
Copyright © 1991, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CONTROL LOOPS AND DYNAMIC RUN

MODIFICATION USING THE BERKELEY

PROCESS-FLOW LANGUAGE

by

Christopher J. Hegarty and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/87

25 September 1991

CONTROL LOOPS AND DYNAMIC RUN

MODIFICATION USING THE BERKELEY

PROCESS-FLOW LANGUAGE

by

Christopher J. Hegarty and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/87

25 September 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CONTROL LOOPS AND DYNAMIC RUN

MODIFICATION USING THE BERKELEY

PROCESS-FLOW LANGUAGE

by

Christopher J. Hegarty and Lawrence A. Rowe

Memorandum No. UCB/ERL M91/87

25 September 1991

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Control Loops and Dynamic Run Modification

using the Berkeley Process-Flow Language

ChristopherJ. Hegarty andLawrence A. Rowe

Abstract

This paperdescribes advanced features of a work inprogress (WIP) system for use in semiconductor
fabrication. The WIP system is part of a computer-integrated manufacturing (CIM) system which uses a
distributed heterogenous database and is based on a special purpose programming language designed for
manufacturing, the Berkeley Process-Flow Language (BPFL). Support for feedback control is demonstrat
edbytheapplication of theBPFL WIP system to aphotolithography workcell controller. Theability ofthe
system to permit ad hoc changes to active runs is also described.

L Introduction

Thegoalof computer-integratedmanufacturing (CIM) isto usecomputerandinformationmanagement
technology to integrate andautomatically execute manufacturing operations. Two key elements of a CIM
system are:

1. a shared, integrated, distributed database and
2. an executable process-flow representation suitablefor all manufacturingphases.

Thispaperdescribes a work-in-progress (WIP) system using a special purpose programming language de
signed for manufacturing and a relational database management system for semiconductor integrated-cir-
cuit (IQ manufacturing.

Traditional WIP systems in the semiconductor industry are based on run-sheet specifications. These
systems use a process specification stored ona computer thatdescribes the operations required at eachpro
cessing stepandindicates where wafers should bemoved when thestepis complete. Examples of commer
cial run-sheet systems areWORKSTREAM [1] andPROMIS [2].The process representations usedin these
systems includes commands to communicate withanoperator through a form displayed on a terminal and,
in some cases, communicate with equipment. However, these representations do not have the power of a
full-function programming language so data structures (e.g., arrays, records, etc.) and control structures
(e.g., conditional statements, looping statements, exception handling, etc.) are not provided1. Data and con
trol structures are needed in a process representation to specify conditional processing (e.g., if it has been a
long time since preventative maintenance wasdone on a pieceof equipment, tweak the recipe parameters
to compensate forthe change inequipment performance) andfeedforward andfeedback control. More im
portantly, exception handling mechanisms areneeded to allow theCIM system to respond tounanticipated
events (e.g., equipment failures).

Several research groups have been working on advanced WIP systems. Examples include the MTT
CAFE system [3] and a WIP system developed at Siemens [4].

Thispaperdescribes the Berkeley Process-Flow Language (BPFL) andthe designand implementation
of a WIPsystem thatusesit.The paperis organized as follows. Section n presents an overview of the CIM
system being developed attheMicrofabricationLaboratory attheUniversity ofCalifornia at Berkeley. Sec
tionHIdiscusses basic approaches to thedesign of process-flow representation and introduces BPFL. Sec-

1.WORKSTREAM hasa scripting language withsomecontrol structures that can be calledfroma run-
sheet command. However, these commandscannot be executed directly in the run-sheet, which severely
limits the flexibility of the system.

Terminals

o o

Factory
Computer

Local Area Network

Workstations

Cell

Computer • Cell

Computer

Database

a

a o
Workstation

O Q

Workstation

Terminals
Workcell

Terminals
Workcell

Figure 1. Typical IC-CIMfab computing system.

tion IV describes the architecture of the BPFL WIP system. Section V discusses the use of BPFL in an
adaptive process control experiment, andSection VIdescribes thefeatures available foradhocmodification
ofthe process flow used by an active run.

EL The Berkeley CIM System

Thedevelopment of thesystem described in thispaper hasbeeninfluenced by ourvision of a CIMsys
tem architecture. The system runs in a distributed heterogeneous computing environment composed of a
variety of computers connected by a local-area network. Atypical fabmightuselargemicrocomputers for
cellcontrollers, a largemini-or mainframe computer forareaandfactory control, anda collection of work
stations and terminals for user interactions. Figure 1 shows a typical system. Notice that cell controllers
havelocaldatabases and that the fab has a largeshared database serverwhichmotivates the need for a dis
tributeddatabase.Terminals and workstations are provided where appropriate. Equipment is connected to
the cell controllers. Programs on any computer can access databases and programs ninning on any other
computerusing an interprocess communications protocol.

