Robust and Efficient Surface Intersection for Solid Modeling

By

Michael Edward Hohmeyer

B.A. (University of California) 1986

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE
in the
GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Approved:

* % %k %k ¥k %k * * % ¥ % ¥ % * %X % ¥ ¥ * %

Robust and Efficient Surface Intersection for Solid Modeling

by
Michael Edward Hohmeyer
_ﬁ(lﬂv =
Brian A. Barsky
Thesis Chair
Abstract

Solid Modeling requires robust and efficient surface intersection algorithms that
handle a very general class of surfaces, including rational Bézier and B-spline surfaces.
Currently, most algorithms that run in an acceptable amount of time lack a theoretical
basis and thus are not guaranteed to be reliable. Most that have a solid theoretical basis
require enormous computation and are thus impractical.

This thesis presents an algorithm that, given two surfaces not intersecting in any
singular points, will find all intersection curves. If there are any singular points the algorithm
will find and report at least one. The algorithm does not require tolerances except those
associated with machine arithmetic, and can handle any surface representation for which
bounds on the position of the surface as well as its Gauss map (the set of normals to the
surface) are available. The implemented algorithm is demonstrated on actual manufacturing
data, as well as on some pathological examples.

The algorithm is based on a new loop detection criterion. Loop detection criterion-
based intersection algorithms recursively subdivide two surfaces until no surface patches
intersect in a closed loop. The intersection curves of the original patches can be reliably
identified by finding the edge-surface intersections of the resulting sub-patches.

The thesis discusses in detail various problems that are used to implement the
intersection algorithm. These include algorithms for: computing bounds on Gauss maps for
rational B-splines and Bézier surfaces; intersecting curves with surfaces; solving unbounded
linear programming problems; finding tangent directions at singular and non-singular in-
tersection points; handling singularities and degeneracies; and compactly and accurately

representing intersection curves.

Robust and Efficient Surface Intersection for Solid
Modeling
Copyright (©1992
by
Michael E. Hohmeyer

Contents

Table of Contents ii
List of Figures v
1 Surface Intersection 1
1.1 Introduction . . .« v v v i it e 1
1.2 A Brief History of Surface Intersection 3
1.3 The Computer o v v v v vt v et it e e 6
1.4 Solid Modeling« v v v it 7
1.4.1 Constructive Solid Geometry« oo oo v 7

1.4.2 Boundary Representation Solid Modeling 8

2 Previous Work 9
2.1 Decomposition vt i i e e 9
2.1.1 Re-approximating Techniques 10

2.1.2 Direct Decomposition oo 15

2.2 Representation 18
2.2.1 Polynomial Representationso 18

2.2.2 Approximation oo 18
3 Loop Detection 24
3.1 Loop Detection oo it 24
311 Gauss Maps .« v v v v v v v e e e e e e e e 24

3.1.2 Sinha’s Criteriont i e e e e e e e e e 26

3.1.3 Sederberg’s Criterion. oo 28

3.1.4 de Montaudouin’s Criterion« .0 oo 32

3.1.5 Kriezis’ Technique o v v o v it i 33

3.1.6 Dokken’s Observations v v« ¢« v vt bt e e 33

3.2 The Loop Detection Criterion oo v o 34
3.3 Comparison with Previous Methods 38
3.4 The Tracing Algorithm o v i 38
3.5 The Intersection Algorithm 39
3.5.1 Loop Detection oo i 39

3.5.2 Identifying Individual Curves 41

ii

CONTENTS

36 Exampleso ottt e
36.1 A Complex Exampleo
3.6.2 Some Manufacturing Examples

4 Supporting Algorithms

4.1

4.2

4.3

4.4

4.5
4.6
4.7
4.8
4.9

Linear Programming« ot vt i
4.1.1 Bounded Linear Programming
4.1.2 Unbounded Linear Programming
Spatial Separabilityo
42.1 BoundingBoxes oo
422 BoundingPlanes oo
4.2.3 Separating Planes oo
42.4 Performance Analysiso
Spherical Separability e
4.3.1 Spherical Bounding Boxes oo oo
43.2 SeparatingCircles oo
Bounding Gauss Mapso oo
4.4.1 Computing the Gauss Map for Quadric Surfaces
4.4.2 Computing the Gauss Map for Parametric Surfaces
4.4.3 Computing the Gauss Map for Implicit Surfaces
4.4.4 Gauss Map Separability oo
4.4.5 Performance Analysis oo
4.4.6 TFaster Gauss Map Separability
Intersecting Curves and Surfaces,
Finding Tangent Directions at a Non-singular point.
Finding Tangent Directions at a Singularity
Intersecting Three Surfaces,
Managing Intersection Points o

5 Representing the Intersection

5.1 Approximation vs. Representation 0.
5.2 The Curve Object o o i i i i i e e
5.3 The Exact Intersection Curve e e e
53.1 Evaluation e e e e
5.3.2 Subdivision e e
533 Bounding e e
5.3.4 Intersectingwithasurface.
6 Singularities
6.1 Auxiliary Equations e
6.2 Modified Algorithm. L

6.3 ApplicationtoExample oo

iii

CONTENTS

7 Degeneracy

7.1 Robustmess i i i i i e e e e e e e e
7.1.1 Topological Correctness v v v v v e v v
7.1.2 Stereographic Correctnesso
7.1.3 Comparisonof thetwoRules

7.2 Application to Surface Intersection o000

7.3 Backtracking e e e

7.4 Comelusion e e e e e e e e e

7.5 Suggestions for Further Research

7.6 Acknowledgements

Bibliography

................................

iv

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

4.1
4.2
4.3
4.4

CSG representationofasolid. 7
Intersection of approximations may yield more curves than actually exist. . 11
Unnecessary subdivision of asurface 12
Insufficient subdivision of a surface.. 0oL 13
An intersection consisting of eight components 13
An intersection also consisting of eight components. 14
Jumping Components.o a e e e e e 21
Backtracking. o o v i e e e 22
If there are loops they may go undetected. 25
If there are no loops then only edge intersections need to be checked. 25
The Gauss map ofasurface.. o 26
Sinha's TheoTem. . . . v v v v v i e e e e e e e e e e e e 27
An example for which Sinha’s Theorem does not work well. 28
Calculation of a bound on the Gaussmap.« ..o v 29
An example for which tangent cones donot work. 30
Sederberg’s enclosing cone algorithm.. 31
A cylindrical surface is not isomorphic to the unit disc. 33
Geometry of the loop detection criterion. 34
An hypothetical intersectionloop. L oo 37
Some possible intersection types. 42
Two bicubic patches. oo oo oo 44
Same problem viewed from above. e e 45
Intersection curves of two bicubic patches. o L. 46
The intersection of an engine nascelleand pylon. 47
The intersection of an engine pylon and aircraft wing. 48
The intersection of an aircraft wing and fuselage. 49
The intersection of vertical and horizontal stabilizers.. 50
Determining bounding planes simply., 59
Log log plot of the performance of the separation tests. 62
Surfaces used to obtain performance for separation tests.. 63
Determining if touching objects do not otherwise intersect. 63

LIST OF FIGURES vi

4.5
4.6
4.7
4.8

4.9
4.10

6.1
6.2
6.3
6.4
6.5

6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6

(.f

“Bounding box” on the sphere. e 65
Computation of bounds on the Gaussmap. 68
Surfaces used to test normal separability test.o 73
Log log plot of the performance of the algorithm for closely spaced Gauss

INAPS. « « « e s s e e e e e e e e e e e e e e 74
Degrees of freedom in separating plane. 75
Some curve singularities. oo 81
Intersection consisting of 6 lines. e 89
Subdivision pattern at a node singularity. 96
Basic algorithm applied to example. 96
Modified algorithm applied to the same example. 97
The results of basic algorithm when the intersection curve nearly contains a

singular point. e 98
Modified algorithm when the surfaces are near the degenerate position. .. 98
The number of patches in the subdivision is moderate even with degenerate

INEETSECHIONS. & v v v e 99
Shortcoming of the topological rule. 102
Stereographic correctness rule. 105
Comparison of the rules.« ... o 107
Degeneracy of type 1.o oo 108
Degeneracy of type 2. . . o o o ottt 108
Degeneracy of type 3.o 108

Degeneracy of type 4. . . .« .o .ot e e 108

Chapter 1

Surface Intersection

1.1 Introduction

The problem of intersecting surfaces has been studied from the time of the ancient
Greeks to the present, and yet many important issues remain unresolved. This thesis
presents a robust and efficient algorithm for intersecting two surfaces and addresses many
related sub-problems.

The work done from the time of ancient Greeks until the 1960’s has dealt in
a practical way with intersections of low degree surfaces and in a theoretical way with
intersections of high degree surfaces. A Computer Aided Design and Manufacturing tool
called Solid Modeling now requires a surface intersection algorithm that can deal with these
high degree surfaces in a practical way. Such an algorithm must be reliable enough to either
produce the correct result or determine that it is unable do so. It must be efficient enough
to operate in roughly a minute, on a commonly available computer, on examples typical of
those used in manufacturing.

Of the techniques proposed to deal with high degree intersections, those that run in
an acceptable amount of time lack a theoretical basis and will fail on examples of sufficient
complexity. Those that have a solid theoretical basis require enormous computation and
thus remain impractical. This dilemma is being resolved by loop detection based surface
intersection algorithms. Such algorithms generally work as follows: The bounds on the sur-
faces are tested for intersection. If they do not intersect, the algorithm returns. Otherwise,
the algorithm applies a test to determine if it is not possible for the surfaces to intersect in

a loop. If the surfaces do not pass the criterion they are subdivided and the algorithm is

CHAPTER 1. SURFACE INTERSECTION 2

run on all sub-patch pairs. Such an algorithm will either decompose the surfaces into pairs
that do not intersect in a loop, or will discover a singularity.

The test to determine if it is not possible for two surfaces to intersect in a loop is
called a loop detection criterion (it could more accurately be called loop exclusion criterion,
but the former term is retained for historical reasons). This criterion makes determinations
based on the analysis of the bounds on: the position of surfaces; their partial derivatives;
and their Gauss maps.

When the algorithm has broken the surfaces into sub-patch pairs that do not
intersect in loops, it determines the intersection curves by computing the intersection of the
edges of one surfaces with the other surface and vise-versa. By analyzing the number of
edge-surface intersections found as well as the orientation of the intersection curve at the
edge-surface intersections, the algorithm can delimit the individual curves.

In this thesis a new loop detection criterion is presented. This criterion establishes
that if the convex hulls of the Gauss maps of the two surfaces under consideration do not
intersect and are not antipodal, then the surfaces cannot intersect in a loop. The loop
detection criterion can consequently be implemented with a linear programming algorithm.
The use of linear programming allows the algorithm to determine that no loops can exist
in situations where other criteria cannot. The resulting surface intersection algorithm is
therefore required to perform less subdivision. The algorithm is applicable to a class of
surfaces that includes rational B-spline and Bézier surfaces as well as implicit polynomial
surfaces. The algorithm’s practicality is demonstrated on actual manufacturing data, as
well as on some pathological examples.

The surface intersection algorithm requires a number of sub-algorithms in order
to operate. To determine if the bounds on two surfaces intersect, it is necessary to find
the minimum distance between the convex hulls of two point sets. To determine if the
convex hulls of the two Gauss maps intersect or are antipodal, it is necessary to find the
great circle on a sphere so that the distance from the convex hull of a point set on the
sphere to the great circle is maximized. These two problems are solved using a slightly
modified linear programming algorithm which is discussed in detail. Performance data on
these techniques are given on problems of parametrizable difficulty. It is shown that linear
programming techniques outperform simple bounding box techniques as the difficulty of the
problem increases (Section 4.2).

An algorithm to compute the bounds on the Gauss maps of rational B-spline,

CHAPTER 1. SURFACE INTERSECTION 3

Bézier, and implicit surfaces is given. This algorithm computes a scalar multiple of the
normal to the surface in the B-spline or Bézier form. The control points of the resulting
surface are used as a bound on the Gauss map (Section 4.4).

When two patches have passed the loop detection criteria and their edge-surface
intersection points have been found, it is necessary to find the orientation of the intersection
curve at these points. This is done by finding the parameter space tangent directions
precisely. Algorithms are given for doing this at singular and non-singular intersection
points (Section 4.6).

The intersection of two high degree surfaces generally cannot be represented as a
collection of parametric polynomial curves. Thus, approximations such as spline curves are
often used. An compact and very accurate alternative is discussed. In this representation,
the two surfaces that define the curve are recorded along with parameter space approxima-
tions. By combining this data with a small number of algorithms one can create an object
that behaves much like a spline curve (Chapter 5).

In order to accelerate the detection of singularities an iterative numerical technique
is given. It is shown that this iteration will converge to node and isolated singularities.
A strategy is described for intersecting surfaces that contain these types of singularities
(Chapter 6).

An algorithm is also given for dealing with degeneracies that a arise during the
running of the algorithm. Degeneracies that are created by the algorithm itself are resolved
using a backtracking method. Degeneracies that are intrinsic to the problem are merely

found and reported to the user (Chapter 7).

1.2 A Brief History of Surface Intersection

Computation about complex solids relies upon the computation of surface inter-
sections. The history of surface intersection begins with the history of curves, and that in
turn begins with the Greeks. Socrates recognized the lack of knowledge about solids and

saw that the study of plane curves would lead to knowledge of solids.

Then take a step backward, for we have gone wrong in the natural order of the
sciences.

What was the mistake? he said.

CHAPTER 1. SURFACE INTERSECTION 4

After plane geometry, I said, we proceeded at once to solids in revolution, instead
of taking solids in themselves; whereas after the second dimension, the third,
which is concerned with cubes and dimensions of depth, ought to have followed.

This is true, Socrates, but so little seemns to be known about these subjects.

Why, yes, I said, and for two reasons:- in the first place no government pa-
tronizes them; this leads to a want of energy in the pursuit of them, and they
are difficult; in the second place, students can not learn them unless they have
a director. But then a director can hardly be found, and even if he could, as
matters now stand, students, who are very conceited, would not attend to him.
That, however, would be otherwise if the whole State became the director of these
studies and gave honor to them; then disciples would want to come, and there
would be continuous and earnest search, and discoveries would be made; since
even now, disregarded as they are by the world, and maimed of their fair pro-
portions, and although none of their votaries can tell the use of them, still these
studies force their way by their natural charm, and very likely, if they had the
help of the State, they would some day emerge into light.

Yes, he said, there is a remarkable charm in them. But, I do not clearly un-
derstand the change in the order. First you began with the geometry of plane
surfaces?

Yes, I said.
And you have placed astronomy nezt, and then you made a step backward?

Yes, and I have delayed you by my hurry; the ludicrous state of solid geometry,
which in natural order should have followed, made me pass over this branch and
go on to astronomy, or the motion of solids.

pPLATO The Republic

The Greeks distinguished between three kinds of curves: plane curves, which can
be constructed with a straightedge and compass; solid curves, the intersections of cones
with a plane; and linear curves which were also called mechanical curves. The early Greek
philosophers did not like to link their philosophy to the physical and thus regarded the
linear curves as a somewhat inferior class.

Conic sections were probably first investigated by Menaechmus, a pupil of Eudoxus
ar? a member of Plato’s Academy in the fourth century B.c.. His results are contained in
Euclid’s Conics. Apollonius, in his Conic Sections, systematizes the results presented by
Euclid and adds new proofs. Conic Sections was “so monumental that it practically closed
the subject to later thinkers” [57]. Indeed, it wasn’t until the seventeenth century that one

sees any new contributions to the field.

CHAPTER 1. SURFACE INTERSECTION 5

In the seventeenth century, Desargues employed the techniques of the just emerging
field of projective geometry to show how the conic sections (the ellipse, the hyperbola, and
the parabola) are related to one another. This resulted in a vast simplification of the theory
of conics sections.

A contemporary, John Wallis, was the first to derive the algebraic equations of the
conic sections (1655). At the time, algebraic reasoning was not regarded to be as rigorous
as geometric reasoning. Wallis’ work went a long way to validate the algebraic approach.

In terms of the intersection of surfaces, it was still only known how to intersect a
plane and a cone, perhaps partly due to the Greek disinclination to consider other types
of curves. Descartes challenged this prejudice. He believed that any curve which could be
expressed by an algebraic equation should be accepted as a perfectly valid. Leibniz even
protested the requirement that a curve have an algebraic equation.

From this point on, there was a continual effort to transform geometric questions
into algebraic questions and an effort to do most of one’s thinking in the algebraic domain
rather than in the geometric. In the eighteenth century Antoine Parent, John Bernoulli,
Alexis-Claude Clairaut, and Jacob Hermann showed how surfaces can be thought of as the
solution to an equation in three variables. This resulted in the next step forward in surface
intersection, the proof by Gaspard Monge and Jean-Nicolas-Pierre Hachette that a plane
intersects a second degree surface in a second degree curve.

In this way, intersection problems were transformed to problems involving plane
algebraic curves. The problem then was to understand planar algebraic curves. One simply
needed to classify all the curves for every degree. The degree one curve were simply lines.
The degree two curves were the conic sections. Newton, in Enumeratio Linearum Tertit
Ordinis, began by classifying degree three curves. Others worked on forth degree curves.
The number of species of curves found was quite large and the process of enumerating
them quite laborious. Rather than to proceed in this direction, mathematicians attempted
to understand various properties of algebraic curves such as singularities, and the number
points in which two curves could intersect.

Noether and Halphen showed that any algebraic space curve could be birationally
transformed into a plane algebraic curve. Thus, the intersection of any two algebraic surfaces
could always be transformed into a plane algebraic curve. These results would vanish into
obscurity for nearly one hundred years before being applied to the problem of intersecting

surfaces.

CHAPTER 1. SURFACE INTERSECTION 6

A method to determine the shape of a general algebraic curve, however, did not
seem forthcoming. There was some effort in this direction. In [52], C. M. Jessop describes
a machine with which one could trace arbitrary algebraic curves. The machine (which was
almost certainly never built) consisted of beams, pivots, and sliders, and was quite complex.
This work is interesting mostly because it indicates that work on tracing algebraic curves

was not going to proceed by paper and pencil alone. The aid of a machine was needed.

1.3 The Computer

With the advent of surface modeling systems on computers came a renewed interest
in computing surface intersections. These intersections describe, among other things, the
motion of mechanical cutting tools, cross sections of surfaces, and boundaries of surface
patches. Since the surfaces used in these modeling systems were much more complex than
simply cones, cylinders, or spheres, the problem arose to find the intersection of arbitrary
surfaces. The initial approaches to surface intersection were strongly influenced by the
common representation of curves and surfaces in modeling systems, which was parametric
as opposed to implicit. Practitioners found that most mathematics dealing with surfaces
assumed that the surfaces were expressed in implicit form. Quite some time had passed
since Noether and Halphen so it wasn’t until two decades later that it was realized that all
surfaces which could be represented in parametric form could also be represented implicit
form [93]. For example, in [27] page 258, a handbook of surface modeling techniques, Faux
states that

Great advantage would be had if one surface could be translated into implicit

form. Unfortunately, the most commonly used parametric surfaces, the bicubic
patches, cannot be expressed in this way.

The designers of these first algorithms, however, proceeded as best they could
without much of the knowledge developed in the nineteenth century, [21,30,35,70]. Their
early surface intersection algorithms functioned well on surfaces of a fixed complexity, but
failed on sufficiently difficult problems. Given the speed of computers at the time, one had
to wait for the intersection algorithm and would be inclined to examine the results partly
as a reward for one’s patience and partly to ensure that the result was correct. If the
surface intersection algorithm did not produce the correct result, the user had the option of

changing some of the parameters of the algorithm or, in any case, notifying the programmer.

CHAPTER 1. SURFACE INTERSECTION 7

However, as layers of software took the place of the human user and computers
became faster, it became less and less likely that the output of an intersection algorithm
would be viewed by human eyes before it was allowed to go on and (potentially) interfere
with the correct functioning of other algorithms. Thus, there was a need for reliable surface

intersection algorithms. This need was also present in the converging area of solid modeling.

1.4 Solid Modeling

In the late ’60’s and early '70’s solid modeling was introduced by Voelker and
others [2,32,77,87,89,106,107,109] as a more rigorous alternative to surface modeling. A
solid model is one which contains enough information so that any point (or nearly any, in
the presence of rounding arithmetic) can be classified as either inside or outside the solid.
Such a model is quite attractive, since it allows one, in principle, to calculate the volumes of

solids, their centers of gravity, and to generate volume grids for more sophisticated analysis.

1.4.1 Constructive Solid Geometry

Figure 1.1: CSG representation of a solid.

In the first generation of solid modeling systems, called Constructive Solid Ge-

ometry (or CSG) modelers, the solid is specified by a Boolean formula whose variables are

CHAPTER 1. SURFACE INTERSECTION 8

Boolean functions on R3. For example, the box pictured in Figure 1.1 is specified by the
conjunction of six halfspaces. For most modeling systems, these functions are not halfspaces
but rather the member functions for simple primitives such as boxes, spheres, tori, wedges,
and volumes swept out by revolution and translation of planar contours.

