2e* - £e2-a \
W) ~\ -De\-ae-^) x2(0 <2ek - De2-Q j

Likewise, the inner curve is generated by setting fi(t) = -D€2k~a and

f ,.._ j -Dcl-oe-i*-*")) x2(0 >2ek + De2-Q \
W>-\ De2~ae-^) x2(t)<ek +De2.Q j

(The value of C is fixed as a function of ek.) The outer curve gives us a least upper bound
on |x2(<d)|. To compute this bound, we first calculate the time U on the outer curve such that
x2(U) = 2ek —De2k~a. The value of x2(0 f°r U<t< Ualong the outer curve is given by

X2{t) =X2(t€) - (£, +C)t - ^L[e-(l-or)t _j] (36)
1 — a

(We have temporarily reinitialized tt = 0 for convenience.) Thus, we have (implicitly)

M=-^x^U) - 2ek - ^IH[e-(i-")" - 1] (37)
ek — C 1 — a

The value of xi(t) for te < t < ti along the outer curve is given by

Dc
2-Q

*i(0 = xi(tt)-U€k-C)t2 + [x2(0)-2ek + ^ + De2-a]t
2-a

Thus, we have

D.2—a
C \2*i(*.-) = ^M+2l^(x2(tc)-2ek +Deya +j^j)

2{tk-C)i l-a e J (l-o)2l1 e J

(38)

(39)

We now continue the flow beginning at the point (xi(*,),x2(i,)). Then for U < t < td the flow
along the outer curve is given by

Dc*i(0 = x1(ti) + [x2(ti)-2€k + De2-Q-^e-^-^}t-\(ek-C)t2
_^lt^e-(i-or)t,[e-(i-a)t _!] (40)

2-a

x2(t) = ^j-^-OHTVe-^^Ie-M'-l]
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(We have reinitialized U = 0 for convenience.) We are now interested in determining x2(id) where
td is such that xi(td) = xi(io)- Since we are interested in a worst case bound for |x2(ij)| and x2
is monotonically decreasing in the region we are considering, it suffices to determine a least upper
bound for td. We find that

i IZT. _ ,_„, d4-°12 , o,„ ^l£aU<U+J^cf^Q - 2ck +Dt\-° +JZ^F +2(fk - C)(Tf^)2 («)
Consequently, we can conclude that

x*(U) > 2€k-Dtl-°-(x2(to)-2(k +D4-c, +%£-)
-\I*«-C)j£>

(42)

It is readily apparent that ck can be chosen sufficiently small so that |x2(<d)| < |x2(*e)| since it was
assumed that x2(tc) is positive. In fact, for later purposes it is important to note that ek can be
chosen sufficiently small so that x2(td) > -x2(*o) + Sek.

We continue now with point 1 and, without loss of generality, assume that the trajectory of
(xi,x2) begins at the point (x\(td)ix2(td)) = (RCk,-RCk). Again note that x2 is monotonically
decreasing. In (32) we will assume a bound on |x2| to be |x2| < aRtk (a constant and independent
of ek) and hence |/i| < aDe2.'01. Then, since x2 is monotonically decreasing from -RCk, if we can
show that |x2(tc)| < aRCk (where X\(tc) = ek + ek-2) then this is a worst case bound on |x2(/c)|. To
maximize |x2(fc)| we again flow along the outer curve described previously. The flow is given by

*i(0 = x1(td) +[x2(td)-2€k +aDe2-Q-^]t-l(ek-C)t2
-£^[*-(1-a)t-l] 2 (43)

x2(t) = X2(td)-(€k-C)t +^[e-ll-°)i-l]
In this instance, a worst case bound on tc is given by

*c <—^V> +Jb2 +2(ck-C)c] (44)

where

6 = RCk - 2ek + aDe2-Q - ^
Dt2~a

C ~ R*k + (T^F " €k - €fc-2
(45)

Then |x2(tc)| is bounded by

De2~a l
M*c)l <Rek +Yto~b +Vb2 +2(e* - c)° (46)

It is straightforward to see that, for €/. sufficiently small, a worst case bound on |x2(ic)| is given by

\x2(tc)\ < aRtk (47)

for a > 3.
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We are now ready to move to point 2. Here we show that we can choose €k and €k~2 sufficiently
small, sivch that for W defined by (33), W < 0 for all x € Q. Consider W along the trajectories of
(34):

W = (xi - x2)[xi - x2] + x2x2
= (xi - x2)[x2 - 2ajt(xi + ak-2) + /i(0 + <*k(xi + tffc-2) - /2W] (48)

+x2[-ak(xi + crk-2) + /2(0]