A key component of the system is a shareddatabase that stores all information about the design and
manufacture of semiconductors. This database contains information about the manufacturing facility, pro
cess-flow specifications, WIP, equipment, test data, product inventory, and orders. While the database is
treated logically asa singlecentralized database, thearchitecture thatweenvision stores datainadistributed
heterogeneous database (e.g.,Gestalt [5]or INGRES/STAR [6]). Datais storedon the computer that opti
mizesthe cost, reliability,and accessconstraints imposed by its use. A heterogeneous distributedDBMSis
requiredbecause different applications in the fab have different data requirements and one DBMS cannot
satisfy all these requirements. For example, the real-time performance and data volume required by some
on-line monitoring applications can only be met today by file systems.

SPR

WIP
System <

Equipment

Operators

Simulators (e.g. SIMPL, SUPREM)
Simulation

Input
Generator K Simulation input languages (e.g. PROSE)

Scheduler
Input

Generator
•Schedulers (e.g. BLOCS)

Figure 2. Information flow in SPR interpreters.

A third generation database system which supports relational data storage and access, an object-orient
ed data model (i.e., inheritance, user-defined data types, and methods), and a rules system [7] is required
for many CIM applications. An example is the POSTGRES system being developed at Berkeley [8-9]. A
third generation database system can store and access data that cannot be stored and accessed easily in a
conventional relational database. For example, measurements collected during wafer processing are often
represented by a sequence of values with units. A third generation database system can store arrays of user-
defined data types (e.g., values with unit designations) in a table.

A semiconductor process representation (SPR) is a sequence of instructions that specifies how to man
ufacture asemiconductor product1. Another important part ofaCIM system isan executable SPR. The goal
of an SPR is that it be complete and facility independent. It must be executable to aid in process automation.
Moreover, an SPR should be applicable to all stages ofmanufacturing (i.e., design, fabrication, and testing).
An SPR interpreter executes a specification to accomplish a goal. Different interpreters accomplish differ
ent goals by performing different computations on the same specification as illustrated in Figure 2. For ex
ample, commands are issued to people and equipment when a WIP interpreter executes a process flow.
Another interpreter will produce input commands for a process simulator (e.g., SIMPL [10], SUPREM
[11]) or a simulation input language (e.g., PROSE [12]) when it executes the same process flow. A sched
uling interpreter generates timing information for use by a scheduling system (e.g., BLOCS [13]).

The Berkeley Process-Flow Language (BPFL) [14] is a procedural SPR that is used in the Berkeley
CIM system. The CIM database is used by BPFL and its associated interpreters in several ways. First, BPFL
programs themselves are stored in the database. A software version-control system is implemented on top
of the DBMS to manage libraries of BPFL procedures.

Second, BPFL interpreters use information in the CIM database. For example, the equipment in the fab
and its current status is maintained in the database [15].A scheduler uses this data to determine which piece
ofequipment should be allocated to a run. Another example is the WIP system, which stores the state of all
active runs in the database so that the system can recover from a computer failure.

Third, BPFL programs store and access data in the CIM database. For example, an event log that
records the start- and end-times of operations, in-process and in-situ measurements collected during pro
cessing, and other processing information is stored in the database. This log can be accessed by a BPFL
procedure to change future processing based on previously recorded measurements (i.e., feedforward or
feedback control).

1. Another term used for an SPR is a process flow.

1 step INIT-OX do
2 wet-oxidation(time: {11 min), temperature: (1000 degC},
3 target-thickness: (1000 angstrom});
4 pattern(mask-name: 'NWELL);
5 end;

6 step WELL-IMPLANT do
7 with-lot *(cmos, nwell) do
8 implant(species: #m(P), dose: (4.0el2 /cnT2},
9 energy: (150 keV});

10 anneal-implant();
11 etch-oxide(etchant: #m(BHF, dilution: 5/1));
12 strip-resist();
13 step DRIVE-IN do
14 well-drive(temperature: (1150 degC}, time: (4 hr},
15 anneal-time: {5 hr});
16 measure-oxide-thickness(location: #1(NWELL));
17 measure-oxide-thickness (location: invert-layer(#1(NWELL)))
18 with-lot 'nwell do

19 etch-oxide(etchant: #m(BHF, dilution: 5/1));
20 measure-sheet-resistance(location: #1(NWELL));

21 end;

22 end;

23 end;

24 end;

Figure3. BPFL specification example.

