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Control Loops and Dynamic Run Modification
using the Berkeley Process-Flow Language

Christopher J. Hegarty and Lawrence A. Rowe

Abstract

This paper describes advanced features of a work in progress (WIP) system for use in semiconductor
fabrication. The WIP system is part of a computer-integrated manufacturing (CIM) system which uses a
distributed heterogenous database and is based on a special purpose programming language designed for
manufacturing, the Berkeley Process-Flow Language (BPFL). Support for feedback control is demonstrat-
ed by the application of the BPFL WIP system to a photolithography workcell controller. The ability of the
system to permit ad hoc changes to active runs is also described.

L Introduction

The goal of computer-integrated manufacturing (CIM) is to use computer and information management
technology to integrate and automatically execute manufacturing operations. Two key elements of a CIM
system are:

1. ashared, integrated, distributed database and

2. an executable process-flow representation suitable for all manufacturing phases.

This paper describes a work-in-progress (WIP) system using a special purpose programming language de-
signed for manufacturing and a relational database management system for semiconductor integrated-cir-
cuit (IC) manufacturing.

Traditional WIP systems in the semiconductor industry are based on run-sheet specifications. These
systems use a process specification stored on a computer that describes the operations required at each pro-
cessing step and indicates where wafers should be moved when the step is complete. Examples of commer-
cial run-sheet systems are WORKSTREAM [1] and PROMIS [2]. The process representations used in these
systems includes commands to communicate with an operator through a form displayed on a terminal and,
in some cases, communicate with equipment. However, these representations do not have the power of a
full-function programming language so data structures (e.g., arrays, records, etc.) and conlrol structures
(e.g., conditional statements, looping statements, exception handling, etc.) are not prov1ded Data and con-
trol structures are needed in a process representation to specify conditional processing (e.g., if it has been a
long time since preventative maintenance was done on a piece of equipment, tweak the recipe parameters
to compensate for the change in equipment performance) and feedforward and feedback control. More im-
portantly, exception handling mechanisms are needed to allow the CIM system to respond to unanticipated
events (e.g., equipment failures).

Several research groups have been working on advanced WIP systems. Examples include the MIT
CAFE system [3] and a WIP system developed at Siemens [4].

This paper describes the Berkeley Process-Flow Language (BPFL) and the design and implementation
of a WIP system that uses it. The paper is organized as follows. Section II presents an overview of the CIM
system being developed at the Microfabrication Laboratory at the University of California at Berkeley. Sec-
tion ITI discusses basic approaches to the design of process-flow representation and introduces BPFL. Sec-

1. WORKSTREAM has a scripting language with some control structures that can be called from a run-
sheet command. However, these commands cannot be executed directly in the run-sheet, which severely
limits the flexibility of the system.
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Figure 1. Typical IC-CIM fab computing system.

tion IV describes the architecture of the BPFL WIP system. Section V discusses the use of BPFL in an
adaptive process control experiment, and Section VI describes the features available for ad hoc modification
of the process flow used by an active run.

IL The Berkeley CIM System

The development of the system described in this paper has been influenced by our vision of a CIM sys-
tem architecture. The system runs in a distributed heterogeneous computing environment composed of a
variety of computers connected by a local-area network. A typical fab might use large microcomputers for
cell controllers, a large mini- or mainframe computer for area and factory control, and a collection of work-
stations and terminals for user interactions. Figure 1 shows a typical system. Notice that cell controllers
have local databases and that the fab has a large shared database server which motivates the need for a dis-
tributed database. Terminals and workstations are provided where appropriate. Equipment is connected to
the cell controllers. Programs on any computer can access databases and programs running on any other
computer using an interprocess communications protocol.

