February 19, 1992

Active Documentation for VLSI Design

Mario J. Silva, Tzi-cker Chiueh, Randy H. Katz

Computer Science Division
University of California, Berkeley
Berkeley, CA 94720

Abstract: A new system for documentation processing in VLSI design environments is presented.
The system integrates hypermedia and some CAD framework services to provide a radi-
cally new interface to CAD tools, environment and designs. This combination of technol-
ogies enables the construction of computer-based documents that are easier to create,
maintain and understand. Hypermedia offers the possibility of integrating new media in
design documentation and non-linear views of documents. The capability of invoking the
design tools from the documentation processing system enables the re-use and direct
manipulation of the design objects for the purpose of documentation. This paper describes
the conceptual model for a documentation system embodying these ideas and a prototype
implementation.

This project was supported in part by NSF/DARPA under contract MIP-9002962.

10f19

Introduction

1 Introduction

Designers are well supplied with tools to help them create and analyze their designs. More recent
work has concentrated on design management to improve the organization of the design environment.
Yet, little has been done to help designers understand their designs.

In the modern CAD environment, design understanding is synonymous with design documenta-
tion. Documentation serves many purposes: specification, description, maintenance, training. Good
documentation promotes reuse of design objects and processes, as well as providing a deeper under-
standing of the design. Inevitably, documents are a part of the design system.

In this paper, we show that a major improvement is possible if documentation takes advantage
of the electronic-based media available today. Our approach uses an hypermedia system [10] as a
front-end to the CAD system. Like any other hypermedia system, it provides support for the construc-
tion of multi-media presentations as a way of documenting the various aspects of systems design.
Multi-media support could be useful in many ways. For instance, segments of a videotaped presenta-
tion of a design could be used as annotations to the files specifying the design artifact or the design
process.

In our view, design tools can be reused as pieces of a larger documentation processing system.
We extend the basic functionality of typical hypermedia systems by providing support for the concept
of active documents [15]. An active document differs from conventional electronic-based documents
by having portions that are filled-in by programs executed as it is rendered. There are many possible
uses of active documentation techniques in VLSI design environments. For instance, in the produc-
tion of a document, a logic simulator could be used to illustrate the timing protocol for interfacing
with a library module, or a layout editor could be invoked to display cell representations, allowing
readers to examine details at their will.

Having an ability to integrate documentation and design is not new. For example, this has been
used with some success in programs such as Mathematica [16]. Mathematica notebooks allow the
designer to sprinkle documentation among the Mathematica expressions and their outputs. The text
can be expanded and hidden on demand. At least one Mathematica text book has been written as
nothing more then notebooks [5]. However, Mathematica is an environment with a single tool, unlike
typical VLSI design environments that support many Unix-based design tools.

Our documentation system architecture was inspired by Intermedia {91, a system designed for educa-
tional purposes. The Intermedia conceptual design consists of an application framework supporting

Active Documentation for VLSI Design 20f19

Requirements for Active Documentation

hyperlinks. The framework integrates dedicated programs for manipulating new types of objects;
these are linked together in the same address space. Our system is similar in organization, but the
tools run in different address spaces, and we had to specify a protocol for creating hyperlinks whose
anchors are objects under control of distinct programs.

From the perspective of design process management, it is also possible to collect design traces
and then use them as example projects to specify a given design methodology [2]. This can also be
seen as a constrained but automated way of building design documentation, where the user interacts
with the example design, changing the files and re-running the tools to visualize the effects of the
change. Moreover, this is documentation that can be re-used: designers use the design files as tem-
plates for the specific project at hand, modifying them when necessary.

The concept of a common front-end to the design tools has long been proposed as one of the
sub-systems of a CAD framework. The system proposed here could also be used as a design flow
management system of a CAD framework. However, we are exploiting a new idea, that of using an
hyperlinking mechanism as the paradigm for relating pieces of data and for coordinated design tool
executions, enabling construction of several forms of multi-media design documentation. As a result,
we added a new viewport to the design environment, where tools, component libraries and design
files can be accessed and organized in a very simple, yet powerful way.

This paper is about the conceptual model for design documentation for VLSI designs embody-
ing the ideas presented above. These concepts are being used as part of the design of Henry, a proto-
type documentation system whose implementation is under way.

