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Abstract

We compare the performance of hierarchical and single-level con-
trollers in a grasping context, and we conclude that for rapid, planar
grasping motions of heavy objects the performance of a hierarchical
control structure is superior to that of the two single-level controllers
tested. For slow movements of lighter objects the performance of the
three controllers is similar; with an increase in movement speed and’
object mass, however, the hierarchical structure becomes increasingly
important. Although the theory discussed here applies to grasping
problems of arbitrary complexity, we focus on planar, two-fingered
grasping for the sake of clarity and to simplify implementation and
experimental testing of the proposed control algorithms.

1 Introduction

Interest in complex, multi-fingered robotic hands has seen an increase in the
last few years, as advanced designs and a rigorous theory used to describe



them have been developed. Early research on multi-fingered hands tended
to focus on the description of hand kinematics [13] and on the generation of
stable grasps [20]. Later, researchers started to develop simple algorithms
used in grasping control of single hands [4, 12, 15, 16] as well as control of
associated groups of robots, cooperating to perform a single task [1, 2, 11,
19].

Advances in multi-fingered hand design are readily apparent when pe-
rusing the literature: the more well-known designs include the Utah-MIT
hand [8], the Stanford/JPL hand [28], the NYU hand [5]. However, the
problem of overcoming the computational burden associated with control
of some of the more complicated hand designs has not been adequately ad-
dressed. In response to the computational difficulties surrounding control
of complicated robotic hands we seek an approach to multi-fingered hand
control that significantly reduces the computational burden placed on the
controller while improving the grasping performance of the hand, and that
is essentially design-independent. A beginning in the development of such
an approach was made by Deno et al. in (7], and the experimental results
presented here may be considered an implementation of the basic philosophy
of hierarchical robot control as laid out there.

A motivating factor in this study of hierarchical grasping control is
found in the highly effective, adaptable mammalian neuro-muscular control
system and its hierarchy of spinal and cortical neural signals and control
loops [14, 23]). Time delays inherent in biological motor systems indicate
that control is likely to be hierarchical, occurring at many different lev-
els of the central nervous system. For the same reasons, communication
and computation delays make hierarchical controllers an attractive method
for providing high system bandwidth while coordinating many degrees of
freedom. These motivations are not limited to robotics: there is a large lit-
erature concerned with the use of the related, though not directly applicable,
theory of decentralized control for general dynamic systems {21, 25].

Centralized control has been defined as a case in which every sensor’s
output influences every actuator [25]. The study of large scale systems led to
a number of results concerning weakly coupled, systems, with decentralized
control, and hierarchical systems, with controllers exhibiting a separation of
time-scales. Graph decomposition techniques permitted the isolation of sets
of states, inputs, and outputs that were weakly coupled. This decomposi-
tion simplified stability analyses and controller design. In multi-processor
control systems, decentralized control is often mandated by restrictions on
the communication rates between processors. Hierarchical controllers, as
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exemplified by Clark’s HIC [3], limit communication to adjacent levels of
the hierarchy. HIC is an operating system intended to manage servo loops
found in robot controllers in which Clark emphasizes distributed processing
and interprocessor communication.

In this paper we compare the performance in a planar grasping task of
a hierarchical control algorithm with that of single-level controllers contain-
ing no hierarchical structure. In doing so, we first selectively review the
dynamics and control of robot systems and discuss the natural hierarchical
structure that arises in biological grasping systems and may be created in
robotic multi-fingered hands. We show that in the hierarchy used here, we
have a control scheme that, for fast low-level controllers, induces the track-
ing error to converge to zero. We then proceed to describe the methods and
the hardware used in the experimental comparison of the controllers’ perfor-
mance and subsequently present the experimental evidence demonstrating
the superior performance in rapid, planar movements of heavy objects of
the hierarchical controller. Finally, we discuss the merits of the hierarchical
approach to the control of grasping and draw parallels between grasping in
biological systems and in multi-fingered robotic hands.

2 Hierarchical Control of Grasp Dynamics

In this section we selectively review the dynamics and control of robot sys-
tems. Following the results of [17], we show that there is a natural hierar-
chical structure of the control system for multi-fingered hands that mirrors
the physical structure of the system.

2.1 Grasp dynamics

The dynamics for a robot manipulator with joint angles § € R® and actuator
torques 7 € R™ can be derived using Lagrange’s equations and written in
the form

M(8)+C(8,6)0+ N(8,0) =1 (1)

where M(0) is a positive definite inertia matrix and C(,8)d is the Coriolis
and centrifugal force vector. The vector N(8,0) € R™ contains all friction
and gravity terms, and the vector 7 € R" represents generalized forces in the
0 coordinate frame. For systems of this type, it can be shown that M — 2C
is a skew symmetric matrix with proper choice of C (see [27]).



Robot systems with contact constraints, such as a multi-fingered hand
grasping an object, can be represented by dynamic equations in the same
form as equation (1). In the case of a multi-fingered hand grasping a box, we
let 8 be the vector of joint angles and z be the vector describing the position
and orientation of the box. With these definitions, the grasping constraint
may be written as

J(9) = GT(9)%, (2)

where ¢ = (8, z) € R™ x R", J is the Jacobian of the finger kinematic
function and G is the “grasp map” for the system. We will assume that
J is bijective in some neighborhood and that G is surjective. This form
of constraint can also be used to describe a wide variety of other systems,
including grasping with rolling contacts, surface following and coordinated
lifting. For ease of exposition, we also assume that there exists a forward
kinematic function between # and z; that is, the constraint is holonomic. A
more complete derivation of grasping kinematics can be found in {18].