A key component of the system is a shared database that stores all information about the design and
manufacture of semiconductors. This database contains information about the manufacturing facility, pro-
cess-flow specifications, WIP, equipment, test data, product inventory, and orders. While the database is
treated logically as a single centralized database, the architecture that we envision stores data in a distributed
heterogeneous database (e.g., Gestalt [5] or INGRES/STAR [6]). Data is stored on the computer that opti-
mizes the: cost, reliability, and access constraints imposed by its use. A heterogeneous distributed DBMS is
required because different applications in the fab have different data requirements and one DBMS cannot
satisfy all these requirements. For example, the real-time performance and data volume required by some
on-line monitoring applications can only be met today by file systems.
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A third generation database system which supports relational data storage and access, an object-orient-
ed data model (i.e., inheritance, user-defined data types, and methods), and a rules system [7] is required
for many CIM applications. An example is the POSTGRES system being developed at Berkeley [8-9]. A
third generation database system can store and access data that cannot be stored and accessed easily in a
conventional relational database. For example, measurements collected during wafer processing are often
represented by a sequence of values with units. A third generation database system can store arrays of user-
defined data types (e.g., values with unit designations) in a table.

A semiconductor process representation (SPR) is a sequence of instructions that specifies how to man-
ufacture a semiconductor pmductl. Another important part of a CIM system is an executable SPR. The goal
of an SPR is that it be complete and facility independent. It must be executable to aid in process automation.
Moreover, an SPR should be applicable to all stages of manufacturing (i.e., design, fabrication, and testing).
An SPR interpreter executes a specification to accomplish a goal. Different interpreters accomplish differ-
ent goals by performing different computations on the same specification as illustrated in Figure 2. For ex-
ample, commands are issued to people and equipment when a WIP interpreter executes a process flow.
Another interpreter will produce input commands for a process simulator (e.g., SIMPL [10], SUPREM
[11]) or a simulation input language (e.g., PROSE [12]) when it executes the same process flow. A sched-
uling interpreter generates timing information for use by a scheduling system (e.g., BLOCS [13]).

The Berkeley Process-Flow Language (BPFL) [14] is a procedural SPR that is used in the Berkeley
CIM system. The CIM database is used by BPFL and its associated interpreters in several ways. First, BPFL
programs themselves are stored in the database. A software version-control system is implemented on top
of the DBMS to manage libraries of BPFL procedures.

Second, BPFL interpreters use information in the CIM database. For example, the equipment in the fab
and its current status is maintained in the database [15]. A scheduler uses this data to determine which piece
of equipment should be allocated to a run. Another example is the WIP system, which stores the state of all
active runs in the database so that the system can recover from a computer failure.

Third, BPFL programs store and access data in the CIM database. For example, an event log that
records the start- and end-times of operations, in-process and in-situ measurements collected during pro-
cessing, and other processing information is stored in the database. This log can be accessed by a BPFL
procedure to change future processing based on previously recorded measurements (i.e., feedforward or
feedback control).

1. Another term used for an SPR is a process flow.



step INIT-OX do

wet-oxidation(time: {11 min), temperature: {1000 degC},

target-thickness: {1000 angstrom});

pattern(mask-name: ‘'NWELL);
end;
step WELL-IMPLANT do

with-lot '(cmos, nwell) do

implant (species: #m(P), dose: (4.0el2 /cm"2},
energy: (150 keV});

Voo WNE

10 anneal-implant();

11 etch-oxide (etchant: #m(BHF, dilution: 5/1));

12 strip-resist();

13 step DRIVE-IN do

14 well-drive (temperature: (1150 degC}, time: (4 hr},
15 anneal-time: {5 hr});

16 measure-oxide-thickness (location: #1(NWELL));

17 measure-oxide-thickness (location: invert-layer (#1 (NWELL)));
18 with-lot ‘nwell do

19 etch-oxide (etchant: #m(BHF, dilution: 5/1));

20 measure-sheet-resistance(location: #1(NWELL));
21 end;

22 end;

23 end;

24 end;

Figure 3. BPFL specification example.

III. The Berkeley Process-Flow Language

There are two basic approaches to the design of an SPR: knowledge-based and procedural. A knowl-
edge-based approach uses a hierarchical, object-oriented data structure to represent a process flow. A pro-
cedural, or programming-language, approach represents a process flow by a program. Both approaches
have essentially the same expressive power. Consequently, the kind of representation is less important than
the particular constructs and abstractions that are provided.

BPFL is a procedural SPR so process flows are programs. Process flows consist of statements and pro-
cedure calls which are executed by a BPFL interpreter. The following goals influenced the design of BPFL:

1. Allow all manufacturing operations to be specified including lot splits and merges, conditional
tests, feedforward and feedback control, rework loops, timing constraints, equipment and operator
communication, and exception handling.

