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ABSTRACT

We present two versions of a secant method for one-dimensional niinimization, that use cubic
interpolation through two successive points to obtain an estimate of the second derivative of the func
tion. The first version uses both function and derivative values, while the second version uses only
function values. Both versions are shown to be globally /?-quadratically convergent on sufficiently
smooth functions.
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1. Introduction

Within the general realm of optimization algorithms, one-dimensional optimization algorithms

play the important role of subprocedures for step length calculation, i.e., for the solution of problems

of the form minxeRg(y +xh), with g :JR.n -»IR. For example, the performance of various

methods of conjugate directions, such as the Fletcher-Reeves and Polak- Ribiere methods [4,12], and

of some variable metric methods, such as the Davidon-Fletcher-Powell method [2,3,5], depends both

on the efficiency and the accuracy of one-dimensional optimization methods.

The family of one-dimensional optimization algorithms includes the golden section search

[8,11], versions of the secant method (see e.g. [6]), and algorithms based on either cubic, or quadratic

interpolation of the function to be minimized (see, e.g. [8,14]). The most commonly used one-

dimensional optimization algorithms for step length calculation are based on cubic and quadratic

interpolation. The version of the quadratic interpolation method considered in [7] converges super-

linearly with rate 1.3, but cannot be shown to be globally convergent The version of the quadratic

interpolation method presented in [8] converges globally, but has not been shown to be superlinear.

The cubic interpolation method can be shown to be locally quadratically convergent on sufficiently

smooth functions (see [15]), but it may not be globally convergent.

In this paper, we present two versions of a new global one-dimensional optimization algorithm

that retains the robust structure of the globally convergent secant method presented in [6], while

obtaining quadratic convergence by using cubic interpolation to construct approximations of the

second derivative. The first version requires the computation of first derivatives, while the second

version uses function values only. In Section 2, we present the first version of our secant algorithm

and show that under a commonly used assumption, it converges with the secant /?-rate of 1.618 on

twice continuously differentiable functions, and /^-quadratically on four times continuously differen-

tiable functions. In Section 3, we present the second version of our algorithm and show that it retains

the convergence properties of the first one. In Section 4, we present a few numerical examples which

demonstrate that both versions of our algorithm perform as predicted, and yield results with ade

quately high accuracy for use in step length calculation. Although the discrete version of the algo

rithm is capable of less accuracy than the exact version, it is bound to be much more efficient in step

length calculation problems, because of the high cost of derivative calculation in such problems.



2. The Cubic-Secant Algorithm

Consider the problem

min/Cx), (2.1)

where / : IR -»1R is at least twice locally Lipschitz differentiable. We will denote the first and

second derivatives of / (•) by /'(•) and f"(•), respectively, while for k > 2, the k-th derivative will

bedenoted by/ {k\-).

We begin by recalling the "classical" stabilized secant method with Armijo step size rule [1]

for solving (2.1) (see, e.g. [5]). This method is defined by the recursion

xM=xi -\J"{Xi .^-i)-1/'^) (2.2)

where / "(*,• ,*,-_i) is an approximation to the second derivative, /" (*,•), off (•) at x{, defined by

/ "(*, ,*_,) 4J Ki) v (2.3)
Xf —Xj^i

and the step size X,- is computed according to the rule

Xt =max \ p* \f(x{ -fPf"<fit ,xl_ir1f'Oct))-fOci)Z-afff"(* ,x^tYM2} (2.4)

with a € (0, Vi\ and p € (0,1).

Referring to [8], we see that on strictly convex problems, this method converges superlinearly,

with .R-rate at least 1.618. Moreover (as shown in [5]), it can be adapted for the solution of the much

broader class of problems with local minimizers % such that /" (x) >0, by adding a crossover

mechanism which switches over to the Armijo gradient method when /" (xt) > 0 does not hold.

The algorithm that we will describe in this section differs from the "classical" stabilized secant

method by the important feature that it does not approximate the second derivative f"(Xi) by

/ "(x,- ,xf^i) defined in (2.3), but by the second derivative, p'^-i^,), of a cubic polynomial

Pi,i-i(x)-a3jx3 +a2,ix2 +aux +ao,i'» whose coefficients are computed by oscullatory cubic-fit
interpolation of the objective function through two points, as follows:

P«,/-i(*y) =/(*/)> J ='-1'' (2-5)

PW*/) =/'(*,). J =/-l,/. (2.6)

The equations (2.5) and (2.6) can be rewritten in matrix form :



where

/>'W*) =

xi 1

*/-l -^1-1 */-l 1
(2.7)

3xt2 2xt 1 0

3^! 2xt_x 1 0

After some manipulation of the system of equations (2.7), we obtain the following explicit expression

forP"/,/-i(*) = 6a3,i* +a2,/>

2c,- 2(* -x,_1) + 2(2x -xf -xt_i)

*» ~*/-i

a3,i ' /(*/) '

a2,i /C**-l)

au /'(*/)

. flo,/ re*-!)