Recall that, in Q, we have the bounds (for j = 1,2):

l/jl < (l*i| + l*al + 1P4

Hence,
iy < -^iO"ik(a?i + ^-2) + ^i^2-^

+(kil + l*2|)(|ari| + N + l)^)
< —0.5x2 - 0.5x2 - 0.5(xi - x2)2 + xi(xi —ak(x\ + o-k-2))

+(kil + |a2|)(N + N + l)^4
Consider the level set

W=i(^e*-2)2
and define U to be the interior of this level set. On this level set, (a circle of radius 0ek in the
original yk-\,yk coordinates), it can be shown that

jfcfc-2 < M < V2(3€k-2

for i = 1,2. Also notice that for xi 6 Q,

|xi - Ok(xi + <Tfc_2)| < €k-2

Consequently, we have on this level set

W < -0.5(/3ek-2)2 - 0.5(^c/:_2)2 + k0$_2 + (2k0ek-2)(2k(3<: + \)De2k

where k € [1, \/2]. As a function of k we have

W < -[(.5/?2 - 402Del)k2 - 08 +2/^4)*: + .5^2]€2fc_2

Then since k € [1, \/2], we can choose /? (j9 > 2 is sufficient) such that ek can be chosen sufficiently
small such that W < 0 on this level set. Since, for ek small enough, W is bounded by a quadratic
negative definite function plus a linear perturbation in Q, IV < 0 in Q 0 Uc. Notice also, for ek-2
small enough, crk operates in its linear region for all x € U.

Finally, for point 3, we demonstrate that, for €k small enough, whenever the trajectory leaves
Q it returns to Q at a lower energy level of W. We simply need to show that this is true for
|x2| < aRCk where a comes from (47). We demonstrate that this follows from the first part of point
1. We can consider trajectories that enter Qr from Q at some time to without loss of generality.
Consequently Xi(/o) = ck + Cfc-2. From the first part of point 1, by incorporating the constant a
into the constant D perhaps further decreasing €k, it follows that for each xi(to) € Qr and each
aRtk > x2(to) > 2tk + D€2k~Q there exists a td such that x\{td) = xi(0) and

x2(td) > -x2(to) + 3e*. (49)
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Consider

W{td) - W{t0) =i[(x!(td) - x2(*d))2 +x2(td)2] - |[(xi(*0) - *2(to))2 - x2(t0)2)
From (49) and the lower bound of x2(<o) we can conclude that

\[x2(U)2-x2{t0)]2<0.
Also from (49) the remaining terms are bounded as

[Xl(td) - x2(td)]2 - [Xl(to) - x2(*0)]2 < [*i(<o) + *2(to) - 3ejt]2 - [xi(*0) - x2{t0)]2
< [x2(<0 - Xi(t0) -Ck + 2€jk_2]2 - [x2(t0) - Xi(t0)]2

If €jfc_2 < \ek then this quantity is also less than zero since x2(f0) > 2ek + De2k~a and Xi(t0) =

The above three points demonstrate that xi,x2 eventually enter U where Ok is linear. So it
follows that yk-\, yk eventually enter a neighborhood of the origin where 0* is linear. The size of
this neighborhood is determined by €fc-2- The remainder of the proof follows by induction using
either the global or semi-global result when appropriate. (Point 3 of section 5.1.2 will be used to
conclude (31) in the subsequent step of the induction.) D

6 Examples

We now present some examples to demonstrate the design procedure.

Example 6.1 Our first example is one that can be globally stabilized using the methods of [7],
[9], [12] for example in the case where the constant parameter 9 is known. In the case where the
parameter 0 is fixed but unknown, this system can be locally stabilized using the adaptive method
of [5]. On the other hand, our method is able to yield global asymptotic stability in the presence
of an unknown parameter 9 which can be time-varying as long as a bound on |0(O| is known.

x\ = x2 + 0(Oz2
x2 = x3 (50)
x3 = u

Assume |0(O| < K. In the notation of section 3, we have

hx = fl^x2;

It is easy to see that assumption 2 is satisfied. We choose

U = —X2 — X3 -f- v

where v will be specified to stabilize xx. We form the coordinate transformation

yi = Xi + x2 + x3

y2 = x2

yz - x3

Then we let v = -a(yi) where a is a simple saturation for some e,6.

20



Example 6.2 This example has been mentioned in recent work as an unsolved problem, both in
the adaptive and known parameter context (see [6].)