2. Separate the facility-specific information from the process specification to make it easier to change
equipment in a fab or to move a process to another fab.

3. Allow a process specification to be used as input to other programs (e.g., process simulators and
checkers and factory scheduling systems) to reduce the time required to design a process and man-
ufacture product.

A example of BPFL code is shown in Figure 3. The code describes the fabrication of the isolation well in
a standard CMOS process (named cmos -16) used in the Berkeley Microfabrication Laboratory. For illus-
tration purposes, line numbers are shown to the left of each line of code and are referred to in the following
discussion. The step statement in line 1 specifies a process step. The statement has a name (€.g., INIT-
OX) and a body. The body contains the operations in the step. A step statement is used primarily for doc-

umentation purposes. For example, the step name is recorded whenever a measurement 1s recorded’.



The body of a step statement includes procedure calls. In this example, the body is the code in lines
2-4 and consists of calls to the wet -oxidat ion and pattern procedures. In BPFL, arguments can be
passed to procedures either by position or by name. Arguments passed by name can be passed in any order
because the formal argument name precedes the value in the call. For example, the statement in lines 2-3
is a call to the BPFL procedure wet -oxidat ion with three named arguments (i.e., t ime, tempera-
ture and target -thickness). Notice the use of unit designators for constants. The t ime argument
specifies an oxidation time of 11 minutes. Procedures may also have default values for arguments that are
not supplied in a given procedure call. For example, the wet -oxidat ion procedure has an argument
called anneal -t ime with a default value of 20 minutes. Because the anneal -t ime argument is not
supplied in this example, the default value is used.

BPFL provides abstractions to manipulate wafers and lots, since they form the basic units on which pro-
cessing is performed. A lot is a named set of wafers. Predefined lot names are supplied for wafers that are
intended for production (product), wafers that are to be scrapped (scrap) and wafers that need rework
(rework). A given wafer may be in several lots at the same time, with the exception that wafers in the
scrap lot may appear only in that lot. A process flow specifies which lots of wafers will be processed using
the with-1lot statement shown in line 7.

BPFL programs maintain a model of wafer state that is used to check processes for correctness, to store
measurements, and to support moving wafers between different runs. The model is based on the Profile In-
terchange Format (PIF) [16]. BPFL uses a subset of PIF, called naive PIF, to represent the adjacency rela-
tionships between materials on a wafer. BPFL interpreters maintain a data structure called a snapshot that
describes the profile of a wafer. Operations are provided to change snapshots to simulate the effects of pro-
cessing operations (e.g., depositing material, removing material, etc.). Any information recorded about the
state of a wafer (e.g., resistivity, gate oxide thickness, device transconductance) may be recorded in the PIF
model. Information about the masks used in a process is required to define the wafer profile. For example
the procedure call in line 16 measures the oxide thickness at a location on the wafer called NWELL!. A lo-
cation is defined as the logical intersection or union of masks.

BPFL also has a material class hierarchy that is used to specify the properties of a material and the
names that simulators use for the material. For example, the procedure call in line 11 etches oxide using 5/
1 buffered hydrofluoric acid®. A similar hlerarchy is defined for equipment which describes equipment ca-
pabilities (e.g., a description of the SECS? interface to a fumace).

BPFL has many other features that are not discussed here. For example, there are statements to specify
control flow, (e.g., if-then) and common abstractions encountered in processing (e.g., rework loops,
timing constraints, and exception handling) [14,17].

IV. The BPFL Work In Progress System

The software architecture of the WIP system is shown in Figure 4. The system is composed of many
processes that communicate with users, equipment, and the CIM database. The main process is the WIP in-
terpreter that executes runs. A run corresponds to an execution of a BPFL process flow. Each run is repre-
sented by data structures that describe the run state (e.g., the next statement to execute, the names and values
of local variables created by the program, and data retrieved from the database). The WIP interpreter exe-
cutes many runs at the same time. In other words, it is a server process.

1. Steps can be nested, and the concatenation of all current step names is called a step-path. The step-path is
recorded with all processing events.