The rest of this paper is organized as follows. Section 2 describes the requirements for a docu-
mentation system, as seen from its users. In Section 3 we present the conceptual model for design
documentation. Section 4 describes what tools may be used to help authors in creating documentation
for designs. In Section 5 we present our prototype implementation, conclusions and future work.

2 Requirements for Active Documentation

Documentation is traditionally associated with printed paper, in the form of manuals or technical
reports. Even when available on-line, the paper-based paradigm is still present. Documents are orga-
nized in some form of “pages,” with their contents immutable. The only thing readers can do is to
give commands to the tool used to display the document to advance to some form of a “next” page.
By active documents, we mean those that contain other objects than static text or figures, with which

Active Documentation for VLSI Design 30f19

Requirements for Active Documentation

readers can interact. An example of such an object could be a “figure” that instead of being inter-
preted by the documentation processing system as a black box containing a diagram or a table, would
be the main window of a running design tool, from which the user could send commands and observe
the contents of the document being changed as a result of those commands.

To find the desirable features in a system for active documentation, we begin by examining the
features required by document readers and authors. Readers requirements determine what features the
system should provide, while authors requirements suggest the services that support the creation of
documents with these capabilities.

2.1 User’s requirements

We began by looking at conventional data sheets for complex components to better understand the
requirements for active documentation. To illustrate the possibilities, we examined the existing paper-
based documentation from IDT [8] and asked how might active documents be used to describe exotic
VLSI components, like high performance FIFOs. We found the following types of information:

General information. These are guidelines for navigating through the manual and cross reference
tables to other manufacturer’s “equivalent” component references.

Descriptive sections. These includes a detailed description of IDT’s technology and information
about its manufacturing process.

Packaging information. A reference section for the possible types of packaging used for compo-
nents. This section includes equations to be used by designers for determining the physical char-
acteristics of a given component on a specific packaging type.

Datasheets. The product description sections for each component. Datasheets present very diverse
information, in fact all the information required for incorporating a chip into a larger system. This
information is structured in a uniform way for each component type, such as static RAMs and
FIFOs. It includes functional descriptions, tables of parameters under different operating condi-
tions and several other types of diagrams. These are used for representing component’s architec-
ture, logic behavior, structure and timing information.

Active Documentation for VLS! Design 40119

Requirements for Active Documentation

Application And Technical Notes. These are descriptions of example designs illustrating the poten-
tial applications of the components and the design steps that users should take to incorporate them
in their own applications.

If the information on this databook were available as a hypermedia active document, one could
benefit from the advantages of hypermedia and active documentation techniques for presenting and
organizing the data and for easy navigation in several ways, as described below.

Linking mechanism for navigation. Users need a simple mechanism to jump directly to the compo-
nent or component section of interest when looking into the datasheet index. They would also
benefit if the packaging options available for a given component were no more than a button-press
away. This requires a hyperlinking mechanism in the documentation browsing tool, so that users
can easily access the datasheets or sections relevant to their objectives.

Multiple views. In order to speed-up searches, users familiar with another manufacturer’s equivalent
part-numbers should view those references directly. The system should use the cross-reference
tables to display that information automatically, instead of having users to consult a document
section presenting those tables.

Multi-media. The system should support multi-media representations. For instance, to explain a
CMOS manufacturing process, video and animations could be used to illustrate the various steps.

Queries to locate information. In many cases, users know some of the properties required for the
component they are looking for, but do not know if that component exists. To facilitate searches,
they should have a query facility to look for specific components by giving a list of required
attributes. Using active documentation techniques, the existing databases for storing information
about components could be made accessible directly from the new electronic databook.

Actual data, not formulas or parametric curves. Instead of presenting the user with a set of formu-
las to compute the physical properties of the component on the package, those properties should
be computed by the system using the available information for the component in the selected
packaging option. This way, it would become easier to exploit design trade-offs. This suggests the
need for a spreadsheet facility that document writers could use to specify packaging properties.
The system could invoke this facility to compute the actual values for a component to fill-in a
table with the packaging data.