A decade later, Voelker, like Plato, lamented that little technical progress had been
made in CSG and that CSG systems were not widely used [108]. On the other hand, surface
modeling systems such a IBM’s CATIA, Volkswagen’s SURF, Ford’s PDGS, and Mercedes’
SIRKO were highly successful. CSG modeling systems failed for two reasons. First, analyses
that dealt with the boundary of the object, such as display and surface machining, were
not easy to implement. Second, the only surfaces supported were unrealistically limited to

planes, quadrics, and tori.

1.4.2 Boundary Representation Solid Modeling

To support analyses that dealt with the boundary and to simultaneously support
a larger class of surfaces, an explicit description of the surfaces that bound the volume,
was needed. One such representation is the Boundary Representation or B-rep [13,14]. A
boundary representation is a decomposition of the boundary of a solid according to the
dimension of the components of the boundary. There are three underlying geometric struc-
tures involved in a B-rep: points, curves and surfaces. The surfaces are usually generated
by means external to the solid modeling algorithm. The curves and points are generated as
a by product of Boolean operations. The correct computation of these curves is essential
to maintaining the B-rep structure through Boolean operations.

In the first B-rep systems, the surfaces allowed where again planes, quadrics and
tori. The intersection of these types of surfaces can be obtained by case analysis. Recent
B-rep systems, on the other hand, support more general classes of surfaces, specifically piece-
wise (rational) polynomial surfaces. To perform boolean operations on’ B-reps containing

general surfaces, an algorithm that reliably intersects general surfaces is needed.

Chapter 2

Previous Work

In the following a taxonomy of surface intersection techniques is presented. In [85],
Pratt gives a taxonomy of surface intersection algorithms. It would be desirable to organize
all of the research to date which is relevant to surface intersection in a similar way. The
limitation to Pratt’s organization of this knowledge is that many important parts of it do
not constitute complete algorithms, but rather deal with a small part of the whole problem.
Also, Pratt’s organization gives the false impression that techniques used in one algorithm
can’t successfully be mixed with techniques present in another. Thus, a taxonomy of surface
intersection technigues along with some information on which techniques can be combined
with others is presented.

First, the surface intersection problem is broken into two sub-problems: decom-
position and representation. Decomposition is the determination of a number of simple
curves that make up the intersection of the two surfaces. Representation involves trans-
forming each simple curve into some canonical form from which frequent computations can

be performed quickly.

2.1 Decomposition

The decomposition step divides the intersection into smaller surface intersection
problems, each of which can be handled by the representation step. At the very least, this
step determines the distinct components of the intersection. It may go beyond this and
divide components into even simpler curves. It may also generate information regarding

the intersection of the components. This will vary from one algorithm to another.

CHAPTER 2. PREVIOUS WORK 10

Methods for decomposing the intersection can be divided into two broad categories,
re-approzimating and direct. The re-approximating decomposition methods are those which
approximate the original surfaces by many simpler surfaces and deal with the intersection
of the simpler surfaces. The direct methods take advantage of special knowledge of the

surfaces to construct the decomposition of the actual intersection.

2.1.1 Re-approximating Techniques

Re-approximating decomposition is a technique which can be applied easily to any
surface whose parametrization is known. In re-approximating decomposition a large number
of smaller and simpler surfaces are constructed that approximate the original surfaces.
The simpler surfaces are generally triangles but quadric surfaces have been used {3]. (In
the following discussion, triangles are discussed but the reader should keep in mind that
this may be any simple surface.) Since the approximating sub-surfaces are simpler, direct
techniques can be used to intersect them. For instance, triangles can be intersected to form
line segments. The resulting line segments will meet end to end and thus can be linked
together to for piecewise linear approximations to the intersection curve.

One would like the resulting intersection to be close to the true intersection in the
sense that the true intersection curves are a continuous deformation of the intersection of
the triangulations. If this is the case, the representation step will have enough information
to represent the curves to any precision desired. Unfortunately, the intersection of the
approximation by triangles may yield more or fewer curves than are in the true intersection,
see Figures 2.1 (adapted from [3]) and 2.3, respectively. If this is the case, the representation

step will not be able to represent the curves to the desired accuracy.

To obtain an intersection that is closer (in the sense given above) to that of the
true intersection one can use an increasingly larger number of triangles. Algorithms can
be further classified according to the manner in which the surfaces are triangulated and

according to the algorithm used for deciding which triangles might intersect.

Triangulation Techniques

The most straightforward type of triangulation is a uniform triangulation [36].
This has the disadvantage that the approximation of the surface may be better in some

regions of the surface than in others. Specifically, the surface will be better approximated

CHAPTER 2. PREVIOUS WORK 11

Actual intersection Intersection of approximations

Figure 2.1: Intersection of approximations may yield more curves than actually exist.

in regions where the curvature is small. Thus, techniques have been developed to adapt
the triangulation to the surface [10,15,50,82]. In such techniques, triangles are generated in
such a way that the original surface is equally well approximated in all regions. This can be
carried out as follows: an initial triangulation of the surface is made. Each triangle which
does not approximate its portion of the surface to the specified tolerance is subdivided,
and the process is repeated. The quality of the approximation is generally measured by
measuring the “flatness” of the the approximated surface over the region to be approxi-
mated. If the surface is sufficiently flat then the triangle is said to approximate the surface
adequately. The process of approximating the surface by smaller triangles in one area and
larger triangles in another may create cracks in the approximating triangulation. The cracks
may cause the resulting line segments not to meet end to end although they represent a
contiguous piece of the intersection curve. Thus, the line segments must be matched using

a proximity tolerance.

This flatness criterion is the “Achilles heel” of such methods. Figure 2.2 depicts
an intersection problem where the flatness tolerance is very small and considerable work

is performed.! The intersection of a much coarser triangulation would be close enough (in

'Tn the example pictured, the surface has been subdivided only in the parametric direction in which it is
curved. In general, even more subdivision must be done to ensure the sub-surfaces are sufficiently flat.

CHAPTER 2. PREVIOUS WORK 12

Figure 2.2: Unnecessary subdivision of a surface

the sense given above) to the true intersection. Figure 2.3, on the other hand, depicts a
situation where the flatness tolerance is too large and a nearly tangential intersection is
missed. The observant reader will notice that the surfaces in Figures 2.2 and 2.3 are simply
rotations of one another. Thus, one would expect an flatness based subdivision criterion to

subdivide them to the same level of refinement.

Thus, one is forced to make a tradeoff between speed and correctness. To obtain
an algorithm that is as correct as possible given the limitations of floating point arithmetic,
one must subdivide the surfaces until they are on the order of the size of the machine
rounding. To obtain an algorithm that runs in a reasonable amount of time one must risk

missing intersection curves.

The fundamental problem with this approach is that the flatness of a pair of
surfaces is independent of how they intersect. Figures 2.4 and 2.5 depict two intersection
problems each consisting of a bicubic patch intersecting a plane. The intersections curves
in 2.4 are identical to those in Figure 2.5. The bicubic patch in Figure 2.4 is highly curved.
The bicubic patch in Figure 2.5 is relatively flat. Furthermore, the bicubic patch in Figure
2.5 could be made arbitrarily flat and the intersection would remain unchanged. The fact
that two surfaces being intersected are nearly flat provides no information about how they

intersect. Consequently, any subdivision algorithm whose termination criterion is based on

CHAPTER 2. PREVIOUS WORK 13

I

Polygonal approximation does not intersect plane

Figure 2.3: Insufficient subdivision of a surface.

N

Figure 2.4: An intersection consisting of eight components

CHAPTER 2. PREVIOUS WORK 14

Figure 2.5: An intersection also consisting of eight components.

flatness is doomed to fail on this example. If the bicubic patch is made flatter than the

algorithm’s tolerance then the algorithm will miss the two internal loops.

Triangle Intersection Techniques

Amongst re-approximating algorithms there remains the problem of finding the
sub-surfaces which potentially intersect. In the simplest schemes, each triangle of one
surface is compared against each triangle of the other surface. This results in a running

time of O(nm) where m and n are the number of triangles in each surface.

This can be sped up considerably by using a sweep plane algorithm or by placing
one set of triangles in a spatial subdivision. This will resulting in an O((m+n)log(m+n)+k)

algorithm where k is the number of intersecting pairs of triangles.

Recognizing that a great number of triangles do not participate in the intersection,
the approximation can be constructed in a lazy or recursive fashion. First a coarse grid is
generated on each surface. If two triangles intersect (or, in some methods, if the bounds on
the surfaces underlying triangles intersect) then each triangle is replaced by more triangles
which approximate the surface more closely. The process is repeated until all triangles
which intersect other triangles meet the subdivision criterion {6,11,15,61,78,82]. Natarajan
[78] has shown that for “randomized input” this results in a running time of O(k),where k

is, again, the number of intersecting pairs of triangles.

CHAPTER 2. PREVIOUS WORK 15

2.1.2 Direct Decomposition

Direct decomposition methods remedy the problems of the re-approximating ap-
proach by using specific information about the types of surfaces being intersected. These
algorithms can be divided into Quadric Surface, Critical Point, and Loop Detection decom-
position algorithms. The quadric surface decomposition algorithms use human analysis of
the small number of possible intersection types between two quadric surfaces. In the critical
point methods, a discrete set of points is determined from which the intersection curves can
be recovered. In the loop detection algorithms, the two surfaces are subdivided into pairs

that intersect in simple curves.

Quadric Decomposition

For the intersection of quadrics, exhaustive case analysis can be performed [31,62,
72,73,74,83,84,92,101,103]. These methods have the advantage that they can be tailored to
be as fast and as stable as is possible. Since these types of intersections arise frequently
in geometric calculations, there can be no argument against employing them. Their only

disadvantage is that they only cover a limited range of intersection problems.

Critical Point Decomposition

For the critical point methods, a discrete set of points is determined from which
the intersection curves can be recovered. For instance, one could obtain a single point on
each curve. From this point, the representation step could trace out the intersection curve
to the desired accuracy. Of critical point algorithms, Algebraic Decomposition has received

the majority of the research attention.
Algebraic Decomposition

If both surfaces are algebraic, the intersection curve can be mapped to a planar
algebraic curve. This curve can then be decomposed using a cylindrical algebraic decom-
position [4,26]. This decomposition finds a point on each curve and points at the crossing
of curve components.

This simplest case in which this can be applied is when one surface is a parametric

rational polynomial and the other is an implicit polynomial surface. In that case the para-

CHAPTER 2. PREVIOUS WORK 16

metric equations are substituted into the implicit equations resulting in a single equation
in two unknowns.

If both surfaces are in parametric form, one surface can be implicitized and the
above procedure employed. {7,93].

If both surfaces are in implicit form, one has two equations in three unknowns.
Resultants can be used to eliminate one variable again reducing the problem to a single
equation in two unknowns.

These techniques may have the following problems:
Stability

The transformation to an implicit equation in two variables via substitution and
perhaps implicitization/elimination of variables is not necessarily numerically stable; that
is, small changes in the data that define the surface may cause large changes in the implicit
form of the algebraic curve. Thus, exact arithmetic, or at least very careful analysis is
needed. The amount of analysis necessary to show that implicitization of a planar cubic
curve is stable is quite large [38]. No such analysis has been carried out with respect to the

implicitization of surfaces.
Computation Time and Space

Additionally, the transformation to a planar curve will raise the degree of the
equations defining the curve. For example, when intersecting two bicubic patches the curve
equation F(s,t) — G(u,v) = 0 will be of total degree 6, while the corresponding planar
algebraic curve f(s,t) = 0 will be of degree 108. Because of the high degree the amount
of data needed to describe the algebraic curve and hence the amount of computation that

needs to be performed on the data are very large.
Eztraneous Components and Singularities

Finally, the transformation may introduce new curves and singularities. This is
caused by two processes. Firstly, the surface represented by the implicit equation of a
parametric surface will be a superset of the original surface. New parts of the surface may
contribute new curves and singularities that did not exist in the original problem. Secondly,
when variables are eliminated, the mapping may take different points in R3 to the same

point in R? resulting in singularities that did not exist in the original curve.

CHAPTER 2. PREVIOUS WORK 17

General Critical Point Decomposition

Confronted with these difficulties and with the restriction that the surfaces be
algebraic, some researchers have tried to create algorithms that construct a critical point
decomposition of the intersection curves without creating the planar algebraic curve. These
methods can be used for any surface whose parametrization is known. For instance, Cheng
[18] and Kriesis [58,81] propose to consider the function ¢(u, v). Given two surfaces F(u,v)
and G(s,t), ¢ is defined to be the minimum distance between the point F(u,v) and the
surface G. From a mathematical standpoint one can characterize a set of critical points in

terms of ¢. For instance, Kriezis proposed to find all of the points
¢y = 0. (2.1)

From an algorithmic standpoint, however, there are two problems. The first is to
evaluate the function ¢ and the second is to compute bounds on the partial ¢,,. Both of these
must be done to ensure the discovery of all of the roots of equation 2.1. No algorithms have
been proposed to accomplish this. Rather ¢ is computed for polyhedral approximations to
F and G. Ensuring that the ¢ computed from the polyhedral approximations to F and G
adequately resembles the true ¢ is precisely the problem of ensuring that the intersection
of the polyhedral approximations adequately resembles the true intersection. Until more is
known about bounds on ¢ for specific surface types, these approaches must be classified as

re-approximation techniques.

Loop Detection Decomposition

In contrast to the critical point methods, the loop detection methods attempt to
find a decomposition of the two surfaces into pairs of subsurfaces so that the intersection of
each pair is either empty or isomorphic to the unit interval. Loop detection methods can

be used with any surface for which the following are true
1. One can compute bounds on the position, derivative, and normals of the surface.
2. One can subdivide the surface into smaller surfaces.

3. One can reliably intersect the edges of such surfaces with other instances of such

surfaces.

CHAPTER .. PREVIOUS WORK 18

B-spline, Bézier and implicit surfaces including quadrics and tori are included in this group.

At present, loop detection techniques comprise a handful of criteria that can be
applied to determine if it is possible for two patches to intersect in a loop [22,24,28,47,48,65,
75,94,95,97,102]. There is no guarantee that the subdivision of the surface will eventually
produce pairs of intersecting patches all of which pass the criterion. The subject of loop

detection will be taken up again in Chapter 3.

2.2 Representation

The output of a surface intersection algorithm will be some representation of the
intersection curve. For some motion planning problems it is sufficient to know when there
is an intersection. For display, a set of line segments with no connectivity information
is all that is required. For numerically control machining, a set of points with a fixed
coarse tolerance is needed. For solid modeling, a high precision, compact, and efficient
representation is required. One can see that representation techniques are driven by widely

differing needs.

2.2.1 Polynomial Representations

While almost all quadric/quadric surface intersections can be decomposed by case
analysis, only those that result in conic sections can be represented as rational polynomial
curves [91,104]. The intersection of higher degree surfaces will almost always have a genus

too high to be parametrized [55]. Thus, other representations must be used.

2.2.2 Approximation

For most applications the technique of generating a large number of points along
the intersection curve and then approximating the point set is appropriate. These tracing
schemes rely on the decomposition step for enough information to delimit and aid the
tracing. For instance, most tracing methods require a point on the intersection curve from
which to “march”. If there are curve crossings on the component to be traced, the tracing

method should be appraised of this.

CHAPTER 2. PREVIOUS WORK 19

Curve Tracing

Curve tracing (or marching) generates a sequence of points on the intersection
curve. If the two surfaces are quadric special methods are applicable, otherwise general

marching techniques must be employed.
Quadric Surface Tracing

If the two surfaces are quadrics the following technique can be employed [62].
Let f(x) = 0 and g(x) = 0 be the two quadric surfaces. For some choice of a and b,
h(x) = af(x) + bg(x) = 0 is a ruled quadric surface. In that case h can be parametrized
by H(u,v) = p(u) + q(u)v where p(u) is a rational quadratic polynomial. Points on the
intersection can be obtained by evaluating p and q at a value uo and then finding the

solutions to the quadratic equation f(p(uo)+ q(ug)v) = 0.
General Surface Tracing

In the case that the surfaces are more general than quadrics, a marching method
is employed [90]. These methods can be used with either parametric or implicit surfaces.
Marching methods assume that an initial point on the intersection has been found. From
the initial point successive points are found. The information from the last point found
is used to compute the next point. One has some choice over the dimension in which the
tracing is taking place and also over the degree of the curve approximation used to generate

successive points.
Dimension
In general one will have a system of equations
filz1,0zq) =0 i=1,..,d-1 ' (2.2)

where the d is the dimension of the space in which the curve is being traced and the f;
are polynomials. (Some papers present algorithms where the f; are functions such as “the
distance to the closest point on the surface” [18]. Such functions are clearly not polynomial.
Manocha [66,67], on the other hand, proposes that some of the f; be the determinants of
large matrices of polynomials in the z;. While not stored in polynomial form, such a function

is a polynomial). From a point x € R one wishes to iterate to a point on the curve given

CHAPTER 2. PREVIOUS WORK 20

by equation 2.2. This is typically accomplished via something resembling Newton iteration
[90].

For example, when tracing the intersection of two parametric patches one might
trace the intersection in the space of the four parameters of the surfaces (two for each

surface). The system of equations would be
F(s,t) - G(u,v)=0 (2.3)

where F(s,t) and G(u,v) are the parametric forms of the two surfaces.
If one were tracing the intersection of two implicit surfaces then the tracing would

occur in three dimensions and the system of equations would be

f(x)=0 (2.4)
g(x)=0 (2.5)

where f and g are the implicit forms of the two surfaces.
If one were tracing the intersection of an implicit surface f and a parametric surface
G one would only need to use the two parameters of the parametric surface [8]. The system

of equations in that case would be
f(G(u,v))=0. (2.6)

One often has a choice regarding the dimension of the space in which to trace the
curve. For instance the intersection of a pair of parametric surfaces can be traced in R4 or,
via elimination of variables, can also be traced in R2. In the first case one has more lower
degree equations and in the second one has fewer higher degree equations. Researchers
have observed that if one has the choice of tracing the same curve in either a higher of
lower dimensional space it is faster and numerically more stable to trace curves that are the
intersection of many low degree surfaces in a higher dimensional space than to trace the

intersection of higher degree surfaces in a lower dimensional space [39].
Degree of Approrimation

To generate successive points, a parametric approximation to the intersection curve
is constructed. This approximation is then evaluated a small distance from the previous

point and the evaluation is used as a starting point for some iterative technique that will

CHAPTER 2. PREVIOUS WORK 21

converge to the intersection curve. This iteration step accounts for a large amount of the
computation in the tracing step. A starting iterate that is closer to the intersection curve
can speed this up considerably. Most commonly, a straight line is used [10,11] but higher
degree polynomials and transcendental functions have also been used [5,16,17,41,46)

Three problems must be addressed when tracing a curve: jumping components,

singularities and backtracking .
Singularities

If two curve components intersect then the equations that describe the intersection
locally become underconstrained. That is, the Jacobian of equation 2.2 is rank deficient by
two rather than one. At such points a unique step direction might not exist, and if one
does exist, even the smallest step in that direction may place the next point closer to the
wrong curve branch than the right one. Techniques which deal with this problem generally
use higher order terms in the Taylor expansion of Equation 2.2 8,9,40,41,69,79].

Jumping components

Jumping components occurs when the tracing algorithm takes a step that is too

large and proceeds on a different component of the curve, as depicted in Figure 2.6.

Figure 2.6: Jumping Components.

CHAPTER 2. PREVIOUS WORK 22
Backtracking

Backtracking occurs when the tracing algorithm generates points out of order
as depicted in Figure 2.7. If the curve is represented as a planar algebraic curve, the
points can be sorted [53] in order to determine if backtracking has occurred. If that is
not the case, there are numerical techniques that can help to prevent backtracking and
jumping components [8,9,17,19,27,46,76] but they are not guarantees. These methods work
by estimating a safe step size based on the derivatives of the intersection curve at a single
point. Unfortunately, all methods based on a finite number derivatives of the surface at a
finite number of points can fail for arbitrary surfaces. Suppose that the algorithm considered
the derivatives c/(t),...,c(@(t) of the intersection curve. If |c(4+1)(¢)| were large compared
with [¢/()],...,|c(@(t)| then the estimated safe step size would be too large and problems

would occur.

Figure 2.7: Backtracking.

Representation

After a large number of points have been generated on the intersection curve, one
can approximate the point set with a parametric function such as a spline, see [20].

In the context of Boundary Representation Solid Modeling the.intersection of two
surfaces is used to trim the faces bounding a volume. This intersection curve must be very
accurate in order to prevent inconsistent models from being created. Balanced against this
is the need for speed. In order to get around this problem some modeling systems create a
rough approximation to the intersection curve both in R3 and in the parameter space of the
surfaces. This curve is not used for critical calculations. Rather, when a point on the curve
is desired, the rough intersection curve is evaluated and the resulting point is “relaxed”

onto the true intersection. This method will be discussed in more detail in Chapter 5.