HI. The Berkeley Process-Flow Language

There are two basic approaches to the design ofan SPR: knowledge-based and procedural. Aknowl
edges-based approach uses ahierarchical, object-oriented data structure to represent aprocess flow. Apro
cedural, or programming-language, approach represents a process flow by a program. Both approaches
have essentially the same expressive power. Consequently, the kind ofrepresentation isless important than
the particular constructs and abstractions thatare provided.

BPFL isaprocedural SPR so process flows are programs. Process flows consist ofstatements and pro
cedure calls which are executed by aBPFL interpreter. The following goals influenced the design ofBPFL:

1. Allow all manufacturing operations to be specified including lot splits and merges, conditional
tests, feedforward and feedback control, rework loops, timing constraints, equipment and operator
communication, and exception handling.

2. Separate the facility-specific information from the process specification to make iteasier to change
equipment in a fab or to move a process toanother fab.

3. Allow a process specification to be used as input to other programs (e.g., process simulators and
checkers and factory scheduling systems) to reduce the time required to design aprocess and man
ufacture product

An example ofBPFL code is shown in Figure 3. The code describes the fabrication ofthe isolation well in
astandard CMOS process (named cmos-16)used in the Berkeley Microfabrication Laboratory. For illus
tration purposes, line numbers are shown to the left of each line of code and are referred to in the following
discussion. The step statement inline 1specifies aprocess step. The statement has aname (e.g., INIT-
OX) and abody. The body contains the operations in the step. Astep statement isused primarily for doc
umentation purposes. For example, the step name is recorded whenever ameasurement is recorded .

The body of a step statement includes procedurecalls. In this example, the body is the code in lines
2-4 and consists of calls to the wet-oxidation and pattern procedures. In BPFL, arguments can be
passed to procedures either by position or by name. Argumentspassed by name can be passed in any order
because the formal argument name precedes the value in the call. For example, the statement in lines 2-3
is a call to the BPFL procedurewet-oxidation with three named arguments (i.e., time, tempera
ture and target-thickness). Notice the use of unit designators for constants. The time argument
specifies an oxidation time of 11 minutes. Procedures may also have default values for arguments that are
not supplied in a given procedure call. For example, the wet-oxidation procedure has an argument
called anneal-time with a default value of 20 minutes. Because the anneal-time argument is not
supplied in this example, the default value is used.

BPFLprovides abstractionsto manipulate wafersandlots, since they form the basic units on whichpro
cessing is performed. A lot is a named set of wafers. Predefined lot names are supplied for wafers that are
intended for production (product), wafers that are to be scrapped (scrap) and wafers that need rework
(rework). A given wafer may be in several lots at the same time, with the exception that wafers in the
scrap lot mayappearonly in thatlot A process flowspecifies whichlotsof waferswill be processedusing
the with-lot statement shown in line 7.

BPFL programs maintain a model of wafer state that is used to check processes for correctness, to store
measurements, and to support moving wafers between different runs. The model is based on the Profile In
terchange Format(PIF) [16]. BPFL uses a subsetof PIF, called naivePIF, to represent the adjacency rela
tionships between materials on a wafer. BPFL interpreters maintain a data structure called a snapshot that
describes the profileof a wafer.Operations areprovided to changesnapshotsto simulate the effectsof pro
cessing operations (e.g., depositing material, removingmaterial, etc.). Any information recorded about the
state of a wafer (e.g., resistivity, gate oxide thickness,device transconductance)may be recorded in the PIF
model. Information about the masks used in a process is requiredto define the wafer profile. For example
theprocedure call in line 16measures the oxide thickness at a location on the wafer called NWELL1. A lo
cation is defined as the logical intersection or union of masks.

BPFL also has a material class hierarchy that is used to specify the properties of a material and the
names that simulatorsuse for the material. For example, the procedurecall in line 11 etches oxide using 5/
1buffered hydrofluoric acid2. Asimilar hierarchy is defined for equipment which describes equipment ca
pabilities (e.g., adescription ofthe SECS3 interface to a furnace).

BPFL has many other features that are not discussed here.For example, there are statements to specify
control flow, (e.g.t if-then) and common abstractions encountered in processing (e.g., rework loops,
timing constraints, and exception handling) [14,17].

