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Abstract. Current 1/0 benchmarks suffer from several chronic problems: they quickly become obsolete,
they do not stress the 1/0 system, and they do not help in understanding 1/0 system performance. We pro-
pose a new approach to 110 performance analysis. First, we propose a self-scaling benchmark that
dynamically adjusts aspects of its workload according to the performance characteristic of the system
being measured. By doing so, it automatically scales across current and future systems. The evaluation
aids in understanding system performance by reporting how performance varies according to each of five
workload parameters. Second, we propose predicted performance, a technique for using the results from
the self-scaling evaluation to quickly estimate the performance for workloads that have not been measured.
We show that this technique yields reasonably accurate performance estimates and argue that this method
gives a far more accurate comparative performance evaluation than traditional single point benchmarks.
We apply our new evaluation technique by measuring a SPARCstation 1+ with one SCSI disk, an HP 730
with one SCSI-II disk, a Sprite LFS DECstation 5000/200 with a four-disk disk array, a Convex C240
minisupercomputer with a four disk array, and a Solbourne SEI905 fileserver with a four disk array.

1. Introduction

As processors continue to improve their performance faster than 1/O devices [Patterson88], I/O will
increasingly become the system bottleneck. There is therefore an increased need to understand and com-
pare the performance of /O systems, hence the need for I/O-intensive benchmarks. The benefits of good
benchmarks are well understood. When benchmarks are representative of users’ applications, they channel
vendor optimization and research efforts into improvements that benefit users. Good benchmarks also

assist users in purchasing machines by allowing fair, relevant comparisons.

Recent efforts to standardize benchmarks, such as SPEC [Scott90] and Perfect Club [Berry89], have
increased our understanding of computing performance and helped create a fair playing field on which
companies can compete. These standardization efforts have focused on CPU-intensive applications

[Scott90], however, and intentionally avoided I/O intensive applications [Berry89].

In this paper, we develop criteria for ideal /O benchmarks and show how current I/O benchmarks

fall short of these. We then describe a new approach to I/O benchmarks—a self-scaling benchmark, which
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dynamically adjusts its workload to the system being measured, and predicted performance, which esti-
mates the performance for non-measured workloads based on the performance from a small set of meas-
ured workloads. The self-scaling benchmark reports how performance varies with each of five workload
parameters, which helps users choose a system that performs well for their workload. Predicted perfor-
mance allows performance evaluators to accurately estimate the performance one could expect on a work-

load different than the exact ones measured in standard benchmarks.

2. The Ideal 1/0 Benchmark

In this paper, an 1/O benchmark measures the data 1/O performance seen by an end user issuing reads
and writes. Specifically, we are nor trying to measure the performance of file system commands, such as
deleting files, making directories, or opening and closing files. This definition dictates that we issue user

I/O requests, which in UNIX typically go through the file or buffer cache.

The ideal 1/O benchmark will have several characteristics. First, a benchmark should help system
designers and users understand why the system performs as it does. Computer architects and operating
system programmers need benchmarks to evaluate design changes and isolate reasons for poor perfor-
mance. Users should be able to use benchmarks as well to understand optimal ways to use the machine.
For instance, if a user wanted to avoid thrashing the file cache, the ideal 1/O benchmark should be able to
provide information on the file cache size for any machine. This criteria may require reporting results for
several different workloads, enabling the user to compare these results. These multiple workloads should

require lite human interaction to run.

Second, to maintain the focus of measuring and understanding 1/O systems, an I/O benchmark should
be 1/O limited. By our definition of an I/O benchmark, this implies that most of the time should be spent in
doing data I/O. In systems that mask response time with read prefetching or write-behind, /0 limited
implies that taking out the all reads and writes should decrease running time more than taking out all non-
1/O components.

Third, the ideal /O benchmark should scale gracefully over a wide range of current and future
machines. Without a well planned scaling strategy, 1/O benchmarks quickly become obsolete as machines

evolve. For instance, IOStone tries to exercise the memory hierarchy but touches only 1 MB of user data.
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Perhaps at the time IOStone was written 1 MB was a lot of data but no longer. One recent example of how
I/O systems are evolving is disk arrays [Patterson88, Gibson91, Chen90, Salem86] Disk arrays allow
multiple 1/Os to be in progress simultaneously. Most current I/O benchmark do not scale the number of
processes issuing 1/O, and hence are unable to properly stress disk arrays. Unfortunately, it is difficult to
find widespread agreement on a scaling strategy, especially for benchmarks intended for a wide range of

audiences.

Fourth, a good 1/0 benchmark should allow fair comparisons across machines. This comparison has
two aspects. First, a fair comparison across machines should be able to be made for I/0 workloads identi-
cal to the benchmark. However, users rarely have the same workload as a standard benchmark. Thus, it
should also be possible to use the results from a benchmark to make meaningful comparisons for work-

loads that differ from the benchmark.

