Integrated Placement and Routing for
VLSI Layout Synthesis and Optimization

by
Ping-San Tzeng

Abstract

This dissertation investigates ways to integrate various VLSI layout algorithms via
carefully designed integrated data structures. Such an integrated approach can achieve better
overall results by iterating non-sequentially among the various algorithms in a demand-
driven manner. The shared data structure which is modified incrementally by all the different
algorithms serves as an efficient communication medium between them. This approach has
resulted in several new prototype tools, including a new placement program that combines
wire-length optimization with a new 2-D compaction algorithm, a new area-routing ap-
proach that employs hierarchical rip-up and reroute techniques in an integrated global and
detailed routing environment, and also a system that integrates the area router with a
placement adjustment algorithm. This integrated system can iterate automatically between
area routing and placement adjustment phases to generate optimized results for macro-cell
problems with over-the-cell routing.

Acknowledgements

I would like to thank my advisor, Prof. Carlo H. Séquin, for his constant support,
guidance and inspiration. He not only gave me many technical advices, he also carefully
reviewed this manuscript several times and helped me to improve the writing of this
dissertation. Also, I would like to thank Prof. Richard Newton and Prof. David Donoho for
reviewing this dissertation and giving me many useful comments. I am also indebted to
Glenn Adams, Dr. Ren-Song Tsay, Dr. Han-Young Koh, and Naoto Ichihara, for many
enlightening discussions and suggestions.

I am gratefully to Semiconductor Research Corporation for their support of this research
project. I would also like to thank Cadence Design Systems, Inc. for giving me the
opportunity to use their compactor to generate some of the final results.

Finally, I would like to thank my wife Yu-Ling, my father Po and my mother Shao-Shao
for their support in my long graduate study. I dedicate this dissertation to them.

Table of Contents

Table of Contents iii
List of Figures \%
List of Tables vii
Chapter 1 Introduction 1
1.1 The Placement and Routing Problemccccoorviiineninnnnnnneneeieseereneeeeeanenes 1

1.2 DiSSertation OVEIVIEWcccceeereeeererrnereesesccserisstssssseesnssseesssnesessosesnsessssssssssseeseens 4
Chapter 2 Placement Using Efficient 2-D Compaction 5
2.1 Placement Paradigm for Resolving Overlapscovviiiieniniiiinininccncnnnceennnne 5
2.2 DaLta SIUCLUTE ..cveeuierrereeneereeneceeacsnesasssesssssaesesseseessssatesssneesasasssnsssersossensensasssssseses 8
2.2.1 DEfINItIONS...ccciiereereeenieceienreententeseesatrentesteesteesen st e s e e saessssemaeenesssessarssensenas 8

2.2.2 Building the RULD-Graph........ccccoviminimuiiinininscnnneniniiieccrneneceeseeceenes 10

2.2.2.1 Building the Triangulation Graph........cccecccceveveminsenenennnenecenennenes 10

2.2.2.2 Edge-direction ASSIZNMENLcccecerruresnseenuravescirseseenseseescssesseseesees 14

2.2.3 Linear Constraints from RULD-graph.......ccccccevienieninnennennennvenneniennnenns 15

2.2.4 Interpretations and DiSCUSSIONS......ccceeereereeererrsrersnereerseersesssesrsessaessessanssenes 18

2.3 Compaction AIZOTItRINScccceveerreeniieierrreiererenseneessesarsneeseesassssesssesssssssersasnsessans 19
2.3.1 1-D Compaction AlZOMthmccceceeieevirreniccrnirneeesecreneeeecereseeneseceneseenne 19

2.3.2 2-D Compaction AIZOTIthmmccceveeiiveiiinenreneeneeererte e e sreesressessessessanes 20
2.3.2.1 An Alternative Control Strategyc.ceveeeeeercesenirecrersenercsnesensenensesenes 23

2.3.3 Evaluation of the Compaction Algorithmcccccecevininininincnnnscncnienne. 24

2.4 Wire-Length Optimization AIZOTItHIMSccccceeceeeertreereeentrneeceenseereessesanseesseseenne 26
2.4.1 Simple Quadratic FOrMUIation........ccccoceseereesenresesseseeseeassensassessersesessassasees 27

2.4.2 Quadratic Formulation using Exact Pin POSIitionsccccecceueseercerneccnnnaen. 28

2.42.1 Cell-Shifting AlgOTthIN.....ccccctivueirrrnreniriienrineenereenecsennesssneeesseeesennes 30

2422 Cell-Orienting AIZOTithmccoviiniiieniiicrriecrecreceeeeesreereeresnsesnens 30

2.4.3 Half-perimeter FOrmMUIAtionccccveecieieenrinenienecreessesseeeessnessessessasssessennas 33

2.5 Overall Placement AIZOTIthIMccceuicuerininentiiieienreeeneeenensesestessesseesssessssessennes 33
2.5.1 Initial Placement Phaseccorvvivinirieencnennniceneneceeneeneneceesessnesersennes 33

2.5.2 First Refinement Phase - Quadratic Optimizationcccecceeeeseerceccecnennes 34

2.5.3 Second Refinement Phase - Half-perimeter Optimization........cccccoeceuennene. 35

2.5.4 Evaluation of the Optimization Phasescccceeeevencenincrncncnencccnnesencncnes 36

2.6 RESUILS ittt et sacese et sa e et s sae s st ese et seenae e se e sae e s seen 37
2.7 SUMIMATY...cueeriirrerenrennereiieesresnesreesessessssssessassessaesasssessessessasssessassessassassssssassassaenes 40
Chapter 3 Area Routing with Hierarchical Rip-up and Reroute 41
3.1 The Area Routing Problemccccciioiinnniiiineneneneceseceese e neseesesessasees 41
3.2 Routing Hierarchy and Data StMUCLUTEc.ccceveeeeerenrecnnirenrenccieestsneneseseesesenes 44
3.2.1 The Wiring Model.......cooiceiicierinicieecincie st seeee e e sesnesassesanes 44

3.2.2 Partitioning SChEMEccveeeeveerreerreecrenreesieenteeeereesseerseeeseesseesssesssesseenseenns 45

3.2.3 DAt SHUCIUTE cevveererrerrerireineereteeeteteteestetseeesesesssssesesesssessosssersssssssssssssssssssnes 48

3.3 Routing AIZOTItRIMScoiiiiiiiiiiiiiiicninet et ees e ssse s saes e snesbenn 50
3.3.1 Global Construction AIOTIthIMcccccvvvercenirenreriienirenreenenseeessnesesesseeseasnees 51
3.3.2 Global Rerouting AIOTithmcccociiiiiiiiieirniininr et caeeneesenne 52
3.3.3 Detailed Rerouting AIZOTIthMcccccoeiriiineereeninriinieenennesreeseessaessesssessees 54
3.3.4 Control Strategy and Congestion Data STructure........cc.cceceeveeveerecrecienerenes 57

3.4 RESUILS .ottt sttt satsssas e st e s sa b s e st s e eesase s snassnanannsanses 61

3.5 SUIMMATY...cortiiirierineentrrenteesteessesse st sesssestsssssssssssssessseceseenssssesssesssssansassanssenses 65

Chapter 4 Integrated Placement and Routing 66

4.1 Routing and Placement AJUStMENtccceeeceririeereereenesrureeeesesseeseessessessesseessesseens 66

4.2 BaSiCIAEa coovieieiiiieiectiesteee ettt ceee st et saeeste st e e e st st s s s vasraesaae st aesnaensaenrnes 68

4.3 ATEE ROULINEG....ueoireerrrrcreneecteniiiecicsessiestsiestsane st s st sesnesesnsssessssssassesasessenss 69

4.4 Placement AJUSHMIENL.......cccccivienenterinsesesunscssesaeesstesesessnenssssessassesasssensesessesssnses 70
4.4.1 From Congestion to Space REqUITEMENL.......cccoierierrerieseeseensocecersseceseennes 70
4.42 MOVING CellS...coniinrrreririinreeeeeencesssiessasnesssssssnsessoneessessessesasssesssesassssssssnaes 73

4421 MOVINE WITES ...ccinirtiereicrieninerencsaencnseeteseie e ststenesesesacsessesessasasnes 74
4422 Stretching and Shrinking WIrES.......cceevcecirueccnincnesssnssnsnesseneesseseesenns 76

4.5 Overall AIZOTIRM......coiiicireeierscetnnrnesncetsnentesesesesnenecsssonsenssessasesssssssssasseseens 77

4.6 RESULLS ...ttt et sncte e se st ssssessssssssssssssesensessssssessessssesessasassesassasanes 80
4.6.1 Comparison with Fixed Placement and Compactioncceceeveeuerveseencnne 80
4.6.2 Macro-cell problems with Over-the-Cell Routingcceceeeeveeeeeererecnenens 84
4.6.3 Channel-based Macro-cell Problemsccoeueevecrrrieneneneneeresseseresssnneenes 87

4.7 SUIMIMAETY....ccoeirerrenreieressereeessessssessessssessassensssassesassessessesssnessessossssnnessesarsssnsrnenss 88

Chapter 5 Discussions and Conclusions ’ 89

5.1 Integrated Data SUCLUTE......ccccceerrrrerrerensererensesessesessssesessesessesessosensesessssssnsensesenne 89

5.2 TIterative Optimization Using Cooperative Algorithms..........ccceerererereererenrererennns 90

5.3 CONCIUSIONcouiiiiiciccccccccecsessesesssssssessssssssssssssssssssssssssasasssesesasassssasnsans 91

References 93

List of Figures

Chapter 1 Introduction

1.1 Examples of row-based design Stylescccvvvvvimminiininiiniinininiiiciieiens 2
1.2 Problems of using row structure in macro-cell designsccceceviceeseercenecrenneens 3
Chapter 2 Placement Using Efficient 2-D Compaction

2.1 Problems of using traditional 1-D compaction in placementccccoeeveueuencnc. 7
2.2 The Basic idea of using a compactor/spacer in placementc.cccccccecererneenencnee 7
2.3 Triangulation graphs and edge-swapping OPETAtIONScceeceueeveruecereeeeerenene 8
2.4 Alegal RULD-graph and an illegal nOdecccocvumuivivenineccincncncncneceecnnenne 9
2.5 The cut-paths in RULD-GIraph ... 10
2.6 A desired triangulation graph versus the Delaunay triangulation 10
2.7 A possible search sequence in finding the enclosing triangle on inserting a

NEW NOAC cuueirireecrrrcreeriesseseteseeeteatessssssetessessasssesstsssesssessesnssssassssesuassssesssseens 13
2.8 Two ordering schemes in traversing a 2-D binary treecoeeveeveccnnencnnee 13
2.9 The criterion for deciding the direction of edges in a RULD-graph 14
2.10 Legalizing nodes in @ RULD-Iaphcccueviviviinincnnininninnnncsninnenecneeeeene 15
2.11 The explicit constraints in @ RULD-graphccccoveniineeccininnnnencccnnnccnscenn. 16
2.12 The three situations in TheOrem 1ccocovivvininiininnnnenninscnserseesnseecseseenenenens 17
2.13 Replacing the cut-path in Theorem 1cccocovvivinninninninnnnneniciesesecnene. 18
2.14 Comparing a RULD-graph with a constraint graphccccecccceencenceveceenennne. 18
2.15 Comparing a RULD-graph with a rectangular-dualc.cccoeceeeercveruncerenenne 19
2.16 Transforming projection constraints to Spacing CONSITAINLSceerreerreerereene 20
2.17 Changing a horizontal edge to a vertical edge in horizontal compaction 20
2.18 Changing a vertical edge to horizontal edge during horizontal compaction ...21
2.19 Comparison of results from various compaction methodscceceeeeverreereenens 25
2.20 The time-complexity analysis of 2-D compaction algorithmscceeeevenenne 26
2.21 The potential moves of a pin in the four orientation-change operations 31
2.22 The changes of the wiring costs during two placement processes 36
2.23 The placement result of the macro-cell benchmark AMI33cccoevvevennenen. 38

Chapter 3 Area Routing with Hierarchical Rip-up and Reroute

3.1 The complexity of searching for a feasible rerouting sequencecccceeeue... 42
3.2 Comparison of gridless routing and grid-based routingc.cceceeveeerercrerense. 44
3.3 Four-way partitioning and two-way partiioningc.ceeceeeeeeeeereresseseeerenne 45
3.4 Therecursive partitioning SChEMEccceeveenieienrerirereeneresrtestesreesrestesiesnnennens 46
3.5 The two different methods in selecting the cuts in partitioningcccu..... 47
3.6 Dynamic grouping for the detailed roUtingccccveeecercerecceeeerenrereesreaeennanss 48
3.7 The data SIrUCtUIE fOT WIIES ...coccvveruerereerrensereerenterientereeeeneeseasessessessessesaessasansens 49
3.8 The use of Stretched linKs ...cc.ooveeeecerrinienenereeerecree st ereeeesseae e ennenenas 50

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Chapter
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

4.10

4.11
4.12
4.13
4.14

Chapter

The use of the three routing algorithmsccccoveecienceenccsininnieniesinne 51

Partitioning a horizontal 1 X N strip into @ 2 X N SITP .cccvvvvrveneneernereeesacioneas 51
The simple pattern router of the global construction algorithm 52
The two basic rerouting operations in 2 X N SIIPS ..cccceevevveniinieniniinieneennensanne 53
The two rerouting primitives for detailed routingccccovvvveeineninrininieencns 55
The changes of the levels in routing a macro-cell exampleccoceeenennnnae. 58
Examples of the congestion ElEmMENtScoueveieeieenriiiereniineniiieieeesiess s 59
The use of congestion elements in backtrackingcccevevvvinininicninnnienins 61
An area routing €Xamplecivirviiveeninineinenteinnesene e s se s sens 64
The CPU-time v.s. the wire length for area routing problemscccoceeenenne 65
4 Integrated Placement and Routing

Some routing results may be difficult to compact ..., 67
Two different types of edges in the 2 X N routing framecccoceveeecnnnee, 70
The area covered by an edge of a RULD-graph ... 71
Congestion that cannot be resolved by increasing the spacing by the maxi-
MUM OVETIOAd COUNLvveiiesieniieenteseeetisacsstesrisren st ebe e s sr e s s anesnsasnes 72
The two approaches to reconnecting broken nets after moving cells 73
The surrounding regions for the Cells ..., 75
The use of the edge-covered region to fill the empty spaceccoceevvvvenennnne. 76

The layouts in different stages of an actual placement and routing process ...79
Comparing the integrated placement and routing approach and the Place-

Route-Compact approach on AMI33covnninnininnieisininisesenins 82
Comparing the integrated placement and routing approach and the Place-

Route-Compact approach on AMI49coeviniinnnnnnncnnnciinencncsnesnaes g3
An example of the randomly generated Cellsccoceveevenenennvnvincninniinicnnnns 84
Results on AMI33otc with over-the-cell TOutingcccocevcnviniivnnneninsennnenan. 85
Results on AMI490tc with over-the-cell TOutingcocevvvincersicinnicneeininnene. 86
Resulting layout of AMI33 ...ttt sssstiseae s 87

5 Discussions and Conclusions

List of Tables

Chapter 1 Introduction
Chapter 2 Placement Using Efficient 2-D Compaction

2.1 The number of the triangles tested when new nodes are inserted into a trian-
gulation Zraph ... 13
2.2 Comparison of two different compaction control strategiescceuvveeervencen. 23
2.3 Comparison of the compaction TESULLScouviviiviinininiiiniinriccne 24
2.4 Evaluation of the cell-orienting algorithm on initial placements of different
QUALIEIES ..oeeveeceereeneereeeniies ettt ea b e sb bbb st e s sa s 32
2.5 Placement results on MCNC macro-cell benchmarksccocceceeineccnencncn. 38
2.6 Placement results on MCNC standard-cell benchmarksccccoevineiccnnanns 39
Chapter 3 Area Routing with Hierarchical Rip-up and Reroute
3.1 Characteristics of the randomly generated area routing problems 63
3.2 Results on the randomly generated area-routing problemsc.cccceveeunnnne. 63
Chapter 4 Integrated Placement and Routing
4.1 The effect of the placement adjustment algorithm on the number of stretched
links and CONIICESceeuerreemrrcentrrectetceenteenettentsaestesse et st osas e e e saae st eneeseeneres 77
4.2 Comparing the Place-Route-Compact approach and the integrated placement
and routing apPrOACHccvvimiviiiiiinintiin e e 81
4.3 Results of on macro-cell problems with over-the-cell routingccccocueeeee. 84
4.4 Results of on MCNC macro-cell benchmarksccoceevereereererreeseenencnsennenns 87
4.5 Comparison of the results on MCNC macro-cell benchmarksccocoveuunee. 88

Chapter 5 Discussions and Conclusions

vii

Chapter 1
Introduction

1.1 The Placement and Routing Problem

Designing VLSIchipsis acomplex task comprising many steps, such as architecture/be-
havior design, logic design, physical design, and various verification steps. The task of
physical design is to convert a circuit, usually consisting of a set of cells and a list of nets,
into a layout that can be realized on a VLSI chip. In addition to cell design, the major task
of physical design is to place all the cells and then route all the nets to connect the pins with
proper wires and contacts. Normally, the goal of this placement and routing process is to
generate realizable layouts in minimum area with minimum delay, which is related to the
wire length.

In principle, the placement and routing algorithms have to deal with two-dimensional
objects in a two-dimensional space. Because true two-dimensional algorithms are normally
quite complex, cells are usually organized into special structures such that the placement
and routing problems can be reduced to pseudo-one-dimensional problems. The most
common approach is to organize cells into parallel rows, as in gate-array and standard-cell
designs (Fig. 1.1). With the row structure, the placement algorithms can compute legal
positions for all the cells easily after moving cells around, optimizing the objective functions.
In addition, the row structure partitions the routing region into independent routing channels,
which can be routed with high efficiency [RF82] [RSVS85]. The combination of the row
structure and the channel routing techniques have been very successful in carrying out the
placement and routing task effectively.

1.1 The Placement and Routing Problem

O 00000

[| o |
O | |
Dll]lllllllll
ﬁlllillﬂl(
I 5
Ol |
|
E][_ﬁlll]l\\ll][J
celI rows wiring channel(a)
/DDD
[
Drﬂl [lllll]
Dllllllﬂﬂl]ll
O |CIooTt I(D
1l O o In g
Otk pjed 11|
DIIIIIIHIHID

O 00000

Fig. 1.1

(b)

(a) A possible structure of gate-array chips.

Basic template

Library cell

In such a structure, a

library cell may consist of one or several basic templates. (b) A possible cell
placement of standard cell designs where the distance between rows can
be adjusted based on actual wiring density.

The combination of a row structure and of channel routing provides a satisfactory
solution for many VLSI designs but it does not solve all the problems. In many cases, true
2-D placement and routing algorithms are required. First, many designs consist of complex
logic functions such as ALUs, or of dense memory arrays, which have to be implemented
with large macro-cells of varying sizes and aspect ratios. Usually, a lot of space is wasted

when these macro-cells are forced into rows (Fig. 1.2).

1.1 The Placement and Routing Problem

L[]

] []
(a) (b)

Fig. 1.2 (a) Using row structure for macro-cells can cause a lot of wasted
space. (b) Organize the cells in a true 2-D structure can generate a much
smaller chip.

A true 2-D placement also requires true 2-D routing algorithms. The channel routing
techniques are effective only when the routing region is divided into channels by cells that
do not let wires pass through freely. As the manufacturing technology improves, more metal
layers become available for routing, and wires at the higher layers can usually go freely over
the cells. With these additional routing resources, the cells can be packed together closely
and the router has to search for solutions in a true 2-D space instead of in the channels
between cells . This kind of problem is usually referred to as over-the-cell routing or as the
general area routing problem.

The macro-cell placement and area routing problems are difficult because of their 2-D
nature. Even though some algorithms have been proposed for the macro-cell placement
problem [SB87] [SS90] as well as the area routing problem [Shi87] {TS88], most algorithms
have their drawbacks and cannot handle high-complexity VLSI designs efficiently and
effectively. In addition to the issues arising when each problem is considered separately,
an even more challenging problem is how to integrate the 2-D placement and routing
algorithms so they can work together to generate optimized layouts. This interaction is
necessary because the placement usually needs to be adjusted so proper space can be
allocated between cells to accommodate all the wiring. In the row structure and channel
routing scheme, the routing channels can be adjusted easily by moving whole rows
vertically. However, in a true 2-D placement and routing problem, cells need to be moved
in both horizontal and vertical directions. When there are no independent channels, these
moves may render most of the routing results invalid and may require expensive rerouting
processes. In most cases, a considerable amount of human intervention is required when
the placement needs to be adjusted to complete the routing.

1.2 Dissertation Overview

A possible approach to avoiding the expensive rerouting process and/or reducing the
amount of human intervention is to use more precise congestion estimate to space cells
before conducting the final routing. For gate-array or standard-cell problems, many hierar-
chical approaches have been proposed to integrate the placement and routing together
[BHP83] [Sze86] [SK88] [KPS89] [Chr89]. These hierarchical approaches partition the
problem recursively, conducting some form of global routing before proceeding to the
next-level placement. With these global routing results, more precise wire-length and
congestion estimates can be used to improve the placement and/or to space the cells. In
addition to these top-down hierarchical approaches, a similar principle has also been
employed in a bottom-up approach using a two-level hierarchy [SLS87]. However, all these
hierarchical approaches work primarily on problems with large number (1000’s to
100,000’s) of small cells of about the same size. These partitioning approaches have not
been very successful on macro-cell problems with less than a hundred cells of varying sizes.