C*i -*/-i)

A/W-/(*/-i)
x{ -*,_i

di^f\Xi)-2 +//U/_i).
*l -*i-l

4, (2.8a)

(2.8b)

(2.8c)

We are now ready to state our new algorithm formally. Note that, like the secant method we

have discussed earlier, it crosses over to the Armijo gradient method whenever p/,,-,J_i(^,) is not

sufficiently positive.

Cubic-Secant Algorithm 2.1

Parameters. a € (0, Vi), (3 € (0,1), m > 0, small.

Data. x0, x_xe [0,°°).

Step 0. Set / = 0.

Step 1. Computep " ,,^(xt) using (2.8a)-(2.8c).

If p"i4-\&t) ^ m» set

/*/=-p"v-i(*ir1/'(*/) (2.9)

Else, set

*,=-/'(*). (2.10)

Step 2. Compute the Armijo step size



A, =max \ p* If(xt +p*A,)-/(*,) <;ap* fy/'C*,^ . <2-">
lfc€ N I J

Step 3. Set xi+l =xt+ X{ fy, replace / by / + 1 and go to Step 1. D

Assumption 22, The function / (-) is continuously differentiable and bounded from below. •

Theorem 23. Suppose that Assumption 2.2 is satisfied and that the Cubic-Secant Algorithm has

constructed an infinite sequence {xt }JIq. Then every accumulation point £ of {xt }£$ satisfies

/'(*) = 0.

Proof. It follows from (2.9) and (2.10) that for any xt € R,

f'Wh, <J-min{ 1,— }f'<xl?*0 . (2.12)
m

\ht\ SmaxU,— } \f'(Xi)\ . (2.13)
m

In view of (2.12) and (2.13), the desired result follows directly from the Polak-Sargent-Sebastian

Theorem [12]. •

Assumption 2.4. The function / (•) is twice locally Lipschitz continuously differentiable and

bounded from below. •

Corollary 2.5. Suppose that Assumption 2.4 is satisfied and that the sequence {xf }£$, con

structed by the Cubic-Secant Algorithm 2.1, has an accumulation point x such that f"(x)Zb, for

some b > 0. Then xt ->x as i -> °°.

Proof. Clearly, there exists a p>0 such that for all x € B(x ,p), f"(x)Zb/2, and hence

/ (x) £/ (x)+ Vib (x - x )2 for all x e B(x ,p). Since x isan accumulation point of {x{ }£o, there

exists an infinite subset K c N such that xt ->K x as i -» °°. Since the cost sequence {/ (xt)} £q

is monotone decreasing, it converges to f(x) and hence there exists an i0 such that for all / £/0,

f(Xj)£f(x) + p26/8, which implies that for all / £ /0, / € K,xt e B(x ,oil). Next, there exists an

*i ^ /<>sucn mat for all i ^ ilt / € J£, Iht I £ p/2. Since the step size X,- £ 1, we conclude that for any

i € K, i £ ilf xi+l € B(x ,p/2), i.e., that for all / £ i'lt jc/ € B(x ,p/2), which contains the unique

stationary point x . Since B ($ , p/2) is compact, and St is the only stationary point in B (J? , p), it now

follows from Theorem 2.3 that xt ->£ as i —» «>. Q



We are now ready to establish the rate of convergence of the Cubic-Secant Algorithm 2.1. First

we will show that it converges superlinearly.

Lemma 2.6. Suppose that Assumption 2.4 is satisfied. Then for any p > 0, and any x € R, there

exits a finite L > 0 such that

l/^-ifr/)-/"(*)I *L l*i -*/-i' . (2.14)

for all x{, *,_! € B (x ,p) = [£ - p,x + p].