Active Documentation for VLS| Design 50f19

Requirements for Active Documentation

Datasheets are an example where dynamic invocation of design tools, to present the contained
information, would be most useful. Along with the capabilities above described, direct use of the
CAD tools presents new possibilities. Instead of timing diagrams, it would be interesting to
present users with a diagram produced by the CAD system “on the fly”. Instead of generic charac-
teristics or characteristics at specific operating conditions, the user could access directly the same
information at the conditions of operation required by the application at hand.

Ability to play with document data. Application Notes are example designs, built for the purpose of

illustrating for users the interconnections and design considerations for using the component
within a custom system.
Component users would benefit if the design files used in the application note were made avail-
able as part of the documentation. Moreover, if the application note included the scripts used for
building the design, users could “replay” the construction of the design, and subsequently re-use
the same design files and design methodology as a template. With application notes based on the
electronic media, they may be reinterpreted as documents with informative text for the example
design files and tools, associated with a navigational aid for helping other designers understand
those files and the tasks needed to build the design.

2.2 Author’s Requirements

After enumerating the requirements from the users, we could derive what services the system

should provide to those writing hypermedia active documents describing designs.

Synchronization of CAD tools execution. A design description must be composed from information
in independent windows, each generated by a distinct tool. The author needs a capability to syn-
chronize their execution. For instance, one might want to explain in a text window the composi-
tion and functionality of each of the main blocks of a microprocessor while the layout and
schematic of each block are displayed in graphic windows aside. When the reader scrolls the text
window to the description of another block, the graphic windows should change their contents to
display the corresponding representations.

This requires the ability to send commands from the tool presenting the textual description to the
CAD tools used to display the graphic design information and have them interpreted as if they
were given interactively by a user.

Active Documentation for VLSI Design 60f 19

Requirements for Active Documentation

Convert screens into portions of a document. In some situations it is not possible to reproduce the
interactions used to reach a given design state. This may be because some of the tools used are not
prepared to interact with the design navigation system and it is impossible to make them replay
the actions taken. Another plausible reason is that they may take too long and it is not desirable to
have readers waiting too much for a requested document “page.” In these situations, to offer some
aid to the document writer willing to illustrate a given design step, the system should provide a
capability to dump the contents of windows or screens at a given time, to have them redisplayed
later for inclusion as part of a document. Even though this solution does not offer the reader the
possibility of interacting with the tools from the document, the screen dump could still be anno-
tated and used as an illustration to a textual description describing that design step. Another possi-
bility is the recording of the messages exchanged between the window system server and the tools
during that design step. The recording could then be replayed later to show the designer’s com-
mands sent to the tools. Both capabilities are already available on current workstations software.

Produce documents from a template. The most obvious way to produce electronic documentation is
by giving authors the metaphor that they are adding “pages” incrementally to an existing docu-
ment. However, data books are a collection of data sheets organized in a common way. Documen-
tation writers job would be greatly simplified if they could generate documents by filling-in a pre-
defined set of “pages,” each corresponding to a policy imposed section of a document, for exam-
ple the template for a data sheet.

Control of what is active in a window. Authors also need a mechanism to control what in a design
may be modified by the document readers. It may be desirable not to allow users to modify some
parts of the document even though they are given a tool which allows them to change the design
files displayed. In other situations, parts of a document are intended to be modified by the readers
in order to further exploit some characteristics not explained in a document. As an example, con-
sider a document where the electrical characteristics of a circuit are presented by a simulator. The
circuit model is stored in a file, and the simulator uses that model to evaluate the timing diagrams
that will be displayed. A normal requirement in these situations is that readers should be able to
change the specifications of the circuit loads or input waveforms, while not allowing them to
change the remaining of the model file.

In system design, the world can not be divided clearly into document readers and authors. System
maintainers are a class of users who may be both readers and writers during a session with the
documentation system. Protection has to be established at a finer level of granularity then the level

Active Documentation for VLSI Design 7 of 19

The Model

of an entire document. This calls for the definition of a concept of protection for document manip-
ulation that can address these needs.