In [IBSV89], a system integrating placement and area-routing is proposed to handle
sea-of-gate layouts as problems with flexible, porous macro-cells. Using a simplified global
router to estimate the routing requirement after the placement step, the system can adjust
the placement to ease the routing task. Even though the system can iterate between the
simplified global routing and the placement adjustment phases, the actual routing phase still
works on a fixed placement. If the router fails due to some local congestion, there is still
no automatic solution available.

1.2 Dissertation Overview

Most of the “integrated” placement and routing approaches mentioned above mix
placement and routing phases of different levels in a sequential process. The focus of this
dissertation concerns the form of integration that iterates between the actual placement and
routing tasks in an optimization loop. The primary application targets are the macro-cell
problems with over-the-cell routing. The work includes new data structures and algorithms
for both the macro-cell placement problem and for the general area routing problem. Based
on these new data structures and algorithms, an integrated placement and routing scheme is
developed to optimize the layout by iterating between the placement and routing processes.

This dissertation consists of five chapters. Chapter 2 presents the placement algorithm
which relies on a triangulation data structure and on a 2-D compactor to resolve overlaps
among cells while optimizing the objective function. Chapter 3 introduces the area router,
which applies rip-up and reroute techniques hierarchically to complete the routing task
efficiently. Chapter 4 then shows how the hierarchical router is integrated with a placement
adjustment algorithm to complete the routing within a minimum amount of area. Chapter
5 presents some of the important lessons learned from this work.

Chapter 2
Placement Using Efficient 2-D Compaction

This chapter introduces a new placement algorithm that uses efficient 2-D compaction
to resolve overlaps while optimizing the wire length. Section 2.1 first reviews previous
approaches in resolving overlaps and then shows the basic idea of this new approach.
Section 2.2 presents the definition and the construction algorithm of the new data structure,
and Section 2.3 shows how the compaction algorithm works with this new data structure.
Section 2.4 then introduces the wire length optimization algorithms that works with the
compactor. Section 2.5 describes the overall placement algorithm, and Section 2.6 presents
some placement results as well as a comparison with other placement tools.

2.1 Placement Paradigm for Resolving Overlaps

The objective of placement in VLSI layout synthesis is to place a given set of cells in a
two-dimensional space such that a given net-list can be realized with minimum delay and
area. Because it is difficult to minimize the delay and area directly, most placement
programs try to optimize the wire length. By formulating the objective function as the sum
of squared wire lengths, an optimal solution can be found very quickly with quadratic
optimization techniques[TKH88]. However, the result is usually illegal because it has been
obtained without considering overlapping blocks. To obtain a legal layout, additional
constraints have to be introduced:

I xi=xj 1 2 (sxi + sx7)/2 or ly~yj|2(syi+sy)/2, foralli,j
where
(xiyi) =position of the center of cell i

(sxi5y) = size of cell i

For N cells, there will be N? constraints that are inherently non-convex functions, no
matter how they are formulated. These non-convex constraints make it essentially impos-
sible to find a global optimum in polynomial time, and various heuristics have been
introduced to enforce these constraints. These heuristics for resolving overlaps usually are
the critical element of any placement algorithm and strongly affect the overall performance.

Various approaches have been proposed to resolve overlaps while optimizing the
objective function. Among them, there are two basic paradigms: (1) resolving overlaps
gradually and (2) generating legal solutions repeatedly.

5

2.1 Placement Paradigm for Resolving Overlaps

In the first paradigm, the placement algorithms work on illegal placements most of the
time while resolving overlaps gradually. Only in the final stage of the placement, a legal
solution can be generated. Based on this paradigm, a common approach is to formulate the
no-overlap constraints as penalty terms in a new cost function:

C = (wire length cost) + A (overlap penalty function),

where
A = an adjustable weighting factor

For such a cost function, non-linear optimization techniques [SB87] and simulated-anneal-
ing techniques [SS90] have been proposed to find a good solution. However, both ap-
proaches are very time-consuming yet still cannot always find the global optima. Further-
more, the value of A strongly affects the quality of the solution and there is no single optimal
value for all problems. Usually, A is increased slowly based on the results from optimization
theory [SB87] or based on a statistical analysis of benchmark examples [SS90].

Another placement approach that resolves overlaps gradually is to use partitioning
[Bre77] [Lau79] [SK88] [TKHS88] [KSJ88]. Typically, blocks are assigned to non-overlap-
ping regions in a hierarchical, top-down manner until the partitions are comparable to the
size of individual blocks. At this level, if the blocks cannot fit into the final partitions,
overlaps may still occur and different heuristics have to be used to remove these overlaps.

This first general paradigm has a major drawback: the intermediate placement results
are not legal, so their evaluations are based on estimations that are not really precise. In the
second paradigm, placement algorithms generate legal solutions repeatedly for more precise
evaluations. In row-based design styles, such as gate-array and standard-cell, legal solu-
tions can be generated easily by assigning blocks to overlap-free rows or columns with linear
ordering. However, this pseudo-one-dimensional approach is normally not applicable when
blocks are of different sizes and shapes as in macro-block layout or in component placement
on printed circuit boards.

For macro-block placement problems, some researchers have introduced creative new
cost functions to redistribute blocks evenly from the initial placement. In [Joh87], new
objective functions are created based on a planar triangulation derived from the initial
placement. In [RJ89], cell area distributions are improved by optimizing the cell density
projected on a rotating axis. However, while these approaches reduce the amount of overlap,
they fail to produce legal and compact layouts quickly.

Compaction/Spacing is yet another method for resolving overlaps among cells of
different sizes and shapes. Compaction has been widely used in enforcing layout rules when
converting symbolic layout to mask geometry [HP79]. In placement, the use of compaction
has been limited as a clean-up process to generate a legal solution and/or to optimize the
total area gfter wiring optimization. Using compaction during the placement optimization
process, so far, has been impractical because existing compaction algorithms either run too

6

2.1 Placement Paradigm for Resolving Overlaps

slowly or cannot generate satisfactory results. In general, graph-based 1-D compaction is
fast enough but may not generate dense results for blocks of strongly varying sizes.
Two-dimensional compactors [SLW83] [KW84] [Xi0o89] [SSVS86] can generate smaller
results but have been too slow to be used repeatedly in the placement process. Furthermore,
existing compaction algorithms may produce poor layouts with high wiring costs because
they destroy important neighboring relations among blocks that were derived in previous
wiring optimization steps. As shown in Fig. 2.1, compaction of very loose or highly clustered
initial placements may result in layouts of unsatisfactory aspect ratios in which the original
neighboring relations have been lost.

O
4
DD = _’é % — D
O - 8
O m|
(a) (b)

Fig. 2.1 Horizontal compaction of loose (a) or dense (b) initial placements.

This chapter presents a new 2-D compaction algorithm for use in the placement process.
Unlike typical layout compactors, the compaction algorithm is designed primarily for
spacing and packing rectangular blocks without connecting wires. With a new data structure
based on a planar triangulation graph, the compactor runs efficiently and is capable of
maintaining the important neighboring relations among blocks. With such a 2-D compactor,
the second paradigm that generates legal solutions repeatedly becomes feasible for the
macro-cell placement problems. This can be achieved by alternating between wire-length
optimization phases that may create overlaps, and legalization phases that use the 2-D
compactor to generate dense legal placements quickly (Fig. 2.2). With such a paradigm, the
placement tool can evaluate legal placements precisely and can choose the best solution.

»E%D»%% »% *E%

Optimize : Optimize ,
w.Fr’eI |elﬁgm Legalize wﬁe length Legalize

Fig.2.2 Basicidea of using a compactor/spacer in the placement process.

2.2 Data Structure

2.2 Data Structure

2.2.1 Definitions

The basic data structure for the 2-D compactor is based on planar triangulation. As
defined in [PS85], a graph is planar if it can be embedded (i.e. drawn) in a plane without
crossings. The embedding of a planar graph determines a partition of the plane. This
partition is a triangulation if all the bounded regions are triangles. Such an embedding of
aplanar graph will be referred to as a triangulation graph. Fora given placement of blocks,
a triangulation graph can be built with the centers of all blocks plus four additional boundary
nodes, N, Ny, NL, and Np (Fig. 2.3(a)). For such a triangulation graph, every edge, except
the four edges on the boundary of the graph, is enclosed by a quadrilateral. An edge-swap-
ping operation on an edge (4,C) enclosed by quadrilateral ABCD is to replace edge (A,C)

with (B,D) (Fig. 2.3(b)).

Nu

A//’B\ c
s

N|_ /k’—’_K NR %
IR /
A c
N \I?
@ (b)

Fig.2.3 (a) A triangulation graph from a given placement and (b) an edge-
swapping operation on edge (A,C).

In [VKLS90], planar triangulation is used to represent topological constraints between
elements for compacting layout in a two-dimensional manner. However, the proposed
compaction algorithm is very slow because actual 2-D distances instead of manhattan
distances are used in enforcing the constraints. To make use of the fast 1-D graph-based
compaction algorithms, the triangulation graph is enhanced by marking each edge with an
orientation, i.e. horizontal or vertical. Furthermore, each end of every edge is labeled with
the direction viewed from the connected node. For a vertical edge, its upper end is marked
as Down and its lower end as Up. For a horizontal edge, its right end is marked as Left and
its left end as Right.

2.2 Data Structure

Fig. 2.4 (a) ARULD-graph with fourlegal nodes and the four boundary nodes.
(b) An illegal node without any Right edge. In most figures, bold lines
represent vertical edges and thin lines represent horizontal edges.

Because the triangulation graph is embedded in a plane, the edges connected to each
node can be ordered counter-clockwise around the node. If the directions of the connecting
ends of these edges form an ordered sequence containing all four types of directions:
(Right..., Up..., Left..., Down...), the node will be called a legal node. If all the nodes in a
triangulation graph except the four additional, special boundary nodes Nr, Ny, NL, and
Np are legal, the graph will be called a Legal RULD-graph, or simply a RULD-graph
(Fig. 2.4).

For a given RULD-graph, a horizontal (vertical) crack-path is a sequence of nodes,
(n1, n2, ..., nk), such that there exist horizontal (vertical) edges ej=(nj, nj+1),
with 1 £j <k-1 and the directions of ej at n;j are all the same. A cut-path is a crack-path
from one boundary node to the opposite boundary node, e.g. Ng to NL. A horizontal
(vertical) crack-path B = (b1, b2,, bp) is a branch of the horizontal (vertical) crack-path
A = (a1, a2,, am) if the following conditions hold:

(1) bi1=as, bn=ae, forsome sand e suchthat 1 <s<e<m;

(2) Every edge (bi,gj), 1 <i<nands<j<e,is vertical (horizontal).

Fig. 2.5 shows examples of crack-paths and branches.

2.2 Data Structure

Fig.2.5 A portion of a RULD-graph. Node 1 and 13 are boundary nodes. For
example, (2,6,7) is a horizontal crack-path and (1,8,11,12,13) is a horizontal
cut-path. Crack-path (6,4,5) is a branch of the crack-path (1,2,6,7,5,13) but
the path (2,3,4,5) is not.

2.2.2 Building the RULD-Graph

Given an initial placement of blocks, a corresponding RULD-graph can be built in two
steps. First, a triangulation graph is constructed using the center points of all blocks; then
proper orientations are assigned to every edge of the graph to create a legal RULD-graph.

2.2.2.1 Building the Triangulation Graph

For a given placement of blocks, many possible triangulation graphs can be built by
treating every block as a point at its center. The best-known is the Delaunay triangulation,
which can be built in O(n log(n)) time for n points [PS85]. However, to allow the compactor
to maintain the neighboring relations between blocks, the triangulation graph should have
proper edges to connect adjacent nodes. When blocks can be of different sizes and may
overlap, a Delaunay triangulation based on the centers of the blocks does not record these
relations very well (Fig. 2.6).

7 &7

Z Z

g

(@) (b)
Fig.2.6 (a)is a Delaunay triangulation while (b) is a more desirable one.

A more suitable triangulation for our purpose is a minimum-weight triangulation [PS85]
with a weight function based on an “effective” distance that takes the sizes of blocks into
account. By assuming the value of 1.0 if two blocks just touch in the orientation of interest,
the weight function, Weight (i,j) for edge (i), is defined as:

10

2.2 Data Structure

Weight (i) = X34 (i) + Y2g; (i)

Xadj (i J) = Xdist(iJ)/ Xsize_sum(iJ) if X, dist(i J) < Xsize_sum(i ,j)
= Xdis(i X size_sum(ij)+1.0 if Xdist(iJ) > Xsize_sum(iJ)
where:
Xais(ij) = the x-distance between the center of block i and j;

Xsize_sum(ij) = half the sum of the x-sizes of blocks i and j.

Unfortunately, there is no known polynomial-time algorithm for building a minimum-
weight triangulation. Therefore, a greedy edge-swapping routine is used to improve the
total weight of a given triangulation. This routine works on one node at a time. For a node
m surrounded by edges (m , n;), 1<i <k, the greedy algorithm tries to swap all surrounding
edges (ni, ni+1) 1<i<k, and edge (nk,n1). The edge is swapped if the surrounding
quadrilateral is convex and if the new edge has lower weight than the original one. This
routine is repeated on the same node until there are no more edge-swapping operations that
improve the total weight.

Such a triangulation graph is built incrementally. For a given block placement, the four
boundary nodes NRr, Ny, NL, and Np are first placed with five edges (Nr Ny), (NU NL),
(NL ND), (ND NR), and (Ng NL), to make a triangulation graph that encloses all the block
centers. Then the nodes are inserted one at a time. For every node N to be inserted, the
enclosing triangle ABC is found and three new edges (4,N), (B,N), and (C,N) are created.
Then the greedy edge-swapping routine is tried on node N. After all the nodes have been
inserted, each one is tried once again in random order to improve the total weight of the
triangulation. A reasonable local optimum can be achieved by this method. The overall
algorithm can be described as the following C-like pseudo-code:

11

2.2 Data Structure

build_triangulation_graph()

G =build_initial_graph_with_four_boundary_node();
for(;;) {
n =sel_node () ;
if (n == NULL) break;
insert_node_to_graph(G, n);
improve_node_by greedy_edge_swapping(n);
}
for_all_node (n) {
mark_node(n);
}
do {
change=0;
for_all_node (n){
if (node_is_marked) {
improve_node_by_greedy_edge_swapping(n);
if (some_edge_is_swapped) {
mark_neighbors(n);
change = change + 1;
} else {
unmark_node(n);

}
} }
} while (change >0);

}

In this process, all the basic routines can be accomplished in constant time except the
operation to insert a new node into the graph because it needs to find an enclosing triangle
first. If the nodes are inserted randomly, the average time complexity to find the triangle
around the n-th node can be as high as O(n). To speed up this search process, the nodes are
sorted based on their positions such that the next node to be inserted is close to the previous
one. Under such a situation, the search can start from the node just inserted and choose one
of its attached triangles. If the new point is not inside this triangle, an adjacent triangle closer

to the point is selected until the enclosing triangle is found (Fig. 2.7).

12

<—

previously-inserted node

newly-inserted node

2.2 Data Structure

Fig.2.7 A possible search sequence in finding the enclosing triangle for the

new node.

To insert nodes in a proper order, the block centers are sorted into a 2-D binary tree with
alternating X and Y cuts such that each leaf node contains at most eight points which can
be inserted in random order. Such a tree can be traversed in a depth-first order. If the traversal
of the nodes is carefully arranged into Hilbert order [Kah89], it can be assured that the
inserted node is close to the previous one (Fig. 2.8(a)). Buteven with a simple fixed ordering
(Fig. 2.8(b)), on average, only three to four triangles need to be tested on every insertion.
Table 2.1 shows that this number holds even for large problems with thousands of points.

9 13| 14
8
10 {1112 15
2/ 3
_7_le 19| 16
6| 5| 18| 17

10| 17| 19
8
9 1516| 18
6,7
2 Z|§ 12 14
3 11| 13

(a)

(b)

Fig.2.8 Traversing a 2-D binary tree in (a) Hilbert order and (b) simple fixed

ordering.

Triangles tested
nodes maximum average
100 10 3.57
400 34 3.61
900 46 3.76
1600 76 3.81
2500 75 3.95

Table 2.1 The maximum and average number of triangles tested when new
nodes are inserted into a triangulation graph. In each example, the Nnodes
are arranged into a 2-D array with VN rows and VN columns.

13

2.2 Data Structure
2.2.2.2 Edge-direction Assignment

After building the triangulation graph, initial orientations are assigned to all the edges
in the graph. Edges with slopes in the range of (—1.0,1.0) are initially classified as horizontal,
with the directions of their left ends marked as Right and their right ends marked as Left.
All other edges are vertical with their lower ends marked as Up and upper ends as Down.
This initial assignment cannot guarantee that all nodes are legal; some nodes may miss an
edge in a certain direction. However, such an assignment has two important properties:

(1) The edges are ordered in a counterclockwise traversal around a node as (R..., U...,

L...,D...). There may be missing directions but no out-of-order cases.

(2) A node can’t miss edges in two consecutive directions (e.g. Right and Up) because

any internal angle of a triangle must be less than 180 degrees.

This initial assignment is simple butit doesn’t capture the neighboring relations between
blocks very well when the aspect ratios of blocks differs strongly from 1.0 (Fig. 2.9).
Therefore, an improvement phase is conducted to get a better orientation assignment based
on the following formula for a desired direction for all edges:

Edge (ij) is horizontal if Edge_slope(iy) < Critical_slope(i)

vertical otherwise.
where
Edge_slope(iy) =|Yaist(iyj) / Xdist(ij) |
Critical_slope(ij) = "Ysize_sum(i\j) / Xsize_sum(iyj) |
Xdisi(i,)) = the x-distance between the centers of block i and j
Xsize_sum(iy) = half the sum of the x-sizes of block i and j.

In this formula, the Critical_slope is defined as the slope of the edge when the corners of
two blocks touch as in Fig. 2.9(c).

| slope = 1 Critical_slope

\ Sy =

/ N /</ \/ B
(a)

/ AN —~
> ~<
7~ ~

(b) ()
Fig.2.9 (a) An edge that should be horizontal but with slope greater than 1.

(b) An edge that should be vertical but with slope smaller than 1. (¢) The
interpretation of the Critical_slope in deciding the direction of edges.

In the improvement phase, the desired orientation is computed for every edge. The
desired orientation will be assigned to the edge if the two important properties mentioned

14

2.2 Data Structure

above won’t be destroyed on the direction change. This is necessary since the legalization
process works only when the two properties hold.

After the initial classification and the improvement phase based on block size, a
legalization process is conducted with edge-swapping operations. Because of the two
properties mentioned above, illegal nodes that miss edges in a certain direction will have
edges in the two adjacent directions. For a triangle ABC where node A does not have any,
say, Down edge, edge (A,B) and (4,C) must be both horizontal. Furthermore, edge (B,C)
must be horizontal too or the two properties cannot hold on either node B or C. With the
edge (B,C) being horizontal, the edges (B,D) and (C,D) of the adjacent triangle have to be
in one of the following four cases (Fig. 2.10):

(a) both are vertical;

(b) one is horizontal and the other is vertical;

(c) both are horizontal and their directions at D are different;

(d) both are horizontal and their directions at D are the same.

(b)
Fig.2.10 Legalizing node A by introducing a Down edge.

For the first three cases, node A can be legalized easily by replacing edge (B,C) with a
vertical edge (A,D). In case (d), either B or C (Cin Fig. 2.10(d)) is illegal and needs to be
legalized first before edge (B,C) can be swapped to legalize A. This algorithm can always
legalize all the nodes in the graph. Even though case (d) requires a recursive call of the
legalization routine, this process always terminates because eventually, a boundary node
will be encountered where case (d) cannot occur. Normally, this recursive process will
terminate after just two or three steps.

2.2.3 Linear Constraints from RULD-graph

Like most layout compactors, linear constraintsfHP79] are used to space the blocks
properly. With enough linear constraints, a legal placement without overlaps can be
obtained with the longest path algorithm[HP79]. Two kinds of constraints are derived from
a RULD-graph: explicit constraints and implicit constraints. Each edge in the RULD-
graph represents an explicit constraint. A vertical (horizontal) edge represents a vertical

15

2.2 Data Structure

(horizontal) spacing constraint between the two connected nodes. These constraints work
just like those used in traditional layout compactors. However, as shown in Fig. 2.11, these
constraints alone cannot prevent all overlaps. Rather than adding new edges and destroying
the planarity of the graph, such constraints are calculated dynamically whenever a cor-
responding block constellation is encountered. This leads to the notion of implicit con-
straints.

Explicit constraints fail to prevent overlaps when a vertical edge connects two blocks
whose projection on the x-axis don’t overlap, such as block B and C in Fig. 2.11. In the
traditional 1-D compaction, vertical constraints are generated only when the block’s
projections on the x-axis overlap. It turns out that all illegal overlaps can be prevented if
blocks with vertical constraints between them have overlapping projections on the x-axis.
This notion is captured in the RULD-graph representation with a horizontal implicit
constraint:

X" < x[#" and x58" > x4,
where

X/ T8H . the x position of left/right edge of block B.

Similarly, blocks connected with a horizontal edge are assigned vertical implicit constraints
for their y-coordinates. In some situations, a block may not be big enough to satisfy all such
constraints simultaneously (Fig. 2.11). In this case, block B is provided with a virtual

extension so that ngh' ZXléﬁ and Xfff t< Xﬁgh’.