To include velocity constraints in the dynamics formulation, we again ap-
peal to Lagrange’s equations. Following the approach in [18], the equations
of motion for our constrained system can be written as

M(q) + C(g:)é + N(g,4) = Fe (3)
where

M = M+GJ TMyJ'GT

¢ = c+6JT (C’eJ“lGT + Ma% (J"GT))

N = GJTN

F, = GJTr

M,My; = inertia matrix for the box and fingers, respectively
C,C¢ = Coriolis and centrifugal terms

Thus we have an equation with a form similar to that of our “simple” robot.
In the box frame of reference, M is the matrix of the effective mass of the
box, and € is the effective Coriolis and centrifugal matrix. These matrices
include the dynamics of the fingers, which are being used to actually control
the motion of the box. However the details of the finger kinematics and
dynamics are effectively hidden in the definition of M and C. The skew

symmetry of M — 2C is preserved by this transformation.



Although the grasp map G was assumed to be surjective, it need not be
square. From the equations of motion (3), we note that if the fingertip force
J=Tr is in the null space of G then the net force in the object’s frame of
reference is zero and causes no net motion of the object. These forces act
against the constraint and are generally termed internal or constraint forces.
We can use these internal forces to satisfy other conditions, such as keeping
the contact forces inside the friction cone (to avoid slipping) or varying the
load distribution of a set of manipulators rigidly grasping an object.

2.2 Control

To illustrate the control of robot systems, we look at two controllers which
have appeared in the robotics literature. We start by considering systems
of the form

M(9)i+C(g,4)¢ + N(g,9) = F (4)

where M(q) is a positive definite inertia matrix and C(g, )¢ is the Coriolis
and centrifugal force vector. The vector N(g,q) € R™ contains all friction
and gravity terms and the vector F' € R™ represents generalized forces in
the z coordinate frame.

Computed torque

The computed torque control law is a special case of the more general tech-
nique of feedback linearization. That is, through the use of nonlinear feed-
back, we wish to render the system dynamics linear in some appropriate set
of coordinates. For a robot manipulator, given a desired trajectory zq we
use the control

F = M(q) (B2 + Ko+ Kye) + C(a, )3 + N(ard) (5)

where error ¢ = z4 — z and K, and K p are constant gain matrices. The re-
sulting dynamics equations are linear, with exponential rate of convergence
determined by K, and K,. Since the system is linear, we can use linear
control theory to choose the gains (K, and K)) such that they satisfy some
set of design criteria. In particular, if we choose K, and K, to be diago-
nal, we can analyze the system using the notions of system bandwidth and
damping.



PD 4 feedforward control

PD controllers differ from computed torque controllers in that the desired
stiffness (and potentially damping) of the end effector is specified, rather
than its position tracking characteristics. Typically, control laws of this
form rely on the skew-symmetric property of robot dynamics, that is to say
aT (M - 2C) a = 0 for all @ € R*. Consider the control law

where K, and K, are symmetric positive definite. Using a Liapunov sta-
bility argument, it can be shown that the actual trajectory of the robot
converges to the desired trajectory asymptotically [9]. Extensions to the
control law result in exponential rate of convergence [24, 26]. We note here
that for a diagonal mass matrix, M(q), the computed torque controller and
the PD plus feedforward controller, when integrated into the upper level of
the hierarchical structure, reduce to the same control algorithm. We make
use of this fact later in determining the choice of gains by analyzing the
system bandwidth and damping.

2.3 Primitives for robot control

A multi-fingered robot hand can be modeled as a set of robots that are con-
nected to an object by a set of constraints. The analysis presented above
allows us to model this interconnection and create a new dynamic system
that encodes the constraints. In fact, this procedure is sufficiently straight-
forward that it may be automated: by specifying the contact constraint
between the robots and the object, the new equations of motion for the
composite robot can be derived using a symbolic manipulation program.
In [6, 17], a system was proposed for building hierarchical control laws for
complex interconnected robotic systems. We review that formulation here.

The fundamental objects in the robot specification environment are ob-
jects called robots. In a graph theoretic formalism these are nodes of a tree
structure. At the lowest level of the tree are leaves which are instantiated by
the define primitive. Robots are dynamical systems which are recursively
defined in terms of the properties of their daughter robot nodes. Inputs to
robots consist of desired positions and conjugate forces. The outputs of a
robot consist of actual positions and forces. Robots also possess attributes
such as inertial parameters and kinematics.



There are two other primitives that act on sets of robots to yield new
robots, so that the set of robots is closed under these operations. These
primitives (attach and control) may be considered links between nodes and
result in composite robot objects. Nodes closer to the root may possess fewer
degrees of freedom, indicating a compression of information upon ascending
the tree.

The attach primitive reflects geometrical constraints among variables
and, in the process of yielding another robot object, accomplishes coordi-
nate transformations. Attach is also responsible for a bidirectional flow of
information: expanding desired positions and forces to the robots below,
and combining actual position and force information into an appropriate set
for the higher level robot. In this sense the state of the root robot object is
recursively defined in terms of the states of the daughter robots.