Fifth, the ideal /O benchmark would be relevant to a wide range of applications. It is certainly
easier to target a benchmark to a specific audience, but it would be better for a benchmark to be usable by

many audiences.

Finally, for results to be meaningful, benchmarks must be tightly specified. Results should be repro-
ducible; optimizations that are allowed and disallowed must be explicitly stated; the machine environment
on which the benchmarking takes place must be well-defined and reported, and so on. In this paper, we
leave this aspect of benchmarking standardization organizations such as SPEC [Scott90] and the Transac-
tion Processing Performance Council [TPCA89, TPCBY90].

In summary, the six characteristics of the ideal I/O benchmark are as follows: it should help in under-
standing system performance; it should be I/O limited; it should scale gracefully over a wide range of
current and future machines; it should allow fair comparisons across machines; it should be relevant to a

wide range of applications; and it should be tightly specified.

3. Current IO Benchmarks

In this section, we examine current benchmarks used to evaluate I/O systems. The benchmarks we

consider are Andrew [Howard88], TPC-B [Anon85, TPCA89, TPCB90], Sdet [Gaede81, Gaede82,
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Figure 1: Current State of /O Benchmarks. In this figure, we show a qualitative evaluation of benchmarks used to-
day to evaluate J/O systems. We see that several are not I/O bound and that most do not provide understanding of the
system, lack a well-defined scaling strategy, and are not generally applicable. The percent time spent in I/O was meas-
ured on the DECstation 50007200 of Figure 2. LADDIS was not available for execution at this time, but a pre-release
beta version spends 63% of its execution time doing reads and write; the rest of the time is spent in other NFS opera-
tions, such as lookup (17%) and getattr (6%).

SPEC91b, SPEC91a], Bonnie [Bray90], and IOStone [Park90]'. Of these, only Bonnie and IOStone
specifically focus on measuring /O performance. Andrew is meant as a convenient yardstick for measur-
ing file system performance; TPC-B is a transaction processing benchmark; Sdet, part of the SPEC System
Development Multiuser (SDM) Suite, is designed to measure system throughput in a multi-tasking software
development environment. Although some of these benchmarks are not focused solely on measuring 1/O
performance, they are nonetheless used today in 1/O performance evaluation. In applying our list of bench-

mark goals from the previous section to current I/O benchmarks, we see that there is much room for

ILADDIS, a new benchmark being developed under SPEC, is not yet available for public performance disclosure. We include
it in our qualitative critique of benchmarks, however (Figure 1). The only other [/O benchmark known to the authors is the AIM III
Suite, whose code was not available. The AIM III suite is similar to Sdet in that it scales the number of scripts running in parallel but
no other workload parameter. Each simultaneously running script uses 3.5 MB.
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improvement. We show a qualitative evaluation of today’s I/O benchmarks in Figure 1 and make the fol-

lowing observations:

e Many 1/0 benchmarks are not 1/0 limited. On a DECstation 5000/200 running the Sprite Operating
System [Ousterhout88], Andrew, Sdet?, and 10Stone spend 25% or less of their time doing 1/O.
Further, many of the benchmarks touch very little data. IOStone touches only 1 MB of user data;
Andrew touches only 4.5 MB.

e Today's 1/0 benchmarks do not help in understanding system performance. Andrew and IOStone give
only a single bottom-line performance result. TPCB and Sdet fare somewhat better by showing the user
system performance under various loads. Bonnie begins to help the user understand performance by
running six different workloads. These workloads show the performance differences between reads
versus writes and block versus character 1/O, but do not vary other aspects of the workload, such as the
number of 1/0’s occurring in parallel.

e Most of today's 1/0 benchmarks have no general scaling strategy. Several make no provision for
adjusting the workload to stress machines with larger file caches, for example. Without a well-defined
scaling strategy, I/O benchmarks quickly grow obsolete. Several exceptions are notable. TPC-B has an
extremely well-defined scaling strategy, made possible by TPC-B’s narrow focus on debit-credit style
transaction processing and the widespread agreement on how databases change with increasing data-
base throughput. Sdet also has a superior scaling strategy, varying the number of simultaneously active
scripts until the peak performance is achieved. This idea of scaling aspects of the workload automati-
cally is a major improvement over single workload benchmarks. However, Sdet does not scale any
other aspects of the benchmark, such as request size or read/write ratio. LADDIS, when formally
defined, will likely have a scaling strategy similar to Sdet. It will probably scale a few workload param-
eters, such as disk space or number of clients, but will leave other parameters fixed.

o Today's 1/0 benchmarks make fair system comparisons for workloads identical to the benchmark but do
not help in drawing conclusions about the relative performance of machines for other workloads. It

would be ideal if results from the benchmark could be applied to a wider range of workloads.

2 This refers to Sdet running at the peak throughput concurrency level of 6.
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e Today's 1/0 benchmarks focus on a narrow application range. For example, TPC-B is intended solely

for benchmarking debit-credit transaction processing systems.