L F.ﬂ-——/ﬂc
NI T N I/‘
BN (D NI D
t)
@ ®)

Fig.2.11 (a) The explicit constraints in the RULD-graph do not prevent all
overlaps (A and E). (b) Block B is extended with the shadowed region to
satisfy all implicit constraints.

By enforcing explicit and implicit constraints, a legal placement without overlaps can
always be obtained based on the following theorems:

Theorem 1: Blocks won’t overlap if the explicit and the implicit constraints are enforced in
both, horizontal and vertical, directions.

Proof: For any two blocks, exactly one of the three possible cases below can be true:
(1) both are on the same vertical cut-path;
(2) one is on a vertical cut-path and the other is on a branch of the cut-path; and
(3) there is at least one vertical cut-path between them.

16

2.2 Data Structure

In case (1), the two blocks will be separated by the explicit constraints derived from the
edges on the cut-path.

In case (2), the cut-path is assumed to be (a1, n2,...,nk) and the branch is
(m1, m2,, mj) and m1=np, mi=n,. For any block n; and mj, only one of the three possible
cases can happen (Fig. 2.12):

(2a) they are connected by a horizontal edge (n;, mj);

(2b) there is a horizontal edge (nc, md) such that ¢ > iand d < j; or

(2c) there is a horizontal edge (n¢, mq) such thatc <iand d > .

For case (2a), the two blocks won’t overlap because of the constraints from edge
(ni, mj). For case (2b), block nc and mg will have overlaps in their projections on the y-axis
(the dotted lines in Fig. 2.12). Therefore, n; and m; will be separated by this overlapping
part because n; is higher than n; while mj is lower than mg. The same argument applies for

case (2¢).

-

3

\
m
| —

/M
case (2a) case (2b) case (2c¢)

Fig.2.12 The three situations in case (2). The shadowed regions are the filler
rectangles to form the isolation zone for the cut-path in case (3).

For case (3), it can be shown that a sequence of rectilinear isolation zones can be created
for all the cut-paths between the two nodes that separate the two blocks. For each cut-path,
its corresponding rectilinear isolation zone covers the blocks on the cut-path and filler
rectangles drawn between subsequent blocks n; and nj—1 with the width equal to the overlaps
of their horizontal projection (Fig. 2.12). These rectangles can be of zero width or height.
Based on the same argument used in the proof for case (2), no block on the branch of the
cut-path can overlap with these rectangles either.

For the two blocks in case (3), a sequence of cut-paths can be formed from left to right
by replacing the old cut-path, (n1, 12, ..., nk), with nodes from one of its branches on the
right side (mi1, ma,...., mj) 10 obtain a new cut-path, (n1, ..., np, m2...., mi-1, ne,... n) (Fig.
2.13). For such a sequence of cut-paths, a sequence of isolation zones can be formed from
left to right. Therefore, the two blocks will be separated by these isolation zones.

17

2.2 Data Structure

[

Fig.2.13 For the cut-path (1,7,9,10,11,3), the rectilinear isolation zone is
formed by adding the shadowed filler rectangles between the blocks. By
replacing (10, 11, 3) with the branch (10, 12, 3), a new cut-path
(1,7,9,10,12,3) can be formed.

2.2.4 Interpretations and Discussions

The RULD-graph replaces the horizontal and vertical constraint graphs used in the
original 1-D compaction algorithm [HP79]. Our compaction algorithm also uses the vertical
and horizontal edges to represent horizontal and vertical constraints respectively. However,
the RULD-graph can easily capture diagonal adjacency relations that cannot be represented
in the traditional constraint graph. Without this information, the relative positions between
neighboring nodes can be destroyed easily during compaction.

' I
\ 1 6
8 2 E1
.
10 15—H:8]—
?\4 S \/7 3] 10
9 (7]
1\ —1 i 9

\ ¥ 4'
| I
(a) (b)

Fig.2.14 Comparisonbetween (a) RULD-graph and (b) constraintgraph. The
edges, (1,3) (3,5) and (8,11) in the RULD-graph cannot be represented in
the constraint graph.

18

2.3 Compaction Algorithms

Another data structure strongly related to the RULD-graph is the rectangular-dual for
a triangulation graph [KK88] [TFKM91] that forms a partition of the rectangular layout
space. For a given partition, a corresponding legal RULD-graph can always be built with
all the explicit and implicit constraints satisfied. However, enforcing all the implicit and
explicit constraints in a RULD-graph does not always create a rectangular-dual partition.
As shown in Fig. 2.15, no rectangular partition can be found for the compaction results such
that each block is covered by exactly one partition.

-
:'/
N/

[

[=
(a) (b)

Fig.2.15 (a) Compaction result for the given RULD-graph. (b) A possible
rectangular-dual for the triangulation graph.

2.3 Compaction Algorithms

From a given RULD-graph, a legal placement without overlaps can be computed quickly
using a 1-D compaction algorithm to enforce all the explicit and implicit constraints. The
result is usually not dense enough, and a 2-D compaction algorithm that moves cells in both
x- and y-directions simultaneously is needed to further reduce the total area. This section
describes these compaction algorithms and presents the results of some experiments for
evaluating them.

2.3.1 1-D Compaction Algorithm

The 1-D compaction algorithm generates results without any overlaps by enforcing all
the explicit and implicit constraints. To build the complete constraint graph, implicit
constraints are transformed into simple linear spacing constraints. While compacting to the
right, a block B is represented with two point nodes B.left and B.right, whose x-coordinates

rcpresentXffﬂ and Xﬁigh‘ , respectively. Node B.right will have spacing constraints from the
left nodes of all blocks on its right that have a horizontal edge to block B (Fig. 2.16). Node
B.left will have spacing constraints from B.right (distance 2 width of the block) and from
the right nodes of those blocks that have a vertical edge to block B (distance 2 0). Similarly,
node B.left will have spacing constraints to all right nodes of the blocks with horizontal
edges on the left side of block B.

19

2.3 Compaction Algorithms

BE:& @Q *:”.@

B/Z\"

—# 5 b hL;
m leftnode ®mrightnode ----- constramt

Fig. 2.16 Transforming projection constraints to spacing constraints.

In our actual implementation, this transformation is done in animplicit way. The implicit
constraints are derived on the fly. This process, like traditional 1-D compaction, can be
computed in O(n) time for n blocks.

2.3.2 2-D Compaction Algorithm

As demonstrated by 2-D compactors [SSVS86] [WMNDS88], layout density can be
improved by moving selected blocks perpendicularly to the direction of compaction.
However, such 2-D moves can be quite expensive if the constraint graph and the critical
paths have to be recomputed after every move. In our compaction algorithm, these lateral
moves are achieved by simply manipulating the edges in the RULD-graph. To shorten the
horizontal critical path during the horizontal compaction, the compactor will try to change
a horizontal edge into a vertical one. Fig. 2.17 shows four of the eight possible cases of
changing a horizontal edge into a vertical edge when blocks are compacted to the right. The
other four cases can be obtained by flipping these four cases vertically. In principle, there
are 16 different possible quadrilaterals around an edge (four edges, two possible orienta-
tions), but seven of them are illegal in a RULD-graph. Only seven of the nine legal cases
can be changed (two possible moves for one case). In the two remaining cases, the
- horizontal edge is caught between two other horizontal edges at one node and thus cannot
be changed until one of the adjacent edges has been modified.

Fig.2.17 The four basic ways of changing a horizontal edge to a vertical edge
while compacting to the right.

20

2.3 Compaction Algorithms

Sometimes, the critical path consists of implicit constraints as well as explicit con-
straints. During a horizontal compaction, the implicit constraints are derived from vertical
edges so the compactor also tries to replace vertical edges with horizontal edges either to
shorten the critical path or to convert them into explicit constraints. There are also eight
possible cases of changing a vertical edge into a horizontal edge. Four of them are shown
in (Fig. 2.18) and the other four also can be obtained by flipping these four cases vertically.
The simple edge-reorientation may then be followed by some edge-swapping operations.

Fig.2.18 The four possible ways of changing a vertical edge that causes a
horizontal implicit constraint on a horizontal critical path while compacting to
the right.

Because the constraints are generated based on the RULD-graph instead of the absolute
position of blocks, there is no need to recompute the constraints on every move. Therefore,
these 2-D moves can be achieved much more efficiently than those of other 2-D compactors.

In addition to these moves, the critical path also can be shortened by rotating a block
on the critical path by 90 degrees. Such a rotation won’t modify any edges of the
RULD-graph but it may change both horizontal and vertical critical paths. Because in some
types of problem, the blocks cannot be rotated, this operation can be disallowed explicitly.

With this set of 2-D moves in the "toolbox", the remaining problem is to select a proper
edge to switch direction. The move selection is based on the supercompaction proposed in
[WMND88]. For a given placement problem, the compactor tries to generate a dense layout
with the specified aspect ratio. The compactor works on one direction at a time trying to
generate a smaller layout while keeping the aspect ratio close to the specified value. To
compute the size of the resulting layout, the compactor maintains with every node in
RULD-graph the values of the longest paths to the four boundary nodes. When the
compactor tries to reduce the horizontal size, the compactor checks all the edges and nodes
on the horizontal critical path and then selects the move that will cause the minimum increase
of the vertical critical path. The increase of the vertical critical path can be computed from
the longest paths of the involved nodes to the two vertical boundary nodes. After every

21

2.3 Compaction Algorithms

move, the longest paths for all nodes to the four boundary nodes are updated with an
event-driven longest path algorithm. The overall control strategy can be summarized by the
following C-like pseudo code:

2d_compact (desired_ratio_of_X_size_to_Y_size)

{
aspect_ratio[horizontal]=desired_ratio_of X_size_to_Y_size;
aspect_ratio[vertical] =1 /aspect_ratio[horizontal];
best_result = big_number;
ori = horizontal;
ori2 = vertical ;
new_ratio = critical_path_length(ori) / critical_path_length(ori2);
if (new_ratio < aspect_ratio[ori]) {
exchange (&ori, &ori2) ;
}

for(;;) {
do {
mv = select_2d_move(ori);
make_2d_move(mv);
new_ratio2 = critical_path_length(ori2) / critical_path_length(ori);
} while (new_ratio2 < aspect_ratio[ori2] * (1+ERR_RATIO))

new_result = eval_placement();

if (new_result >= best_result) break ;
best_result = new_result;

exchange (&ori, &ori2) ; -

}

return (best_result);

}

In this algorithm, the compaction in one direction is terminated when further moves will
cause too much increase of the critical path in the other direction. This is achieved by
controlling the resulting aspect ratio to be close to the specified value. If the variable
ERR_RATIO is set to be 0.0, the generated layout will have almost the same aspect ratio
as the specified value. However, to find a dense solution, the compactor usually has to
shorten the critical path in the compaction direction by temporarily increasing the critical
path in the other direction. Therefore, the variable ERR_RATIO is normally set to be 0.15
to allow a 15% deviation of the resulting aspect ratio from the specified value so that the
compactor won'’t get stuck prematurely.

When the compaction in one direction is terminated, the procedure eval_placement
evaluates the legal placement based on its area and on its estimated wire length, using weights
supplied by the user. If no further improvement can be achieved, the compactor will quit
and return the best solution.

2.3 Compaction Algorithms
2.3.2.1 An Alternative Control Strategy

In [TS91b], a control strategy based on zone-refining [SSVS86] was proposed. This
proposed zone-refining approach can run faster but it usually produces results with longer
wire lengths.

This zone-refining approach runs faster because it minimizes the overhead for updating
the critical paths. In the direction of compaction, the critical path is computed simply by
adding the two critical paths from the two sides separated by the free zone. For the critical
paths in the perpendicular direction, the projection constraints are replaced with quad-
rilateral constraints [TS91a] [TS91b], which are easier to compute.

There are several disadvantages to the use of the zone-refining control strategy. First,
using the zone-refining control strategy normally causes more 2-D moves than using the
supercompaction control strategy to achieve layouts with the same density. This is because
the supercompaction approach selects the most promising 2-D move from the possible
moves on the critical path, while the zone-refining approach can only move cells adjacent
to the free zone. Although all the 2-D moves are local and preserve most of the neighboring
relations among blocks, too many 2-D moves, especially when they are all in the same region,
can destroy a lot of neighboring relations among blocks. These unnecessary 2-D moves
usually increase the wire-lengths of the results.

The other disadvantage of the zone-refining control strategy is the requirement of an
explicit size limit in the direction perpendicular to the compaction direction. If the limit is
set too high during the compaction process, the compactor makes too many unnecessary
2-D moves and destroys a lot of neighboring relations. If the limit is too low, the compactor
may not be able to reduce the critical path to generate a dense layout.

To compare these two control strategies, some illegal placements with overlaps were
generated by sampling the intermediate results of actual placement processes on two MCNC
macro-cell benchmarks, AMI33 and AMI49. These illegal layouts were then subject to the
two different compaction algorithms. Table 2.2 summarizes and compares the results.

Zone Refining SuperCompaction
wire-length CPU-time wire length CPU-time
Example {#Block| Average Min. Average | Average Min. Average |
AMI33 33 5.76 5.25 1.46 5.20 4.69 1.22
AMI49 49 10.38 8.37 2.32 10.08 8.15 2.66

Table 2.2 Comparison of the results from two different compaction control
strategies. There are ten different placements tested for AMI33 and eleven
for AMI49. The CPU-times are measured in seconds on a SUN SPARC-1.

23

2.3 Compaction Algorithms

The supercompaction strategy can produce better results in terms of wire length and
thus potentially result in chips with better performance. On the other hand, it is somewhat
slower on larger layout problems. With typical macro-cell problems containing on the order
of a hundred blocks, the speed penalty is not considered a serious problem. Therefore, the
supercompaction control strategy has been adopted to achieve results with better wire length.

2.3.3 Evaluation of the Compaction Algorithm

The compaction algorithm has been implemented in C in the UNIX environment.
Because this compactor is designed for spacing and packing rectangular blocks without
connecting wires, the well-known layout compaction benchmarks [Boy87a] [Boy87b] can
not be used to test the compactor. To evaluate the compactor, a series of random examples
were generated. In these examples, rectangles with random sizes are arranged into a
two-dimensional array (Fig. 2.19(a)). Using these examples, we compare our RULD-graph
compactor with a very simplistic implementation of traditional 1-D compactor and another
2-D compactor, Zorro[SSVS86]. Table 2.3 summarizes these results. In this table, our
compaction results are obtained with four compaction passes, consisting of Left, Down,
Right, and Up compactions, with the target aspect ratio set to be 1. The 1-D compaction
results are generated using the pre-compactor of Zorro with four compaction passes,
consisting of horizontal, vertical, horizontal, and vertical compactions. The Zorro’s 2-D
results are obtained with a horizontal 1-D pre-compaction, and then with four vertical 2-D
compaction passes, consisting of Up, Down, Up, and Down compactions. Because the
aspect ratio cannot be specified while compacting with Zorro, each example is given a target
width that is equal to our compacted result. Fig. 2.19 shows the initial layout and the three
compacted layouts on the example with 400 cells.

1-D Compaction 2-D: Zorro 2-D: RULD-graph

void void | CPU- void | CPU-
#celll Area | space | Area | space | time | Area (/Zorro) | space | time
100 72x77 | 40.9%| 65x61 | 17.4%| 5.7 | 65x64 (1.049) | 21.5%| 3.0
400 | 135x149 | 39.4%]122x113{ 11.6%| 30.3 }§122x120 (1.062) | 16.8%| 15.0
900 1202x236 | 44.5%]179x168| 12.0%| 94.1 |179x177 (1.054) | 16.5%| 40.5
1600] 258x313 | 39.0%|245x226 | 11.0% [235.1 |245x242 (1.071) | 16.9%| 84.6
2500] 307x405 | 38.3%]304x282 | 10.5%1496.3 1304x300 (1.064) | 15.9%158.5

Table 2.3 Comparison of the compaction results. The "(/Zorro)" column shows
the ratio between the areas generated by the RULD-graph compaction and
by Zorro. The CPU-times are measured in seconds on a SUN SPARC-1.

24

1|!

l"'l il ?
| el

—.-- B .—-
-n@..la...-l _-E--
El E. m- l_. T E———
-] _m!

.lll'l n--

mume N o, [220
l-llll--Bu, -—

2.3 Compaction Algorithms

Fig.2.19 (a) The initial layout. (b) The result of 1-D compaction. (c) The result
of 2-D compaction by ZORRO. (d) The result of our 2-D compactor.

The results show that for simple cell-packing problem without wires, the RULD-graph
compactor can achieve very compact layouts which are much smaller than the very simplistic
1-D compaction results produced by the Zorro pre-compactor. The results also show that
the RULD-graph compactor is much faster than Zorro in 2-D compaction while generating
layouts with areas fairly close to Zorro’s results. Zorro can produce results that are about
6% smaller because it does not try to preserve the neighboring relations among cells. This

25

2.4 Wire-Length Optimization Algorithms

is demonstrated by Fig. 2.19. In these figures, cells are filled with different patterns based
on their initial locations. By comparing the pattern distributions of the compacted results
with the initial layout, it is clear that our compactor maintains most of the neighboring
relations of cells while the other two compaction methods destroy a lot of them.

To further analyze the complexity of our compactor, Fig. 2.20 shows the relation
between the run-times and the number of the cells for Zorro and the RULD- graph compactor.
It shows that complexity of our compactor is close to O(nlogn) for these cases, where n is
the number of the cells.

sec
500 _ o

450 4 o Zorro

400+ y RULD-graph
350 |

300 |
250 |
200 |
150 1
100 |

50 |

0

: = cells
0 1000 2000 3000

Fig.2.20 The CPU-time vs. the number of cells for Zorro and the RULD-graph
compactor. The solid line comprises points with O(n logn) complexity and
the dashed line is for O(n) complexity.

2.4 Wire-Length Optimization Algorithms

Most placement algorithms optimize an objective function based on estimated total wire
length. The most popular estimate used in comparing placement results is the half-perimeter
metric[Oht85], which calculates the sum of the half-perimeter of the bounding boxes of all
nets. This half-perimeter measure is essentially the lower-bound of realizable wire length
and is usually a very good estimate of final routed results. However, this is not a continuous
function that can be optimized easily and quickly. To make use of standard optimization

26

2.4 Wire-Length Optimization Algorithms

techniques, many placement tools formulate the cost function as the sum of the squared wire
length, which is a quadratic function.

In comparing two different placements of the same problem of significantly different
quality, the one with better quadratic cost normally has better half-perimeter cost, too.
However, this correlation disappears when the quadratic costs of the two placements under
comparison are roughly equal. To achieve the best result in the minimum amount of time,
the quadratic cost function is used initially to obtain a good solution. Then simple greedy
algorithms are used to further optimize the half-perimeter cost function.

In the following sections, the formulation of the quadratic functions and the correspond-
ing optimization algorithms will be first presented. Then the simple greedy algorithm that
optimizes the half-perimeter cost function will be introduced.

2.4.1 Simple Quadratic Formulation

By assuming that all the pins are in the center of the cells, a simple quadratic cost function
F can then be formulated as:
F = ';‘Zc;' A Gx) +ey)?)
ij
where
(xi , yi) = the position of the center of cell i
Cij = the number of connections between cell i and j;

or in the matrix form:

F =x"Bx +yTB y
= z bipxj + z bijyy;
ij ij
where
bij = —Cjj ifij
=Y cik ifi=j.
k

In computing c;j, a two-pin net between the cell i and j is counted as 1.0. For a net with
more than two pins, it is assumed that every pair of cells connected by the net has the same
amount of connection derived from the net, which is scaled to be much smaller than 1.0 so
these multiple-pin nets won’t dominate the wire length cost. This is computed by assuming
the quadratic cost F for the net is always 1.0 disregarding the number of pins when the pins
are put on a straight line with distance 1.0 between any two adjacent pins. Based on this

27

2.4 Wire-Length Optimization Algorithms

assumption, there will be g—i pairs of pins with distance i, for i=1,...,¢—1, for a net with ¢
pins. The quadratic cost derived from these connections is:

q
S,
=1

where
¢ = amount of connection for each pin pair.

By setting this function to be 1, ¢ will be equal to 12/ (q2(q—1)(q+.1)).

With the above quadratic cost function F, the optimal cost is zero when x1=x2=....=xN
and y1=y2=....=yN, i.e. all the blocks are at the same position. However, when there are fixed
pins, the x-part of the equation can be rewritten as:

1 2.1 2
F = EZc; fxi—x)” + E.zk“ci o (Xi—Xp,)
ij i

where
(xp,Ypy)= the position of pin &

Cip, ~ =number of connections between cell i and pin k.

To optimize such a quadratic cost function, the Gauss-Seidel formulation [GV83] is used,
which is essentially a gradient-descent method to move each cell toward its optimal position
gradually. The x-positions of the blocks can be computed with the following equations.

1
[
j k

where

e = x-position of block i in iteration ¢,

bi =Zc;j+ Zc,'p,‘.
j k

The time complexity for computing one move for N cells is O(cN), where c is the average
number of cells with connection to each cell. In the worst case, c=N and the time

complexity is 0(N2). However, for large problems with many blocks, ¢ is usually much
smaller than N and the time complexity is almost linear.