IV. The BPFL Work In Progress System

The software architecture of the WIP system is shownin Figure 4. The system is composed of many
processes that communicate with users, equipment, and the CIM database. The main process is the WIP in
terpreter that executes runs. A run correspondsto an executionof a BPFL process flow. Each run is repre
sented by data structures that describe the run state (e.g., the next statement to execute, the names and values
of local variablescreated by the program, anddata retrieved from the database). The WIP interpreterexe
cutes many runs at the same time. In other words, it is a server process.

1.Stepscan be nested,and theconcatenation of all current stepnamesis calleda step-path. The step-path is
recorded with all processing events.
1.Locations are denoted by an escape sequence("#1") followed by a location name.
2. Materials are denoted by a "#m"escape sequence followed by a material nameand optional attributes.
3. Semiconductor Equipment Manufacturers Institute (SEMI) Equipment Communications Standard proto
col (SECS).

Figure 4. WIP system architecture.

The user interface (UI) processes) support communication with operators and is the user-interface to
runs. Operators at different locations inthe fab can communicate with any run byconnecting to the WIP
interpreter through aUI process. A BPFL procedure called user-dialog is used to communicate with
an operator. Commands are sent to the appropriate UI process.1 The UI process is an INGRES Application-
By-Forms (ABF) [18] program inthe current prototype. The UI process reads information about the state
of arun from the database and displays it to the user. Each active user has aUI process through which the
user can respond touser-dialogs, examine run state, and browse the database. The UI process also writes
events (e.g., user-dialog events) tothe WIP-log inthe database and isresponsible for enforcing access con
trol to runs.

The equipment interface (EI) processes) support communication with equipment. Each EI process is
an instance of Wood's SECS server [19-20]. An object-oriented SECS interface is defined within BPFL,
and methods are defined for high-level equipment operations (e.g., run recipe, monitorrun, fetch equipment
status, etc.). These methods are implemented by remote procedure calls that invoke SECS commands im
plemented in the EI process.

These processes communicate either through interprocess communication channels (IPC) or through
the shared CIM database. Internet-domain connections (TCP/IP) are used for real-time notification. Non
real-time communication is implemented by the database. The WIP inteipreter checkpoints the states of
runs in thedatabase sothatotherusers and programs can access run information and run state canbe recov
ered if a computer or network fails.

ABF applications useframes as the user-interface. A frame consists oftwo components: zform that dis
plays information to the user and inwhich the user enters information, and amenu listing the available op
erations that the user can execute [21]. The main frame of the UI process is the Run-Summary frame
shown in Figure 5.Thetopline of all frames inthe UI process displays system information: thesystem ver
sionand thenameofthe current frame. Mostof thescreen area istakenupby a Run- Informat ion table.
This table displays alist of runs and information about them including their status (i.e., running, wait -
ing, stopped, aborted, finished), the process flow, the current step, and the run owner. The bot-

1.In a low volume fab suchas the Microfabrication Laboratory, a usermoves to a different terminal andre
connects to the run. Inahigh volume fab, the WIP system sends the command to the user interface process
at the appropriate workcell.

BUS UIP 1.2, 12 August 1991 Run Summary

Run Information

Run ID Name Status Process Flow Step owner

2 ptoc «ii th rsm waiting pwc

PATTERN | |i.*a«g |
SETUP leang

3 saros-j waiting sams INIT-OX judy
4 baseline waiting cmos-17 PATTERN debra

S cleanpoly halted tylanm PATTERN haniff

6 saras-k waiting sans ALLOCATE judy
7 etex waiting etex PATTERN linan

8 spacers waiting sensors IMPLRNT haniff

9 first pass stopped cmos-17 PATTERN xwu

10 stepcover stopped cmos-17 LOCOS weijie
11 sense waiting sensors PATTERN krul

Help CIreate Connect Defaults OetaiI UIP-Log Restrict >

Figure 5. Run-Summary frame.

tornline in a frame lists the operation menu. The operations in the Run- Summary frame are listed in Table

As an example of user interaction, consider a run using the BPFL code in Figure 3. When line 16 is
interpreted, the measure-oxide-thickness procedure will be called and a BPFL user-dialog
procedure will be executed. The user will be alertedto the fact that the run requires attention, and when the
Connect operation in the Run-Summary frame is executed, the Nanospec frame shown in Figure 6 is
displayed2. The top few lines ofthe form display information about the run. The middle portion ofthe form
displays information about the required operation. The measure-oxide-thickness procedure has
queried the wafer-state model for the NWELL-1 wafer and extracted the anticipated oxide thickness on the

Operation Description

Help Displays help screen for the frame.