4. A New Approach for VO Benchmarks—An Overview

We propose two new ideas in I/O benchmarks. First, we propose a benchmark that automatically
scales its workload to the system being measured. During evaluation, the benchmark automatically

explores the workload space, searching for a relevant workload on which to base performance graphs.

Because the base workload resulting from self-scaling evaluation depends on the characteristics of
each system, we lose the ability to directly compare performance results for multiple systems. We propose
using predicted performance to restore this ability. Predicted performance uses the results of the self-
scaling benchmark to estimate performance for unmeasured workloads. The ability to accurately estimate
performance for arbitrary workloads has several advantages. First, it allows fairer comparisons to be
drawn between machines for their intended use— today, users are forced to apply the relative performance

from benchmarks that may be quite different from their actual workload. Second, the results can be

System Name SPARCstation 1+ | DECstation 5000/200 HP 730
Year Released 1989 1990 1991
CPU SPARC MIPS R3000 PA-RISC
SPECmarks 83 199 76.8
Disk System CDC Wren IV 3 disk (Wren) RAID 0 | HP 1350SX
I/O Bus SCSI-1 SCSI-1 Fast SCSI-II
Mem. Bus Peak Speed 80 MB/s 100 MB/s 264 MB/s
Memory Size 28 MB 32MB 32 MB
Operating System SunOS 4.1 Sprite LFS HP/UX 8.07
System Name Convex C240 Solbourne SE/905
Year Released 1990 (7M7) m
CPU C2 (4 processors) SPARC (7?7 processors)
Speed 220 MIPS m
Disk System 4 DKD-502 RAID 5 4
I/O Bus IPI-2 IPI
Memory Bus Peak Speed 200 MB/s 128 MB/s 7?
Memory Size 1024 MB 384 MB
Operating System ConvexOS 10.1 (BSD derived) | SunOS 4.1A.2 (revised)

Figure 2: System Platforms. This table shows the five systems on which we run benchmarks. The DECstation
[DECstation90] uses a three disk RAID disk array [Patterson88] with a 16 KB striping unit [Chen90] and is configured
without redundancy. The SPECmark rating is a measure of the processor speed; ratings are relative to the speed of a
VAX 11/780. The full name of the HP 730 is the HP Series 700 Model 730 [HP730].
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applied to a much wider range of applications than today’s benchmarks. Of course, the accuracy of the
prediction determines how effectively prediction can be used to compare systems. We explore the method

and accuracy of prediction in Section 9.

5. Workload Model

The workload that the self-scaling evaluation uses is characterized by five parameters. These param-
eters lead to the first-order performance effects in I/O systems. See Figure 3 for examples of each parame-

ter.

e uniqueBytes—the number of unique data bytes read or written in a workload; essentially the total size
of the data.

e sizeMean—the average size of an I/O request. We choose sizes from a normal distribution with a
coefficient of variation equal to 1.

e readFrac—the fraction of reads; the fraction of writes is 1-readFrac .

o seqFrac—the probability that any given request would sequentially follow the prior request. For work-
loads with multiple processes, each process is given its own thread of addresses.

e processNum—the concurrency in the system, that is, the number of processes simultaneously issuing

I/0.

In this paper, a workload refers to a user-level program with parameter values for each of the above

five parameters. This program spawns and controls several processes if necessary.

The most important question in developing a synthetic workload is the question of representativeness

[Ferrari®4]. A synthetic workload should have enough parameters such that its performance is close to that

of an application with the same set of parameter values.® To show that our workload captures the important
features of an 1/O workload, Figure 4 compares the performance of two 1/O-bound applications to the per-
formance of the synthetic workload with those two applications’ parameter values. We see that both Sort

and TPC-B can be modeled quite accurately. Throughput and response time are both accurate within a few

30f course, given the uncertain path of future computer development, it is impossible to determine a priori all the possible
parameters necessary 1o ensure representativeness. Even for current systems, it is possible to imagine [/O workloads that interact with
the system in such a way that no synthetic workload (short of a full trace) could duplicate that I/O workload’s performance.
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Figure 3: Results from a Self-Scaling Benchmark That Scales All Parameters. In this figure, we show results from
an self-scaling benchmark of a SPARCstation 1 with 28 MB of memory and a single SCSI disk. The benchmark re-
ports the range of workloads, shown as the shaded region, which perform well on this system. For example, this
SPARCstation performs well if the total number of unique bytes touched is less than 20 MB. It also shows how perfor-
mance varies with each workload parameter. Each graph varies exactly one parameter, keeping all other parameters
fixed at their focal point. For these graphs, the focal point is the point at which all parameters are simultaneously at
their 75% performance point. The 75% performance point for each parameter is defined to be the least restrictive
workload value that yields at least 75% of the maximum performance. The range of workloads which perform well
(shaded), is defined as the range of values that yields at least 75% of the maximum performance. The 75% perfor-
mance point found by the benchmark for each parameter is uniqueBytes = 21 MB, sizeMean = 10 KB, readFrac =0,
processNum = 1, seqFrac = 0.
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- Read Write Average
Application Throughput Response Time | Response Time | Response Time
Sort 20 MB/s 19.7 ms 1.6 ms 11.7 ms
Workload Model 20 MB/s 20.0 ms 1.9 ms 11.0 ms
TPC-B 13 MB/s 25.6 ms 1.3 ms 14.0 ms
Workload Model .13 MB/s 22.1 ms 1.6 ms 123 ms