The control primitive seeks to direct a robot object to follow a speci-
fied “desired” position/force trajectory according to some control algorithm.
The controller applies its control law (for example PD or computed torque)
to the desired and actual states to compute expected states for the daughter
robot to follow. In turn, the daughter robot passes its actual states through
the controller to robot objects further up the tree.

The block diagram portion of Figure 1 may be viewed as an example of
a robot system comprised of these primitives. Starting from the bottom: a
finger and thumb are defined; each digit is controlled by muscle tension and
stiffness; the muscles and sensory organs of each form low-level, fast spinal
reflex loops that go directly from the digit to the spinal cord and back to the
digit. The two digits are attached to form a ¢omposite hand. Further up
the hierarchy, the brainstem and cerebellum help control and coordinate
motor commands and sensory information. Finally, at the highest level,
the sensory motor cortex, where sensory information is perceived and where
conscious motor commands originate, the fingers are thought of as a pincer
which engages in high level tasks such as picking.

In designing controllers using the primitives described above, a key issue
is how to properly model a robot which has a controller attached to it. In
order to allow the recursive nature of the primitives to operate, we must
describe the new robot as a dynamical system with equations of motion in
the form given by equation (3). For controllers that are very fast relative to
higher levels, it is often a good approximation to model the robot as an ideal
force generator, with no mass. This approximation does not imply that the
robot is no longer a dynamic object, but rather that controllers at higher
levels can ignore the dynamic properties of the robot, since these properties



Sensory &

Motor Costex
Brain
Responso timo
100-200 ms
Corobelium,
Brzinstom, &
Thaizmus
Pincor Grip

Forefingor Thumb
Muscles & Musdes &
Jaints Joints

Figure 1: Hierarchical control scheme of a human finger and thumb (7).
(Figure courtesy of D. Curtis Deno)

are being compensated for at a lower level.

2.4 Stability of Hierarchical Control

In order to demonstrate stability of the hierarchical control scheme pro-
posed here, we model the scheme as a two-step hierarchy: a low level PD
at the motor level and a high level PD-type control for the “hand”. If the
low level scheme were infinitely fast, then the scheme would be a “con-
ventional PD” type that is guaranteed to be exponentially convergent, i.e.
the tracking error goes to zero exponentially. Standard singular perturba-
tion arguments [10] may be used to show that the scheme is exponentially
convergent, provided that the low level controller is fast enough, that is,
provided the sample period is small enough.

3 Experimental Setup

What follows is a description of the hardware and software used in the
control experiments presented here. First, we describe in some detail the
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Figure 2: Top View of Styx

two-fingered hand as well as the objects that were manipulated by the hand.
Next, we give an overview of the implementation of the hierarchical control
structure and describe its software and hardware components.

3.1 Styx—Hardware

The control algorithms presented here have been implemented on a multi-
fingered hand, known as Styx, that was designed and built to facilitate im-
' plementation and testing of control algorithms for multi-fingered hands [15].
Styx is a two-fingered, planar hand, with each finger consisting of two rev-
olute joints and two links. The distal links are capped by small rubber
cylinders that serve as fingertips and as contact “points” between the fin-
gers and the object that is to be manipulated. A diagram of Styx is shown
in Figure 2.

The motors used to drive Styx are direct-drive DC motors mounted
at the base of each link and are driven with a pulse-width modulated 20
kHz square wave. Each motor contains a quadrature encoder used to sense
joint position. The resolution for the proximal motors is 3600 counts per
revolution and for the distal motors 2000 counts per revolution. Styx is
connected to an IBM PC/AT running at 6 MHz with an 8087 floating point



Link Lengths L, Ry 15.3 cm
L,y 12.16 cm
Ro 11.8 cm
Fingertip Radius | rs 1.7 cm
Base Separation B 20.0 cm
Link Mass MLI, MR]_ 53 g
My, 17 g
Mg, 20 g
Distal Motor Mass | M, 328 g
Fingertip Mass M; 3 g
Motor Inertia J 18 g cm?®
J2 1.74 gcm?®

Table 1: Styx Parameters

coprocessor. The motors and encoders are interfaced to the AT using a set
of four HP HCTL-1000 motion control chips interfaced to the AT bus. A
view of the interconnection of the hardware supporting the Styx system is
shown in Figure 3.

The parameters associated with Styx kinematics and dynamics are shown
in Table 1.

Assumptions made to simplify implementation of the control algorithms
presented here include:

1. Motor dynamics can be ignored—for small velocities, the torque gen-
erated by each motor is proportional to the input pulse width.

2. Fingertips can be modeled as fixed point contacts—in order to avoid
the complexity associated with implementing a model of rolling con-
tact dynamics, the fingertips were modeled as simple point contacts.
As a result, the shifting of the contact points on the object was un-
modeled. However, since the commanded trajectories all included zero
orientation of the object, the effect of this shift was minimized.

3. The Coriolis and frictional forces are ignored—for trajectories resem-
bling the slower movements tested here, these forces have been shown
to be negligible [15]. More extensive testing regarding the relative sig-
nificance of the Coriolis and frictional forces in the fast trajectories is
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Figure 3: Hardware Supporting Styx

required.

3.2 Control Hierarchy

In the discussion of the tracking performance of the hierarchical structure
we assumed the existence of two continuous time controllers, a high level
PD plus feedforward controller in object coordinates as well as a low level
PD controller in joint angle coordinates. Here we describe in more detail the
implementation details of the hierarchical structure, including the points of
departure of the implementation from the theory.