Create Create a new run.

Connect Connect to an existing run.

Defaults Set up user defaults for the WlP system.

Detail Provide more information about a run.

WIP-Log Display the WIP-Log for a run.

Restrict Enter criteriafor runs to display (e.g., only runs owned by a particularuser).

Version Displays process-flow version information.

Quit Leave the WIP system.

Table 1. Run-Summary frame operations.

1. The menu for the Run-Summary frame is too long to fit acrossthe screen, and the Vers ion and Quit
operationsdo not appearin the menu in Figure5. The ' >' character after the Restrict operation is used
to indicate that more operations areavailable, andABF provides mechanisms for viewing them.
2. Oxide thickness measurements in our facility arecarried out using a Nanometrics Nanospec thin film
measurement instrument

BLIS WIP 1.1, 13 July 1990

Run ID:

Status:

7

uwai ting
Run Name:

Process Flow:

<» ip-test
cmos-16

User:

Step:
hegarty
DRIVE-IN

Measure film thickness on wafer NWELL-1.
Use nanospec program • 1 <thermal oxide on silicon 40 nm - S um>.
Expected film thickness is 19.55 urn.
Measurement location is NWELL layer.

index Th i ckness

2

3

4

5

Help Rework/Scrap Rcknoai ledge Comment Top Bottom Nanotalk >

Figure 6. Run-Summary frame.

Nanospec

surface at the wafer within the well.The table in the lowerpartof the frame is wheremeasured values are
entered bythe user. The user can either type values manually oruse the Nanotalk operation which will
use the SECS link to the nanospec to read the values.

TheNanospec frame is anexample of a user-dialog frame. Alluser-dialog frames support theopera
tionslisted in Table 2, although someframes support additional operations. For example, the Nanospec
frame supports three additional operations:Nanotalk, Top, and Bottom.

V. Process Control in BPFL

Semiconductor fabrication processes run for weeks ormonths, and it is frequently necessary tomodify
the parameters ofaprocess during a run. Some modifications are planned and are accommodated inthe de
sign of the SPR and the support environment Forexample, processing may bedynamically changed onthe
basis of datacollected during priorprocessing of other lotsonthesame piece of equipment (i.e.,feedback
control) or onthe basisof datacollected during prior processing of thesame lot (i.e., feedforward control).
Systems thatemploy feedforward and feedback control are often referred toascontrol-loops. Control loops
allow process designers to reduce manufacturing variability caused byequipment variations.

TheBPFL WIPsystem implements control loops with parameters stored in the CIM database. A pro
totype photolithography workcell controller thatuses acontrol loop tomodel theresist coating step has been
implemented using BPFL [22]. The goal ofthe photolithography workcell controller is tocontrol thethick-

Operation Description

Help Displays help screen for the frame.

Rework/Scrap Force rework or scrap wafers.

Acknowledge Respond to the dialog.

Comment Attach a comment to the dialog.

End Return without responding to the dialog.

Table 2. User-dialogframe operations.

<£CURRENT SETTINGSDC
MODELAND

RECIPE UPDATE.}

SPIN-COAT & SOFT BAKE

THICKNESS &
REFLECTANCE

MEASUREMENT

SPC

i
D

THICKNESS &
REFLECTANCE

MODELS

C
MALFUNCTION ALARM >

YES
STOP

NO {"CONTROL ALARM }

Figure 7. Schematicrepresentationof the photolithography workcellcontroller feedback procedure [22].

ness and the photoactive compound (PAC) concentration ofphotoresist applied on oxidized silicon wafers.
Statistical experiment design based on the response-surface method (RSM) is used to empirically model the
step. The model is parameterized in terms of the measurable characteristics of the resist (i.e., film thickness
and reflectance). The process is coded in BPFL using automatic measurement and download of recipe pa
rameters to the equipment An outline of the procedure is shown in Figure 7. First, the wafers are coated
using the current settings for the resist coat parameters (i.e., spin speed, spin time, soft-bake time and soft-
bake temperature). The resist thickness and reflectance are measured, and the statistical process control
(SPQ procedure is called to determine if an alarm shouldbe generated. The system generates two types of
alarms, malfunctionalarms and controlalarms. Malfunction alarms signal increased process variability and
cannot be corrected without human intervention (e.g., a bad temperature sensor on the hotplate causes in
correct bake temperatures). A malfunction alarm causes the process to be halted until the problem can be
corrected. Control alarms result from occasional process disturbances that may be compensated for by an
appropriate change in the recipe. In this case, the model and recipe are updated so that the disturbances will
be compensated for in the next run. The recipe update procedure uses stepwise linear regression and is im
plemented in BLSS [23] which is called from BPFL.