Figure 4: Representativeness of Workload. This table shows how accurately our synthetic workload mimics the
performance of two 1/O-bound applications, Sort and TPC-B. All runs were done on a DECstation 5000 running
Sprite. The input to sort was four files totaling 48 MB.

processNum

readFrac

sizeMean

Figure 5: Workloads reported by a set of single parameter graphs. This figure illustrates the range of workloads
reported by a set of single parameter graphs for a workload of three parameters.

percent. This accuracy increases our confidence that the parameters of the synthetic workload capture the

first-order performance effects of an I/O workload.

6. Single Parameter Graphs

Most current benchmarks report the performance for only a single workload. The better benchmarks

report performance for multiple workloads, usually in the form of a graph. TPC-B and Sdet, for example,

report how performance varies with load. But, even these better benchmarks do not show in general how

performance depends on parameters such as request size or the mix of reads and writes.
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The main output of our self-scaling benchmark is a set of performance graphs, one for each parame-
ter (uniqueBytes, sizeMean, readFrac, processNum, and seqFrac) as in Figure 3. While graphing one
parameter, all other parameters remain fixed. The value at which a parameter is fixed while graphing other
parameters is called the focal point for that parameter. The vector of all focal points is called the focal vec-
tor. In Figure 3, for example, the focal vector is {uniqueBytes = 21 MB, sizeMean = 10 KB, readFrac = 0,
processNum = 1, seqFrac = 0}. Hence, in Figure 3a, uniqueBytes is varied while the sizeMean = 10 KB,

readFrac = 0, processNum = 1, and seqFrac = 0.

Figure 5 illustrates the workloads reported by one set of such graphs for a three parameter workload
space. Although these graphs show much more of the entire workload space than current benchmarks, they
still show only single parameter performance variations; they do not display dependencies between param-
eters. Unfortunately, completely exploring the entire five dimensional workload space requires far too
much time. For example, an orthogonal sampling of six points per dimension requires 6°, almost 8000,
points. On the Sprite DECstation, each workload takes approximately 10 minutes to measure, thus 8000
points would take almost 2 months to gather! In contrast, measuring six points for each graph of the five
parameters requires only 30 points and 5 hours. The usefulness of these single parameter graphs depends
entirely on how accurately they characterize the performance of the entire workload space. In the section
on predicted performance we shall see that, for a wide range of 1/O systems, the shapes of these perfor-

mance curves are relatively independent of the specific values of the other parameters.

7. First Try—Self-Scaling All Workload Parameters

A self-scaling benchmark is one that adjusts the workloads that it runs and reports based on the capa-
bilities of the system being measured. Sdet and TPC-B both do this for one aspect of the workload, that is,
load (processNum) [SPEC91a, TPCB90]. Sdet reports the maximum throughput, which occurs at different
loads for different systems. TPC-B reports maximum throughput subject to a response time constraint; this
also occurs at different loads for different systems. This section describes our first attempt to create a self-

scaling benchmark by generalizing this type of scaling to all workload parameters.

The basic idea behind TPC-B and Sdet’s attempts to avoid obsolescence is to scale one aspect of the

workload, load, based on what performs well on a system. Similarly, as we vary any one of our five work-
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load parameters (uniqueBytes, sizeMean, readFrac, processNum, and seqFrac), we can search for a param-
eter value that performs well on the system. Of course, the parameter value must be practically achievable
(this rules out infinitely large request sizes and extremely small values for uniqueBytes). One way to
choose this value is to look for a point in a parameter’s performance curve that gives good, but not max-

imum, performance. In this section, we set this performance point at 75% of the maximum performance.

Using a simple iterative approach, it is possible to find a focal vector for which each workload
parameter is simultaneously at its 75% performance point [Chen92]. Figure 3 shows results from a bench-
mark that self-scales all parameters. The system being measured is the one disk SPARCstation of Figure 2.
In Figure 3 the shaded region on each graph is the range of workloads that perform well for this system,
that is, the workload values that yield at least 75% of the maximum performance. When a parameter is
varied, the other parameters are fixed at their focal point chosen by the benchmark (uniqueBytes = 21 MB,
sizeMean = 10 KB, readFrac = 0, processNum = 1, seqFrac = 0). These are the least restrictive values in
the range of workloads that perform well. Conclusions that these results help us reach about this system

are as follows:

e The effective file cache size is 21 MB. Applications that have a locality space larger than 21 MB will
go to disk frequently.