In order to implement the two-level hierarchical structure, we actually
used the three-level structure shown in Figure 4. The upper two levels,
consisting of a primary and a secondary control loop, are written in the
C programming language, using the Microsoft 5.1 Optimizing C compiler.
An assembly language scheduler controls the sample rates of the control
loops. In order to more closely relate to each other the hierarchical control
structures shown in Figures 4 and 1 we chose the sampling periods of the
control loops to be roughly equivalent to the time delays present in the
low-level, spinal reflex loops and the high-level, cortical feedback loops.

At the top of the figure we see the highest control level, the secondary
control loop running at 10 Hz. At this level we calculate the inverse kine-
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Figure 4: Control hierarchy for Styx, showing control of the desired and ac-
tual object trajectories, X4 and X,:, respectively, and the specified internal
force, fn.

matics of the object’s desired trajectory (X in Figure 4) and perform the
high level control functions when we put Styx into the hierarchical control
mode. The high level software can be made to implement any desired control
algorithm that is to be superimposed upon the lower levels. Here we present
results of the high level PD +feedforward controller in object coordinates
only.

The lower level of the control hierarchy consists of the low level software
block shown in Figure 4 in addition to the hardware block below it. The
lower software level is implemented by the primary control loop. The pur-
pose of the primary control loop is to write at a frequency of 100 Hz directly
to the motion control hardware the current commanded joint angles received
from the secondary loop. In addition, the low level controller is capable of
joint angle interpolation, calculating a new, updated commanded joint po-
sition by adding incrementally the joint velocity multiplied by a time step
based on the ratio of the primary and secondary control frequencies. This
interpolation allows the low-level controller to gradually command the joint
position to move from the position commanded by the high-level controller
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at one time step to the position commanded at the following time step.

At the lowest level of the control hierarchy exists the HP HCTL-1000, a
digitally sampled, general purpose motor controller. Although we assumed
in the stability analysis that the lower control level operated in continuous
time, we used the HCTL-1000 in the implementation, because it had already
been built into the existing hardware. In particular, the HCTL-1000 was
used in its position control capacity only, because the fast response relative
to the software control loops allowed us to make comparisons with the human
control system and its multi-level structure. In the analysis, our assumption
was that the digital sampling of the controller was fast enough so that we
could approximate it by a continuous time PD controller.

Programmable variables in the HCTL’s position control include the sam-
pling time, T', as well as the parameters associated with the digital filter used
to compensate for closed loop system stability:

_ K(z— A/256)
= (=1 B/256) (7)

The position control mode performs point to point position moves. A po-
sition command is specified, which the controller compares with the actual
position, calculating the position error. The full digital compensation is
applied to the position error, and the calculated motor command is output
until the position error changes or a new position command is given.

Since the HCTL-1000 is used in its position control mode, we do not
directly send desired torque commands to the HCTL controller. Although
the chip’s position control is entirely adequate for specifying a desired tra-
Jectory with no high level control, a problem arises when we wish to apply a
certain internal force, as, by definition, the internal force evokes no change
in the system’s position variables. We cannot induce the motors to apply the
torques required for the specified internal force by specifying the torques di-
rectly. Instead, we calculate a virtual position error which, when multiplied
by the DC gain of the position controller, yields the desired joint torques.
The same difficulty arises when we wish to specify additional torques based
on correctional terms calculated by the high level controller. Instead of
adding in the torques directly, we calculate a “correctional” position error,
by assuming that the trajectory is slow enough relative to the time constants
associated with the HCTL controller that we can use the DC approximation
in the torque to position conversion with some reasonable degree of accuracy.

The control system was tested with each of three different progressively
more complicated control schemes, each building on the one(s) before: set-

D(z)
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Beam Box |
Mass 245 33 g
Moment of Inertia | 1.8 x 10> 1.3 x 10> g cm?
Length 12 17 cm

Table 2: Object Parameters

Gain, K4 64

Zero, A 229

Pole, B 64
Sample Freq, 1/T | 1.9 KHz

Table 3: HCTL-1000 Parameters

point control without joint interpolation, setpoint control with joint inter-
polation, and hierarchical control (including setpoint control with joint in-
terpolation at the lower level).

4 Experimental Results

In the experimental results presented here, we use two different objects, each
suited to meet the needs of the particular trajectory being tested. In the
first set of trajectories, we used a metal bar that was loosely attached to
the fingertips via pin joints. Mounted on top of the bar was a heavy mass,
which the fingers then were required to move. The “object” thus consisted
of both the beam and the mass attached to it; the parameters associated
with this object are shown in the column labeled “beam” in Table 2. The
second object used in the experiments was a cardboard box, the dimensions
of which are also shown in Table 2, in the column labeled “box”.

The HCTL-1000 parameters used in the generation of the figures shown
were the chips’ default parameters, listed in Table 3.

The commanded trajectories for the objects’ centers of mass were circular
trajectories of radius 2.5 cm, centered at £ = 1.3 cm, y = 21.2 cm relative
to the midpoint between the two proximal motors, as shown in Figure 2,
with frequencies of 1.0 Hz for the “beam” and 0.25 Hz for the “box”. The
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orientation of the objects was to remain at zero throughout each movement.
The tracking performance along these trajectories was tested for consistency
between trials. We determined that collecting data for a period of 20 seconds
was entirely sufficient for our purposes, resulting in series of 5 trials each
for the slow trajectories and 20 trials each for the fast motions. Additional
trials merely served to duplicate the results.