The photolithography workcell controller is being extended for use in exposure and development, and
a feedforward control methodology is being developed to further improve process control. These operations
will be coded into BPFL.

YES

VI. Ad Hoc Run Modification

This section describes the features available for ad hoc modification of a run. The WIP system allows
runs to be modified while they are executing. A user can add or remove wafers, import wafers from another
run, split a run into multiple runs, and modify the BPFL code used by a run.

Before describing how BPFL code may be modified, it is necessary to explain the structure of BPFL
process flows. BPFL code consists of flows, which contain the top-level code for processing wafers (e.g.,

BLIS UIP 1.1, 13 July 1990 Uersion Control

Version Information

Name Uersion Type Remark

ashback 1.0 flow 0.25 urn gate-length, resist ash process
cmos-16

cmos-17

1.0

1.0

flow

flow

baseline cmos process _
food* threshold implant split optional 1

new baseline cmos process

coomos 1.0 flow contact over oxide cmos

litho 1.0 library standard resist litho routines

litho 1.1 library added hunt resist support.

litho 1.2 library support for second wafer track.
litho 1.2.1.1 library pwc equipment support - use with care!
litho 1.3 flow support for ashback 0.25 urn gate
rie-trench 1.0 flow reactive ion etch trench formation

salicide 1.0 flow self aligned silicided gate

ucb-defs 1.0 library facility definitions

ucb-defs 1.1 library added simple sees support.

Help Restrict Detail Co Edit Ci Validate Hew >

Figure 8. Vers ion-Control frame.

cmos-16), and libraries, which contain standard procedures shared between flows (e.g., wet-oxida
tion). The term module is used to referto both flows and libraries.

BPFL code may be created and edited using the Version-Control frame shown inFigure 8. The
operations provided in the frame are described in Table 3. The WIP system uses the Revision Control Sys
tem (RCS) to organize and maintain different version ofBPFL code [24]. Whenever auser wishes to modify
amodule, he orshe may check out the module if they are authorized to do so. Only one person may have a
particular module checked out at any given time. The user can edit the module, run it, and debug ituntil
satisfied that it is ready for use byothers. The flow is then checked in and assigned aversion number. RCS
locks flows to prevent simultaneous modification ofthe same version, and stores the code modification tree
in an efficient way. RCS permits the use ofbranch modifications so that several people can make modifi
cations on the same version of a flow.

Wafers canbe movedbetween lotsand removed from arun by using the Modi f y -Lot s frame shown
in Figure 9. In this example, wafers from the split- low lot ofthe baseline run are to be moved to the

Operation

Help

Restrict

Detail

Co

Edit

Ci

Validate

New

View

Update-Runs

End

Description

Displays help screen for the frame.
Enter criteria restricting display.

Display further detail about the selected flow or library.
Check out a flow or library.

Edit BPFL code

Check in a flow or library.

Parse BPFL code and check syntax.

Create a new flow or library.

Examine code without making changes.

Update code used by runs.

Return to the Run-Summary frame.

Table 3. Version-Control frame operations.

10

BUS UIP 1.1, 13 July 1990 Modify Flow

Run ID: 7

Status: waiting
Run Name: cmos test

Process Ron: cmos-16

Owner: hegarty
Step: INIT-OX

Process-Flow Name: §nos-16
Uers ion: 1.1

Ret ion: static

Libraries

name version action

litho

ucb-defs

ucb-materials

ucb-std

1.3

1.2

1.2

1.2

latest

latest

latest

latest

Help Forget Edit End

Figure 9. Modify-Lots frame.

sp1i t -med lot. A new lot can be created by typing in a lot -name thatdoes not currently exist. The New
operation allocates new wafers for a run.

Wafers can alsobe moved betweenruns. When a waferis importedinto a run, the wafer statedescrip
tion of the wafer is alsoimportedand usedto check for incorrect or undesirable processing. For example,
to prevent cross-contamination caused by moving a wafer between runs that use incompatible processing.

A runmay be split into multiple runs with the Split-Run frame shown in Figure 10.This operation
allows a process engineer to experiment with different treatments on wafers thathave undergone identical
processing priorto the run split In this example,the baseline run is being split into three runs,each of
which will receive a different implant dose.