1. Locations are denoted by an escape sequence (“#1”) followed by a location name.

2. Materials are denoted by a “#m” escape sequence followed by a material name and optional attributes.

3. Semiconductor Equipment Manufacturers Institute (SEMI) Equipment Communications Standard proto-
col (SECS).
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The user interface (UT) process(es) support communication with operators and is the user-interface to
runs. Operators at different locations in the fab can communicate with any run by connecting to the WIP
interpreter through a UI process. A BPFL procedure called user-dialog is used to communicate with
an operator. Commands are sent to the appropriate Ul process.l The Ul process is an INGRES Application-
By-Forms (ABF) [18] program in the current prototype. The Ul process reads information about the state
of a run from the database and displays it to the user. Each active user has a Ul process through which the
user can respond to user-dialogs, examine run state, and browse the database. The Ul process also writes
events (e.g., user-dialog events) to the WIP-log in the database and is responsible for enforcing access con-
trol to runs.

The equipment interface (EI) process(es) support communication with equipment. Each EI process is
an instance of Wood's SECS server [19-20]. An object-oriented SECS interface is defined within BPFL,
and methods are defined for high-level equipment operations (e.g., run recipe, monitor run, fetch equipment
status, etc.). These methods are implemented by remote procedure calls that invoke SECS commands im-
plemented in the EI process.

These processes communicate either through interprocess communication channels (IPC) or through
the shared CIM database. Intemnet-domain connections (TCP/IP) are used for real-time notification. Non
real-time communication is implemented by the database. The WIP interpreter checkpoints the states of
runs in the database so that other users and programs can access run information and run state can be recov-
ered if a computer or network fails.

ABF applications use frames as the user-interface. A frame consists of two components: a form that dis-
plays information to the user and in which the user enters information, and a menu listing the available op-
erations that the user can execute [21]. The main frame of the UI process is the Run-Summary frame
shown in Figure 5. The top line of all frames in the UI process displays system information: the system ver-
sion and the name of the current frame. Most of the screen area is taken up by a Run- Informat ion table.
This table displays a list of runs and information about them including their status (i.e., running, wait-
ing, stopped, aborted, finished), the process flow, the current step, and the run owner. The bot-

1. In a low volume fab such as the Microfabrication Laboratory, a user moves to a different terminal and re-
connects to the run. In a high volume fab, the WIP system sends the command to the user interface process
at the appropriate workcell.
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Figure 5. Run-Summary frame.

tolm line in a frame lists the operation menu. The operations in the Run- Summary frame are listed in Table
1%

As an example of user interaction, consider a run using the BPFL code in Figure 3. When line 16 is
interpreted, the measure-oxide-thickness procedure will be called and a BPFL user-dialog
procedure will be executed. The user will be alerted to the fact that the run requires attention, and when the
Connect operation in the Run-Summary frame is executed, the Nanospec frame shown in Figure 6 is
displayedz. The top few lines of the form display information about the run. The middle portion of the form
displays information about the required operation. The measure-oxide-thickness procedure has
queried the wafer-state model for the NWELL~ 1 wafer and extracted the anticipated oxide thickness on the

Operation Description
Help Displays help screen for the frame.
Create Create a new run.

Connect Connect to an existing run.

Defaults |Set up user defaults for the WIP system.

Detail Provide more information about a run.

WIP-Log Display the WIP-Log for a run.

Restrict |Enter criteria for runs to display (e.g., only runs owned by a particular user).
version |Displays process-flow version information.

Quit Leave the WIP system.

Table 1. Run-Summary frame operations.

1. The menu for the Run-Summary frame is too long to fit across the screen, and the Version and Quit
operations do not appear in the menu in Figure 5. The ' >' character after the Restrict operation is used
to indicate that more operations are available, and ABF provides mechanisms for viewing them.

2. Oxide thickness measurements in our facility are carried out using a Nanometrics Nanospec thin film
measurement instrument.
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Figure 6. Run-Summary frame.

surface at the wafer within the well. The table in the lower part of the frame is where measured values are
entered by the user. The user can either type values manually or use the Nanota 1k operation which will
use the SECS link to the nanospec to read the values.

The Nanospec frame is an example of a user-dialog frame. All user-dialog frames support the opera-
tions listed in Table 2, although some frames support additional operations. For example, the Nanospec
frame supports three additional operations: Nanotalk, Top, and Bottom.