Although we are interested primarily in grasping control rather than
coordinated robot control, we used the beam in the rapid movements because
of hardware limitations: In the slow movements we applied an internal force
of 3 x 10* dyne. The maximum motor torque, however, was limited to the
extent that we were not able to exert the large internal forces required to
grasp and move a heavy object during rapid movement. Thus, we used
an object that we could loosely attach to the fingertips, enabling us to use
smaller internal forces (3 X 102 dyne) without losing contact with the object.

Figures 5-7 depict the performance of the three different controllers, the
setpoint controller (non-hierarchical), the setpoint controller with low-level
joint velocity interpolation, and the hierarchical controller. The setpoint
controller consisted of a high level piece that existed solely to calculate the
inverse kinematics, directing the low-level controller to a new setpoint at a
frequency of 10 Hz. Position control was carried out only at the fast, low
level by the HCTL-1000 and was done strictly in joint angular coordinates.
The rather poor performance of this controller can be judged quickly by
examining Figure 5(a), which shows the -actual trajectory of the object’s
center of mass. A large overshoot, primarily in the horizontal, z, direction
is evident.

The second controller that was used, the joint interpolation controller,
was non-hierarchical as well, as the high level software, again, existed merely
to solve the inverse kinematics, with the additional control piece, the joint
velocity interpolation, added only at the low level, as described above. Al-
though the trajectory shown in Figure 5(b), was found to be smoothed out
more, we found the same overshooting of the goal trajectory that occurred
in Figure 5(a). Further efforts aimed at improving overall performance by
introducing more and more complicated versions of a single-level, fast con-
troller seemed unwarranted. The problem that remained to be addressed
was the object’s mass, a parameter that was not taken into account at the
lower level.

A significant improvement in the trajectory tracking performance was
found when a high-level controller that corrected for the object’s tracking
errors was superimposed upon the existing low-level control structure. By

15
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Figure 5: Actual and commanded object trajectories with setpoint con-
troller (a), joint interpolation controller (b), and hierarchical controller (c)
in Cartesian space with weighted beam; commanded circular trajectories are
shown within each graph (fast trajectory).

calculating the torques required to bring the object back to the desired tra-
jectory, the high-level controller was able to compensate for and minimize
the trajectory errors in object’s (Cartesian) coordinates, as shown in Fig-
ure 5(c). The overshoot that so grossly disfigured the trajectories of the
two non-hierarchical controllers disappeared completely, resulting in a much
better overall tracking performance.

In Figure 6 we show the calculated box position error, for the setpoint
controller (a), the setpoint controller with interpolation (b), and the hierar-
chical controller (c) for the same trajectories that were depicted in Figure 5.
For each controller, the error is given by /(Xact — Xdes)? + (Yact — Ydes)?.
Again, the insignificant improvement afforded by the addition of the joint
interpolation to the setpoint controller, and the marked improvement of
the performance of the hierarchical controller over the performance of both
single-level controllers is evident.

In the figures showing data in “box-plot” form (Figures 6-8), the top
and bottom of the boxes correspond to the twenty-fifth and the seventy-
fifth percentiles of the given variables, while the horizontal lines through the
boxes correspond to the median values of the variables. The vertical lines
have ends that extend beyond the quartiles by a distance equal to one and
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Figure 6: Deviation (in cm) from commanded trajectories of actual object
trajectories with setpoint controller, joint-interpolation controller, and hier-
archical controller when using weighted beam (fast trajectory).

one-half times the inter-quartile range. Approximately ninety-nine percent
of normally distributed data are within the range covered by the vertical
lines; outliers are identified by an asterisk, ‘*’.

The improvement in the object’s position tracking that we found when
using the hierarchical controller was, unfortunately, not mirrored in the ob-
Jject’s orientation, as can be seen in Figure 7. One possible cause is a poor
approximation of the moment of inertia of the object. Due to the configu-
ration of the system, a very slight shift in the fingertip position can cause
a relatively large orientation error in the object. Thus, any error in the
calculation of the object’s moment of inertia can cause an error in the orien-
tation portion of the feedback control, which, in turn, can cause a significant
orientation error in the object. We expect that the same controller, when
furnished with a more accurate measure of the object’s moment of inertia,
will show an improvement in the orientation error similar to that found in
the position error. Further tests with more sophisticated measurements of
the object’s moment of inertia are expected to confirm this prediction.

As discussed above, the reasons for using the beam in the controller
comparisons were to enable us to track high-speed trajectories with heavy
objects without saturating the motor output. However, we wish to point out
that the system is, in fact, capable of standard “grasping” manipulation. To
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Figure 7: Deviation (in radians) from commanded object orientation of
actual object orientation with setpoint controller, joint interpolation con-
troller, and hierarchical controller from commanded trajectories when using
weighted beam (fast trajectory).

this end, we show in Figure 8 the object’s position, the orientation error as
a function of time, and the position error when the three controllers were
used to manipulate the lighter object (“box”) in tracking the slow (0.25 Hz)
trajectory. As expected, at slow speeds and when using small object masses,
the differences between the single-level controllers, which did not take into
account the object’s parameters, and the hierarchical controller became in-
significant. The position control used in the setpoint controller appeared
to be entirely adequate when the object was commanded to move slowly
enough for the controller to reach each specified position before receiving
the next position command.