Proof. Since by Assumption 2.4, /"(•) is locally Lipshitz continuous, and, by inspection, so is

P"v-i(')' ** Allows that for any p > 0, and any J? € R, there exists a finite L > 0 such that for all

xhx2e B($ ,p)

\f"(xi)-f"(x2)\ZjL\Xl-x2\ , (2.15)

lp"y-i(*i)-p",/-i(*2)l *\l l*i -x2\ • (2.16)

Now consider now the system of equations (2.7). If we subtract the last equation from the third

one and rearrange terms, we get from the Mean Value Theorem, that for some s e [0,1]

xi + xi-i f (xi) -/' (*/-i)P"u-i(-L-^-1) = ' ' =/"<*/ +*fe-i -*» • (2.17)
Z Xf - •*/—i

Next, we conclude from the triangle inequality and (2.17) that

\p"u-iM-f"(xi)l *^u-iM-P^-ii^^^ +\^i^i(^^)-r(xt)\

*lp">i-i(*/)-p",/-i( '̂Y/"1)l +{f"{x< +Hxi.l-xi))-r(xi)\ . (2.18)
The desired result now follows directly from (2.15), (2.16), and the fact that s e [0,1], •

Theorem 2.7. Suppose that Assumption 2.4 is satisfied, and that the Cubic-Secant Algorithm 2.1

has constructed a sequence {x{ }£$ that has an accumulation point x such that /" (x) ^ 3m, with

m > 0 as used in Algorithm 2.1. Then xt -»x, fl-superlinearly, with root rate at least tx ~ 1.618.

Proof. Clearly, there exists a p>0 such that for all x € B(x ,p) and any s€ [0,1],

/" (Jc - s (2 - x)) ^ 2m. Next, it follows from Corollary 2.5 and Lemma 2.6, that xt -» x as / -» °°,

and that there exists an /0 € N such that for all i £ /0,p"ij-i(Xt) £ m, so that the search direction ht



is given by (2.9).

Now, making use of the second order Taylor expansion formula, we find that

fixt+M-fW-ahif'to) =(1 -a)*,/'(*,)+£ (1 -*)/"(*, +shi)hi2ds

=-d- \ -cO^-V',-,,_!(*,) +£ (1 -*)[/"(*,• +shl)-p"u_l(xt)]hl2ds , (2.19)
where the second line was obtained by adding and subtracting (l-^)/*,-2/?"^^) from the integrand,
and using (2.9) to express f'(xt) in terms of ht and p"/,/-^*,). Adding and subtracting

(1 - s)h2f"(Xi) from the integrand in the second line of (2.19), and using (2.14) and (2.15), we con

clude that there exists an / j € N, i i £ /0, such that for all / € N, i £ / lf

2J .1/(^+A|)-/(^)-a*,/'(X|)^Vj -(^--a)m+L A/ l*/-*/_i I
+

3 2
(2.20)

and, since both xf -*,_i -»0 and fy -»0 as / ->°°, there exists an /2€ N, i2^i!lf such that

/ (rf +hi)-f(Xj)£ ohj' (xt) for all / £ i2, which implies that X,- = 1, for all i ^ i2.

Next, it follows from Assumption 2.4 and Lemma 2.6 that for some finite L > 0,

irw-r*>i*f.i«-*i (2.2D
and

IP" ,/-i(*/) -/"(*/) I ^^ I*/ -*/-i I (2.22)

for all *,• ,*,_! eB(Jc, p). The desired result now follows from Theorem 11.2.7 in [9]. •

fin: Command not found.

Lemma 2.9 [15, Theorem A-l] Suppose Assumption 2.8 is satisfied. Then for any xs_i ,xf € R,

there exists a £ € R in the interval withend points xim.i andxt, such that

fW -P"u-i<xt) =-j5/<4)(©C*i -^-i)2 • (2.23)
D

Theorem 2.10. Suppose that Assumption 2.8 is satisfied, and that the Cubic-Secant Algorithm 2.1

has constructed an infinite sequence {*,- }£o that has an accumulation point x, such that

f" (£) £ 3m with m > 0, as used in the Cubic-Secant Algorithm. Then xt -> x, as / -> °°, R-

quadratically.

/Voo/. The fact that x{ -± x as / -» «> with /' (Jc) = 0 follows from Theorem 2.3 and Corollary



2.5. As was shown in the proof of in Theorem 2.7, there must exist a p > 0 and an i j € N such that

for any / € N, i £ ilt we have that xt € B(x ,p), p",,,-^*/) ^ m» fy is given by (2.9), and \t = 1.

Hence it follows that by construction of the x{, for all / € N, i £ / h

P"tj-i<Xi)(xt+i ~xi) =-/'(*/) +/'(*) =-£/"(*/ +*C*, -*»* (*i ~x) • (2-24>

Adding and subtracting /" (xf) from the integrand in (2.24) and reordering terms, we get that c%

lp",/-i(*i)ll*/+i-* I*£ !/"(*,-*(*,.-£))-/"(*,.)!