CHAPTER 2. PREVIOUS WORK 23

Summary

In this chapter, a taxonomy of surface intersection techniques has been presented.
In the next chapter, loop detection techniques are explored more fully. Loop detection
techniques not only guarantee the discovery of all curve components, but also help in the

curve tracing step.

Chapter 3

Loop Detection

3.1 Loop Detection

Having observed some of the problems associated with re-approximation and al-
gebraic decomposition techniques loop detection techniques are considered. A loop, in this
context, is an intersection curve that does not intersect the boundaries of either of the sur-
faces patches being intersected, as depicted in Figure 3.1. Consider a surface intersection
algorithm that subdivides the surfaces until some stopping criterion is satisfied and then
intersects the edges of one sub-surface with the other sub-surface and vise-versa. If there
are loops in any of the sub-patch pairs as depicted in Figure 3.1, they will go undetected.

If there is none, as depicted in Figure 3.2, then all intersection curves will be discovered.

3.1.1 Gauss Maps

All loop detection criteria are based on bounds on the Gauss maps of the surfaces
being intersected. The Gauss map takes a point x on the surface in R3 and maps it to the
corresponding surface normal vector n(x) as depicted in Figure 3.3. The space containing
the unit normal vectors is referred to as the Gaussian sphere. The image of the Gauss map
for a surface patch is a subset of the Gaussian sphere. For most loop detection criteria,
only the subset of the Gaussian sphere as a point set is important, the function which maps
points into the image is not. Thus, the term Gauss map is used to refer to the image and

not the function.

Note also that at any point on a surface there are really two normals, each being

24

CHAPTER 3. LOOP DETECTION 25

Figure 3.1: If there are loops they may go undetected.

Figure 3.2: If there are no loops then only edge intersections need to be checked.

CHAPTER 3. LOOP DETECTION 26

equal to the other multiplied by —1. By convention, the Gauss map consists only of one of
these normals for each point. A pair of points on the Gaussian sphere that are related to
one another my the factor —1 are called antipodal. Two sets are called antipodal if there is

a point in one which is antipodal to a point in the other.

.3 Gauss map on Gaussian sphere
Surface in R

Figure 3.3: The Gauss map of a surface.

3.1.2 Sinha’s Criterion

The first published results dealing with loop detection appear in [102]. In that
work, Sinha establishes that if the Gauss maps of two surfaces do not intersect and are not

antipodal then the surfaces cannot intersect in any loops. Formally:

Theorem 1 (Sinha) Let S; and S, be two smooth surface patches in R3. Let Ny and N,
be the Gauss maps of S and Sy respectively. Let W, and W, be circular cones such that
Ny C Wy and Ny C Wy, If Wy does not intersect W, then the surfaces Sy and S, do not

intersect in a loop.

The geometry associated with this theorem is depicted in Figure 3.4. The cones W, and
W, are referred to as normal cones. Note that the normal cones are double ended so that

the Gauss maps are not allowed to be antipodal.

While this is a valuable tool with which one can construct a robust surface inter-
section algorithm, it is not quite powerful enough. Consider the example depicted in Figure
3.5. Sections of two cylinders are being intersected. The cylinders’ axes form an angle a
with one another. The sections are b degrees of each cylinder. The Gauss maps of each
surface are parallel lines on the Gaussian sphere of length a separated by a distance b. The

cones that bound the Gauss maps will intersect as long as b > a, preventing them from

CHAPTER 3. LOOP DETECTION 27

Gaussian Sphere
Figure 3.4: Sinha’s Theorem.

passing the loop detection criterion. Thus, the cylinders will have to be subdivided until
b < a. This can result in arbitrarily long running times. Although constructed as a difficult
example for this criterion, similar examples arise naturally in many surface intersection

problems.

A second theorem in [102] establishes a stronger result but with a stricter hypoth-
esis. A surface is diffeomorphic to the unit disc if there is a continuous map that takes the
surface into the unit disc. Intuitively, this means that the surface does not have any holes

in its domain.

Theorem 2 (Sinha) Suppose that Sy and Sz are two surfaces smoothly embedded in R?
with S; N Sy = 85y = 85;. Suppose Sy and Sy are both diffeomorphic to the unit disc, and
are transverse to each other along their common boundary. Then there-are points x; € S1

and x3 € S, so that ny(x;) is parallel to na(xz).

Sinha then states that if one could show that two surfaces’ normals were nowhere
parallel, and the surfaces were diffeomorphic to the unit disc, then there could be no loops
in the intersection. This is a strong theoretical result but it lacked the details necessary
to implement it. For instance, the paper does not explain how one could compute the

bounds on the Gauss maps of the surfaces. Nor does it explain if these bounds would be

CHAPTER 3. LOOP DETECTION 28

Figure 3.5: An example for which Sinha's Theorem does not work well.

represented as general polygons, convex polygons or by something else. To take advantage
of the theorem one would want to represent the bounds at least as general polygons. In
that case, one would need a method to determine it if the polygons intersected. Subsequent

authors supplied some of the missing details.

3.1.3 Sederberg’s Criterion

In [95], Sederberg describes the following method for detecting loops in surface
intersections. Let S(s,t) be a parametric Bézier surface. A bounding cone, called the s-
cone is created that bounds the vector function S,(s,t) where s and t are allowed to vary
over the domain of the surface. An analogous cone, called the t-cone, is created that bounds
Sy(s,t). The normal to the surface at a generic point S(s,t) is in the di.rection of the cross
product of the partial derivatives, S,(s,t) X S:(s,t). Thus, a loose bound on the Gauss map
can be obtained by computing the smallest cone that contains every cross product s x t
such that s is contained in the t-cone and t is contained in the t-cone. This is the cone

whose axis is the cross product of axes of the s and ¢ cones and whose half angle is given by

J = sin-! (\/sin2a+2sinacosbsinc+sinzc> (3.1)

sinb

CHAPTER 3. LOOP DETECTION 29

where a is the half angle of the t-cone and c is the half angle of the s-cone and b is the angle

between the axis of the s and t-cones as shown in Figure 3.6.

normal cone

t-cone

s-cone

Figure 3.6: Calculation of a bound on the Gauss map.

Sederberg defines a tangent plane cone as follows: The tangent plane cone is a
cone which if its vertex is translated to any point on the surface, the intersection of the
surface and the cone will be just the vertex of the cone. A tangent cone can be constructed
from Sederberg’s normal cone by using the same axis and a half angle of 90° minus the half
angle of the normal cone.

It is important to note that, in general, a normal cone cannot be used in this way
to construct a tangent cone. Consider Figure 3.7. The surface depicted is like a parking
garage ramp. At every point on the surface, the normal to the surface is nearly in the
direction %, and can be made arbitrarily close to 2. Thus, the axis of the normal cone is 2
and it has a very small half angle. Construct the cone with the same axis as the normal
cone and with half angle given by 90° minus the normal cone half angle. For the point p

at the overlap, this cone contains q which is on the same patch.

The particular normal cone constructed using Sederberg’s method can be used to
construct a tangent cone. Sederberg proposes the following test: If the tangent cone of one
surface contains one of either of the s or t cones of the other surface then the intersection

cannot contain any loop. While a good tool for constructing a surface intersection algorithm,

CHAPTER 3. LOOP DETECTION 30

Normal

Figure 3.7: An example for which tangent cones do not work.

it would be unable to establish the non-presence of loops for simple examples such as shown

in Figure 3.5.

Prognostications

After having read this thesis, Sederberg will publish a paper [97] which significantly
improves the ideas presented both here and in [95]. The loop detection criterion presented
there will solve the problem of detecting loops in the example shown in Figure 3.5 and will

bound functions of significantly lower degree than those proposed in this thesis.

Bounds on the Gauss Map

The first paper [95] is also important because it describes algorithms for comput-
ing normal cones for Bézier surfaces. To construct bounds for Bézier surfaces, Sederberg
constructs the vector functions S,(s,t) and S,(s,t) as Bézier surfaces. The control points
of these surfaces "an be used to bound them. Next, he describes an algorithm to compute
the s or t cone given the set of n vectors bounding the functions S,(s,?) and S¢(s,t). In

short, the algorithm is as follows:

CHAPTER 3. LOOP DETECTION 31

Bounding Cone(vy,...,Vn)
Let C be the cone with azis vy and half angle 0°.
fori=2ton
Let C be the smallest cone containing C and v;
endfor

return (C)

Cone Calculated by Sederberg’s Method Optimal Bounding Cone

Figure 3.8: Sederberg’s enclosing cone algorithm.

This algorithm returns a cone that contains all the vectors but may be larger than
the smallest cone containing all the vectors, as depicted in Figure 3.8. As has been shown,
the larger cone can cause the loop detection algorithm to be unable to determine that there

are no loops.

An algorithm to compute the smallest enclosing cone is a straightforward applica-
tion of linear programming with a small number of variables and n constraints. Sederberg’s
satisfaction with a loose bound when the tight bound is available is perhaps due to the
wide-spread belief that linear programming is prohibitively slow. As will be seen in Section

4.1, this is not the case.

CHAPTER 3. LOOP DETECTION 32

Collineal Points

Sederberg published a subsequent paper dealing with loop detection [94]. This
paper established the following theorem:

Theorem 3 (Sederberg) If two nonsingular surface patches each isomorphic to the unit
disc, S; and Sy, intersect in a closed loop, then there ezists a line that is perpendicular to

both S, and S, if the following conditions are met:

1. The dot product of any two normal vectors (on the same patch or on different patches)
is never zero. This means that the total range of normal directions for both patches

considered simultaneously cannot deviate more than 90°.

2. S; and S; are everywhere tangent continuous.

A line is said to be perpendicular to a pair of surfaces if the line contains points p; on
S, and p2 on S, so that n;(p1), nz2(p2) and p; — p2 are all parallel. The theorem can be
rephrased approximately as follows: If there are no lines perpendicular to S; and S; then
S; and S do not intersect in a loop.

This theorem presents two problems. The first is to find all lines perpendicular
to both surfaces and subdivide the surfaces so that no two intersecting sub-patches contain
such a line. Sederberg proposed to guarantee the such lines by using interval arithmetic.
The bounds returned by interval arithmetic methods can be quite loose, and Sederberg did
not report on the specifics of the interval method.

The second problem is to ensure that the surfaces are isomorphic to the unit disc.
This is true for parametric surfaces whose domain is isomorphic to the unit disc, but may
not be true for implicit surfaces as shown by the example in Figure 3.9. The cylinder shown
has no normal which is collineal to the normal to the plane, and yet the intersection is a
loop. Thus, for implicit surfaces, one is faced with the additional task of determining the

surface topology before applying the criterion.

3.1.4 de Montaudouin’s Criterion

De Montaudouin [75] made the following observation. Let the normals to two
surfaces S; and S, be contained in disjoint cones C; and C, respectively. Let the axes to

C; and C; be a; and ajy, respectively. Then the tangent to the intersection curve always

CHAPTER 3. LOOP DETECTION 33

N
~_

Figure 3.9: A cylindrical surface is not isomorphic to the unit disc.

makes a positive inner product with the vector a; x a;. He shows that this precludes the
existence of any loops in the intersection.

De Montaudouin’s and Sinha’s results are identical, but their proofs are different.
Notable is the calculation of the vector t = a; X a;. Although de Montaudouin did not
point it out, this immensely simplifies the tracing of the curve, as will be seen in Section 3.4.
However, the problem of speed still persists. For the example pictured in Figure 3.5, a large

amount of subdivision is required before the cylinders pass the loop detection criterion.

3.1.5 Kriezis’ Technique

Kriezis [58,59,60] suggests some minor changes to the method of Sederberg. Rather
than computing bounding cones, he computes bounding pyramids. He still computes the
bounding pyramids about the partial derivatives and then computes the cross product of
the two pyramids so obtained. To ensure that they fit tightly about the Gauss maps of the
surfaces, Kriezis aligns pyramids with the surfaces. This is perhaps an improvement, but
it will be seen that one can compute the tightest possible bounds with only slightly more

cost.

3.1.6 Dokken’s Observations

Dokken [24,23] devised a surface intersection algorithm based on the following
observations:

o If the tangent box of a curve and the normal box of a surface point in
the same direction (i.e., all their possible scalar products have the same
sign and are different from zero) and the partial derivative cones in both

CHAPTER 3. LOOP DETECTION 34

the u and v directions have an opening of less than 7/2 , then only one
intersection point is possible.

o If the normal boxes of two surfaces have no overlap, then there can be no
closed loops.

o If the normal boxes of two surfaces have no overlap and there exists only
two intersection points between the boundaries of the surfaces with the
other surface, then only one intersection curve is possible.
In these statements, a normal box and a tangent box are bounds on the normals of a surface
and the tangents of a curve. Dokken does not provide any details on the use of these objects.

While correct, these statements provide coarse tests. The overlap of the boxes depends on

the orientation of the geometry.

3.2 The Loop Detection Criterion

Other loop detection criteria having been reviewed, one which performs uniformly
better is presented. The loop detection theorem relies on the following simple geometric

observation.

Figure 3.10: Geometry of the loop detection criterion.

Lemma 1 Let Ny and N; be two sets of vectors and let Py and P, be two vectors satisfying

Pl ‘ny > 0, P1 Ny < 0 (3.2)

CHAPTER 3. LOOP DETECTION 35

Py-n; >0, P, ny; >0 (3.3)

for all n; € Ny and n; € N3, as in Figure 3.10. Choose any pair of vectors n; € Ny and
n, € N;. Then the cross product T given by

T = n; X ng (3.4)

satisfies

T - (P; x P3) > 0. (3.5)

Intuitively this can be interpreted as follows. Let N; and N, be two sets of vectors
and let P, and P, be planes containing the origin. Let the normal to Py be P, and the
normal to P; be P,. If N; and N, are on opposite sides of Py and on the same side of Py
then the cross product of any vector in Ny with any vector in N, will make a positive inner

product with the vector Py x P,.

Proof:
(Pl X Pz) . (n1 X nz) = ((P1 X P2) X nl) B (%) (36)
= —(n1 X (P1 X Pg)) *Na (37)
= (—(nl . Pg)Pl + (n1 . Pl)Pz) ‘N2 (38)
= ——(nl . Pg)(Pl . nz) + (n1 . Pl)(Pz . nz) (39)
Thus
(P1 X P2) . (nl X ng) > 0. (3.10)

Using this one can easily proceed to a result about surface intersections.

Theorem 4 (Loop Detection Theorem) Let S; and Sz be two C! surfaces whose nor-
mals are contained in sets N1 and N,, respectively. If there ezist vectors Py and Py such

that
P;-n;>0, P;-n;<0 (3.11)

P;-n; >0, P, n; >0 (3.12)

CHAPTER 3. LOOP DETECTION 36

for all n; € Ny and ny € Ny, as in Figure 3.10, then the intersection of the two surfaces is
a curve, a point, or a set of curves and points. Furthermore, all isolated point intersections
are at the boundaries of the surface patches, the curves do not contain singularities, and no

intersection curve forms a loop.

Proof: If the surfaces intersected in a two-dimensional manifold, (i.e., a surface) then at
each point of intersection the normals ny(x) of S1 and ny(x) of 52 would satisfy either
ni(x) = nz(x) or ni(x) = —ny(x), in violation of equations (3.11) and (3.12); thus, this
cannot happen.

If p is a point of intersection and is interior to both patches, then the normals to
the two surfaces at p are not collinear by equations (3.11) and (3.12). In a neighborhood
of p the surfaces are very nearly a pair of planes intersecting in a curve that is very nearly
a line perpendicular to the normals to both surfaces at p. Thus p is not an isolated point,
but rather lies on a curve.

Let each intersection curve be oriented so that the tangent to the curve at a point

_ my(x) X ny(x)
P09 = T2 x mao) (313

where n;(x) is the normal to surface 5, at the point x. Note that the denominator

in equation (3.13) cannot be zero since equations (3.11) and (3.12) preclude the normals

from being parallel or anti-parallel. By Lemma 1,

T(z)-P > 0. (3.14)

where P is given by
P= P1 X P2.) (315)

Suppose that there were a closed loop in the intersection of the two surfaces, as
depicted in Figure 3.11. The fact that the normals to the surfaces are never collinear
precludes any singularities in the intersection curve. Thus, the curve tangent T is well-
defined (up to a choice of orientation). If one were to parametrize the loop by arc length,
s, from an arbitrary point on the loop then

a=l

T(s)ds = 0 (3.16)

8=0

CHAPTER 3. LOOP DETECTION 37

N,

/ T N;x N2

N,

Figure 3.11: An hypothetical intersection loop.

where [is the length of the curve. Taking the inner product with P yields:

s=l
T(s) -Pds = 0. (3.17)
s=0

The tangent T(s) is a scalar multiple of the cross product of the normals to the surface. This
scalar varies continuously and is never zero. Thus, the sign of this scalar is constant (positive
by convention) throughout the loop. Equations (3.17) and (3.14) are clearly inconsistent,

thus there can be no loop. n

Not only does this allow us to guarantee the absence of loops, it allows us to order
points on the intersection curve. Two points x; and x;, can be ordered by ordering the
scalar values x; - P and x, - P. Finally, if there are only two intersections of the boundaries
of the patches with the patches then there can be only one intersection curve and the
intersection points are its endpoints. In this case, all points are guaranteed to lie on the

same component.

CHAPTER 3. LOOP DETECTION 38

3.3 Comparison with Previous Methods

In the case that one has only convex bounds on the Gauss maps of the surfaces in
question, this is the strongest possible result. It is reasonable to assume that more general
bounds are not available: the known and useful bounds on B-spline and Bézier surfaces and
their normals are convex. The theorem states that if the bounds on the Gauss maps are
separable by a plane then there can be no loops. Let us investigate the contrapositive. If
the bounds on the Gauss maps are not separable by a plane then by Farkas’ Lemma [34]
they must intersect. If they bounds intersect there exist surfaces with the same bounds
which intersect in loops. To see this, consider a vector in the intersection of the bounds. A
pair of coincident planes having this vector for a normal intersect in a loop.

Note that the loop detection criterion presented here performs uniformly better
than the other loop detection criteria presented. That is: if cones containing the bounds
on the Gauss map of the surface do not intersect then clearly there is a separating plane
between the bounds on the Gauss maps.

Note also that in the example given in Figure 3.5, the loop detection criterion
presented here does arbitrarily better than all the previously presented loop detection cri-
teria. For each of those criteria, the cylinders must be subdivided arbitrarily small to pass
the loop detection criteria of Sederberg, Sinha, de Montaudouin or Kriezis, whereas the
cylinders will pass the loop detection criterion presented here for any angular separation.

The loop detection criterion does not make any assumption about the form of the
surfaces. They may be parametric, implicit or some other unforeseen type [12]. It requires
only that the surface is smooth and that bounds on the Gauss map are available. In fact,
parametric surfaces are allowed to contain holes in their domains. This is in contrast to
Sederberg’s criterion [94] which requires that the interior of the loop be diffeomorphic to

the unit disc.

3.4 The Tracing Algorithm

If one has subdivided a pair of parametric patches F(s,t) and G(u,v) so that they
pass the loop detection criterion presented in the last section, obtained the vector P given
by equation (3.15), and calculated the two points po and p; where the edges of the surfaces

intersect each other, then a simple tracing algorithm is as follows:

CHAPTER 3. LOOP DETECTION 39

Trace
wo =P - po
wy=P-p1
for w = wg to w; stepping by éw
solve the system of equations
F(s,t) = G(u,v)
and
F(s,t)- P=w
using Newton iteration and the previous solution as a starting iterate

endfor

Since there are only two points of intersection of the curve with the surface edges
there can only be one intersection curve. Since the curve tangent always makes a positive
inner product with P, it can only intersect a plane perpendicular to P once. Since the curve
must proceed from pg to pj, it must pass through an intermediate plane. Thus, the system
of equations has exactly one solution in the region specified by the subdivision of F and G.
No other checks need to be made. Experience has shown that the Newton iteration generally
converges. If it does not, one can simply reduce Sw until it does. There is no possibility
of jumping components since there is only one curve component in the range. There is no
possibility of generating points out of order since the series of planes automatically orders

them. Thus the value §w does not need to be chosen carefully.

3.5 The Intersection Algorithm

3.5.1 Loop Detection

In this section, the use of the loop detection criterion in a surface intersection
algorithm is described. The input to the algorithm will be two surfaces. It is assumed that
one is able to calculate spatial bounds on the surfaces and bounds on their Gauss maps. It
is further assumed that it is possible to subdivide the surfaces and that as one subaivides
the surfaces the spatial bounds approach the surface and the bounds on the Gauss map

approach the Gauss map.