2.4.2 Quadratic Formulation using Exact Pin Positions

The simple formulation introduced in the previous section assumes all pins are at the
center of the cells. When the cells are small, such as in the standard-cell or gate-array design
styles, the distances from the pins to the center of the cells are usually much shorter than the

28

2.4 Wire-Length Optimization Algorithms

average net length, so this simplified model is precise enough. However, for macro-cell
problems, this simplified model is no longer a good approximation because the net length
can be fairly close to the distance from the pins to the cell center. To estimate the wire length
with the exact pin positions, the x-part of the quadratic cost function can be formulated as:

1
Fy = —iz sz(xp‘__xpj)Z
m ij
1
=5, Dwm (te; + dp) = (xgy+)
m ij
where

: all nets;

: all pin pairs in net m;

wm = weight on each pair of pins for net m;

X = x-position of the center of cell ¢; which contains pin p;;

Xp; = absolute x-position of pin p;;

dxp, = Xp,— X, i.. x-position of pin p; relative to the center of cell c;.

In most macro-cell placement problems, cells can be rotated or mirrored to one of the
eight possible orientations. To allow rotational degrees of freedom, a continuous angle
variable 6 can be introduced to represent the relative position of a pin to the cell center:

dxp;) (cos® —sin 6 [Axp;
dyp;| | sin® cos® ||Ayp
where

(Axp,; , Ayp,) = relative position of the pin p; to cell center without rotation.

In [SB87], such continuous angle variables are introduced to allow all blocks to rotate with
arbitrary angles. However, with these continuous angle variables, the cost function is no
longer quadratic, and general non-linear optimization routines have to be used. Furthermore,
to bring the blocks to one of the eight legal final orientations, additional constraints are also
required. To simplify the optimization task, heuristics are used to optimize the cost function
in two steps. First, a cell-orienting algorithm tries to find near-optimal orientations of all
the cells for the current placement. Then a cell-shifting algorithm moves cells with fixed
orientations to their optimal positions. Because the cell-orienting algorithm is based on the
concept of force introduced in the cell-shifting algorithm. The cell-shifting algorithm will
be discussed first.

29

2.4 Wire-Length Optimization Algorithms
2.4.2.1 Cell-Shifting Algorithm

In the cell-shifting phase, the orientations of the cells are assumed to be fixed, i.e. the
relative position from each pin to the center of the cell, dxp;, is assumed to be constant. Based

on the Guass-Seidel method or a gradient-descent method, the optimal solution can be
obtained quickly by a sequence of moves:

1
D =)+ 7 3 Wy (G + dxp) — () + dxp,)
my j
where

Y :allnets with pinson cell 2

my
Y, :all pins in net my except pin pm,h

J
Pmi = the pin on cell 4 that belongs to net my

x) = the x-position of the center of cell 4 in iteration ¢
my

Based on these equations, the nets are processed one at a time for calculating the effect
of each net on all the cells with pins belonging to the net. After accumulating the effect
from all the nets, all the cells are moved simultaneously. For a problem with N cells and
M nets, the complexity of the algorithm is O(N +d M), where d is the average of the square
of the number of pins for all nets. For macro-cell problems, M is usually greater than N,
and this optimization process is slower than the simple quadratic formulation. Fortunately,
d is normally a small constant, and the overall complexity is still close to linear.

2.4.2.2 Cell-Orienting Algorithm

In the cell-orienting phase, the cells are rotated or mirrored with their centers fixed.
Instead of using the complex and time-consuming non-linear optimization routines as shown
in [SB87], simple heuristics based on the concept of force are used.

Traditional force-directed relaxation methods [FCW67] [HWA73] use attraction forces
derived from the nets to pull connected cells together to minimize the wire length. To fit
into the concept of force, the equation for computing cell moves can be rewritten as:

G = di,, >, Dowmy (8] + dxp) = (o +)
myj

1
=d—hZFx.pin(pm)

my

30

2.4 Wire-Length Optimization Algorithms

where

Fx.pin (Pmh) = Y Wy (68 + dip) — O + dxp,,,))
J
= x-component of the force on pin pp

D : all pins in net mp except pin Pk
J

In this new equation, the desired move D _ 0 is the average of the forces on all pins.

These forces are just like the forces used in the traditional force-directed method[HWA73].
If each pin can be moved independently, the desired move of each pin would be the force
on the pin. Based on this idea, we can evaluate the effect of four possible orientation change
operations: rotate 90°, rotate -90°, mirror-x, and mirror-y, by comparing the force on each
pin to the potential move of the pin on each operation (Fig. 2.21).

*\J JJ|! 3.

) ®) © (@)

Fig.2.21 The potential moves of a pin on the four orientation-change opera-
tions: (a) rotate 90° (b) rotate -90° (c) mirror-x (d) mirror-y.

For a block with only one pin, the orientation change that would minimize the force on the
pin would be advantageous. However, blocks normally have more than one pin and the
effects on all the pins of a cell need to be accumulated. The overall effect of operation op
on acell k, Ecel (b, op), is evaluated based on the following equations:

1 .
Ecet(h,op) = @ ZEpin (in , op)
ip

_ projection(Fpin (in) , Mv(in , 0p))

Epin (ih 0P) - = | Mv (in, 0p) |
_ Fpin (in) ® MV(ix , op)
© IMv(in, op)!?
where
Mv (in,0p) = potential move of pin i, on operation op
Fpin (in) = force on pin i

31

2.4 Wire-Length Optimization Algorithms
Y : all pins on cell A;

in

o : inner product of the two vectors.

If the two vectors, Fpin (in) and Mv(ip , op), are the same for all the pins of the cell, the
function Ecenf will be 1. Therefore, if Ecell (h, op) is greater than 0.5, the operation op is
normally advantageous. While optimizing the wire length, these operations first are
evaluated for all the cells, and then the most advantageous operations, i.e. the one with the
largest value of Ecell (h, op), will be taken to change the orientations of the cells. This
process is repeated several times on all cells. For most test cases, there will be no further
advantageous orientation change operations after this process is repeated for two or three -
times. Therefore, a simple control strategy is used which repeats this process exactly three
times.

This approach turns out to be very effective in minimizing the wire length. Table 2.4
shows the results from some experiments for evaluating this approach. The experiment was
conducted on the intermediate legal placements sampled from actual placement processes
of the two MCNC benchmarks, AMI33 and AMI49. For each of the four different
placements of quite different quality, the cell-orienting algorithm works first to improve the
wire-length while fixing the centers of the cells. Then the generated results are processed
by a greedy algorithm, trying to further improve the results. The greedy algorithm works on
one cell at a time, measuring the wire length for all possible orientations of the cell and
selecting the best one. This greedy algorithm cannot guarantee a globally optimal solution,
but it can evaluate many possible configurations that may improve the placement. This
greedy algorithm runs 10 to 20 times slower than the cell-orienting algorithm and it usually
improves the wire length by less than 3%.

Example Quadratic Wire Length

(scale) Initial After cell-orienting | After greedy-change (improve)

AMI33 12.42 8.78 8.66 (-1.3%)

10.52 8.51 8.49 (-0.2%)

8.79 6.54 6.36 (-2.8%)

8.17 6.79 6.63 (-2.4%)

AMI49 1980 1637 1599 (-2.3%)

1000 902 888 (-1.6%)

911 830 814 (-1.9%)

753 682 676 (-0.9%)

Table 2.4 Evaluation of cell-orienting algorithm on initial placements of dif-
ferent quality. The unit of the quadratic wire lengths is 106um2.

32

2.5 Overall Placement Algorithm

2.4.3 Half-perimeter Formulation

The quadratic optimization routines optimize the quadratic cost function. To further
optimize the half-perimeter cost function which is most often used in comparing placement
results, a greedy algorithm is used to work directly on this specific cost function. This greedy
algorithm is similar to the refinement algorithm used in various placement programs. The
algorithm works on one cell at a time, trying to improve the cost function by two kinds of
moves - pairwise interchange and orientation change. The algorithm first tries to swap each
cell with one of the cells in its neighborhood. For any given cell, the candidates for swapping
can be found easily by a recursive depth-first neighborhood search in the RULD-graph,
usually limited to a depth of four to six. When two cells are swapped, the RULD-graph
remains unchanged; only the two nodes are exchanged. After all the cells have been tried
once, the eight possible orientations of each cell are then tested and the best one will be
selected.

2.5 Overall Placement Algorithm

For a given net list, the actual placement process consists of three phases, an initial
placement phase and two refinement phases. To simplify the problem, the inputs are
assumed to have pre-placed I/O pads on the boundary of the chip. For problems without
pre-placed I/O pads, an additional pad-placement phase should be conducted first. A good
approach has been proposed in [Tsa89], which first obtains a rough placement of both pads
and cells using an eigenvector approach and then maps all the pads to the chip boundary.

2.5.1 Initial Placement Phase

For a given net list with pads on the chip boundary, the simple quadratic formulation is
first used to find an initial placement. As shown in Section 2.4.1, by assuming that all pins
are at the center of the blocks, an optimal solution with respect to the quadratic wire length
can be obtained very quickly. From this initial solution, which is normally illegal, a
RULD-graph is built and a legal placement is generated quickly with the 2-D compaction
algorithm.

From this placement, the quadratic formulation based on the exact pin positions is then
used to obtain a near-optimal solution with the more precise wire length estimate. As shown
in Section 2.4.2, the cell-orienting algorithm is used first and then the cell-shifting algorithm.
After the cell-shifting algorithm moves the cells, the placement is normally illegal. A
RULD-graphis then built and the 2-D compactor is used torestore alegal placement quickly.

Even though the compactor tries to preserve the neighboring relations between cells,
many of the adjacent relations between cells may be purely coincidental and not very

33

2.5 Overall Placement Algorithm

meaningful because the initial solution is obtained without any concern for the overlaps.
Therefore, two more refinement phases are conducted.

2.5.2 First Refinement Phase - Quadratic Optimization

This refinement phase further optimizes the quadratic cost function by taking into
account some of the overlap information. In this phase, the quadratic formulation based on
the exact pin positions (Section 2.4.2) is used to optimize the wire length. To take into
account the no-overlap constraints, the cell-shifting algorithm is modified slightly. With
the modified portion shown in bold-face, the overall algorithm works as follows.

optimize_quad_wire_length()

{

cell_orienting();
old_cost=eval_quad_cost();

Init_hp_cost = eval_half_perimeter_cost(); /*modification#1*/
for (i=1;;i++) {
compute_gauss_seidel_move();
if (i == 1) select_move(); /*modification #2*/
move_cells();

new_cost = eval_quad_cost();

if (new_cost >= old_cost * 0.95) break;

new_hp_cost = eval_half_perimeter_cost();

If (new_hp_cost < init_hp_cost * 0.75) break; /*modification #1*/
old_cost = new_cost;

The first modification is to prevent the cells from moving too close together by limiting
the cost improvement in each optimization phase. For some problems, the optimal place-
ment without considering overlaps may have too much overlap and the cost of any legal
placement can be much higher than the optimal but illegal placement. To prevent the cells
from collapsing into a placement with too much overlap, each optimization phase is usually
limited to improving the half-perimeter wire length by only about 25%.

The second modification is to try to generate a placement whose topology is close to
the final legal placement. This is achieved by only carrying out “significant moves” that
will change the ordering of a cell and one of its neighbors in the RULD-graph. Based on
the formulation used in Section 2.4.2.1, if block A and block B are connected by a horizontal

edge and xﬁf) <xg), then block A will be moved to new position (xXH),yXH)) when
xﬁfﬂ) > xgﬂ). The moves that won’t change the ordering of the cells are rejected because
the moved cells very likely will be pushed back close to their original positions after the

compaction phase. By keeping these cells close to their final positions, the desired moves
of the other blocks can be computed more precisely. This move-selection step is only used

34

2.5 Overall Placement Algorithm

on the first move of each block because the RULD-graph will be destroyed by moves that
change the relative positions between blocks.

This quadratic optimization process normally causes new overlaps, and the compactor
is used to quickly re-generate a legal placement. From this new legal solution, another
quadratic optimization process followed by compaction can be initiated. This optimization-
compaction loop works as follows:

place_refine_by_quad_opt()
{

hike_num=0;
old_cost = eval_quad_cosk();

for(;;) {
optimize_quad_wire_length();
2d_compact();
new_cost = eval_quad_cost();
if (new_cost == old_cost) {
hike_num ++ ;
if (hike_num > 3) {
restore_best_placement();
break;

In this algorithm, the procedure optimize_quad_wire_length always decreases the
wire length but the procedure 2d_compact usually increases the wire length. Sometimes,
the wire length of the new legal placement may be worse than the one of the previous legal
placement because the overlaps caused by the wire length optimization are difficult to
resolve. In this case, the algorithm continues from the new configuration with higher cost
to explore more possible solutions. Based on the experiment conducted, no further sig-
nificant improvements can be observed after such a cost hike happens two or three times.
Therefore, the program stops on the 4th cost hike and returns the best solution ever obtained.

2.5.3 Second Refinement Phase - Half-perimeter Optimization

The second refinement phase optimizes the half-perimeter metrics with the greedy
pairwise interchange and orientation change algorithm introduced in Section 2.4.3. After
each pass of interchange and orientation change, the 2-D compactor, working on the same
RULD-graph, legalizes the layout again. Usually, after two or three passes, very few
pair-interchanges or orientation changes take place, and no significant cost improvement
can be achieved. Therefore, this refinement algorithm is limited to three passes.

35

2.5 Overall Placement Algorithm

Based on the experiments conducted, it is found that swapping two blocks with a large
difference in size or shape usually cause excessive overlaps. To resolve these overlaps, the
subsequent compaction process usually has to make many 2-D moves which could lead to
a considerable increase in wire-length. Therefore, pairs with large differences (> 100%) in
sizes or shape, won’t be swapped.

2.5.4 Evaluation of the Optimization Phases

To evaluate the contribution of each phase of the placement process, Fig. 2.22 shows
the profiles of both the quadratic and half-perimeter cost functions for two macro-cell

examples.

= legal placement o placement with overlaps
- 10

61 ol
| WWM 7|
71

41 | 6 |

3l | i‘ |

2 | 3l I

11 I f 1 l

o
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40

(a) AMI33, half-perimeter costs 1 (c)AMI49, half-perimeter costs

0. ;

8] 12

7+ I 104 I

61 | o |

54 I 1

4} 6

3 1- | 4 A I

2] | |

14 I 2 l

0 R R + ‘ . 0 + + _ R + .
] 5 10 15 20 25 30] 5 10 15 20 25 30 35 40

(b)AMI33, quadratic costs (d)AMI49, quadratic costs

Fig.2.22 The changes of the costs during the placement process. The first
solid dot in each graph represents the first legal placement from the initial
placement phase. The dots on the right of the dashed lines are results from
the second refinement phase based on half-perimeter cost.

As shown by the these figures, the first legal placement is usually not very good because
~ it is derived from a near optimal solution obtained without concerns about overlaps. The
quadratic optimization in the first refinement phase reduces the wire length. Because it tries

36

2.6 Results

to take into account some of the overlaps, the result after compaction can be better. However,
sometimes, it may still be difficult to remove the overlaps and the compaction results may
get worse than in the previous phase.

In Fig. 2.22, the two examples have different characteristics on the change of the wire
lengths. The wire lengths of the intermediate legal placements change somewhat randomly
on the smaller example, AMI33, but decrease quite consistently on the larger example,
AMI49. This is because the wire lengths of these legal placements depends heavily on
whether the illegal placements from the previous wire-length optimization phases are easy
to compact or not. Usually, larger examples are easier to compact because there will be
more possible ways to rearrange the cells into a dense layout. Furthermore, the larger the
example, the less impact each 2-D move in the compaction process will have on the total
wire length. On placing the smaller example, AMI33, the big jumps in cost after the 2-D
compaction phases show that those illegal placements are difficult to compact. However,
near the end of its first refinement phase, a 2-D compaction phase shows only minor increase
of the costs. This is because the illegal placement happens to be very easy to compact.

The wire-length optimization based on the half-perimeter cost in the second refinement
phase simply exchanges cells of similar sizes so the cells remain evenly-distributed without
too much overlap. Therefore, the generated illegal placements are normally quite easy to
compact, i.e. to generate a dense legal placement without overlaps, and there is no significant
cost increase associated with the compaction process.

These figures also show that the second refinement phase can further reduce the
half-perimeter wire-length while increasing the quadratic wire-length slightly. This
demonstrates that this refinement phase is necessary to optimize the half-perimeter costs.

2.6 Results

There are not many macro-block placement benchmarks available and also not a lot of
published results. The most commonly used ones have been the two MCNC benchmarks,
AMI33 and AMI49. Table 2.5 shows our results on these two benchmarks as well as all the
published results based on the half-perimeter metric that we know. Among them, GOR-
DIAN [KSJ88] uses quadratic optimization to minimize the wire length and then uses
exhaustive enumeration of slicing trees in the final stage to obtain legal placements. ATLAS
[SB87] uses non-linear optimization to resolve overlaps while optimizing the wire length at
the same time. TimberWolf [SSV84] uses penalty functions and simulated annealing to
optimize wire length while resolving overlaps. Tamiya’s approach [TFKM91] is also based
on simulated annealing but it uses the rectangular dual to generate legal placements. Except
for Tamiya’s results, all the results have aspect ratios close to 1. To have a fair comparison

37

2.6 Results

with Tamiya’s results, we also generated layouts with aspect ratios close to the values
reported by Tamiya.

Example Area Aspect |Wire length |CPU time
Name |#Block| #Net] Program | (mm®) | Ratio | (mm) | (sec)
|GORDIAN 1.48 na 72.4 58
TimberWolf na na 68.0 10142
Ami33| 33 | 123 |JATLAS na na 52.0 7142
Tamiya’s 1.42 1.38 53.0 442°
Ours (ratio=1.0)| 1.50 1.01 414 71°
Qurs (ratio=1.4)} 1.48 1.45 44.1 80°
Tamiya’s 43.44 119 | 7724 1276°
Ami49| 49 | 408 Ours (ratio=1.0) | 46.68 1.00 663.3 118°
Ours (ratio=1.2) | 45.89 1.18 725.7 90°

Table 2.5 Results on MCNC macro-cell benchmarks. The wire lengths were
estimated with a half-perimeter metric with no routing space between blocks.
The CPU times were originally measured on different machines but were
scaled to be roughly equal to the CPU times on a SUN SPARC-1 (%
microVAX time divided by 10, b. SUN 4/330 time without scaling, % SUN
SPARC-1 time). The TimberWolf result is obtained from [SB87]. The ATLAS
result still has a small amount of overlap.

Table 2.5 shows that our results have better wire length than all the other published
results. Our approach is faster and can achieve better wire length than approaches based on
simulated-annealing and non-linear optimization. However, our area is slightly bigger
because our program puts more emphasis on optimizing the wire length rather than the layout
area. Our approach is slower than GORDIAN but our wire length is much better because
of our multiple refinement steps interspersed with the re-spacing steps. The layout of one
of our results is shown in Fig. 2.23.

Fig.2.23 Resulting layout of macro-cell benchmark AMI33.
38

2.6 Results

To test the robustness and limitation of our algorithm, we also tried our placement tool
on some standard-cell problems. Table 2.6 shows our results on the two MCNC standard-cell
benchmarks, Primary1 and Primary?2, as well as the results from PROUD[TKHS88], one the
best and fastest placement algorithms for row-based design styles. Table 2.6 also includes
our results published in [TS91b], which are obtained with the zone-refining control strategy.

Example Wire

length CPU
Program Name |#Block|#Net | Areaqmm?)] (mm) |time (sec)
PROUD primaryl| 752 | 904 | 54x4.25 | 1025 65.3
Ours(supercompaction) (17 rows) 964 818.3
Ours(zone-refining) 995 152.4
PROUD primary2| 2907 [3029|9.24 x8.99) 5197 598.3
Ours(supercompaction) (29 rows) 5143 7953.8
Ours(zone-refining) 5120 1503.2

Table 2.6 Results on two MCNC standard-cell benchmarks. The wire lengths
were estimated with a half perimeter metric with ample row spacing.

These standard-cell examples are substantially larger than typical macro-cell placement
problems and most macro-cell placement algorithms cannot handle these problems effec-
tively without non-trivial modifications. For our program, the problems are simply treated
as a large macro-cell problem except that no orientation changes are allowed. The efficient
row-based layout that is natural when all the cells have the same height, is routinely
"discovered” by our program.

Even though our program is designed for a much more general purpose, the wire lengths
of our results are somewhat better than those obtained by PROUD. However, not being able
to take advantage of the special row-structure, our program is considerably slower than
PROUD. The difference is quite large when the supercompaction control strategy is used
but is less dramatic when the faster zone-refining control strategy is used. As mentioned in
Section 2.3.2.1, the zone-refining control strategy usually causes many unnecessary 2-D
moves which may increase the wire length. However, the two different compaction control
strategies generate results with roughly equal wire-lengths on these examples. This is
because the possible change of wire-length cost on each 2-D move is only a very small
fraction of the total cost. The additional 2-D moves caused by the zone-refining control
strategy won’t degrade the results as much as similar moves in macro-cell benchmarks with
only a few large blocks.

39

2.7 Summary

2.7 Summary

A new placement tool has been developed using a RULD-graph-based 2-D compactor
to resolve overlaps between blocks. By using a combination of quadratic optimization
techniques and greedy interchange and orientation changes, good results have been obtained.
It shows that 2-D compaction based on a suitable data structure is a general and powerful
approach for resolving overlaps in all phases of the placement process.

40

Chapter 3
Area Routing with Hierarchical Rip-up and

Reroute

3.1 The Area Routing Problem

Routing is an important task in the synthesis of VLSI layouts. Traditionally, the routing
problem has been divided into subproblems with special restrictions, such as channel routing
[HS71] [RF82] [RSVS85] and switch-box routing [BP83] [Luk85]. However, newer
manufacturing technologies provide more interconnect layers and allow the routing tasks to
be completed in smaller regions. To take full advantage of these additional layers, the router
has to be able to route over the cells. With such porous components, the traditional channel
and switch-box routing techniques become insufficient because the pins and obstacles may
be distributed throughout the routing region with essentially no restrictions. Such a routing
problem is usually referred to as a general area-routing problem.