The commanded internal force exerted on the object by the hand was
kept at a constant value, 3 X 10* dyne, in all of the slow trajectory experi-
ments shown here. We currently have not measured the actual internal force
on the object; hence, this quantity is not a controlled variable at this time.
The value of the constant internal force was chosen, because it seemed an
adequate compromise between having enough internal force to hold the ob-
ject throughout the movement with a minimum of slipping and not having
so much internal force that the grasp became unstable. This potential insta-
bility due to a large “internal force” was a real problem that needed to be
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Figure 8: Object trajectory, box plot of object position error, and object
orientation error as a function of time for setpoint controller (a), setpoint
controller with joint interpolation (b), and hierarchical controller (c) (slow
trajectory).

addressed: the grasp and Jacobian matrices, used in the internal force cal-
culation, were updated at the relatively slow speed of the high-level control
loop. The calculated “internal” force, therefore, contained a small, at times
significant portion that lay outside of the grasp matrix’s null space. Simi-
larly, the torque calculated to produce the internal force differed slightly, at
times significantly, from the “true” value of the torque that would have been
required to produce an internal force. A possible cause of this difference may
be traced to differences between the Jacobian matrix that was calculated in
the slow control loop and the “true” current value of the Jacobian. An
even more significant contributing factor, perhaps, was the amplifier gain
“drift” over time, which, when combined with the slight kinematic differ-
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Figure 9: Effect of increased specified internal force on trajectory errors
using the setpoint controller; trajectories (a) and (b) were followed with a
specified internal force of 3 x 10* and 5 x 10 dyne, respectively; the plus
sign (“+”) marks the center of the commanded trajectory.

ences between the two fingers, made precise calibration of the system an
extremely difficult task, and one that would need to be repeated throughout
the life of the robot components. We stress this difficulty in calibration,
because it goes beyond the need to precisely measure the kinematic param-
eters associated with the robotic hand and the object. In general, the higher
the desired internal force, the higher the errors associated with applying the
proper torques. We found that relatively high commanded internal forces in-
terfered significantly with proper tracking behavior, while even higher forces
caused the grasp to become unstable.

A brief exploration of the effect of different levels of internal force is
shown to furnish the reader with some understanding of the magnitude of
this effect. The commanded trajectory was the slow circle described above.
Figure 9 shows the increase in the tracking error accompanying an increase in
the specified internal force from 3 x 10* dyne to 5 x 10* dyne. The primary
cause of the shift in the trajectory appears to have been the calibration
difficulty discussed above. While the figure shows the data for the non-
hierarchical setpoint controller only, the results were very similar when the
other controllers were tested.
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4.1 Discussion of Results

The data presented here show a noticeable improvement in the performance
of the hierarchical controller as compared with that of the single-level con-
trollers when the controllers were used in fast movements of a heavy object.
The most basic controller tested, the setpoint controller, was a simple, fast,
single-level controller operating only on the joint position variables. The
performance of this controller, even when operating at high frequencies rel-
ative to the trajectory frequencies, was clearly inadequate, demonstrating a
large overshoot in the positioning of the object throughout much of the tra-
jectory. In an attempt to improve the performance of the single-level control
scheme, we introduced an additional level of complexity at the joint level
by calculating the joint angular velocity and implementing an interpolation
scheme that was designed to smooth the commanded trajectory between
adjacent points as specified by the high level routines calculating the inverse
kinematics. Although some smoothing was observed in the object’s trajec-
tory when the joint interpolation scheme was used, there was no significant
change in the tracking performance of the system. Evidently, adding some
degree of complexity to the existing single-level controller was not sufficient
to overcome the tracking errors of the setpoint controller. We surmise that
the poor tracking performance was a result of neglecting the object’s dy-
namics in the overall control scheme. The speed at which the single-level
controllers were operating, however, placed strict limits on the amount of
computation that could be completed within the control loop, thereby effec-
tively excluding the possibility of moving the computation of the dynamics
of the entire system, including both the robot hand and the object, into
the lower level. We add here that, in addition to testing the fast, simple
single-level controller, we implemented a more complicated single-level con-
troller that incorporated both the object and the hand dynamics and that
was run at the slow speed of the high level in the hierarchical scheme. The
results, when the controller was tested in the fast movement experiments,
were instability to the point where collecting data became entirely unneces-
sary. Clearly, a scheme making use of the best of both controller complexity
and controller speed was required.

A solution to the computational problem associated with manipulating
a heavy object at high speeds was the hierarchical control scheme presented
here. The hierarchical scheme allowed us to incorporate in a single control
scheme the advantages of fast control loops as well as the complexity required
to adequately model the system dynamics. As expected, incorporating the
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object’s dynamics in the control scheme became more important as both
the object’s mass and its acceleration along the trajectory increased. Our
conclusion regarding the need for hierarchical control in certain movements
was supported by the relative similarity in the performance of the three
controllers when operating on light moving at slow speeds. With an increase
in mass and movement speed, differences between the controllers became
more apparent.