e 1/O workloads with larger average sizes yield higher throughput. To get reasonable throughput, request
sizes should be at least 10 KB but no larger than 200 KB. This information may help operating system
programmers choose the best block size.

e Workloads with almost all reads perform slightly better than workloads with more writes, but there is
not much difference.

e Increasing concurrency does not improve performance. As expected, without parallelism in the disk
system, workload parallelism is of litde value.

o Sequentiality does not affect performance at the focal vector.
Self-scaling all parameters gives interesting results and helps us understand a system. There are,
however, several problems with self-scaling all workload parameters. First, the iterative process of finding

the global 75% performance point may be slow.
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Second, there are really two criteria in choosing the focal vector point for a parameter. Take read-
Frac as an example. The first criterion is what has been mentioned above—scaling readFrac to the value
that performs well on this system. But, there is also a second criterion: the performance curves while read-
Frac is at its focal point should apply to workloads where readFrac differs from its focal point. In other
words, the shape of the performance curves at the focal point of readFrac should be representative of the
shape of the performance curves at other values of readFrac. This can preclude choosing an extreme value.
To illustrate, if reads were 100 times faster than writes, self-scaling all parameters might pick readFrac =
1.0 as the focal point. But, readFrac’s focal point of 1.0 may yield performance graphs for the other
parameters that do not apply to workloads with some writes. It would be better to pick an intermediary
value as the focal point than the 75% performance point. In fact, as we shall see in the section on predicted
performance, general applicability is a more important criterion than scaling to the 75% performance point,
because, if the shape of the performance curve is generally applicable, we can use it to estimate perfor-

mance for any workload.

The third problem is that the uniqueBytes parameter often has distinct performance regions. These
regions correspond to the various storage hierarchies in the system. In Figure 3a, uniqueBytes smaller than
21 MB primarily uses the file cache, while uniqueBytes larger than 21 MB primarily uses the disk. When
uniqueBytes is on the border between the file cache and disk region, performance is often unstable—small
changes in the value of uniqueBytes can lead to large changes in performance. The 75% performance
point is usually on the border between the storage hierarchy regions, so choosing the focal point for unique-
Bytes to be that point makes it likely that performance will be less stable. Graphing in the middle of a
hierarchy level’s performance region should be more stable than graphing on the border between perfor-
mance regions. Another problem that arises from the storage hierarchy regions is that each level of the
storage hierarchy may give different performance shapes. Figures 7 and 8 shows how, depending on the
storage hierarchy region, reads may be faster than writes (Figure 7g), slower than writes (Figure 8b), or the

same speed as writes (Figure 7b).

8. A Better Self-Scaling Benchmark

There are a variety of solutions to the problems listed above. For the distinct performance regions

uncovered by uniqueBytes, we measure and report multiple families of graphs, one family for each
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performance region (Figure 3 reported a single family of graphs). For instance, the first family of graphs is
shown in Figure 6a-d and has uniqueBytes = 12 MB. The second family of graphs, shown in Figure 6f-i,

has a separate focal point with uniqueBytes = 42 MB.

To improve general applicability of the graphs, we choose the focal point of each parameter to be
more in the ‘“‘middle”’ of its range. For parameters such as readFrac and segFrac, the range is easily
defined (0 to 1), hence a midpoint of 0.5 is the chosen focal point. The remaining parameters are unique-
Bytes, sizeMean, and processNum. For each performance region, the focal point for uniqueBytes is set at
the middle of that region. For the last two parameters, sizeMean and processNum, the focal point is set at

the value that yields performance half-way between the minimum and maximum.

After these solutions and modifications to the all-parameter-self-scaling benchmark, the revised pro-

gram is called simply the self-scaling benchmark.

8.1. Examples

This section contains results from running the self-scaling benchmark on the five systems described

in Figure 2.

8.1.1. SPARCstation 1+

Figure 6 shows results from the self-scaling benchmark on the SPARCstation 1+. The uniqueBytes
values that characterized the two performance regions are 12 MB and 42 MB. Graphs a-d show the file
cache performance region, measured with uniqueBytes = 12 MB. Graphs {-i show the disk performance
region, measured with uniqueBytes = 42 MB. In addition to what we leamed from our first self-scaling

benchmark, we see the following:

e Larger request sizes yield higher performance. This effect is more pronounced in the disk region.

o Reads are faster than writes, even when all the data fits in the file cache (Figure 6.b). Although the data
fits in the file cache, writes still cause i-node changes to be written to disk periodically for reliability in
case of a system crash. This additional overhead for writing causes writes to be slower than reads.

e Sequentiality offers no benefit in the file cache region (Figure 6.b) but offers substantial benefit in the

disk region.
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Figure 7: Self-scaling benchmark of DECstation 5000/200. In this figure, we show results from the revised self-
scaling benchmark of the DECstation 5000/200. Graph e shows three plateaus in uniqueBytes, due to the different ef-
fective file cache sizes for reads and writes. Graphs for the third plateau is shown in Figure 8. The focal point for uni-
queBytes is 2 MB in graphs a-d and 15 MB in graphs f-i. For all graphs, the focal points for the other parameters is
sizeMean = 40 KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5. Note how reads can be faster than writes ®),

slower than writes (Figure 8.b), or the same speed (b).
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Figure 8: Self-scaling benchmark of DECstation 5000/200. This figure continues the results from the revised self-
scaling benchmark of the DECstation 5000/200. The focal point for these graphs is uniqueBytes = 36 MB, sizeMean =
40 KB, readFrac = .5, processNum = 1, seqFrac = .5.