The area routing problem has originally been solved with the maze routing algorithm
[Lee61] orits variations [Hig69] [Rub74]. These maze-routing-based approaches have two
major problems. First, they are time-consuming and require a large amount of memory.
Secondly, because the nets are routed one at a time, the nets routed later may be blocked by
the nets routed earlier, and the router usually cannot complete the routing.

To speed up the routing process, a number of hierarchical routing approaches have
been introduced. The most common form is using a two-level hierarchy - global routing
and detailed routing. To further speed up the routing, multi-level hierarchies can be
established by partitioning the routing region recursively [BP83] [Lau87] [LHT90]. Hierar-
chical routing is a divide-and-conquer approach, which works best when the subproblems
are independent. However, such a clean partition is difficult to obtain when nets are crossing
the boundaries between partitions, and various heuristics have to be introduced to deal with
the interface between subproblems at the same level. In addition, hierarchical routing
approaches also usually suffer from arbitrary decisions made at higher levels, which are
usually based on some estimates and may turn out to be unfavorable at lower levels. In such
situations, the router usually cannot complete the routing within the limited search space at
lower levels.

The most important goal of any routing tool should be to complete as many nets as
possible. To achieve this goal, a traditional approach is to rip up some routed nets to create

41

3.1 The Area Routing Problem

space for the blocked nets and then to reroute the broken nets latter; this is called the rip-up
and reroute process. This is a difficult and expensive process because there are usually
many possible rip-up and reroute sequences to be tried out. As shown inFig. 3.1, a blocked
net may have many possible paths. For each possible path, there may be several nets
blocking the path. Some of these blocking nets can be rerouted easily but some of them
may not. Testing each rerouting possibility in a recursive manner can lead to a very large
search space very quickly. When a slow maze-router is used to explore all the possible
paths, this process becomes extremely time-consuming.

B D E
Bp-1Bp-2
AT . oo
A B T <
o 1< VBP2L
. . . _-— ®
. R Ap2 D
: . E o
¢ E G Apa < F
— Gl . G
S A
Ap-1 Ap-2 Ap-a

(@) (b)

Fig. 3.1 (a) The blocked net A may have many possible paths - Ap-1, Ap-2,
..., Ap-a. For each path, the nets blocking the path (e.g. B, C for Ap-1)
have to be tested for rerouting. (b) The search tree for finding a feasible
rerouting sequence can grow very fast.

To speed up the rip-up and reroute process, the router must reduce the possible paths
tried for each net and/or use fast rerouting operations to test the nets blocking the paths. In
[Shi87], good results were obtained by using a two-level search with fast modification-based
rerouting algorithms. In [TS88], by extending the modification-based rerouting primitives
into a more general form and conducting searches with more levels, the router can solve
more difficult problems. However, all these rerouting operations can only work reasonably
well in a small region on the detailed routing grid.

For large routing problems, a hierarchical approach can complete most of the nets very
quickly. For the remaining blocked nets, rip-up and reroute algorithms may be used in small
local regions on the detailed-routing grid. If no solution can be found in these local regions,
the router has to expand the search regions, and the speed of the router may then slow down
very quickly. This process usually becomes the bottleneck of the whole routing process.

42

3.1 The Area Routing Problem

In principle, the hierarchical routing approach can also be used to speed up the rip-up
and reroute process. To conduct rip-up and reroute in a hierarchical way means that the
router has to be able to move up to higher levels with coarser grids to conduct “rip-up and
reroute” when it gets stuck at lower levels. In such a bottom-up backtracking process, the
router has to address the interface problem between the data structures and algorithms of
the different levels. This problem, combined with the original interface problem between
subproblems at the same level, makes hierarchical rip-up and reroute a difficult and complex
process. Therefore, most hierarchical approaches are designed only as fast, top-down
construction processes.

In [IBSV89], a hierarchical router is proposed that can automatically enlarge the search
region for the rip-up and reroute process when the router gets stuck at any level. However,
this recovering process can be quite expensive when it is initiated at lower levels with very
fine routing grids.

In [LHT90], a hierarchical router is proposed that can move up and down in the hierarchy
by mapping wiring data between a set of two-dimensional maps with different grid sizes.
However, the approach is designed primarily for speeding up the maze-search and does not
show advantages in speeding up the rip-up and reroute process.

In [Lee90], several approaches have been proposed to conduct rip-up and reroute under
a fixed routing hierarchy with pseudo-pins on the cut boundaries. The proposed approaches
address the problem caused by excessive nets passing through congested partitions. How-
ever, there is still no clear solution for the problem caused by poor pseudo-pin assignment
on the cut boundaries.

In [TS88], some form of global routing that extracts congestion information from the
detailed routing result is used to speed up the rip-up and reroute process. However, the
capability of the global router is limited and the router can efficiently handle only medium-
size problems with up to a few hundred grid lines.

This chapter introduces a new area routing approach that can complete large routing
tasks efficiently by using a hierarchical approach to speed up the rip-up and reroute process.
By building a multi-level hierarchy with only a small number of grids at each level, the
number of possible paths for each net can be limited, and all alternatives can be evaluated
quickly. Therefore, the search for good rip-up and reroute sequences can be achieved
reasonably fast. A unified routing database, shared by all levels, allows the router to move
between levels easily. To make the interaction between different levels effective, a special
data structure has been developed for the exchange of congestion information between
levels.

Section 3.2 describes the multi-level routing hierarchy and its underlying data structure.
Section 3.3 then describes the routing algorithms used in various phases, the overall routing

43

3.2 Routing Hierarchy and Data Structure

algorithm, as well as the congestion data structure. Finally, Section 3.4 presents some
performance measures on actual routing problems.

3.2 Routing Hierarchy and Data Structure

This section first introduces the grid-based wiring model used by the router and also
shows how the grid space is partitioned to construct the routing hierarchy. Then it presents
the underlying data structures that allow the router to move easily between different levels

of the hierarchy.

3.2.1 The Wiring Model

Automatic routers create wires and vias to implement nets. To ensure that these wires and
vias can be manufactured on a real chip, some spacing rules between these elements have
to be satisfied. Based on these spacing rules, there are two common wiring models - gridless
and grid-based (Fig. 3.2). The gridless approaches allow wires and vias to be put anywhere
in the layout as long as there are no spacing-rule violations. The grid-based approaches first
create a grid with sufficient separations between grid lines and then put wires and vias only
on the grid lines. Theoretically, the gridless approach can find a solution in a smaller space.
However, the gridless approaches are normally much slower than the grid-based approaches
because of the complexity of checking the spacing rules while searching for feasible paths.
Therefore, most practical routers are grid-based, and so is the router presented in the chapter.
To minimize the space between the wires generated by a grid-based router, layout compac-
tion techniques [HP79] may be employed.

XX
>

(b)
Fig. 3.2 (a) Gridless routing and (b) grid-based routing.

For vias and wires, there are normally three types of spacing rules, wire-wire, wire-via,
and via-via. In most cases, the relations among these rules are:
R ULEwire-wire <RU. LEwire—via <R ULEvia—via-

3.2 Routing Hierarchy and Data Structure

Normally, the space between the grid lines is set equal to the wire-via rule so the spacing
rules can be satisfied in most situations. If the via-via rule is greater than the via-wire rule,
the router can either avoid putting vias in adjacent grid points or ignore these rules at all,
leaving the problem to the following compaction phases. For the router presented in this
chapter, the latter approach is adopted to simplify the routing problem.

In accordance with the above grid model, the router assumes all the input geometries,
including pins, wires, obstacles, etc., are on a predefined grid. This grid is normally referred
to as the detailed routing grid, to be distinguished from the grid formed by the cut-lines
created in the global routing phase. The router creates wires and vias only on the grid lines,
which are also called the detailed routing tracks, or simply routing tracks. Each wire
segment, or simply wire, occupies a portion of a routing track. Wires or vias from different
nets cannot share the same portion a routing track on the same layer. At the global routing
level, the router measures the routability based on the number of free tracks. A routing track
is free if the portion being considered is not occupied by any wires or obstacles.

3.2.2 Partitioning Scheme

There are two basic methods to partition a rectangular routing region recursively - two-way
partitioning and four-way partitioning (Fig. 3.3).

(@) (b)
Fig. 3.3 (a) 4-way partitioning and (b) 2-way partitioning. The thick lines are
the highest-level cut lines and the thin lines are next level down. The points
and dotted curves show nets crossing the highest-level cut lines.

As shown in Fig. 3.3, nets that cross the highest-level cut lines have to be processed again
at the next level down. Without breaking these nets, the subproblems cannot be processed
independently and the hierarchical routing may become fairly complex and inefficient. A
common approach to building a clean hierarchy is to create pseudo-pins on the cut lines to
break the nets into several parts that can be processed independently. However, it is difficult
to find good pin assignments that make all subproblems easy to route, and it is even more
difficult torecover from a bad pin assignment made at high levels. Furthermore, pseudo-pins
usually fracture long nets that cross many partitions into several segments linked by
undesirable jogs. In [Lau87], a linear-assignment algorithm is used to find an optimal pin
assignment for a special cost function. However, the cost function is based mainly on wire

45

3.2 Routing Hierarchy and Data Structure

length and does not take into account important internal congestion information for each
partition.

In [BP83], a “N to 2 X N’ partitioning scheme was proposed. This is essentially a
two-way partitioning scheme in which all the subproblems on the same horizontal or vertical
slices are groupedtogether to be processed simultaneously (Fig. 3.4). Under such a grouping
scheme, no pseudo-pins are required. Furthermore, long nets crossing multiple subproblems
won’t be broken into many segments by the pseudo-pins and can be processed with a global

view.

Vertical Grouping Horizontal Grouping
|

—

I
|
1
j

(a) (b) (€ (d)

Fig. 3.4 The partitioning scheme. (a) First vertical cut with a horizontal wire.
(b) First horizontal cut. (c) Vertical cuts with vertical grouping. (d) Horizontal
cuts with horizontal grouping. In these figures, the thickest lines represent
wires; the medium thick lines indicate latest cuts; and the thin lines represent
cuts made at higher levels.

In comparison with the clean partitioning scheme based on pseudo-pins, this grouping
approach may get slower at lower levels because the 2 x N routing region may have a fairly
large N. However, this is justified by the advantage to have a global view in processing long
nets crossing many partitions. To minimize the interface problems between partitioned
regions, this partitioning scheme is adapted to build a multi-level hierarchy. In the resulting
routing hierarchy, the levels are characterized by two numbers, (horizontal-level, vertical-

level). At level (h,v), the partitioned regions cover exactly 2" vertical grid lines and 2¥
horizontal grid lines except those at the right and upper boundaries of the routing region,
which may cover a smaller area. To move from level (h,v) down to (h—1,v), the router makes
horizontal cuts at distances from the bottom equal to 2P nx 2% n=0,1,.... Similarly, to
move from level (h,v) down to (h,v—1), the router makes vertical cuts at distances from the

left boundary equal to 2" 4+n x 2", n=0,1,... . The router always tries to cut partitions on
the direction with the larger dimension. For example, if A2v at level (h,v), the router will
make horizontal cuts to move to level (A—1,v); otherwise, the router will make vertical cuts
to move to level (h,»-1).

46

3.2 Routing Hierarchy and Data Structure

This partitioning method chooses cut-lines differently from other hierarchical ap-
proaches, which normally make the first cut at the center the routing region. By making the
cuts at the positions that are powers of 2, uneven partitions may be created at upper and righ
edges of the routing region Basically, there is no significant difference between these two
approaches except that uneven partitions may introduce more errors in estimating the wire
lengths. On the positive side, this partitioning method allows the router to derive quickly
the routing hierarchy, i.e. the partitioning boundaries, without creating additional data
structures to store partitioning information. This is very important so that the router can
move efficiently between different levels during the rip-up and reroute process.

;lllllllllllll 1 :llllll llllllll
() | (b)

Fig. 3.5 (a) Making cuts at the positions that are powers of 2; and (b) making
cuts to produce even partitions.

In [Lee90], some intelligent cut-path selection algorithms are proposed to create
partitions that are easier to route. However, these algorithms create irregular partitions with
zig-zag cut paths. These irregular partitions make it much more expensive to determine the
enclosing partitions of arbitrary wires or obstacles. Because our router tries to resolve the
congestion by moving between different levels of the hierarchy and by changing the
hierarchy dynamically, straight cut-paths are used to simplify the computation.

Our recursive partitioning process measures routability based on the number of nets and
free tracks crossing the cut lines. This measure works reasonably well when the number of
free tracks is much greater than 1. However, as the partitioned regions become smaller, this
measure becomes less precise and the routing algorithm becomes ineffective. Therefore, this
recursive partitioning scheme, which is called global routing, normally stops at level (3,3).
Then a detailed router takes over, working directly on the detailed routing grid with an
explicit and exact measurement of routability, i.e. “can the wiring be completed without any
conflicts”.

When the global routing process stops, the whole routing region is partitioned into a
2-D array of global routing cells (Fig. 3.6) and wires are assigned to regions covered by one
or several cells. In most traditional approaches, these subregions are routed one at a time by
a detailed router with pseudo-pins created on the boundaries between the subregions, but
this assignment of pseudo-pins is difficult. Inspired by the grouping strategy used in global
routing, the use of pseudo-pins is avoided by grouping the detailed routing regions dynami-

47

3.2 Routing Hierarchy and Data Structure

cally while ignoring the partitioning boundaries created by the global routing algorithm.
For each wire segment generated by the global routing algorithm, the detailed router first
assigns the whole segment to a single detailed routing track in the partitions traversed by
the segment. This assignment does not take into account conflicts caused by overlapping
wires. To resolve these conflicts, the detailed router then tries to reroute each involved wire
segment in a dynamically selected rectangular region surrounding the wire segment (Fig.
3.6). With such a grouping scheme, there is no need to break wires with pseudo-pins.

!—|__.| o global routing cell

.—---l\h
\N
— 1 — ~

~
——|——--iJ —T — Regions for detailed

o

— 04— rerouting operations

Fig.3.6 Dynamic grouping for the detailed routing.

3.2.3 Data Structure

A key idea of our routing algorithm is to move among coarser and finer levels to
complete the routing task with efficient rip-up and reroute operations at different levels of
abstraction. It is very important for the router to transform data between these different
levels with as little overhead as possible. To preserve the data of each level separately is
not feasible because it would require too much memory and management overhead to
maintain the consistency of the whole database. Instead, a unified database has been
developed to be shared by all the levels. To make such sharing possible, all wiring
information is stored in a form compatible with the final detailed wiring description. For
higher-level routing, the data corresponding to the coarser-grid is extracted and abstracted
on the fly.

The primary elements of the routing database are wire segments that are either horizontal
or vertical. Every wire segment is assigned to a horizontal or vertical detailed routing track.
To speed up the search for wires in a certain region, one or more doubly-linked lists are
formed for the wires on the same line. Each linked list contains a set of wires without
overlaps so they can be sorted based on their positions. For a final legal layout, each detailed
routing track needs exactly one such linked list for each interconnect layer. For the
intermediate results with conflicts, each track may need several linked lists for one layer.
In practice, because the router distributes wires evenly in the routing region, the wiring
density won’t get so uneven that one track has to carry a large number of linked lists.

48

3.2 Routing Hierarchy and Data Structure

In our implementation, wires of different layers can be stored in the same linked list.
This is because the wires of a particular layer run predominantly in the same direction and
each track usually requires no more than N/2 linked lists for a legal routing result of an
N-layer problem. By mixing wires of different layers together, the number of linked lists
on each track can be even lower, especially in regions with low wiring density.

With the sorted wire lists, the key mechanism to speed up the data access is a cache
pointer associated with each sorted list that points to the wire that is just accessed. Because
the router works on the routing region in a proper order, e.g. from left to right, most search
regions are very close to the previous search regions. Therefore, only a few wires need to
be checked if the search starts from the current cache pointers. Fig. 3.7 shows the structure
of the linked list.

ANNEENEEEEEEEEEEEEEENEEEEEE
v

vertical line

LTI TTTITTTT]
45

. horizontal line =
‘})ointer to previouly-accessed wire

CITTTITTTPTTTIT

Flg. 3.7 The data structure for wires.

With such a data structure, we can find all the wires ina 2 x N strip for the global routing
task quickly and build a proper map for the 2 x N routing. However, representing global
routing data on detailed routing tracks introduces a new problem - the same data abstraction
must be obtained for both the top-down and bottom-up processes.

In the top-down process, the global routing algorithm looks at a very coarse grid and
creates only one wire to connect two elements lying in the same row or column in the
2 x N strip. These two elements may be on different detailed routing tracks. To connect

49

3.3 Routing Algorithms

two such elements, a stretched link is created to maintain connectivity. The number and
length of these stretched links are minimized by simple heuristics which choose a suitable
track passing through one of the elements to be connected (Fig. 3.8). In the bottom-up
process, most of the nets are implemented with many wires and some of them may not touch
any of the higher-level cut-lines. In conducting the higher level routing, the wires not
touching cut-lines are ignored so the data abstraction will be the same as that in the top-down
process. In our implementation, the global routing algorithm carries out all these transfor-
mations automatically without creating a new data structure to store temporary routing
results.

¥
<" L

Stretched Links Global Routing View Detailed Routing Result
Fig. 3.8 The use of stretched links.

With this unified data structure, no extra transformation is needed to map the global
routing results to a form that can be used by the detailed routing. The detailed router only
has to convert all the stretched links into actual wires before it starts.

3.3 Routing Algorithms

The router uses three basic routing algorithms to complete the task, the global construc-
tion algorithm, the global rerouting algorithm, and the detailed rerouting algorithm. For a
given routing problem, the router partitions the region with alternating horizontal and
vertical cuts. When the router partitions a region of N cells into 2 X N cells, the global
construction algorithm builds an initial solution with near-optimal wire length. In such a
strip of 2 x N cells, each edge (i.e. the boundary between the cells) has a capacity measure
that is the number of free detailed routing tracks crossing it. The global construction
algorithm ignores these capacity constraints, but the global rerouting algorithm then tries
to rearrange the wires so that there is no overloaded edge whose capacity is lower than the
number of wires crossing it.

If the global rerouting algorithm fails to resolve all the overloaded edges, the router
backtracks to higher levels, using the global rerouting algorithm to ease the congestion.
After these congestion problems have been resolved, the router re-enters the top-down
process. When this top-down process reaches level (3,3) successfully, the detailed rerouting

50

3.3 Routing Algorithms

algorithm takes over to try to assign every wire to a conflict-free detailed routing track. The
router will backtrack to higher levels if the detailed rerouting algorithm cannot resolve all
the conflicts. The overall algorithm of the router is outlined in Fig. 3.9

Level (N,M) Level (3,3) Level (0,0)
______ 1 —————— (Detailed Level)
| (#1) global | | (#1) global |
| construction | ® ® | construction |

(#2) global (#2) global —p] (#3)detailed
rerouting *ooe rerouting rerouting

€= p,ckiracking

Fig.3.9 The use of the three routing algorithms in completing a routing task.

These three algorithms as well as the overall control strategy will be explained in detail
in the following sections. Without loss of generality, the global construction algorithm and
the global rerouting algorithm will be explained in the context of a horizontal 2 X N strip
with a horizontal cut-line.

3.3.1 Global Construction Algorithm

When a horizontal strip of N cells is partitioned into 2 x N cells, the router first assigns
all the pins and vertical wires into one or both of the horizontal slices based on their absolute
y-positions. Then a pattern router replaces each horizontal wire segment crossing several
cells by one or more new horizontal segments assigned to one of the two slices and by the
necessary vertical segments to keep the net connected (Fig. 3.10). The pattern router tries
to minimize the number of additional vertical wire segments crossing the cut line while
ignoring the capacity constraints on the edges between the cells.

LF' -
4
. !
o g i

Fig.3.10 Partitioning a horizontal 1 x N strip into a 2 x N strip.

51

3.3 Routing Algorithms

For each horizontal wire segment, the pins and vertical segments to be connected may
appear in a column in three possible constellations: in the lower cell only, in the upper cell
only, or in both cells (Fig. 3.10). Among the 3 x 3 possible cases of connecting elements
(pins and wires) in adjacent occupied columns, six have only one minimum-cost solution
(Fig. 3.11(a)). For the other three cases, the two possible solutions have the same number
of vertical wire segments, and the connecting wires are labeled as switchable (Fig. 3.11(b)).
For a multiple-pin net, adjacent switchable segments are grouped into a long segment to be
considered simultaneously. This long segment will be assigned to the lower (upper) slice
if there are more elements in the lower (upper) slice to be connected (Fig. 3.11(c)). If there
are an equal number of pins in the lower and upper slices, the segment will be assigned
randomly to one of the two positions.

i P e
=T] R

(@)

(b)

|
(©)

Fig.3.11 (a) The six cases with one minimum-cost solution. (b) The three

cases with switchable wire segments. (c) Four adjacent switchable segments

are grouped into one segment and assigned to the lower slice because there
is one more pin in the lower slice.

3.3.2 Global Rerouting Algorithm

The initial solution constructed by the pattern router may have many overloaded edges.
The rerouting algorithm tries to reduce the number of overloaded edges with two connec-
tivity-preserving rerouting routines: wire-push and maze-routing. The wire-push operation
moves a horizontal wire segment from one slice to the other in the 2 x N strip (Fig. 3.12(a)),
creating jogs only at columns that contain elements (pins or wires) connected to this net. To
create a path with arbitrary jogs, a simple maze-router optimized for the 2 X N search space
is used(Fig. 3.12(b)).