Internal documentation and Databooks. In many situations the same design will require several
classes of documents. The documentation available internally for design maintenance of VLSI
components is generally not the same as that published in datasheets. In active documents, the
tools available in house for producing the designs may not be available for those who use the doc-
umentation. This implies that authors should have the capability to define classes of readers, orga-
nized according to the models, type and level of detail of information they will have access, and
the tools they will have to process the documentation. Then, different versions of the same docu-
ment would be produced for each class. It is still possible to provide active documentation ser-
vices when design tools are not included with the documentation processing system. One may use
public domain design tools or tools from a CAD vendor supplying the reader’s site. Alternatively,
standard representation formats, such as VHDL models, that can be processed by tools from sev-
eral possible vendors could be used.

3 The Model

Our model for documentation is based upon hypermedia. Our system inherits from hypermedia sys-
tems the linking capability, where a user has the flexibility of selecting the next piece of information
to access at the time of reading. However, our architecture does not follow conventional hypermedia
systems, where a set of programs, each able to present a specific type of media, are bound together
with an hyperlinking mechanism. The architecture of the documentation system proposed here more
closely resembles a traditional CAD framework, where several tools can be invoked from a coordi-
nating tool, to build the screens required to perform a given task. Our design navigation system can
thus be seen as a methodology management system of a CAD framework using hypermedia links to
organize the data and to reuse tools and design processes.

3.1 Data Structure and Concepts

The conceptual model shares many similarities with the model of HIP [1]. As in any hypertext model,
the basis for our documents is a network where the nodes (or contents) correspond to data, and the
arcs (or links) identify which nodes may be visited from a node when traversing the network. Links
have one anchor, representing the origin of the link, which may be any object selectable from the user

Active Documentation for VLSI Design 8of 19

The Model

interface of a tool displaying a node. A document is an entity that is processed by a specific tool,
called the navigator, which corresponds to the hypermedia system front-end. The navigator has its
own data structures and files totally independent of the files and tools of the design framework. These
data structures represent, among other things, the linking information and sequences of nodes for tra-
versing the network, defined by the document writers. Readers may then choose from a set of sug-
gested reading orders, called guided tours, or follow their own.

Figure 1 shows a typical screen. Nodes are displayed according to a scrolling-view presentation
model V, meaning that each node is displayed in a scrollable window. Documents are organized in
frames, each frame describing the position on the screen of a set of windows. Each of these windows,
corresponds to the display area of a contents in the hypertext network. Document writers have the
ability to control what part of a contents is visible on a scrollable window when the window is dis-
played, and document readers may interact with individual windows of the frame. However, a frame
in Henry has a very distinctive appearance. Henry does not organize all windows in a frame as
descendents of a common top level window in the window system hierarchy, nor does have all win-
dows in a frame controlled from a single tool. Henry represents a frame as a set of top level windows.
Each window may be run from a different process, but from the control panels of the navigation tool
they are seen as logically grouped and they may be manipulated as a single entity. When displaying a
document, the request of a new frame corresponds to adding a set of windows to the desktop, in rela-
tive positions determined by the document creator.

Figure 2 shows the interface for manipulating documents. There is a control panel, labeled
“henry” in the figure, from which users give commands to access documents and obtain information
on how to use the system. For each document opened or created, a new control panel, called a docu-
ment control panel, is displayed. From this panel, users may give commands to navigate within the
document or manipulate its frames. For navigation, a user may choose from a set of possible frames
what will be viewed next via the Select pull-down menu. He may also follow directly to the current
default next frame via the Next button. The default next frame is determined by the current path,
which corresponds to one of the possible guided tours defined for the document. From the document
control panel, users may also manipulate the frames (using the pull-down menu labeled View) and
invoke other menus to display navigational aids for the document. With a single command, a user can
dismiss all the windows of a frame previously rendered or bring the same frame again to the top of the
desktop. A third control panel (not shown on Figure 2), invoked from the document control panel,
allows authors to define or change the contents of each frame. They may specify what windows are

Active Documentation for VLSI Design 90of19

The Modael

» : Uindo . PEOODONDOODUONO0OOCOOECOOCONEOONNNDEVONODDNNN000DNDNOOCEO0DOODOTN.
@] hippi-intertace View
Path { View '} ‘o Signals
Buffer
File
Values
Radix
Modify
Text
Edit
Display
Grid

Level
Buffer
File
Change
Export
Xform
Select
Delete
Move
Copy
Plot
Undo
Info

FIGURE 1.