CHAPTER 3. LOOP DETECTION 40

Intersect (SurfaceA, SurfaceB)
if the bounding volumes of SurfaceA and SurfaceB intersect then
if the Gauss maps satisfy the loop detection criterion then
Intersect Simple Surfaces (SurfaceA, SurfaceB)
else if the surfaces are within € of a point p then
and their Gauss maps contained within € of @ normal n
then
report that a singular point has been found.
else
Subdivide each surface.
Intersect all pairs.
endif
endif

Some of the points of this algorithm are explained more thoroughly in Chapter 4:
methods for computing bounds on the Gauss maps of common surfaces are presented in
Section 4.4; methods for determining if these bounds satisfy the loop detection criterion are
presented in Section 4.4.4; methods for determining if the spatial bounds on two surfaces

intersect are presented in Section 4.2.

Theorem 5 Algorithm Intersect will either decompose the intersection problem into sub-

problems containing no loops or will discover a singularity.

Proof: Clearly the algorithm can only return when it has subdivided the surfaces into
sub-surfaces such that each pair passes the loop detection criterion, or when it has found
a singularity. The only other option then is that the algorithm recurses indefinitely. This
cannot happen for the following reason. The parameter space subdivisions of the surface
form a nested set of regions. Consider the limit points (s,t) and (u, v) of these regions. Let
n; be the unit normal at F(s,t) and let ny be the normal at G(u,v). f n; X nz # 0 then
eventually the surfaces must pass the loop detection criterion, terminating the recursion. If
F(s,t) # G(u,v) then eventually the surfaces must pass the R3 separability test. Otherwise
n; X ny = 0 and F(s,t) = G(u,v), i.e. the limit is a singular point. The singular point will

CHAPTER 3. LOOP DETECTION 41

eventually be found by subdivision. "

3.5.2 Identifying Individual Curves

When a pair of surfaces pass the loop detection criterion the structure of the
intersection curve can often be inferred from the intersection of the edges of one surface and
vise-versa. This involves first intersecting the edges of one surface with the second surface
and then intersecting the edges of the second surface with the first. Methods to do this
are presented in Section 4.5. One can compute the tangent direction of the curve at the
intersection point. One can then decompose this tangent into the parameter space of the
surface. Methods for doing this are presented in Section 4.6. With this information one can
compute whether the curve is entering or exiting a surface at the point. Based on this one

can classify the edge/surface intersection points:
entering A point is entering if its classification with respect to the surfaces is one of:

1. entering SurfaceA; interior SurfaceB
2. interior SurfaceA; entering SurfaceB

3. entering SurfaceA; entering SurfaceB
exiting A point is eziting if its classification with respect to the surfaces is one of:

1. exiting SurfaceA; interior SurfaceB
2. interior SurfaceA; exiting SurfaceB

3. exiting SurfaceA; exiting SurfaceB
isolated A point is isolated if its classification with respect to the surfaces is one of:

1. entering SurfaceA; exiting SurfaceB

2. exiting SurfaceA; entering SurfaceB

Based on the number and type of edge-intersection points the intersection of the

surfaces can be determined.

CHAPTER 3. LOOP DETECTION 42

one edge-intersection point

entering: error
exiting: error
isolated: one point

two edge-intersection points

entering and exiting: one curve
entering and isolated: error
exiting and isolated: error
exiting and exiting: error
entering and entering: error

isolated and isolated: two points
more than two edge-intersection points: unknown

Some of these cases are depicted in Figure 3.12.

(S &7
(T &

PS4

Figure 3.12: Some possible intersection types.

If the number of edge/surface intersection points is greater than two, there are

many possibilities. For instance, if there are four points, two entering and two exiting, it

CHAPTER 3. LOOP DETECTION 43

is not known how to find the pairs that form endpoints of curves. In practice this can be
handled simply by subdividing the surfaces until there are two or fewer points. This leads

us to an algorithm to intersect two simple surfaces:

Intersect Simple Surfaces (SurfaceA, SurfaceB)
Intersect the edges of SurfaceA with SurfaceB
the edges of SurfaceB with SurfaceA.
if there are degenerate intersections then
return report of degeneracies
else if the intersections indicate an known case then

Trace the intersection curve

else
subdivide SurfaceA and SurfaceB
for each childA, of SurfaceA
for each childB, of SurfaceB
Intersect Simple Surfaces (childA, childB)
end for
end for
end if

3.6 Examples

While no number of examples can prove that an algorithm runs quickly or reliably,
the absence of examples is a sure indication that it doesn’t. In the following, the algorithm

is demonstrated on a pathological example and on several manufacturing examples.

3.6.1 A Complex Example

To illustrate the power of this method the two bicubic patches depicted in figures
3.13 and 3.14 have been intersected. The first patch has been constructed by folding it over
on itself three times in one direction and then three times in the other. The resulting patches
is nine layers deep in most places. The second patch has been constructed by raising and

lowering alternate control vertices in a checkerboard manner. This results in a surface with

CHAPTER 3. LOOP DETECTION 44

eight spikes. The two surfaces intersect in seventy-one intersection curves as can be seen
most clearly in 3.15. A large proportion of these curves are interior loops. This example

takes about four minutes to run on a Silicon Graphics 12 MHz Personal Iris.

Figure 3.13: Two bicubic patches.

3.6.2 Some Manufacturing Examples

Some surface data describing parts of a various commercial aircraft was used to
demonstrate the algorithm’s utility on actual manufacturing data.! Figure 3.16 depicts the
intersection of an engine nascelle with the engine pylon. Figure 3.17 depicts the intersection
of the same pylon with the aircraft wing. In Figure 3.18 the intersection of the wing and the
fuselage is shown. Finally, Figure 3.19 shows the intersection of the vertical and horizontal
stabilizers. In each example, each structure is represented by six to ten surfaces with the

surface degrees as high as 16 x 16.

! These data were supplied by a company that wishes to remain anonymous.

CHAPTER 3. LOOP DETECTION

Figure 3.15: Intersection curves of two bicubic patches.

CHAPTER 3. LOOP DETECTION

47

Figure 3.16: The intersection of an engine nacelle and pylon.

CHAPTER 3. LOOP DETECTION

Figure 3.17: The intersection of an engine pylon and aircraft wing.

CHAPTER 3. LOOP DETECTION

Figure 3.18: The intersection of an aircraft wing and fuselage.

49

CHAPTER 3. LOOP DETECTION

Figure 3.19: The intersection of vertical and horizontal stabilizers.

50

Chapter 4

Supporting Algorithms

In the previous chapter, a method for intersecting a pair of surfaces has been
outlined. In the algorithm described, it is necessary to carry out other computations such
as intersecting a curve with a surface, determining if it is not possible for two surfaces to
intersect, determining bounds on Gauss maps of surfaces, and determining if two Gauss
maps intersect. In all three of these problems, linear programming is a very powerful tool.
In the first section of this chapter, linear programming is described in general, and a specific
linear programming algorithm is described in detail. This is followed by applications to 3-
dimensional separability, and two variations of separability on the sphere. Equipped with
those tools, the problem of intersecting a curve and surface is addressed. The chapter

finishes with discussions of problems associated with the surface intersection problem.

4.1 Linear Programming

An unexpectedly large number of geometric problems can be possed as linear

programming problems in low dimension. These include:

1. Determining the smallest circle on a sphere that encloses a set of points.

2. Determining the smallest distance on the sphere between the convex hulls of two point

sets.

3. Determining the closest distance between the convex hulls of two point sets in R3.

A linear programming problem is one that can be stated as follows: given a set

of constraints a; € R9+1, i =0...n — 1, and an objective function ¢ € R4, find a solution

51

CHAPTER 4. SUPPORTING ALGORITHMS 52

x € R4, x = (zo,.--,Z4-1), satisfying

d-1
Z a;;T;+aid 20 (4.1)

=0
fori=0,...,n — 1, that minimizes
d—1
2 C;Z;- (4'2)
=
The set of points satisfying 4.1 is called the feasible region. Expression 4.2 is called the
objective function. A point X minimizing the objective function in the feasible region is
called the optimum point. Each row a; of a;; is called a constraint.

Dot product notation simplifies the expressions considerably. Let

d-1

a; X = Z a;;T; + aid (4.3)
=0
and let
d-1
cC-X= ZCJ':IZJ' (4.4)
J=0

Notice that the meaning of “” depends on whether it is being used with a constraint or
with the objective function (in Equation 4.3, the vector a; has d + 1 components while the

vector X has only d).

4.1.1 Bounded Linear Programming

In [99] a randomized algorithm running in expected time O(nd!) is given for solving

linear programming problems when the constraints include d constraints of the form
CiZi > My (4.5)

fori =0,...,d—1. The algorithm proceeds by placing the constraints in random order with
the provision that the first d constraints are those given in equation (4.5). The algorithm
constructs the optimum incrementally. Let the feasible region with respect to the constraints
ao,...,ai_1 be denoted F;. At each step, the algorithm maintains a provisional optimum
x;. The provisional optimum x; is an optimal point in F,. The first provisional optimum,
Xg, is simply (mo/co,.-.,md-1/¢cd-1). If any of the ¢; = 0 then m;/c; is replaced by 0.

Subsequent provisional optimal points are found incrementally. Suppose one has computed

CHAPTER 4. SUPPORTING ALGORITHMS 53

x;. If a; - x; > 0 then clearly x;41 = Xi. Otherwise, there is an optimal point x;4+; that

satisfies a; - X;41 = 0.

One can show this as follows. Consider a straight line connecting x; with an
optimal point x’ in F;4;. Since F; is convex and both x; and x’ are in F; then the entire
line is in F;. Since x; is not in F,4; and x' is, there must be a point at which the line
enters Fi;,. The boundary where the line enters F,;1 must be on the hyperplane a;-x = 0
otherwise the line would be entering F; as well as F,;;. Call this entry point x;4;. If
Xi41 = X’ one is finished. Otherwise, the objective function at X;41 is less than or equal to
the objective function at x’. If it is less then at x' one has a contradiction. If it is equal

then both Xi4; and x’ are provisional optimal points in F 1.

Since a; - X;41 = 0 one can use the equation a;- x = 0 to eliminate a variable from
the system of inequalities. The objective function is treated just as any of the a; except
that one ignores the d + 1st coordinate. Eventually one will be left with a one dimensional

problem: finding the smallest or largest of n numbers.

The algorithm runs in expected time O(d!n), where d is the dimension of the space
being searched. More importantly, the constant is small. Specifically, the algorithm run in

expected time d'c(n) where c(n) is the time it takes to find the smallest of n numbers.

The major shortcoming of this algorithm is that there must be d artificial con-
straints introduced to keep the solution bounded. If the desired solution is unbounded, one
would like to find the unit vector v such that Av is feasible for all A > Ag for some A¢ and
v minimizes the inner product ¢ - v amongst all such v. This can be thought of as the
optimum point on the hyperplane at infinite. This cannot be computed with the method

just presented.

In [100] 2 method is given for computing the asymptotic direction cosines when the
artificial constraints are allowed to go to infinite. This can be thought of as the optimum
point on the box at infinite. The optimum point on the box at infinite and the optimum
point on the hyperplane at infinite are not necessarily the same. For certain calculations
the optimum point on the hyperplane at infinite is needed. In the next section an algorithm

is presented to find this point.

CHAPTER 4. SUPPORTING ALGORITHMS 54

4.1.2 Unbounded Linear Programming

This can be done by solving the problem in homogeneous coordinates. The solution
is now represented by a d + 1-tuple x = (Zo,...,Z4) Tepresenting the Euclidean point
(zo/Td,---,Td=1/T4) With 24 > 0. If z4 = 0 then x represents the point on the hyperplane
at infinity in the direction (zq,...,Z4-1). The point (0,...,0)is disallowed. The constraints

are now d
}: a;;z; >0 (4.6)
=0

fori=0,...,n — 1, and the objective function is

d—1
=0

Td

ijj (4 7)

Whereas the bounded linear programming algorithm required d extra constraints, the un-
bounded linear programming algorithm requires the single extra constraint z4 2> 0.

Again, dot product notation simplifies things. Let

d
a;, X= Z a; ;T (4.8)

=0
Then the constraints are
a;-x>0 (4.9)
and the objective function is
g{‘—((4.10)

where the numerator functional is n = (ng,...,n4-1,0) and the denominator functional
isd = (0,...,0,1). Note that “” now has its conventional meaning for both objective
functions and constraints. Since this objective function can take on infinite and undefined

values, one orders these values as follows:
1. Let Region 3 be the set of points x such thatd-x=0and n-x 2> 0.
2. Let Region 2 be the set of points x such thatd-x > 0.
3. Let Region 1 be the set of points x such thatd -x=0and n-x < 0.

Region 2 is where the objective function is finite, Region 1 is where it is infinitely negative,

and Region 3 is where it if infinitely positive. Let the value of the objective function in

CHAPTER 4. SUPPORTING ALGORITHMS 55

Region 7 be (by convention) greater than the value of the objective function in Regjon j if

i > j. Within Regions 1 and 3 the value of the function is ordered by

n- ‘—’;T (4.11)
The objective function is ordered in the usual manner in Region 2.

Before continuing, the following disclaimer needs to be made: if the optimum point
is in Region 3, the algorithm may not find it. For this to be the case there can be no finite
feasible point and not infinite feasible point where the numerator functional is negative.
This case will not be encountered in any of the applications in this thesis.

The homogeneous algorithm works very similarly to the Cartesian algorithm. Re-
call that the first constraint is required to be z4 > 0. The optimum with respect to just the
first constraint is simply (—ng,..., —n4-1,0), the point at infinity in the direction opposite
n.

At step ¢ the algorithm will have found a point x; that minimizes the objective
function within F;. As in the Cartesian version, if the ith provisional optimum is on the
correct side of the i + 1st constraint it becomes the ¢ + 1st provisional optimum. Otherwise,

if there is any feasible solution, the ¢ + 1st provisional optimum must satisfy the ¢ + 1st

constraint with equality. This is now stated formally and proven.

Theorem 6 Ifa;-x < 0 then x4 satisfies a; - X;41 = 0.

Proof: If x;,; is in Region 3 then there is no finite solution.

The case when x;4; and x; are in Region 2 is entirely finite and has been dealt
with in Section 4.1.1.

If x;41 is in Region 2 and x; is in Region 1 then consider the a line joining x; with
X;+1. This line is entirely contained in F, since F; is convex. One wishes to show that the
value of the objective function increases monotonically on the line from x; to x;+1. Except
at x; the line is in Region 2. Thus, one must only show that the value of the objective

function on the line is monotonically increasing in Region 2. Parametrize the line by
x;(1 — t) + X4t (4.12)

t € (0,1]. The value of the objective function as a function of ¢ is

n-(x;,(1-1)+ Xit1t)
d- (X,‘(l - t) + X.’+1t)

(4.13)

CHAPTER 4. SUPPORTING ALGORITHMS 56

Noting that d - x; = 0 one has

n-X;

+ 0 - (xip1 = %0))/(d - Xiy1) (4.14)

(

Since n -x; < 0 and d - X;4; > O one can see that the objective function does increase
monotonically from —oo to (n - xi41)/(d - Xi41)- Since x, is not in Fyy; but x4, is, there
must be a point x’ at which the line enters F,;; (crosses the hyperplane a;-x = 0) . If
x' # Xiy1 then the objective function is less at x' than at x;41, 2 contradiction. Thus,
x' = X;41 and a-x;41 = 0.

If x;41 is in Region 1 and x; is in Region 1, then consider again the line joining x;
and x;4;. Now the line will be contained entirely in Region 1. Without loss of generality

assume that |x;] = |x,41| = 1. Then parametrize the line as follows
x(t) = x;(1— t) + Xipat. (4.15)

The value of the objective function on the line is

x(t)
n-—= (4.16)
x(t)]
Note that
Ix(1)]2 = x; - xi(1 —)% + 2%; » Xiga (1 =)t + Xiga - Xip1t2. (4.17)

Since (1 —t)t > 0 on (0,1) and X; - X3 < 1 one has |x(¢)| < 1 when t € (0,1). One needn’t
worry about the possibility that |z(#)] = 0. This would imply that x;4; = —x;. This is not
possible since both x;41 and x; are in Region 1.

One would like to show that the value of the objective function on the interior of
the line segment from X; to X;4; is less than the value of the objective function at X41.

That is, one would like to show that the following value is negative:

x(t) ‘
n-——=——n-Xx; 4.18
lx(t)l +1 ()
for t € (0,1). Multiplying by |x(t)| yields:
n-x(t) — n-xip1]x(t)| (4.19)

Since n - x; < n - X;; the next expression is at least as large as the previous:

n- Xy — 0 X |x(1)] (4.20)

CHAPTER 4. SUPPORTING ALGORITHMS 57

Combining terms yields
n - X;41(1 = [x(2)]). (4.21)

Since X;41 is in Region 1 n - X471 < 0 and the above is negative. Thus, the value of the
objective function is less on the interior of the line than it is at X;41. Since X;4; is in F;yy
and x; is not, the line must enter F,;; (i.e cross the hyperplane a; - x = 0) at some point
x' . If x’ = x; then x; is feasible and x;41 = x;. If x' # xi41 and X’ # X; then x/ would
be on the interior of the line segment and the value of the objective function at x’ would

would less than at x;41. Thus X’ = x;47 and a; - Xi4y = 0.

Since the solution X;4, satisfies a;-x;41 = 0, one can recursively solve the problem
in the lower dimensional space. The analysis of the running time of this algorithm is identical
to that in [99,100].

While the behavior of the algorithm in the infinite region (Region 1) has been
treated as a special case, one could run the algorithm withd = 0 from the very beginning.
In order to ensure that the solution is found in Region 1, as opposed to Region 3, one must
add the additional constraint n - x < 0. By doing this, one can solve minimum distance
problems such as the three listed at the beginning of this section, which cannot be posed

as finite linear programming problems.

4.2 Spatial Separability

At many times in the surface intersection algorithm it is necessary to perform
a test that determines if it is not possible for two objects (either curves or surfaces) to
intersect. This test, along with the test whether two Gauss maps intersect, constitutes a
major portion of the running time of the algorithm, and care must be taken to make it
efficient.

In the following, it is assumed that all curves and surfaces have an associated set
of bounding points. The bounding points must have the property that the curve or surface is
contained completely within their convex hull. Bézier curves and surfaces as well as B-spline
curves and surface have this property. For implicit surfaces one can specify a finite portion

of the surface by a bounding box. To subdivide the surface one merely subdivides the box.

CHAPTER 4. SUPPORTING ALGORITHMS 58

In this way, implicit surfaces also have a set of bounding points, namely the corners of the
box.

Determining that the convex hulls of two sets of bounding points do not intersect
is, by Farkas’ Lemma [34], equivalent to find a plane which separates the two sets of points.
If the normal to a separating plane where known beforehand, the plane could be computed
simply by performing a small number of inner products and comparisons. The cost of finding
a separating plane is incurred when one must investigate a large number of candidate
separating planes. The candidate planes associated with certain normals are cheap to
investigate while other normals are likely to be normals to actual separating planes. The
strategy is to investigate the cheap normals first; if that fails to investigate the likely ones;

and then if that fails to use linear programming to find a separating plane if one exists.

4.2.1 Bounding Boxes

The least expensive normals to investigate are the axis vectors £, , and 2. In-
vestigating these planes is equivalent to computing the bounding box around a curve or
surface. When an object is first queried for intersection testing, the minimum and maxi-
mum of the coordinate values of the bounding points are calculated. These values are then
stored with the object for later use. If the object is a surface, it will likely be tested against
four other surfaces, and the four boundary curves of each surface it intersects. Thus, the
cost of computing the bounding box, which is small to begin with, is amortized over all its
uses and can be considered virtually free. It is a false conclusion, often reached, that one
should therefore use bounding boxes and no other test. The bounding box test can, for a
very little amount of work, cause the algorithm to go on and perform a large amount of
work, when a more sophisticated test which requires a moderate amount of work can cause
the algorithm to finish immediately. This will be shown in Section 4.2.4. Thus, two costlier

tests are presented.

4.2.2 Bounding Planes

If the bounding box fails, as it tends to when two nearly parallel but non-intersecting
surfaces are presented to the intersection algorithm, the algorithm proceeds to use a more
expensive but less crude test. In this test, the candidate normals are roughly the normals

to the surfaces.

CHAPTER 4. SUPPORTING ALGORITHMS 59

Normal = (C-A) x (D-B)

Plane containing B and D

/ /// /
_:,,,,////////////// / -
H

Plane containing A and C

Figure 4.1: Determining bounding planes simply.

For a Bézier surface or B-spline surface, it is reasonable to use the corner control
vertices (A, B, C, and D in Figure 4.1) to define a rough tangent plane. Unfortunately,
three points define a plane and if the four corner vertices are not co-planar then the normal
depends on which are chosen. Selecting any three is asymmetric and aesthetically unap-
pealing. Fortunately, the normal perpendicular to the plane containing the midpoints (E,
F, G, and H in Figure 4.1) to the sides of the quadrilateral is symmetrically defined, and
if the corner points are nearly planar, minimizes the distance between the resulting parallel

planes [110). The normal to these planes is given by (C — A) x (D — B).