52

3.3 Routing Algorithms

overloaded edge

. i

= - |

2 { 1]
(a) (b)

Fig.3.12 Rerouting operations in 2 x Nstrips: (a) wire-push (b) maze-routing.

To reduce the number of overloaded edges, the wire-push and maze-routing operations
are selected with a greedy strategy based on the cost of a path. The overall rerouting
algorithm can be outlined in the following C-like pseudo-code:

For_all_overloaded_edge (E) {
do {
For_all_wires_crossing_edge_E (w);
evaluate_push_cost (w);
}

w = wire_with_minimum_push_cost;
C = push_cost_of (w);
if(C<0){

push_wire (w);

}
} while (C< 0 && edge_is_overloaded (E);
if (edge_is_overloaded (E) {
For_all_wire_crossing_edge_E (w) {
if (try_maze_routing(w) == OK) {
if (! edge_is_overloaded (E) {
break;
}
}
}
}

In this process, the procedure evaluate_push_cost computes the difference between the
configuration costs of the two possible positions. The configuration cost for a net is
computed based on the following formula:

Configuration_Cost = Z cost_on_edge (e) ;
e

53

3.3 Routing Algorithms

where
2 : all edges touched by wires of the net;
(-4
cost_on_edge(e) = % estimated_length(e) + congestion_measure(e) ;
estimated_length(e) = distance between the centers of the two regions
separated by the edge;
h = % (perimeter of the routing region);
congestion_measure(e) =1 if e is overloaded when the net is implemented ;
=0 otherwise.

This cost function consists of two parts, wire length cost and congestion measure. The wire
length cost is scaled so that it is always less than the congestion measure if the edge is
overloaded. The congestion measure is determined by whether the edge is overloaded or
not instead of by the difference between the number of crossing wires and the capacity of
the edge. Such a measure can prevent the router from simply re-distributing the congestion
without finding a feasible solution free of overloaded edges. For example, if edge A is
overloaded with one wire and edge B is overloaded with five wires, moving two wires from
edge B to edge A can distribute the congestion evenly but won’t solve the problems. With
the binary-valued congestion measure, a net crossing edge A or edge B has the same
configuration cost so no wires will be moved from edge B to edge A. Instead, other moves
will be tried or backtracking will be initiated to solve the problem.

Based on such a congestion measure, minimizing the total configuration costs of all nets
can minimize the number of overloaded edges. This rerouting process repeats until no edge
is overloaded or no other advantageous moves can be found. If some edges are still
overloaded, backtracking to the next higher level is initiated with proper congestion
information passed along.

In the bottom-up backtracking process, this cost function is modified slightly to take
into account the congestion information passed from the lower level routing. The modifica-
tion will be explained in more detail later.

3.3.3 Detailed Rerouting Algorithm

The global construction and rerouting algorithms put all the wires on the detailed routing
grid while using some stretched links to maintain connectivity. Because wires are assigned
to the grid lines with simple heuristics, there are usually many conflicts caused by wires
competing for the same track or by wires routed over obstacles. The detailed router first

54

3.3 Routing Algorithms

replaces all the stretched links with explicit wires and vias, using just one wire or two wires
forming an L-shape for each stretched link. Then it tries to resolve the conflicts with two
rerouting operations: wire-push and maze-routing. These two operations are essentially the
same as those used in the global rerouting algorithm, except that these two operations work
in a rectangular region on the detailed routing grid rather than on a 2 X N strip. These
operations are also similar to those used in [TS88] and are illustrated in Fig. 3.13.

(b)

Fig.3.13 Rerouting primitives for detailed routing: (a) wire-push (b) maze-
routing. The patterns of the wire segments are used to distinguish different
nets but not different layers. Normally, different layers are used for wires in
different orientations.

Similar to the global rerouting algorithm, the detailed rerouting algorithm tries to reduce
the number of conflicts by selecting rerouting operations based on a greedy strategy. The
greedy algorithm can be described in the following C-like pseudo code:

For_all_conflicts (w1, w2){
evaluate_push_cost (w1);
evaluate_push_cost (w2);
w=wire_with_minimum_push_cost;
C = push_cost_of (w),
if (C<0){

push_wire (w);
} else {
if (try_maze_route (w1) == FAIL) {
try_maze_route (w2) ;
}
}
}

55

3.3 Routing Algorithms

In this procedure, w1 and w2 are normally two wires created by the router. Sometimes one
of them may be a fixed obstacle, then only the actual wire will be tried for rerouting
operations. The procedure evaluate_push_cost evaluates the neighboring 16 detailed
routing tracks, eight on each side, of the wire under consideration. This range is set because
the global routing stops at level (3,3) and leaves partitions with eight grid lines on each side.
For each of the 16 possible positions, the cost is computed based on the following formula:

push_costiw,p) = 2 conflict_cost(w,0) ;
o
where
2 : for every obstacle o on position p;
o
conflict_costiw,0) =h if o 1s fixed obstacle;
= length(o) + history_cost(0) otherwise;
history_cost(0) = push_count(o) * 1—’:)- :
h = i— (perimeter of the routing region) ;

In computing the push-cost, the conflict cost is primarily an indicator for the difficulty
of rerouting the wire that causes the conflict. For wires created by the router, the conflict
cost is computed based on the length of the wire, because longer wires are usually more
difficult to reroute. Fixed obstacles cannot be rerouted, thus they are assigned a cost higher
than most movable wires.

This greedy rerouting algorithm works like a depth-first search algorithm, trying to find
a sequence of moves toresolve each conflict. To prevent the rerouting process from working
on a few short wires repeatedly, every wire carries a push-count, which is increased by one
whenever the wire is pushed. Wires with higher push-counts will be less likely to be pushed
again because it is more expensive to have conflicts with these wires. The weight of this
history cost is set to make a wire look like a fixed obstacle if the wire has been pushed several
times. The value 10 has been chosen based on some simple experiments. With this
push-count, the greedy algorithm can find a very long sequence of moves without getting
trapped into a loop. However, it is usually very expensive to accumulate many local moves
to resolve a conflict. Therefore, the router only tries to find a rerouting sequence of four
moves for each conflict. That is, after the router works on all conflicts for four times, the
router backtracks to higher levels and uses the global rerouting algorithm to make more
dramatic changes.

56

3.3 Routing Algorithms
3.3.4 Control Strategy and Congestion Data Structure

With the three basic routing algorithms, the following C-like pseudo-code outlines how
the router selects the cut orientation and moves from one level to another:

ori = horizontal ;
ori2 = vertical ;
mode[ori] = top_down;
mode[ori2] = top_down;
level [horizontal] = logz (horizontal_size) + 1 ;
level[vertical] = logz (vertical_size) + 1 ;
again: .
while (level[ori] >= detailed_level && level[ori2] >= detailed_level) {
if (level[ori] > level[ori2]) {
change_ori = YES;
} else if (mode[ori2] == bottom_up && mode[ori] == top_down) {
change_ori = YES;
} else {
change_ori= NO;

if (change_ori) swap_integer (&ori, &ori2) ;
if (mode[ori] == bottom_up) {
if (! change_ori) level[ori] ++ ;
} else {
level[ori] --;
}
route_nx2 (ori, shift_NO);
if (check_congestion(ori) == FAIL) {
route_nx2 (ori, shift_YES) ;

}
if (check_congestion (ori) == FAIL) {
mode[ori} = bottom_up ;
}else {
modef[ori] = top_down ;
}
if (check_congestion (ori2) == FAIL) {
mode]ori] = bottom_up ;
}
}
detail_route();
if (check_congestion (horizontal) == FAIL) {
model[horizontal] = bottom_up ;
} if (check_congestion (vertical) == FAIL) {
mode|vertical] = bottom_up ;

if (mode[vertical] == bottom_up || mode[horizontal] == bottom_up)
goto again;

57

3.3 Routing Algorithms

In this procedure, the variable ori determines the cut orientation. Let 4 = level[horizontal]
and v = level[vertical], the procedure route_nx2(horizontal, shift_ NO) makes horizontal

cuts at 2740 x 2% 1=0,1,...., to move from level (h+1,v) to level (h,v). When it is called

as route_nx2(horizontal, shift_YES), it makes horizontal cuts at n X 21 =01,

This is equivalent to shifting the 2 x N routing frame by half of the size of the original
partitions to break the artificial boundaries created by higher-level cut lines.

The first time a slice is cut, the global construction algorithm is called first, followed by
the global rerouting algorithm. Afterwards, only the rerouting algorithm is used. If the
rerouting algorithm cannot resolve congestion in the horizontal (vertical) direction, the
router increases the horizontal (vertical) level so it can search in a larger region without
increasing the complexity. Fig. 3.14 shows an example of the change of levels in routing a
macro-cell example.

9 m horizontal level
: O vertical level
6+

514

44

34

24

14

0+

time

Fig. 3.14 The change of the levels in routing a macro-cell example. To make
the picture more informative, the level of the cut-orientation is increased by
0.5. For example, level (3.5, 3) means that the router is moving from level
(4,3) to level (3,3). The detailed routing takes place when the level is (0,0).

To record the congestion information, congestion elements are created, which serve as
the main mechanism for congestion information exchange between levels. When the global
rerouting algorithm fails to resolve an overloaded edge, it creates congestion elements to
cover the overloaded edge. If a vertical (horizontal) edge with capacity C in a 2 X N map
has W horizontal (vertical) wire segments passing through (W > C) , a horizontal (vertical)
congestion element is created with an overload count (W-C). The congestion element is
labeled as active initially. After W—C wires are moved away from the congestion element,
the congestion element is then labeled as passive. Similarly, when the detailed rerouting

58

3.3 Routing Algorithms

algorithm fails to resolve a conflict between two elements on a detailed routing track, a
corresponding congestion element is created to cover the section of the track on which they
overlap (Fig. 3.15). The overload count for such a congestion element is 1. If more than
two elements occupy the same section of a track, a congestion element will be generated for
each pair of elements.

~

(c) (d)

Fig.3.15 (a) Two vertical congestion elements are created to cover over-
loaded edges; and (b) they change the congestion measure of the edges at
next higher level. (c) One vertical congestion element is created to cover two
overlapping vertical edges; and (d) it changes the congestion measure in
global routing.

With these congestion elements, the procedure check_congestion simply checks the
presence of congestion elements. If there are active congestion elements in the direction
under consideration, the procedure returns the value FAIL and will cause the router to shift
the 2 X N routing frame or enter the bottom_up mode. When the router moves up to higher
levels, these congestion elements change the congestion measure (see page 54) of the edges
touching them (Fig. 3.15). The congestion measure in computing the configuration cost for
a net is modified according to the following formula:

congestion_measure(e) = 1 if e is overloaded when the net is implemented, or
there are active congestion elements on e;
= 1.5 if there are passive congestion elements on e
that once caused wires of the net to move;

=0 otherwise.

This new cost function treats edges with active congestion elements as overloaded edges
even though they may not be overloaded. Therefore, wires will be moved away from these

59

3.3 Routing Algorithms

congestion elements, which will then be labeled as passive. After the move, the edge will
not have any active congestion elements and wires may move back to the edge. To prevent
the router from moving wires back to their original positions, each congestion element
records the nets that are pushed away because of its presence and generates a high congestion
cost (1.5) when the router tries to push back any wires of the recorded nets. Fig. 3.16 shows
how the congestion elements are used in a backtacking process. These passive congestion
elements are removed when the router starts the detailed rerouting algorithm which does not
use any information from these congestion elements at all.

60

3.4 Results

(a)

(c)

Nx2 arid active congestion element
g — Passive congestion element

wire segment

Fig.3.16 The use of congestion elements in backtracking. (a) 2 x N routing
with horizontal cuts. Two vertical congestion elements are created. (b)
Backtracking to the previous level with vertical cuts. One congestion ele-
ment is resolved by pushing wire segment C away. (c) Backtracking to next
higher level. No edge is overloaded at this level. The congestion element
causes wire segment B to be pushed away. (d) More rerouting operations
atthe same level. Wire segment D can be pushed to the left but wire segment
B won't because the passive congestion element causes the move of B. The
vertical wire segments in these figures should be connected by horizontal
wire segments, which are not shown here for simplicity.

3.4 Results

The main application targets of this router are large area routing problems. However,
very few results have been published for this kind of problems and there are no well-estab-
lished benchmarks. Therefore, a series of synthetic area routing problems have been created
with randomly generated net lists. These random problems are made to be reasonable close

61

3.4 Results

to the routing problems in actual large gate array designs. First, a set of small cells of the
same size (twelve by six tracks) are created. For each problem, a 2-D array of cells is formed
from these small cells and a list of nets is generated to connect pins of these small cells.
Among the generated nets, most of them contain only two pins, while only a few nets contain
more than ten pins. In addition, pins of the same nets are usually kept close to each other
as would be the case in most well-placed layouts.

Animportantissue in benchmarking the routers is the difficulty of the routing examples.
This is especially important when the rip-up and reroute process is involved, As a rough
estimate, these randomly generated routing problems are characterized by their average and
maximum cut-densities. The cut-density is defined, for each cut line crossing the whole
routing region, as the percentage of occupied tracks on the cutline. To make these examples
of approximately equal difficulty, the maximum cut density for each problem is adjusted to
be about the same by inserting additional space between rows or columns of cells. This
additional space is distributed into channels between rows and columns based on a simple
estimate of the local congestion. Table 3.1 shows the characteristics of these random
examples with the cut densities measured from the actual routing results from our router.
Fig. 3.17(a) shows the layout of one of the examples.

Table 3.2 summarizes the results on these routing problems generated by our multi-level
hierarchical router, and Fig. 3.17(b) shows one of the resulting layouts. Table 3.2 also shows
the results obtained by two other area routers, MIGHTY [Shi87], a detailed router designed
for small-sized problem, and CODAR [TS88], a detailed router with some global routing
capability. Because MIGHTY cannot handle large routing problems, many medium-size
problems have been generated for MIGHTY and the example "r13" is the largest one that
MIGHTY can complete.

62

3.4 Results

Cut-Density (Routed)
horizontal vertical

Name Area #Nets | average | maximum | average | maximum
r5 60x60 62 56 72 52 82
r10 138x130 232 62 77 49 72
rl3 203x209 409 53 66 43 60
r20 338x240 822 54 68 45 64
r30 595x360 1878 53 68 43 60
r40 854x480 3327 54 69 43 62
50 1129x600 5189 54 69 44 62
r60 1532x720 7453 53 65 43 61

Table 3.1 Characteristics of the randomly generated area routing problems.

The cut-density is measured in percentage points from actual routing results

generated by our multi-level hierarchical router.

Mighty Codar M-L Hier. Router
CPU wire CPU wire CPU wire #
Name time length time length time length | iterations
5 18.3 2609 44 2648 3.6 2692 1
rl0 268.6 14072 247 14490 17.1 14830 1
rl13 1044.8 29049 45.8 29713 28.1 30493 1
r20 fails - 1519 61373 90.1 61924 2
r30 fails - 585.5 | 164246 247.8 | 163673 2
r40 fails - 1639.3 | 325086 631.8 | 324238 2
r50 fails - 3896.3 |543116 | 1353.2 | 545322 2
r60 fails - 9054.8 | 877170 | 2503.8 | 883513 2
Table 3.2 Results on the randomly generated area-routing examples. The

wire-lengths are measured in units of the detailed routing grids. The CPU-
Our multti-level
hierarchical router (M-L Hier. Router) moves between global and detailed
routing algorithms and the "# iterations” is the number of complete global-

times are measured in seconds on a SUN SPARC-1.

detailed loops used to complete the routing task.

63

3.4 Results

)

a

(

-__rrr—_r___r___u-r_.rr_._r.r

TR Y PP YR 1D WY S

b)

(
Fig.3.17 (a) The area-routing problem r20. (b) The routing result.

64

3.5 Summary

Table 3.2 shows that our multi-level hierarchical router is faster than the other two on
these routing problems. For a clearer analysis of the complexity of these routing approaches,
Fig. 3.18 shows the CPU-time v.s. the total wire length for the three routers. Among the
three routers, MIGHTY is designed for small detailed routing problems, and these examples
are simply far beyond its original design goal. However, MIGHTY’s data is a good
approximation of the routing complexity without any hierarchical approach. With some
integrated global routing capability, CODAR can handle medium- to large-sized problems.
However, its two-level hierarchy is still not enough for large-sized problems and the
complexity is growing faster as the problems are getting larger. With the multi-level
hierarchy, the complexity of our router is still kept to be only slightly higher than linear
complexity, even for large routing problems.

10000
8000 |

. Mighty A

o Codar pid
7000 | %

s ML Hier. Router s
6000 | yZ

8000 |

5000 | ~

4000 | &
3000 | -~

2000 | A -

1000 | 4
0 ;é- : " . ; 4 :

0 100000 200000 300000 400000 500000 600000 700000 800000 900000

Fig.3.18 The CPU-time v.s. the wire length for area routing problems.

3.5 Summary

A new area-routing approach has been presented. The router combines hierarchical
routing with rip-up and reroute techniques, accomplishing most of the routing task with
modification-based rerouting operations at various levels of abstraction. Therefore, the
router can complete difficult routing problems. Because the routing region is partitioned
recursively into a multi-level hierarchy, the router runs efficiently with a very small search
space at each level. A unified data structure permits the router to switch easily between
levels, so that it can employ efficient rerouting operations at higher-levels to resolve
congestion. Considerable speed-up has been shown over other approaches to area routing.

65

Chapter 4
Integrated Placement and Routing

4.1 Routing and Placement Adjustment

In most placement and routing systems, the cells are first placed and then routed. Most
placement algorithms optimize the wire length and find a good placement that defines the
relative positions between cells. To enable the router to complete all the nets without any
conflicts, a placement adjustment phase is required to allocate enough space between cells.
The simplest placement adjustment approach is to move the cells based on the actual routing
result. This approach is normally used in the standard-cell designs because the wires are
restricted to the channels betweenrows of cells and the height of each channel can be adjusted
easily without disturbing the routing results of other channels. Usually, the channels are
routed one by one and the placement adjustment is in the vertical direction only.

The problem is much more difficult for macro-cell layouts when the routing channels
can be perpendicular to each other and the cells need to be moved in both horizontal and
vertical directions. Without a slicing structure, which is usually too restrictive and causes
too much wasted space, it is normally impossible to find a proper order of channels such
that the channels routed later can be adjusted without disturbing the channels routed earlier.
In [DAKS5], L-shaped channels are introduced to find such a linear order of the routing
channels. However, it is very difficult to adjust the L-shaped channels with only manhattan
wires [Che87]. Even though some algorithms have been proposed to minimize the number
of L-shaped channels [CW91], it is still difficult to eliminate all the L-shaped channels. The
problem becomes even more difficult when wires can go over the cells and no channel
structures can be defined. In such an area routing environment, it is normally impossible to
adjust the space between cells without disturbing the wiring generated earlier.

When it is difficult to adjust the placement based on the actual routing result as in the
macro-cell layouts or in an area-routing environment, a common approach is to allocate
routing space in advance then route the whole chip with cells in fixed positions. Usually,
the space is allocated based on some statistical analysis or rough routing results. However,
it is normally impossible to predict the space requirements precisely without actually
conducting the routing task. Allocating too little space, may cause the router to fail, and
requires that the whole chip be routed again with a new placement. To avoid this time-con-
suming process, most systems allocate excess space initially which usually results in larger
chips. Sometimes, enough routing space is allocated but it is not distributed properly,

66

4.1 Routing and Placement Adjustment

resulting in local congestion. This may force the router to detour some nets, thus increasing
the delay of certain signals.

Routing with fixed placements usually results in wasted space and/or conflicts in
congested areas. A typical remedy to avoid routing the whole problem again after adjusting
the placement is to use symbolic layout compaction [HP79] to obtain a dense layout while
resolving all the design-rule violations. This approach simplifies the placement adjustment
and routing problems but shifts the burden to the compactor. Unfortunately, it is usually
very difficult for the compactor to get a dense layout from a routing result generated with
too much routing space. As shown in Fig. 4.1, when there is plenty of routing space, the
router may produce two different types of results: some can be compacted into a very dense
layout with a simple 1-D compactor but others can not. To generate a dense layout from a
layout like Fig. 4.1(a), a sophisticated compactor that can change the relative positions of
elements is required. In [Hoj90], a layout modification phase that employs rerouting
techniques has been proposed as a pre-processing step of the compactor. However, such a
system has very high time complexity because it has to deal with gridless routing and
compaction at the same time. Thus it can only handle small problems effectively.

=1 L
‘ -
(@)
Fig.4.1 The routing result that is (a) difficult to compact and (b) easy to
compact in the vertical direction.

To avoid relying on a compactor to minimize the wasted space, a tight integration
between the placement adjustment and routing phases seems to be the only solution. A
straightforward integration would be to iterate between routing and placement adjustment
phases. Because routing is usually a very time-consuming process, it will be very expensive
to remove all the wires while adjusting the placement and then to route the whole problem
all over again. The only efficient approach would be to carry out both the routing and
placement adjustnent phases incrementally. Incremental modification of the routing is
essentially a rip-up and reroute process, which is usually also an expensive process. To
make such an integrated approach successful, the rip-up and reroute operations have to be
carried out efficiently and the placement adjustment phase also has to minimize the rip-up
and reroute operations required after the cells are moved. Yet another key issue of such an
integrated scheme is how to adjust the placement based on the routing results. It seems that

67

4.2 Basic Idea

these problems have not previously been studied in depth, and the author is not aware of
any existing system that uses such an integrated placement and routing approach.