We exploited the system’s similarity when using the computed torque
and the PD plus feedforward controllers and based the particular choice
of the high-level controller parameters on the second-order linear error dy-
namics resulting from applying a computed torque controller. This analysis
enabled us to select the cutoff frequency and the damping factor for the
system. In order to obtain a rolloff above the trajectory frequencies and a
damping ratio of 0.5, we chose the high-level control gains to be X, = 2 and
K, = 4, with acceptable performance.

A subject for further inquiry is the choice of the control parameters at
the low level of the hierarchy. The difficulties encountered in this choice
were the limitations of the existing hardware and a lack of understanding
of how and to what extent, the choices made at one level of the hierarchy
were affected by the choices made at higher or lower levels. At this time,
our choice of the HCTL-1000 parameters was based upon the assumption of
complete separability of the two control levels, which allowed us to analyze
the closed loop performance of only the low level system. The parameter
values resulting from this analysis were then subjected to experimental test-
ing to determine the validity of the assumptions, and a final choice was then
made, based upon the performance of different combinations of parameters.
However, we stress that no extensive testing was performed to determine
the best choice. What is required is a more rigorous approach, including an
analysis of the extent to which the adjacent levels of control interact, leading
to an analytical solution and an experimental confirmation of the results.

The results discussed here represent an experimental confirmation of the
predicted stability of the hierarchical control structure under the conditions
given. In particular, the assumptions regarding the separability of the choice
of control parameters as well as the time scales of adjacent control struc-
tures have been validated experimentally for the planar, two-fingered system
used here. Furthermore, the validity of the assumption that the frequencies
inherent in the trajectories were low enough to merit the steady-state ap-
proximation of the HCTL-1000 gain was confirmed. What remains to be
gained is a better understanding of what constitutes adequate limits on the
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ratios of adjacent time scales and how these limits relate to the trajectories
of interest.

5 Conclusion

Based upon the experiments performed on Styx thus far, the most effec-
tive control scheme in fast movement of heavy objects was the hierarchical
control scheme. Hierarchical control schemes have the advantage of being
able to run simple, lower levels at high speeds, thus rapidly correcting for
tracking errors in fast movements, while running at lower speeds more com-
plicated higher levels that improve the overall performance by incorporating
system dynamics far removed from the low level actuators. Although the
experimental results presented here are based solely upon work done with a
simple, planar system, the advantages of using a hierarchical control scheme
can easily be applied to more complicated system, as we, in the implementa-
tion of the control structure, in no way made use of simplifying assumptions
based upon the simplicity of the system. In fact, the differences between
the performance of the hierarchical and single-level controllers ought to be-
come greater as the system complexity is increased and the computational
complexity of the higher level dynamics becomes greater.

An example of an extraordinarily complicated grasping control system
is the human motor control system and its feedback pathways from the skin
surrounding and the muscles controlling the fingers to the spinal cord and
to various parts of the brain. In a study of two-handed grasping control
in humans Reinkensmeyer [22] suggests the use of a simple control struc-
ture that takes advantage of the spring-like properties of muscle and of the
similarity between the dynamics of the single robot hand (in our case “fin-
ger”) and the robot hand-object system. In the work presented here, there
are no such simplifying properties of the actuators. However, by configur-
ing the system in such a way as to resemble the relative feedback delays
of the human motor control system (20 — 30 ms for the single-reflex spinal
feedback loop and up to 200 ms and more for the highest-level, voluntary
control feedback loops [14, 23]), we were able to examine some connections
between the two systems that merit further exploration. In both systems
the structure of the lower levels enables the control algorithms at the higher
levels to make simplifying assumptions about the systems that lie beneath
them, thereby allowing the higher levels to control on a more abstract level
the entire movement, leaving the lower levels free to implement rapidly the
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details of locally interfacing directly with the actuators. We hope to further
understanding of possible and plausible control structures in both systems
by exploring the parallels as well as the differences between them.

There are many areas in the design, analysis, and testing of hierarchical
control algorithms pertaining to grasping that need to be investigated more
fully. Lacking at this time is a rigorous theory of the interconnection of the
various levels of grasping control as well as a theory of the conditions under
which we can expect stability of the overall grasping control scheme. The
need for more sophistication in the development of approaches to the choice
of system parameters is clear. With increased sophistication, the potential
for improved performance at a lower computational cost than is associated
with single-level control is, in our opinion, undeniable. On the experimental
side, we would like to see an implementation of other controllers, such as
a computed torque controller, in the higher level of the hierarchical struc-
ture. Furthermore, extensive testing of rapid movements with high, possibly
time-varying, internal forces would afford greater understanding of grasping
control and might enable us to draw more conclusions about the biologi-
cal as well as the roboticist’s solution to the problem of controlling rapid
grasping movements. In turn, the introduction of varying internal forces,
especially in rapid movements, may act to compound the problem of the
object slipping within the fingers’ grasp and may, therefore, precipitate the
implementation of models that include the dynamics of rolling contacts.

Our comparison of hierarchical and single-level control schemes has at
once provided an indication of the advantages of using hierarchical control
algorithms in grasping control and introduced a variety of open research
questions relating to the theory and the application of hierarchical control
in multi-fingered grasping situations.

Acknowledgements

This research was supported in part by NSF under grant DMC-84-51129
and under grant ECS-87-19298 and by the U.S. Department of Health and
Human Services under grant PHS GMO07379-14. In addition, the authors
would like to thank Dr. S. Lehman, of the Bioengineering Graduate Group
at the University of California at Berkeley, for many helpful discussions and
comments relating to the work presented here.