4.2.3 Separating Planes

If neither the bounding boxes nor the bounding planes establish that the geometry
is separable then the most expensive and (hopefully) most fruitful test is employed. This
test attempts to find a separating plane between the bounding points of one object and the
bounding points of the other. If the points in the first set are {z;, yi, 2;} and the points of
the second set are {X;,Y;, Z;} then a separating plane is a plane az + by + cz +d = 0 so

CHAPTER 4. SUPPORTING ALGORITHMS 60

that
az; +by;+czi+d>0 1=0,...,n-1 (4.22)

and

aX; +bY;+cZ;+d<0 j=0,...,N-1 (4.23)

([86] page 291). Finding such a plane is a linear programming problem in projective 3-space:
the constraints are given in equations 4.22 and 4.23 and the feasible point’s homogeneous
coordinates are (a,b,c,d). The techniques discussed in Section 4.1 can be applied to solve
this efficiently. Notice that there is no objective function to apply, since no separating plane
is any better than another.

A slight complication to this scheme is that the curve or surface might lie on the
separating plane. In this case, the existence of a separating plane would not ensure that the
two objects do not intersect. This can be overcome by solving the following linear program

instead. Find (a,b,c,d,€) € P* satisfying

az; +by; +cz; +d+e>0 i=0,...,n—-1 (4.24)
and
aX;+bY;+eZ;+d—€<0 j=0,...,N-1 (4.25)
and minimizing
N :62 —— (4.26)

To have the algorithm return the desired point one simply assigns n = (0,0,0,0,1),d =
(0,0,0,0,0) and adds the constraint that € < 0. The algorithm operates entirely in Region
1 and thus returns the point minimizing the expression 4.26. The linear programming
algorithm will return the plane az + by +cz+d=0 such that the distance from the plane
to the closest point of either set is maximized. In this way, one can perf_orm the separation
test robustly even in the face of roundoff error. If the separating distance is large then one
can confidently say that the objects do not intersect. If the distance is small then one needs

to subdivide the objects being compared, or investigate the possibility that they intersect.

4.2.4 Performance Analysis

Some performance figures for these methods are presented in Figure 4.2. To ob-

tain these data, the surfaces shown in Figure 4.3 are presented to the surface intersection

CHAPTER 4. SUPPORTING ALGORITHMS 61

algorithm. The separation between the surfaces is varied as well as the method used to de-
termine if the surfaces were separable. For one series of separation distances, the algorithm
uses only bounding boxes to determine if the surfaces are separable. At a separation 4,
the algorithm must subdivide the surfaces until the sub-surfaces have size approximately §.
This results in roughly 1/62 sub-surfaces being created. These sub-surfaces are compared
to roughly a constant number of neighbors, resulting in O(1/6?2) performance, which can be

seen in the graph.

For the next series of separation distances, if the bounding box test fails, the
linear programming test is applied. In this case, at a separation of 6 the algorithm must
subdivide the sub-surfaces until they have dimension approximately v/§. This can be seen
by considering a sub-patch of a paraboloid. If the dimensions of a patch are I x [, the patch
and its bounding points will deviate from a plane by roughly /2. When this deviation is
roughly equal to é the patch will pass the linear programming test. This results in roughly
1/6 sub-patches being created, each being compared to an approximately constant number
of neighbors. This results in an overall running time of O(1/4).

In the next series of runs, the bounding box test is applied, and if that fails,
the bounding plane test is applied. The geometry here is optimal for such a test and the
graph reveals that this cuts the running time in half compared to the linear programming
approach. The asymptotic behavior is identical, as expected.

One cannot expect that the bounding plane approach will always work so well. For
instance, if a curve passes to the side of a surface, but through its bounding plane the test
will clearly fail. One would like an approach that combines the speed of the bounding plane
approach with the flexibility of the linear programming approach. By applying the bounding
box test first, followed by the bounding plane test, and finally the linear programming
test, this can be achieved. The graph shows that this combination gives nearly the same

performance as the bounding box/bounding plane combination.

4.3 Spherical Separability

If the two objects are already known to intersect at a point and one wishes to
determine if they intersect in no other points then a variation of 3-D separability test must

be employed. Consider, for example the situation depicted in Figure 4.4. A curve and a

CHAPTER 4. SUPPORTING ALGORITHMS

Running Times

running time
200.00 \
100.00 \\
50.00

20.00

10.00

5.00

2.00

1.00

0.50

0.20

0.10

\\‘\.4 ~ ““\ ~ \
“‘“““““ “““ \\
n“..“..\“ _\

62

boxes/planes/LP

boxes/planes
oxes

surface separation

Figure 4.2: Log log plot of the performance of the separation tests.

CHAPTER 4. SUPPORTING ALGORITHMS 63

Figure 4.3: Surfaces used to obtain performance for separation tests.

Figure 4.4: Determining if touching objects do not otherwise intersect.

CHAPTER 4. SUPPORTING ALGORITHMS 64

surface are known to intersect at the point C. One wishes to know if they intersect at any
other point. The surface is split into four sub-patches and the curve into two sub-curves.
Every point except C is mapped to a point on the unit sphere centered at C by a simple
central projection. If a sub-patch and a sub-curve intersect then their projections onto the
sphere must intersect. If one projects every point of the sub-curve onto the sphere and every
point of the sub-patch onto the sphere and these sets do not intersect, then the sub-curve
and sub-patch cannot intersect except at C.

Practically, this is accomplished as follows. If every control vertex of the Bézier or
B-spline surface (curve) except the control vertex corresponding to the surface corner (curve
end) at C is projected onto the sphere, the convex hull of the resulting point set contains
the projection of the surface (curve) onto the sphere. This can be seen as follows: Every
point p on the surface (curve) is a convex combination of the control points ¢, of the surface

(curve)
n
P= Z a;Cq (427)
=1
where 0 < a¢; < 1and Y%, a; = 1. Let ¢; be the control point located at C. The vector

which projects p onto the sphere is

p-C = Y aici—¢ (4.28)
i=1
= Z a;c; — Z a;cy (4.29)
=1 =1
= Y ai(ei—¢1) (4.30)
1=2

It is a property of B-spline and Bézier surfaces (curves) that the weight of the corner control
point of a surface (end control point of a curve), ay, is strictly less than 1 for all points on
the surface (curve) except the corner (end) point. Thus, the a; for7 = 2,...,n are not all
zero. Since none of them are negative the projection of p is a convex combination of the
projections of the other control points. The task then is to determine if the convex hulls on

the sphere intersect.

4.3.1 Spherical Bounding Boxes

As in the three-dimensional case, one would like to perform an inexpensive test

first and then a more expensive and (hopefully) more fruitful test later. The inexpensive

CHAPTER 4. SUPPORTING ALGORITHMS 65

test is analogous to the bounding box test in three dimensions. The bounding box test in
3-D can be thought of as a limited search for a separating plane. The search is limited in the
sense that one is only considering axis-aligned separating planes. This is a sensible thing to
do since the plane of the form {z = a} with the largest value of a and with all the points of
a set S to the right can be found simply by finding the minimum value of the z-coordinates
of the points in S, and similarly for y and z. That is, there is a set of separating planes

that are markedly less expensive to compute than others.

Figure 4.5: “Bounding box” on the sphere.

On the sphere, the separating “lines” are great circles of the unit sphere. The
separating lines to consider are those that contain one of the three principle axes, that is,
planes of the form Az + By =0or Az+Bz=0o0r Ay+ Bz = 0. For the point set depicted
in Figure 4.5, there will be a set of six bounding “lines”, two corresponding to each principle
axis. If the convex hull of the point set contains an axis point (one of the points +e;) then

it will not have any bounding lines corresponding to that axis.

CHAPTER 4. SUPPORTING ALGORITHMS 66

These bounding “lines” can be found as follows. Consider the bounding lines
intersecting the z-axis. Construct the set of all pairs {y,, 2;}. Define a wedge to be the
intersection of two half-planes whose boundaries contain the origin. One now has a set of
points in the plane and must find the smallest wedge (i.e. the wedge with the smallest angle)
containing them. This can clearly be done in O(n) time. When this wedge is extruded into
three dimensions and intersected with the unit sphere, one obtains bounding circles depicted

in Figure 4.5

4.3.2 Separating Circles

If the spherical bounding box test fails then a more expensive but hopefully more
sensitive test is employed. This test casts the problem as a linear programming problem and
uses the linear programming algorithm given in 4.1. Let one set of vectors be {vy,...,vy}
and the other be {wy,...,wy,}. The task is to obtain a vector P so that P - v; > 0 for
i=1,...,mand P-w; <0 for j =1,...,n. This can be cast as a linear programming

problem in projective three-space where one tries to find x = (P, ¢) € P2 minimizing

€

S 4.31
VP -P 4+ ¢? ()
and subject to
P-v,+e>0 (4.32)
for all 7 and
P.w,—¢<0 (4.33)

for all j. As in the three dimensional case, this is accomplished by setting n = (0,0,0,1)
and d = (0,0,0,0) and adding the additional constraint n - € < 0.

4.4 Bounding Gauss Maps

Another method demanded by the surface intersection algorithm is the ability to
compute bounds on the Gauss maps of surfaces. That is, one must be able to construct the
Gauss maps Ny and N; and determine if vectors P; and P, (see section 3.2) exist. Some
work in this direction has been presented in [56,58,94,95,96]. These results provide overly

generous bounds on the Gauss maps. This can interfere with the ability of the loop detection

CHAPTER 4. SUPPORTING ALGORITHMS 67

criterion to discern cases in which no loops can exist. Tighter bounds are presented in this
section.

If the vectors, P, and P, do exist then it would be desirable to know them so that
points on the intersection curve can be ordered. In the following section, it is discussed how
this can be done for certain classes of surfaces. Although methods to do this for all forms
of surfaces employed in modeling systems are not presented here, the development of such

methods appears straightforward.

4.4.1 Computing the Gauss Map for Quadric Surfaces

For small classes of surfaces, such as quadrics and tori, bounds on the Gauss map
can be constructed on a case by case basis. This will undoubtedly realize some performance

benefit over a more general approach.

4.4.2 Computing the Gauss Map for Parametric Surfaces

For a parametric surface F(u, v) it is often possible to explicitly compute the vector

function
oF OF
N(u, ‘U) = -5;- 5‘;

Let us call N(u,v) the pseudo-normal function of F. The Gauss map is obtained from

(4.34)

N(u,v) by projecting N(u,v) onto the unit sphere. If one can compute bounds on the

pseudo-normal function these can be used to bound the Gauss map.

Computing the Gauss Map for Bézier Surfaces

For a polynomial parametric surface F(u,v) in Bézier form it is possible to com-
pute the pseudo-normal function as a Bézier surface, as depicted in Figure 4.6. All that
is necessary for such a computation is the ability to represent each component function
separately, and the ability to multiply and add and subtract two such component functions.

Both Sederberg [95] and Kriezis [58] hesitate to compute the tightest possible
bounds on the Gauss map because of the computational expense. If one were to compute
the pseudo-normal surface via the above method for each sub-surface, the cost would indeed
dominate the running time of the surface intersection algorithm. However, one can compute
this surface once for the root surface and then compute the pseudo-normal surfaces for any

sub-surfaces by subdividing (as a Bézier surface) the pseudo-normal surface of the parent.

CHAPTER 4. SUPPORTING ALGORITHMS

dv

Figure 4.6: Computation of bounds on the Gauss map.

68

CHAPTER 4. SUPPORTING ALGORITHMS 69

The cost of this will be comparable to the cost of subdividing the Bézier surface itself.
Timing results on the implemented algorithm indicate that the cost is not major. Rather
the major costs are associated with the tests to determine if the geometry is separable. In
light of this, it seems prudent to spend more time computing a tighter bound to avoid the

cost associated with recursive operation of the algorithm on the created sub-surfaces.

Computing the Gauss Map for B-spline Surfaces

The pseudo-normal to a B-spline surface is also a B-spline surface. If the original
B-spline surface is degree m by degree n, the pseudo-normal surface will be degree 2m—1 by
degree 2n — 1. If the multiplicities of original surface are p; and v;, then the original surface
will be C™# at knot i (u-direction) and C"~% at knot 1 (v-direction). The continuity
of the pseudo-normal surface will be one less in either direction. If the new multiplicities
in the u and v directions are denoted u} and v} then m — p; — 1 = (2m — 1) — p; and
n—-vi—1=(2n—-1)—v}. Thus pt = pi+mand v} = vi + n.

To compute the values of the control points of pseudo-normal function, one has
two options. One can break the B-spline surfaces into Bézier surfaces and apply the tech-
niques from section 4.4.2. The resulting Bézier surfaces can be combined using knot removal
techniques [63,64]. A second approach would be to compute a discrete set of values of the
pseudo-normal surface and then solve for the coordinate values of a B-spline with the appro-
priate degree and multiplicity. A drawback of this approach is that the matrix which takes
one from interpolated values to B-spline control points becomes increasingly ill-conditioned
as the degree of the B-spline increases. For cubic B-splines with many segments the latter
approach seems more appropriate, while for B-splines with few segments and higher order

the former methods seems to be appropriate.

Rational Parametric Surfaces

Gauss maps for rational parametric surfaces require some finesse to keep the degree
low. The naive approach is as follows. Let f be the projected surface, that is, the rational

function.

f(u,v) = % (4.35)

CHAPTER 4. SUPPORTING ALGORITHMS 70

where w = F4. The first thing to do is to compute the partial derivative of f with respect

to each parameter

F,w - Fuw,
f, = T (4.36)
and
F,w - Fuw,
£, = —— (4.37)
The pseudo-normal surface N can then be computed as
N = f, x f,. (4.38)

If the degree of F is m in v and n in v then the degree of f, will be 2m ~ 1 in u and 2n in
v and the degree of f, will be degree 2m in u and 2n — 1 in v. Thus the degree of N will be
4m —1in u and 4n — 1 in v. For a rational bicubic Bézier patch the pseudo-normal surface
would be degree 11 by degree 11 and would contain 144 control vertices.

One can do somewhat better. Using equations 4.37 and 4.38 one can write the

pseudo-normal surface as

N = (F,w — Fw,) X (Fyw — Fw,). (4.39)
Expanding yields
N =F, x F,w? - F, x Fw,w — Fw, X F,w + F X Fuw,w,. (4.40)
Note that F X F = 0 gives
N = F, x F,v? - F, X Fw,w — Fw, X Fyw. ‘ (4.41)

This allows us to divide by w

N=F,xF,vw-F, xFw, - Fw, xF, (4.42)

resulting in a pseudo-normal surface of degree 3m — 1 in u and 3n — 1 in v. Using this
method, the pseudo-normal surface of a rational bicubic Bézier patch will be degree 8 in

each direction and will have 81 control vertices.

CHAPTER 4. SUPPORTING ALGORITHMS 71

4.4.3 Computing the Gauss Map for Implicit Surfaces

If a surface were given in implicit form, say as the zero set of a tri-variate scalar
valued polynomial f(z,y, z), then one could again obtain a pseudo-normal function (in fact
the gradient function)

N(z,y,2) = Vf. (4.43)

The convex hull of N’s three-dimensional lattice of Bernstein control vectors would form a

bound on the gradient function and thus the Gauss map.

4.4.4 Gauss Map Separability

Having obtained the discrete sets Ny and N, whose convex hulls are bounds on

the Gauss maps of the surfaces F(s,t) and G(u,v), respectively, one must find P, and P,
such that

P;-n; >0, P;-n; <0 (4.44)

Pz'nl > 0, Pg'nz > 0 (4.45)

for all n; € Ny and all ng € Nj.

Again, one would like to apply a series of tests, starting with the least expensive
and ending with the most expensive. Thus, the first test is the spherical bounding box test
described in sub-section 4.3.1. If that fails then a linear programming based test is applied.

The linear programming problem implied by equation 4.44 is the same as that

discussed in sub-section 4.3.2. One wishes to find x = (P, €) € P? satisfying

Py'n;+e20 (4.46)
for all n; € Ny and
P1 *Np — € S 0 (4.47)
for all ny € N; and € < 0 minimizing
€
. 4.48
vP{-P1 + €2 ()

The optimum P, returned by the algorithm will be a great circle separating {n1;} and {nz;}

that attains the largest possible distance from the two sets.

CHAPTER 4. SUPPORTING ALGORITHMS 72

The linear programming problem associated with 4.45 would be to find x =

(P2, €) € P3 satisfying

P, ny+€e2>0 (4.49)
and

P,-ny+€¢>0 (4.50)
and € < 0 minimizing

— (4.51)

VPy Py + €2

This optimum P; returned by the algorithm will be a great circle with {ny;} and {nz;} on
the same side that attains the largest possible distance from the two sets. The circle formed
by the intersection of the unit sphere and the plane P3-n+¢ = 0 will be the smallest circle
containing the union of {ny;} and {ny;}.

Typically, when two Gauss maps fail to pass the loop detection criterion, it is be-
cause they are antipodal or intersecting, but not both. Thus, one of the linear programming
problems will return a feasible solution while the other will not. If one is using a linear
programming algorithm which has a tendency to run in less time when there is no feasible
solution as with [99], and if the infeasible problem is run first, less time is spent. In order to
reap this reward without relying on chance, the two algorithms can be run in an interleaved
fashion. As soon as one problem is found to be infeasible, work on both is halted. Since the
linear programming algorithm presented in [99] is incremental, one can implement this quite

easily. In this way, a factor of 2 speedup can typically be obtained for criterion failures.

4.4.5 Performance Analysis

The performance of these tests can be observed on the example pictured in Figure
4.7. In this example, two Bézier surfaces, shaped much like quarter cones, are being inter-
sected. The Gauss maps of each surface are non-great circle arcs on the Gaussian sphere.
The angle at which the surfaces intersect and consequently the distance between the Gauss
maps of the two surfaces in controlled by a parameter d. As d becomes small the Gauss
maps cannot be separated unless first subdivided into pieces of size approximately vd. This

leads to running time proportional to 1/\/3 as can be seen in Figure 4.8.

CHAPTER 4. SUPPORTING ALGORITHMS

Gaussian
Sphere

Figure 4.7: Surfaces used to test normal separability test.

73

CHAPTER 4. SUPPORTING ALGORITHMS

running time

15.00

10.00

7.00

5.00

3.00

2.00

1.50

1.00

0.70

Running Times

N\

N

~.

TN

0.0001

0.0003

0.001

0.003

0.01

0.03

0.10

delta

74

Figure 4.8: Log log plot of the performance of the algorithm for closely spaced Gauss maps.

CHAPTER 4. SUPPORTING ALGORITHMS 75

4.4.6 Faster Gauss Map Separability

Figure 4.9: Degrees of freedom in separating plane.

If the Gauss maps of two sub-patches have been constructed to intersect at a vector
q as depicted on the right in Figure 4.9, the intersection test becomes much faster. In that
case, the separability test is only a matter of finding a plane containing q with the two
regions on opposite sides. Such a plane will only have one degree of freedom. Such a vector
q will be known when the surfaces have been subdivided at a point where they share a

common normal. This method of subdivision is explored in section 6.

CHAPTER 4. SUPPORTING ALGORITHMS 76

4.5 Intersecting Curves and Surfaces

Using the tools from the previous sections, an algorithm that reliably computes
the points of intersection of a curve and a surface is presented. The scheme for intersecting

a curve with a surface is as follows:

Curve Surface Intersect
if the curve-surface pair do not intersect except at already discovered
intersection points, return.
if there are no already discovered points of intersection interior to the curve
or surface then
Perform numerical iteration on the curve-surface pair to find new
intersection points.
if a degenerate intersection point is found then
return a report of the degeneracy.
else if a new intersection point was found then
Subdivide the curve and the surface at this point
else
Subdivide the curve and the surface at their midpoints
endif
else
Subdivide the curve and surface at any points of intersection that
are in the interior of the curve or surface.
endif

Apply Curve Surface Intersect to each pair.

A method for determining when the curve and surface do not intersect except at
already-discovered intersections is described in Section 4.2. In order to determine if an
intersection point has already been discovered, the algorithm must first find all the points
common to the curve and surface, and then compare each point to the tentatively “new”
point. Determining all the already found intersection points on a curve or surface efficiently
requires some thought since these points are often discovered by sibling curves and surfaces.

A method for doing this is given in 4.9. Since a degenerate (tangential) intersection will

CHAPTER 4. SUPPORTING ALGORITHMS 77

cause Curve Surface Intersect to return, the only intersection points that need to be
compared are transversal. The precision of the coordinates of such points can be calculated
from the numerical conditioning of the intersection and used to test for uniqueness. Thus,
the above algorithm, if it terminates, must return all the intersection points each exactly
once.