The router introduced in the previous chapter is based on efficient rip-up and reroute
operations. These efficient rip-up and reroute operations have made such an integrated
placement and routing scheme feasible. Based on the router, a new placement adjustment
algorithm has been developed specifically to work with the router. By iterating between the
routing and placement adjustment phases, a dense layout can be achieved efficiently. The
basic ideas of this integrated approach will be highlighted in the next section, followed by
more detailed descriptions of the data structure and algorithms.

4.2 Basic Idea

The input to the integrated placement and routing system is assumed to be a legal
placement like those obtained by the algorithms shown in Chapter 2. That is, there are no
overlaps between cells but there is also no additional routing space allocated between cells.
With all the cells being movable, the goal is to implement all the nets without any conflicts
in the smallest area. As shown in the previous section, it is difficult to compact a sparse
routing result into a dense layout. Therefore, very little space will be allocated initially
between the cells to force the router to try to find the best possible solution in the minimum
amount of the space. Additional space is added only where it is necessary.

From a placement without enough routing space, the router first connects all the nets
while ignoring some of the congested regions and conflicts between nets. Then based on
the congestion measure derived from such an actual routing result, the placement is adjusted
by inserting space between the cells to ease the congestion. When the cells are moved during
this placement adjustment phase, wires will be dragged properly to maintain most of the
existing routing result. Then the router will try to complete all the nets again using the fast
rerouting operations. If the router still cannot complete the routing task, the placement can
be adjusted again. Such an adjustment-routing loop can be repeated until all the nets are
implemented without any conflicts.

The router used in such a loop is essentially the hierarchical area router introduced in
the previous chapter. However, some non-trivial modifications are required to allow the
router to work in different modes. Section 4.3 shows how the area router is enhanced. Then
Section 4.4 shows how the placement adjustment algorithm moves the cells based on the
routing results while moving and stretching wires to preserve most of the routing result.
Finally, the overall algorithm will be described and various experiment results will be
presented.

68

4.3 Area Routing

4.3 Area Routing

When the system iterates between the placement adjustment and routing phases, the area
router is used in two different modes. When the router is called the first time, very little
routing space is allocated between cells. In this situation, the router has to ignore the
congestion that can be resolved by the placement adjustment phase. It will be waste of time
for the router to try very hard to find a solution without any conflicts because additional
space can be added to ease the congestion. In fact, in most cases, it is impossible for the
router to complete the task without adjusting the placement. In the second situation after
the placement is adjusted based on the congestion analysis, the router has to try to minimize
the number of conflicts. However, the placement is still adjustable so the router can still
use the placement adjustment algorithm to fix some locally congested areas that are difficult

to route.

Based on this idea, the major enhancement required for the router is the routines for
evaluating the congestion situation. When the placement is adjustable, there are basically
two types of congestions: one type can be resolved by adding space between cells, but the
other can not. Basically, a congested region that falls between moveable cells can be
resolved by adjusting the placement while a region that is congested because it is totally
covered by a cell has to be resolved by the router.

As presented in Chapter 3, the hierarchical router works on a shared routing database
with three routing algorithms - global construction, global rerouting, and detailed rerouting
algorithms. These algorithms are presented as the tools for solving routing problems with
enough routing space allocated among the cells. It turns out that, to allow the router to
evaluate the congestion situation without trying to complete 100% of the nets, only the global
rerouting algorithm requires some enhancement. The global construction algorithm ignores
all the capacity constraints, and the detailed rerouting algorithm allows the presence of
conflicts, so these two algorithms don’t need any modifications at all.

As shown in Section 3.3.2, the global rerouting algorithm makes decisions based on a
configuration cost that is computed from the congestion measure of the edges of the 2 x N
routing frame. The congestion measure is derived from the number of free tracks and wires
passing through the edge under consideration. When the router is called with the option to
ignore the adjustable congested regions, the congestion measure of an edge will be zero if
the edge touches any space between movable cells. If the edge is completely covered by a
cell, the normal congestion measure will then be used. With such a differentiated congestion
measure, the edges touching the space that can be adjusted will never be treated as
overloaded. Congestion elements with proper overload counts are still created for these
edges, but these congestion elements will be marked differently and ignored during the

69

4.4 Placement Adjustment

routing process. These elements are used in the placement adjustment phase to figure out
the capacity requirements between the cells. Fig. 4.2 shows the two different types of edges
of the 2 x N routing frame in the global rerouting algorithm.

Fig. 4.2 Two different types of edges in the 2 x N routing frame. The conges-
tion on the bold edges (i.e. when the edges are overloaded) cannot be
resolved by placement adjustment. The congestion on the other edges can
be resolved by moving cells.

4.4 Placement Adjustment

When the router fails to complete all the nets for the given placement, the placement
adjustment phase has to move cells around to create room for the router. The task of the
placement adjustment phase is to take the existing routing result, including wires and
congestion elements, and then generate a new placement while preserving the existing
routing results as much as possible. The next section first shows how the required space is
derived from the congestion analysis from the existing wiring. Then the algorithm to move
cells with all the attached wires will be presented.

4.4.1 From Congestion to Space Requirement

The first step of the placement adjustment phase is to estimate the required space
between adjacent cells. These space requirements represent the spacing constraints between
the adjacent cells, which can then be enforced with a 1-D compaction/spacing algorithm.
The RULD-graph and the associated 1-D compaction algorithm introduced in Chapter 2 are
used for this purpose. In fact, when all the cells are tightly packed together, the traditional
horizontal and vertical constraint graphs [HP79] are almost the same as the RULD-graph
and could be used instead. However, the RULD-graph is used because it also can handle
inputs that is not yet densely packed. As shown in Chapter 2, a traditional 1-D compaction

70

4.4 Placement Adjustment

approach can easily destroy the relative positions between cells if the cells are not evenly
distributed.

In the RULD-graph, adjacent cells are connected by edges. When the RULD-graph is
used to resolve overlaps among cells during the placement process, the explicit constraints
derived from these edges represent the spacing constraints that require the two connected
cells to be separated by a distance greater than or equal to zero. To take into account the
additional routing space between the cells, the RULD-graph is enhanced so that the edge
can also represent spacing constraints greater than zero. The 1-D compaction algorithm that
works with the RULD-graph can take this additional spacing information into account with
only minor modifications.

The key problem is now how to convert the congestion information into spacing
constraints for the edges in the RULD-graph. The congestion information found in the
routing process is represented by the congestion elements distributed in the routing region.
For each edge in the RULD-graph, its spacing constraint is computed based on the
congestion elements touching the region covered by the edge. For an edge between block
A and B, the region covered by the edge is a rectangular region defined as:

(min(Axc Bxc),max(Ap Bp)) to (max(Axc Bxc),min(A;B:)) if edge is horizontal;
(max(A;B1),min(AycByc)) to (min(A,Br),max(AycByc)) if edge is vertical;
where

t: top, b: bottom, I: left, r: right,
XC: x-position of center,
yc: y-position of center.

The interpretation of these equations is shown in Fig. 4.3. A special case exists for these
equations when max(Ap,Bp) > min(A; By) for a horizontal edge or
max(A;B) > min(A,B;) for a vertical edge (Fig. 4.3(c)). In these cases, the covered region
of the edge will be an empty set and its spacing constraint won’t be increased at all.

— B

(a) (b) ()

Fig. 4.3 The covered area (the bold rectangles) for (a) a horizontal edge and
(b) a vertical edge; and (c) an edge whose covered area is empty.

71

4.4 Placement Adjustment

In computing the required spacing constraint for each edge, the region covered by the
edge is first computed. Then for all the congestion elements inside the covered region, the
congestion element with the maximum overload count is located. The spacing constraint
of the edge will then be increased by the overload count of this congestion element. The
maximum overload count is used instead of the sum of overload counts of all the congestion
elements because the congestions at different locations can sometimes be resolved simul-
taneously by increasing the spacing between cells by the maximum overload count (Fig.
4.4(a)). There are also some situations (Fig. 4.4(b)(c)) that the router may not be able to
find a solution with the increased space. In these cases, the additional space will be added

later in the following phases.

(a) (b) ()

- Jl_ I Nx2 grid — Wire ==z= congestion element

Fig.4.4 Assuming the overload count of every congestion element shown be
1. Increasing the spacing between the two cells by the maximum overload
count (=1), may resolve the congestion in case (a) but may not in case (b)
or (c). The wires shown in these figures are possible candidates to be moved
to resolve the congestion.

With these additional spacing constraints added to all the edges of the RULD-graph, the
desired locations for all the cells can be computed quickly with the 1-D compaction
algorithm introduced in Chapter 2.

72

4.4 Placement Adjustment
4.4.2 Moving Cells

After the compactor has computed the desired locations of all the cells, the next step is
to move each cell to its desired location. This would be a trivial task if there were no wires
present. However, the wires connecting pins on different cells make the task very difficult,
because when the cells are moved, some nets may get broken and some may get involved
in new conflicts with the others (Fig. 4.5(a)(b)).

A possible solution for avoiding breaking nets and creating new conflicts is to use layout
compaction techniques to push all the elements, including wires and cells. However, such
a compaction process on the whole chip can be very time-consuming. Furthermore, because
layout compactors normally preserve the relative positions between elements, the possible
changes that can be achieved tend to be very limited. Usually some cells have to be moved,
resulting in larger layout area (Fig. 4.5(c)). Since there will be a rerouting phase following
the placement adjustment phase, these problems can be solved by the rerouting operations.
In many situations, this approach can actually find a solution in a smaller space without
pushing the affected cells (Fig. 4.5(d)).

. A A B
gl
1— L:l 2=> 1 (37“ A :
il ST \” T'ﬂ
B B R s
(@) (b) T JJ':'J

Fig.4.5 (a) The original position of two cells. (b) When cell A is moved to the
right, net-1 is broken and net-2 has a new conflict with another net. (¢) Using
compaction that maintains the original topology will push cell B to the right,
increasing the total area. (d) Use of rerouting operations can find a solution
without moving cell B. (In these figures, the patterns of the wire segments
are used to distinguish different nets but not different layers. The wires in
the same orientation are on the same layer.)

73

4.4 Placement Adjustment

To use the router to reconnect the broken nets and resolve new conflicts, proper
information needs to be passed to the router. This is achieved by modifying the routing data
structure directly. Because the wiring data structure allows the presence of conflicts, there
is no need to process the new conflicts caused by the cell moves. However, the connectivity
information of the broken nets needs to be passed to the router. This connectivity informa-
tion is recorded by adding a stretched link to connect the two separated parts of each broken
net. As presented in Chapter 3, these stretched links are normal data elements in the routing
data structure and no special treatment is required.

With such a general routing data structure, the task of moving cells is somewhat
simplified. However, it is still very important to minimize the number of new conflicts and
stretched links in order to simplify the task required in the following rerouting phase. This
is achieved by a wire-adjusting algorithm that drags the wires with the moving cells. This
wire-adjusting algorithm comprises two phases. In the first phase, wires are moved based
on the moves of their neighboring cells to minimize the number of new conflicts. Then in
the second phase, wires are stretched or shrunk to minimize the number of stretched links.

4.4.2.1 Moving Wires

In the first phase of the wire-adjusting algorithm, wires are moved based on the moves
of their neighboring cells. The goal is to avoid breaking too many connections and to
minimize the number of new conflicts. The basic idea is to divide the whole routing region
into many non-overlapping partitions such that each partition contains exactly one cell. For
all the wires touching a certain partition, the desired move will be the move of the cell in
the partition. When a wire touches two or more partitions, the wire will have several desired
moves.

Ideally, if every wire has only one desired move or all its desired moves are the same,
there won’t be any broken connections or new conflicts after making these desired moves.
However, many wires may touch different partitions with different desired moves. The
selection of the desired move is based on the move patterns of the cells. When the router
fails to complete all the nets, the new positions of the cells are decided by the 1-D compactor
using the new spacing constraints derived from the congestion analysis. Because the spacing
constraints of all the edges in the RULD-graph can only increase or remain the same, and
the 1-D compactor always pushes all cells to the lower-left corner, cells can only move
upward or to the right with increased critical paths to the lower-left corner. To maintain the
same move patterns for wires and cells to keep the original routing result, wires with several
desired moves will select the minimum desired moves in both x— and y—directions. Because
the desired moves for all the partitions are always positive, this selection process does not
need to check the directions of the moves.

74

4.4 Placement Adjustment

Based on the proposed idea, the remaining problem would be to partition the routing
region such that each partition contains exact one cell. However, as shown in Fig. 2.15,
such a partition cannot always be found with the RULD-graph. Even without the situation
shown in Fig. 2.15, the non-zero spacing constraints also make it impossible to find such a
partition in many cases. To solve the problem, a two-step process is taken to approximate
such a partition.

In computing the desired moves for wires, a surrounding region is first computed for
every cell. Using the attached edges in the corresponding RULD-graph, the surrounding
region of a cell is computed based on the following equations and demonstrated in Fig. 4.6.
For each cell, the desired moves for the wires that touch its surrounding region will be the
move of the cell.

Surrounding region : (xo—X1,Y0—Yd) t0 (X147, Y1+Yu)

with

(x0,y0) to (x1,y1) : region originally occupied by the cell

X = % min (spacing constraints of edges going left),

Xr = % min (spacing constraints of edges going right),
1

Xy =7 min (spacing constraints of edges going up),

Xd = % min (spacing constraints of edges going down).

IODIY, : > LLLL L2200

1 A %

/ .
TIIIIIIIE

SO

.////: surrounding region || cell

Fig. 4.6 The surrounding regions for the cells.

The surrounding regions of all the cells won’t overlap. However, as shown in Fig. 4.6,
these surrounding regions won’t cover the whole routing region. In the second step of
computing the desired move for all the wires, the region covered by the edge of the

75

4.4 Placement Adjustment

RULD-graph, as defined in Section 4.4.1, are used again. A slight modification here is that
the surrounding region of each cell, instead of its actual shape, is used in computing this
region. Fig. 4.7 demonstrates how these regions fill the space not covered by the surrounding
regions of the cells. For a wire touching the region covered by an edge, its desired move
will be the move of the cell connected by the left end (for a horizontal edge) or the lower
end (for a vertical edge) of the edge. ‘

7.T§77777777' 7
G irrs Y
7 /A/

A . |/
7 e
// 7
VLl L L L
7/// surrounding region [] cell

Fig.4.7 Theregion (the bold rectangle) covered by the edge (A,B) can fill the
empty space not covered by the surrounding region of all the neighboring
cells.

K

&\\\\\\V ‘

With the surrounding regions of all the cells and the regions covered by all the edges,
the whole routing region can be covered. Every wire will have at least one desired move.
For wires with multiple desired moves, the minimum x-direction move and the minimum
y-direction move will be chosen as the final move. After moving all the wires with the
selected move, wires with multiple desired moves may break connections or cause new
conflicts.

4.4.2.2 Stretching and Shrinking Wires

The second phase of the wire-adjusting algorithm reconnects some of the broken nets
with simple operations to minimize the number of the stretched links. This algorithm tries
to extend or shorten the wires to eliminate the use of stretched links. Basically, these
operations can reconnect all the broken connection between perpendicular wires but not
between parallel wires or between wires and pins. Because most of the connection in routing
results are between perpendicular wires, these wire-stretching/shrinking operations can
remove most of the stretched links. Table 4.1 shows how the number of the conflicts and
stretched links are changed when the cells are moved.

76

4.5 Overall Algorithm

case #1 case #2 case #3
wires = 1824 # wires = 1895 # wires = 1837
con-
#str.-links| _flicts l#str.-links | #conflicts I#str. links #conflicts
before move 0 35 0 8 0 3
after moving wires 428 - 243 - 97 -
after stretching wires 59 193 22 95 7 33
after rerouting 0 8 0 3 0 0

Table 4.1 The effect of the placement adjustment algorithm on the number of
stretched links (str.-links) and conflicts. These numbers are extracted from
three placement adjustment phases in processing a macro-cell example.

Table 4.1 shows that the wire-stretching phase can eliminate most of the stretched links
created when the wires are moved. It also shows that only a small portion of the wires will
get involved in new conflicts after the placement adjustment phase. With the increased
routing space, most of these conflicts can be resolved quickly by the succeeding rerouting
phase.

4.5 Overall Algorithm

Based on the enhanced router and the placement adjustment algorithm, the overall
algorithm can be described in the following C-like pseudo-code.

77

4.5 Overall Algorithm

main()
{
build_RULD_graph();
add_space_around_celi(); /* only a small amount of space */
1D_compact_RULD_graph();
loop=0;
do {
route(loop);
compute_spacing_constraints_from_congestion();
1D_compact_RULD_graph();
move_wires_with_cells();
loop ++;
} while (! finished()) ;
}

route(loop)

if (loop==0) {
global_route(top_level, IGNORE_ADJ_CONGESTION);
return ;
}elseif (loop==1){
global_route(top_level, REROUTE_ONLY);
detail_route(),
return ;
}else {/*loop=2"*/
detail_route();
for (i=0; (! complete) && (i< (loop-1)) ; i++) {
global_route(detailed_level, REROUTE_ONLY);
detail_route();

}
}
}

In this routine, the procedures build_RULD_graph and 1D_compact_RULD_graph
are the ones presented in Chapter 2. The procedure route is the enhanced area router. When
it is called the first time, it ignores all the congestions in the adjustable area and returns
before conducting any detailed routing. The second time, it repeats the hierarchical routing
from the highest level while using only global rerouting algorithms. Right after the router
tries the detailed routing algorithm once, it returns, and the placement adjustment routine
then tries to move the cells again based on the detailed routing result. Afterwards, the
procedure route tries harder and harder, iterating between the global rerouting and detailed
rerouting algorithms several times, before it returns and resorts to the placement adjustment
routines. This loop repeats until all the nets are implemented with proper wires and vias
without any conflicts. Fig. 4.8 shows how the layout is changed during such an iteration
loop.

78

4.5 Overall Algorithm

]
1

i
!
|

(e)

Fig.4.8 The change of the layout in the placement and routing loop. (a) Initial
layout after inserting a small amount of routing space around each cell. (b)
After first global routing phase. (c) After the placement adjustment phase.
(d) After another pass of global routing and then detailed routing. (e) After
another placement adjustment phase. (e) Final result after severaliterations.

79

4.6 Results

4.6 Results

The integrated placement and routing scheme introduced in this chapteris a very general
approach that is quite different from traditional approaches. To evaluate this new approach,
a prototype system has been developed and compared with different approaches on various
kinds of problems.

4.6.1 Comparison with Fixed Placement and Compaction

An alternative to complete routing for a given placement is to allocate additional routing
space in advance and then use alayoutcompactor to minimize the wasted space of the routing
result. This approach, which will be referred to as the Place-Route-Compact or simply
P-R-C approach, is compared with the integrated placement and routing approach presented
in this chapter.

This comparison is made on the two well-known MCNC macro-cell benchmarks,
AMI33 and AMI49. For each benchmark, an initial placement without any routing space
allocated between cells is first obtained using the placement algorithm introduced in Chapter
2. For the P-R-C approach, simple heuristics are used to allocate a wiring zone surrounding
each cell. For each cell, the extended wiring zone for an edge E is computed based on the

following formula:
extension(E) = $xVpin_number(E)x2
where
pin_number(E) = number of pins on edge E;
S = an adjustable scaling factor.

For each benchmark example, several scaling factors are tested and the three smallest ones
that can generate enough space to allow the router to complete all the nets are presented.
The area router presented in Chapter 3 is used here. The routing results are processed with
an industrial symbolic-layout compactor to squeeze out the wasted space. To make a fair
comparison, the final results from the integrated placement and routing approach are also
processed by the same compactor. Table 4.2 shows the results of this experiment and Fig.
4.9 and Fig. 4.10 compare the layouts of the two different approaches.

80

4.6 Results

Approach before compaction after compaction
Example |(scaling factor) area wire-length area wire-length |

ami33 Integ. P&R 2.71 124.2 241 113.6
P-R-C(2) 2.99 132.2 2.52 117.0

P-R-C(3) 3.96 153.6 2.59 126.5

P-R-C(4) 5.07 179.5 2.96 135.7

ami49 Integ. P&R 55.37 1000.7 51.99 953.2
P-R-C(5) 66.72 1068.2 54.97 960.3

P-R-C(6) 72.69 1110.2 56.42 972.1

P-R-C(7) 77.78 1155.8 57.35 082.3

Table 4.2 Results fromthe two different approaches. For the P-R-C approach,
three different scaling factors are used to generate placements for routing.

The unit is mn? for the areas and mm for the wire-lengths.

Table 4.2 shows that when additional space is allocated for the router initially, the
compactor can squeeze out a considerable amount of wasted space but the results are not as
small as those generated by the integrated placement and routing approach introduced in
this chapter. This verifies the statement made in Section 4.1 that the router, given too much
space, may generate results that are difficult to compact.

81

4.6 Results

gl

)
- -y

- ‘-

1}
..E;,.E.; o
|] 1§
I
L [}
T
- i
B
L _
|

- =
. w———
1
]

11 o 09
h

| I ol

(c) | (d)

Fig.4.9 Comparison of the integrated placement and routing approach () (b)

and the Place-Route-Compact approach (c) (d) on AMI33. (a) (c) are layouts
before compaction and (b) (d) are compacted results. The scaling factor of

the P-R-C approach is 3.