8.1.2. DECstation 5000/200

Figure 7 and 8 show self-scaling benchmark results for the DECstation 5000/200. The uniqueBytes
graph (Figure 7¢) shows three performance plateaus, uniqueBytes = 0 to 5 MB, uniqueBytes = 5 to 20 MB,
and uniqueBytes > 20 MB. Thus, the self-scaling benchmark gathers three sets of measurements, one at
uniqueBytes 2 MB (Figure 7a-d), 15 MB (Figure 7e-i, and 36 MB (Figure 8). The most interesting

phenomenon involves readFrac.

In the first performance level (uniqueBytes = 2 MB), reads and writes are the same speed (Figure

7b). At the next performance level (uniqueBytes = 15 MB), reads are much faster than writes (Figure 7g).
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This is due to the effective write cache of Sprite’s LFS being much smaller than the read cache, so reads
are cached in this performance region while writes are not. The write cache of LFS is smaller because LFS
limits the number of dirty cache blocks to avoid deadlock during cleaning. The effective file cache size for
writes is only 5-8 MB, while for reads it is 20 MB [Rosenblum92] 4 In contrast, when uniqueBytes is large
enough to exercise the disk for both reads and writes, writes are faster than reads (Figure 8b). This
phenomenon is due to Sprite’s LFS, which improves write performance by grouping multiple small writes

into fewer large writes.

8.1.3. HP 730, Convex C240, Solbourne SE/905

The appendix gives full sets of figures resulting from self-scaling benchmark runs on an HP 730,
Convex C240, and Solbourne SE/905. In this section, we briefly highlight some insights gained from these

benchmark results.

Figure 14 in the Appendix shows self-scaling benchmark results for the HP 730. Note how small the
effective file cache is. The HP/UX operating system severely limits the memory available to the file cache.
SunOS maps files into virtual memory, which allows the file cache to fill the entire physical memory.
HP/UX, on the other hand, reserves a fixed amount of space, usually 10%, as the file cache. Since this sys-
tem has 32 MB of main memory, the file cache is approximately 3 MB. The self-scaling benchmark thus
uses two focal points, uniqueBytes = 2 MB and uniqueBytes = 8 MB. Also, note the high throughput of the
HP 730 when accessing the file cache, peaking at almost 30 MB/s for large accesses (Figure 14a). This
high performance is due to the fast memory system of the HP 730 (peak memory bandwidth is 264 MB/s)

and to the use of a VLSI memory controller to accelerate cache-memory write backs [Horning91].

Figure 15 in the Appendix shows results from the self-scaling benchmark of a Convex C240 are

shown in. The curves are similar to the SPARCstation 1+, with three main differences:

e Absolute performance is very high. File cache performance reaches 25 MB/s (Figure 15b); disk perfor-
mance reaches almost 10 MB/s (Figure 15f). This high performance is due to Convex’s 200 MB/s

memory system and performance-focused (as opposed to cost-performance) implementation.

“The default limit was tuned for a machine with 128 MB of memory; in production use, this limit would be changed for the 32
MB system being tested.
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Figure 9: Summary of performance of all systems. This figure compares performance for each of our five expen-
mental platforms plotted against uniqueBytes. Remember that the self-scaling evaluation chooses different workload
for each machine; each system in this figure is graphed at different values of sizeMean. Note that the X axis is graphed
in log scale. The HP 730 has the best file cache performance but the smallest file cache; the Convex C240 has the best
disk performance.

e The effective file cache for the Convex is 800 MB. This is due to the 1 GB of main memory resident on
the computer and an operating system that gives the file cache use of the entire main memory.
o Disk performance continues to improve with increasing request size until requests are 1 MB (Figure

15f), while most other computers reach their peak performance with sizes of a few hundred kilobytes.