It must now be demonstrated that Curve Surface Intersect will terminate.
Suppose that it doesn’t terminate. In that case, it must recurse indefinitely. At each
recursive call, the size of each curve and surface is halved (except if the curve or surface
is subdivided at an intersection point). The series of surfaces form a nested sequence of
rectangles in surfaces’ parameter space. The rectangles will converge to a point in the
surfaces’ parameter space. Let the image of this point be p,. Similarly the series of curves
form a nested sequence of intervals in the curves’ parameter space. Let the image of the
limit will be pe.

If p, # pc then the bounds on the surface must eventually become separable from
the bounds on tae curve causing the recursion to terminate. If p, = pc consider the tangent
direction of curve T, and the normal to the surface n,.

If T, - n, # 0 then the intersection is transversal. Since the numerical iteration is
being given initial points arbitrarily close to the solution and the Jacobian is non-singular
at the solution, by Kantorovich’s Theorem ([51] page 115) the iteration must eventually
converge.

If T.-n, = O then the curve and surface intersect tangentially. Again, the numerical
iteration is being given initial points arbitrarily close to the intersection, but in this case
the Jacobian used is singular at the intersection and arbitrarily close to singular for the
sequence of initial points. By examining the singular value decomposition of the Jacobian,
a singular value can be observed becoming arbitrarily small. Eventually the algorithm will
make the determination that the Jacobian is close enough to singular and will report this

as a degeneracy terminating the recursion.

4.6 Finding Tangent Directions at a Non-singular point

A non-singular curve of intersection between two patches can be oriented by the
cross product of the normals to the two surfaces that define it. To determine if this curve

is entering or exiting one of these patches, it is necessary to compute the tangent to the

CHAPTER 4. SUPPORTING ALGORITHMS 78

intersection curve as a linear combination of the partial derivatives of each surface. This is
a delicate operation, for if the algorithm calculates that a curve is entering a patch when it
is in fact exiting the patch, it will draw the conclusion that a nonsensical intersection has
been encountered and will terminate.

The following obvious, but not so accurate method has been presented for cal-
culating the tangent directions [10]. For each surface, obtain the normal by calculating
the cross-product of the partial derivatives. To calculate the tangent direction T in R3,
calculate the cross product of the normals. For the surface F(s,t) solve the least squares
problem

sF,+tF; =T (4.52)

and similarly for the surface G. Note that 4.52 is a system of three equations in two
unknowns s’ and ¢'.
Alternatively, one can pose the problem as follows. One wishes to find the direction
(s',t') in the parameter space of F(s,t) and the direction (u’,v’) in the parameter space of
G(u,v) so that
SF,+tFe=v/'G, +v'G, (4.53)

Note that such tangent direction will automatically be in the direction of the curve tangent.

One can pose this as a matrix problem

. |
F, F, -G, -G, |ST=0 (4.54)

where S = [s/, ¢/, u’,v']. The matrix above is 3 X 4 and one is looking for a fourth row that
is orthogonal to the first three. This can be very accurately solved using an SVD algorithm
(33,80].

4.7 Finding Tangent Directions at a Singularity

If one is interested in the tangent directions at a singularity, the above matrix will
be rank two since the four vectors F,, F;, G, and G, will lie in the tangent plane at the
singularity (a two-dimensional subspace). Thus, there will be a two-dimensional subspace
of parameter space tangent direction pairs such that moving in corresponding directions in

both surfaces, one will remain in both surfaces to the first order. The surfaces being only

CHAPTER 4. SUPPORTING ALGORITHMS 79

two-dimensional manifolds to begin with, this indicates that one may move in any direction
and remain in both surfaces to the first order.

Moving along an intersection curve one remains in both surfaces to an arbitrary
order. Constraining the tangent directions to remain in the surface to the second order will
determine the correct tangent directions for a large class of singularities.

Let (s', %) be a tangent direction in the surface F(s,t) and let (u’,v’) be a tangent
direction in the surface G(u,v). First, one wants these two tangent directions to agree to
the second order. Let w be the parameter of the intersection curve. Its motion is described
by

(s(w), t(w)) = (s + s'w + s"w/2,t + t'w + t"w/2) (4.55)

and similarly for (u,v). The first order constraint is:

IRy]y
Gu Gv = Fa Ft (456)
|

Let A be the 2 x 2 matrix that maps a (s’,¢) to a (u’,v’) so that equation 4.56 holds, i.e.
u’ s’

=A . (4.57)
v/ 14

|
G, G, |=|F, F, |4 (4.58)
I |

The matrix A can be found using standard least squares methods. Again, it is reasonable

the R3 directions are the same:

Combining 4.56 and 4.57:

to solve this system of equations since F,, F;, Gy, and G, all lie in a two-dimensional

subspace. The second order constraint is
F + (s'F, + t'F)w + (s*F,, + t?Fy + 25't'Fyy + s"F, + t'Fy)w?
=G+ (WGy + t'G)w 4+ (u2Gyy + VG + 2u'0'Gyy + 0"Gy + V"G)w? (4.59)
Applying 4.56 one is left with:

s?F,, + t?Fy + 25't'Fp + s"F, + t'F,
= uGyy + 1?Gyy + 200Gy + v'Gy + VG, (4.60)

CHAPTER 4. SUPPORTING ALGORITHMS 80

To make this equality hold in three dimensions, it suffices to make it hold both perpendicular
to the tangent plane and in the tangent plane. Let n be the normal at the singularity

n- (snF” + tQFtt + Slt,F,t + S"F, + t”Ft)
=n (u?Guy + 1?Gy + 'V'Gyy + "Gy + v"'Gy) (4.61)

Note that n is perpendicular to each of F,, Fy, Gy, and G, so that

n-(s?F,, + t"Fy + s't'Fy)
=1 (u?Guu + Gy + u'v'Gyy) (4.62)

This equation will determine the tangent directions. In the perpendicular space, equation
4.60 becomes 2 equations in 4 unknowns and thus can be satisfied. Equation 4.62 can be

written in matrix form

T
[) } (Qr - ATQg4) [.] =0 (4:63)

where

Qf = [n-Fy n-Fo] (4.64)

n-F,;, n-Fy

and similarly for G. The matrix M = (Qf — ATQgA) gives us a quadratic equation
determining the tangent directions. If the entire matrix is zero, then the surfaces agree to
the second order or perhaps higher. The determinant of the matrix is the discriminant of
the quadratic equation. If it is positive then there are two distinct intersection directions.
If it is negative then the two surfaces intersect at an isolated point. If it is zero then the
surfaces intersect (at least locally) in a double curve. This could be a cusp, tachnode or a

point on a double curve [37] as depicted in 4.10.

CHAPTER 4. SUPPORTING ALGORITHMS 81

double curve point cusp tachnode

Figure 4.10: Some curve singularities.

4.8 Intersecting Three Surfaces

The scheme for intersecting three surfaces is as follows:

Three Surface Intersect

if the three surfaces do not intersect ezcept at already discovered
intersection points, return.
if there are no already discovered points of intersection interior

to any of the surfaces then

Perform numerical iteration on the surfaces to find new intersection points.
if a new intersection point was found then
Subdivide the surfaces at this point

else

Subdivide the surfaces in some way
endif

else

Subdivide the surfaces at any points of intersection that
are in the interior of some surface.

endif

Perform Three Surface Intersect on each surface triple

As in Curve Surface Intersect, there is only one way for the above algorithm to

return, when the surfaces do not intersect except at intersection points already discovered.

CHAPTER 4. SUPPORTING ALGORITHMS 82

Thus, it must discover all the intersection points. A method for performing this step
is described in Section 4.2. Again, the algorithm, if it terminates, must return all the

intersection points each exactly once.

4.9 Managing Intersection Points

Throughout the intersection algorithm, it is necessary to determine the set of
already found intersection points that lie on a curve or surface. This is mostly necessary
to ensure correct connectivity between intersection curve pieces that arise from different
sub-surface pair intersections. Since intersection points must be checked for uniqueness,
the number of queries is at least as large as the number of updates, and is generally much
larger.

For surfaces in general, an intersection point contains information describing how
the point is embedded in the surface and the accuracy of the point’s coordinates. For
example, in the case of a parametric surface, an intersection point contains the parameter
values of the point and tolerance associated with the parameter values. The tolerances are
based on the conditioning of the curve-surface intersection calculation and vary from point
to point.

The problem is: Given a query rectangle (a sub-patch or isoparametric curve) and a
large set of small rectangles (the set of already found intersection points and their tolerances)
find all the small rectangles that intersect the large rectangle (the set of intersection points
on the sub-patch or isoparametric curve). Whatever solution is used must allow for the
addition of intersection points between queries.

In the simplest approach, there is a root surface and all surfaces or curves that
are obtained from the root through subdivision maintain a pointer to the root. When an
intersection is found on a child curve or surface, it is registered with the root. When the
intersection points on a child are desired, all the intersection points of the root are examined
and those that lie on the child are returned. A single query clearly takes time proportional
to the number of intersections found over the entire duration of the surface intersection
algorithm, leading to quadratic overall behavior.

A more sophisticated strategy would be to store the intersection points in a 2-D
dynamic range search structure [86] according to their parameter values. This would lead

to logarithmic entry and query times. Overall one would expect that the amount of time

CHAPTER 4. SUPPORTING ALGORITHMS 83

maintaining the structure would be O((n + k)lgn) where n is the number of intersection
points and k is the sum of the sizes of all the query answers. The implementation has shown
that this still takes a considerable fraction of the running time of the surface intersection
algorithm. More importantly, one cannot search for points according to their individual
tolerances. Rather, a global tolerance must be used to expand the query rectangle. Using
some of the ideas presented in [25] it should be possible to create a structure that would
allow individual tolerances for each point. The implementation of this appears ponderous
and an ad hoc method was developed instead.

Because the algorithm proceeds by walking the subdivision trees of each surface
simultaneously, the algorithm tends to make many queries in one region of the surface before
proceeding to another region. The idea is to maintain a list of all the intersection points in
the area of the surface that is being investigated. In this case the list is the answer to the
query and additions to the overall list are simply additions to the small list. Work is only
done when the algorithm moves to a different part of the surface the list must be updated.
In the following the details are given.

All of the intersection points are kept in a linked list. A surface can be either
active or tnactive. In the active state, the surface has a pointer first_point to an entry in
the linked list. By following the linked list in the forward direction from first_point all
the intersection points on the surface (and no others) are enumerated.

Clearly, in the active state, the surface can find all the intersection points on itself
in time proportional to the number of points. In the subdivision tree for a surface, for
any leaf, it is always possible to have every surface on the path from root to leaf active,.
A leaf can be made inactive in constant time. If a leaf’s parent is active, the leaf can be
made active in time proportional to the number of intersection points on the parent. If a
surface is active and none of its children is active then an entry can be made into the list
of intersection points on the surface in constant time. .

What then is the overall cost of maintaining this structure? If the surface is active,
the cost of a query is proportional to the answer size and the cost of an addition is constant.
If the cost of activating any surface is charged to the act of creating an intersection points,
then the cost of creating an intersection point is proportional to the total number of surfaces
that the point is ever in. For most intersection problems a point is contained in roughly
lg(n) surfaces. Thus, logarithmic entry time and constant query time can be achieved. If

n is the number of intersection points, it is expected that O(nlgn + k) time will be spent

CHAPTER 4. SUPPORTING ALGORITHMS 84

dealing with the structure.

Summary

In this chapter the algorithms that are necessary to implement the surface inter-
section algorithm have been described in detail. The general problem of linear programming
and its application to various spatial separation problems has been discussed. Methods for
computing bounds on the Gauss map for rational B-spline and Bézier surfaces have been
presented. The problem of finding tangent directions at singular and non-singular points
has been dealt with. Also, a method for managing intersection points for the intersection
algorithm has been described. In the following chapter curve representation which is well

suited to this algorithm and to the problem of solid modeling will be presented.

Chapter 5

Representing the Intersection

5.1 Approximation vs. Representation

A large amount of research has been spent devising methods to approximate gen-
eral curves, such as intersection curves, with specific well—understood curves such as cubic
splines [20]. There are two good reasons to perform such an approximation. First, if all
the curves used in a program are represented in the same format, the programmer’s task
is greatly simplified. Second, if the curve will be interrogated (evaluated, bounded) often,
it may be faster to spend time initially to compute the approximate curve to speed up

subsequent evaluation.

However, in the case of solid modeling the accuracy requirements outweigh the
speed requirements. That is, the curve must be represented with an error which is so
small that to approximate the curve with a parametric polynomial curve would require an

excessive amount of data.

The alternative is to store a small amount of data from which the intersection
curve can be quickly evaluated. This data, together with a small amount of auxiliary data,
can be made to look, from a functional standpoint, just like a parametric polynomial curve.
Those familiar with object oriented programming will recognize this as a curve object which
happens not to be implemented with a parametric polynomial curve. In this chapter, it is

described how intersection curves can be made into such objects.

85

CHAPTER 5. REPRESENTING THE INTERSECTION 86

5.2 The Curve Object

The following is a list of operations/enquiries that must be supplied by a curve

object to a surface intersection algorithm.
Evaluate It should be possible to evaluate the curve at a parameter value.
Subdivide It should be possible to subdivide the curve at a specified point on the curve.

Bound It should be possible to compute a set of points inside of whose convex hull the
curve is guaranteed to lie. Additionally, given a point on the curve, it should be
possible to construct bounds on the spherical projection of the curve from the point

(see Section 4.3).

Intersect with Surface It should be possible to intersect the curve with a surface.

5.3 The Exact Intersection Curve

It is proposed that the intersection curve of the surfaces be implemented by an

object that stores the following data.
sub-surface #1 Portion of first intersecting surface.
sub-surface #2 Portion of second intersecting surface.

parameterization vector Vector, P, determining the parametrization of the curve (see

Equation 3.15).
parameter curve #1 Curve in parameter space of surface #1.
parameter curve #2 Curve in parameter space of surface #2.
po Start point of the curve.

p1 End point of the curve.

5.3.1 Evaluation

To evaluate the surface at a parameter, ¢, one intersects the two defining surfaces

with the plane x - P = t. The start and end parameters are o = P -pg and £, = P - py,

CHAPTER 5. REPRESENTING THE INTERSECTION 87

respectively. The intersection is found by evaluating the two parameter space curves and
using these values as starting points for Newton iteration to solve the intersection problem.
Note once an intersection point is found, one does need to verify that there are no others.

This is guaranteed by the representation.

5.3.2 Subdivision

To subdivide the intersection curve at a point on it, one merely needs to subdivide
one or the other or both of the defining surfaces in such a way that part of the intersection
lies on one sub-surface and part on another. After the subdivision all pairs of sub-patches
should be checked for intersections and each pair containing an intersection should be added

to the list of curves that are returned by this function.

5.3.3 Bounding

A valid but crude bound on the intersection curve is the bound on the twosurfaces.
This, however can be much larger than the intersection curve, even when the curve is very
small. To obviate this, bounds should be estimated on the extent of the intersection curve
in the surfaces, and then the surfaces should be trimmed to this bound. If the portions of
the surface outside of the bound do not intersect one another then the estimate was valid
and the bounds are correct. If the portions do intersect then the estimate was invalid and

needs to be repeated.

5.3.4 Intersecting with a surface

This capability may seem somewhat artificial. That is, from the previous functions
provided by the exact intersection curve, it is possible to construct a curve/surface intersec-
tion algorithm. On the other hand, adding this function allows the intersection algorithm
to be constructed in a more symmetric fashion. That is, the intersection that one seeks is
the intersection of three surfaces: the two surfaces defining the curve and the surface with
which one wishes intersect the curve. In this problem, no surface plays a distinguishable

role. An algorithm to accomplish this is given in Section 4.8

Chapter 6
Singularities

Now that it has been shown how to implement the operations needed to support
the basic surface intersection algorithm, the problem of singular points of intersection is
addressed.

Consider the intersection of a bicubic patch and a plane depicted in Figure 6.1.
The intersection consists of two sets of three parallel lines. The lines intersect in singular
points, that is, points where the surfaces intersect and the surface normals are parallel.
(see [37], page 32), If one were to give this geometry to the intersection algorithm so far
described, it would recurse until it has found the singular points to a sufficient accuracy.
Unfortunately it would be very slow: it would be similar to finding the solution by bi-
section. The difference is that every time size of the problem is halved, not two but rather
sixteen sub-problems are generated. Even in cases where the surfaces do not contain any
singular points of intersection, but nearly do, speed can be a problem as will be seen in
Section 6.3.

Thus, it seems fruitful to investigate whether the singularities can be found via
a faster method. Before embarking on that task it should be pointed out again that any
acceleration technique for finding singularities will neither contribute to nor diminish the
robustness of the algorithm. Such a technique can only affect its speed.

To find the singular points quickly, it seems natural to employ a Newton iteration
type scheme. To do this, one must first characterize the singular points mathematically.

This can be done as follows:

F,(s,t) x Fy(s,t) - Gyu(u,v)=0 (6.1)

88

CHAPTER 6. SINGULARITIES 89

=

Figure 6.1: Intersection consisting of 6 lines.

F,(s,t) x Fy(s,t) - Gy(u,v) =0 (6.2)
F(s,t) — G(u,v)=0 (6.3)

Equation 6.3 (really three equations) ensures that the surfaces intersect at the point in
question, and equations 6.1 and 6.2 ensure that the surfaces have the same normal at the
point. Unfortunately, this is a system of five equations in four unknowns. The Jacobian
associated with it will be rank deficient simply because it is not square. This is expected

because generically surfaces do not intersect in singular points.

6.1 Auxiliary Equations

To overcome this an auxiliary system of equations whose solutions are a superset
of the set of singular points is used. The solutions to the auxiliary equations can then be
checked to determine if they are also singular points. One set of auxiliary equations that

can be used is

F,(s,t) x Fy(s,t) - Gy(u,v) =0 (6.4)
F.(s,t) x Fe(s,t) - Gy(u,v) =0 (6.5)
(F(s,t) — G(u,v)) - F,(s,t) =0 (6.6)

(F(s,t) — G(u,v)) - Fys,t) = 0. (6.7)

CHAPTER 6. SINGULARITIES 90

Note that this is the same set of equations presented before but with the three equations
6.3 being replaced by the two equations 6.6 and 6.7. The component of equation 6.3 in the
direction of the surface normal has been disregarded. Thus, the set of solutions to equations
6.1 to 6.2 will be a subset of the solutions to equations 6.4 to 6.7.

Sederberg [94] also proposed to solve this system of equations, but did not present
any analysis of the singularity of the Jacobian. Points on the surface that satisfy this set
of equations have been called magic points in [69] and also collinear normal points [58].

If the Jacobian associated with this system of equations is non-singular then given
a starting point close enough, the Newton iteration used to solve this system of equations

will converge.

Theorem 7 The Jacobian associated with the system of equations 6.4 to 6.7 will be non-
singular at node singularities and at isolated intersections where the surfaces do not share

the same fundamental form.

Proof:
Let
H =F,xF,-G, (6.8)
H,=F,xF;-G, (6.9)
H;=(F-G) F, (6.10)
Hy=(F-G)-F, (6.11)

and wy = s, wy = t, w3 = u, and wy = v. Consider the Jacobian of the system of equations

6.4 - 6.7:
8H;
J == .
[3’!1)]] . (6 12)

To make this more manageable one can make some simplifying assumptions. First, one can
assume that the solution is at s = t = u = v = 0. Thus, F(0,0) = G(0,0). By performing
an orthogonal change of coordinate system one can arrange that F, - 2=F,-2=G, -2 =
G, -z = 0 without changing the Jacobian. The next objective is to make F, = ¥ and

F, = %x. This can be accomplished by reparametrizing F with the variables s’ and ¢'.

s(s',t') = as’ + bt’ (6.13)

CHAPTER 6. SINGULARITIES 91

and

t(s',t') = cs’ + dt’ (6.14)

Firstly, this changes the functions H;:

H = F,xFy -G, (6.15)
= (Faa+ Fb) x (Fse+ Fud)- G, (6.16)
= (F,xF¢)(ad-bc)- G, (6.17)
= H,(ad - bc) (6.18)
and
H, = F,xF,-G, (6.19)
= (Fsa+ F)x (Fye+ Fud)- G, (6.20)
= (F, x F¢)(ad -bc)- G, (6.21)
= Hj(ad - be) (6.22)
and
g, = (F-G)-F, (6.23)
= (F-G) (Fsa+ Fy) (6.24)
= Hia+ Hyc (6.25)
and
H, = (F-G) Fy (6.26)
= (F-G) - (F,b+F.d) . (6.27)
= H3b+ Hud (6.28)
So that
ad — be 0 0 0
BH: 0 ad—bc 0 0 JH;
= = =t (6.29)
dw; 0 0 a b ||0w;
d

0 0 c

CHAPTER 6. SINGULARITIES

The Jacobian also changes as a result of the reparametrization of the H,.

dH! oH!
5wl ~ B3
8H!ds ~OH! 8t
s 05 T Bt 88

and

om; _ oH,

ow) at
OH! f?i QH_,’ ot
8s ot at ot

so that

(v}

0
[BH{]_ 0 ad—bc 0 0 [BH,]
ow! | 0 0 a b Oow;

3
0 0 c d 0

o

b 0
d 0
01
00

= o © O

92

(6.30)

(6.31)
(6.32)

(6.33)

(6.34)

(6.35)
(6.36)

(6.37)

(6.38)

Since the matrices that modify J in equation 6.38 are non-singular, J’ will be singular if

and only if J is.