V. Process Control in BPFL

Semiconductor fabrication processes run for weeks or months, and it is frequently necessary to modify
the parameters of a process during a run. Some modifications are planned and are accommodated in the de-
sign of the SPR and the support environment. For example, processing may be dynamically changed on the
basis of data collected during prior processing of other lots on the same piece of equipment (i.e., feedback
control) or on the basis of data collected during prior processing of the same lot (i.e., feedforward control).
Systems that employ feedforward and feedback control are often referred to as control-loops. Control loops
allow process designers to reduce manufacturing variability caused by equipment variations.

The BPFL WIP system implements control loops with parameters stored in the CIM database. A pro-
totype photolithography workcell controller that uses a control loop to model the resist coating step has been
implemented using BPFL [22]. The goal of the photolithography workcell controller is to control the thick-

Operation Description
Help Displays help screen for the frame.
Rework/Scrap|Force rework or scrap wafers.
Acknowledge |Respond to the dialog.
Comment Attach a comment to the dialog.
End Return without responding to the dialog.

Table 2. User-dialog frame operations.
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Figure 7. Schematic representation of the photolithography workcell controller feedback procedure [22].

ness and the photoactive compound (PAC) concentration of photoresist applied on oxidized silicon wafers.
Statistical experiment design based on the response-surface method (RSM) is used to empirically model the
step. The model is parameterized in terms of the measurable characteristics of the resist (i.e., film thickness
and reflectance). The process is coded in BPFL using automatic measurement and download of recipe pa-
rameters to the equipment. An outline of the procedure is shown in Figure 7. First, the wafers are coated
using the current settings for the resist coat parameters (i.e., spin speed, spin time, soft-bake time and soft-
bake temperature). The resist thickness and reflectance are measured, and the statistical process control
(SPC) procedure is called to determine if an alarm should be generated. The system generates two types of
alarms, malfunction alarms and control alarms. Malfunction alarms signal increased process variability and
cannot be corrected without human intervention (e.g., a bad temperature sensor on the hotplate causes in-
correct bake temperatures). A malfunction alarm causes the process to be halted until the problem can be
corrected. Control alarms result from occasional process disturbances that may be compensated for by an
appropriate change in the recipe. In this case, the model and recipe are updated so that the disturbances will
be compensated for in the next run. The recipe update procedure uses stepwise linear regression and is im-
plemented in BLSS [23] which is called from BPFL.

The photolithography workcell controller is being extended for use in exposure and development, and
a feedforward control methodology is being developed to further improve process control. These operations
will be coded into BPFL.

VL Ad Hoc Run Modification

This section describes the features available for ad hoc modification of a run. The WIP system allows
runs to be modified while they are executing. A user can add or remove wafers, import wafers from another
run, split a run into muitiple runs, and modify the BPFL code used by a run.

Before describing how BPFL code may be modified, it is necessary to explain the structure of BPFL
process flows. BPFL code consists of flows, which contain the top-level code for processing wafers (e.g.,
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Figure 8. Version-Control frame.

cmos-16), and libraries, which contain standard procedures shared between flows (e.g., wet -oxida-
tion). The term module is used to refer to both flows and libraries.

BPFL code may be created and edited using the Version-Control frame shown in Figure 8. The
operations provided in the frame are described in Table 3. The WIP system uses the Revision Control Sys-
tem (RCS) to organize and maintain different version of BPFL code [24]. Whenever a user wishes to modify
amodule, he or she may check out the module if they are authorized to do so. Only one person may have a
particular module checked out at any given time. The user can edit the module, run it, and debug it until
satisfied that it is ready for use by others. The flow is then checked in and assigned a version number. RCS
locks flows to prevent simultaneous modification of the same version, and stores the code modification tree
in an efficient way. RCS permits the use of branch modifications so that several people can make modifi-
cations on the same version of a flow.

Wafers can be moved between lots and removed from a run by using the Modi £y -Lot s frame shown
in Figure 9. In this example, wafers from the split-Llow lot of the baseline runare to be moved to the

Operation Description
Help Displays help screen for the frame.
Restrict Enter criteria restricting display.

Detail Display further detail about the selected flow or library.
Co Check out a flow or library.

Edit Edit BPFL code

Ci Check in a flow or library.