+\f"(Xi)-p"U-i(xt)\]ds\xl-2\
Let

J = max

Then, using (2.15), (2.23), andthe fact that for all i £ i h />",-,/_i(x/) £ m, we obtainthat

i/(4tei
12

Let

\xi+l-x I £ —
m

a |2\xt -x r+/ \xt -xwru, -x l

K^max{^;2/;-^},
m 3 4

e,ft4J:ix,-*l , i €N,

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

with L as in (2.15). Then, writing (xt -*/_i) as (Xf -x) + 0c -*/_i), and using (2.28), we obtain

from (2.27) that

ljtf+i-*l ZK< \xt-x\3+ Uf-*l2 + \xi_1-$\\xi-$\2 + \xi_l-x\2\xi-x\

Making use of (2.29) to simplify notation, we see that (2.30) becomes

^AwrJj g»3 g/2 g/-ig/2 g/Vf 1eM £ 4K2< + + r + t}[64K3 16K2 64K3 64/sT3J

Since 4K £ 1, it follows from (2.31) that for all / ^ / lf

g/+i ^ T(g/3 +e«2 +e?ei-\ +g«g«-i) •

(2.30)

(2.31)

(2.32)



To complete our proof, we proceed by induction. Since x{ -> x, as / -» °°, there exists an

1*2 € N, i'2 £ /1 such that e/2+1 <e,-2 <1. Let 52 =Vimax [eir +eii+1, e2 +ei2}. Then we see that
5 € (0,1), and that eh £ 5 and eiM <> 52.

Assume now that for k = i2,i2+l,...,i2 +n , we have e/2+jk£52. From (2.32), with
i = /2 + n, weget

<Wi*{(o32" +522" +5<22" +2-)+6(22-+2") )

Hence,

<Wi*{(o32" +52"+1 +&2 +52") *o2"" (2.33)
which gives the desired result. D

3. The Discrete Cubic-Secant Algorithm

Although the Cubic-Secant Algorithm 2.1 converges quadratically, it has to evaluate derivatives

at each step. When the objective function / : R -»R is a composite function of the form

f(x) = g(z +xh), with g :Rn ->R, as in the case of step size evaluations in conjugate gradient

methods, the computation of derivatives can impose a considerable computational burden. In such

cases, it is desirable to approximate /' (x) by a finite difference of the form

/WA/fr+e)-/fr). (3.1)
e

When used in the Cubic-Secant Algorithm, such approximations also affect the estimates of the

second derivative. Nevertheless, as we will now show, provided one uses a proper rule for selecting

e, one can preserve the quadratic /?-rate of convergence of the Cubic-Secant Algorithm.

Let P/,/-i(') De a cubic polynomial whose coefficients are determined by the system of linear

equations (2.7), with /'(•) replaced by /'e/(0. The explicit expression for/F"/j/_1(jc) is given by

(2.8a,b,c), with/'O replaced by/^O, i.e.,

- ,„ * 2cj 2(x-s,_1) +2(2*-,*<-s/,1)7
Pu-i<x) = r r + : 5 4 . (3.2a)

xi-*t-i (xi-xi-iF

where

sjj£=n*±_j.^t a2b)
xi ~xi-\



- - /(*/)-/(*i-l) -
d, -/V*)-r ' ' +/'«(*,-.) • (3.2c)

*/ ~*f-l

Replacing P/,/-i"(x/) by P/,,_i"(x/) in the Cubic-Secant Algorithm and adding a rule for adjust

ing the precision of the finite difference approximation parameter e, we obtain the following

"discrete" version of Algorithm 2.1.

Discrete Cubic-Secant Algorithm 3.1.

Parameters. a e (0,1/2), P € (0,1), m € (0,1), small, 6 € (0,1), and Eq. small.

Data. x0, x_xe [0,°°).

Step 0. Set i = 0.

Step 1. Sete = min {ef_i, Ixt -*,_! 12,0' }.

Step2. Compute/ '^(xt).

Step 3. Ife>\f'e((xi)\2JZ, set e = Vte/ and go to step 2. Else, set e{ = e.

Step 4. Computep "^(x,-).

lfp"i,i-i(Xj) £ m, set

M-pVi^r1/'^). (3.3)

Else, set

/**=-/*(*,)• (3.4)

Step 5. Compute the Armijo step size

Xf =max j ft \f(xi+^khi)-f(xi)^of>k *,/'„(*/)[ • (3.5)

Step 6. Set x,+1 = xf + Xt /*,-, replace / by / + 1 and go to Step 1. D

Lemma 3.2. Suppose that Assumption 2.4 is satisfied and that there exists an M > 1 such that

l/"(x)l £M, for all x € R. If {.*/ }£q, {e,- }£q, are infinite sequences constructed by the