Representation of a document in terms of the model. The navigator starts by
displaying its contro! panel (top left), from which the user has opened the “hippi-
interface” document. This in tum triggered the creation of another control panel,
from which the navigation on the document may be controlled. A frame,
consisting of the two windows on the right is being displayed. These correspond
to two independent contents in the hypermedia network defining the document.
Objects in each tool's space (such as the selected signal in the “waveform”
window) may be defined as anchors which, upon user’s activation, will trigger
the execution of actions that will run by on the navigator's space.

Active Documentation for VLSI Deslign 100f 19

The Model

\ 4

FIGURE 2. The control panels available to a user reading a document. The top panel is the
system control panel, from which the user obtains help and opens existing
documents. A document control panel (the panel below), is created to control
each opened document. From it, users give commands to manipulate the
frames of the document. Each frame has a set of top level windows. When a
frame is invoked, its windows are displayed on top of the windows of the frames
previously rendered.

displayed in a frame, their geometry relative to the screen and what program has to be run to display
their associated contents.

Each contents corresponds to a node in the hypertext network, and its rendition to the screen is
controlled by a tool, independent of the navigator, but with the capability to communicate with it by a
common RPC! protocol. This protocol defines a set of commands that can be passed between the nav-
igator and the tools, used to control their simultaneous execution. For instance, the protocol allows
for the definition of any object in a tool’s domain as an anchor. In the frame representation on Figure
1, the name of the signal “DSTR_SEL_VALID_L” on the window “waveform” could be defined as

1. RPC — remote procedure call

Active Documentation for VLSI Design 110119

The Model

an anchor, meaning that upon a button press event, the navigator would be notified to display some
other frame or to display other contents on the other windows of the same structure. Another anchor
could be the graphic object representing the interface of some component in the “schematic” window.
This anchor may be defined to behave as a button, which will render another frame with the sche-
matic of the component shown as a black box together with a description of its operation. When an
event occurs within the context of one anchor, a notification is sent back to the navigation tool, which
in turn may have an action associated with it. Actions are programs written in a system extension lan-
guage, allowing document writers to implement several possible functions, such as invoking another
tool to display another anchor, which in the hypertext world corresponds to a link.

The concepts of the model are elaborated below.

Anchor. From the hypermedia system point of view, an anchor is a reference to some object recog-
nized by the tool presenting a contents object. An anchor description consists in two parts, one to
be interpreted by the tool running on the contents window, and another that will be interpreted by
the navigator itself.

The part interpreted by the tool contains a definition of the identifier of the object associated with
the anchor in its tool address space plus a description of what events should be sent to the naviga-
tor upon user’s interaction with the anchor. In a contents consisting only of textual information,
an anchor attached to a word in the text could consist of the order of the first character of the word
in the text plus its length; in a contents displaying the layout of a circuit, an anchor could be
defined as the identifier on the design database for an object such as a “port” or an “instance” of a
given “cell.”

The part interpreted by the navigator consists in a script of commands, called an action, to be run
in response to each event sent by the tool. The scripts are written in an extension language inter-
preted by the navigator. The extension language offers the capability to start tools and send com-
mands to other running tools to perform specific actions. Figure 3 presents an illustration of this
mechanism, showing how hyperlinks are implemented with the Jump command. Another com-
mand, Display, is used to tell a given tool to display an anchor, meaning the tool will scroll the
associated window, making the anchor visible. This way, anchors may be used both to synchro-
nize presentations where two or more independent tools are used to display related pieces of
information, and to implement the linking mechanism.

Active Documentation for VLSI Design 12 0f 19

The Model

@he,w 3

P

[:¥em+schemalic: B2mo
“Path | Mew | Onse | Setect

FIGURE 3. How anchors work. On this frame, the navigation tool and the schematic editor
have commonly defined the shaded “nand2” instance as an anchor When a
user selects the anchor (through a mouse click over the area of the symbol
corresponding to the anchor) the acrion associated with the anchor is run. In
the example, it contains a single command to Jump to_another frame,
implementing a hyperlink.The two programs communicate via RPC.