In a similar way, one can reparametrize G with variables 4’ and v’ so that G, = X

and G, = ¥. It can again be shown that this will not change the rank of the Jacobian. Let

the old coordinates be related to the new according to
u(v',v') = au’ + b’

and

v(v/,v") = cu’ + dv'.
The partials with respect to the new parameters are

Gy = Gua+ Gye

(6.39)

(6.40)

(6.41)

CHAPTER 6. SINGULARITIES 93

Gy = Gub+ G,d (6.42)

The Jacobian J’ with respect to the new variables v’ and v’ is in the following relationship

to the Jacobian J with respect to the old variables u and v:

a ¢ 00 1000
, b doo 0100
¥ = J (6.43)
0010 00 ab
000 1 00 ¢ d

The proof of this is similar to that for the reparametrization of F and is thus omitted. It
can be seen that the new Jacobian will be singular if and only if the original Jacobian was.

If one expands the Jacobian:

(FssXFt+FsXFst)'Gu (FstXFt+F3XFtt)'Gu FGXFt'Guu FaXFt'Guu
(FssXFt+FsXFst)'Gv (FatXFt+F5XFtt)'Gu FJXFt'Guu FaXFt'va

F, - F,+(F-G)-F,, F,-F,+(F-G)-F, ~G,-F, -G, -F,
F,-F,+(F-G)-F, F, -F;+(F-G) - Fy ~G,-F, -G, F,
(6.44)

it is observed that the second order partials are only involved in inner products with vectors

parallel to 2. Thus, one can assume that the surfaces are in the form:

F(s,t) = (s,t,as?/2 + bst + ct?/2) (6.45)
G(u,v) = (u,v.du?/2 + euv + fv?/2) (6.46)

The derivatives are as follows:
F, =X Ft = 5’ F“ =az F,t = bz Fu =cZ (647)

Gu=% G,=39 Gu=4dz Gyu=¢€z Gu=Ff2 (6.48)

Substituting them into expression 6.44 yields

(azx §+%x02)- % (bZxy+xXxcz) X XX§F-di XXy-ez
aEX V+axbz) vy (bZXy+XXc2)-y XxX§y-ez XXy-f2

J- (y)y (¥).y ¥ y-f (6.49)
X% y-x -%-% -y-x

>
<
<
<
|
b
<
|
<>
<

CHAPTER 6. SINGULARITIES 94

The determinant of the Jacobian is then

= (d - a)(f - ¢)— (e — b)? (6.50)

The determinant 6.50 is zero under two circumstances. The first is when d = @, f = ¢
and e = b, i.e., when the surfaces have the same second order description. In that case, the
surfaces cannot intersect in a simple node singularity. Next, consider the variables a = a—d,
B8 =b-eand vy =c— f. The determinant will be zero if ay — #% = 0. Note that this
is exactly the condition that the two surfaces intersect in a double curve (see Section 4.6.

The Jacobian can still vanish at a singularity, for example if the surfaces intersect
in a double curve or in some other higher order singularity. In these cases, one would like to
locate this singularity quickly to identify the degeneracy. This can be done by computing the
singular value decomposition of the Jacobian. If a very small singular value is discovered,
the pseudo inverse of the matrix is used for the Newton iteration. In this way, the Newton
iteration will converge to a degenerate point of intersection. The algorithm will then report

the point as a degeneracy and terminate.

CHAPTER 6. SINGULARITIES 95

6.2 Modified Algorithm

The results of the previous section can be used to derive a faster algorithm:

Intersect
if the bounding volumes of the surfaces intersect then
if the Gauss maps satisfy the loop detection criterion then

Intersect Simple Surfaces

else
Perform numerical iteration to find the solution to equations (6.4 - 6.7)
if a solution is found then
if the solution is a node or collineal point then
subdivide at that point.
else if the singularity is a double curve point then
return a report of the degeneracy
else
subdivide at the collineal point
endif
else
Subdivide the surface(s) with the largest Gauss map(s)
endif
Intersect all pairs.
endif

endif

If a singular point is found, the surfaces are subdivided so that the sub-patches
containing the singularity are very small as depicted in Figure 6.2. The subpatches contain-
ing the singularity are not intersected one with the other. Rather, the intersection within
the region is assumed to be merely a crossing of two intersection curves. The tangent
directions at this point can be calculated as described in 4.7.

If a solution is found to equations 6.4 - 6.7 but F(s,t) # G(u,v) then each surface
is simply subdivided at this point. By doing this, it is known beforehand that the Gauss

maps of several surfaces intersect in at least a single point. This reduces the dimension of

CHAPTER 6. SINGULARITIES 96

the linear program that must be employed to determine if the Gauss maps intersect and
thus speeds up the computation. In addition, if one of the surfaces is a plane, then (unless

there is another collinear point) the surfaces thus subdivided will pass the loop detection

criterion.

- // Singular point

il
-

\

Tangent directions

Figure 6.2: Subdivision pattern at a node singularity.

6.3 Application to Example

A

=

Figure 6.3: Basic algorithm applied to example.

CHAPTER 6. SINGULARITIES 97

=
e

Figure 6.4: Modified algorithm applied to the same example.

In Figure 6.3, a bicubic patch and a plane are intersected using the basic inter-
section algorithm. It can be seen that a large amount of subdivision takes place before
the sub-surfaces pass the loop detection criterion. In Figure 6.4, the intersection problem
depicted in Figure 6.3 has been given to the modified algorithm. For this pair of surfaces,
there are 13 solutions to equations (6.4) - (6.7). Nine are at the intersection of the two pairs
of three lines and the remaining four are at the tops of the two “hills” and the bottoms of
the two “valleys”. When there was a solution to equations (6.4) - (6.7) in the regions of
the surfaces being subdivided, the Newton iteration found it in every case except one. The
number of patches in the final subdivision in Figure 6.4 is 31 compared to 88 in Figure 6.3.

As the intersection of the two surfaces becomes closer to singular, the amount
of subdivision does not change for the more modified algorithm, but grows for the basic
algorithm. In Figures 6.” and 6.6 the plane has been lowered closer to the singular points.
The number of patches remains 31 for Figure 6.6 while it has grown to 110 in Figure 6.5.

In Figure 6.7 the subdivision resulting from the modified surface intersection al-
gorithm, when the intersection actually contains singular points, is shown. In this case, the

singularities are discovered and the subdivision pattern depicted in Figure 6.2 is employed.

CHAPTER 6. SINGULARITIES 98

Figure 6.5: The results of basic algorithm when the intersection curve nearly contains a

singular point.

\

T

Figure 6.6: Modified algorithm when the surfaces are near the degenerate position.

CHAPTER 6. SINGULARITIES 99

Figure 6.7: The number of patches in the subdivision is moderate even with degenerate

intersections.

Chapter 7

Degeneracy

In the description of the algorithm so far, in many cases it has been assumed that
the surfaces to be intersected are in general position. Actually, a stronger assumption has
been made. It has been assumed that the surfaces are far enough away from any degenerate
position that all the floating point comparisons give the same answer as would have been
given had the whole algorithm run in infinite precision. If this is the case then the algorithm
is guaranteed to return the correct intersection. In practice, this assumption is unworkable:
exact degeneracies are often designed into objects used in solid modeling systems. Addi-
tionally, near and exact degeneracies can be produced by the surface intersection algorithm
itself. Degeneracies designed into the object might include, for example, fillets, rounds and
abutting faces. The algorithm’s selection of parameter values at which to subdivide the

surface can also lead to degeneracies.

It is appropriate when considering degeneracies to consider the contextin which the
surface intersection algorithm is operating. If the surface intersection problem is degenerate
then the solid Boolean operation is also degenerate. If one can determine how the solid
operation should proceed in the degenerate case then one can also determine how the
surface intersection problem should proceed. In the first section of this chapter, some policies
associated with solids in the degenerate position are investigated one that is workable in the
context of floating point arithmetic is introduced. In the second section, the implementation

in the surface intersection algorithm of a policy consistent with this is described.

100

CHAPTER 7. DEGENERACY 101

7.1 Robustness

Many articles, theses and, books have been written recently that address the prob-
lem of designing a robust geometric modeling algorithm and, in particular, a robust solid
modeling algorithm [1,29,42,43,45,44,49,54,68,71,88,98,105]. When all of the relevant ge-
ometry is in general position then any correct algorithm should function reliably. However,
when certain degeneracies occur it is not only unclear how the algorithm should be designed,
but it is also unclear how to determine if an algorithm has run correctly. In this section,

the problem of correctness in the degenerate position is addressed.

7.1.1 Topological Correctness

Hoffmann, Hopcroft and Karasick consider the correctness of an implementation
of an operation on a solid represented by topological data [42]. In their system, a solid is a
collection of numerical and topological data. Two solids are identical if there is a one to one
correspondence between their numerical and topological data and corresponding numerical

data are close in a numerical sense. For such solids correctness is defined as follows:

1. A model M is ideal.

2. A rep. entation R is real. A representation is a representation of a model M if the

largest deviation of R from M is less than €, where € is a fixed tolerance.

3. The implementation of a k-ary operation is correct if for every input representation

R;, there exists a model M, such that the following is true:

(a) The algorithm constructs an output representation R without failing.

(b) R is a representation of M where M = op(My,..., My).

Let us refer to this as the topological correctness rule. This rule actually tells
us nothing about what to do in the degenerate position. Given a model nearly in the
degenerate position one can perturb it to one side or the other side of the degeneracy or one
can perturb it exactly into the the degenerate position. Any such perturbation will result in
valid R;’s. An algorithm is then correct if it mimics the behavior of some ideal algorithm.

The problem with this approach is that for very reasonable input, the algorithm is

allowed to produce very unexpected output. Consider the situation depicted in Figure 7.1.

CHAPTER 7. DEGENERACY 102

input data are two squares that are nearly abutting

The possible outputs are numerically very close and topologically very different

Figure 7.1: Shortcoming of the topological rule.

Two squares are presented to a union algorithm. The numerical data describing the faces
that abut one another are identical. However, according to the above criterion the algorithm
is allowed to produce either 1) two distinct squares as an output or 2) one rectangle as an
output. The “expected” result is a single rectangle, but the expectation is not enforced by

the above definition of correctness. Specifically, the following problems can be encountered:
1. An algorithm can produce lower dimensional features: lamina and filaments.
2. An algorithm can produce numerically unstable features: very thin slabs.

The first problem can be skirted by redefining the ideal operation. For most poly-
hedral modeling algorithms, the ideal operations are not union, intersection and difference,
but rather the regularized! Boolean operations U*, N* and —*.

Even with regularized Boolean operations the second problem remains: the algo-
rithm is allowed to produce output that is arbitrarily close to non-regular. Thus, a second
addendum is added to the above correctness rule: The algorithm neither accepts nor outputs
features that are smaller than a specified tolerance.

More fundamentally, this definition is not so much descriptive as it is prescriptive.

That is, one cannot draw conclusions about the output of a correct algorithm short of

L A set is regular if it is the closure of its interior.

CHAPTER 7. DEGENERACY 103

actually running it. For instance, one cannot determine if a correct algorithm will return a

single connected body in Figure 7.1 or two disconnected bodies.

7.1.2 Stereographic Correctness

Hopcroft and Kraft [49] have named the study of “representing physical objects and
of manipulating and reasoning about those objects”, stereophenomenology. The important
aspects of solid models are those which correspond to aspects of physical objects. A solid
is completely and uniquely defined by its corresponding point set. Having taken this view,
the concept of stereographic correctness is presented.

What fundamentally does a solid modeling algorithm do? It models certain point
sets in R3 and performs Boolean operations on them. What can be done with point sets?
They can be combined via Boolean operations to obtain other point sets and they can
be used to discriminate between those points which they contain and those points which
they do not contain. Thus, a modeling algorithm should be able to determine whether
a point is in a solid or not. Because of numerical rounding, this cannot always be done.
Specifically, the boundaries of a solid might be slightly perturbed from the ideal. Thus, the
real algorithm only classifies points that are not near the boundary of the solid. For points
that are near the boundary of the solid, the algorithm is not obliged to give the correct
answer.

A subtle question arises. The boundaries of the solid exempt the modeling algo-
rithm from answering certain questions. To which boundaries is one referring, those of the
real model (maintained by the algorithm) or to those of the ideal model? If one choses
the the former, one could write a trivially correct modeling algorithm which always returns
the answer “inside”. In its defense, the algorithm could plead that its internal model had

boundaries everywhere. Thus, one is forced to use the latter. Formally then:

1. A model M is ideal.

184

A representation R is real. A representation R is a representation of a model M if

every point well within M is in R and every point well outside of M is not in R.

3. The implementation of a k-ary operation is correct if, for every input representation

R;, and for every model M, represented by R;, the following is true:

(a) The algorithm constructs an output representation R without failing.

CHAPTER 7. DEGENERACY 104

(b) R is a representation of M where M = op(Mj, ..., My).

First “well within” means inside and not near a boundary and “well outside”
means outside and not near a boundary. This will be referred to as the point stereographic

correctness rule. Here are some important things to observe:

1. Since the algorithm is responsible to produce the correct output for all the inputs that
is represents, it is as if the input data has been corrupted even before the algorithm

sees it.

2. The algorithm is only exempt from correctly determining the membership of points
near the boundary of M. Points near the boundaries of the M,; must be correctly

classified if they are a large distance from the boundary of M.

Consider the example depicted in Figure 7.2. Each of the R; are squares. The
coordinates of adjacent sides of the squares are so close that it is not possible to determine
if the squares, M,, intersect, abut, or are disjoint. The top portion of the figure depicts the
situation when the squares, M, are disjoint and the bottom when they overlap. A modeling
algorithm that conforms to topological correctness rule would be allowed to output an R
consisting of either one piece or two.

Let us consider the possibilities under the stereographic correctness rule. If the
output R consists of two pieces when the M, overlap .ne will not only misclassify the test
point depicted but will violate the rule since the point is a large distance from any boundary
of M. However, if one outputs an R consisting of one piece when the M, are disjoint, the
test pointmay be misclassified but the rule will not be violated since the point is within € of
the boundary of M. Thus, the stereographic correctness rule coerces us to take the second
choice.

In effect, the rule discourages the algorithm from maintaining unstable features. A
model is said to have an unstable feature if a point p outside (inside) the model becomes
inside (outside) the model when the numerical data are perturbed and no point near p
remains outside (inside).

To illustrate, consider again the squares pictured in 7.1. If the two squares nearly
abut and they are modeled as disjoint, then the two boundaries which are very close persist
in the representation. A subsequent operation may draw a conclusion that is inconsistent

with the squares being disjoint. For instance, one might intersect a horizontal line with the

////

T

/////

.

\\\\\\\\

////

m[=

\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\

///

/
///////////

\\\\\\\

CHAPTER 7. DEGENERACY 106

boundaries and check the ordering of the points. With the two lines so close together, it is
entirely possible that one will record two entries into the object followed by two exits from
the solid, which makes no sense at all. If, on the other hand, if one models the squares
as overlapping, then the very close lines will be deleted from the boundary of the object,

effectively preventing them from causing any trouble in the future.

7.1.3 Comparison of the two Rules

Let us examine the differences between the topological rule and the stereographic
rule as the distance between the two squares varies. The situation is depicted in Figure
7.3. By necessity, both definitions have a grey area, where the algorithm is free to make an
arbitrary decision. For the topological rule, this is the area near where the squares abut.
For the stereographic rule, the point is where the squares are far enough apart that the
machine precision can guarantee that the squares really don’t touch and are not so far away

that the algorithm becomes responsible to correctly classify the points in the gap.

7.2 Application to Surface Intersection

For ease of discussion and depiction, let us consider the two-dimensional analogue
of 3-D solid modeling, call it area modeling. In area modeling, one models subsets of the
plane by their boundaries. When computing intersections of areas, one will need to compute
the intersections of their boundary curves. If one is lucky, all the curve intersections will
be well-conditioned. It may be the case that one encounters degenerate intersections as
depicted in Figures 7.4 - 7.7. In these figures, the same pair of curves has been depicted
eight times. The pair of curves sets within a single figure bound roughly the same area. The
numerical uncertainty or perhaps the uncertainty of the original data makes it impossible
to distinguish the case on the right from the case on the left. For Figures 7.4 and 7.5, the
interpretation on the left is consistent with the stereographic rule while the interpretation
on the right is not. For Figures 7.6 and 7.7, both the left and the right interpretations
are consistent with the stereographic rule. The difference is that the boundary on the
left is simpler than the boundary on the right. The boundary on the left consists of one
curve whereas the boundary on the right consists of alternating pieces of both curves. The

endpoints of the pieces on the right are numerically ill-conditioned.

CHAPTER 7. DEGENERACY 107

Stereographic Rule

{___woobectsvalid____|

] single object valid E

Topological Rule ;
__two objects valid ___

region of ambiguity M

i single object valid

r
x
L3
<
=
2
=1
o
s
o
3
=3
o
=
m
3
0
o
3
\ﬁ region of ambiguity

negative positive

Figure 7.3: Comparison of the rules.

CHAPTER 7. DEGENERACY

—7 —F
— - |
—7 —
—d — —
— —
— | - —
—7 > §
— —7
— . —
— — ——
— — 4
— —
| — —
————

Figure 7.4: Degeneracy of type 1.

xxxxxxx
xxxxxxxxxx

vvvvvv

Figure 7.5: Degeneracy of type 2.

g L
E A=

Figure 7.6: Degeneracy of type 3.

e e

/ { /7 —

J’ \

Figure 7.7: Degeneracy of type 4.

108

CHAPTER 7. DEGENERACY 109

If one were two encounter such an intersection problem one would like to offset the
boundaries according to Figures 7.4 - 7.7. That is, taking into account the orientation of the
boundary, offset the boundary so that the result of the Boolean operation is consistent with
the puint classification rule and is numerically stable. For a pair of boundaries that intersect
in a singular curve, local derivative information can be used to determine the appropriate
direction to offset the surfaces. For a node singular point, no direction offset will make the
intersection stable. For an area intersection, there may be a direction in which to offset but
one cannot determine it. One could rerun the algorithm, first with one offset, then with

another and determine which direction is stable.

7.3 Backtracking

Practically speaking, how can one incorporate the above policy into a surface
intersection algorithm? All degenerate points (i.e. points that this algorithm cannot handle)
must satisfy equations (6.4 - 6.7). Since Newton iteration is used at every subdivision step
to try to find a solution to this system of equations, if there is a solution, it will be found.

The surface intersection algorithm is exploring a four dimensional box. The bound-
aries of the box ...e determined by an ancestor of the current invocation. There are two
kinds of degeneracies. The first is caused by the alignment of the surface data; the second
is caused by the alignment of the subdivision boundaries. An example of the latter is an
isoparametric curve tangent lying in the tangent plane of the other surface. Viewed in four
dimensions, the intersection curve is tangent to one of the boundaries of the box. The aim
is to find the recursive invocation that placed the box boundary at that particular point.
Suppose a curve tangent aligns with a subdivision boundary. If the tangent does not align
with any of the boundaries inherited from the recursive call’s parent, then either the recur-
sive call or one of its descendants has placed the subdivision boundary in the degenerate
position. Such degeneracies are detected by leaf algorithm calls. Since leaf calls do not place
boundaries, the degenerate placement must be due to an ancestor call. The call returns the
degeneracy report to the parent. When a node call is notified by a child of a degeneracy,
the call determines if the tangent is aligned with any of its inherited boundaries. If not,
then that node call must have placed a subdivision boundary in the degenerate position. In
that case, the call deletes all results for its hyperbox and places the subdivision boundary in

another position and continues. On the other hand, if the tangent does lie on an inherited

CHAPTER 7. DEGENERACY 110

boundary, the node call simply returns with the degeneracy report.

This can terminate either by a node call finding that it has placed a subdivision
boundary in a degenerate position or by control being returned by the root node call to
the application. In this case, the original intersection problem contained the degeneracy. If
this degeneracy is boundary placement degeneracy, the application has the option to extend
the boundaries of the surface. On the other hand, the algorithm may have discovered a
degeneracy of the type outlined in the previous section. In this case the application has the
option to deal with the problem as it sees fit.