Figure 16 in the Appendix shows self-scaling benchmark results for the Solbourne 5E/905. We see

two differences from the other graphs.

e The file cache is quite large, about 300 MB (Figure 16¢). This matches our expectations, since the main
memory for this system is 384 MB.

e When accessing the file cache, writes are drastically slower than reads (Figure 16b). It appears that the
Solbourne file cache uses a writing policy, possibly write-through, that causes writes to the file cache to
perform at disk speeds. Because writes have essentially no benefit from the file cache, performance

when varying uniqueBytes changes more gradually slower than for the other systems.
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Figure 9 compares performance for each of our five experimental platforms plotted against unique-
Bytes. Remember that the self-scaling evaluation chooses different workload for each machine; each sys-
tem in Figure 9 is graphed at different values of sizeMean. The HP 730 has the best file cache performance

but the smallest file cache; the Convex C240 has the best disk performance.

9, Predicted Performance

The self-scaling benchmark increases our understanding of a system and scales the workload to
remain relevant. However, it complicates the task of comparing results from two systems. The problem is
the benchmark may choose different workloads on which to measure each system. Also, though the output
graphs from a self-scaling evaluation applies to a wider range of applications than today’s 1/O benchmarks,
they stop short of applying to completely general workloads. In this section, we show how predicted per-
formance solves these problems by enabling us to accurately estimate the I/O performance for arbitrary
workloads based on the performance of a small set of measured workloads (that is, those measured by the

self-scaling evaluation).

TH(P.S) TH(PL.ST) THPL,S)
_ - TH@PSH=? \
Throughput -
THP{S}) ——m——1—>
4
7
pf processNum st Sf sizeMean

Figure 10: Predicting Performance of Non-Measured Workloads. In this figure, we show how to predict perfor-
mance with a workload of two parameters, processNum and sizeMean. The solid lines represent workloads that have
been measured; the dashed line represent workloads that are being predicted. The left graph shows throughput graphed
against processNum with sizeMean fixed at sizeMeany . The right graph shows throughput versus sizeMean with pro-

cessNum fixed at processNumy . We predict the throughput curve versus processNum with sizeMean fixed at size-

) Throughput (processNum ,sizeMean;) )
Mean | by assuming that - is constant (independent of processNum) and
Throughput (processNum ,sizeMean ,)

Throughput (processNumy ,sizeMeany )
t .
Throughput (processNumy sizeMean )

fixed a
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A straightforward approach for estimating performance for all possible workloads is to measure a
comprehensive set of workloads. However, measuring all possible workloads is not feasible within reason-
able time constraints. A more attractive approach is to use the graphs output by the self-scaling evaluation
graphs (such as Figure 6) to estimate performance for non-measured workloads. This is similar in concept
to work done by Saavedra-Barrera, who predicts CPU performance by measuring the performance for a

small set of FORTRAN operations [Saavedra-Barrera89).

We estimate performance for non-measured workloads by assuming the shape of a performance
curve for one parameter is independent of the values of the other parameters. This assumption leads to an
overall performance equation of Throughput (X ,Y Z...) = fx (X)X fy(Y) X fz@) ---,where X, Y, Z, ...
are the parameters. Pictorially, our approach to estimating performance for non-measured workloads is
shown for a two parameter workload in Figure 10. In the self-scaling evaluation, we measure workloads
with all but one parameter fixed at the focal point. In Figure 10, these are shown as the solid line
throughput curves Throughput (processNum ,sizeMean; ) and Throughput (processNumy ,sizeMean ), where
processNumy is processNum’s focal point and sizeMean; is sizeMean’s focal point. Using these measured
workloads, we estimate performance for non-measured workloads Throughput (processNum SizeMean ),
where sizeMean j#sizeMean, , by assuming a constant ratio between Throughput (processNum ,sizeMean; )
and Throughput (processNum sizeMean,). This ratio is known at processNum =processNum; (0 be

Throughput (processNumy sizeMean, )

. To measure how accurately this roximates actual perfor-
Throughput (processNumy sizeMean 1) y PP pe

mance, we measured 100 workloads, randomly selected over the entire workload space (the range of each

parameter is shown in Figure 6).

Figure 11a shows the prediction accuracy of this simple product-of-single-variable-functions
approach. We see that, over a wide range of performance (0.2 MB/s to 3.0 MB/s), the predicted perfor-
mance values match extremely well to the measured results. 50% of all workloads have a prediction error
of 10% or less; 75% of all workloads had a prediction error of 15% or less. Figure 11b shows the cumula-
tive error distribution of the prediction. In contrast, any single point /O benchmark would predict all
workloads to yield the same performance. For example, Andrew’s workload and IOStone’s workload both
yield performance of 1.25 MB/s, leading to a median prediction error of 50%. Bonnie’s sequential block

write yields a performance of .32 MB/s, for a median prediction error of 65%. These are shown by the
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Figure 11: Evaluation of prediction accuracy for SPARCstation 1+ with 1 disk. This figure graphs the predicted
performance against the actual (measured) performance for the SPARCstation in Figure 6. Each point represents a sin-
gle workload, with each parameter value randomly chosen from its entire range shown in Figure 6. The closer the
points lie to the solid line, the better the prediction accuracy. Median error is 10%. Performance for each workload
ranges from 0.2 MB/s to 3.0 MB/s. For comparison, we show the single performance point predicted by Andrew, 10-
Stone, and Bonnie (sequential block write), and Sdet as horizontal dashed lines. Clearly these single point benchmarks
do not predict the performance of many workloads. .
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Figure 12: What parameters cause error? This figure shows the correlation between parameter values and predic-
tion error for the SPARCstation 1+. Error is most closely correlated to the value of uniqueBytes. Prediction is particu-
larly poor near the border between performance regions. As expected, sharp drops in performance lead to unstable

throughput and poor prediction.

dashed lines in Figure 11.