Discrete Cubic-Secant Algorithm 3.1, then there exists an i0 such that for all i € N, i £ /0,

e,*3^r I/'Wl. (3.6)

Proof. First, since 0 € (0,1), there exists i0eN such that for all / € N, / ^ /q»



0'<;
l

2M

2.2

1.2

Let / £ in. First suppose that

l/*0fi)l as
1

2M

12

22Sinceby construction e, <; 1/ '̂ (x,-) I-", (3.8) implies that

e* * l/V*/)!1-2!/'̂ )! ^ 2S"'/*WI

On the other hand, if (3.8) does not hold, then againwe get that

Ei £ & <;
1

2M

2.2

1-2 _ 1
2M

., 1

1

2M
12 ^ J_ . 7-

2M*-^t'/W •

From (3.9) and (3.10) we conclude that for all / £ /0,

-L.7/
2MS/^"/W

Expanding off (•) around xt to second order,we obtain that for some s € [0,1]

which implies that

Therefore,

/(*/+e,)=/(x/) + e,/'(*/) + —f"{Xi+sZi),

/V*,)i =/'(*/) +-r-/"C*i +* S/) •
8; Z

!/'<*)! ^I/WI --r-e, •

The desired result then follows from (3.11) and (3.14).

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

•

Corollary 33. If the assumptions of Lemma 3.2 are satisfied, then there exists an 10 e N such that

for all i € N, / £ /0,

yl/'Gc,)l£ I/'«C*,)I £yl/'fc)l • (3.15)

D

Theorem 3.4. Suppose that Assumption 2.4 is satisfied and that there exists an Af > 1 is such that

10



I/" (x) I £ M for all x € R. If the Discrete Cubic-Secant Algorithm 3.1 has constructed the infinite

sequence {x( }£$, then everyaccumulation pointx of {xf }JIq satisfies /'(£) = 0.

Proof. Let {e,- }£q be the corresponding sequence constructed by Discrete Cubic-Secant Algo

rithm 3.1. First, it follows from (3.13) that for some s € [0,1],

/'(*,•)/'(*,•) =!/'(*,) I2+ y/"(*f +se/)/'(*/), (3.16)

which implies that

f'(xi)f'e,(xi)* l/'(*,)l2-^e,. l/'(x,)l . (3.17)

Therefore, by Lemma 3.2, there exists an 10€ N such that for all / € N, i £ i0,

/'(*/)/V*/)*yl/'(*f)l2. (3.18)

In view of (3.3) and (3.4), we conclude that for all i £ /0

r(^)A^--|min{l,— }l/'(*,)l2. (3.19)
j m

Next, from the second inequality in (3.15), we conclude that for all i £ i0,

1/1,1 <;4max{l,—JI/'Oc,)! • (3.20)
j m

In view of (3.19) and (3.20), the desired result follows directly from the Polak-Sargent-

Sebastian Theorem [12]. •

The proof of the following result is identical to that of Corollary 2.5 and is therefore omitted.

Corollary 3.5. Suppose that the assumptions of Theorem 3.4 are satisfied. If the Discrete Cubic-

Secant Algorithm 3.1 has constructed the infinite sequence [xt }^ that has an accumulation point

x such that/"(£) £ b for some b > 0, then*; -»x as i -»°°. •

Corollary 3.6. Suppose that the assumptions of Theorem 3.4 are satisfied. If the Discrete Cubic-

Secant Algorithm 3.1 has constructed the infinite sequences {xf }JIq and {e,-,} £q, with x( -» x as

i -» °°, then there exists an i0 € N such that for all i G N, i £ /0,

ef ^ Uf -x I2. (3.21)

Proof. Since 0 € (0,1) and M > 1, there exists an i0 such that for all / € N, / £ i0,

11



11

0i <L
16M'

Let / £ *o* ^st suppose that

1 5

!/'«(*/) I*
16M'

2.2m this case, because by construction e{ £ 1/ ^(x,-) Il"L forall / € N,

8, £l//6/Uf)l2-2= l/^)lul/^)l2^l/%(ii)l^ . ,
16Ar Mz

where (3.23) and (3.15) were used to establish the third and fourth inequalities respectively.

On the other hand, if (3.23) does not hold, then

l/'C**)

6,- £ 0'* £
16M'

n

16M' 16M'

512 9 - , \f'(xi)\

16M'

where (3.15) was used to establish the last inequality.

Since f'(x) = 0, we have that for some s € [0,1]

\f'(Xi)\ = \(xi-x)f//(xi+s(x -x{))\ <.M\Xi-x\

which together with (3.24) and (3.25) completes the proof of the Corollary.