7.4 Conclusion

In this thesis, an algorithm has been presented for obtaining the curve of intersec-
tion between two surfaces. The algorithm has been proven to work under the restriction
that the intersection contains no singularities. In the case that the intersection does contain
singularities the algorithm will find and report them. A detailed description of all aspects of
the algorithm has been given. The algorithms reliability has be corroborated by a number

of examples.

7.5 Suggestions for Further Research

The most important question not resolved by this thesis, is the question of singu-
larities. While the algorithm presented here will discover at least one if any exist, it is not
guaranteed to discover all of them nor to describe any except the simplest. In a model of
computation that allows for uncertainty in the data it is not clear that more is possible

One of the shortcomings of this method is the high degree of the pseudo-normal
surfaces. For a polynomial patch, it is roughly twice the degree of the patch, and for a
rational patch it is roughly three times the degree of the surface. This is a problem, because
the controls points of this surface, if the underlying surface is a B-spline or Bézier surface,
have been observed in practice to overestimate the the pseudo-normal surface considerably
when the degree is high. In [97] (in preparation), Sederberg proposes a loop detection
criterion based on bounds on the partial derivatives of the surface. These bounds will be
one degree less that those of the surface (if the surface is polynomial). It is the author’s

impression that this criterion will be roughly as discriminating as the criterion presented

CHAPTER 7. DEGENERACY 111

here. Thus, Sederberg seems to have solved the problem of high degree.

It is a straightforward application of linear programming to determine if there
is a plane that separates two point sets, i.e. determines if their convex hulls intersect. To
determine if three convex hulls have any point in common it seems to require eight variables
making Seidel’s algorithm unattractive. Is it possible to solve this problem in a different

way?

7.6 Acknowledgements

I would like to thank the my advisor, Brian Barsky, and the members of the
committee, Raimund Seidel, Christoph Hoffmann, and Robert Taylor for their help guiding
this research and criting this thesis. Thanks to John Canny who served on the quals
committee. Thanks to others who have reviewed the thesis: Thomas Sederberg, Thor
Dokken, and Jim Miller. Thanks also to Vel Kahan for discussing singular points and
telling me I needed to take Jim Demmel’s class (Jim also gets thanks). Thanks to John
Ousterhout, Terry, and Bob for for lending me the workstation, and to the Sprite group for
answering all my questions. Thanks to Kathryn Crabtree without whom neither I nor any
other graduate student could survive. Thanks to Carlo Séquin for all the lunches. Thanks
to Ron Goldman for telling me I needed to go back to graduate school. Thanks to Bruce
van Patten who first introduced me to this problem. Thanks to Ziv for all the help with
IATEX. Thanks to Seth, Paul, Ken, and John, original comrades from '87. Thanks to Russ
for being my best friend. Thanks to Nina for having the most glamorous parties. Thanks
to all the CS grad students for making Berkeley a great place to be a student. Thanks to
my father for getting me into computers, and to my mother for making sure that wasn’t all
I studied.

Bibliography

[1] George Allen. Testing the accuracy of solid modelers. Computer Aided Engineering,
pages 50-54, June 1985.

[2] A. Appel. Some techniques for shading machine renderings of solids. In Proc. AFIPS
1968 Spring Joint Computer Conference, pages 37—45, 1968.

[3] Paul R. Arner. Another Look at Surface/Surface Intersection. PhD thesis, University
of Utah, Salt Lake City, 1987.

[4] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical algebraic
decomposition i: The basic algorithm. SIAM Journal of Computation, 13(4):865~
889, November 1984.

[5] C. Asteasu. Intersection of arbitrary surfaces. Computer-Aided Design, 20(6):533-
538, July 1988.

[6] D. Ayala. Boolean operations between solids and surfaces. Computer-Aided Design,
20(8):452-465, October 1988.

[7] Chanderjit Bajaj, Thomas Garrity, and Joe Warren. On the applications of multi-
equational resultants. Technical Report TR88-83, Rice University,, Houston, Texas,
November 1988.

[8] Chanderjit L. Bajaj, Christoph M. Hoffmann, and John E. Hopcroft. Tracing planar
algebraic curves. Technical Report CSD-TR-637, Department of Computer Science,
Purdue University, West Lafayette, Indiana 47907, September 1987.

112

BIBLIOGRAPHY 113

[9] Chanderjit L. Bajaj, Christoph M. Hoffmann, John E. Hopcroft, and Robert E.
Lynch. Tracing surface intersections. Computer Aided Geometric Design, 5(4):285-
307, November 1988.

[10] Robert Barnhill, Gerald Farin, and Bruce Piper. Surface/surface intersection. Com-
puter Aided Geometric Design, 4:3-16, 1987.

[11] Robert Barnhill and S. N. Kersey. A marching method for parametric surface / surface
intersection. Computer Aided Geometric Design, 7(1-4):257-280, 1990.

[12] James F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on
Graphics, 1(3):235-256, July 1982.

[13] Ian C. Braid. The synthesis of solids bounded by many faces. Comm. ACM, (18):209-
216, 1975.

[14] Ian C. Braid. Notes on a geometric modeler. Technical Report CAD Group Document
101, Computer Labratory, University of Cambridge, June 1979.

[15] Wayne E. Carlson. An algorithm and data structure for 3d object synthesis using
surface patch intersections. In SIGGRAPH ’82 Conference Proceedings, pages 255-
259, July 1982.

[16] J. J. Chen and T. M. Ozsoy. An intersection algorithm for C? parametric surfaces.
In Knowledge Engineering and Computer Modelling, pages 69-77. 1986.

[17] J. J. Chen and T. M. Ozsoy. Predictor-corrector type of intersection algorithm for C2
parametric surfaces. Computer-Aided Design, 20(6):347-352, July 1988.

[18] Koun-Ping Cheng. Using plane vector fields to obtain all the intersection curves of
two general surfaces. In W. Strasser, editor, Proc. Theory and Practice of Geometric

Modeling. 1988.

[19] J. H. Chuang and C. M. Hoffman. On local implicit approximation and its appli-
cations. Technical Report CSD-TR-812, Computer Sciences Department, Purdue
University, September 1988.

[20] Carl de Boor. A Practical Guide to Splines. Springer-Vo-lag, 1978.

BIBLIOGRAPHY 114

[21] I. de Lotto and R. Galimberti. Innovative design with computer graphics. Alta
Frequenza, (5), 1967.

[22] Tor Dokken. Finding intersections of B-spline representations using recursive subdi-

vision. Computer Aided Geometric Design, 2:189-196, 1985.

[23] Tor Dokken. Comments on imprecise formulations in Dokken’s 1990 paper. Personal

Commaunication, 1991.

[24] Tor Dokken, Vibeke Skytt, and Anne-Marie Ytrehus. Recursive Subdivision and It-
eration in Intersections and Related Probelms, pages 207-214. Academic Press, 1980.

[25] Herbert Edelsbrunner. Intersection problems in computational geometry. PhD thesis,

Technische Universitat Graz, Austria, 1982.

[26] Rida T. Farouki. Direct surface section evaluation. In Gerald Farin, editor, Geometric
Modeling: Algorithms and New Trends, pages 319-334. SIAM, Philadelphia, 1987.

[27] Ivor D. Faux and Michael J.Pratt. Computational Geometry for Design and Manu-
facture. Ellis Horwood, 1979.

[28] Daniel Filip, Robert Markot, and Robert Madgedson. Using bounds on derivatives in

computer aided geometric design. Submitted for publication.

[29] Steve Fortune and Victor Milenkovic. Numerical stability of algorithms for line ar-
rangements. In Proceedings of the Seventh Annual Symposium on Computational

Geometry, pages 334-341, June 1991.

[30] G. O. Gellert. Geometric computing - electronic geometry for semi-automated design.

Machine Design, 1965.

[31] Ronald N. Goldman and James R. Miller. Combining algebraic rigor with geometric
robustness for the detection and calculation of conic sections in the intersection of two
natural quadrics. In Proceedings of the Symposium on Solid Modeling Foundations

and CAD/CAM Applications, pages 221-231, June 1991.

[32] R. A. Goldstein and R. Nagel. 3-D visual simulation. Simulation, 16(1):25-31, Jan-
uary 1971,

BIBLIOGRAPHY 115

[33] Gene H. Golub. Matriz Computations. The Johns Hopkins University Press, Balti-

more, Maryland, 1983.

[34] Branko Grunbaum. Convez Polytopes. Interscience Publishers, London, New York,

Sydney, 1967.

[35] W. L. Hamilton and A. D. Weiss. An approach to computer aided preliminary ship

[37]

[38]

(39]

(40]

[44]

design. 1965.

[36] S. L. Hanna, John F. Abel, and Donald P. Greenberg. Intersection of parametric

surfaces by means of look-up tables. IEEE Computer Graphics and Applications,
3(3), October 1983.

Robin Hartshorne. Algebraic Geoemtry. Springer-Verlag, New York, 1977.

John D. Hobby. Numerically stable implicitization of cubic curves. ACM Transactions
on Graphics, 10(3):255-296, July 1991.

Christoff M. Hoffmann. A dimensionality paradigm for surface interrogations. CAGD,
7:517-532, 1990.

Christoph M. Hoffmann. Algebraic curves. Technical Report Technical Report, Com-
puter Science Department, Purdue University, West Lafayette, Indiana 47907, May
1987.

Christoph M. Hoffmann. Applying algebraic geometry to surface intersection evalu-
ation. Technical Report CSD-TR-772, Computer Science Department, Purdue Uni-
versity, West Lafayette, Indiana 47907, April 1988.

Christoph M. Hoffmann. The problem of accuracy and robustness in geometric com-
putation. Technical Report CSD-TR-771, Computer Science Department, Purdue
University, West Lafayette, Indiana 47907, April 1988.

Christoph M. Hoffmann. Geometric and Solid Modeling. Morgan-Kaufmann Publish-
ers, Inc., San Mateo, California, 1989.

Christoph M. Hoffmann. Robust set operations on polyhedral solids. IEEE Computer
Graphics and Applications, pages 50-59, November 1989.

BIBLIOGRAPHY 116

[45]

[46]

[47]

[48]

[49]

[50]

[51]

(52]

(53]

(54]

[55]

Christoph M. Hoffmann, John E. Hopcroft, and Michael S. Karasick. Robust set
operations on polyhedral solids. Technical Report CSD-TR-723, Computer Science
Department, Purdue University, West Lafayette, Indiana 47907, November 1987.

Christoph M. Hoffmann and Robert E. Lynch. Following space curves numerically.
Technical Report CSD-TR-684, Computer Science Department, Purdue University,
West Lafayette, Indiana 47907, May 1987.

Michael E. Hohmeyer. A surface intersection algorithm based on loop detection.

International Journal of Computational Geometry and Applications, 1(4), 1991.

Michael E. Hohmeyer. A surface intersection algorithm based on loop detection.
In Proceedings of the Symposium on Solid Modeling Foundations and CAD/CAM
Applications, pages 197-207, June 1991.

John E. Hopcroft and Dean B. Krafft. The challenge of robotics for computer science.
In Jacob T. Schwartz and Chee-Keng Yap, editors, Algorithmic and Geometric Aspects
of Robotics, pages 7-41. L. Erlbaum Associates, Hillsdale, New Jersey, 1987.

E. G. Houghton, R. F. Emnet, J. D. Factor, and C. L. Sabharwal. Implementation of
divide-and-conquer method for intersection of parametric surfaces. Computer Aided

Geometric Design, pages 173-183, 1985.

Eugene Isaacson and Herbert Bishop Keller. Analysis of Numerical Methods. John
Wiley and Sons, 1966. Kantorovich’s Theorem page 115.

C. M. Jessop. The mechanical tracing of curves. Proceedings of the Cambridge Math-
ematical Society, 1880.

John K. Johnstone. The Sorting of Points Along An Algebraic Curve. PhD thesis,
Cornell University, Ithaca, New York, 1987.

Michael Karasick. On the Representation and Manipulation of Rigid Solids. PhD
thesis, Department of Computer Science, McGill University, November 1988.

Sheldon Katz and Thomas W. Sederberg. Genus of the intersection curve of two

rational surface patches. 1988.

BIBLIOGRAPHY 117

[56] Deok-Soo Kim. Cones on Bézier Curves and Surfaces. FhD thesis, University of
Michigan, 1990.

[57] Moris Kline. Mathematical Thought from Ancient to Modern Times. Oxford Univer-
sity Press, 1972.

(58] George Anthony Kriezis. Algorithms for Rational Spline Surface Intersections. PhD
thesis, Massachusetts Institute of Technology, Boston, 1990.

[59] George Anthony Kriezis and Nicholas M. Patrakalakis. Rational polynomial surface
intersections. Technical Report 90-9, MIT Ocean Engineering Design Laboratry, June
1990.

[60] George Anthony Kriezis and Nicholas M. Patrakalakis. Rational polynomial sur-
face intersections. In Proceedings of the 17th ASME Design Automation Conference,
September 1991.

[61] Dieter Lasser. Intersection of parametric surfaces in the Bernstein-Bézier represen-

tation. Computer-Aided Design, 18(4):186-192, May 1986.

[62] Joshua Z. Levin. Mathematical models for determining the intersections of quadric

surfaces. Computer Graphics and Image Processing, 11:73-87, September 1979.

[63] Tom Lyche and Knut Mgrken. A discrete approach to knot removal and degree
reduction algorithms for splines. In J.C. Mason and M.G. Cox, editors, Algorithms
for Approzimation, pages 67-82. Claredon Press, Oxford, 1987.

[64] Tom Lyche and Knut Mgrken. A data-reduction strategy for splines with applications
to the approximation of functions and data. IMA Journal of Numerical Analysts,
8(2):185-208, April 1988.

[65] Jean-Jacques Malosse. Search of intersection loops by solving algebraic equations.

Technical report, Intergraph Corporation.

[66] Dinesh Manocha and John F. Canny. A new approach for surface intersection. Tech-
nical Report RAMP 90-11/ESRC 90-23, Robotics, Automation, and Manufacturing
Program, University of California, Berkeley, December 1990.

BIBLIOGRAPHY 118

[67]

Dinesh Manocha and John F. Canny. A new approach for surface intersection. In
Proceedings of the Symposium on Solid Modeling Foundations and CAD/CAM Appli-
cations, pages 209-219, June 1991.

[68] Martti Mantyla. An Introduction to Solid Modeling. Computer Science Press,

Rockville, Maryland, 1988.

[69] R. P. Markot and R. L. Magedson. Solutions of tangential surface and curve inter-

[70]

(71]

sections. Computer-Aided Design, 21(7):421-427, September 1989,
K. J. McCallum. The intersection of surfaces and planes. 1966.

Victor Milenkovic. Calculating approximate curve arrangements using rounded arith-

metic. pages 197-207, 1989,

[72] James R. Miller. Geometric approaches to nonplanar quadric surface intersection

[73]

(74]

[77]

[78]

curves. ACM Transactions on Graphics, 6(4):274-307, October 1987.

James R. Miller. Sculptured surfaces in solid models: Issues and alternative ap-

proaches. IEEE Computer Graphics and Applications, 6{12):33—43, 1987.

James R. Miller. Analysis of quadric-surface-based solid models. IEEE Computer
Graphics and Applications, 8(1):28—42, 1988.

Y. De Mountaudouin. Cross product of cones of revolution. Computer Aided Design,

21(6), 1989.

Y. De Mountaudouin, W. Tiller, and H. Vold. Applications of power series in com-
putational geometry. Computer Aided Design, pages 514-524, 1986,

Y. Kakazu N. Okino and H. Kubo. TIPS5-1: Technical Information Processeing Sys-
tern for Computer Aided Design and Manufacture, pages 141-150. North Holland,
1973.

B. K. Natarajan. On computing the intersection of B-splines. In Proceedings of the
Sixcth Annual Symposium on Computational Geometry, pages 157-167, ACM, Novem-
ber 1990.

BIBLIOGRAPHY 119

[79]

[80]

[81]

[82]

[83]

[84]

[90]

J. Owen and Alan Rockwood. Intersection of general implicit surfaces. In Ger-
ald Farin, editor, Geometric Modeling: Algorithms and Trends. STAM Publications,
Philadelphia, 1987,

Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewoad
Cliffs, New Jersey, 1980.

N. M. Patrakalakis, P. V. Prakash, H. Nebi Gursoy, and George A. Kriezis. Research
Topics in Shape Interrogation. J. Wiley and Sons, Ltd., 1991.

Qun Sheng Peng. An algorithm for finding the intersection lines between two b-spline

surfaces. Computer-Aided Design, 16(4), July 1984,

H. U. Pfeifer. Methods for intersecting geometrical entities in the gpm module for

volume geometry. Computer-Aided Design, 17(7):311-318, September 1985.

Leslie Plegl. Geometric method of intersecting natural quadrics represented in

trimmed surface form. Computer Aided Design, 21(4):201-212, May 1989.

Michael J. Pratt and A. D. Geisow. Surface/surface intersection problems. In John A.
Gregory, editor, The Mathematics of Surfaces, pages 117-142. Claredon Press, Oxford,
1986,

Franco P. Preparata and Michael Ian Shamos. Computational Geometry. Springer-

Verlag, 1985.

Aristides A. G. Requicha. Mathematical models of rigid solids. Technical Report
Tech. Memo. No. 28, Production Automation Project, University of Rochester, 1977.

Aristides A. G. Requicha. Solid modelling - a 1988 update. Technical Report IRIS
242, University of Southern California, August 1988.

Aristides A. G. Requicha and H. B. Voelker. Constructive solids geometry. Technical
Report Tech. Memo. No. 25, Production Automation Project, University of Rochester,
1977.

Malcolm A. Sabin. Interrogation Techniques for Parametric Surfaces, pages 1095—
1118. Plenum Press, London and New York, 1971.

BIBLIOGRAPHY 120

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

(99]

[100]

[101]

Malcolm A. Sabin. A method for displaying the intersection curve of two quadric
surfaces. The Computer Journal, 19:336-338, November 1976.

Ramon F. Sarraga. Algebraic methods for intersections of quadric surfaces in gmsolid.

Computer Vision, Graphics and Image Processing, 22(2):222-238, May 1983.

Thomas W. Sederberg. Implicit and Parametric Curves and Surfaces for Computer
Aided Geometric Design. PhD thesis, Purdue University, West Lafayette, Indiana,
47907, August 1983.

Thomas W. Sederberg, Hank N. Christiansen, and Sheldon Katz. Improved test for
closed loops in surface intersections. Computer Aided Design, 21(8):505-508, October
1989.

Thomas W. Sederberg and Ray J. Meyers. Loop detection in surface patch intersec-
tions. Computer Aided Geometric Design, 5:161-171, 1988.

Thomas W. Sederberg and X. Wang. Rational hodographs. Computer Aided Geo-
metric Design, 4:333-335, 1988.

Thomas W. Sederberg and Alan K. Zundel. Cones that bound rational surface
patches. Technical Report ECGL91-2, Brighan Young University, January 1992.

Mark G. Segal and Carlo H. Sequin. Maintaing topology in geometric descriptions
with numerical uncertainty. Technical Report UCB/CSD 88/450, Computer Science
Division, Electrical Engineering and Computer Science Department, University of

California, Berkeley, June 1988.

Raimund Seidel. Linear programming and convex hulls made easy. In ACM Sympo-
sium on Computational Geometry, pages 211-215. ACM Press, 1990.

Raimund Seidel. Small-dimensional linear programming and convex hulls made easy.

Discrete and Computational Geometry, 6(5):423-434, 1991.

Ching-Kuang Shene and John K. Johnstone. On the planar intersection of natu-
ral quadrics. In Proceedings of the Symposium on Solid Modeling Foundations and
CAD/CAM Applications, pages 233-242, 1991.

BIBLIOGRAPHY 121

[102] Pradeep Sinha, Eric Klassen, and K. K. Wang, Exploiting topological and geometric
properties for selective subdivision. In ACM Symposium on Computational Geometry,
pages 39—45. ACM Press, 1985.

[103] Jack Scott Snoeyink. Intersecting trimmed quadric surface patches: a geometric

method using parametric functions, 1990.

[104] D. M. Y. Sommerville. Analytic Geometry of Three Dimensions. Cambridge Univer-
sity Press, 1934.

[105] Kokochi Sugihara. On finite-precision representations of geometric objects. Journal
of Computer and System Sciences, 39:236-247, 1989.

[106] H. B. Voelker. An introduction to PADL: Characteristics, status and rationale. Tech-
nical Report Tech. Memo. No. 22, Production Automation Project, University of
Rochester, 1974.

[107] H. B. Voelker. The PADL-1.0/2 system for defining and displaying solid objects.
Computer Graphics, 12(3), July 1978.

[108] H. B. Voelker. Keynote speech, symposium on solid modeling foundations and
CAD/CAM applications, June 1991.

[109] H. B. Voelker and A. A. G. Requicha. Geometric modeling of physical parts and
processes. IEEE Computer, 10(2), 1977.

[110) C. Yao and J. Rokne. An efficient algorithm for subdividing linear Coons surfaces.
Submitted for publication.