Where do the points of high error occur? Is there a correlation between certain parameters and

regions of high error? Figure 12 shows how median error varies with each parameter. Note that error is

most closely correlated to the value of uniqueBytes. Prediction is particularly poor near the border

between performance regions. As expected, sharp drops in performance lead to unstable throughput and

poor prediction. This confirms our use of two distinct uniqueBytes regions for prediction versus a single



223-

focal point. Other than uniqueBytes, prediction accuracy is fairly independent of the parameter values.

Figure 13 shows predicting accuracy for the other systems.S Median error is low for all systems: 12%

for the DECstation 50007200, 13% for the HP 730, and 16% for the Convex C240.

10. Conclusions

We have proposed a new approach to /O benchmarking—self-scaling evaluation and predicted per-
formance. Self-scaling evaluation scales automatically to all current and future machines by scaling the
workload to the system under test. It also gives insight on the machine performance characteristic by

revealing the performance dependencies for each of five workload parameters.

Predicted performance restores the ability to compare two machines on the same workload lost in the
self-scaling evaluation. Further, it extends this ability to workloads that have not been measured by
estimating performance based on the graphs from the self-scaling evaluation. We have shown that this

prediction is far more accurate over a wide range of workloads than any single point benchmark.

We believe self-scaling evaluation and predicted performance could fundamentally affect how
manufacturers and users view 1/O evaluation. First, it condenses the performance over a wide range of
workloads into a few graphs. If manufacturers were to publish such graphs over a range of 1/O options,
users could use predicted performance to estimate, without further measurements, the 1/O performance of

their specific workloads.

Second, by taking advantage of the self-scaling evaluation’s ease of use, manufacturers could easily
evaluate many I/O configurations. Instead of merely reporting performance for each 1/O configuration on a
few workloads, the evaluation would report both the performance for many workloads and the 1/O work-
loads that perform well under this configuration. Hence, manufacturers could better identify each
product’s target application area. As the price of each configuration is easily calculated, the
price/performance of systems that maich the users needs are also easily calculated. This can help buyers
make choices such as many small disks versus a few large large disks, more memory and a larger file cache

versus faster disks, and so on.

5We are in the process of gathering data for the Solboune 5E/905 and expect to include them in the final revision.
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Figure 13: Evaluation of prediction accuracy for DECstation 5000/200, HP 730, and Convex C240. This figure

graphs

the predicted performance against the actual (measured) performance for the DECstation 5000/200 in Figure 7,
the HP 730 in Figure 14, and the Convex C240 in Figure 15. Median error is 12% for the DECstation 5000/200, 13%
for the HP 730, and 16% for the Convex C240. For comparison, we show the single performance point predicted by
Andrew, IOStone, and Bonnie as horizontal dashed lines. The midrange of performance for the HP 730 (7-15 MB/s)
has high error because workloads with this performance are on the border between performance regions.



225

Third, system developers could benefit by using the self-scaling evaluation to understand the effects
of any hardware and software changes. Unlike traditional benchmarks, these effects would be shown in

both the performance and the workload selection of self-scaling evaluation.

We look forward to having others try this evaluation tool on a variety of systems, as Mobil Corpora-
tion did for the Solbourne SE/05. To get a copy, please send e-mail to the authors (unnamed for

anonymous submission).
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Figure 14: Self-scaling benchmark of HP 730. In this figure, we show results from the revised self-scaling
benchmark of the HP 730. The focal point for uniqueBytes is 1.8 MB in graphs a-d and 8 MB in graphs f-i. For all
graphs, the focal points for the other parameters is sizeMean = 32 KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5.
From graph e, we see that the file cache is much smaller than the main memory size would lead us to believe (3 MB
instead of 32 MB). Also note the extremely high performance, up to 30 MB/s, when uniqueBytes is small enough to fit
in the file cache.
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Figure 15: Self-scaling benchmark of Convex C240. In this figure, we show results from the revised self-scaling
benchmark of the Convex C240. The focal point for uniqueBytes is 450 MB in graphs a-d and 1376 MB in graphs f-1.
For all graphs, the focal points for the other parameters is sizeMean = 120 KB, readFrac = 0.5, processNum = 1,
seqFrac = 0.5. Note how large the file cache is (800 MB), reflecting how much main memory the system has (1 GB).
Also note how large sizeMean grows before reaching its maximum performance (graphs a and f).
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