M'

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

•

Lemma 3.7. Suppose that Assumption 2.4 is satisfied, that there exists an M > 1 such that

\f"(x)\ <>M for all x € R, and that the Discrete Cubic-Secant Algorithm 3.1 has constructed the

infinite sequences {xt }Jl$ and {eit }JIq . Then there exists a finite K > 0 such that for all

/, i-l € N,

l/''(*/)-p" ./-lWI *K\xt -*,-il • (3.27)

Proof. Consider the expressions (2.8a,b,c) forp" ^(O, ci% and d(, as well as their counterparts

(3.2a,b,c) forp/i/_1//(-), cf, and d{. Note that

2
P"/,f-iC*f)-/>"/,/-iC*i) =

xi ~xi_i
)-di)] ,(q -c,) + (4 (3.28)

and that for some s e [0,1]

l(c,-c,)+(rf,-rf,)l = !/'(*/)-/'e,(*/)' = ly/"C*,+*e,)l £My . (3.29)

Since byconstruction e,- £ Ix{ - xt_x 12 for all i € N, we find that
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Ip'ViW-P'u-iWI = ,, \ , l/'(*/)-/W * ,„£,'„ , ^ U, -W3.30)

The desired result now follows from Lemma 2.6.

IXf —Jf/_j I

D

Theorem 3.8. Suppose that Assumption 2.4 is satisfied and that there exists an M > 1 such that

f"(x)£M for all x € R. If the Discrete Cubic-Secant Algorithm 3.1 has constructed a sequence

{x{ }£o, with an accumulation pointx such that /" (£) 2:2m, with m e (0,1) as in the Discrete

Cubic-Secant Algorithm 3.1, then xt ->x, fl-superlinearly, with root rate xx = V4(l +^5) = 1.6180.

Proo/. It follows from Corollary 3.4 and Lemma 3.6, that*,• -» £ as i -» °°, and that thereexists

an i'o e IN such thatp ",,_!(*,) £ m for all i £ /0- Therefore, for all / £ /q» */ is given by (3.3).

Now, by the second order Taylor expansion formula, for any i, there exists an sf € [0,1] such

that

f(xt +hi)-f(xi)-<xhif'ei(xi)= hif'(xi) + V2f"(xi +s,ht)Hl2 +ahl2p"u„l<xl)t (3.31)

where (3.3) was used to express /\(*,) in terms of ht and p" ,,_i(*/). Adding and subtracting
lA(p"tj-i(Xi) +/"(*,))/*/2 to the right-hand side of(3.31), we get, using (2.15) and (3.27), that for
some finite K, L > 0, and some / j € IN, /1 £ /0, for all / ^ / lf

ft* +hO-f(xO-CLh^(xi)^hJ\xi) +(a+^)p//i^i(xi)hi2 +±hi3 +̂ hi2\xi -*,_,! .(3.32)

Next, making use of (3.13), we obtain from (3.32) that for some st € [0,1],

/(xt+fy-fW-ahtf'tiXi)* /«C*)-y/''<*+*/e,) hi

+(a+V2)p"u_l(xi)hi2 +^hi3 +lj-hi2\xi-xi_l\ . (3.33)

Since by consmiction e{ £ I/'(*,) I2,2, for all i € N, we obtain, using again (3.3) to express

/ 'ei(Xi) in terms ofp "/,/_!(**) andh{, that for all« £ /1

ftxt+W-fW-ahif'WZhi -(1 -a- —)m + —ht + — \xt -Xf^l

-y/"C*i +SiBi)\hi l^lp'V-iC**)'"**

13

(3.34)

Since both xf -x,_i —>0 and A,- -»0 as i -»°°, there exists an i2, *2^'i» sucn ^^



f(Xf +ht)-f (*,) £ oJijf'^(Xi), which implies that A* s 1, for all / £ i2. Therefore for all / £/2,

there exist an sf € [0,1] and an y\{ € [xt , x{ + ef ] such that

P"/,/-i(*/)(*+i -*,) =-/'„(*,) =- ! =-/'ft) -/" Oli )"5-

= - V4/"(x, + j,(a;,- -x ))(Xi -$)- Vif"01,.)e,- . (3.35)

Rearranging terms in (3.35), we get

P"/,/-i(*.-)ft+i -*) =-W(*/ +**(** -*))-p" ,/-i(*/))(*/ -*)- V4.TCn,)e, • (336)

Adding and subtracting V4/"(x/) from the the right-hand side of (3.36), and making use of Corollary

3.6, (2.15) and (3.27), we conclude that there exists an i3 € N, /3 ^ i2, such that for all / £ 13,

l*/+i -* ' ^ tt- I** "* |2+TT- l*i "*/-i I'*/ -* I+^" l*i "* |2 • (3-37),+I 3m ' 2m l ' l ' 2m '