82

4.6 Results

-1

I 1]

11

(c) (d)

Fig.4.10 More comparison of the integrated placement and routing approach
(a) (b) and the Place-Route-Compact approach (c) (d) on AMI49. (a) (c) are
layouts before compaction and (b) (d) are compacted results. The scaling
factor of the P-R-C approach is 6.

83

4.6 Results
4.6.2 Macro-cell problems with Over-the-Cell Routing

The primary application targets of this integrated system are macro-cell problems with
over-the-cell routing. Even though there have been real designs implemented in this style,
there are still no benchmark examples available in the public domain. To the best of our
knowledge, there are also no published result on this kind of problem. Therefore, several
artificial examples have been created to evaluate the system.

The artificial examples are derived from the two MCNC benchmarks - AMI33 and
AMI49. Because the two benchmarks are originally designed for channel-based design
style, it would create problems that are too easy by simply allowing the wires to go over the
cells. Forthese two examples, the original net lists are used while only the cells are modified.
For each cell in the design, it is first scaled by a random number from 0.8 to 1.0 and then
filled with randomly generated rectangular obstacles. The total area of these random
obstacles is controlled to be in the range of 20% to 60% of the cell area, with the percentage
also generated randomly for each cell. Finally, every pin on the cell is shifted randomly to
an arbitrary location in the cell that is not covered by any obstacles. Fig. 4. 11 demonstrates
how a cell with obstacles and pins inside is generated from a cell only with pins on the
boundary.

pins

u| EA/

Fig.4.11 An example of the randomly generated cells. (a) The original cell
and (b) the generated cell with obstacles and pins inside.

Fig. 4.12 and Fig. 4.13 show the layouts of the initial placements and final results of
these two randomly generated problems. Table 4.3 summaries the results for these two
problems.

Placement

|___Example Initial Area | Final Area | Wire Length | CPU time Adjustments
AMI330tc 1135x1120 | 1239x1239 113848 232 4
AMI490tc 5978x5887 | 6062x6258 985327 2844 10

Table 4.3 Results of on macro-cell examples with over-the-cell routing. All the
linear dimensions are in pm. The CPU-times are measured in seconds on
a SUN SPARC-1.

84

4.6 Results

(b)
Fig.4.12 The result of AMI33otc: (a) initial placement and (b) final result.

85

4.6 Results

(b)
Fig.4.13 The result of AMI49otc: (a) initial placement and (b) final result.

86

4.6 Results
4.6.3 Channel-based Macro-cell Problems

Even though this system is designed for handling problems with over-the-cell routing,
the system can also handle traditional channel-based macro-cell designs. Table 4.4 sum-
maries our results of the two MCNC macro-cell benchmarks, AMI33 and AMI49, and Fig.
4.14 shows the final layout of AMI33. Table 4.5 compares the compacted results of our
integrated placement and routing approach with other published results.

#Placement

Example | Initial Area | Final Area | Wire Length | CPU time | Adjustment
AMI33 1442x1491 | 1575x1694 | 124196 183 5
AMI49 7105x6713 | 7763x7133 | 1000692 3030 6

Table 4.4 Results of on macro-cell examples. The final results here are before
compaction. All the linear dimensions are in pm. The CPU-times are
measured in seconds on a SUN SPARC-1.

i

Fig.4.14 Resulting layout of AMI33 (before compaction).

87

4.7 Summary

Example System Area Wire Length
Delft P&R 2.60 152
Industrial 2 3.12 135
Bear 2.83 131
AMI33 Industrial 1 294 125
Mosaico 271 118
TimberWolf 2.57 105
MBP 242 91
Integ. P&R 241 113
AMI49 MBP 48.79 904
Integ. PR 51.99 953

Table 4.5 Comparison of the placement and routing results of MCNC macro-
cell benchmarks. The results of the integrated placement and routing
approach (Integ. P&R) are from compacted layouts. All the numbers here
are obtained from [SS90] except the results of MBP, which are published in

[USS90]. The unitis mn? for the areas and mm for the wire-lengths.

Among the various approaches shown in Table 4.5, the results on the Delft P&R and
the Mosaico systems were obtained with the use of interactive manual placement; further-
more, Mosaico also used interactive global routing modifications. Both TimberWolf and
MBP used the simulated-annealing approach for placement and channel-based global and
detailed routers to complete the routing. All these methods take advantage of the knowledge
of the channel structure of the wiring area, and have been optimized and fine-tuned for this
type of problem. Thus it is not surprising that our results are not the bestamong them because
our system is designed to handle much more general problems that cannot be handled by
any of these systems. However, our results are fairly close to the best published results and
are better than those of some systems designed specifically for this problem class.

4.7 Slimmary

An integrated placement and routing approach has been developed. By using efficient
incremental routing and placement adjustment algorithms, the system can iterate between
the two algorithms to generate optimized results with reasonable time complexity. This
iterative optimization loop can produce layouts better than the approaches that rely on layout
compactors to minimize the final area. Furthermore, such a general approach can handle
problems that cannot be handled by other approaches.

88

Chapter 5
Discussions and Conclusions

This dissertation presents new approaches for compaction, placement, and routing in
layout synthesis and optimization. The major research effort has been focused on integrating
these various algorithms to provide smaller layouts with shorter total wire length. The major
contribution of this dissertation is to demonstrate an explicit way to integrate the various
algorithms via carefully designed combined data structures. The results show that various
layout routines can work cooperatively in an iterative optimization loop, which traditionally
has been very difficult and/or typically required considerable amount of human intervention.
The key ideas will be reviewed in the following sections.

5.1 Integrated Data Structure

The first major contribution of this dissertation is the use of a concise integrated data
structure to allow the different algorithms to work together effectively. Typically, different
algorithms require different data structures to work in the most efficient way. However,
when separate data structures are used for different algorithms or tools, data that needs to
be communicated from one routine to another must be transformed from one format to the
other. Furthermore, if there is duplicated information in different data structures, it also
requires special routines to maintain the consistency of the shared data. The overhead of
data transformation and consistency maintenance can be quite expensive.

The basic approach presented in this dissertation is to use an integrated data structure
that keeps only the highest-level of data abstraction. The goal is to minimize the size of the
data structure and the overhead of modifying the data structure. Any information that can
be derived on the fly is not stored, even though it may be necessary to recompute the data
many times. This approach manifests itself in several places in this dissertation.

The first demonstration of this idea is the use of the RULD-graph for 2-D compaction.
Traditional compaction algorithms require two constraint-graphs for the two compaction
directions, horizontal and vertical. Most compactors, 1-D or 2-D, have to iterate between
the two directions. However, the constraint-graph used in one compaction pass usually
cannot be used again in the following passes because the changes of the location of the
blocks in the other direction make the constraint-graph invalid. The RULD-graph combines
the horizontal and vertical constraint-graphs into a single data structure. All the necessary
horizontal and vertical constraints can be derived from it very quickly. Even though deriving

89

5.2 lterative Optimization Using Cooperative Algorithms

and enforcing the implicit constraints is more expensive than using the traditional constraint-
graph, its cost is small compared to that of rebuilding the complete constraint-graphs several
times. This allows the compactor to compute 2-D moves efficiently and to iterate between
horizontal and vertical compaction easily.

Another example is the unified wiring data structure presented in Chapter 3. Tradition-
ally, the global router and the detailed router have been working independently. Special
track-assignment algorithms are then required to convert global routing results for the use
of the detailed router, and no information flows in the inverse direction. By using the same
wiring data structure for both the global and detailed routing algorithms, no special data
conversion is required. This same data structure also integrates and provides the means of
communication for the different levels of the global router. In addition, the data structure
also carries the important congestion information that can be shared by all the routing
algorithms. Even though there is a certain overhead using the relatively low-level wiring
data structure for the global routing algorithms, the advantage of allowing the router to move
between different levels makes the router overall much more efficient.

This wiring data structure is also used for integrating the routing and placement
adjustment algorithms. The placement adjustment algorithm uses the congestion informa-
tion to estimate the required space among cells. After moving the cells, the placement
adjustment algorithm modifies the wiring data structure directly. The stretched link provides
a convenient way for the placement adjustment algorithm to pass connectivity information
back to the router. Because all the information exchange between the routing and placement
adjustment phases goes through a well-defined data structure, the transition between the two
different algorithms is very simple and smooth. Therefore, it is possible to iterate between
the two algorithms to achieve better overall results.

5.2 Iterative Optimization Using Cooperative Algorithms

The second major contribution of this dissertation is to demonstrate that iterating
between algorithms with different functions can produce better overall results. VLSI design
is a very complexity task that traditionally has required several manual iterations to achieve
a satisfactory result. Similarly, the CAD tools for automating this process should also be
able to iterate freely. However, iterating sequences of CAD tools or algorithms have not
been practical in the past because of the high time complexity of the individual algorithms
and the lack of good feedback mechanisms.

The basic idea demonstrated in this dissertation is to use fast and effective incremental
updating routines to work on an integrated data structure. Instead of building complex
estimation algorithms or statistical model to provide information from lower-level tools to
higher ones, simple and efficient algorithms are used to conduct the actual low-level tasks

90

5.3 Conclusion

to collect real factual data. All the tools may start with imprecise estimates. As the system
iterates between different tools, more precise information is collected by each tool and this
information can be taken into account by the other tools. The overall result can be improved
gradually until a satisfactory result is achieved. This idea is demonstrated in several places
in this dissertation.

The first demonstration of the iterative optimization loop is the placement algorithm
that iterates between the wire-length optimization algorithms and the 2-D compaction
algorithm. Traditionally, the task of resolving overlaps is integrated into the wire-length
optimization algorithm as some cost functions that estimate the area of the final layout.
However, the estimate is not always precise, and the additional cost terms usually make the
optimization routines much more complex and slow. By dividing the placement process
into wire-length optimization and overlap-resolving phases, each phase can be made more
efficient. It is then possible to iterate between the two phases to explore many good legal
solutions quickly and choose the best one.

The second demonstration of the iterative optimization loop is the process of integrated
global and detailed routing. Traditionally, the global and detailed routing tasks are con-
ducted sequentially. In this approach, the global router have to build complex model to
estimate the capacity requirement for detailed routing. However, a very precise model is
normally not available. By using efficient incremental rerouting routines in both the global
and the detailed routing phases, the router can switch between the two algorithms, choosing
the most efficient approach to ease the congestion and resolve the conflicts. Even though
very simple capacity models are used initially by the global router, the efficient rerouting
routines can quickly correct the original estimates based on the feedback from actual detailed
routing results. The overall algorithm is still very efficient even though it iterates between
two algorithms several times.

The third demonstration of the iterative optimization loop is the integrated routing and
placement adjustment scheme. This is probably the first ever successful attempt to iterate
between these two processes automatically to complete the task. This integration is made
possiblé primarily by the rerouting operations that can incrementally modify the wiring in
an efficient manner. Again, this approach uses initially simple and imprecise congestion
information to space the cells. The placement is then adjusted gradually based on the exact
routing results. Even though simple capacity models are used initially, the final result can
still be densely packed with the congestion evenly distributed.

5.3 Conclusion

In the past few years, many VLSI CAD tools and algorithms have been developed or
proposed. Even with these powerful tools and novel algorithms, it is still very time-con-

91

5.3 Conclusion

suming to accomplish a high-quality design. One of the major problem has been the lack
of interaction between the various tools, especially the good feedback mechanisms from the
lower-level tools to the higher ones. The detailed router may not be able to complete a good
global routing result. A highly-optimized placement result may not be routable. This
problem is not limited to the domain of the physical design. A highly-optimized net-list
from a logic synthesis tool may be very difficult to place and route, resulting a very large
and/or slow chip.

The techniques and results presented in this dissertation further support the conjecture
that various CAD layout routines can work cooperatively in an iterative optimization loop
to generate smaller layouts with shorter total wire length. Such an iteration loop is made
possible with a carefully designed combined data structure and efficient incremental
modification routines. This basic principle can be extended to combine more CAD algo-
rithms into an optimization loop to generate high-quality chip designs with little human
intervention.

92

References

[BHP83]
[Boy87a]
[Boy87b]
[BP83]
[Bre77]
[Che87]
[Chr89]
[CW91]

[DAKS5]

[FCW67]
[GV83]
[Hig69]
[Hoj90]

[(HP79]

[HS71]

[HWA73]

M. Burstein, S.J. Hong, and R. Pelavin. Hierarchical VLSI layout: Simul-
taneous placement and wiring of gate arrays. In Proc. of IFIP VLSI-83,1983.
D.G. Boyer. Symbolic compaction benchmarks - introduction and ground
rules. In Proc. ICCD-87, pages 186-191, Oct. 1987.

D.G. Boyer. Symbolic compaction benchmarks - results. In Proc.ICCD-87,
pages 209-217, Oct. 1987.

M. Burstein and R. Pelavin. Hierarchical wire routing. IEEE Trans. CAD
of ICs and Systems, CAD-2(4):223-234, Oct. 1983.

M.A. Breuer. Min-cut placement. J. Design and Fault Tolerant Computing,
1(4):343-362, Oct. 1977.

H.H. Chen. Routing L-shaped channels in nonslicing structure placement.
In Proc. 24th Design Automation Conf., pages 152-158, 1987.

W.A. Christopher. Mariner: A sea-of-gates layout system. Technical Report
M89/83, UCB/ERL, June 1989.

Y. Cai and D.F. Wong. On minimizing the number of L-shaped channels.
In Proc. 28th Design Automation Conf., pages 328-334, 1991.

W.M. Dai, T. Asano, and E.S. Kuh. Routing region definition and ordering
scheme for building-block layout. IEEE Trans. CAD of ICs and Systems,
CAD-4(3):189-197, July 1985.

C.1. Fisk, D.L. Caskey, and L.E. West. ACCEL: automated circuit card
etching layout. Proc. of the IEEE, 55(11):1971-1982, 1967.

G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 1983.

D.W. Hightower. A solution to line-routing problem on the continuous
plane. In Proc. 6th Design Automation Workshop, pages 1-24, 1969.

R. Hojati. Layout optimization by pattern modification. In Proc. 27th
Design Automation Conf., pages 632-637, 1990.

M.Y. Hsueh and D.O. Pederson. Computer-aided layout of LSI circuit
building blocks. In Proc. 1979 International Symposium on Circuits and
Systems, pages 474-4717, 1979.

A. Hashimoto and J. Stevens. Wire routing by optimizing channel assign-
ment. In Proc. 8th Design Automation Conf., pages 214-224, 1971.

M. Hanan, P.K. Wolff, Sr., and B.J. Agule. Some experimental results on
placement techniques. In Proc. 13th Design Automation Conf., pages 214
224, 1973.

93

References
[IBSV89]

[Joh87]

[Kah89]

[KK88]

[KPS89]

[KSJ88]

[KW84]

[Lau79]

[Lau87]

[Lee61]

[Lee90]

[LHT90]

[Luk85]
[Oht85]

[PS85]
[REF82]

[RJ89]

M. Igusa, M. Beardslee, and A. Sangiovanni-Vincentelli. ORCA: A sea-of-
gates place and route system. In Proc. 26th Design Automation Conf., pages
122-127, 1989.

F.M. Johannes. Use of triangulation for global placement. In Proc. VLSI' 87,
Vancouver, pages 151-160, Aug. 1987.

AB. Kahng. Spacefilling curve techniques for CAD/CAM. In Proc.
Advanced Research in VLSI Conference, Caltech, Pasadena, pages 261-
2717, 1989.

K. Kozminski and E. Kinnen. Rectangular dualization and rectangular
dissection. IEEE Trans. Circuits and Systems, 35(11):1401-1416, Nov.
1988.

B. Korte, H.J. Promel, and A. Steger. Combining partitioning and global
routing in sea-of-cells design. In Proc. ICCAD-89, pages 98-101, 1989.
J.M. Kleinhans, G. Sigl, and F.M. Johannes. Gordian: A new global op-
timization / rectangle dissection method for cell placement. In Proc.
ICCAD-88, pages 506-510, 1988.

G. Kedem and H. Watanabe. Graph-optimization techniques for IC layout
and compaction. IEEE Trans. CAD of ICs and Systems, CAD-3(1):12-20,
Jan 1984.

U. Lauther. A min-cut placement algorithm for general cell assemblies based
on a graph representation. In Proc. 16th Design Automation Conf., pages
1-10, 1979.

U. Lauther. Top down hierarchical global routing for channelless gate arrays
based on linear assignment. In Proc. of IFIP VLSI-87, 1987.

C.Y. Lee. An algorithm for path connection and its application. IRE Trans.
on Electronic Computers, EC-10:346-365, Sept. 1961.

B.D.N. Lee. Experiments in hierarchical routing of general areas. Technical
Report M90/17, UCB/ERL, March 1990.

Y.-L Lin, Y.-C. Hsu, and F.-S. Tsai. Hybrid routing. IEEE Trans. CAD of
ICs and Systems, CAD-9(2):151-157, 1990.

W.K. Luk. A greedy switch-box router. Integration, 3:129-149, 1985.

T. Ohtsuki, editor. Layout Design and Verification, volume 4 of Advances
In CAD for VLSI. North-Holland, 1985.

F.P. Preparata and M.L Shamos. Computational Geometry, An Introduction.
Springer-Verlag, 1985.

R.L. Rivest and C.M. Fiduccia. A ‘greedy’ channel router. In Proc. 19th
Design Automation Conf., pages 418-424, 1982.

H.C. Ranke and F.M. Johannes. Macrocell placement by global optimization
with uniform cell distribution. In Proc. VLSI'89, Munich, pages 423432,
Aug. 1989.

94

[RSVS85]

[Rub74]
[SB87]
[Shi87]

[SK88]

[SLS87]
[SLW83]
[SS90]

[SSV84]

[SSVS86]

[Sze86]

[TFKM91]

[TKHS88]

[TS88]

[TS91a]

[TS91b]

References

J. Reed, A. Sangiovanni-Vincentelli, and M. Santomauro. A new symbolic
channel router; YACR2. IEEE Trans. CAD of ICs and Systems, CAD-
4(3):208-219, 1985.

F. Rubin. The Lee path connection algorithm. JEEE Trans. on Computers,
C-23(9):907-914, 1974.

L. Sha and T. Blank. Atlas - a technique for layout using analytic shapes.
In Proc. ICCAD-87, pages 84-87, 1987.

H. Shin. Two-Dimensional Routing and Compaction in Computer-Aided
Design of Integrated Circuits. PhD thesis, U.C. Berkeley, 1987.

P.R. Suaris and G. Kedem. An algorithm for quadrisection and its applica-
tion to standard cell placement. IEEE Trans. Circuit and Systems, CAS-
35(3):294-303, 1988.

E. Shragowitz, J. Lee, and S. Sahni. Placer-router for sea-of-gates design
style. In Proc. ICCD-87, pages 330-335, 1987.

M. Schlag, Y.Z. Liao, and C.K. Wong. An algorithm for optimal two-dimen-
sional compaction of VLSI layout. Integration, 1:179-209, 1983.

W. Swartz and C. Sechen. New algorithms for the placement and routing of
macro cells. In Proc. ICCAD-90, pages 336-339, 1990.

C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf placement and
routing package. In Proc. 1984 Custom Integrated Circuit Conference,
pages 522-527, 1984.

H. Shin, A. Sangiovanni-Vincentelli, and C.H. Séquin. Two dimensional
compaction by zone refining. In Proc. 23rd Design Automation Conf., pages
115-122, 1986.

A.A. Szepieniec. Integrated placement/routing in sliced layouts. In Proc.
23rd Design Automation Conference, pages 300-307, 1986.

Y. Tamiya, M. Fujita, T. Kakuda, and Y. Matsunaga. Macro cell placement
based on a rectangular dual representation. In Proc. 1991 Physical Design
Workshop, 1991.

R.-S. Tsay, E.S. Kuh, and C.-P. Hsu. PROUD: A fast Sea-Of-Gates place-
ment algorithm. In Proc. 25th Design Automation Conf., pages 318-323,
1988.

P.-S. Tzeng and CH. Séquin. Codar: A congestion-directed general area
router. In Proc. ICCAD-88, pages 30-33, 1988.

P.-S. Tzeng and C.H. Séquin. A data structure for resolving overlaps in
macro-block placement. In Proc. Physical Design Workshop, 1991.

P.-S. Tzeng and C.H. Séquin. Macro-block placement using efficient 2-d
compaction. In Proc. Advanced Research in VLSI Conference, Santa Cruz,
pages 178-191, March 1991.

95

References

[Tsa89]

[USS90]

[VKLS90]

[WMND88]

[Xi089]

R.-S. Tsay. Partitioning, Placement, and Routing Algorithms for High
Complexity Integrated Circuits. PhD thesis, U.C. Berkeley, 1989.

M. Upton, K. Samii, and S. Sugiyama. Simulated annealing placement for
mixed macro cell and standard cell layouts. In Proc. International Workshop
on Layout Synthesis, 1990.

J. Valainis, S. Kaptanoglu, E. Liu, and R. Suaya. Two-dimensional IC layout
compaction based on topological design rule checking. IEEE Trans. CAD
of ICs and Systems, CAD-9(3):260-275, March 1990.

W.H. Wolf, R.G. Mathews, J.A. Newkirk, and R.W Dutton. Algorithms for
optimizing two-dimensional symbolic layout compaction. /EEE Trans.
CAD of ICs and Systems, CAD-7(4):451-466, April 1988.

X.-M. Xiong. Two-dimensional compaction for placement refinement. In
Proc. ICCAD-89, pages 136-140, 1989.

96