Validate Parse BPFL code and check syntax.

New Create a new flow or library.

View Examine code without making changes.
Update-Runs|Update code used by runs.

End Return to the Run-Summary frame.

Table 3. Version-Control frame operations.

10
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Figure 9, Modify-Lots frame.

split-medlot. A new lot can be created by typing in a 1ot -name that does not currently exist. The New
operation allocates new wafers for a run.

Wafers can also be moved between runs. When a wafer is imported into a run, the wafer state descrip-
tion of the wafer is also imported and used to check for incorrect or undesirable processing. For example,
to prevent cross-contamination caused by moving a wafer between runs that use incompatible processing.

A run may be split into multiple runs with the Split-Run frame shown in Figure 10. This operation
allows a process engineer to experiment with different treatments on wafers that have undergone identical
processing prior to the run split. In this example, the baseline run is being split into three runs, each of
which will receive a different implant dose.

BLIS HIP 1.1, 13 July 1880 Run Detait
Run ID: 3 Run Name: baseline Owner: micro
Status: waiting Process Flow: emos-17 Step: isolation
Process
BLIS WIP 1.1, 13 July 1990 Split Run
Step Pa '
Enter tha names of the new runs and a brief deseription.
The new runs will use thea same process flow as the old run.
id
— rin name comment
(S
S basel ine-low Baseline low implant dosa.
8 basal ina-med Baseline medium implant dose.
19 [Jas2linz-high fazeline high implant dose.
11
12
14
[ ] [ - L J

Help Create Forget

Figure 10. Split-Run frame.
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Figure 11. Modify-Flow frame.

BPFL process flows may be altered while a run is executing. Such changes are necessary to improve
the process, correct it for errors, and to accommodate changes in facility policy. The desired response of the
run to changes in its process-flow code are specified using the Modi fy-Flow frame shown in Figure 11.
The Process-Flow in this case is version 1.1 of cmos-16. The action field specifies how the run
responds to changes in code. This field can have one of three values:

1. Static -—The process flow used by the run is never changed,

2. Latest — The process flow used by the run is always updated to the latest version available, or

3. Query - Whenever a new version of a process flow is created, the run owner is asked whether or

not to use the new version.
In this example, the act ion field for the process flow has the value ‘static.’ If 1ater versions of cmos -
16 become available while the run is executing, they will not be used. The action field for the libraries (e.g.,
1itho) has the value ‘latest’ because library code is used to enforce facility policy and all active runs
should use the latest versions of library code. If a run is set up to use the latest version of a flow, then all
libraries used by the run are updated whenever the flow is updated. This is necessary to ensure that libraries
which are compatible with the updated process flow are used.

VII. Conclusions and Future Work

In this paper we have described several capabilities of the BPFL WIP system. The ability to code con-
trol loops in BPFL aids the development of adaptive process control illustrated by the photolithography
workeell controller. The version control system for process flows provides a simple mechanism to track
modifications to flows and to control who can use and modify a process flow. Coupled with the ability of
the system to dynamically modify the process-flow code used by an active run, the system overcomes a ma-
jor shortcoming of procedural SPRs, the inability to easily modify the process used by a run once ithas been
started.

The UI process uses a terminal-based interface rather than a graphical user-interface (GUI) because the
Berkeley Microfabrication Laboratory is equipped with ASCII terminals. Some operations that are cumber-
some to perform with the current implementation (e.g., moving wafers between runs) are much easier to
perform in a GUI. A GUI for the WIP system is under development and a sample screen is shown in Figure
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Figure 12. WIP system graphical interface.

12. This screen shows graphical prototypes for several of the frames used in the WIP system including the
Run-Summary frame discussed in Section IV and the WIP-Log frame.

A graphical user-interface to BPFL is required because process engineers are not programmers and
have no desire to learn programming. A graphical editor for BPFL is under development and a sample
screen is shown in Figure 13. This figure shows the same code as Figure 3. The window on the left-hand
side of the screen shows the graphical depiction of the top-level steps (i.e., INIT-0X and WELL-IM-
PLANT) within the code. The window in the center of the screen shows the graphical depiction of the
WELL-IMPLANT step, and the window on the right of the screen shows the arguments to the implant
procedure.
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