BUS WIP 1.1, 13 July 199Q Run OetaiI

Run ID: 3

Status: waiting
Run Name: baseline

Process Flow: cmos-17

Owner: micro

Step: isolation

Process

Step Pa

id

5

8

10

11

12

14

BUS UIP 1.1, 13 July 1999 Sp Iit Run

Enter the names of the new runs and a brief description.
The new runs wi11 use the same process flow as the old run.

run name comment

baseline-low

baseline-med

Baseline low implant dose.
Baseline medium implant dose.
Bore line hiqh implant dose. 1

Help Create Forget

Figure 10. Split-Run frame.

11

BUS UIP 1.1, 13 July 1990

Run ID: 3 Run Name: baseline
Status: waiting Process Flow: cmos-17

lot-name: split-low

wafer scribe

C]
CMOS-4

CMOS-7

CttOS-18

CttOS-13

CMOS-16

Direction

—>

Modify Lots

Owner: m icro

Step: isolation

lot-name: split-med

wafer scribe

CMOS-2

CttOS-5

CHOS-8

CHOS-11

cnos-14

CHOS-17

Help Remove Rdd New Change-Scribe End

Figure 11. Modify-Flow frame.

BPFL process flows may be altered while a run is executing. Such changes are necessary to improve
the process, correct itfor errors, and to accommodate changes in facility policy. The desired response of the
run to changes inits process-flow code are specified using the Modify-Flow frame shown in Figure 11.
The Process-Flow in this case is version 1.1 of cmos-16. The action field specifies howthe run
responds to changes in code. This field canhave one of three values:

1. Stat ic - Theprocess flow used by therunis never changed,
2. Latest - The process flow used by the run is always updated to the latest version available, or
3. Query - Whenever a new version ofa process flow iscreated, the run owner is asked whether or

not to use the new version.
In this example, the action field forthe process flow has the value4 stat ic* Iflater versions ofcmos -
16 become available while the run isexecuting, they will not beused. The action field forthelibraries (e.g.,
litho) has the value4latest' because library code isused toenforce facility policy and allactive runs
should use the latest versions oflibrary code. If a run isset up to use the latest version of a flow, then all
libraries used by the run are updated whenever the flow is updated. This is necessary to ensure that libraries
which are compatible withthe updated process flow areused.

VII. Conclusions and Future Work

In this paper we have described several capabilities ofthe BPFL WIP system. The ability to code con
trol loops in BPFL aids the development ofadaptive process control illustrated by the photolithography
workcell controller. The version control system for process flows provides a simple mechanism to track
modifications to flows and to control who canuse and modify a process flow. Coupled with the ability of
the system todynamically modify theprocess-flow code used byanactive run, the system overcomes ama
jor shortcoming ofprocedural SPRs, the inability to easily modify the process used by arun once ithas been
started.

The UI process uses aterminal-based interface rather than agraphical user-interface (GUI) because the
Berkeley Microfabrication Laboratory is equipped with ASCII terminals. Some operations that are cumber
some to perform with the current implementation (e.g., moving wafers between runs) are much easier to
perform in aGUI. AGUI for the WIP system is under development and asample screen is shown in Figure

12

Figure 12. WIP system graphical interface.

12.This screen shows graphical prototypes for severalof the frames used in the WIP system including the
Run-Summary frame discussed in Section IV and the wiP-Log frame.

A graphical user-interface to BPFL is required because process engineers are not programmers and
have no desire to learn programming. A graphical editor for BPFL is under development and a sample
screen is shown in Figure 13. This figure shows the same code as Figure 3. The window on the left-hand
side of the screen shows the graphical depiction of the top-level steps (i.e., INIT-OX and WELL-IM
PLANT) within the code. The window in the center of the screen shows the graphical depiction of the
WELL-IMPLANT step, and the window on the right of the screen shows the arguments to the implant
procedure.

Acknowledgments

The authors wish to acknowledge the help of Sovarong Leang, Steve Smoot, Yan Or and the staff of
the Berkeley Microfabrication Laboratory. Thanks also to David Hodges and Costas Spanos.

This research was supported by the National Science Foundation (Grant MIP-8715557), the Semicon
ductor Research Corporation, Philips/Signetics Corporation, Harris Corporation, Texas Instruments, Na
tional Semiconductor, Intel Corporation, Rockwell International, Motorola Inc., and Siemens Corporation
with a matching grant from the State of California's MICRO program.

13

Figure 13. Graphical BPFLeditor.