Contents. The concept of a node is represented by the type contents. A contents may be seen as the
encapsulation of a file and the tool used to manipulate it. It also contains the set of anchors

defined for the contents.

Frame. A frame describes a set of contents plus a user-interface to perform actions on its elements.
The description includes the layout of the contents displayed on the screen when the frame is ren-
dered and the position and semantics of a set of burtons, used for bringing pull-down menus to
edit the document, select the default path, or the next frame to be invoked.

Button. A butron describes one action that the user may invoke. It consists of a graphical representa-
tion and an acrion. Buttons are used in frames to allow for navigation without having to interact

Active Documentation for VLS| Design 130f 19

The Model

with the tools that may be invoked by the navigation system. A common problem in hypertext
systems is that users tend to find themselves “lost in a hyperspace of data ”[10] when they do not
have a good visualization of the structure of the document. A set of buttons common to all frames
in a document, may be used to offer standard aids for navigation such as guided tours or escape
buttons. Buttons can also be used for implementation of links in an alternative way to anchors
defined in contents. This is specially useful to allow the use of foreign tools! in active documents.

Path. A path is the data type that provides support for guided-tours inside the hypermedia system.
Unlike most systems that define a path just as a sequence of nodes, our concept of a path is a map-
ping from each frame to a destination frame and a set of anchors defined within it. This corre-
sponds to rendering the destination frame in such a way that all the anchors are visible in their
contents windows, when a pre-deﬁned button, the next button, is activated. The user of the sys-
tem, after selecting one of paths defined for the document, follows a guided tour by pressing the
next button, corresponding to the default link. This will advance the traversal to the destination
frame defined in the path for the frame being displayed. He may jump out, forward or backwards
of the path freely, but has always accessible the possibility of following the established default
path once he steps into a frame in the path.

Document. A document is the top level data type. It is described by a name, a set of paths and a set of

frames.

3.2 Operations

A document is stored as a single data file, called a web [9], defining the structure of the document in
terms of the data types above described. The basic program in the Henry system is the navigator, that
presents documents as defined in their associated web files and allows users to add new frames and

links interactively. The navigator has a command interpreter and a graphical user interface based on
the Tcl language and the Tk toolkit [11] [12].

Tel is an embeddable command language, extensible by applications. One Tcl command, send,
allows any application with a Tcl interpreter to dispatch a command to be executed on any other
application running on the same screen. Tk is an X window system [13] toolkit, whose interaction
objects communicate with applications through commands built as an extension to the Tcl language.

1. those that are not be modified to implement the RPC protocol required for creating anchors.

Active Documentation for VLS| Design 140f 19

The Model

Together, Tcl and Tk form a flexible and dynamic user interface description language. Our extension
offers additional support for handling active documents.

A web file is itself a script containing commands defined as an extension of the Tcl language. It
is beyond the scope of this paper a formal definition of the document description language. We have
considered the adoption of a standard document description language such as SGML [14], but these
do not support the concept of active documentation. Although a web file may be created and edited
using a text editor, it is not intended to be manipulated that way. Webs are parsed by the navigator to
initialize its data structures. Authors may then modify the data structures interactively, and they will
be written back to the web files in the format of the design definition language upon exit.

Anchor definition. Anchors are defined using the select, cut and paste mechanism available in mod-
ern graphic user interfaces [4]. A selection is basically a buffer with a protocol for access by sev-
eral concurrent programs. First, users start by selecting the object they want to define as an anchor
in the tool displaying the anchor interface. The result of this is that the tool places some data in the
selection buffer that will define uniquely the object chosen to be associated with an anchor. Then
the user instructs the navigator to define an anchor. The navigator will use what is currently in the
selection buffer as the data defining the object previously put in the selection by the user. The data
passed to the navigator is a persistent definition of an anchor representation, meaning that it may
be passed back to the tool in another run as part of a command to recreate the anchor in the tool’s
address space.

Link Creation. In order to execute a jump to another frame, the system has to perform the following

operations:

* Invoke the tools associated with each contents in the frame.

® Instruct the tools to create their windows on the desired locations.