X\ = x2 + 0(0^3
X2 = xz (51)
X3 = U

Again, for the sake ofgenerality we allow 9 to be time dependent but we will restrict it such that
|0(OI ^ K. In the notation of section 3, we have

hi = 0(0x1

It is easy to see that assumption 2 is satisfied. The control is constructed in the same manner as
in the previous example. We choose

u — —x2 — Xz + v

where v will be specified to stabilize x\. We form the coordinate transformation

y\ = xi -f x2 + xz

y2 = x2

yz = x3

Then we let v = —a(yi) where a is a simple saturation for some e, S.

Remarks.

1. With 0 constant, the above example fails the well-known involutivity condition that is required
for the system to be full-state linearizable. However, with the output

h(x) = x3+ x2 + a(xi + x2)

(where a is a simple saturation with sufficiently small S,e) the system is relative degree
one with globally asymptotically stable zero dynamics. Our design procedure provides the
intuition for coming up with such an output.

2. It should also be noted that this system can be globally stabilized with the bounded control

w= -^3(^3 + ^2(^2 + x3 + cri(xi + 2x2 + x3)))

with each o*,- a simple saturation and €,-,£,• chosen appropriately.

Example 6.3 We add to the complexity of the previous example by adding nonlinear terms and an
extra dimension. This is done to illustrate the kind of nonlinearities that are allowed by assumption
2.

Xi = sin(x2) —xix2 -f- X1X3 cos(u)
X2 = x3 + 0(Oz2 + sin(xi0z§eu + u2
x3 = x4 ^ '
X4 = u

In the notation of section 3, we have

h\ = (sin(x2) - x2) - xix2 + X1X3 cos(w)
h2 = 0(0x2 -I- sin(xi0s3eu + u2
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Tia«(f*c)

Figure 1: Ball position and velocity

Since |0(OI < K and |sin(xiO| < 1, it is obvious that h2 is higher order in x2,x3,x4,u uniformly
in xi,t. Likewise hi is higher order in Xi,x2,X3,X4,u uniformly in t.

For point 2 of assumption 2,

h2(xi,x2,x3,0,0,0 = sin(xi0^1
hi(xi,x2,0,0,0,0 = (sin(x2) - x2) - xix?.

For h2, h,2 = 0 and h2 is higher order in x3 uniformly in xi,x2,i. For hi, h\ = -xix2, and hence
xih\ < 0 for all xi,t. Also h* is higher order in x2 uniformly in xi,t.

For point 3, of assumption 2,

h2(xi, x2,0,0,0,0 = 0
hi{xu 0,0,0,0,0 = 0

And finally, for point 4 of assumption 2, both hi and h2 satisfy point (b) of remark 1 after
assumption 2.

We choose

u = -X3 - x4 + v

We form the coordinate transformation

yi = xi + 2x2 + 2x3 + x4
2/2 = x2 + x3 + x4

y3 = x3

y4 = x4

Then v = -a2(y2 + o"i(yi)) where crt- is a simple saturation for some €,-,£, sufficiently small.

Finally, we present a physical example to demonstrate the semi-global result.
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Figure 2: Beam angle and angular velocity

Example 6.4 ("the ball and beam") The dynamics for the "ball and beam" were derived in
[3]. A globally invertible nonlinear transformation between torque and angular acceleration has
been made. In the dynamics that follow, xi is the ball position, x2 is the ball velocity, X3 is the
beam angle, and X4 is the beam angular velocity.

Xi = x2

x2 = -Gsin(x3)-}- xix2
X3 = X4

X4 = u

In the notation of section 3, we have

hi = 0
h2 = G(x3 - sin(x3)) + xix\

It is easy to see that assumption 3.2 is satisfied for hi,h2. We choose

u = —4x3 —4x4 + v

We form the coordinate transformation

yi =

y2 =

ys =

V4 =

~hxl ~ 7iX2 + 5X3 + X4
-73X2 + 4x3 + x4
x3

X4

(53)

Then v = —<r(yi + y2) where a is a simple saturation for some e,S. € will be inversely proportional
to the bound on the set of initial conditions. Hence we have a semi-global stability result. To
demonstrate the capability of such a control law we present, in figures 1 and 2, simulation results
starting the beam at a 90° angle and the ball at a position below the pivot of the beam. The
function a was chosen to be C° with S = e = 1.
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7 Conclusion

We have proposed a globally (semi-globally) stabilizing control approach for a class of single-input
nonlinear systems that is especially useful for systems that cannot be globally full-state linearized.
We employ saturation functions to systematically drive the state to the origin. In certain instances
our control approach can be used to globally (semi-globally) stabilize a nonlinear system using a
bounded control. An important feature of our approach is that it is robust to unknown (possibly
time-varying) parameters as well as unmodeled nonlinear perturbations that satisfy certain general
properties.
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