References

[1] CAM SystemsforSmart Shop Control, Consilium, Mountain View, California, 1986.
[2] The PROMIS System: Controlling the Journey to Factory Automation. Promis Systems Corp.,

Toronto, Canada, 1987.
[3] D. Troxel, "The MIT CAFE System," 1989 DARPAISRC Workshop on Integrated Factory

Managementfor Integrated Circuits (IFM-IC), (College Station, TX, USA), Nov. 1989.
[4] Voorhees, E.M., "AWork-in-Progress Tracking System for Experimental Manufacturing," Proc.

Second Int. Conf. on Data and Knowledge SystemsforManufacturing and Engineering,
(Gaithersburg, MD, USA), pp 190-197, Oct. 1989.

[5] M. L. Heytens and R. S.Nikhil, "GESTALT: An expressive database programming system," ACM
SIGMOD Record, vol. 18, no. 1, pp 54-67, Mar. 1989.

[6] Distributed Ingres Manual, Ingres Corp, Alameda, California, June 1989.
[7] M. R. Stonebraker, E. Hanson and G. H. Hong, "The Design ofthe POSTGRES Rules System," IEEE

Conf Data Engineering, (Los Angeles, CA, USA), Feb. 1987.
[8] M. R. Stonebraker and L. A. Rowe, "The Design ofPOSTGRES," Proc. 1986 ACM-SIGMOD Conf.

on Managment ofData, (Washington, DC, USA), June 1986.
[9] M. R. Stonebraker, L. A. Rowe, and M. Hirohama, "The Implementation of POSTGRES," IEEE

Trans, onKnowledge and Data Engineering, vol. 2, no. 1,March 1990.

14

[10] K. Lee and A. R. Neureuther, "SIMPL-2 (SIMulated Profiles from the Layout - version 2)," in 1985
Symposium on VLSITechnology, (Kobe, Japan), pp. 64-65, May 1985.

[11] C. P. Ho, J. D Plummer, S. E. Hansen, and R. W. Dutton, "VLSI process modeling - SUPREM-m",
IEEE Trans. Electron Devices, vol ED-30, no. 11, pp 1438-1452, Nov. 1983.

[12] A. S. Wong, "An IntegratedGraphical Enviroment forOperatingIC Process Simulators," Electronics
Research Lab. Memo 89.67, University of California, Berkeley, May 1989.

[13] R. Glassey, "An Overview ofBLOCS/M: The Berkeley Library ofObjects for Control and Simulation
of Manufacturing,'* 1989 DARPAISRC Workshop on Integrated Factory Management for Integrated
Circuits (IFM-IC), (College Station, TX, USA), Nov. 1989.

[14] L. A. Rowe, C. B. Williams and C. J. Hegarty,"The Design of the Berkeley Process-Flow Language,"
to appear in IEEETrans. Semiconductor Manufacturing. Also available as ERL Report M90/62,
University of California, Berkeley, July 1990.

[15] D. C. Mudie and N. H. Chang, "FAULTS: An Equipment maintenance and Repair System," Proc.
1990IEEE/CHMTInternational Electronics Manufacturing Technology Symposium, (Washington,
DC, USA), Oct 1990.

[16] S. G. Duvall, "An Interchange Format for Process and Device Simulation," IEEETrans, on CAD, vol.
7, no. 7, pp 741-754, Jul. 1988.

[17] C. J. Hegarty, "Process-Flow Specification and Dynamic Run Modification for Semiconductor
Manufacturing," Electronics Research Lab. Memo M91/40, University of California, Berkeley, April
1991.

[18] Ingres ABFI4GL Reference Manual, Ingres Corp, Alameda, California, June 1989.
[19] J. L. Mohammed, CommonLisp Implementation ofSECSII Protocol, Schlumberger Technologies,

July 1990.
[20] E. J. Wood, H. Schenck and J. Wijaya, "Networking and Object-Oriented Coding for SECS

Communication," Proc. AutomatedIC Manufacturing Symp.,FallElectrochemical Society Meeting,
Oct 1987.

[21] L. A. Rowe, "Fill-in-the-Form Programming," Proc. 11th Int. Conf. on Very LargeData Bases,Aug.
1985.

[22] S. Leangand C. J. Spanos, "Statistically Based Feedback Control of Photoresist Application," to
appearin Proc. Advanced Semiconductor Manufacturing Conference '91, (Boston, MA, USA),
October 1991.

[23] D. M. Abrahams andF. Rizzardi,BLSS - The Berkeley Interactive Statistical System, (New York, NY,
USA), W. W. Norton and Company, 1988.

[24] W. F. Tichy, "RCS - A System forVersion Control," Software - Practice andExperience, vol. 15, no.
7, pp. 637-654, July 1985.

15