® Command each tool to “scroll” to display the required anchor on the associated window.
To define a link, we need to define previously at least one anchor for its origin. The anchor will
have attached the name of an action to be executed when a user interacts with it, for example by
pressing a button.

Actions. In our prototype implementation, the scripts that describe the actions to be taken when an
anchor is selected are procedures in the Tcl language. In these procedures, the Tcl commands
defined by the Tk toolkit may be used, making it a very powerful way for defining user interac-
tions. One of the commands available in the scripts is the Jump command, that provides the

Active Documentation for VLSI Design 150f 19

Document Bullding Toolkit

hyperlinking capability. Jump takes as arguments the name of the destination frame and optional
pairs with the name of a contents and an anchor, to specify what will be displayed in each of the
corresponding windows.

Hierarchies of documents. One simple way to support hierarchies of documents is to have a con-
tents, whose tool is another instance of the navigator, configured to process another document
upon start-up. This has the limitation that gives the user multiple contexts in a single session: each
invocation of the navigator would create additional control panels to manipulate the documents
accessed this way, leading to a poor user interface. The solution is to merge dynamically the webs
of other documents upon user demand. For this reason, we provide an additional option in the
Jump command, indicating the name of the document the destination frame belongs to. The doc-
ument will then be merged if it has not been accessed before.

4 Document Building Toolkit

For hypertext-based documentation systems, no unique paradigm for writing documents exists. The
bottom-up and the top-down processes are equally used [10]. Generic hypertext systems have only
limited aids for document builders, such as document consistency checkers to verify that there are no
dead-end nodes or browsers for the document structure. Besides the usual aids in hypertext-based sys-
tems, Henry offers a set of new tools that may be used by document writers to speed-up the process of
constructing design documents. Hodges and Sasnett [7] proposed the idea of “plastic editors,” cus-
tomizable editors that document writers could include in their multimedia presentations. In our sys-
tem, the CAD tools are also viewed as customizable editors that designers may use to document their
designs. We take advantage of being restricted to an hypermedia-based application dedicated to hard-
ware documentation, with the additional capability of having the possibility of reusing the tools and
services of a CAD Framework and the design data for building documentation. For instance, in a top

down process for writing documentation, one could think of a tool to generate automatically a docu-
ment having a frame for each component in a design and links reflecting the hierarchy.

Henry offers document writers the possibility of automatically adding nodes with a pre-defined
functionality to an active document. Framework services and tools can be encapsulated in frames,
which can then be instantiated ir a document being assembled. This way, several kinds of information
about a design such as its history or its structure can be incorporated into documents as active nodes
with minimum effort. Most tools to manipulate frames in the document building toolkit in this class

Active Documentation for VLS! Design 16 0f19

Status, Conclusions and Future Work

are simple filters that convert a web into another file in the same format, adding or modifying frames
in the process.

Another class of tools in the toolkit is that of those that are modifications of existing browsing
tools and that can be put in a document to help navigation. For instance, in the VLSI environment, a
layout browser could be modified to display the frame containing the documentation about one com-
ponent when a user presses a button over the area defined by its protection frame. In fact, the interface
between Henry and the tools works in both ways, giving the system a dual purpose: it can be used
both as a documentation system for designs and as the help system for the design tools.

Finally existing tools to display multimedia information may be also employed in Henry. For
instance, a portion of a videotaped presentation describing the behavior of a given component, could
be made available from a frame which would be linked to the file containing its representation.

5 Status, Conclusions and Future Work

Henry is being implemented as an assembly of several subsystems. The framework used is the
Octtools[6]. We are modifying some tools to incorporate a Tcl interpreter to accept commands for
defining anchors and sending events to the navigator. The current version of the navigator is a Tcl/Tk
based application under development, that will provide minimum functionality to test the conceptual
model under development. We are also working on the integration of the FrameMaker publishing
software within Henry, communicating via FrameMaker’s RPC interface [3). Figure 4 gives a picto-
rial representation of the general architecture of the documentation system, in terms of files and pro-
cesses, showing how the navigator is integrated with the publishing system and the CAD framework
above described.

We are also evaluating current multimedia tools and hypermedia systems, offering support for
the manipulation of video data, that could be tailored to allow the implementation of the model here
described, thus offering the possibility of building multimedia presentations embedding the VLSI
design tools we are currently using and offering the possibility of using the document building toolkit
under development.