24



References

(1]

(2]

[3]

[4]

(5]

[6]

[7]

[8]

[9]

[10]

C. O. Alford and S. M Belyen. Coordinated control of two robot arms.
In International Conference on Robotics, pages 468-473, 1984.

S. Arimoto, F. Miyazaki, and S. Kawamura. Cooperative motion control
of multiple robot arms or fingers. In IEFFE International Conference on
Robotics and Automation, pages 1407-1412, 1987.

D. Clark. Hic: An operating system for hierarchies of servo loops.
In IEEF International Conference on Robotics and Automation, pages
1004-1008, 1989.

A. B. A. Cole, J. E. Hauser, and S. S. Sastry. Kinematics and control
of multifingered hands with rolling contact. IEEE Transactions on
Circuits and Systems, 34(4):398-404, 1989.

J. Demmel, G. Lafferrier, J Schwartz, and M. Sharir. Theoretical and
experimental studies using a multifinger planar manipulator. IEEE

International Conference on Robotics and Automation, pages 390-395,
1988.

D. C. Deno, R. M. Murray, K. S. J. Pister, and S. S. Sastry. Control
primitives for robot systems. In IEEE International Conference on
Robotics and Automation, pages 1866-1871, 1990.

D. C. Deno, R. M. Murray, K. S. J. Pister, and S. S. Sastry. Primitives
for robot control. In M. A. Kaashoek, J. H. van Schuppen, and A. C. N.
Ran, editors, Proceedings of the 1989 International Symposium on the
Mathematical Theory of Networks and systems (MTNS-89), pages 13-
32. Birkhiuser, 1990.

S. Jacobsen, J. Wood, K. Bigger, and E. Iverson. The Utah/MIT
hand: Work in progress. International Journal of Robotics and Control,
4(3):221-250, 1986.

D. Koditschek. Natural motion for robot arms. In IEEE Control and
Decision Conference, pages 733-735, 1984.

P.V. Kokotovic, H. K. Khalil, and J. O'Reilly. Singular Perturbation
Methods in Control: Analysis and Design. Academic Press, New York,
1986.

25



[11] Kader Laroussi, Hooshang Hemami, and Ralph E. Goddard. Coordi-
nation of two planar robots in lifting. IEEE Journal on Robotics and
Automation, 4(1):77-85, 1988.

[12] Z. Li, P. Hsu, and S. Sastry. On kinematics and control of multifingered
hands. In IEEFE International Conference on Robotics and Automation,
pages 384-389, 1988.

[13] M. T. Mason and Jr. J. K. Salisbury. Robot Hands and the Mechanics
of Manipulation. The MIT Press, Cambridge, Massachusetts, 1985.

[14] T. A. McMahon. Muscles, Reflezes, and Locomotion. Princeton Uni-
versity Press, Princeton, New Jersey, 1984.

[15] R.Murray and S. S. Sastry. Control experiments in planar manipulation

and grasping. International Conference on Robotics and Automation,
1989.

[16] R. M. Murray. Experimental results in planar grasping. Master’s thesis,
University of California at Berkeley, 1988.

[17] R. M. Murray, D. C. Deno, K. S. J. Pister, and S. S. Sastry. Control
primitives for robot systems. IEEE Transactions on Systems, Man and
Cybernetics, 1992.

[18] R. M. Murray and S. S. Sastry. Grasping and manipulation using multi-
fingered robot hands. In R. W. Brockett, editor, Robotics: Proceedings
of Symposia in Applied Mathematics, Volume 41, pages 91-128. Amer-
ican Mathematical Society, 1990.

[19] Y. Nakamura, K. Nagai, and T. Yoshikawa. Mechanics of coordinative
manipulation of multiple robot mechanisms. In IEEFE International
Conference on Robotics and Automation, pages 991-998, 1987.

[20] Van-Duc Nguyen. Constructing force-closure grasps. International
Journal of Robotics and Control, 7(3):3-16, 1988.

[21] Jr. N.R. Sandell, P. Varaiya, M. Athans, and M.G. Safonov. Survey of
decentralized control methods for large scale systems. JEEE Transac-
tions on Automatic Control, AC-23:108-128, 1978.

[22] D. J. Reinkensmeyer. Human control of a simple two-hand grasp. Mas-
ter’s thesis, University of California at Berkeley, May 1991.

26



[23] J. C. Rothwell. Control of Human Voluntary Movement. Aspen Pub-
lishers, Inc., 1987.

[24] N. Sadegh. Adaptive Control of Mechanical Manipulators: Stability and
Robustness Analysis. PhD thesis, Department of Mechanical Engineer-
ing, University of California, Berkeley, California, 1987.

[25] N. R. Sandell, Jr., P. Varaiya, M. Athans, and M. G. Safonov. Survey
of decentralized control methods for large scale systems. IEEE Trans-
actions on Automatic Control, AC-23:108-128, 1978.

[26] J. E. Slotine and W. Li. On the adaptive control of robot manipulators.
International Journal of Robotics and Control, 6:49-59, 1987.

[27] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. John
Wiley and Sons, New York, 1989.

(28] S. T. Venkataraman and T. E. Djaferis. Multivariable feedback con-
trol of the JPL/Stanford hand. In IEEE International Conference on
Robotics and Automation, pages 77-82, 1987.

27