Let

CA-L(A +£ w,. (3.38)
m 3 2 2

Then, if we rewrite*/ - x^i as (*,• - £) - (x/_i - £), we obtain from (3.37) that

l*i+i-* I £C { \xi-x\2+\xi-x\\xi_l-x\ } (3.39)

For all i € N, let

ei±2C\xi-Z\ . (3.40)

Then we get from (3.39) that

e/+1£VM*/2 +e/*/-i}- (3.41)

The rest of the proof follows by induction. Since x{ ->£, there exists an i4 € N, /4 ^ /3, such that

ei4+i <ei4 < !• Let 5 e (0,1) be defined by 5Xl = —max {e™ +eit, eu+l +e/4}. Then eu £ 5 and

Suppose now that for k = i4, i4 + 1,..., i4 + n, we have ek £ 5 l. Then, from (3.41), we get

that

<Wi * W2* +b%xrl) =V^'V2^1" +6Tr(1+tr,)). (3.42)

Since 1+xfl =xlf weconclude that

14



<Wi*oTl , (3.43)

which completes the inductive step and our proof.

From (3.39) and the fact that *,• -»x as / -> °° it is clear that - with C as in (3.38) - there exists

an j'o € N such that for all / > j0,

lx,-!-J? I£^r (3.44)
and

l*i+i-* I*\ '*/ -* I*{'*/+!-*.• I+y '*/+!-* I (3.45)
Thus we have the following corollary

'•Jl

Corollary 3.9. If the assumptions of Theorem 3.8 are satisfied, then there exists an i0 € IN, such

that for all / € N, / £ /0,

\xt-x\ £ Ij^ —JBf-.il . (3.46)

D

Theorem 3.10 Suppose that Assumption 2.8 is satisfied and that there exists an Af > 1 be such

that f"(x)£M for all x € R. If the Discrete Cubic-Secant Algorithm 3.1 has constructed a

sequence {x{ }£$, with an accumulation point£ such that f" (£) ^ 2m, with m € (0,1) as in the

Discrete Cubic-SecantAlgorithm 3.1, Then {xt }JIq converges to x quadratically.

Proof. Exactly as in the proof of Theorem 3.8, we obtain that xt -*x as / -> °°, and that there

exists an i0 such that for all i € N, / £ i0, we have thatp",/-.^*/) ^ m, ht is given by (3.3), and

Xi = 1. It also follows that there exists an ix € N and .s, € [0,1] and i\t € [xf, xt + e,] such that for

all i € N, i £ /lf (3.36) holds.

Adding and subtracting Vfc|/"(;rf) + p"/>/_1(jC/)](;c/ -x) from the right-hand side of (3.36) and

using (2.15), we get that there exists an i2, i2 £ / lt such that for all / € N, / £ i2,

\p//ij-iixi)\\xM-Sc\^^\Xi-Sc\2

+fc[irc*,)-P''u-iC*>« +lp,'/,/-i(*/)-p/V/-i(*/)l
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x, -X I + —H£.47)
2

Hence, making use of (2.23) and (3.30), we get that there exists a positive constant B such that



O |2l/>"v-i(*,)l l*,+i-* I*Jl*i -* r + 5 I*, -*,-_! I2 +
Me,-

I*/ -*/_il
l*/-*l+-7T- (3.48)

which, together with Corollary 3.5, imphes that there exists an i3 € N, /3£ j2 sucn mat f°r ^

i € N, / 2: 13,

U/+1-* I £
L _M_

3m 2m
\x{-$\2 + B ... l2 . M I*,-* I2

m m I*/ -^/_i
U, -J? I . (3.49)

Making use of Corollary 3.8 together with (3.49), and rewriting xt -*/_i as

(x{ -x)-(*,_! -x), we conclude that for some finite constant C £ 1/4, there is an /4, i4£ /3, such

that for all / e N, / £ /4,

lxl+1-j?j *c[ lx,- -£ l3+ lx, -Jt l2+ Ijc, -S I2Ijcw-* I+\xt_x-x \2\xt -x I .(3.50)

Let

e,A4Cljc,-*l (3.51)

It then follows from (3.50) and from the fact that 4C £ 1 that

«f+i * j(«/3 +*/Vi+*»*»21 +ei2) •

The proof can now completed by induction exactly as for Theorem 2.5.