We presented a model for documentation of hardware designs, using the idea of active docu-
mentation and based on multimedia representations. We also proposed the notion of a hardware docu-
ment building toolkit, describing the set of tools available to help the tasks of writing hardware

Active Documentation for VLSI Deslign 17 0of 19

Status, Conclusions and Future Work

FIGURE 4. The architecture of Henry. This figure shows how the navigator communicates
with FrameMaker via the Sun RPC interface and with a modified version of VEM
(the octtools editor) via Tcl.

documentation. This model and the toolkit to help writing VLSI designs documentation are being
designed as part of the Henry documentation system.

Tcl/Tk have proven to be extremely powerful for the development of this application. First,
because of its extendable language and embedded communication mechanism provide an invaluable
support for the implementation of Henry, which requires a generic mechanism for transferring control
commands between tools. Secondly, with Tcl/Tk it is a matter of minutes to develop a small program
supporting simple user interactions to pass commands to other tools. These are in many situations
required as a simple means to invoke an extra tool to a frame or to provide an hyperlinking button
when writing active documents.

We are developing Henry as a vehicle to research on how multimedia technology can be
employed in CAD systems to help designers, specially in system design documentation. We intend to
add support for real-time video data capture and investigate how multimedia information such as vid-

Active Documentation for VLSI Design 18 of 19

References

eotapes of design reviews and design meetings could be used to significantly reduce the time dedi-
cated to documentation while improving its quality.

6 References

[1] Beverly S. Becker and Lawrence A. Rowe. HIP: A Hypermedia Extension of the Picasso Appli-
cation Framework, December 1990. University of California, Berkeley. Memorandum no.
UCB/ERL M90/121.

[2] Andrea Casotto. Automatic Design Management Using Traces. Ph.D. thesis, University of
California, Berkeley, March 1991. Memorandum no. UCB/ERL M91/22.

[3] Frame Technology Corporation, 1010 Rincon Circle, San Jose, California 95131. Integrating
Applications with FrameMaker, Part Number 41-00327-00, 1989.

[4] Adele Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison-Wesley,
Reading, Mass., 1984.

[5] Theodore W. Gray and Jerry Glynn. Exploring Mathematics with Mathematica. The Advanced
Book Program. Addison-Wesley Pub. Co., 1991.

[6] D.S. Harrison, P. Moore, R. L. Spickelmier, and A. R. Newton. Data Management and Graph-
ics Editing in the Berkeley Design Environment. In_Proceedings of the 1986 IEEE Interna-
tional Conference on Computer-Aided Design, pages 24-27, 1986.

[71 Matthew E. Hodges and Russel M. Sasnett. Plastic Editors for Multimedia Documents. In Pro-
i f the 1991 Summer USENTX Conference, pages 463—473, 1991.
[8] Integrated Device Technology, Inc., 3236 Scott Boulevard, Santa Clara, California, 95054.
1990-91 Specialized Memories Data Book, 1990.
[9] Norman Meyrowitz. Intermedia: The architecture and construction of an object-oriented hyper-
media system and applications framework. In OOPSLA’86 — Proceedings of the Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications, pages 186—
201. ACM, September 1986.

[10] Jakob Nielsen. Hypertext and Hypermedia. Academic Press, Inc., 1990.

[11] John K. Ousterhout. An X11 Toolkit Based on the TCL Language. In Proceedings of the 1991
Winter USENIX Conference, 1990.

[12] John K. Ousterhout. TCL: an Embeddable Command Language. In Proceedings of the 1990
Winter USENTIX Conference, 1991.

[13] Robert Scheifler and James Gettys. X Window System, Digital Press, 2nd edition, 1990.
[14] SGML. ISO/IEC 879-1986 Standard.

[15] Douglas B. Terry and Donald G. Baker. Active Tioga Documents. Xerox Corporation Palo Alto
Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304. Technical Report CSL - 90 - 6
June 1990 [P90 - 00113].

[16] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addison-
Wesley Pub. Co., 2nd edition, 1991.

Active Documentation for VLSI Design 19 of 19