(3.52)

•

4. Numerical Results

We will now present two numerical examples which illustrate the performance of the Cubic-

Secant Algorithm (CSA) and of the DiscreteCubic-Secant Algorithm (DSCA). The cost functions for

for these examples were generated as line searches, i.e., functions of the form

f(x)=g(y+xh), (4.1)

with g : JR." -» R, where g (•) is a standard test function used for testing unconstrained optimization

algorithms. We compare the performance of our algorithms with that of stabilized versions of

Newton's Algorithm (SNA) [10] and of the Secant Algorithm (SSA) [5], and with the Quadratic

Interpolation Algorithm (QIA) [7],

In all of our experiments the parameters for the Armijo step size rule were a = 0.3, p = 0.9; the

remaining parameters were m = 0.0001 and 0 = 0.01. We initialized the CSA, DCSA, SNA and SSA

with x0 = 0, and x_x = 0.01. The Quadratic Interpolation Algorithm was initialized with the bracket
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{0,0.05,0.35 } for the first test function, and with the bracket {0,0.01,0.14 } for the second.

These brackets were obtained using a priori knowledge of the minimizers that they contain. Note

that, in general, a considerable number of function evaluations might be necessary to obtain initial

brackets that contain minimizers, as required by the Quadratic Interpolation Algorithm. Our test

problems were as follows:

Problem ERF 4-Dimensional Extended Rosenbrock's Function [9].

In this problem, g :R4-» R is given by:

^(y) = 100[(y2-y12)2 + (y4-)'2)2] + (l-3'i)2 + (l-}'3)2

In (4.1), wesety = (-1.2,1,-1, l)r, and h = -Vg(y) = (1,0.40816, 0.01855, 0)r, thedirection of

steepest descent at y.

Problem TF Trigonometric Function [13].

In this problem, g :R3-» R, is defined asfollows:
•a n

g(y) = E {3 +/ - ZiOfj siny;- +b{J cosyy) }2
i-i y-i

ai} = bij

bij=ibij + l

In(4.1), we sety = (1/3,1/3, l/3)r and v = - Vg (y) = (-0.296450, 0.705533, if.

Tables 1 and 2, below, summarize our results in terms of number of function evaluations (NF),

gradient evaluations (NG), and second derivative evaluations (NH) required to satisfy Dx/ - %1£ 8, for

various values of e, for each of the two test problems considered.

Table L- Results for ERF

6
CSA DCSA SSA SNA Q [A

NF NG NF NG NF NG NF NG NH NF NG

le-02 6 3 9 0 6 3 5 2 1 8 0

le-04 10 4 19 0 14 5 9 3 2 20 0

le-06 10 4 19 0 14 5 9 3 2 36 0

le-08 14 5 19 0 18 6 13 4 3 48 0

le-12 14 5 FAILS FAILS 13 4 3 FAILS
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Table 2 - Results for TF

e
CSA DCSA SSA SNA QIA

NF NG NF NG NF NG NF NG NH NF NG

le-02 19 4 13 0 9 3 9 2 1 4 0

le-04 19 4 23 0 21 5 18 3 2 28 0

le-06 23 5 28 0 25 6 22 4 3 44 0

le-08 23 5 33 0 29 7 26 5 4 60 0

le-12 27 6 FAILS 33 8 26 5 4 FAILS

As one might expect, in view of the different convergence rates, the number of evaluations

required by our algorithms is smaller than those required by the Stabilized Secant Algorithm (SSA)

or the Quadratic Interpolation Algorithm (QIA). Indeed, our computational results suggest that our

algorithms are competitive with Newton's Algorithm.

In considering the numbers in our tables, one has to bear in mind that when / (•) is of the form

(4.1), as in our examples, and the first and second derivatives off (•) at x{ are calculated by evaluat

ing (Vg(*,),/* ) and {h .gyyixrfh) respectively, the computational work required for their evalua

tion is potentially equivalent to n and n2 function evaluations respectively. Moreover, the numbers

for the Quadratic Interpolation Algorithm (QIA) do not include any evaluations that were used to

determine brackets.

We also observe that the DCSA fails when the required precision is increased to 10"12. This is

due to the inherent limitations of schemes that rely on finite-differences approximations.

Figures 1 and 2 illustrate the behavior of the five algorithms considered in the computational

experiments. Once again, we observe that the behavior of the Cubic Secant Algorithm (CSA) and

Newton's Algorithm (SNA) are quite similar.

5. Conclusion

We have presented two global, R-quadratically converging one-dimensional optimization algo

rithms for use as subprocedures for step length computation in various unconstrained optimization

algorithms. They are more robust than the commonly used cubic interpolation method and faster than

the commonly used quadratic interpolation method.
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Fig.2. Performance of the Algorithms on Test Problem 2 - TF
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